Supplement To

THE FLEXURAL RIGIDITY OF A RECTANGULAR STRIP OF SANDWICH CONSTRUCTION

Supplementary Mathematical Analysis and Comparison

with the Results of Tests

Revised May 1952

This Report is One of a Series Issued in Cooperation with the ARMY-NAVY-CIVIL COMMITTEE on AIRCRAFT DESIGN CRITERIA Under the Supervision of the AERONAUTICAL BOARD

(Regart)

No. 1505-A

UNITED STATES DEPARTMENT OF AGRICULTURE
FOREST SERVICE
Madison 5, Wisconsin
In Cooperation with the University of Wisconsin

Supplement to

FLEXURAL RIGIDITY OF A RECTANGULAR STRIP OF

SANDWICH CONSTRUCTION

COMPARISON BETWEEN MATHEMATICAL ANALYSIS AND

RESULTS OF TESTS1

Ву

CHARLES B. NORRIS, Engineer
WILHELM S. ERICKSEN, Mathematician
and
WILLIAM J. KOMMERS, Engineer

Forest Products Laboratory, Forest Service U. S. Department of Agriculture

Summary

The results of a number of bending tests made on several sandwich constructions are compared with values computed according to the mathematical analysis given in Forest Products Laboratory Report No. 1505,2 and reasonable agreement is found. This analysis obviously does not give accurate results for certain extreme constructions. A new analysis is presented that should yield better results for these constructions. It is shown that the two analyses agree for usual constructions. Neither analysis is suitable for very short beams. It is also shown that if the modulus of rigidity of the core material is not uniform over the length of the beam, the use of the arithmetical average in the formulas will not yield proper results; a lesser value, dependent upon the amount of ununiformity, is required.

This progress report is one of a series prepared and distributed under U.S.

Navy Bureau of Aeronautics No. NBA-PO-NAer 01019, 01077, and 00938, Amendment Nos. 1 and 2, and U.S. Air Force No. USAF-(33-038)51-4066E and 51-4326-E.

Results here reported are preliminary and may be revised as additional data become available.

²Maintained at Madison, Wis., in cooperation with the University of Wisconsin.
3"Flexural Rigidity of a Rectangular Strip of Sandwich Construction," by H.W.
March and C. B. Smith. Forest Products Laboratory Report No. 1505.

Introduction

The mathematical development in Report No. 1505 (of which this report is a supplement) is based on a stress function in the form of a polynominal (see "Theory of Elasticity," chapter 2, by Timoshenko). The polynominal used (equation 10 of Report No. 1505) is the most general one that can be used. The use of this polynominal limits the number of conditions that can be imposed at the clamped end of the cantilever beam to three and, of course, also imposes the conditions that the stress distributions across the clamped end of the cantilever be those derived from the stress function. In a test such stress distributions cannot be assured; but, according to St. Vennant's principle, the stress distribution at a distance from the clamped end is not disturbed by the particular statically equivalent stress distribution applied at the end.

The three conditions applied at the clamped end are given by equations (46), (47), and (48) of Report No. 1505. The application of these conditions yield reasonable numerical results, except when the modulus of rigidity of the core is exceedingly small or the facings are quite thick.

When two such cantilever beams are put together to form a single, centrally loaded beam, the longitudinal displacements at the central cross section of the beam should be zero at all points on the section as well as at the three positions indicated by equations (46), (47), and (48). The mathematical development in Report No. 1505 does not satisfy this condition; in fact a solution satisfying these conditions even for beams made of a solid isotropic material is not available.

The form of the equation for the effective stiffness (equation 65 in Report No. 1505) is such that when the modulus of rigidity of the core is reduced to zero, the effective stiffness is also reduced to zero. This is obviously incorrect for this extreme case, because the stiffness of the individual facings is still present. It is correct for the conditions expressed by equations (46), (47), and (48), and is numerically correct for the test conditions, as the tests indicate, except for the extreme constructions previously described.

A new mathematical analysis is given in the appendix of this report that may be applied to sandwich constructions having thick facings and cores of small moduli of rigidity. This analysis is based on certain simplifying assumptions that are made at the beginning of the analysis, which, just as in Report No. 1505, avoid an accurate description of the situation—in the vicinity of the loads and reactions. They approximate the conditions in a test at positions in the specimen not too close to the loads or reactions. The effective stiffness obtained from this new analysis reduces to that of the individual facings when the modulus of rigidity of the core is reduced to zero. The equations derived from this analysis are shown to agree with those of Report No. 1505 for usual sandwich constructions, except for specimens tested on very short spans. For such specimens, neither analysis is suitable because all parts of the specimen are too close to the loads or to the reactions.

^{4—}It would seem that a more general one could be used, but it is found that the coefficients of the added terms must be zero for the particular problem investigated.

It has been noted that the modulus of rigidity of the core of a sandwich construction determined from data from bending tests is usually less than that obtained from shear tests of the core material in which the shear strains are substantially uniform throughout the material. It is shown that this difference is due largely to variations in the modulus of rigidity of the core material along the specimen.

A considerable number of bending tests on various sandwich constructions were made, and the results were compared with those computed by the method of Report No. 1505. The agreement between the test and the computed values is reasonably good.

Description of Test Specimens

The test specimens were cut out of sandwich panels as shown in figures 1 and 2. Thirty such panels were used and 29 of them were numbered consecutively. The thirtieth panel was a duplicate of panel No. 8 and was numbered 8A. Each specimen was cut to a nominal width of 1 inch, and to a length noted on the specimen, as shown in figures 1 and 2. The lengths ranged from 36 to 6 inches. The specimens were arranged in duplicate pairs, with one of each pair being marked T and the other B. Each specimen number therefore consists of the number of the panel, the letter of a pair, and a number indicating the length. Thus the number 2T18 indicates the specimen marked T of the pair of 18-inch specimens cut from panel number 2.

The panels were made of various facing and core materials of various thicknesses. The facings on one side of panels 1 to 10 (excepting panels 4 and 7) were different in thickness from the facings on the other sides of these panels. Panels 11 to 29 had facings of the same thickness on each side. The facings were either glass-cloth laminates ranging from 0.006 to 0.024 inch thick, or aluminum ranging from 0.012 to 0.032 inch thick. The cores were end-grain balsa wood ranging from about 1/4 to 3/4 inch thick, cellular cellulose acetate ranging from about 1/4 to 1/2 inch thick, or paper honeycomb ranging from about 3/8 to 3/4 inch thick. The constructions of the various specimens are given in table 1.

The glass-cloth facings were made from a basket-weave, heat-cleaned glass cloth (No. 112-114), 0.003-inch thick, and a laminating resin of the polyester type (resin No. 1). The laminating was done directly on the core material (wet-laminating) with 40 to 45 percent of the resin.

The aluminum facings were 24ST clad conforming to specification AN-A-13. The dented, wrinkled, and contaminated sheets were eliminated by visual inspection.

The cellular, cellulose-acetate cores were made from extruded material containing about 3 percent of chopped glass fibers. The material, as received, was about 5/8 by 5-5/8 inches in cross section, from 4 to 10 feet long, and was covered by an outer skin that was removed prior to the manufacture of the core. The density of the remaining material ranged from 6.0 to 6.8 pounds per cubic foot. It was glued edge to edge to form the cores.

The balsa cores were made from wood having a density range from 5 to 8 pounds per cubic foot. The wood was conditioned to a moisture content (5 to 7 percent) substantially in equilibrium with the atmosphere of the workrooms. The individual boards were surfaced four sides and then cut across the grain into slices that were glued edge to edge to form the cores.

The paper honeycomb cores were made of 4.5-mil kraft paper by the method described in the appendix of NACA Technical Note No. 15292.

Specimens of the core materials matched as closely as possible to the core materials of the panels were obtained and were tested as subsequently described.

Description of Tests

The specimens were tested as beams. They were supported an inch from each end, and two equal, symmetrically placed loads were applied, as shown in figure 3. The specimens marked T were placed so that the marked facing was subjected to compression; those marked B were placed so that the marked facing was subjected to tension. The thicknesses of the facings with respect to these markings are given in table 1.

The deflections, over the complete span, of the specimens were read by means of a dial gage (0.001-inch minimum reading) as the loads were simultaneously applied. Thus load-deflection curves were obtained. The values of the maximum loads and descriptions of the failures were recorded.

Fine-wire resistance gages were affixed to the centers of the tension and compression facings at the centers of the specimens, and the strains were read at the various loads. Thus strain-load curves for the outside surfaces of each facing of each specimen were obtained.

The specimens of core material were tested in shear by the method described in Forest Products Laboratory Report No. 1555, page 13, starting with paragraph 36.6

Discussion of Mathematical Analyses

The mathematical analysis given in Forest Products Laboratory Report No. 1505² is exact; but it assumes that both facings are hinged at the positions of the loads and of the reactions, and that the shear stress is distributed across the core in certain ways at these positions (see Introduction). These assumptions are quite satisfactory for usual sandwich constructions. They are unsatisfactory only when:

^{5&}quot;An Investigation of Mechanical Properties of Honeycomb Structures Made of Resinimpregnated Paper," by C. B. Norris and G. E. Mackin. National Advisory Committee for Aeronautics, Technical Note No. 1529.

^{6&}quot;Methods of Test for Determining the Strength Properties of Core Material for Sandwich Construction at Normal Temperatures." Forest Products Laboratory Report No. 1555. Revised 1948.

- 1. The modulus of rigidity of the core is exceedingly small.
- 2. The span of the beam is very short.
- 3. The facings of the sandwich are thicker than usual.
- 4. Conditions close to the loads and reactions are examined.

An approximate analysis in which this assumption is not made is given in the appendix of this report. The assumptions made in this analysis are:

- 1. The shear stress in the core is uniformly distributed across the core.
- 2. The stresses in the core, other than shear, are neglected.
- 3. The shear strains in the facings are neglected.
- 4. The curvatures of the two facings are assumed to be equal at any section of the sandwich.

This analysis should be reasonably accurate except in the neighborhood of the loads and of the reactions.

The following discussion compares the two analyses as applied to the tests described in this report. It is found that the two analyses are in close agreement except in the determination of the shear stress at failure in the sandwich beams tested over very short spans. For these beams it is likely that neither analysis yields results of sufficient accuracy because of the local effects of the concentrated loads and reactions.

The sandwich strips tested were supported near their ends and loaded at two positions equidistant from their centers as shown in figure 3. Load -- central-deflection curves were plotted. Strains at the top of the top facing and at the bottom of the bottom facing at the center of the beam were measured by means of metalectric strain gages and plotted against the load.

Central Deflections

The central deflection as given by the method of Forest Products Laboratory Report No. 15052 is:

$$W = \frac{Pb}{2D} \left[\frac{a^2}{2} + ab + \frac{b^2}{3} \left(1 + \eta \frac{h^2}{4b^2} \right) \right]$$
 (1)

in which the value of η is given by equation (73) and of <u>D</u> by equation (61) of that report. For usual sandwich construction the modulus of elasticity of the core is so small that the terms in these equations involving

$$\rho = \frac{E_{\rm c} \lambda_{\rm f}}{E_{\rm f} \lambda_{\rm c}}$$

in which E_c and E_f are the moduli of elasticity of the core and the facings, respectively, in the direction of the length of the strip, and λ_c and λ_f are the values of $(1 - \sigma_{\rm XY} \sigma_{\rm yx})$ associated with the core and facings, respectively;

in which σ_{xy} and σ_{yx} are Poissons ratios, may be neglected. Thus the value of D is the usual engineering value for the spaced facings:

$$D = \frac{E_{f}}{\lambda_{f}} \left[\frac{f_{1}^{3} + f_{2}^{3}}{12} + \frac{f_{1} f_{2}}{4} \frac{(h + c)^{2}}{h - c} \right]$$
 (2)

For similar reasons:

$$\eta = \eta_{\mu} = \frac{6 E_{f}}{\lambda_{f} G_{c}} \frac{c f_{1} f_{2}}{h^{3}} \frac{h + c}{h - c}$$
(3)

from equation (77) of Report No. 1505 3 , neglecting terms of which ρ is a coefficient. In this equation G_{c} is the modulus of rigidity of the core associated with strains in vertical planes parallel to the length of the sandwich strip.

The expression obtained for this deflection from the analysis given in the appendix of this report is:

$$W = \frac{Pb}{2D} \left[\frac{a^2}{2} + ab + \frac{b^2}{3} \right] + \frac{PbI_m}{2DI_f} \left[\frac{1}{a^2} + \frac{\sinh \alpha d - \sinh \alpha (b + d) - \left[\cosh \alpha (a + b) \right]}{b\alpha^3 \cosh \alpha (a + b + d)} \right] - \cosh \alpha a \left[\frac{1}{a^2} + \frac{\sinh \alpha d - \sinh \alpha (b + d) - \left[\cosh \alpha (a + b) \right]}{b\alpha^3 \cosh \alpha (a + b + d)} \right]$$

$$(4)$$

where

$$\alpha^2 = \frac{G_c \wedge_f (f_1 + f_2) I}{E_f cf_1 f_2 I_f}$$

$$I = \frac{f_1^3 + f_2^3}{12} + \frac{f_1^2}{4} \cdot \frac{(h + c)^2}{h - c}$$

$$I_{f} = \frac{f_{1}^{3} + f_{2}^{3}}{12}$$

$$I_{m} = \frac{f_{1}f_{2}}{4} \frac{(h+c)^{2}}{h-c}$$

These three moments of inertia (I, I_f, and I_m) are the usual engineering ones for the facings. The first is that for the spaced facings; the second is that for the facings taken alone; and the third is that due to the spacing of the facings.

The first term of equation (4) is the usual engineering formula for central deflection, and the second is the additional deflection due to shear strains in the core. As the modulus of rigidity of the core is increased, the second term approaches zero and the engineering formula remains. As the modulus of rigidity of the core is decreased, the value of the bracket in the second term approaches the value of the bracket in the first term so that when $G_c = 0$:

$$w = \frac{2P \lambda_f b}{E_f I_f} \left[\frac{a}{2} + ab + \frac{b^2}{3} \right]$$

which is the usual engineering formula for the central deflection of the two facings taken together but bending separately.

Equation (4) can be simplified in the range where tanh ab is substantially unity, but G_c , and therefore α , is finite. The resulting equation is:

$$w = \frac{Pb}{2D} \left[\frac{a^2}{2} + ab \circ \frac{b^2}{3} \right] + \frac{Pb}{2G_c} \frac{I_m}{I^2} \frac{f_1 f_2 c}{(h - c)} \left\{ 1 + \frac{1}{b\alpha} \left[e^{-\alpha a} + \frac{1}{2} (1 - e^{-2\alpha d}) \right] \right\}$$
(5)

This equation is applicable to specimen 9T-6, which had aluminum facings and a cellular cellulose-acetate core. By assuming $E_f = 10,000,000$ and by determining values of Gc from the experimental load-deflection curve of the specimen by means of equations (1) and (5), it is found that equation (5) yields a value 9 percent greater than equation (1). This percentage is greatly reduced for balsa wood or for the usual honeycomb-core materials. Thus the two analyses (that from Report No. 1505 and that from the appendix of the present report) yield substantially the same results for usual core materials, even for the short span over which the specimen was tested. The agreement of the two methods is much closer for specimens tested over longer spans.

Mean Values of the Modulus of Rigidity of the Core

In the derivations of equations (1) and (4) it was assumed that the modulus of rigidity of the core is constant along the length of the beam. Since the core materials are never absolutely uniform, this assumption is not strictly true, particularly for balsa-wood cores. The value of Gc that should be used in these equations is, therefore, a sort of mean value that is not necessarily the arithmetical average. The general expression for this mean value is, of course, the average shear stress divided by the average shear strain, or:

$$\overline{G} = \frac{\frac{1}{l} \int_{0}^{l} \tau dx}{\frac{1}{l} \int_{0}^{l} \gamma dx}$$
(6)

where τ and γ are the shear stress and the shear strain, respectively, and the integrations are taken over the length of the specimen. If the facings are thick and have large elastic properties compared to the core, the value of the shear strain is substantially constant along the specimen and equation (6) yields

$$\overline{G} = \frac{1}{l} \int_{0}^{l} G dx$$

which is the arithmetical average of the modulus of rigidity of the specimen. On the other hand, if the facings are very thin so that they carry very little of the shear load applied to the specimen, and because the shear load is constant along the specimen, the shear stress is substantially constant along the specimen. Thus equation (6) yields:

$$\overline{G} = \frac{1}{\frac{1}{l} \int_{0}^{l} \frac{1}{G}}$$

which is the reciprocal of the average reciprocal values of the modulus of rigidity.

