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The vertical propagation of Coastal Trapped Waves (CTWs) due to subsurface ridges
is explored with the help of linear numerical and analytical models. Results show that
submerged ridges projecting from the shoreline can scatter a horizontally propagating
single baroclinic mode Kelvin wave into both upward and downward propagating Kelvin
wave (KW) beams, emanating from the ridge top. The semi-infinite shelf response to
an incident single mode KW reveals alongshore dependence of the vertical structure in
the form of multi-modal ridge-top KWs, suggesting that the width (alongshore extent)
of the ridge is an important factor in determining the basin response past the ridge. We
hypothesize that over narrow ridges (less than twice the Rossby radius of deformation
on ridge-top), the trapped solutions at the edges of the ridges overlap and interact to
transmit horizontally propagating energy into the surface layer of the downstream basin.
At the same time narrow ridges result in a weaker subsurface peak in velocity next to the
ridge top in the downstream basin. This decreases the amplitude of vertically propagating
KW beams.

The relative strengths of horizontally and vertically propagating KW modes, is ex-
plored by imposing the alongshore KW velocity profiles as a boundary condition next to
edge of the ridge in the downstream basin. When the strength of the subsurface peaks in
the vertical profile of alongshore currents is greater the basin response includes relatively
stronger amplitudes of vertically propagating KW beams. On the other hand, when the



strength of the broader surface maximum is greater, the strength of the horizontal propa-
gation of energy at the surface is higher relative to the amplitudes of upward propagating
KW beams in the downstream basin.

The west coast of India near Kollam has a shelf-slope width comparable to that of
the first mode Rossby radius of deformation, and vertical propagation of intraseasonal
coastal trapped waves (CTWs) has been observed downstream of this ridge. To check
the applicability of the KW experiments to such a situation, the numerical model was
configured with a sloping coastal bottom similar to that found along the west coast of
India, and an offshore ridge similar to the one used in the KW experiments. A first-
mode CTW was imposed as the incident wave. The generation by the ridge of upward
propagation was similar to that seen in the KW models. Close to the coast, however, the
downward propagating beam quickly reflects from the sloping bottom into an upward
propagating beam.

The effects demonstrated in these idealized experiments are likely to be found wherever
KW or CTW propagation is important and the alongshore coastal bathymetry contains
large changes in depth over short distances.
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Chapter 1: Introduction

Understanding the coastal circulation along the west coast of India is important because
of the highly productive fisheries in the region (Bakun et al. 1998; Gopalakrishna et al.
2008; Manjusha et al. 2013). Both modeling and observational studies indicate that
the West India Coastal Circulation (WICC) is substantially influenced by remote forcing
over a wide range of time-scales, with coastal signals propagating poleward from the
southern tip of Sri Lanka at roughly the Kelvin wave speeds associated with the lowest
two baroclinic modes (McCreary et al. 1993; Shankar and Shetye 1997; Shankar 2000;
Shankar et al. 2002; Vialard et al. 2009; Rao et al. 2010; Amol et al. 2012). More
recently, a modelling study by Suresh et al. (2016) elucidated the importance of wind
forcing south of India and Sri-Lanka for the WICC, signifying the importance of Coastal
Trapped Waves (CTWs) generated by distant forcing. At seasonal and longer time scales
the coastal signals can radiate off-shore as Rossby waves, affecting, for instance, the
seasonally oscillating Lakshadweep High and Low, as well as other circulation patterns
of the Arabian Sea (Shankar and Shetye, 1997). The shorter time scale coastal signals
in the intra-seasonal band, however, can be completely trapped along the coast.

In Chapter 2 we investigate the importance of different forcing factors, remote versus
local, for the sea level variability in the intra-seasonal band of periods (30-120 days). The
analysis uses 10 years of satellite altimeter data along with model and scatterometer winds.
The dominant period of frequencies associated with these intra-seasonal oscillations is also
deduced for the maximum variance. This research plays an important role in selecting
the period of forcing used to analyse the coastal dynamics along the west coast of India
in subsequent chapters.

Chapter 3 examines a possible source of vertical propagation within the CTWs along
the west coast of India. Using a semi-analytic formulation, Nethery and Shankar (2007)
predicted the possibility of downward propagating Kelvin wave energy on the west coast
of India, forced by variability in the zonally flowing monsoon current south of Sri-Lanka
[Figure 1.1]. They modeled the west coast of India as a straight meridional barrier
extending equatorward to 5◦N (the latitude of the southern tip of Sri Lanka). At the
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tip of the barrier they imposed a zonal current with a meridional and vertical structure
similar to that of the monsoon current, and the contact of this current with the boundary
generated a Kelvin wave propagating poleward on the western side of the barrier. The
vertical structure of the monsoon current doesn’t match with a single baroclinic mode
in the unforced, quiescent basin, leading to excitation of multiple vertical modes and
resultant vertical energy propagation of the freely propagating Kelvin wave [Figure 1.2].

The National Institute of Oceanography (NIO) at Goa has Acoustic Doppler Current
Profiler (ADCP) moorings at several locations along the west coast of India [Figure
1.1]. Amol et al. (2014) analyzed the data from these moorings and supported the
prediction of Nethery and Shankar (2007), showing evidence of downward propagating
Kelvin beams. Moreover, observations of an upward vertical propagation of energy can
also be witnessed in the alongshore current profiles of the Kollam mooring, which sits at
the edge of ridge-like structure near the south west tip of India [Figure 1.3]. Although
the vertical propagation of energy shown in Figure 1.3 is for the band of 100-250 days, a
similar upward and downward propagation of energy can be observed for other bands of
frequencies, including the intra-seasonal band. The forcing mechanism for the observed
upward vertical propagation of energy, however, has not been thoroughly explored.

Given the significance of coastal circulation along the west coast of India and the
impact on the WICC of remotely forced CTWs, along with their observed bi-directional
vertical propagation of energy, it is important to understand the dynamics and physics
behind this phenomenon and quantify it’s affect on the vertical structure of the currents.
In chapter 3 we investigate the generation of bi-directional vertically propagating Kelvin
beams using idealized models in a continuously stratified ocean configured to shed light
on the observations of Amol et al. (2014).

We propose that the observed upward, and perhaps the downward vertical propagation
of Kelvin wave energy observed on the west coast of India is due to the scattering of a low
baroclinic mode Kelvin wave incident upon a sudden change in the bottom topography. A
number of past studies have addressed the interaction of Kelvin or coastal-trapped waves
with bottom topography, but many of these involved a homogenous ocean (e.g., Longuet-
Higgins 1968; Killworth 1989a; ER Johnson 1990, ER Johnson 1993), which does not
support vertical propagation. (Killworth, 1989b) studied the effect of a submerged ridge
on a Kelvin wave in a two-layer baroclinic ocean, but this model cannot represent well
the vertical propagation in a contiuously stratified basin. Wilkin and Chapman (1987)



3

presented an analytic solution for the scattering of a coastal trapped wave by variations
in the shelf width in a barotropic ocean. Wilkin and Chapman (1990) supplemented this
with numerical solutions for a stratified ocean but did not address bottom irregularities
or vertical propagation of the scattered waves. Generation of internal tides by the
interaction of the barotropic tide with bottom topography is a problem that has been
studied extensively (e.g., Baines 1973; Baines 1982; Holloway and Merrifield 1999) and
provides a useful analogy to the vertical aspect of our problem. The dynamics are not
identical, though, and the internal tide generation mechanism does not answer all the
questions that arise in the Kelvin wave problem.

As a first simplifying step, we configured the Regional Ocean Modeling System
(ROMS) model with a subsurface ridge of “semi-infinite” extent: a ridge that spans
the entire model basin combined with a sponge layer to absorb the cross-shore signals
traveling along the ridge. The vertical coastal boundary supports Kelvin waves, but
because of ROMS requirements, the sides of the subsurface ridge are sloping and instead
support topographic ridge waves. The above configuration allows us to separately define
the topographic wave response and the Kelvin mode response to propagation directly
over the ridge. In the case of the semi-infinite ridge, topographic waves cannot reach or
affect the downstream basin. Chapter 3 contains numerical results of a series of such
semi-infinite ridge model runs and their comparison with approximate analytical solutions.
Semi-infinite submerged ridges simplify the dynamics and allow an examination of the
problem through the analytical approximations. In nature, however, the bathymetry is
always more complex and hard to model analytically. The submerged ridges are finite in
length, and the basin response past the ridge contains the contribution from topographic
ridge waves traveling along and around the ridge. Numerical solutions for finite-length
ridges are compared with those for the semi-infinite ridges.

