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ABSTRACT

Recovery patterns of benthic communities in seven small streams impacted t o

varying degrees by the eruption of Mt . St . Helens were examined in winte r

1981-82, particularly in relation to habitat constraints . Overall abundance an d

diversity of the communities were low, and instability of channel banks an d

bottom appears to severely limit re-establishment of biota . Communities appea r

to be undergoing cycles of establishment and denudation in concert with change s

in landscape geomorphology . Disturbance events of varying frequencies were als o

simulated in experimental stream channels to more closely evaluate the respons e

of benthic communities to periodic, non-catastrophic disturbances and to compare

this with tie response observed to catastrophic perturbation associated wit h

volcanic eruption . Results of simulations suggest that non-catastrophi c

disturances may not play a major role in determining stream community ove r

ecological time because the predictability of these events may have enable d

evolution in species of adaptive responses to cope with disturbance .

Catastrophes appear to have different consequences on stream communities from

other disturbances, and should be distinguished from them .

t



FOREWORD

The Water Resources Research Institute, located on the Oregon State _
.

University campus, serves the St:a.te of Oregon . The, Institute foters ,

encourages andrfa•cilitates water resources research and education inyo .l .viig al l

aspects of the quality and quantity of water available for beneficial use . The

Institute administers and coordinates statewide and regional progpmms o f

multidisciplinary research in water and related land resources . The Institute

provides a necessary communications and coordination link between . the'agencies

of local, state and federal government, as well as the private sector, and-Me

- broad research community , at universities in the state on matters of water -

related research . The Institute also coordinates the .inter-disciplinary program

of graduate education in water resources at Oregon State University .

It is Institute policy to wake available the results of significant water= -

related research conducted in Oregon's universities and colleges . The Instirtut e

neither endorses nor rejects the findings of the authors of such research . It

does recommend careful consideration of the accumulated facts by those concerned -

with the solution of water-related problems .
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I . INTRODUCTIO N

Life cycles of organisms are adapted to the stability of the habitat i n

which they occur, and organisms may evolve a dependency on the disturbance `

regime that regulates habitat persistence . When the ratio of disturbanc e

interval to generation time becomes too large, or when disturbances are extreme ,

organisms are not capable of an adaptive response and cannot persist in, an are a

(Paine 1979) . For this reason, Harper (1977) suggests that catastrophes (large ,

extreme events destroying large portions of the population) should b e

distinguished from disasters (more frequent, locally disruptive influences) eve n

though they form a continuum, because of the different consequences these event s

have on community structure .

The effects on the biota and habitat of small streams near Mt . St . Helen s

from the May 1980 eruption were certainly of catastrophic proportion . Impact s

on stream channels associated with their eruption varied from light to hep y

tephra deposits to pyroclastic flows, mudflows, flooding, and landslides . Th e

effects realized by the biota included tissue abrasion, injury by impact wit h

rock, smothering, burial, and incineration .

Rates-and patterns of recovery of the impacted stream commumities ar e

dependent on the type and intensity of the impact received, and on its spatia l

scale . The areal extent of the damage affects the distance from a source o f

potential colonists, and this may determine the life history and behaviora l

attributes of the initial colonizing species . The type and intensity of th e

impact affects the extent of mortality in the community from the disturbance ,

and may also affect susceptibility of the stream channels to disruption fro m

further perturbation .

Rates of recovery will vary inversely with disturbance intensity, an d

recovery will be faster in streams with refugia than in streams in which al l

internal sources of colonists were destroyed . Return to pre-eruption state s

should occur most quickly in streams in which damage was slight and patchy . Th e

mechanisms and course of succession in this situation may be similar to thos e

occurring an a small spatial scale in 'typical' streams experiencing patchy

disturbance from periodic, non-catastrophic floods .

1



Little is known, however, of the role non-catastrophic disturbances play i n

determining stream community structure . For this reason, evaluation o f

recovery to prior equilibria) conditions is difficult . Periodic disturbances

- may prevent the attainment of local equilibria, and the species composition of a

stream community may be continually changing .

The objectives of this study were to examine recovery of benthi c

communities in small streams impacted to varying degrees by the eruption of Mt .