These two equations yield the same result if the modulus of rigidity does not vary along the specimen. If it does vary, the second one always yields lesser values than the first. The value obtained from any particular test lies between these two values. It follows that if average values of the shear modulus are desired, thick facings should be used; however, this may require the use of equation (4) rather than equation (1). This difficulty can be avoided by using the standard test described on page 13 of Forest Products Laboratory Report No. 1555. In this way average values of modulus of rigidity are measured; but these values should be reduced for design purposes, depending upon the variability of the modulus of rigidity and of the facing thickness.

A similar argument applies to shear strength. If the modulus of rigidity varies along the specimen, the shear strength is likely to vary in a similar manner, being small where the modulus is small and large where the modulus is large. In the standard shear test the shear strain is substantially constant along the specimen. Thus the shear stress is small where the modulus is small, that is, where the shear strength is small. The shear stress is relieved where the core material is weak, and failure does not take place so readily in these locations as it would if this were not the case. On the other hand, if the facings are thin and if the specimen is tested as a centrally loaded beam, the shear stress in the core is substantially constant along the specimen and failure will take place at the point of minimum shear strength. Such a test will, therefore, always yield a lesser shear strength than does the standard test if the shear strength varies along the specimen.

In the present state of the art it seems advisable to use values of modulus of rigidity and shear strength of core materials obtained from bending tests in formulas involving flexure even though such values may be influenced by the particular sandwich construction tested. Flexure is involved when the sandwich panel is bent in planes perpendicular to its surface as in bending and buckling. It is not involved in face wrinkling, in stress concentrations in the core, and like instances.

Shear Stress in the Core

The maximum shear stress in the core may be found by the method of Forest Products Laboratory Report No. 1505. This method leads to a parabolic distribution of shear across the thickness of the core. For sandwich constructions having facings of equal thickness, the maximum value of shear stress is at the center of the core. For usual sandwich constructions this value decreases only slightly toward the facings. For sandwich constructions having unequal facing thicknesses, the mathematical maximum value may lie outside of the core; then the true maximum value is that at the junction of the core with the thicker facing. This value is given by:

$$\tau_{1} = \frac{P}{2} \frac{6f_{1} \left[f_{2}(h+c) + \rho c(c+f_{1}) \right]}{12 \cosh_{1} f_{2} + (h-c)^{4} + 2\rho c \left\{ (h-c) \left[2h^{2} - c(h-c) \right] - 6hf_{1} f_{2} \right\} + \rho^{2} c^{4}}$$
(7)

In this equation f_1 is the thickness of the thicker facing and f_2 that of the thinner facing. Equation (7) yields the shear stress at the junction of the core with the thinner facing (τ_2) if the subscripts 1 and 2 are interchanged.

Usually the value of ρ is so small that the terms involving it may be neglected and equation (7) becomes:

$$\tau = \frac{P}{2} \frac{6f_1f_2(h+c)}{12 \cosh_1f_2 + (h-c)^4}$$
 (8)

This equation applies at the junction between the core and either facing, since interchanging the subscripts does not change its value. It follows (not directly) that neglecting the terms involving ρ is consistent with the assumption that the shear stress is constant across the core.

If the two facings are of equal thickness, equation (8) reduces to:

$$\tau = \frac{P}{4} \frac{h + c}{c^2 + 2cf + \frac{4}{5}f^2}$$

If the facings are thin compared to the core thickness, the term $\frac{4}{3}$ f² may be replaced by f² and the equation reduces to:

$$\tau = \frac{P}{h + c} \tag{9}$$

which is a formula often used in design. This formula is a remarkably good approximation of equation (7) over wide ranges of facing thicknesses and values of ρ . For specimen 9T-6, which has aluminum facings, one of them about 2-1/2 times the thickness of the other, and a cellular cellulose-acetate core, equation (7) yields a shear stress only 2 percent greater than equation (9).

The method of analysis given in the appendix also supplies a formula for the shear stress in the core. For span \underline{b} it is:

$$\tau = \frac{P}{h+c} \frac{I_m}{I} \left[1 - \frac{\sinh \alpha d \sinh \alpha (a+x) + \cosh \alpha (b+d-x) \cosh \alpha a}{\cosh \alpha (a+b+d)} \right]$$
(10)

in which \underline{x} is the distance from the right-hand load to the section in question as shown in figure 3.

Thus the shear stress is not constant along this span even though the total shear load on the beam is constant. The division of the total shear between the core and the facings changes along the span. Similar formulas for the central span and the overhang show that the shear stress is not zero in these spans but is maximum at the position of the load or reaction and, for large values of a decreases rapidly toward the interior of the spans.

As the modulus of rigidity of the core increases or the thicknesses of the facings decrease, the value of α increases and the right-hand member in the bracket of equation (10) approaches zero and equation (10) becomes

$$\tau = \frac{P}{h + c} \frac{I_{m}}{I} \tag{11}$$

which, for thin facings, is substantially the same as equation (9). This value prevails over the length of span <u>b</u> of the specimen except in the immediate neighborhood of the loads and of the reactions, where it is reduced.

If equation (10) is applied at the middle of span \underline{b} ($x = \frac{b}{2}$) and if $\frac{ab}{2}$ is large enough so that its hyperbolic tangent is substantially unity

$$\left(\begin{array}{c} \frac{ab}{2} = 2.6 \text{ or greater} \right), \text{ equation (10) can be approximately written:} \\ ab \right)$$

$$\tau = \frac{P}{h+c} \frac{I_m}{I} \left(1 - e^{-\frac{\alpha b}{2}} \right)$$
 (12)

This equation applies to specimen 9T-6 below the proportional limit in shear of the core material where the modulus of rigidity is about 5,000. By applying this equation to this specimen, the shear stress is found to be about 1/2 percent less than that given by equation (9).

The shear stress in span <u>b</u> under these conditions is substantially constant along the span except in the neighborhood of the load and the reaction, and the maximum value is near the midpoint of the span. As the shear stress increases, however, and the proportional limit is exceeded, the average modulus of rigidity decreases because the tangent modulus of rigidity is operative. By using the tangent modulus of failure of 775 pounds per square inch from figure 2 of Forest Products Laboratory Report No. 18157 in equation (10), it is found that the shear

I"Effect of Shear Strength on Maximum Loads of Sandwich Columns," by K. H. Boller and C. B. Norris. Forest Products Laboratory Report No. 1815.

stress is about 13 percent less than that given by equation (9). Thus equation (9) does not give the true shear strength for beams tested on such short spans, and the shear strengths of these short beams were, therefore, omitted from the analysis of the experimental data. Of course this method of obtaining the 13 percent value is approximate. The entire stress-strain curve of the core material should have been used rather than only the tangent modulus at failure. Bending Stress in the Facings

The bending stresses in the facings of span b, according to the method of Forest Products Laboratory Report No. 1505; 2 are given for the compression facing by:

$$\sigma_{1} = -\frac{PE_{f}}{2\lambda_{f}^{D}} \left(b - x\right) \left[\frac{1}{2} \frac{f_{2} \left(h + c\right) + \rho c \left(f_{1} + c\right)}{h - c + \rho c} + y_{1}\right]$$
(13)

and for the tension facing by:

$$\sigma_2 = \frac{PE_f}{2\lambda_f D}$$
 (b - x) $\left[\frac{1}{2} \frac{f_1 (h + c) + \rho c (f_2 + c)}{h - c + \rho c} - y_2\right]$ (14)

in which f_1 and f_2 are the thicknesses of the compression and the tension facings, respectively; y_1 and y_2 are vertical distances from the centers of the compression facing and tension facing, respectively, measured positively upward; and \underline{D} is given by equation (61) of Report No. 1505.

If the terms involving ρ are neglected, these equations become:

$$\sigma_{1} = -\frac{P}{2I} (b - x) \left(\frac{f_{2}}{2} \frac{h + c}{h - c} + y_{1} \right)$$
 (15)

$$\sigma_2 = -\frac{P}{2I} (b - x) \left(\frac{f_1}{2} \frac{h + c}{h - c} - y_2 \right)$$
 (16)

If the facings are sufficiently thin so that the cubes of their thicknesses may be neglected $(I = I_m)$, these equations become:

$$\sigma_{1} = -\frac{P}{2} (b - x) \left[\frac{2}{f_{1} (h + c)} + \frac{4y_{1}}{f_{1}f_{2}} \frac{h - c}{(h + c)^{2}} \right]$$

$$\sigma_{2} = \frac{P}{2} (b - x) \left[\frac{2}{f_{2} (h + c)} - \frac{4y_{2}}{f_{1}f_{2}} \frac{h - c}{(h + c)^{2}} \right]$$

Because the bending stresses vary linearly across the facings, the average stresses in the facings are given by these equations when y_1 and y_2 are zero. Thus:

$$\overline{\sigma_1} = -\frac{P(b-x)}{f_1(h+c)} \tag{17}$$

$$\overline{\sigma_2} = \frac{P(b-x)}{f_2(h+c)} \tag{18}$$

which are the expressions obtained by equating the internal and external bending moments in the usual approximate analysis.

In most sandwich constructions equations (17) and (18) yield excellent approximations of the maximum bending stresses at bending failure, because at these high stresses the stress is almost independent of the strain and, therefore, the stress is almost constant across the facings.

The bending stresses in the facings, in span b, can also be computed by the analysis given in the appendix of this report. The equations are:

$$\sigma_{1} = -\frac{P}{2I} (b - x) \left[\frac{f_{2}}{2} \frac{h + c}{h - c} + y_{1} - \left(\frac{f_{2}}{2} \frac{h + c}{h - c} - \frac{I_{m}}{I_{F}} y_{1} \right) \frac{\sinh \alpha (b + d - x) \cosh \alpha a - \cosh \alpha (a + x) \sinh \alpha d}{(b - x) \alpha \cosh \alpha (a + b + d)} \right] (19)$$

and

$$\sigma_{2} = \frac{P}{2I} (b - x) \left[\frac{f_{1}}{2} \frac{h + c}{h - c} - y_{2} - \frac{f_{1}}{2} \frac{h + c}{h - c} + \frac{I_{m}}{I_{F}} y_{2} \right] \frac{\sinh \alpha (b + d - x) \cosh \alpha a - \cosh \alpha (a + x) \sinh \alpha d}{(b - x) \alpha \cosh \alpha (a + b + d)}$$
(20)

As the modulus of rigidity of the core increases or the thickness of the facings decreases, a becomes large and the fraction in the right-hand member approaches zero; thus these equations approach equations (15) and (16), respectively, which were obtained from the method of Report No. 1505. For most practical sandwich constructions the two sets of equations yield substantially identical results.

If the modulus of rigidity of the core, and therefore a, becomes zero, the fraction in the right-hand member becomes unity and these two equations become:

$$\sigma_1 = -\frac{P}{2 I_f} (b - x) y_1$$

$$\sigma_2 = -\frac{P}{2I_f} (b - x) y_2$$

which give the stresses in the facings acting as two separate beams subject to the same deflection.

If a has such a value that $\tanh \frac{ab}{2}$ can be considered to be unity $(\frac{ab}{2} = 2.6 \text{ or greater})$, equations (19) and (20) become:

$$\sigma_{1} = -\frac{P}{2I} (b - x) \left[\frac{f_{2}}{2} \frac{h + c}{h - c} + y_{1} - \left(\frac{f_{2}}{2} \frac{h + c}{h - c} - \frac{I_{m}}{I_{F}} y_{1} \right) \frac{-\alpha x}{2 \alpha (b - x)} \right]$$

$$\sigma_{2} = \frac{P}{2I} (b - x) \left[\frac{f_{1}}{2} \frac{h + c}{h - c} - y_{2} - \left(\frac{f_{1}}{2} \frac{h + c}{h - c} - \frac{I_{m}}{I_{F}} y_{2} \right) \frac{-\alpha x}{2 \alpha (b - x)} \right]$$

$$(21)$$

These equations yield values identical to equations (15) and (16), respectively, when $x = \frac{D}{2}$, and values not far from them for other values of \underline{x} . For specimen 9T-6, which has aluminum facings and a cellular cellulose-acetate core and which was tested over a short span, equations (21) and (22) agree with equations (15) and (16) within 5 percent when the shear stress in the core is less than the proportional limit, and within 13 percent when the core is about to fail in shear. It follows that, for usual sandwich constructions, equations (17) and (18) agree reasonably well with this analysis as well as with the analysis given in Report No. 1505.2

Presentation and Discussion of Results of Tests

The results of the individual tests and computations are given in table 1. The first column gives the specimen number. The second and third columns give the lengths of spans a and b as shown in figure 3. Span d has a length of 1 inch for all the specimens tested. The fourth column gives the thickness of the upper facing, that is, the facing subjected to compression. The fifth column gives the slope of the straight portion of the load-deflection curve, with the deflections being taken at the center of the beam and plotted against the total load. The sixth column gives values of the expression $\frac{h^2}{4h^2}$ computed from equaling

tion (1) when using equation (2) for the computation of \underline{D} . In the latter equation the value of \underline{E} for aluminum was taken as 11 million and for glass-fabric laminate as 2.866 million. The latter figure was taken from Forest Products Rept. No. 1505-A -13-

Laboratory Report No. 1583-A.8 (The strips of sandwich panels having eightply fabric laminated facings reported in the present report were cut from the panels reported in Report No. 1583-A. It happens that the moduli of rigidity computed from strips having thinner glass-fabric laminated facings were eliminated from the averages for reasons subsequently given.) It may be noted that

the value of the expression $\eta_{\rm hb}^2$ is obtained from the difference of two values

that are nearly equal for some specimens. The values of modulus of rigidity obtained from these small differences is far from accurate. For this reason, if the computed value of this expression is less than 0.4 its accuracy is doubtful. The seventh column gives the moduli of rigidity of the cores obtained from equation (3). The values chosen for averaging are marked with a letter g. The values obtained from the beams having a 6-inch span were arbitrarily discarded because equation (1) does not apply in the neighborhood of the loads or of the reactions. For the same reason, values obtained from the expression

 $\eta \frac{h^2}{4b^2}$ greater than 3.0 were discarded. Values obtained from values of this

expression less than 0.4 were discarded for the reason previously given. These two limits of the expression were roughly determined from a general examination of the computed values in column seven; the choice of 0.4 and 3.0 seems to eliminate all of the "wild" values of modulus of rigidity.

The eighth column gives the maximum loads applied to the beams. Most of these loads were sufficient to cause failure; however, some of them caused such large deflections that the test was discontinued. The ninth column lists the types of failure noted as the test was made. The term "comp" means a compressive failure in the upper facing. The word "wrinkle" means a compressive failure in the upper facing, which might be due to wrinkling of the facing rather than from compression; the word "tension," a tension failure in the lower facing; and the word "shear" means a shear failure in the core. The word "none" means that the test was discontinued, because of excessive deflection, before failure occurred. These observations of the types of failure were revised after the computed stresses were obtained. The revisions are shown by letters placed after the stress values in other columns as subsequently described.

The tenth column gives the stress in the thinner facing as computed by the use of equations (17) and (18) when placing \underline{x} equal to zero. The type of failure is indicated by the small letter placed after each value. These letters are abbreviations of the words in column 9, but they do not necessarily agree with them. For example, column 9 indicates that specimen 1B18 did not fail and column 10 indicates that it did fail at a tensile stress of 31,000 pounds per square inch. This value of stress is greater than that computed for other specimens in the same group that did fail in tension. Thus it was concluded that if the test of specimen 1818 had been continued, it would have failed at substantially the stress of 31,000 pounds per square inch. That is, the facing was stressed approximately to its ultimate stress and was stretching so badly that the test had to be discontinued due to excessive deflection. A similar situation is shown for specimen 2B8. Column nine indicates a shear failure; but the tensile stress

⁸ Effects of Shear Deformation in the Core of a Flat Rectangular Sandwich Panel," W.J. Kommers and C.B. Norris, Forest Products Laboratory Report No. 1583-A. -14-

of 39,900 pounds per square inch is so large that it is assumed that this specimen failed primarily in tension and that the apparent shear failure was secondary. The shear stress given in column 11 does not seem great enough to cause failure.

The eleventh column gives the shear stress in the core computed by means of equation (9). The small letter "s" placed after these values indicates the specimens deemed to have failed in shear. These indications do not always agree with the observations noted in column nine for reasons similar to those already given. Sometimes (note specimen 5T12) it could not be determined whether the primary failure was in the core or the facing. It was assumed, for these specimens, that the failure occurred simultaneously in both places.

The strains in the facings between the two loads were measured as previously described. Very often the strains of the maximum load were not obtained, and the last strain reading was taken at a slightly lesser load. The twelfth and thirteenth columns give the stresses in the facings, computed by equations (17) and (18), at these lesser loads, and the fourteenth and fifteenth columns give the values of the measured strains. The sixteenth and seventeenth columns give the stresses associated with these strains and were obtained from stress-strain curves for the facing materials. The stress-strain curves for the aluminum facings were taken from the National Advisory Committee for Aeronautics Technical Note No. 1512,2 and are shown in figure 4. Those for the glass-fabric laminate facings are average curves taken from the original data of Forest Products Laboratory Report No. 182110 for the glass fabric used in the present report, and are shown in figure 5. Then the recorded strains exceeded the limits of these curves, the stress values were omitted from columns 16 and 17.