Chapter 4 analyzes the vertical propagation of energy by modeling the west coast
of India with a sloping bottom. This is preliminary work done to assess how a more
realistic sloping coastal boundary would affect the solutions in Chapter 3. The ROMS
model is run for a finite submerged ridge on a sloping bottom bathymetry, typical of the
west coast of India, with an incoming single mode 1 CTW from the southern boundary.
The Chapter includes comparisons between various finite ridge numerical model runs,
mainly: 1) on a sloping bottom incoming mode 1 CTW 2) on a flat bottom incoming
mode 1 Kelvin wave.
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For the given slope and stratification, the first mode baroclinic CTW eigen solution
is computed using the Brink and Chapman coastal trapped wave routines (http://www.

whoi.edu/cms/files/Fortran_30425.htm). The CTW solution for a typical slope along
the west coast of India was hard to obtain, as the shelf-slope width is very small compared
to the first internal Rossby radius of deformation, and the Brink and Chapman routines
do not work very well in those scenarios. The correct solution was obtained by forcing
the model without a ridge with the contaminated first baroclinic CTW mode and letting
it run for a long distance. The first baroclinic mode has the highest phase speed, and
with time it leaves behind the lower modes to obtain a clean first mode.

Chapter 5 summarizes the conclusions from Chapters 2, 3 and 5. Appendix A of the
thesis does not necessarily relate to the core of the PhD research work. It is in the form
of a term paper based on Durland et al., 2014 AGU poster. This work shifts the focus
on equatorial dynamics to better understand the process of transfer of energy (within
the turning latitudes of equatorial basin) from equatorial trapped KWs (equator-ward
of turning latitude) to the meridional CTWs (pole-ward of turning latitude) when the
equatorial trapped KWs reflect back from an eastern meridional boundary.

http://www.whoi.edu/cms/files/Fortran_30425.htm
http://www.whoi.edu/cms/files/Fortran_30425.htm
http://www.whoi.edu/cms/files/Fortran_30425.htm
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Figure 1.1: A Figure in Amol et al. (2014), showing the bathymetry and locations of
ADCP moorings along the west coast of India, with an addition of a schematic representing
the seasonally varying monsoon current
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a) First 3 vertical modes derived from
a typical strati cation along the west
coast of India

b) Forcing
c) Snapshot of the alongshore velocity elds at
 the wall (x=0)

Figure 1.2: Panel a) First 3 vertical modes derived from a typical stratification along the
west coast of India; A Figure from Nethery and Shankar (2007): (from middle) Panel b)
Monsoon Current south of Sri-Lanka with depth; Panel c) Alongshore velocity along the
wall (at x=0, modelled as the west coast of India) at two different periods of forcing (T
= 30 days and T = 360 days)
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Figure 1.3: Figure-7 of Amol et al. (2014), showing the alongshore currents at Kollam
mooring, demonstrating vertical propagation of energy in both directions, vertically up
and down.
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–

Figure 1.4: Schematic of an analytical model showing different regions to simplify the
independent solutions. Region 1) Incident single mode baroclinic Kelvin Wave; region 2)
basin response with the scattered Basin modes; region 3) topographic modes along the
ridge away from the coastline; region 4) the region of adjustment close to the wall and
the ridge, where transfer of energy from incident Kelvin wave takes place.
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Chapter 2: Intra-seasonal sea level variability along the West coast of
India

2.1 Introduction

Over the past twenty years, progress has been made in defining the circulation on seasonal
time scale along the east and west coasts of India, as well as in the Bay of Bengal
(BOB)-that part of Indian Ocean directly east of the Indian sub-continent. We refer
to the coastal currents as the East India Coastal Current (EICC) and the West India
Coastal Current (WICC). This progress has been accomplished through traditional
oceanographic hydrographic cruises [Shetye et al., 1990; Shetye et al., 1991; Shetye et al.,
1996], analytic and numerical modeling studies [McCreary et al. 1996; Shankar and
Shetye 1997; McCreary et al. 1993] and (more recently) the use of satellite altimeter
data [Babu et al. 2003; Durand et al. 2009; Vialard et al. 2009; Shenoi 2010; Rao et al.
2010]. Recent modelling work by Suresh et al. (2016) has showed the importance of
distant remote-wind forcing from east of Sri-Lanka as a major driving factor for sea level
variations along the west coast of India, again on seasonal time scales. In addition to the
wind forcing, an important aspect of the Indian Ocean is the degree to which equatorial
motions impact coastal circulation via Coastal Trapped Waves (CTWs), generated where
the Equator meets the eastern boundary (McCreary et al., 1996).

Sea level variability serves as an indicator of upwelling and downwelling along the
west coast of India and is of particular interest because the region supports an important
fisheries, with increased productivity during upwelling periods (Gopalakrishna et al.,
2008). The sea level along the west coast, in direct relation to the WICC in particular
has significant intra-seasonal variability (Vialard et al., 2009). In contrast to the more
thoroughly studied seasonal variability, the coastal circulation on these shorter time scales
is only now being addressed [Amol et al. 2014; Amol et al. 2012; Suresh et al. 2013;
Girishkumar et al. 2013].

Recent studies provide evidence for the importance of intra-seasonal variability in the
coastal circulation [Durand et al. 2009; Suresh et al. 2013; Vialard et al. 2009; Amol
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et al. 2012; Girishkumar et al. 2013; Amol et al. 2014]. Durand et al., 2009 quantify
the importance of the intra-seasonal variability of currents and sea level along the coasts
of India, superimposed on the seasonal cycle, with the use of along-track satellite data .
The National Institute of Oceanography (NIO) at Goa has deployed Acoustic Doppler
Current Profiler (ADCP) moorings at several locations along the east and west coast of
India. Amol et al. (2012) use data from these ADCP moorings to elicit the propagation of
CTWs along the west coast of India although the emphasis is on periods shorter than the
30 days cut-off in our analysis. In addition, Amol et al. (2014) show evidence for vertical
propagation of energy at intra-seasonal periods from the tip of India and Sri-Lanka along
the west coast of India. This vertical propagation reduces correlations in surface signals
along this path. In the present work we extend the previous analysis of local and more
remote connections through altimeter derived Sea Level Anomalies(SLAs), quantifying
the decrease in correlations along this pathway.

Vialard et al. (2009) showed that intra-seasonal variability along the west coast of
India is a part of a basin scale phenomenon. The magnitude of alongshore wind stress is
maximum at the tip of India and Sri-Lanka, which induces two opposite SLA signals, one
at the Equator and one at the tip of India, with a potential to influence the intra-seasonal
SLA variability along the west coast of India [ibid.; Webber et al. 2010]. The SLA signal
at the Equator propagates to Sumatra in the form of an equatorial Kelvin wave and then
reflects back westward across BoB as a Rossby wave and northward around the BoB
as a CTW going north along the coastal wave-guide of the BoB in the northern Indian
ocean. Vialard et al. (2009) and Webber et al. (2010) show that the Rossby wave signal
interacts with the CTWs from the east coast of India and is also reinforced by favourable
winds when it reaches the tip of Sri-Lanka. It is clear that the Rossby wave signal reaches
the tip of Sri-Lanka. However the significance of its contribution to the intra-seasonal
SLA variations in the northern Indian ocean is not thoroughly understood.

Modelling work by Suresh et al. (2013), suggests that most of the intra-seasonal sea
level variability in the northern Indian Ocean originates along the equator via equatorially
and coastally-trapped waves. In their model, the percentage of intra-seasonal variability
attributable to an equatorially generated signal is 80-90% along the north-east coast
of the BoB, decreases to 50% north-east of Sri-Lanka along the wave guide next to
south-east India, and then increases to 60-70% along the west coast of India, for reasons
not fully understood. We provide evidence that the source for this increase in energy
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is from Rossby waves incident upon the south-east tip of Sri-Lanka, generated in the
south-central or eastern boundary of the BoB. Both the incoming Rossby waves and the
alongshore winds can generate CTWs that propagate up the west coast of India, and the
two generation mechanisms can interact constructively or destructively with each other
and with CTWs propagating down the east coast of India. The net result is that SLA
variability along the Indian west coast can be influenced by remote forcing via multiple
wave pathways [Fig 2.1].

Our work aims to understand the contributions of the various forcing factors and
pathways to the intra-seasonal Sea Surface Height (SSH) variability on the west coast
of India. This is investigated using correlations of altimeter SLAs and European Centre
for Medium-Range Weather Forecasts (ECMWF) winds at various key locations and by
building a multivariate regression model to identify the forcing mechanisms that explain
the greatest amount of the intra-seasonal variability of SLA along the west coast of
India. Correlations are then extended to analyse the frequency dependent coherences
and corresponding phases, identifying the importance of a narrower band in which the
winds are most strongly correlated with intra-seasonal SLA. Finally, Hovmöller diagrams
are used to illustrate the large-scale propagation of oceanic signals.