St . Helens, particularly in relation to habitat constraints, and to compare thi s

with the response of benthic communities to periodic, non-catastrophi c

disturbances . The latter was evaluated by simulating disturbance events i n

artificial outdoor channels and monitoring colonization patterns .of

invertebrates and algae . Use of the Weyerhaeuser's Kalama Springs researc h

facility for this purpose enabled us to examine response of a species sourc e

pool that is similar to that potentially available for recolonization o f

streams impacted by the eruption of Mt . St .-Helens .



II . METHODS

	

•

Mt . ' St . Helens:,

Sites :

Seven sites, in small streams impacted to varying degrees byavalanc .he-s acme( '

mudflows from the May 1980 and subsequent eruptions of Mt . St . He]•erns, were

selected for biological sampling . These were chosen to coincide with sites

	

.,

established by the U .S . Geological Surve y ' s Cascades Volcano Observatory and the .

U .S . Forest Service for studies of erosion and sediment routing . Site locati-€is.

are shown in Figure 1 and a description of impacts experienced and physica l

characteristics of the streams is listed in Table 1 . One of the sites, on th e

upper Kalama River, received only minor mudflow from the eruption, and it wa s

selected to serve as a control . Biological sampling and habitat swrveys- wer e

conducted one to two times at each site from late October 1981 to early,Febru a .ry~

1982 . Winter access to the sites was limited'to helicopter travel, an d

unfavorable flying weather prevented more frequent sampling . Additional data

from Ape Canyon are provided from short-term intensive "Pulse" studies (funded _

by the National Science Foundation and the U .S . Forest Service) during the '

summers of 1980 and 1981, and from subsequent studies of N. Anderson, and C .

Hawkins (Oregon State University) .

Biological Sampling :

Benthic invertebrates were sampled with a modified Hess, sampler . Three t o

six samples were taken at each site and the substrate type associated•with eac h

sample was noted. Qualitative samples of the invertebrates attached to larg e

woody debris were collected . Samples were preserved in 70% alcabQl, and sorted -

in the lab. Invertebrate biomass was estimated from length-weight regression s

(Rogers et al . 1976, K.W. Cummins, unpubl . data) . Standing crop of chlorophyll=_

a and phaeophytin was estimated from rock scrapings to provide an indexof al l

biomass and photosynthetic capacity of the stream sites . Twenty rocks, eac h

8-12 cm in diameter, were collected from each site, and chlorophyll levels from

these were measured by acetone extraction (Wetzel and Likens 4.9{7) .
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Habitat . Characterization :

Ten line transects were established at b-m meter intervals at each site .

.At each transect3 width of the wetted channel, average depth, water velocity

(measured at 0.6 water depth), and substrate type were recorded . Substrate '

categories were broken down into the following : sand (< 1cm), fine gravel (1-2 '

cm), coarse gravel (3-4 cm), pebble (5-8 cm), rubble (9-16 cm), cobble (17-3 2

cm), small boulder (33-64 cm), large. boulder (> 64 cm) and bedrock . Pebbl e

counts (measurement of the length of the longest linear dimension of 10 0

randomly selected sediment particles) were taken at each site to-Provide

estimates of mean particle size . Cherrn.el stability of each site • was evaluated

with the Pfankuch rating scheme (1975, Appendix 1) . Drainage areas, eleva•tion , , '

and stream length of the sites were estimated from U .S .G .S . topographic maps .

Stream gradients were measured with a clinometer .

Kalama Springs

Site description :

Three outdoor artificial streams, built and owned by the WeyePir use r

Company, were-used to experimentally investigate the response of stream bentho s

to periodic, non-catastrophic disturbance . The streams are fed by Kalama

Springs, a cold-water spring draining into the Kalama•kiver, in Co►1litz Co . ,

Washington . The three streams are designed as a series of alternating pools ah .d

riffles . The riffles are 6-10 cm deep and 1-2 rn wide, in lengths varying from

8-16 m . The pools are 30-50 cm deep . Approximately 10% of the flow from Kalama

Springs is diverted into a series ;of ponds above the streams . Manipulation of

wiers between the ponds allows .a constant flow to be maintained in each streams,

Substrate of the channels consists of coarse gravel ., 2-4 cm in diameter, whic h

overlays a fine pumice base . Water temperature is 5-7°C throughout the year .