For purposes of analysis, the data given in table 1 are collected in summary tables giving average values for the various groups of specimens. In tables 2 and 3 the stresses obtained from equations (17) and (18) are compared with those obtained from the stress-strain curves and the measured strains. These tables indicate that the computed stresses are substantially equal to the stresses obtained from the strains. It is possible that the stress-strain curves used were not quite proper for the particular materials tested.

All of the data on the compressive strength of the glass-fabric laminate are collected in table 4. The values averaged are those in column 10 of table 1 that are followed by the letter "c." Table 4 indicates that the compressive strength is substantially independent of the facing and core thicknesses over the limits of the experimental data; also that the facings have substantially the same strength whether they are laminated on balsa wood or on cellular cellulose-acetate cores, but seem to have a greater strength when they are laminated on the paper honeycomb cores. This table also gives values from Forest Products Laboratory Report No. 182110 on the same type of glass-fabric laminate made between metallic platens. The compressive strength of the facings seems about equal to the proportional limit stress of the material of Report No. 1821. From the results of other work now in progress it seems that the lesser strength is obtained when the facings are made by the "wet laminating" process.

^{2&}quot;Stress-strain and Elongation Graphs for Alclad Aluminum Alloy 24-ST Sheet," by James A. Miller, N.A.C.A. Tech. Note 1512.

^{10&}quot;Mechanical Properties of Cross-laminated and Composite Glass-fabric-base Plastic Laminates," by Alan D. Freas and Fred Werren. Forest Products Laboratory Report No. 1821.

Rept. No. 1505-A -15-

Table 5 is a similar table for the compressive strength of the aluminum facings. The strengths of the facings supported by balsa-wood and by cellular celluloseacetate cores agree reasonably well with the strengths obtained from edgewise compressive tests on similar sandwich constructions reported in Forest Products Laboratory Report No. 1810, 11 but they do not follow the curves given in that report. This might be expected because the conditions under which the face wrinkling occurs are quite different. The compressive strength of the facings bonded to the paper honeycomb core is limited by the critical stress of the small plates of facing bounded by the cell walls of the honeycomb. This critical stress was computed by the method of Forest Products Laboratory Report No. 181712 and the computed values were entered in the table. These stresses only roughly agree with those obtained in the bending tests. The fact that the thicker facings yield lesser values of compressive strength has not been explained. A few data were obtained on the tensile strength of the facing materials from the few specimens that failed in tension. These data are given in tables 6 and 7. The values are those in column 10 of table 1 that are followed by the letter "t." The tensile strengths of the glass-fabric laminate agree well with those given in Forest Products Laboratory Report No. 1821, 10 which are also entered in table 6. The tensile strengths of the aluminum are substantially the same as those given in National Advisory Committee for Aeronautics Technical Note No. 15127, which are also entered in table 7.

Tables 8, 9, and 10 give average values of shear strength and modulus of rigidity of the three core materials used: balsa wood, cellular cellulose acetate, and paper honeycomb, respectively. Columns one to four of these tables identify the specimen groups and give the thicknesses of the facings and cores. Column 5 gives the average shear strengths, computed by means of equation (9), excluding specimens 6 and 8. The values averaged are those from column 11 of table 1 that are followed by the letter "s." Column 6 gives the number of tests associated with the averages in column 5. Columns 4 and 8 give the averages for specimens 8 and the associated number of tests, respectively. Column 9 gives the shear strength obtained from shear tests according to the method of Forest Products Laboratory Report No. 1555, page 13, starting with paragraph 36, on core material matched to that used in the bending tests, when this material was available. The values in column 10 are the ratios of those in column 9 to those in column 5.

Column 11 gives average values of the moduli of rigidities taken from column 7 of table 1. The values used were those followed by the letter "g." Column 12 gives the number of tests associated with the values in column 11. Column 13 gives the values of modulus of rigidity obtained from the shear tests, and column 14 gives the ratios of those in column 13 to those in column 11.

A comparison of the values in columns 5 and 7 in these three tables show that the computed shear strengths obtained from specimens 8 are, in general, greater than

[&]quot;Wrinkling of the Facings of Sandwich Construction Subjected to Edgewise Compression," by Charles B. Norris, Wilhelm S. Ericksen, H. W. March, C. B. Smith, and Kenneth H. Boller. Forest Products Laboratory Report No. 1810.

^{12&}quot;Short-column Compressive Strength of Sandwich Constructions as Affected by the Size of the Cells of Honeycomb-core Materials," by C. B. Norris and W. J. Kommers. Forest Products Laboratory Report No. 1817.

those obtained from the other specimens (excluding specimens b). This is due to the transfer of shear from the core to the facings, in these short specimens, as the shear stress approaches its maximum value, as previously discussed.

The values in columns 10 of these tables show that the shear test yields greater shear strengths than the beam tests. As previously discussed, this is due to the variation in shear strength along the specimen. In the beam test, the core tends to fail at the location of its weakest shear strength, while in the shear test the shear strain is substantially constant along the specimen and, thus, the shear strength is more nearly equal to the average strength of the specimen. The average values in column 10 indicate that the balsa wood is most variable in shear strength (ratio 1.42), the paper honeycomb core is the least variable (ratio 1.23), and the cellular cellulose acetate is between the two (ratio 1.34).

The values in columns 14 of these tables show that the modulus of rigidity obtained from the shear test is greater than that obtained from the beam test. As previously, said, this is due, at least in part, to the variation of the modulus along the specimens. The shear test yields a modulus, that is the average for the specimen, while the beam test yields a lesser value. The average values in column 14 show the modulus to be most variable for the honeycomb core (ratio 1.78). The modulus probably varies across the individual cells of the honeycomb. The modulus is least variable for the cellular cellulose acetate (ratio 1.06), and the balsa wood is intermediate (ratio 1.46). The number of specimens reported in table 1 and available for this comparison is small. More data are given from supplementary tests.

Supplementary Tests

In the series of tests reported in table 1, only a limited number of tests are available for the comparison of the modulus of rigidity of the core material obtained by means of the beam test with that obtained by the shear test. Further data, from another study, are, therefore, included. Also, data from two tests in which the modulus of rigidity was measured at particular locations in a centrally loaded beam are given. 13

Comparison of Moduli of Rigidity Obtained from Beam Tests with Those Obtained from Shear Tests

In connection with another investigation, moduli of rigidity were obtained from strips of sandwich construction tested as centrally loaded heams and also from shear tests made on specimens reasonably well matched to the strips. The results of these tests are given in table 11, in which column 1 gives the specimen number, column 2 the results of the beam tests, and column 3 the results of the shear tests. Each of the values in column 2 represents the average of the results from two bending specimens; thus each specimen number applies to four specimens. Each of the values in column 3 represents the result from a single shear test.

These two tests were performed by A. W. Voss, engineer, at the Forest Products Laboratory.

The bending tests were conducted as described in Forest Products Laboratory Report No. 155614 (revised February 1950), page 7, and the modulus of rigidity was computed by use of the appropriate formulas on page 9 of that report. The facings were all 0.02-inch aluminum. The core materials and thicknesses are given in the table. Various spans were used; the ranges of values of $\eta \frac{h^2}{4b^2}$ are given in table 11.

The shear specimens having balsa-wood cores were cut from the panels from which the bending specimens were obtained, and were tested as described in Forest Products Laboratory Report No. 155611 (revised February 1950), page 12, and the modulus of rigidity was computed according to the appropriate formula on page 13 of that report, neglecting the first term in the right-hand member. The other shear specimens were obtained from core material matched to the panels from which the bending specimens were obtained and were tested as described in Forest Products Laboratory Report No. 15550 (revised October 1948), page 13, and the modulus of rigidity was computed accordingly.

It may be noted that some of the values of $\eta \frac{h^2}{hb^2}$ are outside of the limits pre-

viously set, and thus some of the values of modulus of rigidity obtained from the beam tests may not be accurate. The average values, however, should be reasonably accurate. There is considerable variation in the individual values.

The modulus of rigidity of the balsa wood obtained from the shear test is, on the average, 33 percent greater than that obtained from the beam test. This is probably due to the variability of the balsa wood as previously discussed. The moduli of rigidity of the hard sponge rubber and of the cellular cellulose acetate obtained from the shear test are, on the average, only 15 percent greater than those obtained from the bending test. This is an indication that these materials are more uniform than the balsa wood.

Measurement of the Modulus of Rigidity at a Particular Location in a Centrally Loaded Strip of Sandwich Construction

Figure 6 shows a method of test devised to determine the modulus of rigidity of the core of a strip of sandwich construction at a particular location. The strip was tested as a centrally loaded beam, as shown. At a position in the span of the beam three mirrors were mounted. The outer two mirrors were mounted on very light C-clamps made of wire, the ends of which were filed to form knife edges bearing on the outer surfaces of the facings. The central mirror was mounted on a wire soldered to the outer surface of the upper facing. The shadow of a cross hair was projected on these mirrors, and its reflection was read on suitable scales. The relative longitudinal movement of the two facings was determined by the differences of the angular movement of the two outer mirrors compared with that of the central mirror. Similar mirrors were placed at the

[&]quot;Methods for Conducting Mechanical Tests of Sandwich Construction at Normal Temperatures." Forest Products Laboratory Report No. 1556. Revised February 1950.

other end of the beam in a similar position. These mirrors are hidden, in the figure, by a cardboard shield required to keep the two light sources from interfering. The modulus of rigidity of the core material was obtained by dividing the shear stress obtained from equation (9) by the shear strain obtained from the mirrors.

Several tests were made on a single specimen, each test with the mirrors at a different location. Two specimens were used, both having aluminum facings 0.032 inch thick. The first specimen had a cellular cellulose-acetate core 0.489 inch thick, and the second had an end-grain balsa-wood core 0.505 inch thick. The span for each specimen was 24 inches.

After the specimens were tested, they were each cut into four shear specimens and tested as described in Forest Products Laboratory Report No. 155614 (revised February 1950), page 12.

The shear stress in the core at the location of the mirrors was obtained from equation (9), and the moduli of rigidity obtained from the central deflections was computed from equations (1), (2), and (3) by placing a equal to zero.

The moduli of rigidity computed from data taken from the first specimen are given in table 12. The modulus of rigidity obtained from the deflection of the beam was substantially the same from the three tests and is 3,830 pounds per square inch. The value of $\eta \frac{h^2}{hb^2}$ for this test is 0.441, which indicates that

the value of the modulus is reasonably reliable.

Similar data taken from the second specimen are given in table 13. The modulus of rigidity taken from the deflection readings is 15,860 pounds per square inch.

The value of $\eta \frac{h^2}{hb^2}$ is 0.115, which indicates that this value for the modulus is

not very reliable.

These are results of individual tests and, therefore, rigid conclusions should not be drawn from them. The cellular cellulose-acetate core shows some variability (from 0.792 to 1.123). The balsa-wood core shows a greater variability (from 0.644 to 1.655). For the cellular cellulose acetate, the average value obtained from the mirrors is substantially that obtained from the deflection measurements, which indicates uniformity of the material. The nonuniformity of the balsa wood is indicated by the difference in the values obtained in these ways.

Conclusions

1. The results of the new analysis agree with that of Report No. 1505 for usual sandwich constructions. For extreme sandwich constructions having thick facings and cores of very small moduli of rigidity, the new analysis may yield values closer to those existing in the specimens. Neither analysis is suitable for very short specimens, nor for the determinations of the stresses near the loads or reactions.

- 2. The modulus of rigidity of the core that is effective in a bending test of a sandwich specimen is not the arithmetical average of the modulus for the material of the core, but a lesser value. The decrease is largely due to variation in the modulus along the specimen, and it will not exist if the core material is absolutely uniform. It seems advisable to use values of modulus of rigidity and shear strength of core materials obtained from bending tests in formulas involving flexure even though such values may be influenced by the particular sandwich construction tested.
- 3. In general, the values obtained from tests agree reasonably well with those computed by the method of Report No. 1505.

APPENDIX

In the following analysis of a sandwich beam subjected to normal loads, the facings are treated as cylindrically bent plates. The strains in the facings are taken to consist solely of those associated with bending and stretching, and it is assumed that the component of normal displacement is identical in the two facings. The thicknesses of the two facings, denoted by f_1 and f_2 , may be equal or unequal. It is convenient to identify a facing as 1 or 2 accordingly as its thickness is f_1 or f_2 .

The core material is considered to be weak in shear and in bending stiffness as compared with the facing material. The bending stiffness of the core is neglected entirely, and the stiffness of the strip is therefore taken to be that of the two facings separated by a material that offers no resistance to bending. In the analysis of the shear in the core, it is assumed that the shear deformations are constant over the thickness of the core.

Conditions for Equilibrium

An element of each of the two facings of the sandwich is shown in figure 7. The facings are taken to be of unit width, and the symbols \underline{F} , \underline{S} , and \underline{M} denote the resultant longitudinal force, shear force, and bending moment, respectively, acting on a normal section. Subscripts 1 and 2 are used to refer these resultants to facings 1 and 2, respectively. The symbol τ denotes the shear stress transmitted by the core to the facings.

With reference to figure 7, which indicates the sign conventions used for forces and moments, the following condition for equilibrium of the two facings are derived:

Longitudinal forces,

$$\frac{dF_1}{dx} - \tau = 0$$

$$\frac{dF_2}{dx} + \tau = 0$$

Normal forces,

$$\frac{dS_{1}}{dx} - \sigma_{1} + F_{1} \frac{d^{2}w}{dx^{2}} = 0$$

$$\frac{dS_{2}}{dx} + \sigma_{2} + F_{2} \frac{d^{2}w}{dx^{2}} = 0$$
(2)

Moments,

$$\frac{dM_1}{dx} - S_1 + \frac{\tau f_1}{2} = 0$$

$$\frac{dM_2}{dx} - S_2 + \frac{\tau f_2}{2} = 0$$

Equations (1) neglect the longitudinal components of the shear forces in the facings. Equations (2) are written on the assumption that the curvatures of the two facings are the same.

The normal force equilibrium of an element of the core is stated by the condition,

$$\frac{\mathrm{d}}{\mathrm{d}x} \left(e\tau \right) + \sigma_1 - \sigma_2 = 0 \tag{4}$$

It is assumed that the core is not subjected to longitudinal forces or to moments.

The equilibrium conditions for the sandwich element as a whole are obtained by combining equation (1) for longitudinal forces, (2) and (4) for normal forces, and (3) for moments. These are written

$$\frac{\mathrm{d}}{\mathrm{dx}} \left(\mathbf{F}_1 + \mathbf{F}_2 \right) = 0 \tag{5}$$

$$\frac{d}{dx} (S_1 + S_2 + c_7) + (F_1 + F_2) \frac{d^2w}{dx^2} = 0$$
 (6)

and

$$\frac{d}{dx} (M_1 + M_2) - (S_1 + S_2) + \left(\frac{f_1 + f_2}{2}\right) \tau = 0$$
 (7)

According to (5), $F_1 + F_2$ is constant. Now if the supports do not transmit longitudinal resultants to the sandwich, and since there are no end loads, the constant is zero and, consequently,

$$F_1 + F_2 = 0 (8)$$

throughout the beam. This relation is assumed in the analysis.