2.2 DATA AND METHODS

The primary data sets used are 10 years (October 1999 to November 2009) of altimeter
sea level anomaly fields (SLA, also referred to as sea surface height anomaly, SSHA) from
the Archiving, Validation and Interpretation of Satellite Oceanographic data project
(AVISO), and coincident alongshore wind stress derived from surface wind velocities over
the ocean from ECMWF. Both types of data are gridded with spatial separation of
0.25×0.25 degrees between grid points, at daily time steps. The use of this ten-year
period allows us to check the results of wind forcing with the winds from QuikSCAT
scatterometer. This period also has the best coverage by multiple altimeters. The satellite
sampling and AVISO optimal interpolation apparently attenuate periods shorter than a
few weeks (DB Chelton et al., 2011). We accordingly low pass filter the ECMWF winds
with a cosine-squared weight function that has a cut-off period of 30 days and is centered
on the AVISO time grid. The means, trends and seasonal cycles (annual cycle plus first
three harmonics) are removed from both data sets prior to a 120-day high pass filter,
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retaining intra-seasonal periods of approximately 30-120 days. Our processing ensures
that both AVISO SLA and ECMWF winds have the same timing and similar frequency
roll-offs.

2.2.1 Creation of Spatially Averaged Time Series

Both SLA and surface wind data were averaged over the rectangular areas shown in Fig
2.2, to create the time series used in our analyses. Three boxes for SLA are located over
the continental slope along the Indian west coast (H1-H3), with another (H6, centered
at ∼ 10.5oN) over the slope along the Indian southeast coast. H1 is centered at ∼ 13oN
(100-200 km south of Goa), and our primary interest is to predict SLA variability at
this location. Boxes H1, H2 (∼ 10oN) and H3 (∼ 7.5oN) are chosen such that they are
under the “reference” altimeter tracks on the west coast of India (those occupied by
TOPEX/Poseidon, Jason-1 and Jason-2). For instance, track 181 passes through H1,
track 03 passes through H2 and track 79 passes through H3. Even though we have not
used the along track data for this analysis, choosing the boxes under the altimeter tracks
ensures that more precise altimeter data are included in our primary time series. Box
H4, centered at ∼ 5.5oN and ∼ 85oE, is intended to capture the SLA signature of Rossby
waves that are either generated in the southern BoB, or that propagate from the eastern
boundary after the reflection of equatorial Kelvin waves. Box H-Eq (centered at ∼ 93oE)
on the equator and Box H7 (centered at ∼ 5oN and ∼ 93oE) off the coast of Sumatra,
are intended to capture the latter process.

The boxes located on the slope (H1, H2, H6) have a width of about 1.5o longitude
and a height of about 1o latitude, encompassing approximately 10-15 grid points. The
size of these boxes is chosen such that they can capture the CTW signal on the slope;
large enough to have improved statistical reliability by averaging multiple grid points
but small enough to be comparable to the local Rossby deformation radius (typically ∼
80-120 km for mode 1 (DB Chelton et al., 1998)). Box H3 is comparatively larger in size
(longitudinal-width of about 2o and latitudinal-height of about 1.5o), as the SLA signal
at the tip of India can also include Rossby waves from south-west of Sri-Lanka which
are expected to have a smaller amplitude but larger spatial scale compared to the CTW
signals. Box H4 is even bigger in size (longitudinal-width of 2.5o and latitudinal-height
of about 3.5o), as it is solely meant to capture Rossby waves.
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Similar to SLA, wind boxes are chosen along the west coast near the SLA boxes [
Figure 2.2]. One surrounds box H1 (TA1), one surrounds box H2 (TA2) and one lies in
between the SLA boxes (TA12). The choice of larger boxes for the winds is required to
reduce the smaller-scale noise in the data and improve the correlations with the SLA.
Three additional wind boxes represent different areas near southern India: on the southern
tip of India, TA3 surrounds SLA box H3, TA5 lies along the western side of Sri-Lanka
and TA4 covers the region south of Sri-Lanka and along its east coast. One more box,
TA6 is north of Sri-Lanka, surrounding box H6, to represent the winds along the south
east coast of India. A single time-series for each box is constructed to represent variations
of alongshore wind stress (even away from the coast), positive in the downwelling sense.
The alongshore component of wind stress is calculated at each ECMWF grid point within
a box before averaging to obtain an effective alongshore stress for the entire box. This is
particularly important for boxes TA3, TA4, TA5 and TA6 which involve more than one
sub-box [Fig 2.2], which have different angles for computing the alongshore wind stress at
each ECMWF grid point, taking into account the corresponding alongshore angle nearest
to each grid point. The alongshore wind stresses for all the grid points falling inside the
corresponding wind boxes are then spatiality averaged with equal weights to obtain a
single time-series for the entire box. Time-series of wind stress curl for each of the wind
boxes are average values of all grid points within the box and labelled similarly to the
alongshore wind stress time series (C1, C12, C2, C3, C4, C5, C6).

For most of the analyses, the intra-seasonal time-series for SLA, alongshore wind
stress and wind stress curl are normalized with their respective standard deviations from
each box.

2.2.2 Lagged Correlations and Coherences

Between any two time series, correlation co-efficients are obtained for different lags. The
95% confidence level for each lag is calculated using a significance test for sample cross
correlation (DB Chelton, 1983). The number of independently occurring events/degrees
of freedom (N*) used in the computation of 95% confidence levels is estimated using the
Artificial Skill Method(ASM) (ibid.), as described in the Appendix. The correlations of
the 30-120 day time series are supplemented with coherence calculations that identify
narrow period bands within which the correlations are highest.
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2.2.3 Regression Model

A multivariate linear regression model is built to hind-cast the SLA on the west coast of
India from SLA and alongshore wind stress at other locations. For most comparisons,
the SLA in box H1 is the estimand. An underlying problem common to analyses of
geophysical signals occurs when there are significant correlations among the different
input fields, which lead to high error bars on each of the regression coefficients in the
regression model. In that case, it is difficult to estimate the importance of one factor over
the other, as the error bars on each of those coefficients are large enough to include the
others. In our analysis, the final model is thus constructed with the input parameters
and lags that are consistent with the dynamics which are thought to govern the physics
of the processes: wind stress, CTWs and Rossby waves.

2.3 Results

In this Section we quantify the statistical connection of the coastal ocean′s intra-seasonal
response in sea level along the west coast of India to distant and local wind forcing and
sea level signals at other locations. There are five sub-sections. The first one discusses
the strength of time-series in different frequency bands, with periods corresponding
to seasonal, non-seasonal and intra-seasonal bands. The next two sub-sections focus on
simple two-point lagged correlations and a multiple regression model that helps to identify
the importance of different forcing signals. The fourth sub-section turns the attention to
coherence calculations that reveal the significance of a narrower 40-60 day band, which
produces maximum correlations among the important signals. The last sub-section looks
at the propagation of oceanic signals with the help of Hovmöller diagrams.

2.3.1 The Intra-Seasonal Time Series

Time series of SLA in box H1 are shown in Fig 2.3 for the raw and filtered data: (Top)
Raw: AVISO daily; (Middle) Non Seasonal: after removing trends, means and seasonal
cycles (annual plus first three harmonics); and (Bottom) Intra-seasonal: 120-day high pass
filtered non-seasonal time series. The seasonal time scale is the most visually dominant
aspect of the raw time-series. The variance of the intra-seasonal band (7.6 cm2) accounts
for half the variance of the non-seasonal time-series (15 cm2). The presence of a significant
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intra-seasonal signal on the west coast of India is consistent with the findings of Vialard
et al. 2009, that the WICC has a significant intra-seasonal variability.

Time series for alongshore wind stress boxes show similar dominance of the seasonal
cycles for the raw data set and significant intra-seasonal variability for Non-Seasonal
time series. For instance, the alongshore wind stress in box TA3 has a variance of
2.7 × 10−4N2/m4 in the non-seasonal time-series, and 1.8 × 10−4N2/m4 in the 30-120
day time-series.

Power spectra for each intra-seasonal time series contain consistent peaks between 40-
60 day periods in both winds and SLA. Figure 2.4 shows power spectra of the normalized
timeseries, for SLA in H3 and alongshore wind stress at TA3. There are coincident
significant peaks between 40-50 days, and marginally significant peaks between 50 and
60 days. This is within the period range of Madden-Julian Oscillations (MJOs), well
known signals in the ocean and atmosphere in the Indian Ocean.