The streams are open, with no riparian canopy .

6



Experimental manipulations :

Disturbance events were simulated in two of the three channels by releasin g

a flood of water from the holding ponds above the channels and by agitating th e

substrate with rakes . In channel 3, disturbances were simulated once every 2

weeks, and in channel 1, once a month . Channel 2 was left unperturbed . Benthi c

invertebrates and algae were monitored biweekly for 3 months following tMe

initial perturbations in the first three riffles below the .holding pond of each

stream. Invertebrates were sampled with a modified Hess sampler, and 8-16 tile s

were placed in each riffle to investigate algal colonization patterns . Thi s

experiment was conducted from June to September , 1982.

7



III . RESULTS

Recovery Patterns In Streams Impacted By Mt . St . Helen s

Habitat constraints :

Although a survey of habitat parameters based on one or two sampling date s

can be misleading, the data provide some indication of constraints imposed b y

the physical setting that may limit the colonization and persistence of benthi c

invertebrate and periphyton populations .

Measurement of such properties as stream gradient and mean channel widt h

and depth provided a means of scaling the study areas so that comparisons coul d

be made . Values that were measured are all fairly similar among the site s

surveyed (Table 2), indicating that comparisons among sites are appropriate .

Water temperatures reflect the time of day and ambient temperatures at sites o n

the dates at which these were measured, and values are included only to indicat e

that these sites were not thermally affected at this time from volcani c

activity . Discharge values that were estimated are not abnormally high, and

flows at this time of year were probably stable . Peak flows in streams at thes e

elevations generally occur in late sping - early summer and late fall - earl y

winter . Unit stream power, the rate of doing work of a stream per unit o f

width, equals '±1_, where p = density of water, g = acceleration of gravity ,
w

Q = discharge, s = slope gradient, and w = channel width (Leopold et al . 1964) .

Channel widths of the impacted sites were somewhat greater than width s

typical of streams of low (first to third) order . This sugggests that th e

channel banks of the sites, except where they are controlled locally by bedrock ,

are being continually eroded and re-worked . Because rooted riparian vegetatio n

and large organic debris are absent from most of the sites, the stabilizin g

influence of these elements on channel morphology is likewise absent .

Pfankuch's (1975) rating scheme was used to evaluate channel stability of

the impacted streams (Appendix 1) . The value of this approach is that ,

particularly in sites experiencing a variety of impacts associated with th e

eruption, many different attributes of the channel banks and bottom ar e

considered, and are scaled relatively in importance to sediment yield . When

making an evaluation, one is less likely to be influenced by a single obviou s

destabilizing factor . Mass wasting, for instance, appears overwhelming in mos t

streams surrounding Mt . St . Helens, but the presence in some sites of large ,

angular rocks and woody debris provided stabilizing influences .

9
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Channel stability of the impacted sites was generally evaluated as poo r

(Table 3), and ranking of scores reflect reasonably well .the type and magnitud e

of impact experienced . Carbonate Springs received a very poor rating . Stream

power (indicating its potential to move sediments) of the site is high (Table 2) ;

it is a very active, braided channel cutting a floodplain in the avalanche zon e

of Mt . St . Helens . Lower Maratta Creek received the worst 'score . It, too, i s

located in the avalanche zone and received blast deposits . Upper Maratta ,

0 .5 km upstream from the lower site, received a better stability rating . I t

received blast deposits but lies just outside of the landsl=ide area .

Differences in rating of the two sites largely reflect difference•,$ in channel

capacity, especially indexed by width to depth ratios, and in-cutting of th e

lower banks . The bank rock content of bath sites i& fairly high, but mu .chr more

mud is present in the lower site .

The Pfankuch scheme does, however, possess limitations, particularly i n

relation to biological activity . It was developed for use in the Rock y

Mountains, and was designed to predict horn likely a channel is to yield'sedimen t

at high flows . The scheme is of ecological importance inasmuch as unstabl e

sediments are of ecological importance . Considerable biological activity ca n

occur, however, in unstable streams .