The Components of Displacement in the

Facings and of Shear Strain in the Core

The components of normal displacement in the facings are taken to be determined by the relation,

$$\frac{E_{f}f_{1}^{3}}{12\lambda_{f}} \frac{d^{2}w}{dx} = -M_{1}$$
 (9)

$$\frac{E_{\rm f}f_2^3}{12\lambda} \quad \frac{d^2w}{dx} = -M_2 \tag{10}$$

where E_f is the Young's modulus of the facing material, and $\lambda_f = 1 - \nu^2$, where ν is the Poisson ratio of the facing material. Relations (9) and (10), written on the assumption that the curvatures of the two facings are the same, yield

$$M_2 = \frac{f_2^3}{f_1^3} M_1 \tag{11}$$

The shear strain in the core is given by the formula:

$$\gamma_{zx} = \frac{\partial u}{\partial z} + \frac{dw}{dx} \tag{12}$$

On the assumption that the shear strain is constant over the thickness of the core, it follows that \underline{u} is a linear function of \underline{z} and this relation can therefore be written

$$\gamma_{\rm zx} = \frac{U_1 - U_2}{c} + \frac{dw}{dx} \tag{13}$$

where U_1 is the component of displacement at the lower surface of facing 1 and U_2 is that at the upper surface of facing 2 (fig. 7). From the relation

$$\tau = G\gamma_{ZX} \tag{14}$$

and from (13),

$$\frac{d\tau}{dx} = \frac{G}{c} \left(\frac{dU_1}{dx} - \frac{dU_2}{dx} \right) + \frac{Gd^2w}{dx^2}$$
 (15)

Now from the stress-strain relation for the facings

$$\frac{dU_{1}}{dx} = \frac{\lambda_{f} F_{1}}{f_{1} F_{f}} - \frac{6 M_{1} \lambda_{f}}{f_{1}^{2} E_{f}}$$

$$(16)$$

and

$$\frac{dU_2}{dx} = \frac{\lambda_f F_2}{f_2 E_f} + \frac{6M_2 \lambda_f}{f_2^2 E_f}$$
 (17)

With the substitution of these expressions into (15),

$$\frac{d^{\tau}}{dx} = \frac{G^{\lambda}_{f}}{cE_{f}} \left\{ \frac{F_{1}}{f_{1}} - \frac{F_{2}}{f_{2}} - \frac{6M_{1}}{f_{1}^{2}} - \frac{6M_{2}}{f_{2}^{2}} \right\} + \frac{Gd^{2}w}{dx^{2}} ,$$

or, from (8), (9), and (11),

$$\frac{d\tau}{dx} = \frac{G\lambda_{f}}{cE_{f}} \left\{ F_{1} \frac{(f_{1} + f_{2})}{f_{1}f_{2}} - \frac{12}{f_{1}^{3}} \left(c + \frac{f_{1} + f_{2}}{2} \right) M_{1} \right\}$$
(18)

By differentiation and the substitution of (1)

$$\frac{\mathrm{d}^2 \tau}{\mathrm{d}\mathbf{x}^2} = \frac{\mathrm{G}\lambda_{\mathbf{f}}}{\mathrm{c}\mathbf{E}_{\mathbf{f}}} \left\{ \left(\frac{\mathbf{f}_1 + \mathbf{f}_2}{\mathbf{f}_1 \mathbf{f}_2} \right) - \frac{12}{\mathbf{f}_1^3} \left(\mathbf{c} + \frac{\mathbf{f}_1 + \mathbf{f}_2}{2} \right) - \frac{\mathrm{d}\mathbf{M}_1}{\mathrm{d}\mathbf{x}} \right\}$$
(19)

Let

$$S = S_1 + S_2 + c_T$$
 (20)

This is the shear load on the sandwich, which, according to (6) and (8), is constant. From this expression, together with (7) and (11), a second equation in M_1 and τ is obtained in the form

$$\left(\frac{f_1^3 + f_2^3}{f_1^3}\right) \frac{dM_1}{dx} - S + \left(c + \frac{f_1 + f_2}{2}\right) \tau = 0$$
(21)

By the elimination of $\frac{dM_1}{dx}$ between (19) and (21), it is found that

$$\frac{\mathrm{d}^2 \tau}{\mathrm{dx}^2} - x^2 \tau = -\beta \tag{22}$$

with

$$\alpha^2 = \frac{G\lambda_f(f_1 + f_2)I}{c f_1f_2 E_f I_f}$$
 (23)

$$\beta = \frac{a^2 I_m S}{I \left(c + \frac{f_1 + f_2}{2}\right)}$$
 (24)

$$I = I_m + I_f \tag{25}$$

$$I_{m} = \frac{f_{1}f_{2}}{f_{1} + f_{2}} \quad \left(c + \frac{f_{1} + f_{2}}{2}\right)^{2} \tag{26}$$

$$I_{f} = \frac{f_{1}^{3} + f_{2}^{3}}{12} \tag{27}$$

An equation in M_1 alone can also be obtained from (19) and (21). It is, however, convenient to retain the term $\frac{d^2\tau}{dx^2}$ in (19) and merely eliminate τ from the

right-hand member by substitution from (21). This process, with the substitution of (9) for M_1 , leads to the equation:

$$\frac{d^3w}{dx^3} - \frac{cI_m}{GI\left(c + \frac{f_1 + f_2}{2}\right)} \frac{d^2\tau}{dx^2} = -\frac{\lambda_f S}{E_{fI}}$$
 (28)

with I and I_{m} given by (25) and (26). In the notation

$$\phi = \frac{\mathrm{d}v}{\mathrm{d}x} - \frac{\mathrm{c} \ \mathrm{I}_{\mathrm{m}} \ \tau}{\mathrm{GI} \left(\mathrm{c} + \frac{\mathrm{f}_{1} + \mathrm{f}_{2}}{2}\right)} \tag{29}$$

equation (28) is written

$$\frac{\mathrm{d}^2 \phi}{\mathrm{d} \mathbf{r}^2} = -\frac{\lambda \mathbf{f}^S}{\mathrm{E}_{\mathbf{f}} \mathrm{I}} \tag{30}$$

The general solutions of (22) and (30) are, respectively,

$$\tau = A \cosh \alpha x + B \sinh \alpha x + \frac{\beta}{\alpha^2}$$
 (31)

and

$$\dot{\varphi} = -\frac{\lambda_f S x^2}{2F_b T} + Hx + K \tag{32}$$

The coefficients A, B, H, and K are determined by conditions at the ends of the strip and at load joints or points of support, which are defined as follows.

Clamped End

$$\tau = 0 \tag{33}$$

and

$$\phi = 0 \tag{34}$$

Simply Supported or Free End

$$\frac{d\tau}{dx} = 0 \tag{35}$$

and

$$\frac{\mathrm{d}p}{\mathrm{d}x} = 0 \tag{36}$$

Reference to (29) indicates that (33) and (34) prescribe zero slope in the facings and that (35) and (36) require that the curvature vanish. For the continuation of the solution over load points or points of support, it is prescribed that τ , F_1 , M_1 , and $\frac{dw}{2\pi}$ are continuous. It is then found from (18) that

 $\frac{d\tau}{dx}$ is continuous and from (29) that ϕ and $\frac{d\phi}{dx}$ are continuous.

When the solutions for τ and ϕ have been determined, the deflection is obtained by integration of (29) on the condition that the deflection vanish at a point of support.

Loading with Overhang 15

Let a denote the distance from the center of the strip to a load point, b the distance from this load point to the nearer support, and d the length of the overhang, as indicated in figure 3. These various sections of the strip are referred to as spans, and the letters a, b, and d are used as subscripts to associate a moment, force, or stress with a span whose length is the same as the subscript. It is assumed that the strip and the loading are symmetrical about the center of the strip.

In the discussion that follows a separate coordinate x, whose origin is at the left end of the span, is associated with each span.

From (33) and (35) the conditions on τ at the center and free end of the strip are

$$\tau_{\rm p} (\rm o) = 0 \tag{37}$$

and

$$\frac{d\tau_{\tilde{d}}(x)}{dx} = 0 \text{ at } x = d$$
 (38)

At the junctures of the spans the conditions of continuity are

$$\tau_{\mathbf{a}}(\mathbf{a}) = \tau_{\mathbf{b}}(\mathbf{o}) \tag{39}$$

$$\frac{d\tau_a}{dx} \bigg|_{x = a} = \frac{d\tau_b}{dx} \bigg|_{x = b} \tag{40}$$

$$\tau_{b}(b) = \tau_{d}(o) \tag{41}$$

$$\frac{d\tau_b}{dx} \bigg|_{x=b} = \frac{d\tau_d}{dx} \bigg|_{x=0}$$
 (42)

With the use of (31) it is found that these various conditions are satisfied by the functions

$$\tau_{\mathbf{a}}(\mathbf{x}) = -\frac{\mathbf{S}_{\mathbf{b}}\mathbf{I}_{\mathbf{m}}}{\left(\mathbf{c} + \frac{\mathbf{f}_{1} + \mathbf{f}_{2}}{2}\right)\mathbf{I}} \left[\frac{\sinh \alpha \, \mathbf{d} - \sinh \alpha (\mathbf{b} + \mathbf{d})}{\cosh \alpha (\mathbf{a} + \mathbf{b} + \mathbf{d})} \right] \sinh \alpha \mathbf{x} \tag{43}$$

In this section the symbols \underline{E} and λ are used in place of $\underline{E_f}$ and $\lambda_{\underline{f}}$, respectively.

Rept. No. 1505-A

$$\tau_{b}(\mathbf{x}) = \frac{S_{b} I_{m}}{\left(c + \frac{f_{1} + f_{2}}{2}\right) I} \left[1 - \left\{\frac{\sinh \alpha d \sinh \alpha (a + \mathbf{x}) + \cosh \alpha (b + d - \mathbf{x}) \cosh \alpha a}{\cosh \alpha (a + b + d)}\right\}\right]$$
(44)

and

$$\tau_{d}(x) = \frac{S_{b} I_{m}}{\left(c + \frac{f_{1} + f_{2}}{2}\right) I} \left[\frac{\cosh x(a + b) - \cos xa}{\cosh x(a + b + d)}\right] \cosh x(d - x)$$
 (45)

The conditions imposed on ϕ are the same as those imposed on τ and are therefore given by (37) to (42) with τ replaced by ϕ . These conditions applied to (32) yield

$$\varphi_{a}(x) = \frac{\lambda S_{b} bx}{EI}$$
 (46)

$$\varphi_b(\mathbf{x}) = \frac{\lambda S_b}{EI} \left\{ -\frac{\mathbf{x}^2}{2} + b\mathbf{x} + ab \right\}$$
 (47)

$$f_{d}(x) = \frac{\lambda S_{b} b}{EI} (a - \frac{b}{2})$$
 (48)

According to (29) and to the fact that

$$w_b(x) = \int_b^x \phi_b(x) dx + \frac{CI_m}{GI(c + \frac{f_1 + f_2}{2})} \int_b^x \tau_b(x) dx$$

From (44) and (47)

$$W_{b}(x) = \frac{\lambda_{S}}{EI} \left[-\frac{(x^{3} - b^{3})}{6} + \frac{b(x^{2} - b^{2})}{2} + ab(x - b) \right]$$

$$+ \frac{cS_{b} I_{m}^{2}}{G(c + \frac{f_{1} + f_{2}}{2})^{2} I^{2}} \left[x - b - \frac{\left(\sinh x d \cdot \cosh x (a + x) - \cosh x (a + b)\right) - \left(\cosh x (a + b + d)\right)}{x \cosh x (a + b + d)} - \frac{\cosh x (a + b + d)}{x \cosh x (a + b + d)} \right]$$
Rept. No. 1505-A (49)

$$W_a(a) = W_b(0)$$

$$w_{\mathbf{a}}(\mathbf{x}) = \int_{\mathbf{a}}^{\mathbf{x}} \varphi_{\mathbf{a}}(\mathbf{x}) d\mathbf{x} + \frac{cI_{\mathbf{m}}}{GI\left(c + \frac{f_1 + f_2}{2}\right)} \int_{\mathbf{a}}^{\mathbf{x}} \tau_{\mathbf{a}}(\mathbf{x}) d\mathbf{x} + w_{\mathbf{b}}(0)$$

and from (43), (46), and (49)

$$\mathbf{w_a(x)} = \frac{\lambda S_b b}{EI} \left\{ \frac{x^2 - a^2}{2} - \frac{b^2}{3} - ab \right\}$$

$$- \frac{cS_b I_m^2}{G\left(c + \frac{f_1 + f_2}{2}\right)^2 I^2} \left\{ \frac{\sinh \alpha d - \sinh \alpha (b + d)}{\alpha \cosh \alpha (a + b + d)} \right\} \cosh \alpha x + b$$

$$+ \frac{\cosh \alpha a - \cosh \alpha (a + b)}{\alpha \cosh \alpha (a + b + d)} \sinh \alpha d \qquad (50)$$

For the determination of the stresses in the facings, the symbols z_1 and z_2 are used to denote coordinates with origin at the centers of facings 1 and 2, respectively, and with direction the same as that of z in figure 7. Then

$$\sigma_{x1} = \frac{F_1(x)}{f_1} - \frac{z_1 E}{\lambda dx^2}$$
 (51)

and

$$\sigma_{x2} = \frac{F_2(x)}{f_2} - \frac{z_2 E}{\lambda} \frac{d^2 w}{2}$$
 (52)

Expressions for $F_1(x)$ and $F_2(x)$ can be obtained from (18) and (8). That for $F_1(x)$ is

$$F_{1}(x) = \frac{Ec \ f_{1}f_{2}}{G \lambda (f_{1} + f_{2})} \frac{d\tau}{dx} - \frac{E \ f_{1}f_{2}\left(z + \frac{f_{1} + f_{2}}{2}\right)}{\lambda (f_{1} + f_{2})} \frac{d^{2}w}{dx^{2}}$$
(53)

The expression for $\frac{d\tau}{dx}$ obtained from (29) is now substituted into this formula, and the resulting expression is substituted into (51) to obtain

$$\sigma_{\mathbf{x}\mathbf{l}} = -\frac{1}{f_1\left(c + \frac{f_1 + f_2}{2}\right)} \left[\frac{\mathbb{E}\mathbf{I}}{\lambda} \frac{d\phi}{dx} - \left\{\mathbf{I} - \frac{z_1 f_1\left(c + \frac{f_1 + f_2}{2}\right)}{\mathbf{I}_f} \right\} \frac{\mathbb{E}\mathbf{I}_f}{\lambda} \frac{d^2w}{dx^2} \right]$$
(54)

Similarly,

$$\sigma_{x2} = \frac{1}{f_2\left(c + \frac{f_1 + f_2}{2}\right)} \left[\frac{EI}{\lambda} \frac{d\phi}{dx} - \left\{1 + \frac{z_2 f_2\left(c + \frac{f_1 + f_2}{2}\right)}{I_f}\right\} \frac{EI_f}{\lambda} \frac{d^2w}{dx^2} \right]$$
(55)

The expressions for $\frac{EI}{\lambda} \frac{d\phi}{dx}$ and $\frac{ET_f}{\lambda} \frac{d^2w}{dx^2}$ that are to be used in these formulas are given as follows:

Span a,

$$\frac{EI}{\lambda} \frac{d\dot{\varphi}_{a}}{dx} = b S_{b}$$
 (56)

$$\frac{EI_{f}}{\lambda} \frac{d^{2}w_{a}}{dx^{2}} = b S_{b} \left[\frac{I_{f}}{I} + \frac{I_{m}}{I} \left\{ \frac{s \ln \alpha (b+d) - \sinh \alpha d}{a b \cosh \alpha (a+b+d)} \right\} \cosh \alpha x \right]$$
 (57)

Span b,

$$\frac{EI}{\lambda} \frac{d\phi_b}{dx} = S_b(b - x) \tag{58}$$

$$\frac{\text{EI}_{f}}{\lambda} \frac{d^{2}w_{b}}{dx^{2}} = S_{b} \left[\frac{I_{f}}{I} \left(b - x \right) + \frac{I_{m}}{I} \left\{ \frac{\sinh \alpha \left(b + d - x \right) \cosh \alpha a - \cosh \alpha \left(a + x \right) \sinh \alpha d}{\alpha \cosh \alpha \left(a + b + d \right)} \right]$$
(59)

Span d,

$$\frac{EI}{\lambda} \frac{d\phi}{dx} = 0 \tag{60}$$

$$\frac{\text{EI}_{f}}{\lambda} \frac{d^{2}w_{d}}{dx^{2}} = -\frac{S_{b}I_{m}}{I} \left[\frac{\cosh \alpha(a+b) - \cosh \alpha a}{\alpha \cosh \alpha(a+b+d)} \right] \sinh \alpha(d-x)$$
(61)
Rept. No. 1505-A

The formulas of the present section have been derived for application to a strip with two-point loading and with an overhang. These formulas become applicable to a centrally loaded strip with an overhang upon setting a=0. In the event that there is no overhang, the value d=0 is used in the formulas for either two-point or central loading.