2.3.2 Lagged Correlation Analysis

Intra-seasonal normalized SLA time-series from all regions are correlated with SLA at H1.
Fig 2.5 and Table 2.1 show that the boxes on the west coast of India are highly correlated
with H1 with a lead of 0-1 days, suggesting events that appear almost at the same time
all along the west coast. The magnitudes of the correlations decrease to approximately
0.69 at H2 and 0.56 at H3, somewhat consistent with decorrelation in currents found by
Amol et al., 2014. The next highest correlation is with SLA at H4, east of Sri Lanka.
This suggests that the Rossby-wave mechanism which is presumably represented by SLA
variability in H4, is indeed important for estimating SLA variations in H1 (Table 2.1).
However, the lag of 2 days between H4 and H1 is too short as described in the Discussion.
Along the south-east coast of India, the SLA at H6 is significantly correlated with H1
SLA, but at a much lower level than locations along the west coast. Combined with the
∼ 11 day lead from H6 to H1, this suggests a tenuous coastal connection between the
east and west coast of India, possibly due to the convoluted pathway around Sri Lanka
and the southern tip of India.

Significant correlations of H-Eq with SLA signals along the Rossby wave path-way
(H-Eq-H7-H4-H1) with an increase in the lead as we move from H7 (off of Sumatra) to
H4 (east of Sri-Lanka) and H1 (west coast of India) [Fig 2.6] suggest the connection of
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the equator with the west coast of India along the Rossby wave path-way. The decrease
in the correlation between the Equator and the south-east coast of India(H6), followed
by an increase of correlation with the west coast of India, suggests that the Rossby wave
path is a more important connection between the equator and the west coast of India
than the coastal path around the BoB. This is consistent with the model results of Suresh
et al. (2013).

Figure 2.7 shows the correlations of the alongshore wind stress with SLA at H1. The
highest correlation of H1 is with TA3 and the lowest correlation is with TA1, suggesting
the importance of remote winds from the tip of India over the local winds for intra-
seasonal sea level variations at H1. This can be understood by the fact that winds are
almost perpendicular to the west coast farther north, and the alongshore component of
the wind stress increases as we move southward, with a maximum at the tip of India
[Figure 3, (Vialard et al., 2009) and Figure 4, (Webber et al., 2010)]. These results are
consistent with the study by Amol et al. (2012), suggesting the importance of distant
winds from the tip of India for intra-seasonal SLA variations along the west coast of India,
an indication of CTW dynamics. The next highest correlation of alongshore wind stress
comes from the winds at the tip Sri-Lanka (TA4), which are very similar to TA3. Moving
to the south-east coast of India, winds at TA6 are significantly correlated with SLA at H1
with a slightly longer lead. The correlations with TA5 along western Sri Lanka changes
sign due to the fact that the same winds affect the tip of India and the western coast
of Sri Lanka in an opposite sense (winds toward the southwest between India and Sri
Lanka cause downwelling on the Indian coast and upwelling next to Sri Lanka).

Correlations of the wind stress curl [Table 2.1] with H1 generally follow the same
pattern as the wind stress but with opposite sign, as negative wind stress curl causes
positive (downwelling) SLA. The maximum correlation is found with C3 and C4. This
again suggests the importance of wind forcing to the south of India and Sri-Lanka for
predicting the SLA on the west coast of India, whether the more important forcing is
alongshore wind stress or wind stress curl. Differentiating wind stress from wind stress
curl is complicated by the fact that coastal alongshore winds are often slowed by friction
with the land and other processes next to the coast (Bakun and Nelson, 1991), causing
high correlations between the coastal wind stress curl and the alongshore wind stress
[Table 2.1].

Winds at the tip of India (TA3) show the maximum correlation for a lead of 6
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days. Correlations with more local winds (TA1, TA12, TA2) are similar but slightly less
in magnitude, with a lead of 5-6 days. These leads are longer than expected for local
upwelling and downwelling sea level responses to imposed wind stress, which are expected
to be in the 1-2 day range (Denbo and JS Allen, 1987). All of these wind signals with
the longer leads may represent the strong inter-correlation between these local winds and
winds at the tip of India and Sri-Lanka, which have the highest correlation with H1 and
leads of 6 days (discussed in detail in Coherence and Phase results).

The interpretation of the wind stress correlations at different locations is made difficult
by the fact that the winds are highly inter-correlated, due to the influence of the basin-wide
signals. Table 2.2 shows the correlation of daily TA3 alongshore wind stress with wind
stress and wind stress curl in all other wind boxes, quantifying the degree to which the
different forcing functions are inter-correlated with each other. An Empirical Orthogonal
Function (EOF) analysis of the alongshore wind stress at these several locations produces
a first mode that explains almost 54% of the total variance, with highest amplitudes
coming from TA3 and TA4, suggesting the importance of larger-scale wind forcing, best
represented by winds from the southern tip of India and Sri-Lanka (TA3 and TA4). The
second EOF explains another 31% of the variance, with approximately equal positive
amplitude at TA1, TA12, TA2, TA3, TA4 and even stronger negative amplitude at TA6.
This demonstrates another mode of large-scale coherence between winds along the west,
south and east coast of India. This wide-scale nature of wind forcing is in agreement
with Vialard et al. (2009) and Webber et al. (2010) and confirms the results of Amol
et al. (2012).

2.3.3 Regression Model

In order to investigate the relative importance of multiple forcing signals, we employ
multivariate regressions, building a model that uses the variables (parameter, location
and lag) that explain significant amounts of variance in H1. Input parameters and their
corresponding lags are chosen such that they are consistent with the dynamics of the
dominant physical processes and are statistically significant, explaining the maximum
amount of the variance.

Very high correlations among H1, H2 and H3 with a lag of near 0 days suggest that
time-series of H1, H2 and H3 are quite similar, representing the regional west coast
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response. Therefore, H2 and H3 are not used as the input parameters for predicting the
SLA at H1, the target response. The most distant signal, H7, is also not used in building
a final statistical model, since we assume that Rossby wave signals from H7 must pass
through H4 before reaching the west coast of India. H4 is used to represent the Rossby
wave contribution. To include the different dynamic processes which are considered to
have a potential to influence the SLA variability at H1, we choose following four major
input parameters for the regression model: 1) TA3: representing the winds at the tip of
India which are also correlated with the larger-scale patterns of wind forcing represented
by first mode of EOF (54% of the variance) described above; 2) H4: representing Rossby
wave signals coming from east of Sri-Lanka; 3) H6: representing CTWs coming from the
east coast of India and 4) TA1: representing local wind forcing.

The model with just TA3 winds at the lag of 6 days explains 24.7% of the variance,
suggesting the importance of regional winds, represented by the winds from the tip of
India. H4, with a lead of 4 days, explains the next largest amount of variance, increasing
the total by 4-5% to 28.9%. The next in line is H6 from the east coast of India, with a
lead of 11 days, increasing the variance by 2-3%. The final model consist of the following
variables: 1) TA3 (-6 day) 2) H4 (-4 days) 3) H6 (-11 day) 4) TA1 (0 day). Figure 2.8
shows a two-year subset of the time series during 2005-2006, comparing the observed H1
to the model reconstructions of H1. The skill of the model is 32% implying there is still
significant percentage of unexplained variance. In Figure 2.8, the model doesn’t capture
a few of the peaks that are observed in SLA at H1 (for eg. Nov 2005, Mar 2006), which
can be associated with some of the other crucial factors not accounted for in this simple
regression model. Some of these factors may include alongshore winds between TA1 and
TA3 (through CTWs) and offshore-onshore transport by regional mesoscale fields (eddies
etc.).

Although, the high inter-correlations between input variables create large uncertainties
in the regression coefficients, we interpret correlations and regression models as identifying
4 regional input variables, with characteristic lags:

1) The strongest input is from winds south of India and Sri Lanka, which we regard
as representative of large-scale winds because of it’s strong inter-correlation with winds
at other locations (Table 2.2);

2) There is a significant and moderate input from SLA south-east of Sri Lanka, with a
lead of 4 days. This signal appears to originate next to Sumatra and propagate westward
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over a period of about 3 weeks (Discussed in the Hovmöller section below);
3) There is a significant but weak input from winds and SLA from the south east

coast of India, with a lead of approximately 11-13 days;
4) There is a significant but weak input from local winds with a lead of 0-2 days.