The major limitation of the Pfankuch scheme for evaluation of channe l

stability in streams of the Pacific Northwest, and perhaps the entire country ,

is the inadequate emphasis it places on the role of wood debris . The pretence

of wood debris on slopes is rated inn the scheme as a destabilizing facto r

because it increases sediment yields when it is moved . The role large woody

debris plays as a major .structural feature within stream channels (Ke1 .le and

Swanson 1979, Swanson and Lienkaemper 1978) is not considered . Wood debri s

creates a stepped gradient and although it increases stream power locally ove r

channel drops, it decreases stream power throughout a reach ; this lend s

stability to the channel . The 'control site' surveyed on the upper Kalama Rive r

received a stability rating of good . Even though the site has a high st•rea .m

power (Table 2), the presence of considerable in-channel debris and of roote d

'riparian vegetation provides .a geomorphic control that appears to override it s

capacity to move sediments, and the site stability should probably be rated_, .a s

excellent .

'11
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Table 3 . Channel stability evaluation of sites near Mt . St . Helens, winter 1981-82 .

Item Rated Ape Canyon Upper Muddy Upper Maratta Lower Maratta Carbonate Spgs . Swift Kalam a

UPPER BANK S

Slope 6 6 8 8 6 6 2

Mass Wasting 12 9 12 12 12 12 6

Debris Ja m
Potential 2 2 6 8 2 8 6

Vegetatio n
cover 12 9 12 12 12 6 3

LOWER BANK S

Channe l
capacity • 2 3 2 4 4 4 2

Bank Roc k
content 8 4 4 4 8 8 2

'Obstruction 4 4 8 8 2 6 4

Cutting 12 8 12 16 16 4 4

Deposition 12 6 11 12 16 12 4

BOTTO M

Ro c.k
_

	

Angularity 2 2 1 1 2 1 1

Brightness 2 2 1 1 2 1 1

Consolidation 6 4 6 6 6 4 4

Bottom Size
Distrib . 16 16 16 16 16 16 8

Scouring ,
Deposition 24 24 24 24 24 20 1 2

Moss and Algae 4 3 4 4 3 4 2

(Mood Debris) + - + + - ++ + +

TOTAL SCORE 124 102 127 136 131 112 6 1

(Poor) (Fair) (Poor) (Poor) (Poor) (Fair) (Good,

4



The presence in the channel bottom of large angular rocks, accordin g . to the

Pfankuch evaluation, is considered to be beneficial as these are not easil y

moved . Small, rounded rocks are destabilizing . More critical, , perhaps, from

a biological perspective, is the presence in the substrate of a divers e

assortment of sediment sizes . Because they can interlock, sediments are

probably less likely to shift if they are of different sizes . Substrat e

heterogeneity also prbvides habitat complexity, which is positively correlate d

with biological diversity (Gorman and Karr 1978) . As another approach t o

channel stability evaluation, we plotted the coefficient of variation agains t

mean sediment size (Figure 2) . Large sediment sizes with a small coefficient o f

variation may provide substrate stability, but generally large particle siz e

with a large coefficient of variation is indicative of good substrate stability ,

and small particle sizes with a small coefficient of variation indicate les s

stability . Evaluation of the stability of the study sites ; with the exception

of two outliers, corresponds fairly well with the Pfankuch rating . Uppe r

Maratta, because of its large sediment size, and Lower Maratta, because of th e

large CV, were included among the more stable sites (Figure 2) . The stream

power of these sites may be too low to affect sediment distribution .

Biological Properties :

Overall abundance and diversity of winter assemblages of benthi c

invertebrates in Kalama River relative to the other sites (Table 4) indicat e

that it serves as a reasonable control site .

Composition of the invertebrate fauna present at each site suggests habita t :

conditions and the nature of the food resource base . In Carbonate Springs, onl y

burrowing and/or case-building midges were present (Appendix 2) . This indicates

that the most likely food resource is fine particulate organic matter (FPOM) ,

which is probably trapped in sediment interstices or in the periphyton film .