Specimen: number	Span :	Span b	Thickness of upper facing	:Slope of : load- : deflec- : tion	$\eta \frac{h^2}{\mu_b 2}$: Modulus : of : rigidity : (computed);	:Maximum : load	: :Type of :failure : noted :	Bending stress in thin facing	: :Shear stress: : in core at : : failure : : (computed) :	Com	puted in fac- t load ciated	: Larg : stra : measur : faci	est ins ed in ngs	: Stre : associa : largest	sses ted with strains
				curve					: at :failure : (com- : puted)		шеа.	sured	:facing	facing	: :	
			:	:			:	:	:	:	facing	facing	:	:	:	
(1)	(2)	(3)	: (4)	: (5)	(6)	: (7)	: (8)	: (9)	(10)	: (11)	(12)	: (13)	: (14)	: (15)	: (16) :	(17)
•	In.	In.	In.	10 in.	u -	P.B.1.	<u>Lb.</u>	:	100 p.8.1.	P.s.i.	100 p.a.i.	100 p.s.i.	:10 ⁻⁵ in.	:10 ⁻⁵ in.	100 p.s.i.	100 p.s.i.
										alsa-wood core						
1724 1824 1718 1818 1712 1812 1710 1810 178 188 176	3.000 : 3.000 : 1.500	8.000 8.000 6.500 6.500 3.500 2.500 2.500 2.000 2.000	: .0060 : .0205 : .0060 : .0205 : .0205 : .0205 : .0205 : .0205	: 216.00 : 216.00 : 84.50 : 97.30 : 20.20 : 20.20 : 9.45 : 9.70 : 4.28 : 3.90 : 1.09	111 051 281 180 180 161 244 207 080 178	: 1,260 : 1,390 : 4,630 : 820 : 4,690 : 4,460 : 9,730 : 11,800	9.95 6.70 15.10 14.50 24.15 29.70 40.25 64.25 52.00	: Comp. : None : Comp. : None : Comp. :Tension : Comp. :Tension : Comp. :Tension	: 150 c : 251 : 137 c : 310 t : 160 c : 267 t : 234 c : 449 t : 254 c : 405 t : 205 c	: 18.8 : 12.7 : 28.6 : 27.5 : 45.7 : 56.2 : 108.0 : 76.2 : 121.8 : 98.4	251 : 137 : 310 : 160 : 262 : 234 : 385 : 254 : 405	73.5 40.1 96.8 76.8 76.8 68.5 42.7 74.3 118.5	995 474 1,273	: 174 : 187 : 319 : 169 : 396 : 197 : 313 : 293 : 469 : 325 : 498 : 226	: 143 : 128 : 147 : 232 : 135 : 289 : 151 : 213 : 220 : 329 : 267 : 331 : 192 : 332 :	50 47 91 43 113 49 87 134 83 142 58
										alsa-wood core						
2818 2712 2812 2810 276 288 276	.875 .875 .875 .875 .875 .875 .875	7.125 4.125 4.125 4.125 2.125 2.125 2.125	.0105 : .0205 : .0105 : .0205 : .0205 : .0105 : .0205	26.60 : 26.60 : 6.44 : 6.72 : 3.46 : 1.38 : 1.37	045 013 .026 .085 .159 .128 .128		51.00 : 35.60 : 96.25 : 116.00 : 82.75 : 154.50 : 188.00	:Tension : Comp. :Tension : Shear : Comp. : Shear	192 t 142 t 178 d 1482 t 1440 t 214 d 399 t	: 122.8 : 148.0 : 105.5 : 197.0 : 239.5	178 178 482 432 212 399 256	226.2 91.2 247.0 221.2 108.5 204.2 131.4	: 1,795 : 550 : 1,812 : 1,705	885 342 782 840 407 712 525	: 121 : 160 : 205 : 180 : 381 : 157 : 384 : 366 : 200 : 317 : 241 : 231 :	98 112 92 252 88 224 240 103 204 129
		Group_3	- Glass-c	loth-lamin	ate facing	gs_0.017-inc	h and O.C	0205-inch	thick; b	alsa-wood cor						
3B36 3T24 3B24 3T18 3B18 3T12 3T10 3B10 3T10 3B10 3T10	5,000 3,000 3,000 875 875 875 875 875 875 875 875	: 12.000 : 8.000 : 8.000 : 7.125 : 7.129 : 4.125 : 4.125 : 3.125 : 3.125 : 2.125 : 2.125 : 2.125 : 1.125	: .0205 : .0170 : .0170 : .0205 : .0170 : .0205 : .0170 : .0205 : .0170 : .0205 : .0170 : .0205 : .0170 : .0205	: 102.000 : 28.500 : 27.500 : 12.300 : 12.900 : 3.100 : 1.590 : 1.700 : .672 : .717 : .275 : .265	. 133 . 131 . 049 . 131 . 190 . 246 . 245 . 337 . 531 . 590 . 785 . 4.307 3 . 948	3,820 2,080 1,690 12,500 6,000 6,000 9,410 9,410 9,470 11,900 7,600 g 11,100 g 11,100 g 7,240 7,880 ate facings	25.80 40.40 52.50 40.50 71.50 137.50 114.50 1128.50 128.50 149.50 250.00 266.00	: None : Comp. :do. : Wrinkle : Comp. :do. :do. :do. :do.	: 174 : 182 c : 236 c : 267 c : 219 c : 319 c : 201 c : 215 c : 154 : 179 : 158 : 168	: 24 7 : 38.6 : 50.2 : 38.7 : 68.3 : 90.4 : 131.4 : 109.5 : 117.1 : 122.9 : 143.0	174 180 236 162 287 219 319 201 201 213 154 179 168	: 144.0 : 149.0 : 196.0 : 134.0 : 238.0 : 281.0 : 265.0 : 167.0 : 176.0 : 128.0 : 148.0 : 131.0 : 140.0	: 710 : 530	: 512 : 585 : 705 : 540 870 : 710 : 960 640 640 : 640 : 640 : 640 : 640 : 640	: 177 : : 287 : : 237 : : 298 : : 209 :	146 142 201 132 248 170 272 154 180 117 144
4136	: 5.000	: 12.000				•							: 582		: 166 :	
4T24 4B24 4T18 4B18 4T12 4B12 4T10 4B10 4T8 4B8	: 3.000 : 3.000 : .875 : .875 : .875 : .875 : .875 : .875 : .875	: 8.000 : 8.000 : 7.125 : 7.125 : 4.125 : 4.125 : 3.125 : 3.125 : 2.125 : 2.125 : 1.125	: .0100 : .0100	22.500 22.000 29.500 8.710 2.367 2.417 1.225 1.233 535 540 2.15	059 109 028 131 .050 .080 .152 .357 .384 3.514	: 38,500 : 24,400 : 28,200 : 22,400 : 20,490 : 19,100 : 7,440	26.70 43.30	: do	: 149 c : 141 c : 203 c : 226 c : 106 c : 166 c : 290 c : 257 c : 268 c : 209 c	: 17.6 : 28.5 : 31.7 : 25.6 : 40.1 : 92.8 : 82.3 : 126.0 : 98.4 : 175.3	: 141 : 203 : 226 : 106 : 166 : 290 : 257 : 268 : 209 : 197	2	1307 1427 1620 1722 1505 1580 1880 1830 1855 1660 1600	: 590 : 450 : 699 : 755 : 360 : 580 : 950 : 880 : 910 : 710 : 650	: 152 : 122 : 178 : 206 : 145 : 166 : 251 : 237 : 244	112 166 180 92 141 222 207 213 170
		Groun	5 - Alumi	inum-lamina	te facing	s 0.012-inch	and 0.0	305-inch	t <u>hick;</u> ba	lsa-wood core	0.757-	inch thi	ck			
5836 5724 5824 5718 5818 5712 5812 5710 5810	: 5.000 : 3.000 : 3.000 : 875 : 875 : 875 : 875 : 875 : 875	: 12.000 : 8.000 : 8.000 : 7.125 : 7.125 : 4.125 : 4.125 : 4.125 : 3.125	; .0120 : .0305 ; .0120 : .0305 : .0120 : .0305 : .0120 : .0305 : .0120	: 13.000 : 4.100 : 5.950 : 1.810 : 1.780 : .570 : .645 : .315 : .345 : .169	: -043 : 291 : 182 : 265 : 257 : 975 : 618 : 1.440 : 1.764 : 3.508	: 11,300 : 16,100 : 15,800 : 17,600 g : 12,700 g : 20,100 g : 15,000 g : 12,300 g : 14,100 : 13,600	193.00 1147.00 133.00 171.00 127.00 259.00 199.00 321.00 290.00	:do. :Wrinkla : Wone :Wrinkla : Shear :do. :Wrinkla : Shear	: 590 c : 631 c : 570 c : 652 c : 483 c : 440 : 537 : 486 : 268	: 59.8 : 94.5 : 85.5 : 109.8 : 81.6 : 166.5 s : 128.0 s : 128.0 s : 186.4 s : 186.4 s	598 604 570 648 483 573 440 537 486 268	: 235.0 : 238.0 : 224.0 : 255.0 : 190.0	: 682 : 700 : 236	286 365 262 305 205 247 180 420 207	: 464 : : 464 : : 429 : : 514 : : 452 : : 248 : : 230 :	288 348 272 304 217 254 192 376 218

Specimen:	Span :	ъ :	of upper : facing	:Slope of : : load- : deflec- : tion :	4pc	: Modulus : of : rigidity :(computed)		noted	in thin	: failure		: measur	ings	: Tarkesc scrattte	
				CUPVE :		:	:		failure (com- puted)	:	: with largest : strain : measured	: Thin	: Thick :facing	: Thin : :facing: :	
			1	: !		j		1		S.	:facing:facing	4		9 9	
(1)	: (2) :	(5)	: (4)	: (5) ;	(6)	1 (7)	: (0)	; (9) :	(70)	(11)	titel i fall	· fral	(42)	1 1	4.44.1
tretaine,	<u>In.</u>	In.	<u>in.</u>	10 in.		P.m.1.	Lb.		100 p.s.i.	P.a.1.	: 100 : 100 :p.m.i.: p.s.i.	per in.	per in.	: 100 : :p.a.i.	p. 8.1,
											0.753-inch thi				
6B36 6T24 6B24 6T18 6B18 6T12 6B12 6T10 6B10	5.000 3.000 3.000 875 875 875	12.000 8.000 8.000 7.125 7.125 4.125 4.125 3.125 2.125	: .0310 : .0200 : .0310 : .0200 : .0310 : .0200 : .0310 : .0200 : .0310 : .0200	: 10.000 : 2.970 : 2.970 : 1.440 : 1.400 : .500 : .465 : .323 : .288 : .187 : .177	.157 .327 .300 .471 .405 1.596 1.336 2.952 2.414 6.449 6.029	: 11,700 : 12,900 : 14,000 : 15,300 : 12,400 g : 14,300 g : 10,800 g : 12,900 g : 12,500 g : 10,100 : 10,800	: 129.00 : 199.00 : 199.00 : 236.00 : 236.00 : 255.00 : 297.00 : 272.00 : 237.00 : 254.00	do :do : Shear : do :do :do :do	498 511 501 540 476 338 294 273 283 162	62.9 128.0 125.3 151.3 s 133.7 s 164.0 s 191.0 s 174.6 s 181.2 s 152.2 s	: 498 : 522 : 511 : 530 : 497 : 321 : 540 : 349 : 476 : 307 : 338 : 218 : 391 : 252 : 273 : 176 : 283 : 183 : 162 : 104 : 173 : 112	: 1,440 : 1,742 : 1,290 : 2,590 : 1,800 : 1,040 : 350 : 485 : 276 : 300 : 158 : 170	: 375 : 387 : 425 : 425 : 325 : 225 : 257 : 178 : 185 : 104	: 524 : 339 : 479 : 280 : 307 : 164 : 180	354 388 380 426 320 237 262 188 195
										core 0.744-1	nch thick	. 050	. 800	h.Bo	518
7B36 7T24 7B24	: 5.000 : 3.000 : 3.000 : .875 : .875 : .875 : .875 : .875 : .875 : .875 : .875 : .875	12.000 8.000 8.000 7.125 7.125 4.125 4.125	: .0120 : .0120	: 5.850 : 5.900 : 2.750 : 2.650 : .780 : .740 : .490 : .465 : .465 : .230 : .245 : .167	.079 .122 .152 .152 .264 .204 .714 .608 .1.444 .1.543 .2.687 .3.026 .21.279 .18.215	: 12,900 : 18,700 : 15,100 : 10,900 : 14,200 : 12,100 g : 14,200 g : 11,200 g : 12,000 g : 12,000 g : 10,400 : 10,700 : 5,400	; 74.00 ; 126.00 ; 127.00 ; 156.00 ; 151.00 ; 213.00 ; 262.00 ; 190.00 ; 226.00 ; 293.00 ; 291.00 ; 360.00 ; 411.00	Wrinkla: do do . None . Shear :Wrinkla do . Shear :Wrinkla . Shear	193 c 558 c 612 c 593 c 1484 c 593 c 1484 c 593 c 1484 c 1593 c 1595 c 1	49.2 83.8 109.1 199.8 140.8 177.2 126.0 147.3 199.8 199.8 271.8	1 493	960 : 1,450 : 2,100 : 2,340 : 2,280 : 835 : 1,960 : 470 357 : 470 : 207 245	: 565 : 1,170 : 1,625 : 2,400 : 2,540 : 550 : 2,330 : 367 : 323 : 323 : 323	: 474 : 327 : 398 : 344 : 337 : 216	510 510 319 370 340 327
			Group	8 - Alumi							0.505-inch th		o me		- hl-B
8B36 8F24 8B24 8F18 8B18 8F12 8B12 8F10	: 5.000 : 3.000 : 3.000 : .875 : .875 : .875 : .875 : .875 : .875 : .875 : .875	: 12.000 : 8.000 : 8.000 : 7.125	: .0120 : .0190 : .0190 : .0190 : .0190 : .0120 : .0120 : .0120 : .0190 : .0120 : .0120 : .0120 : .0120	: 9.000 : 4.250 : 4.620 : 1.180 : 1.230 : .685 : .572 : .578 : .164 : .288	000 011 .042 088 209 422 510 867 867 228 23 	: 13,900 g : 14,200 g : 14,200 g : 11,500 g : 12,400 g : 9,400 : 6,100	: 51.00 : 89.00 : 81.00 : 115.00 : 110.00 : 126.00 : 226.00 : 196.00 : 246.00 : 316.00 : 219.00	dodododododododo.	: 490 : 570 : 571 : 556 t : 624 c : 625 c : 497 : 566 c : 330 : 419 : 284 : 197	49.0 85.6 80.5 110.7 105.2 181.8 a 191.0 a 217.3 a 189.0 a 236.7 a 303.5 210.2	: 490 : 309 : 570 : 360 : 537 : 339 : 616 : 489 : 599 : 378 : 6254 : 595 : 497 : 314 : 566 : 358 : 355 : 212 : 419 : 265	: 2,630 : 1,360 : 2,620 : 2,500 : 2,500 : 2,260 : 500 : 1,440 : 525 : 270 : 195	: 542 : 462 : 373 : 690 : 452 : 490 : 305 : 355 : 205 : 265 : 176	: 492 : 330 : 416 : 276 : 204	547 394 377 449 452 452 483 505 594 272 185
Qamz.6	. 5.000	. 10 000	- 0100	25 000	- 003		-: 50-00	· None	: 485	: 48.4	: 485 : 306.0	905		: 485	
8AB36 8AT24	: 5.000 : 3.000 : 3.000 : .875 : .875 : .875 : .875 : .875 : .875 : .875 : .875	12.000 8.000 8.000 7.125 7.125 4.125 4.125 5.125 2.125 1.125 1.125	0: .0190 0: .0120 0: .0190 0: .0120 0: .0120	: 35.000 : 10.250 : 10.000 : 4.580 : 4.580 : 1.200 : .720 : .715 : .365 : .365 : .398 : .198	040 138 066 210 197 377 358 959 946 2.119 2.119 1.809 1.809	: 13,400 : 28,100 : 11,300 : 12,000 : 18,400 : 19,300 : 12,800 g : 12,900 g : 12,300 g : 14,400 : 7,300 : 7,400	53.00 : 88.00 : 87.00 : 116.00 : 113.00 : 123.00 : 204.00 : 171.00 : 238.00 : 208.00 : 276.00 : 268.00	:do :do :wrinkle :Tension :Wrinkle : Shear : Shear :do	: 514 : 569 : 562 : 671 c : 623 c : 679 : 1,32 : 408 : 358 : 250 : 244	: 51.3 : 85.2 : 84.2 : 112.8 : 109.4 : 181.1 s : 197.3 s : 165.7 s : 230.0 s : 202.0 s : 266.8 : 266.0	514 325.0 569 359.0 562 355.0 630 388.0 610 385.0 623 394.0 605 382.0 1432 273.0 1408 258.0 258 226.0 250 158.0 244 154.0	695 1,880 1,790 2,460 2,460 1,970 417 480 450 240 23	: 335 : 440 : 400 : 530 : 465 : 510 : 1,760 : 267 : 257 : 295 : 1,480 : 1,540	: \$18 : \$01 : \$50	: 440 : 368 : 509 : 396 : 500 : 273 : 264 : 297
OFF.	. = 000										: 507 : 196.0	: 1,112	: 250		: 258
9736 9836 9724 9718 9818 9712 9810 978 988 976 986	5.000 5.000 875 875 875 875 875 875	12.000 8.000 7.12 7.12 4.12	0 : .0120 0 : .0310 5 : .0310 5 : .0310 5 : .0120 5 : .0120 5 : .0310 5 : .0120 5 : .0310	: 9.500 : 4.750 : 4.880 : 1.540 : .925 : .622 : .625 ; .376	594	+,500 g : 4,300 g : 5,000 g : 5,300 g : 4,200 : 4,200 : 3,000	: 104.00 : 104.00 : 96.00 : 120.00 : 116.00	: shear : Shear :do	: 594 c : 595 c : 365 : 238 : 204 : 196 : 116	: \$1.8 83.7 0 99.8 s : 106.0 s : 91.2 s : 115.0 s : 110.3 s : 124.1 : 116.9	: 418 : 162.0 : 565 : 218.0 : 594 : 230.0	0: 575 0: 2,550 0: 2,500 0: 355 2: 228 0: 195 1: 190	177 332 290 147 35 290 147 36 37 45	: 205	: 326 : 292 : 195 : 103 : 85 : 89 : 46