2.3.4 Coherence and Phase Analysis

In the last section, the regression model identifies some of the connections between sea
level along the Indian west coast and signals in other regions that were first identified
using lagged correlations. This section uses coherence and phase computations to identify
the dominant 40-60 day period in the system. Finally, an additional band-pass filter is
applied to examine the coherent wind and sea-level connections in the narrower 40-60
day period band.

The coherence plot of SLA at H1 with winds at TA1 shows that the maximum
coherence comes from the periods 40 to 60 days and the phase plot shows that the leads
corresponding to those periods are between 0 to 2 days (Figure 2.9). Previous correlation
of H1 with TA1 showed a lead of 5 days, which is longer than expected for a coastal
response to the local winds. However, the multivariate regression model suggests a lead
of around 0-2 days using local forcing. Moving from local winds along the west coast to
the winds south of India and Sri Lanka, coherence magnitudes of H1 with TA12, TA2,
TA3 and TA4 again show similar peaks for periods of 40 to 60 days. However, the leads
increase from 0-2 days locally to 6 days in the south at TA3 (Figure 2.9). The coherence
plots for TA3 and TA4 are very similar and the 6 day lead obtained from the coherence
is consistent with the leads from previous correlations and the multivariate regression
model. Along the south-east coast of India, the coherence plot for TA6 (not shown)
indicates winds shows two peaks; one at 30-35 days and another in the 45-65 day band.
The phase plot shows that the corresponding lead is close to 8-12 days, similar to results
from the regression model.

In summary, the coherence analysis is consistent with the multivariate regression
model for the frequency band of 40-60 days. The previous correlations between winds at
all locations and SLA at H1 produced leads of 5 to 7 days (close to a 6 day lead). This
is in contrast to the shorter leads for local winds and longer leads for winds along the
south-east coast of India obtained from regression models and coherence calculations for
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the band of 40-60 days. A possible explanation for this is the high correlation of winds
at different locations with the winds from south of India and Sri-Lanka (TA3 and TA4),
which have a lead of 6 days with SLA at H1. In the coherence plots for H1 and winds, we
see the more realistic leads for periods of 40-60 days. Local winds have high coherence
with SLA at H1 for the band of 40-60 days. However there is also high coherence between
local winds(TA1) and the winds at the tip of India and Sri-Lanka (TA3 and TA4) for
frequencies outside of the 40-60 day band(Figure 2.9). Our hypothesis is that the longer
lead for the correlation of local winds with H1 is due to the frequencies outside of the
band of 40-60 days, which have high coherence with the winds at TA3 and TA4 (which
leads of 6 days with SLA at H1 for all periods).

Given the strength of signals in the 40-60 day periods, we band pass filter the data
in order to look at the sea level response in the dominant and narrow band. Fig 2.10
shows the correlations of the H1 sea levels with all of the wind stress variables after the
data have been band-pass filtered to keep periods between 40 and 60 days. The first
apparent change is the increase in correlation coefficients of all of the wind variables with
H1. There is also a significant decrease in the lag between the sea level and local winds,
from 5 days to 2 days. This demonstrates that the periods outside of the 40-60 day band
contributed to the longer lags of the previous correlations between H1 and local winds.
Using the 40-60 day band-pass filtered data set in the final model derived in Section 3.3
(using the same lags) now explains 48% of the total variance compared to the previous
32%, a significant increase.

Our interpretation of the wind forcing is as follows: Winds at all locations used in
our analysis are significantly correlated with the wind from south of India and Sri-Lanka,
which are represented by TA3 and TA4 winds. This wind signal produces a lead of 6
days with the SLA on the west coast of India for reasons that are unclear as explored
in the Discussion section. Hence, when SLA on the west coast is correlated with the
winds at any location, the correlations and corresponding leads are primarily due to the
large scale wind relationship, as represented by the 6 day lead at TA3. However, the
multivariate regression model and coherence plots help to separate this large-scale signal
and give a more realistic lag due to the interaction of SLA and winds within a narrower
band of 40-60 day periods.
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2.3.5 Hovmöller Diagrams

In the previous section, coherence and phase analysis demonstrated the importance of
the 40-60 day band for the intra-seasonal SLA variations on the west coast of India. In
this section we try to interpret the statistics with visual means, that is, by constructing
the time-distance plots of 40-60 day band pass filtered SLAs.

The propagation of signals from the south east coast of India (H6) to H1 and from
Sumatra (H7 through H4) to H1 are investigated with Hovmöller plots of 40-60 day band
pass filtered AVISO SLA. In Fig 2.11, boxes H1-X2-X3 (on the west coast), X4 (south of
Sri-Lanka), X5-X8 (along the Rossby wave guide path going to the east of Sri-Lanka) are
chosen to investigate the Rossby wave pathway by capturing the signals generated along
the pathway as well as signals coming all the way from the coast of Sumatra. Rossby
waves consist of a variety of meridional modes; among these, the first meridional mode has
a symmetric off-equatorial maxima. The distance of the maxima away from the Equator
depends upon the Rossby radius of deformation (D Chelton et al., 2003). The first mode,
which typically has a SSH maxima near 4-5◦ latitude, appears to dominate intra-seasonal
periods compared to higher modes (Webber et al., 2012). Rossby wave pathway boxes
from X4-X8 are chosen along the 4-6◦ latitude to capture the SSH maxima due to the first
meridional mode of Equatorial Rossby waves. The critical latitude for the first baroclinic
mode near the tip India forces the signals with periods greater than 60 days to radiate
away as Rossby waves (Vialard et al., 2009), allowing only periods less than 60 days to
propagate farther north along the west coast. This shows the capability of Rossby waves
within the band of 40-60 day period to affect the SLA variability farther north on the
west coast of India once they reach the tip of India. Boxes H1-X2-X3 and X4-Y5-Y6-Y7
(going around Sri-Lanka to the east coast of India) are chosen to investigate the signals
coming from the south-east coast of India. H1, X2, X3, Y5, Y6, Y7 are chosen on the
slope to capture the CTW signals.

Fig 2.12 shows the Hovmöller plots of the Rossby and the East coast pathways for
a 500 day subset of the 10-year period. Significant propagation of both upwelling and
downwelling signals along the Rossby wave pathway (between X8 and X4) can be seen
from May 2003 to Aug 2003. There is a slight intensification of the signal near X5,
suggesting the importance of local winds at X5 for intensifying the Rossby wave signal
through wind stress curl. For the case of the east coast pathway, the propagation of the
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signal is not as robust as for the Rossby wave pathway. The propagation of signals can
also be seen on the west coast of India as a CTW signal, for instance during Sep-Dec
2002. X4 is the primary site where the two SLA signals can interact, one coming from
the south-east coast of India and another as a Rossby wave from the east of Sri-Lanka.
The Hovmöller plots show that the signals from the Rossby wave path are often stronger
than the signals coming from the east coast of India. For instance, a downwelling signal
(high SLA) started from the east coast of India (Y7) around mid-May 2003. However
it does not reach the southern tip of Sri-Lanka (X4), because a strong upwelling (low
sea level) signal from the Rossby wave pathway reaches X4 almost at the same time,
completely subduing the downwelling signal from the east coast pathway. The upwelling
signal continues to the Indian west coast. There are several examples of strong and robust
propagation along the Rossby wave pathway, travelling all the way to H1 (mid-Oct 03
from X6 to H1).

There is an apparent southward propagation observed between the tip of India (X3)
and the tip of Sri-Lanka (X4). This apparent southward propagation doesn’t necessary
mean that signals propagate from X3 to X4, but it certainly suggests that a signal
sometimes appears at X3 before a signal appears at X4. The appearance of a signal at
X3 is due to the intensification of alongshore winds at the tip of India; the appearance
of a signal at X4 is coming either through a Rossby wave pathway and/or due to local
winds at X4. The alongshore wind stress signals at both of these locations appear almost
at the same time [Table 2.2 : Lagged correlation between TA3 and TA4], meaning this
apparent southward propagation between X3 and X4 happens due to the intensification
of alongshore wind stress at the tip of India (X3) before the Rossby wave signal reaches at
the tip of Sri-Lanka (X4). At times, there are also slight apparent southward propagation
events on the west coast of India, for instance mid-June 2003 between X3 and X2. This
is due to the fact that local winds near X2 appear first, followed by the local wind forcing
at H1, before the subsequent intensified appearance of winds at the tip of India and
Sri-Lanka [see the lags in Table 2.2].