The absence of taxa that require stable substrate for attachment, such a s

filter-feeding collectors or large mayfly or caddisfly scrapers, reflect s

substrate instability . That habitat instability may override food resource

	

-

limitations is suggested by the presence in Carbonate Springs of a fairly hig h

standing crop of chlorophyll-a (Table 4) . The only site in which scrapers were

collected is Kalama River, which exhibited slightly lower chlorophyll levels .

Shredders were also abundant and diverse at Kalama River . This reflect s

availability of allochthonous coarse particulate organic matter (CPOM) from th e

13



Fig. 2 .

	

Substrate stability indexed by mean particle size and the coefficien t

of variation (CV) . CV = 100 s x

X

Dashed line represents a proposed boundary separating stabl e

and unstable habitats .
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Maotoinvertebrates Channe l
Stability

Good

hood

++

Density Richness

1 4Ka lams 2 6
6. Swift 29 3 Fair ++
3. U. Maratta 7 2 Poor +
4 . L. Maratta 1 Poor +
2 . U. Muddy 478 7 Fai r
I . Ape 14 4 Poor +
5 . Carbonate Sag, . 9' 7 Poor
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undisturbed riparian zone . A nemourid stonefly was the only shredder found a t

any of the impacted sites . Its food resource probably consists of CPOM burie d

during the eruption and periodically re-excavated as the sediments move about .

The dominant functional group of invertebrates at impacted sites is coile4tors .

Their food source is also derived from buried organic matter as well as fro m

sloughed periphyton . Predators were found only at sites that supported 'a fairl y

high richness of other invertebrate taxa . Because predators are typicall y

long-lived, witp life cycles of one or more years, habitat disruption may als o

prevent their re-establishment in ,impacted stream reaches . The life cycles o f

the dominant taxa (midges) found in the impacted streams are relatively shorter ,

with two or more generations per year .

Apart from burrowing, another strategy enabling persistence in unstabl e

sediments is exhibited by Baetis mayflies, which actively' swim about and utilize

FPOM . This was the only species collected at Upper Maratta . Baetis spp . als o

occurred in Ape Canyon and Upper Muddy .

Taxonomic richness and abundance of the invertebrate fauna appear to b e

fairly closely linked with the evaluation of channel stability of the study

sites (Figure 2) . An exception to this relationship is exhibited by Upper

	

'

Muddy, which has poor stability and a high invertebrate standing crop . No

explanation is readily apparent for this anomaly . Perhaps an unidentifie d

refugia exists nearby that provides a constant source of colonists .

Changes in density (Figure .3) and in taxonomic'rich'ness (Figure 4) o f

invertebrates in Ape Canyon since the 1980 eruption suggest that re -

establishment of fauna is a temporary phenomenon, and that a succession o f

stable and non-stable cycles may occur in any given reach until the overal l

landscape instability is lessened . Complete recovery of stream communite s

affected by the eruption may be on a time scale of up to 1 02 years- or longer.

Experimental Simulations of Disturbanc e

Benthic Invertebrates :

Two general trends were observed in the abundance along channels of taxa

that appeared consistently in samples . One trend is that the abundance of some

taxa was much greater at the termination of the experiment in the unperturbe d

channel (Channel II) than in the two disturbed channels (Figure 5a) . This trend

was exhibited by a number of taxa, occurring in different functional groups .
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Macroinvertebrate density in Ape Canyon since the eruption (May

1980) of Mt. St . Helens . Except for sample at 19 months, data are

from Anderson and Hawkins (unpubl .) .
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Abundance of Taxa (Control > Disturbed )
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Abundance of macroinvertebrate taxa at Kalama Springs three month s

after disturbance simulations, (groups for which control >

disturbed) . Channels are ordered along an axis of increasin g

disturbance frequency . Co = collector, Sh = shredder, Gr = graze r

(scraper), Pr = predator .
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Abundance of Taxa (Control > Mud > Most Disturbed )
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Fig . 5b . Abundance of macroinvertebrate taxa at Kalama Springs three month s

after disturbance simulations, (groups for which control > mod >

disturbed) . Channels are ordered along an axis of increasin g

disturbance frequency . Co = collector, Sh = shredder, Gr = graze r

(scraper), Pr = predator .
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Three of these taxa, the snail Helicosoma, Ostracods ; and the planari a

Orotophela, were very abundant in the unperturbed channel, attaining densities .

of 1800-6000 individuals m- 2 . In some instances, the abundances of taxa wer e

also greater in the moderately perturbed channel (I) than in the frequently

	

.

perturbed ore (III) (Figure 5b) . Included here are the baetid .mayflies an d

mites that are among the initial colonists- of heavily impacted streams- near~ .Mt . _

St . Helens .