	Span	Span	Thickness	:Slope of : load- : deflec-	$\eta \frac{h^2}{4b^2}$	t i	:Maximum	:Type of :failure : noted	:Bending : : stress : :in thin :	Shear stress	Computed stress in fac- ing at load	Lar str	goet ains ed in	: Stre	sees sted with strains	
			: :	curve				:	failure (com-	: (computed)	: associated : with largest : strain : measured : Thim : Thick : Theing: Theing	r Thin	: Thick	: Thin :		
		:)					1									
(1)	(2)	t (3)	(4)	(5)	(6)	: (7)	(8)	: (9)	(10)	: (11)	: (12) : (13)	: (14)	: (15)	: (16) :	(17)	
		: 10.									: 100 : 100 : 100 : 100 : p. s. 1. p. s. 1.		: 10 m.	<u>100</u> p.s.1.	p.s.1.	
OB12 : OT10 : OB10 :	.875 .875 .875	12,000 12,000 12,000 8,000 8,000 7,125 7,125 4,125 4,125 3,125 2,125 2,125 2,125	: 0.050 : .012 : .030 : .012 : .030 : .012 : .030 : .012 : .030 : .012	13.750 : 14.000 : 4.080 : 4.080 : 1.840 : 1.930 : .560 : .575	-0.006 .049 .172 .161 .246 .276	: 29,100 : 18,700 : 19,900 : 16,600 : 14,600 : 15,100 g	88.00 : 83.00 : 128.00 : 144.00 : 164.00 : 154.00	: Hone :do: :Wrinkle : None :Wrinkle : Shear	574 541 556 628 c 635 598 o	57.4 54.1 83.5 94.2 106.9 100.7	: 57% : 230.0 : 541 : 215.0 : 556 : 222.0 : 628 : 251.0 : 598 : 259.0 : 628 : 251.0 : 598 : 237.0 : 546 : 178.0 : 548 : 219.0 : 548 : 199.0 : 498 : 199.0 : 498 : 199.0	: 1,590 : 1,115 : 1,190 : 2,125 : 2,480 : 1,760 : 2,180	280	: 420 : : 514 :	284 190 253 202	
										1 care 0,506-1						
1B12 1	.875	10.000 10.000 10.000 10.000 6.125 6.125 4.125 4.125 2.125	.0320 .0320 .0320 .0320 .0320 .0320 .0320 .0320 .0320	10.170 : 10.330 : 4.940 : 4.880 : 1.440 : .694 : .656 : .230 : .258 :	.328 .348 .220 .192 .483 .466 1.345 1.166 4.759 5.731	7,800 7,300 11,500 11,500 14,400 g 11,100 g 12,700 g 11,600 11,600 9,600	168.00 159.00 179.00 173.00 231.00 2216.00 208.00 213.00 262.00 240.00	: Mone (::Wrinkle::do: :do: : Shear : :do: :do: :do: :do:	488 462 c 525 c 503 c 411 584 249 255 161 148	156.0 148.0 167.0 161.0 215.0 s 201.0 s 193.0 s 243.0 s	488 :	: 898 : 885 : 1,450 : 1,235 : 504 : 475 : 230 : 253 : 161 : 147	500 539 1,240 655 417 390 245 245 242 155	: 481 : 480 : 519 : 409 : 400 : 258 : 261 : 170 : 155 :	519 419 391 253 250 164	
										core 0.390-1						
2732 2832 2824 2716 2816 2712 2812 278 288	5.000 : 5.000 : 675 : .875 : .875 : .875 :	10.000 10.000 10.000 6.125 6.125 4.125 4.125 2.125 2.125	.0320 : .0320	17.000 : 16.400 : 7.800 : 2.400 : 2.180 : 1.040 : .900 : .285 : .292	.213 .193 .160 .507 .322 .997 .697 5.124 3.215	9,000 : 9,900 : 19,900 : 10,100 g : 15,800 : 11,200 g : 16,100 g : 13,600 : 13,100 :	117.00 117.00 135.00 188.00 196.00 177.00 225.00 220.00	: None : :do: :Shear : :do: :do: :do: :do:	418 433 500 /c : 426 446 271 544 173 173	129.0 132.0 154.0 214.0 s 223.0 s 202.0 s 257.0 s 253.0 s 254.0 s	418 :	532 535 1,069 1,069 280 280 175 175	630 618 1,360 692 295 370 175	417 418 505 451 284 345 185 186	513 512 515 301 373 185 186	
				Group 13	- Aluminu	m facings 0.	020-inch	thick; b	alsa-wood	core 0.257-1	nch thick					
3B32 3T24 3B24 3T16 3B16 3T12 3B12 3B12	1.000 : 1.000 : .875 : .875 : .875 :	10.000 10.000 10.000 10.000 6.125 6.125 4.125 4.125 2.125	.0200 : .0200 :	2.980 : 2.950 : 775 :	.440 .416 1.591 1.485		114.50 116.00 114.50 133.50	Bhear:	426 : 431 : 220 :	198.8 u :	356	1,298 1,070 1,120 1,610 650	375 712 822 820 212 465	570 : 570 : 501 : 508 : 442 : 449 : 234 : 274 :	578 515 518 518 426 466 250	
4B32 :	5.000 :	10.000	.0120 :	93.600 :	m = 092	*	2k.80	Hone .	380 S	45.6	380 :	: 396 :	350 :	565 :	354	
4B24 4T16 : 4B16 : 4T12 : 4B12 :	.875 : .875 : .875 : .875 :	10.000 10.000 6.125 6.125 4.125 4.125 2.125 2.125	.0120 : .0120 : .0120 : .0120 : .0120 : .0120 :	45.500 : 11.700 : 11.800 : 4.450 : 4.450 : 1.010 :	.019 .040 .062 .136 .136 .591	: 26,500 :: 32,600 :: 21,300 :: 21,300 :: 21,200 :: 18,500 g :: 11,900 g ::	33.80 61.20 62.00 94.00 98.00 119.50 84.50	:Wrinkle: :do: : Wone : :Wrinkle: :do: : Shear :	517 c : 575 c : 587 c : 594 c : 617 c : 389 : 275	57.9 62.0 112.7 115.0 172.8 180.2 219.8 s	450 :	1,549 : 1,549 : 1,540 : 2,180 : 424 : 250 :	912 : 1,735 : 2,535 : 1,605 : 2,300 :	305 435	513 521	
15B32 15T24 15B24	1.000 1.000 .875 .875 .875 .875	10.000 6.125 6.125 4.125 4.125	.0320	11.000 : 11.000 : 5.280 : 5.030 : 1.800 : 1,830 : .892 :	.419 .398 .274 .195 .847 .911 2.016 1.940 8.564	: 5,900 ::	120.00 100.00 127.00 128.00 150.00 154.00 155.00 148.00 186.00	Wrinkle: do: do: do: do: do:	354 c : 297 c : 576 c : 379 c : 272 : 279 : 189 : 181 : 117 : .	113.0 : 95.0 : 120.0 : 121.0 : 142.0 s : 146.0 s : 147.0 e : 176.0 s : 176.0	35%	357 : 298 : 405 : 415 : 372 : 274 : 185 : 179 : 103 :	315 428 307 291 293 194 187	374 352 262 190 187	391 320 428 310 300 299 205 197 127	

Specimen:		: b :	: b :	of upper facing	Slope of : load- deflec- tion :	-	+ (archapuracum)	17	: Type of: :failure: : noted. :	Bending stress in thin facing	: Shear stress: in core st : fwilure : (computed)	Com etrage ing a	sputed in fac- rt load risted	: Lar : etr : memour : fac	gest ains od in ings	: Stre	ted vit2 atrains
				curve	,			: : : : : : : : : : : : : : : : : : :	[toted)	: 6 :	atz ness	ured Thick	Thin :facing	: Thick :facing :	facing:	facing	
(1)	(2)	. (3)	(4)	(5)	(6)					(11)							
	In.	In.	<u>In.</u>	10 ⁻⁵ in.		2_P.0.1.	Lb.		100	: (11) : <u>F.s.1.</u>	100	: <u>100</u>	:10 5in.	par in.	100 p.e.i.	100 p.a.i.	
			Group	16 - Alumi	oum facing	; gs 0.032-inc	h thick;	cellular	cellulos	se-acetate cor	e 0.370)-inch th	ick				
16B32 16T24 16B24 16T16 16B16 16T12 16B12	: 5.000 : 1.000 : 1.000 : .875 : .875 : .875		0.0320 0.0320 0.0320 0.0320 0.0320 0.0320 0.0320 0.0320 0.0320 0.0320 0.0320	: 20.000 : 21.800 : 10.000 : 10.700 : 3.580 : 3.650 : 1.700 : 2.300 : .666 : .860	0.526 831 423 530 1.173 1.257 2.337 2.337 3.852 9.340 12.805	: 3,400 g : 2,200 g : 4,500 g : 3,400 g : 4,160 g : 3,800 g : 4,500 g : 2,800 : 4,300 : 4,300 : 3,100	95.50 72.00 96.30 \$5.00 114.00 106.50 125.00 76.50 138.00	Wrinkle:dodododododododododo	571 c 280 c 574 o 325 o 275 255 200 124 114	: 118,8 : 89.6 : 119.9 : 103.2 : 141.9 s : 132.5 : 155.6 s : 171,8 s : 171,8 s	: 571 : 280 : 374 : 318 : 273 : 253 : 200 : 124 : 114 : 76		455 290 488 539 286 268 215 130 120	: 291 : 392 : 327 : 279 : 276 : 208 : 138 : 120	: 392 : 290 : 404 : 330 : 289 : 272 : 275 : 139 : 127 : 86	298 395 331 283 282 218 146	
				17 - Alumi						se-acetate cor				. 366	: 339	360	
17816 17712 17812 1778	: .875 : .875 : .875 : .875	: 10.000 : 6.125 : 4.125 : 4.125 : 2.125 : 2.125	: .0200 : .0200 : .0200	: 3.870 : 3.600	341 .847 .668 . 2.082	: 3,600 : 5,800 : 5,200 g : 6,600 g : 7,900 g : 7,100 g	: 69.00 : 63.00 : 85.80 : 108.80	:Wrinkle: :Shear: :do	: 402 c : 247 : 336 : 219	: 131.1 : 119.7 s : 163.0 s : 206.9 s	: 400 : 247 : 336 : 219		260 255 231	: 507 : 265 : 367 : 231	: 394 : 266 : 341 : 240	496 272	
			Group	18 - Alumi	num facin	gs 0.012-in	ch thick;	cellular	cellulo	se-acetate cor							
18B32 18T24 18T16 18B16 18T12	: 5.000 : 1.000 : .875 : .875 : .875 : .875	: 10.000 : 10.000 : 10.000 : 6.125 : 6.125 : 4.125 : 4.125 : 2.125	: .0120 : .0120 : .0120 : .0120 : .0120 : .0120 : .0120	: 53.500 : 17.000 : 15.800 : 7.200 : 6.400 : 1.820	: .022 : .153 : .410 : .324 : .947 : .719 : 2.597	: 21,400 : 3,100 : 3,000 g : 3,800 g : 2,900 g : 3,800 g	: 14.00 : 27.10 : 34.30 : 27.40 : 42.00 : 42.50 : 77.30	: Wrinkle : Bhear :do . :do . :do .	226 337 c 338 c 270 270 262 265	27.0 52.3 66.2 8 52.9 8 81.1 8 82.1 8 149.2 8	: 226 : 437 : 338 : 270 : 279 : 282 : 265		215 597 340 275 278	: 206 : 443 : 371 : 260 : 270 : 269	: 432 : 432 : 332 : 282 : 283 : 316	374	
		2	2							comb core 0.75		thick	. 535	• 630	: 419	: 513	
19B32 19T24 19B24 19T16 19B16 19T12	: 3.000 : 1.000 : 1.000 : .875 : .875 : .875 : .875 : .875	: 12.000 : 10.000 : 10.000 : 6.125 : 6.125	: .0320 : .0320 : .0320 : .0320 : .0320 : .0320 : .0320	2.780 2.810 .970 .975 .460 .480	: .504	7,600 g 7,200 g 7,900 g 7,900 g 8,700 g	: 178.00 : 189.00 : 191.00 : 225.00 : 252.00 : 242.00 : 246.00	do Skear do	: 423 c : 375 c : 379 c : 274 : 284 : 198 : 203 : 111	: 113.0 : 120.0 : 121.0 : 143.0 s : 147.0 s : 154.0 s : 156.0 s	: 425 : 375 : 376 : 274 : 282 : 198 : 203	2	-: 543 -: 401 -: 420 -: 265 -: 280 -: 189 -: 207 -: 104	: 615 : 424 : 405 : 283 : 295 : 203 : 198 : 108	: 421 : 369 : 376 : 272	512 425 409 291 301 211 206 114 116	
				Group 20 -	Aluminum	facinge 0.0	32-inch t	hick; pap	er honey	comb core 0.6							
20832	: 3,000 : 1,000 : 1,000 : .875 : .875 : .875 : .875 : .875	: 12,000 : 12,000 : 10,000 : 10,000 : 6,125 : 4,125 : 4,125 : 2,125 : 2,125	: .0520 : .0520 : .0320 : .0320 : .0320 : .0320 : .0320 : .0320 : .0320	\$.170 \$.550 \$.600 1.170 1.180 .565 .580 .211 .266	358 .354 .387 .895 .962 .1.970 .2.159 .7.840	6,200 9,000 8,200 9,400 8 8,800 8 9,500 8,600 8	: 162.00 : 190.00 : 195.00 : 218.00 : 220.00 : 227.00 : 247.00 : 270.00 : 268.00) :do) : Shear) :do) :do) :do) :do) :do) :do	: 456 c : 446 c : 458 c : 314 : 315 : 220 : 239 : 134 : 134	: 122.0 : 143.0 : 146.0 : 164.0 e : 165.0 f : 170.0 ± : 185.0 s : 202.0 f	1 456 1 446 1 458 2 314 2 314 2 238 2 134 1 134	1,,,,,,,	.: 858 .: 677 .: 792 .: 324 .: 314 .: 215 .: 130	: 1,020 : 900 : 898 : 344 : 327 : 225 : 217		: 517 : 525 : 521 : 521 : 348 : 332 : 233 : 225 : 146 : 135	
			Gro	up 21 - G1	ass-cloth	-laminate fa	cings 0.0	24-inch t	hick; ba	alsa-wood core						25.015	
21T32 21E32 21T24 21E24 21E16 21E16 21E12 21E2 21E8 21E8	: 5.000 : 1.000 : 1.000 : .875 : .875 : .875 : .875	: 10.000 : 10.000 : 10.000 : 6.125 : 6.125 : 4.125 : 4.125 : 2.125	: .0240	: 25.500 : 25.500 : 6.620 : 6.880 : 2.320 : 2.400	051 : .150 : .172 : .178 : .218 : .206 : .224 : .951	6,000	52.8 52.0 50.3 50.3 92.5 83.8 154.8 164.5 3 201.0	0 : Comp. 0 :do 0 :do 0 :do 0 :do 0 : Shear	: 211 : 206 c : 201 c : 226 c : 205 c : 205 c : 271 c : 171	: 50.8 : 50.5 : 49.8 : 48.2 : 88.6 : 80.2 : 148.3 : 157.5 : 192.6 s : 178.7 s	: 212 ; 211 : 208 : 201 : 226 : 205 : 249 : 271 : 170 : 158	2	742 788 786 786 775 790 915	: 880 : 892 : 830 : 960 : 1,030 : 1,110	2 : 226 0 : 224 0 : 245 0 : 222 0 : 226	: 217 : 207 : 209 : 195 : 225 : 209 : 239 : 257 : 173 : 157	