Figure 2.13 shows an expanded view of the Hovmöller diagrams, in order to estimate
the propagation speeds of Rossby and Kelvin wave signals along the Rossby wave pathway
and along the CTW pathway on the west coast of India, respectively. The phase speed of
a Rossby wave varies with baroclinic and meridional mode number of the wave. Rossby
waves follows the dispersion relation
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cR = −β
κ2 + (2n+ 1)β/ck

(2.1)

where β ' 2.3× 10−11 m−1s−1 is the meridional gradient of coriolis parameter f , κ
is the zonal wavenumber, n is the meridional mode number and ck is the Kelvin wave
phase speed of the baroclinic mode in question. In the case of the long Rossby wave
approximation, Rossby waves are approximately non-dispersive in nature. For the case
of n = 1, the Rossby wave would propagate almost at one third of the speed of the first
baroclinic Kelvin wave (DB Chelton et al., 1998). The first baroclinic Kelvin wave speed
in this region is often around 240-280 cm/s (ibid.). This suggests that the theoretical
first baroclinic Rossby mode wave speed (under the long wave approximation) would
be around 80-90 cm/s. However the observational speed is often slightly less than the
theoretical speed, as phase speed is often weakly dependent on the wave number. Webber
et al. (2012) estimated the phase speed for the first baroclinic mode along the similar
latitude in the Indian ocean for the intra-seasonal periods to be around 50 ± 10 cm/s.
We estimate the phase speed of the Rossby waves from the slope of the lines in Fig
2.13, which is around 57 cm/s. This observation is in fairly good agreement with the
observation of Webber et al. (ibid.). Using this estimated phase speed for Rossby waves,
it takes 3 to 4 weeks for the SLA signal to travel from X8 (west of Sumatra) to X4 (south
of Sri Lanka) (∼ 1200 km). The signal then propagates very quickly from X4 to H1,
in the form of CTWs. The phase speed of the CTWs is also estimated from the slope
of the Hovmöller plots on the west coast of India, which is around 178 cm/s [Figure
2.13]. This phase speed results in a travel time close to a couple of days from X3 to
H1. In general the first baroclinic Kelvin wave speed is often thrice the speed of the first
baroclinc Rossby waves. Using this rule, the estimation of phase speed for the Kelvin
waves seems fairly consistent with the theory.

2.4 Discussion

Inclusion of 10 years of altimeter data (October 1999 to November 2009) in this analysis
ensures the robustness of the use of grided SLA data near the coast. During this period
there are times with 3-4 altimeters, producing higher resolution in time and space in the
grided SLA fields. We also limit our analysis for the period of 10 years from October
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1999 to November 2009 so that we can correlate our results with the use of QuikSCAT
scatterometer winds(1999-2009). The use of scatterometer winds instead of model winds
does not alter the overall results (not shown), giving us further confidence in the datasets
used in our analysis, especially near the coast. In our final analysis, we prefer the use of
ECMWF model winds, which are without data-gaps in time and space, reducing small
scale noise in the coastal region.

One set of results, concerns the relative influence of equatorial signals arriving through
Rossby waves from east of Sri-Lanka compared to CTW signals travelling around the
BoB. Robust propagation on the Rossby wave pathway can be seen with a lead of 3
to 4 weeks from Sumatra to the tip of Sri-Lanka; propagation is not as robust in the
case of the east coast CTW pathway. This result provides support for the result found
in the modelling study by Suresh et al. (2013) referenced above, suggesting that the
increase in the correlation between the Equator and the west coast of India compared to
the south-east coast, may be due to the signals arriving along the Rossby wave pathway.
In fact, our Hovmöller Diagram (Figure 2.12) analysis suggests that the energy arriving
from east of Sri-Lanka in the form of Rossby waves does not simply add to the energy
arriving around the BoB boundaries. We hypothesize that the Rossby wave energy can
act to cancel and replace the signals travelling from the south-east coast of India. As
discussed below, large-scale wind forcing south of India and Sri-Lanka also strongly affects
the signals moving up the west coast of India and is the major driving force for SLA
variability, as seen in the regression model.

An additional complication in the lagged correlation analysis is the short lag of 2
days between H4 and H1. A longer lag of 4 days is found in the regression analysis but
this is still short. Below, in discussing the response to the winds, we hypothesize that the
winds are large-scale and generate multiple signals throughout the basin, which arrive
at H1 via different pathways, producing artificial lags in the simple correlation. Thus,
those correlations are only a starting point.

The other set of results consist of responses to large-scale and local winds. Interpre-
tation of the point to point lagged correlations for the wind forcing are difficult because
of the strong coherence between the winds at the tip of India (represented by TA3) and
winds at other locations. Correlations of winds from the tip of India (TA3) with other
winds [Table 2.2], along with the EOF analysis mentioned earlier (Section 3.1), suggests
the dominance of these large-scale winds. The large scale nature of wind forcing for
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the intra-seasonal sea-level response in the northern Indian ocean is consistent with the
previous studies from Vialard et al. (2009) and Webber et al. (2010). This wind signal
produces a lead of 6 days with the SLA on the west coast of India, for reasons not fully
understood.

CTW theory, along with the correlations between the H3 and H1 suggest the travel
time for the SLA signals on the west coast to be approximately 2 days. This leaves open
the question of how the large-scale winds represented by TA3 can produce a lead of 6
days with SLA along the west coast of India? Another question is the reason for the short
lead (2-4 days) between sea level at H4 and H1. We offer two hypothetical mechanisms to
explain these observation. 1) One possible explanation related to both of unrealistic leads
is that these winds produce simultaneous signals with the same frequency at different
locations, creating multiple signals which arrive at H1 with different travel times and
corresponding phase leads. The combination of these signals can create an artificial lead
between the large-scale winds and the signal at H1. As an example, consider large scale
winds blowing to the east between the tip of India and the Equator. These winds will
generate two different SLA signals: low sea level signal at the tip of India due to upwelling;
and high sea level at the Equator due to downwelling (exactly opposite in sign). Both of
these signals will ultimately reach to the west coast of India following pathways shown
in Fig 2.1. The fact that the SLA on the west coast is a combination of the two signals
can create an observed but artificial lead. The observed lead depends upon the separate
travel times to reach H1, along with the frequency and relative amplitudes of the wind
forcing and arriving signals. 2) A second possible explanation behind the approximate
6-day lead (winds at TA3 and SLA at H1) lies in the fact that the time-series used for
making all of these computations is an average of the signals inside corresponding boxes.
In particular, the box H1 is offshore over the slope. The average time-series in box H1
might include the SLA signal which has travelled to the west (off-shore) from the coast
in the form of slowly moving Rossby waves. The H1 time-series may represent a sum of
two travel times: I) CTW travelling on the west coast of India II) slowly moving Rossby
waves carrying the signal slightly farther off-shore to the sampling box; producing an
apparent lag of 6 days.

In preliminary tests, we have used an idealized configuration of the Regional Ocean
Modeling System (ROMS) model with reduced gravity and a flat bottom topography,
using a depth that matches the observed first mode Kelvin wave phase speed in the region
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of interest. A large-scale analytical east-west wind forcing is applied between the tip of
India and the Equator, with a 50 day sinusoid period in time and a Gaussian horizontal
structure in space, centred between the Equator and the tip of India. Correlations of Sea
level and winds from this idealized model produce similar results to those obtained in the
analysis of altimeter SLA and ECMWF winds. The correlations use the identical boxes
for SLAs as used with altimeter SLAs and produce approximate 6-day leads with winds
at TA3 and close to 4 day lead with SLA at H4 when correlated with SLA at H1 [Figure
2.14]. This very preliminary model experiment demonstrates that a narrow frequency
band of large scale winds can produce the observed lags. To quantify and understand the
mechanisms producing these lags, future studies should use more realistic stratification,
realistic bottom topography and wind forcing from QuikSCAT or ECMWF model winds.

2.5 CONCLUSION

Analysis of 10 years of altimeter SLA data and the ECMWF winds on intra-seasonal
time scales of 30-120 days are consistent with previous studies that report the presence
of CTW dynamics along the west coast of India. Sea level at H1 (the west coast of India)
is highly correlated with sea level and alongshore winds farther south along the coastal
wave guide. Sea level at H1 is also moderately well correlated with the sea level east
of Sri-Lanka and along the Sumatra coast, implying a more distant connection to the
Equator. Sea level at H1 is also weakly correlated with sea level and winds along the
south east coast of India. Leads of 3 to 4 weeks are found for sea level between Sumatra
and Sri Lanka, followed by a lead of several days between Sri Lanka and H1. Between
the south-east coast of India and H1, the leads are 11 to 12 days for sea level.