A second trend was exhibited by a few taxa in which abuncia'rce was greate r

at the termination of the experiment in one or both of the disturbed channel s

than in the unperturbed channel (Figure 5c) . This pattern may represent a

	

• .

release in numbers, either from the elimination of competitors o r ,predators, o r

an increase in resource availability that occurs in the presence o f

non-catastrophic disturbance events . This trend occurred among the orthoclad

midges, which largely dominated the community of the disturbed channels ,

reaching densities of up to 15,000 individuals per m2 , but it is statisticall y

significant only for biomass (p < .05, ANUVA) and not for density . An

unidentified orthoclad species occurred in the most frequently perturbed channe l

that was fewer in number but 'much larger in size than the speci-es' inhabitin g

other channels, and this accounts for the greater biomass observed in thi s

channel . The clam Pisidiurnnever occurred in any sample taken from the

unperturbed channel .

Total density, biomass, and diversity, of the invertebrate assemblages were -

similar enough among channels prior to disturbance simulations to, make . u s

confident that the differences we observed following .distu.rbance were

attributable to the disturbance regime (Table 5) . Both density and 'diversity o f

the assemblages after the initiation of the disturbance events were higher i n

the channel never perturbed, and were somewhat greater in the channel mor e

frequently perturbed, than in the more moderately perturbed . The diversity in

the moderately perturbed channel (I) declined after one month of disturbanc e

simulations, suggesting that one might observe in this channel a hyperboli c

curve of species diversity over time, ,similar to that observed in othe r

successional communities (Connell and'Slatyer 1977) . A decline in di .rsity,•- •

over time was not observed in channel III, probably because - distulbence s

occurred too frequently to allow the colonization of competitiNily superio r

taxa . Biomass following disturbance simulations was -remerkably -4imilar among

22
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Table 5. Community composition parameters of benthic invertebrates prior t o
and after disturbance simulations at Kalama Springs . Values represent ,

means of six samples within each channel .

Channe l

II

	

I

	

II I

Before Disturbance

	

Increasing Disturbance +

Density/0 .1 m2

	

3043

	

2441

	

3464

Biomass/0.1 m2

	

378.0

	

386 .9

	

453.6 1

M .U .I .*

	

1317 .6

	

1451 .0

	

1832.8 '

After Disturbance (1 mo . )

Density/0 .1 m2

	

2989

	

1343

	

1787

Biomass/0 .1 m2

	

287 .8

	

333 .0

	

296. 8

M .D.I .*

	

1447 .1

	

604.3

	

240.8 1

After Disturbance (3 mos . )

Density/0.1 m2

	

2800

	

1758

	

1957

Biomass/0.1 m2

	

246.4

	

238.2

	

244. 0

M .D .I .*

	

1483.2

	

357 .2

	

240.8 1

*M .D .I . = McIntosh Diversity Index = N- s E n i 2
i= 1

channels (Table 5) . This suggests that compensatory changes occur in strea m

community structure that act to maintain a constancy, in at least some aspects o f

community function .

The structural resemblance of pairs of channels with each otaier wa s

estimated by use of the Curtis percentage similarity measure, whi€h ranges from '

0 to 100. A value of 100 indicates complete similarity . Al .] channels wer e

structurally similar prior to disturbance (Table 6) . After three months, channe l

II, the unperturbed channel, was very different from both channels I and III .