Specimen: number :		Ъ	of upper	: stSlope of : load- : deflec- : tion	7 452	: Modulum : of : rigidity :(computed)	: lamad :	: failure: : noted :	in thin	: :Shear strees : in core st : failure : (computed)	etress in ing at lo masociates with large	Cac-s pd : mou l : est :	streins meured in facings	: larges	ated with t strains : Thick
: :			: : :	:) F 1	:	: :		1	Thin : Thi	i :fmc: lok : lng :	ing rfacing: : : :	2 : 2 1	t 1 2
	(2)		(4)	(5)	(6)	(7)	: (8)	(9)	(10)	(II)	(12) : (1	9) : (1)	(15)	t (16)	: (17)
	In.	Im.	In.	:10-5 in. : per 1b.		2 P.s.f.	<u>126.</u>			: P.o.1.	: 100 : 1 : y.a.i.: p.	00 :10	38.:10 1	1.: 100	: 1.00
			Grou	up 22 - Glas	s-cloth 1	aminate fac	ings 0.02	4-inch th	ick; bal	sa-wood core	0.374-inch	thick			
22B32 :	5.000 : 1.000 : 1.000 : .875 : .875 : .875 : .875 : .875	10.000 10.000 10.000 10.000 6.125 6.125 4.125 2.125 2.125	0240 0240 0240 0240 0240 0240 0240	91.200 92.500 14.000 11.700 11.400 14.128 1.150 1.050 1.050	.140 .143 .225 .177 .236 .294	: 1,600 : 2,600 : 2,600 : 4,300 : 5,500 : 9,000 : 7,200	: 28.10 : 46.20 : 42.60 : 74.50 : 68.00 : 140.50 : 123.50 : 157.50	: Comp. :do;do; :Wrinkle: :Comp. :do;	147 242 c 225 c 239 c 218 c 505 c	: 35.3 : 58.0 : 53.7 : 93.6 : 85.5 : 176.7 : 156.1 : 172.8 s	239 :	1,	510 : 65 942 : 1,12 915 : 98 938 : 1,04 881 : 94 105 : 1,27 030 : 1,13 580 : 66	2 : 175 0 : 267 0 : 260 5 : 266 1 : 251 2 : 308 4 : 289 0 : 166	: 165 : 157 : 260 : 229 : 239 : 220 : 289 : 264 : 159 : 137
			· -			aminate fac	inge 0.02	4-inch th	dok; bal	ea-wood core					
23B32 : 23T24 : 23B24 :	1.000 : 1.000 : 1.000 : .875 : .875 :		: .0240 : .0240 : .0240 : .0240 : .0240 : .0240 : .0240	: 208.000 : 210.000 : 97.000 : 95.000 : 24.800 : 8.880 : 8.800 : 2.070 : 1.980	.351 .186 .171 .222 .305 .257 .729	: 700 : 1,300 : 1,400 : 2,800 : 4,600 : 5,400 : 6,900 g	: 41.00	: None : Comp. :Wrinkle : Comp. :Wrinkle :do	100 168 c 171 c 219 c 221 c 130 c	: 24.0 : 40.4 : 41.0 : 85.8 : 128.1 : 75.6 : 247.3 s	217 :		429 : 46 730 : 80 693 : 77 940 : 1,03 891 : 98 540 : 53	5 : 125 0 : 209 2 : 198 0 : 267 5 : 254	: 111 : 116 : 189 : 183 : 239 : 230 : 132
		!	Group 24	- Glass-clot	h-laminat	e facings 0	.024-inch	thick; o	ellular	cellulose-ace	tate core 0	.498-1nc)	h thick		
24B32 24T24 24B24	: 5.000 : 1.000 : 1.000 : .875 : .875 : .875		.0240 .0240 .0240 .0240 .0240 .0240		117 .116 .151 .203 .171 .233 1,504	: 4,300 : 3,300 : 6,500 : 7,500	: 34.80 : 60.80 : 60.00 : 65.80 : 124.80 : 135.50	: Comp. :Wrinkle: : Comp. :Wrinkle: : Shear : Comp.	215 c 139 c 243 c 147 c 161 c 206 c	: 51.2 : 53.3 : 58.2 : 67.4 : 63.0 : 119.6 : 129.8 s	: 159 : : 243 : : 147 :		737 : 83 518 : 55 522 : 1,07 540 : 57 587 : 67) : 211 5 : 148 1 : 262 5 : 154 2 : 168	: 176 : 196 : 136 : 249 : 140 : 162 : 112 : 128
			Group 25	- Glass-clot	h-laminat	e facinge 0	.024-inch	thick;	ellular	cellulose-ace	tate core_0	.376-incl	h thick		
25B32 25T24 25B24 25T16 25B16 25T12 25B12	5.000 : 1.000 : 1.000 : .875 : .875 : .875 : .875	10.000 10.000 10.000 6.125 6.125 4.125 4.125 2.125	: .0240 : .0240 : .0240 : .0240 : .0240 : .0240	90.000 92.000 43.500 42.000 11.200 11.300 4.200 4.200 1.333	.185 .157 .087 .161 .180 .212 .213 .948 1.098	: 2,000 : 2,300 : 4,200 : 6,100 : 5,400 : 9,900 : 9,900 : 8,600 g : 7,400 g	: 29.50 : 55.00 : 47.40 : 80.50 : 85.30 : 100.00 : 95.00 : 123.00 : 122.50	:do : Shear :do :do	257 c 247 c 257 c 278 c 278 c 215 204 156	: 36.6 : 68.8 : 59.3 : 100.6 : 106.7 : 125.0 s : 118.8 s : 157.6 s : 153.2 s	287 247 257 272 213 202 136 136	1,	592 : 66 190 : 1,35 862 : 1,09 010 : 1,13 030 : 1,16 775 : 81 190 : 52 500 : 53	1 : 246 0 : 285 3 : 289 5 : 222 0 : 210 3 : 140	: 159 : 160 : 304 : 253 : 261 : 269 : 206 : 191 : 129 : 131
OKM30	. E 000						,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			cellulose-ace				5 : 127	: 116
26B32 26T24 26B24 26T16 26B16 26T12 26B12 26T8	: 5.000 : 1.000 : 1.000 : .875 : .875 : .875 : .875	10.000 10.000 10.000 6.125	240 240 240 240 240 240 240	: 202.000 : 195.000 : 88.800 : 91.200 : 23.800 : 8.550 : 8.200 : 2.040	.192 .076 .113 .171 .113 .206 .296 .669 .667	: 1,200 : 3,100 : 2,100 : 3,700 : 5,200 : 6,800 : 4,700 : 7,700 g	: 13.80 : 26,40 : 25.20 : 59.00 : 54.50 : 74.50 : 70.50 : 87.50 : 89.50	Compdododododo	: 105 : 202 : 192 : 276 c : 255 c : 235 c : 222 c : 142	25.5 48.4 46.2 108.1 39.8 136.4 s 129.1 e 160.3 s 163.8 s	: 105 : 202 : 192 : 276 : 255 : 183 : 217 : 141 : 144	1,	442 : 47 870 : 96 820 : 89 160 : 1,28 010 : 1,15 806 : 78 806 : 78 807 : 95 507 : 57 508 : 60	127 7 : 248 0 : 254 0 : 322 0 : 284 0 : 230 6 : 238 5 : 153	: 117 : 226 : 209 : 290 : 265 : 185 : 224 : 140 : 145
		10.000								honeycomb co	re 0.747-in		848 : 88	o , oho	: 207
27B32 27T24 27B24 27F16 27B16 27F12 27B12 27B12	: 3.000 : 1.000 : 1.000 : .875 : .875 : .875 : .875	: 12.000 : 10.000 : 10.000 : 6.125 : 6.125 : 4.125 : 4.125	: .0240 : .0240 : .0240 : .0240	: 3.050 : 3.100 : .990 : 1.130 : .311	011 .063 .103 .175 .171 .052 .266 .1.364	: 11,800 : 7,300 : 11,600 : 11,600 : 84,400 : 16,600 : 12,000 g : 9,400 g	: 76.50 : 78.00 : 100.20 : 160.30 : 166.50 : 295.00 : 248.00 : 314.00	dododododododo	246 c 211 c 271 c 299 c 276 c 329 c	: 49.7 : 50.6 : 65.0 : 116.8 : 108.1 : 191.6 : 161.0 : 204.0 s	: 248 : : 211 : : 271 :	1,	890 : 90 765 : 82 005 : 1,18 119 : 1,19 970 : 1,19	253 5 : 219 5 : 283 1 : 312 5 : 274 8 : 282 5 : 272 5 : 195	211 195 271 273 273 273 241 233 170 103

Table 1.--Results of individual tests, the computed moduli of rigidity and shear strengths of the cores, the computed tensile and compressive strengths of the facings, and the stresses associated with the measured strains (continued)

th S					110
Stresses largest strains Thin: Thick facing: facing	(17) 100 p.s.1		257 273 273 264 266 266 147 148		182 202 202 212 154 154 147 332 165
Stresses associated largest str	(16) 100 8.1		246 :: 162 :: 16		205 :: 2277 :: 2886 :: 180 :: 3445 :: 3176 :: 1775 ::
	اه ا				** ** ** ** ** ** ** ** **
gest sins ad in ings Thick facing	(15) 10 ⁻⁵ m Per to		1,163 1,080 1,080 1,045 1,045 1,140 1,155 609		768 965 1,135 640 1,510 610 610 690
Largest strains measured in facings Thin : Thi scing :faci	(15) (14) (15) (16) 100 10 ⁻⁵ in. 10 ⁻⁵ in. 100 p.s.1. per in. per in p.s.1.		862 993 9940 995 893 893 893 893 8564	0.22	719 888 775 1,015
TT-	(24)	thick		thick	
tted load tted rrgest in red Thick	(13) 100 100 130	Inch		fach	
Computed stress in facting at load associated with largest strein measured Thin: Thick facing facing		core 0.627-inch thick		.495	45 48 45 48 48 48 49 49 49 49
etr 1 as 2 as 1 as 1 as	(12)	ore o	2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.	ore 0	
Shear stress in core at failure (computed)	(11) P.8.1.		50000000000000000000000000000000000000	omp c	
hear in co fai	P.8	овалс	55.5 52.5 57.0 58.3 96.3 99.7 178.8 167.8 171.9	cneyc	36.0 41.0 481.0 481.0 481.1 136.4 172.1 197.1 221.3
		per h	0 0 0 0 0 0 0	per h	00000
Bending stress in thin facing at at (com- puted)	(10)	K.: Da	278 251 201 201 201 201 201 201 201 201 201 20	k; pe	180 203 203 203 344 160 160 197 197
Type of:Bending railure: stress: noted :in thin facing at :failure :(com- : puted)	(6)	thic	Comp. None Compdodo. Shear Comp.	thic	None None CompdodoTension
fail no		-1nch		-Inch	None None Wrinkle Compdodotodoto.
Meximum load	(8) Pp.	0.024	72.30 68.00 74.30 76.00 125.50 130.00 233.00 224.00 228.00	0.024	27.50 45.00 50.50 64.50 64.50 141.50 96.80 175.00 229.50
		inge		Inge	10 to to
Modulus of rigidity (computed	(7) P.B.1.	e fac	33,700 6,500 6,500 13,400 6,700 6,700 6,700	e fac	2,400 7,000 7,000 9,900 16,400 11,400
		minat	WW0380W000	mirat	
т т т т т т т т т т т т т т т т т т т	(9)	84-cloth-laminate facinge 0.024-inch thick; paper honeycomb	0.013 121 .095 .153 .198 .276 .458 .245 .2042	68-cloth-laminate facings 0.024-inch thick; paper honeycomb core 0.495-inch thick	
9.1.		.BIII-c]	000000000	68-c3	00000000000
lope of load- deflec- tion curve	(5) :10 ⁻³ in	28 - Gla	34.500 16.200 16.200 16.200 16.200 16.200 17.570 17.570 17.570 17.570	- Gla	66.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000
	1 1	82		Group 29	** ** ** ** ** ** ** ** **
Thickness Slope of upper load: facing deflection tion	(E)	Group	0420. 0420. 0420. 0420. 0420. 0420. 0420. 0420.	Grou	0420. 0420. 0420. 0420. 0420. 0420. 0420. 0420.
					00000000000000000000000000000000000000
S. Dear	E ©		12.000 10.000 10.000 10.000 6.125 6.125 4,125 1,		12,000 10,000 10,000 10,000 6,125 7,
Eggs	(S)	2	000011 000001 000001 000001 000001 000001 000001 000001 000000		25.000 11.0000 10.000 10.0000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.0000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.0000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.0000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.0000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.0000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.0000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.0000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.0000 10.000 10.000 10.00000 10.00
я я я			WW44		······································
Specimen: number	(.		28132 281324 281324 28134 281316 281312 28132 28132 28132 28132 2813		29132 291324 29124 29124 29116 29112 29112 29112 29112 29112

Rept. No. 1505-A

Z M 88538 F

(Sheet 6 of 6)

Table 2.—Computed stresses in glass-fabric-laminate facings compared with those obtained from strains

Specimen	:	Thin	or top	f	acing			: Thic	-k	or bott		n facir	- lg	
group	;							: :Formula					:	Number of tests
*	?.s	:	P.s.i.	:	·• · · · · · · · · · · · · · · · · · ·	:	drifter till refrestre tri	P.s.i.		P.s.i.	1		•	
					Bals	a-w	ood cor	es						
1	: 23,	800:	21,500	:	0.903	:	12	: 7,000	:	8,300	:	1.186	1	12
2	: 28,	400 :	24,700	:	.869	:	10	: 14,500	•	14,700	:	1.013		10
3	: 20,	500 :	20,900	:	1.020	:	12	: 17,000	:	16,800	:	•988	:	12
-, 4	: 19,	800 :	18,300	:	•925	:	12	: 19,800	:	16,000	:	•803	:	12
21	: 21,	100:	21,800	:	1.032	:	10	: 21,100	:	20,900	:	•991	:	10
22	20,	500 :	23,200	:	1.131	:	10	20,500	:	21,200	:	1.032		10
23	: 16,	600:	19,900	:	1.199	:	8	: 16,600	:	17,900	:	1.078	3	8
Av.	: :	:	******	:	1.001	:	74	: :	:		;	1.010	:	74
			Ce11	u	lar cel	lul	ose -ac e	tate core	85					
24	: 16,	700:	17,300	:	1.036	:	8	: 16,700	:	16,200	:	•970	š	8
25	: 20,	600:	22,100	:	1.072	:	10	: 20,600	•	20,600	:	1,000	:	10
26	: 18,	200:	21,200	:	1.165	:	10	: 18,200	:	19,200	:	1.055	** .	10
$\mathbb{A}\mathbf{v}_{\bullet}$:	:	• • • • • • •	:	1.022	:	28	: :	:		:	1.011		28
					Paper	hon	eycomb	cores						
27	: 25,	400 :	24,300	:				: 25,400	:	21,800	:	. 858	:	10
28	: 24,	200 :	24,500	:	1.012	:	10	: 24,200	:	23,200	:	•959	:	10
29	: 22,	200 :	23,200	:	1.044	:	10	: 22,200	:	21,600	:	•973	*	10
Av.	1	:	•••••	:		:	30	: :	:		:	•930	:	30
	:			:		:		:	:		:		:	-

Table 3.--Computed stresses in aluminum facings compared with those obtained from stains

						_		_						
-	: n: T		_		_				Thi	ck or	bot	tom fac	ing	
group	:Formula	: 2	Strain		Ratio	:	Number f tests	:)	Formula :		2		:of	tests
									P.s.i.					
					Ва	als	a-wood	0	res					
5 6 7 8 8A 11 12 13 14 Av.	: 34,000 : 34,400 : 37,800	** ** ** ** **	32,500 40,800 41,300 45,300 34,600 34,600 39,400 36,400		1.069 .993 .991 1.031 1.018 1.006 1.042 .906		7	** ** ** ** ** ** **	19,800 : 25,100 : 41,100 : 33,900 : 32,800 : 34,000 : 32,200 : 38,900 : 40,200 :	28,10 41,40 37,60 37,00 35,00 36,90 41,40 39,90	: 00 : 00 : 00 : 00 : 00 : 00	1.120 1.032 1.109 1.129 1.029 1.145 1.064	: : : : : : :	12 12 7 11 10 9 7 10 5
			Cel:	lu	ılar ce	211	ulose-a	e.	tate core	s				
18	: 25,600	****	26,100 25,500 30,300 30,400		1.020 1.071 1.045 1.013	:	10 10 6	: : :	14,900 : 25,600 : 23,800 : 29,000 : 30,000 :	27,00 25,60 33,20 30,00	00:	1.054 1.076 1.144 1.000	•	8 10 10 6 8 42
					Paper	· h	oneycom	b (cores					
10 19 20 Av.	: 27,700	:	27,900 31,500	:	1.007 1.002	:	10 10	:	22,000 : 27,700 : 31,400 :	31,00 35,00	00:	1.120 1.115 1.133	:	12 10 10 32