The highest correlation for the wind forcing when correlated with SLA at H1 comes
from the winds at the tip of India(TA3) with a lead of 6 days, which is too long to
represent the creation of CTWs at the tip of India that propagate to H1. Wind forcing
from other key locations also produce a lead close to 6 days when correlated with SLA at
H1, suggesting the large scale nature of wind forcing. However, a multivariate regression
model and coherence calculations give more realistic leads due to the interaction of
SLA and winds within a narrower band of 40-60 day periods. In this narrow band, high
coherences between H1 and local alongshore winds identify lags of 0-2 days, more realistic
for a coastal response to local winds. High coherences between H1 and the south-east
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coast of India correspond to lags of 8-12 days for the same band. A final band-pass
filtering of winds and sea levels to reduce periods outside of the 40-60 day band brings
the lags from the correlation calculations of H1 sea level and winds into agreement with
the coherence calculations and the regression model. In particular, the lead between local
winds and sea level at H1 reduces to a more realistic 0-2 days lead.

Hovmöller diagrams illustrate the propagation of signals through a Rossby wave
pathway and an east coast pathway. Rossby wave phase speeds estimated from the slope
of Hovmöller plots are around 57 cm/s which is consistent with the previous observations
by Webber et al. (2012) for intra-seasonal periods. The observed phase speed produces
a lead of 3 to 4 weeks for SLA signals near Sumatra(X8) to travel to a location south of
Sri-Lanka(X4), and then to travel quickly in the form of CTWs to reach H1. The phase
speed of CTWs along the west coast of India is also estimated from the Hovmöller plots
to be around 178 cm/s. Propagation on the east coast pathway is not robust and does
not occur as often as along the Rossby wave pathway. This result provides a possible
explanation for the modelling study by Suresh et al. (2013), in which the contribution
of equatorial forcing for intra-seasonal SLA variability decreases as we move along the
coastal wave guide from the northern Bay of Bengal to the eastern coast of Sri Lanka.
The correlations then increase along the wave guide from south of Sri Lanka to the west
coast of India. The Hovmöller diagrams provide evidence that the increased connection
between the west coast of India and the equator is explained by the signals arriving along
the Rossby wave pathway.

Table 2.1: Highest correlation of H1 SLA with other time-series and corresponding Lags:
AVISO Daily SLA and ECMWF daily Winds. Shown in bold are the input variables
selected by the regression models.

Max. Correlation of H1 SLA with other variables
Wind Stress(WS) H1 Lag WS Curl H1 Lag SSH H1 Lag

TA1 0.3143 - 5 days C1 -0.2087 - 6 days H1 1.0000 0 days
TA12 0.3465 - 5 days C12 -0.3452 - 5 days H2 0.6882 - 1 days
TA2 0.3634 - 5 days C2 -0.2990 - 6 days H3 0.5559 0 days
TA3 0.5028 - 6 days C3 -0.4121 - 6 days H4 0.3243 - 2 days
TA4 0.4572 - 6 days C4 -0.4348 - 6 days H6 0.2335 - 11 days
TA6 0.2122 - 8 days C6 -0.2984 - 6 days H7 0.2607 - 21 days
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Figure 2.1: Basin-wide schematic of Oceanic wave propagation in the Northern Indian
Ocean; Box H1 represents the region of interest
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Figure 2.2: Sea Surface Height Boxes (in blue); Wind Boxes (in red); Open black
arrows show the sub-boxes separated by dashed blue lines, representing respective coastal
orientations within boxes TA3, TA4 and TA5.
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Figure 2.3: H1 SLA Time-series; Top: Raw SLA overlapped on the seasonal cycle and
trend in the dashed line; Middle: Seasonal Cycle and trend Removed; Bottom: Intra-
seasonal 120 day high passed.
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Figure 2.4: Power Spectrum of Normalized H3 and Normalized TA3; Vertical red lines
represent the 90 % Confidence Interval (CI) for the peaks in Power Spectrum Density
(PSD) plots to be significant; Red encirclement shows the significant coincident peak
between 40-50 days in winds at TA3 and SLA at H3.
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Figure 2.5: Correlation of H1 SLA with: a) Coastal Stations H1, H2, H3 and H6 as well
as H4 b) Rossby Wave Stations H4, H7 and H-Eq; Negative lag means H1 lags; Horizontal
lines in respective colors represent the 95 % significant level for the correlations to be
significant.
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Figure 2.6: Correlation of H-Eq SLA with SLA at other stations; positive lag means
H-Eq leads; Horizontal lines in respective colors represent the 95 % significant level for
the correlations to be significant.
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Figure 2.7: Correlation of H1 SLA with alongshore Wind Stress at different locations;
Negative lag means H1 lags. Horizontal lines in respective colors represent the 95 %
significant level for the correlations to be significant.
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Figure 2.8: Regression Model for Hind-casting SLA at H1; Input Parameters : TA3, H4,
H6, TA1
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Figure 2.9: (Top Panel) Coherence and phase plots between SLA at H1 and along shore
wind stress at TA1(a) and TA3(b); (Bottom Panel) Coherence and phase plots between
H1 and TA12(c) and TA3 and TA1 (d). The dashed red line for the coherence and the
red circles for the phase represent 95% significance levels. Black, Green and magenta
lines represent corresponding values of phases and periods for a constant lag of 2 days, 6
days and 12 days respectively.
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Figure 2.10: Correlation of SLA at H1 with alongshore Wind Stress at different locations
with 40-60 day band pass filtered data; positive lag means H1 leads. Horizontal lines in
respective colors represent the 95 % significant level for the correlations to be significant.
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Figure 2.11: Boxes X4-X8 represent a Rossby wave path way and Boxes H1-X2-X3-X4-
Y5-Y6-Y7 represent the pathway for a coastal trapped signal coming from the east coast
of India.
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Figure 2.12: Hovmöller plot from AVISO SLA(cm); H1-X2-X3 are on the west coast of
India; X4-X8 are the Rossby pathway boxes; where as Y5-Y7 are the East Coast Pathway.
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Figure 2.13: Hovmöller plots of 40-60 day band pass filtered AVISO SLA, as in Figure
2.12, expanded to get an approximate estimate of the propagation speeds of the signals:
a) Boxes H1-X2-X3 on the west coast for the year 2002 ; b) Boxes X4-X8 on the Rossby
wave pathway for the year 2003.

Max. Correlation Daily TA3 wind stress with other wind stress
Wind Stress(WS) TA1 TA12 TA2 TA3 TA4 TA5 TA6

TA3 0.4160 0.5532 0.5509 1.000 0.8379 -0.3357 0.4216
Lag +1 day +2 day +1 day 0 day 0 day +1 day +1 day

WS Curl C1 C12 C2 C3 C4 C5 C6
TA3 -0.3246 -0.6035 -0.4695 -0.7872 -0.7350 -0.1870 - 0.5508
Lag -1 day 0 day -1 day -1 day 0 day -3 day +1 day

Table 2.2: Highest correlation of TA3 alongshore wind stress with other box wind stress
and wind stress curl
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Figure 2.14: ROMS model domain and Correlations: 1) On the left: ROMS model
domain; horizontal arrows indicate the large scale wind forcing schematic. The black
boxes are chosen with same sizes as in the altimeter analysis in order to compare the
correlations of SLA at H1 with SLA at H3, H4 and H6. TA3 represents the wind forcing.
2) on the right: Lagged correlation of SLA at H1 with SLA at H3, H4, H6 and Wind
Stress at TA3. The corresponding lags at maximum correlations are similar to what we
expected from regression models and coherence analysis: (H1 vs H3: -1 day; H1 vs H4:
-4 days; H1 vs TA3: -6 days)
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Chapter 3: Vertical Kelvin wave propagation produced by a
subsurface ridge

3.1 Introduction

Using numerical process modeling supplemented by analytical approximations, we exam-
ine the impact of a submerged ridge on a coastal Kelvin wave in a continuously stratified
basin. We show that such a ridge projecting from the shoreline can scatter a horizontally
propagating, single baroclinic mode Kelvin wave into both upward and downward propa-
gating Kelvin waves emanating from the ridge top. We are motivated in particular by
ADCP mooring observations of coastal trapped signals reported by Amol et al. (2014),
showing evidence of both downward energy propagation (which they expected), and
upward energy propagation (which they did not expect). Both directions of propagation
were evident at the Kollam mooring, located just down the coastal wave guide from
a protruding subsurface ridge on India’s west coast. We suspect that such subsurface
irregularities are common in the world’s coastal topography. It is worth understanding
how they might affect waves that propagate along, and are trapped to the coastline.