Similarity here was altered both because of the dominance of orthoclad midges i n

the disturbed channels and because of the loss in these .channels of some

sensitive taxa, such as the predatory perlodid stoneflies and the grazin g

Invertebrate assemblages were partitioned into functional groups to enable {

an assessment and comparison among .channels of the trophic as well as taxonomi c

structure . Functional group designations were assigned according to Merritt an d

Cummins (1979) . The proportional biomass of shredders three months afte r

23



Table 6. Similarity of invertebrate assemblages among channels prior t o
and three months after disturbance simulations at i(alama . Springs .

PS*	 Before Disturbance

	

After Lei s_turbance

Channel s

1,2 .769 .288

2,3 .806 .427

1,3 .941 . . .835

*PS is the Curtis Percentage Similarity Measure .

PS

	

s
	 200 E MIN ( NIH, N IK )

-kJ
(NHI + NKI )

disturbance was small in all channels (Figure 6) . This was expected, as th e

resource base in the channels is largely autotrdphic . The collector component ,

largely comprised of midges, dominated the disturbed channels ., and a iargei,

relative increase in the predator functional group was observed in .the .

unperturbed channel . The proportional biomass of grazers (scrapers) in the

unperturbed channel was also somewhat larger than in the disturbed channels . .

The functional group structure of the Invertebrates colonizing heavily impacted ,

unstable streams near Mt . St . Helens is similar to that observed in the

experimentally disturbed streams . Scrapers and predators vau1r in low

abundance in these streams, because the large and stable substrate require1-b y

scrapers for attachement is absent, and the abundance and predictability of foo d

resources required by both groups is low .

Periphyton :

The early colonizing species in all channels was predowimantly Diatoma

hiemale var . mesodon, which forms a gelatinous matrix after one month .

Successive algal taxa included the filamentous xanthophyte Tribonema and the

chrysophyte Hydrurus foetidus . Diatoma was most abundant in the mos t

frequently perturbed channel . Chlorophyll-a levels of the periphyto n

assemblages were highly variable within and among channels,_,ranging from 1 .3 to

over 400 Mg m- 2 . The standing crop of chlorophyll-a was generally greater, bu t

not significantly so, in the unperturbed than in the perturbed channels .
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IV . DISCUSSION

A lower density and diversity of invertebrate . fa na, both taxonomically and 16

trophically, were observed in stream channels in wkiich disturbance events were

simulated than in•an unperturbed channel . There is some indication, howe%sr• ,

that some community properties, notably biomass, remain constant among different .

disturbance regimes .

These findings suggest that non-catastrophic disturbances may not play a

major role in determining stream community structure over ecological time . Non- r - `

catastrophic disturbances in many streams are fairly predictable events, an d

species may have evolved behavioral and other adaptations to deal with them .

Adaptations relevant to competitive situations, be it in usurping resources o r

in withstanding attacks from natural enemies that might be necessary in the

absence of disturbance, may not have evolved .

We are reluctant to generalize from our findings, however, to dismiss th e

potentially large role that non-catastrophic disturbance may play in streams ,

because . a number of factors not considered in our experiment will also affec t

the role disturbance plays . The spatial distribution of disturbance is one o f

these . Effects of non-catastropic disturbance in most streams are patchy i n

nature as some microhabitats are more immune to disruption than others,. A give n

.disturbance regime produces a distribution of patch ages, and the effect on th e

community is properly the summation of patch . effects . And, critically,_ the

	

.

exact effect of periodicity . of disturbance events is unresolved . Disturbance s

at a rate of once per month, relative to the annual hydrographs ty picalo f

streams in the Pacific Northwest, a-re probably too frequent to allow more slowl y

dispersing colonists to enter a community .

Life history attributes and composition of the invertebrate fauna that were

collected in streams severely impacted by the eruption of Mt . St . Helens are

similar to those of the invertebrate fauna in the most frequently disturbed

channel at Kalama Springs . In both cases, communities are dominated by

chironomid midges . Abundances, however, are greatly reduced in the stream s

surrounding Mt . St . Helens, and evidence that the communities are undergoin g

cycles of establishment and denudation in concert with changes in landscap e

geomorphology indicates that catastrophes have different consequences on stream

communities from other disturbances, and should be distinguished from them .
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Instability of channel banks and bottoms in streams severely impacted by

the eruption appears to pose a major impediment to recovery of benthi c

communities . Until these elements stabilize, communities will consist only of '

short-lived fugitive-type species that will be swept downstream with eac h

successive' high flow event . Community recovery can perhaps be enhanced by

management practices that promote channel stability, such as . planting o f

riparian vegetation or introduction of stable substrates into a stream.