Table 4.--Compressive strength of glass-fabric-laminate facings

Specimen group	:	Facing thickness	:	Core thickness	:	Ratio	:	Compressive strength		Number of tests
	1	Inch	:	Inch	:		i	P.s.i.		
				Balsa-woo	od co	res				
1 4 2 3 21 22 23 3		0.0060 .0100 .0105 .0170 .0240 .0240 .0250	** ** ** ** ** ** ** ** ** **	0.251 .750 .377 .504 .498 .374 .247	: : : : : : : : : : : : : : : : : : : :	41.8 75.0 35.9 29.6 20.8 15.6 10.3 20.2		19,400 19,800 20,000 20,300 22,400 24,900 19,300 26,400		6 12 4 3 6 6 7 4 47
19	4 * *	Col	1,,7	ar cellulos		atata com	·	-	•	••
2 ¹ 4 25 26 Av.	:	0.02 ¹ 4 .02 ¹ 4 .02 ¹ 4	:	0.498 .376 .249		state con	:	18,500 26,600 19,700 21,200		6 4 4
			,	Paper honey	rcomb	cores				
27 28 29 Av.		0.024 .024 .024		0.747 .627 .495	* * * * * * * * * * * * * * * * * * * *		: : : : : :	27,200 26,500 23,300 26,000	: : : : : : : : : : : : : : : : : : : :	8 7 5
		From Fores	t P	roducts Lat	orate	ory Repor	t	No. 1821		
	:	0.125	:	0 essive stre	1		:	20,800	:	6
	ta Carassa		npr :	essive stre	ngth) :		:			

Table 5.--Compressive strength of aluminum facings

Specimen group	:	Facing thickness	:	Core thickness	:	Ratio	:	-		umber f tests
	:	Inch	:	<u>Inch</u>	:		:	P.s.i.	:	
				Balsa-woo	ođ o	cores				61
12	:	0.032	6	0,390	3	12,2	:	50,000	;	1
13	:	.020	1	.257	4	12.8	1	51,000	ž	2 3 5 2 4
11	:	.032	2	•506	:	15.8	:	49,700	2	3
14	:	.012	2	.260	3	21.7	1	57,800	ģ.	5
8A	:	.012	š	.501	2	41.7	1	64,700	:	2
8		.012		•505	2	42.1		58,800	8	
7	:	.012		.744	4	62.0	1	58,300	:	5
5	:	.012	:	•757	4	63.1	12	58,400	ž	7
	:		:		4				:	
Av.			ä.		- 24		. :	57,100	1	29
		។								
	-	Cel]	lul	ar cellulo	se-	acetate co	re	5		
16		0.032	÷	0.370	33	11.6	:	33,700		14
17	:	.020	1	.244		12.2	-			1
15	:	.032	÷	496		15.5	:	35,200	:	4
18	•	.012	0	247		20.6		40,300	2	3
9	•	.012	÷	502	100	41.8	1	52,100		4
, ,	•	• • • • • • • • • • • • • • • • • • • •		• > 0 =	20			<i>y</i> = <i>y</i> =		
Av.	: - :		i.					40,700	:	16
114	• •			_	***		*	, .		
				Paper hone	yco	mb cores				
20	126	0.032		0.634	:	19.8	1.5	44,700	1	<u>)</u> 4 =
19		.032	3	•755	:	23.6	323	40,100	:	4
10		.012	â	.746	:	62.1		60,600	:	3
40			3	-1.0	:				2	
Av.	12.		्र .:-		-:-			47,400	9	11
* *								,		
		From Fores	st	Products L	abo	ratory Rep	or	t No. 1817		
	÷	0.032			-:-		:	73,000	i.,	
		.012	5° 1				:	54,000		
	•	• U-L-1-	• •		7 7 44	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		J - J		

Table 6.--Tensile strength of glass-fabric-laminate facings on balsa cores

Specimen group	:	Facing thickness		Core thickness	: Tensile : strength		mber tests
	:	Inch		Inch	P.s.i.	. ,	
1	:	0.0060	:	0.251	: : 35,800		4
2	:	.0105	3	•337	: : 44,100	:	4
Å v •	1		:		. 40,000	: :	8
	F	rom Forest	Prod	ucts Laborato	ry Report No.	1821	
	9	0.125	:	0	: 39 ,3 00	ŧ	6
	:						

Table 7.--Tensile strength of aluminum facings

Specimen group	: Facing : thickness	:	Core thickness	: s :	Tensile strength		ber tests
	Inch	:	Inch		P.s.i.		
8	0.012	•	0.505	* •	65,600	₹ ¥	1
8.4	.012	:	.501	•	65,000		1
Av.	:	:		:	65,300	:	2
	From Nationa		ory Comm			autics	
					68,400	•	2
	: 0.032	:	0	8		•	_
	•	:	0		(Longitu	dinal)	
	0.032 .032	•	0		(Longitue 65,800	:	2
	•	•			(Longitu	:	_

```
:Average modulus of
Spec -: Facing : Core : Average shear strength
                                   : rigidity
imen: thickness: thick-:
           group:
              :With-:Num-: Of :Num-:Shear:Ratio:Bend-:Num-:Shear :Ratio
             (1): (2): (3): (4): (5): (6): (7): (8): (9): (10): (11): (12): (13): (14)
: Inch : Inch : Inch : P.s.i.: : P.s.i.: : P.s.i.: : P.s.i.: : P.s.i.:
                   Aluminum facings
11 :0.032:....:0.506:201.5: 4 :233.0: 2 :....:13,000: 4 :....
12 : .032: ....: .390:224.0: 4 :253.5: 2 :....:12,400: 3 :....
13 : .020: .... .275:200.4; 2:215.8; 2:...:11,200: 4:.....
14 : .012: .... .260: .... 0:187.6; 2:...:15,200: 2:....
Glass-fabric-laminate facings
21 : .024:....: .498:....: 0 :185.6: 2 :....: 8,800: 2 :.....
22 : .024: .... 374: .... 0 :164.6: 2 :.... 7,800: 2 :.... 23 : .024: .... 274: .... 0 :249.2: 2 :.... 8,300: 2 :....
       ...: 8,300: ....
```

Table 9.--Shear strength and modulus of rigidity of cellular cellulose-acetate cores

imen :		: Core : Average shear strength : Average modulus of :thick-: : rigidity :ness :
group	g –	: :With-:Num-: Of :Num-:Shear:RaticeBend-:Num-:Shear :Ratio : :out :ber :spec.:ber :tests: :ing :ber :tests:
-		: :spec.: of : 8 : of : : tests : of : : : 8 :tests: : : : : : : : : : : : : : : : : : :
(1)	(2):(3)	: (4): (5): (6): (7): (8): (9): (10): (11): (12): (13): (14)
;	Inch : Inch	:Inch :P.s.i.: :P.s.i.: :P.s.i.: :P.s.i.:
		Aluminum facings
		.:0.496:143.8: 4 :173.0: 2 :: 7,400: 4 :
17	.020:	: .244:141.2: 2:204.2: 2:: 6,700: 4: : .247: 70.1: 4:149.2: 1:: 3,400: 4:
9	.012:0.031	.502: 95.4: 4:112.6: 2:128:1.34:4,800: 4:5,100:1.06
Av.	· · · · · · · · · · · · · · · · · · ·	:: 5,000: 23 :
		Glass-fabric-laminate facings
		.: .498:: 0 :140.0: 2 :: 7,000: 2 :
25 : 26 :		.: .376:121.9: 2 :153.5: 2 :: 8,000: 2 : .: .249:132.8: 2 :162.0: 2 :: 7,700: 2 :
Av.	: : * * * * * : * * * * * * * * * * * *	7,600: 6

Table 10. -- Shear strength and modulus of rigidity of paner honeycomb cores

men:		: : :Core : :thick-:	Average shea	r strength	: Average modulus o	f
roup:		: :With-: : out : : spec.:	ber :spec.:be	r:tests:		Ratio
(1):	(2): (3)	: (4) : (5)	(6): (7):(8	3): (9):(10): (11) :(12): (13)	:(14)
: :	Inch Inch	:Inch :P.s.i.	P.s.i.	:P.s.i.:	: <u>P.s.i.</u> : : <u>P.s.i</u>	<u>.</u> :
			Aluminum faci	ngs		
20 : 10 :	.012:0.030	.: .634:171.0 : .746:184.0	4 :201.6: 4 :249.4:	2 : 226 :1.2	.: 9,100: 4 :	00:1.78
		Glass	-fabric-lamine	ite facings	* +1	
28 : 29 :	.024:	: .627: : .495:	0 :173.4: 0 :209.2: : : :198.6:	2:	.: 7,300: 3 : .:12,800: 2 : .: 9,800: 7 :	
	19 : 10 : 10 : 27 : 28 : 29 : 29	(1) : (2) : (3) : Inch : Inch 19 : 0.032: 20 : .032: 10 : .012: 0.036 Av 27 : .024: 28 : .024: 29 : .024:	men thickness thick- roup: ness	men: thickness: thick-: roup: ness	men: thickness: thick: roup:	nen: thickness: thick: roup: With:Num: Of:Num:Shear:Ratio:Bend::Num:Shear: Out:ber:spec.ber:tests::ing:ber:tests: Spec.of:8:of:tests:of:tests: Stests:tests:tests:tests:tests: Out:ber:spec.ber:tests:ing:ber:tests: Out:ber:spec.ber:tests:ing:ber:tests: Out:ber:spec.ber:tests:ing:ber:tests: Out:ber:spec.ber:tests:ing:ber:tests: Out:ber:spec.ber:tests:ing:ber:tests:ing:ber:tests: Out:ber:spec.ber:tests:ing:ber:tests:ing:ber:tests:ing:ber:tests: Out:ber:spec.ber:tests:ing:ber:tests:ing:ber:tests:ing:ber:tests:ing:ber:tests:ing:ber:tests:ing:ber:tests: Out:ber:spec.ber:tests:ing:ber:tests:ing

	term spo	riga-r gnn	or cores	Cellular cellulose- acetate cores			
Specimen: Modulus of	:Specimen	: Modu	lus of	(Checimon	Modu	 lue of	
: Beam : Shea : tests : test	r :	: Beam : tests	: Shear : tests :	:	Beam tests	: Shear	
(1) (2) (3)	: (4)	; (5)					
: <u>P.s.1.</u> : <u>P.s.</u>	1.	P.8.1.	P.B.1.	:	P.s.1,	P.B.1	
Cores 3/16-inch thick	: Corea 3	/16-inch	thick	: Cores 3	8-inch	thick	
h ² from 0.064 to 0.707	$\eta \frac{b^2}{b^2}$	from 0.2	↓1 to	η <u>h²</u>	rom 0.3	03 to	
140° 1400 : 14 400 : 13 54	1 1A9550	2.950	- 4.790	: 3ABSO :	7.950	: 5.510	
1ABSO : 14,400 : 13,54	0 :	4,105	3,640	: ******	5,210	1,087	
11,210 : 11,57	0 : 1ABS45	: 2,855	: 3,320	:	2,575	: 6,930	
: 11,210 : 11,57 1ABS30 : 14,700 : 15,55 : 14,600 : 11,98 1ABS45 : 8,500 : 12,54 : 10,900 : 14,85 1ABB30 : 16,400 : 16,89 : 13,400 : 24,68	O : LAHRO	: 4,390	: 1,620	: 3ABS30	3,645	: 4,230 · 4 710	
14,600 : 11,90 1ABS45 : 8,500 : 12,34	0 : 1AER90	: 1,260	: 5,970	: 3ABS45	2,445	: 4,240	
10,900 : 14,85	0 :	1 3,025	: 3,320	TATTO	5,645	: 4,190	
1ABRO : 16,400 : 16,89	Ο : Ο :ΑΨ	: 5.597	: 3,365	: SAHRO	2,435	: 5,760	
1ABR30 : 8,760 : 13,04	O :Ratio		0.99	: 3AHR30	4,095	: 4,780	
1AERO : 16,400 : 16,89 : 13,400 : 24,68 1AER30 : 8,760 : 13,04 : 11,900 : 12,98 1AER60 : 13,200 : 15,04 : 10,900 : 25,90	0 : Cores 5	/16-inch	thick	: 3AHR60	: 2,410 : 5,735	: 5,900	
: 10,900 : 25,90	0 : 0				2,760	: 4,070	
1ABR90 : 11,300 : 14,40 : 13,300 : 20,96	0 : q h ²	from 0.5 1.622	83 to	: MAHR90	2,810	: 7,180 : 2,720	
Av 12,370 : 15,97	O : 2AH90	: 3,120	: 5.300	:Av	3,872	: 4,520	
Ratio,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	: 2ABS15	: 2,105	: 3.450	:Ratio		* 1.11	
Cores 5/16-inch thick	:	: 4,070	: 2,710				
Cores $5/16$ -inch thick $\eta \frac{h^2}{4b^2}$ from 0.013 to 0.4 2ABSO : 18,100 : 20,13	: 2ABRO	: 3,795	2,510	:			
η h 2 from 0.013 to 0.4	33 : 2AHR30	: 3,585	: 4,320	1			
46	1	: 3,060	h hho	:			
2ABSO : 18,100 : 20,13 : 13,700 : 34,50	0 : 2AER60	: 4,115	: 4,500	į			
2ABS15 : 14.900 : 19.80	0 : 2AER90	: 4,475	: 3,860	1			
· 13 400 · 15.60	Ο :	8		1			
2ABS30 : 11,500 : 24,70 : 11,800 : 17,55	O :Ratio	2,201	1.32			×,	
2ABS45 : 10,900 : 14,92	0 :			:			
: 10,600 : 18,20 : 15,500 : 15,40	O :Av. rati	.0	* T*T(*1		
2ABRO : 15,500 : 15,40 : 11,800 : 13,50 2ABR30 : 14,000 : 23,82	io :			3			
2ABR30 : 14,000 : 23,82	90 :			1			
2ABR60 : 22,400 : 13,00	80 :			İ			
: 10,700 : 28,50	00 :			á			
2ABR90 : 11,600 : 18,10 : 15,400 : 19,25)O :	200		Ē			
	4			ļ			
Av 13,570 : 19,63 Ratio 1.45	30 :			1			
Cores 3/8-inch thick	1				,		
$\eta \frac{h^2}{4b^2}$ from 0.153 to 0.9) htt						
3ABS0 : 10,900 : 13,20	-			á.			
: 13,400 : 16,5	10			3			
3ABS15 : 10,200 : 19,30 : 12,500 : 15,60	+0 :			2 2			
3ABS30 : 12,800 : 9,8	50			i i			
: 10,000 : 11,30 3ABS45 : 13,300 : 13,00				:			
: 10,500 : 19,4	50 :			-			
3ABRO : 19,300 : 28,8	00 :			š			
3ABR30 : 12,000 : 13,70	50 :						
: 12,600 : 16,4	00 :						
3ABR60 : 12,600 : 16,70 : 11,400 : 16,40	00 : 30 :						
3ABR90 : 11,600 : 8,9	10 :			ì			
: 12,300 : 14,3				:			
	· ·			1			
Av 12,650 : 15,69 Ratio 1.24	90 :			1			

Rept. No. 1505-A

Table 12.--Moduli of rigidity of specimen having 0.032-inch aluminum facings and a 0.489-inch cellular cellulose-acetate core

Distance of		Mod	uli of rigidi	Lty	
mirrors from central load		From mi	From shear tests		
	Right end		values average		
In.	<u>P.s.i.</u>	P.s.i.	P.s.i.	P.s.i.	P.s.i. 3,100
3	3,930	3,190	0.975	0.792	3,250
6	4,525	4,410	1.123	1.094	3,200
9	: 4,060	4,060	1.008	1.008	3,200
Av.	4,0	: 30	:::: : •••••••••:::		3,200

Table 13.--Moduli of rigidity of specimen having 0.032-inch aluminum facings and a 0.505 end-grain balsa-wood core

Distance of mirrors from	Moduli of rigidity								
central load	:	From mi	From shear tests						
	: Right end	Left end							
In.	P.s.i.	P.s.1.	P.s.i.	P.s.i.	P.s.i.				
2	21,500	24,800	0,791	0.912	30,300				
14	23,200	31,500	.853	1.158	31,700				
6	30,600	17,500	1.125	.644	29,400				
8	45,000	23,400	1.655	.860	: 25,100				
Av.	27,20	0	********	:	29,100				

_		-				
	(1-7-8)	(8-8-1)	8/-	1-7-12	1-8-12	
.36 "	1-7-36	1-8-36	8/-1-1	(1-7-6)	(9-8-1)	CUTS AND WASTE
	-/	_/	1-8-18	1-7-24	/-B-24	
	(1-7-10)	(1-8-10)	'-/	-/	-/	1.
_ 0				0		

Figure 1. -- Cutting diagram for groups 1 to 10.

Z M 88479 F

Figure 2.--Cutting diagram for groups 11 to 29.

Figure 3. -- Sketch of test specimen.

Z M 88481 F

Figure 4.--Stress-strain curves of 24ST sheet aluminum (from figure 1, N.A.C.A. Technical Note No. 1512).

Figure 5.--Stress-strain curve of 112-114 glass-cloth laminate, cross-laminated (from Forest Products Laboratory Report No. 1821 data).

Figure 6.--Illustration of test apparatus for two supplementary tests.

ZM 88484 F

Figure 7.--Element of sandwich strip.