4,

28



V . LITERATURE CITED

Connell, J . H . and R . O . Slatler . 1977 . Mechanisms of sucessian im natura l

communities and their role in community stability and orgeization . Amer.

Natur . 111 :1119-1144 .

Gorman, O . T . and J . R . Karr . 1978 . Habitat structure and stream fi=s h

communities . Ecology 59 :507-515 .

Harper, J . L . 1977 . Population biology of plants . Academic Press, Lonalon. .

Keller, E . A . and F . J . Swanson . 1979 . Effects of large organic material o n

channel form and fluvial processes . Earth Surf . Processes 4 :3'61-3€30 . .

Leopold, L . B ., M . G . Wolman, and J . P . Miller . 1964 . Fluviad processes in

	

_

geomorphology . W . H . Freemanand Company, San Francisco . 522 p .

Merritt, R . W . . and K. W . Cummins . 1978 . An introduction to the aq,l tie insects

of North America . Kendall/Hunt, Iowa . 441 p .

Paine, R . T . 1979 . Disaster, catastrophe, and local persistence of the-se a

palm Postelsia palmaeformis . Science 205 :685-687 .

Pfankuch, D . J . 1975 . Stream reach inventory and channel stability dvairatiom .

U .S .D .A . Forest Service, Northern Reg ion, 26 p .

Rogers, L . E ., W . T . Hinds, and R . L . Buschbom . 1976 . A general weight vs .

length relationship for insects . Ann . Entomol . Soc . Att . 69 :387-389 .

. Swanson, F . J . and G . W . Lienkaemper . 1978 . Physical consequences .of larva

organic debris in Pacific Northwest streams . U . S . Forest Serv . Gen . Tech .

kept . PNW-69, Pac . N . W . .For . Range Exp . Sta . 12 p .

Wetzel, R . G . and G . E . Likens . 1979 . Limnological analyses . W . a, Saunders

Company, Pa . 357 p .

29

	

w



VI . APPENDICES

1. Channel Stability Evaluation

2 . Invertebrate Taxa Collected From Stream Impacted By

Mt . St . Helens, winter 1981-82 .
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APPENDIX 2 . Invertebrate taxa collected in stream sites impacted by Mt . St .

Helens, winter 1981-82 .

S

Ape Canyon

Ephemeroptera

Baetis bicaudatu s

Baetis tricaudatu s

Plecoptera
Shipsa sp .

Dipter a
Diamesinae spp .

Upper Muddy
Ephemeroptera

Baetis tricaudatu s
Plecoptera

Malenka sp .

Megarcys sp .

Trichoptera
Rhyacophila sp .

Diptera
Limnophora sp .
Orthocladiinae spp .

Upper Maratt a

Ephemeroptera
Baetis tricaudatu s

Swift Cree k
$~

	

Diptera
Orthocladiinae spp .
Diamesinae spp .
undetermined Tipulida e

Other :
Acari (exuvia )
centipede (terrestrial )

Carbonate Springs
Diptera

Orthocladiinae spp .
Diamesinae spp .

Lower Maratta

Hemiptera

Trichocorixa spp .

Trichoptera
Pseudostenophylax sp .

Di ptera
Simulium sp .

Empididae
Orthocladiinae spp .
Diamesinae spp .

Other :
Naididae (Uligochaeta )

Kalama Rive r

Ephemeroptera
Ephemerella coloradensi s

Drunella sp .
Epeorus longimanu s

Plecopter a
Malenka sp . _
Megarcys sp .
Perlodidae

Trichopter a
Lepidostoma quercina
Hydatophylax sp .
Pseudostenophylas sp .

,Micrasema sp .
Neotheremma sp .
Rhyacophila sp .

;'Diptera
Dicranota sp .
undetermined Tipulida e
Twinnia sp .
Orthocladiinae spp .
Empididae sp .

Other :
Naididae (Oligochaeta )
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