Previous studies have long sought to understand the dynamic effects of bathymetric
irregularities in relation to the scattering of coastal trapped waves. Longuet-Higgins
(1968) studied the generation of topographic waves (Double Kelvin waves) due to step-
up/down topography for a barotropic system. Chao et al. (1979) looked at the scattering
of continental shelf waves due to isolated topographic irregularities, again for a barotropic
inviscid ocean. Killworth (1989a) looked at a coastally trapped Kelvin wave hitting a
ridge in a barotropic system and Killworth (1989b) did the same for a more complex two-
layered system. The above research, however, did not focus on the vertically propagating
part of the solution in a continuously stratified basin. In later years, ER Johnson (1990)
looked at the scattering of low-frequency Kelvin wave beams over a stepped topography
and ER Johnson (1991) extending for continuously sloping topography. Both of these
studies again involved a barotropic system and did no not include vertically propagating
beams as part of the solution.
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Another set of studies which relate to this work is the generation of internal tides
due to ridges and sea-mounts. Baines (1973) and Baines (1982) looked at the genera-
tion mechanisms of vertically propagating internal tides due to changes in topography.
Holloway and Merrifield (1999) investigated internal tide generation through numerical
studies with barotropic tidal forcing. All of the above studies provide a useful analogy
to the vertical aspect of our problem. The dynamics are not identical, though, and the
internal tide generation mechanism does not answer all the questions that arise in the
Kelvin wave problem.

Since our purpose is to shed light on the basic physics of the problem, our modeling
is highly idealized including only the most fundamental features required to produce a
qualitatively relevant response. In light of the above motivation, we focus on a 30-day, 1st
baroclinic mode incident Kelvin wave in stratification typical of the west coast of India.
We restrict our modeling to an f -plane at the latitude of the Kollam mooring: 9.10°N.
At this latitude, the Coriolis parameter changes rapidly along the west coast of India, but
motions with 30-day periods are trapped to the coast (do not radiate Rossby waves), and
such intraseasonal signals have been demonstrated to make important contributions to the
local coastal circulation (Amol et al. 2012, Suresh et al. 2013, Amol et al. 2014, Dhage
and Strub 2016 ). Furthermore, the mechanism that we investigate occurs over a small
range of latitudes, over which the Coriolis parameter can be considered constant. Finally,
we seek to understand the most fundamental aspects of the Kelvin wave-topography
interaction, and insights from this study are likely to be appllicable to situations at
higher latitudes, where the f -plane approximation is more appropriate. In light of the
Kollam mooring motivation, we model only ridges with a top at the 250 m depth, similar
to the depth of the ridge south of the mooring. To demonstrate the important dynamics,
we primarily investigate the effects of the ridge width (alongshore extent) on the basin
response, with some additional consideration of ridge length (offshore extent).

We refer to the side of the ridge from which the incident Kelvin wave approaches as
the upstream side, and the other side as the downstream side. The main part of our
analysis focuses on a semi-infinite ridge, modeled as a ridge that extends from the Kelvin
wave boundary at the coast completely across the numerical basin, with a sponge layer
at the far end. An incident Kelvin wave can scatter into motions on the ridge top that
will then force the downstream basin, and it can also scatter into waves that propagate
along the upstream side of the submerged ridge. In the case of the semi-infinite ridge,
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these latter waves cannot reach or affect the downstream basin - in the numerical model
they are absorbed in the sponge layer far from the coast. When the length of the ridge is
finite, they can propagate around the perimeter of the ridge and recombine with motions
forced by propagation over the ridge top. After analyzing the semi-infinite ridge problem,
both analytically and numerically, we use numerical experiments to examine how finite
ridge lengths alter the solution.

The problem we study has some similarities to that studied by Nethery and Shankar
(2007), who modeled the effect on the west coast of India of variability in the monsoon
current flowing south of Sri Lanka. The vertical structure of this current does not project
perfectly onto a single baroclinic mode of the basin, and it thus excites coastal waves
containing a spectrum of vertical modes, which thereby exhibit vertical propagation. In
our case, the incident wave structure does not in general project perfectly onto a single
ridge-top baroclinic mode, and the resultant ridge-top flow does not project perfectly onto
a single baroclinic mode of the downstream basin. A spectrum of vertical modes is excited,
and vertical propagation is produced in each case. The solutions of Nethery and Shankar
(ibid.) exhibited only downward energy propagation, but some of our solutions exhibit
both downward and upward energy propagation in the downstream basin. We show that
the degree to which upward propagation is evident depends on the vertical profile of the
ridge-top alongshore current. This in turn depends on the width of the ridge, due to the
vertical propagation of the ridge-top wave1. Because of the dynamical similarity between
our problems, we suggest that the Nethery and Shankar (ibid.) solutions could also have
produced upward energy propagation, but that the vertical structure of the monsoon
current was not conducive to this.

In section 3.2, we present an approximate analytical solution for the problem of a
Kelvin wave propagating over a semi-infinite ridge. Section 3.3 describes the numerical
model configuration, and section 3.4 compares the numerical model results with the
approximate analytical model predictions. In Section 3.5, we discuss questions arising

1It also depends on the structure of the ridge-top boundary current, but we do not analyze this in
detail. In this draft we demonstrate the effect of the vertical structure of the downstream basin’s Kelvin
wave current at the intersection of the ridge-top and downstream basin domains. The connection between
this current structure and that of the ridge-top Kelvin wave current at the same location is a matter of
ongoing investigation. The two currents are not identical, because evanescent Poincare modes complete
the solution near domain changes, and these modes are not included in the analytical approximate
solutions.
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from the solutions, exploring analytical approximations for alongshore currents as a KW
boundary condition into the basin. In the later part of the section we show numerical
solutions for parts of the problem that we do not address analytically. Our results are
summarized in section 3.6.

3.2 Analytical Approximation

In this section we present analytical approximations for important aspects of the problem
of a Kelvin wave propagating over a semi-infinite subsurface ridge in a continuously strat-
ified ocean. We consider an incident wave of a single frequency and a single vertical mode,
because we are interested in how the ridge can scatter a horizontally propagating wave
into vertically propagating waves. Ours is not a rigorous approach, but the assumptions
made are physically reasonable, and we test the validity by comparing the predictions
with results of a linear numerical model. The analysis is on a northern hemisphere f -plane
at a subinertial frequency, for which the Kelvin wave is the only free wave solution to
the linear, in-viscid equations of motion. A time dependence of e−iω0t will be assumed
wherever it is not included explicitly in the equations.

Figure 3.1 shows the geometry of the problem in a Cartesian coordinate system
(x, y, z), with the water surface at z = 0 and a solid boundary at x = 0. There are three
distinct, flat-bottom domains: the upstream basin, the ridge top, and the downstream
basin. In each, the motions can be projected onto a series of shallow-water, horizontal
problems for the vertical modes of the particular domain. At an intersection between
two domains, the sum of solutions on one side of the intersection must match that on
the other side. We simplify the problem by considering only a match of the integrated
alongshore energy flux at each intersection at the wall (x = 0), allowing us to treat
only the Kelvin wave parts of the total solution. Thick arrows in Fig. 3.1 represent the
permissible Kelvin wave solutions in each of the domains. A known incident Kelvin wave
(A) in an upstream basin of depth Hb propagates along the boundary at x = 0 until
it encounters a semi-infinite ridge at y = Y1. The ridge is perpendicular to the basin
boundary, has a water depth Hr < Hb, and extends from the boundary to x = −∞. At
y = Y1, the incident wave excites Kelvin wave B along x = 0 on the ridge top. It also
excites Kelvin wave D, which is trapped to the subsurface ridge and propagates toward
x = −∞ along y = Y1. At y = Y2, the ridge-top Kelvin wave B excites Kelvin wave C
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in a basin of depth Hb. This wave propagates along x = 0 toward y = ∞. A radiation
condition specifies that there is no incoming Kelvin wave from x = −∞ along y = Y2, so
wave C is the only permissible Kelvin wave solution in the downstream basin.

We expect that in general, waves B, C, and D will each contain a spectrum of vertical
modes, due to the failure of an upstream incident wave to project perfectly onto a single
vertical mode of the adjacent downstream domain. The vertical modal solutions for wave
D are special cases of the submarine canyon solutions developed by Grimshaw et al.
(1985). In our case, the canyon is infinitely wide, the “continental slope” is horizontal,
and the frequency is subinertial. The Poincare modes that complete the solution near
y = Y1, z = −Hr are thus evanescent, and do not contribute to the energy flux budget.
We are primarily concerned with predicting wave C, and we will address wave D only
to the extent that it extracts energy flux from incident wave A. Evidence of this wave
in the numerical results will be shown in the Discussion. A barotropic double Kelvin
wave (Longuet-Higgins, 1968) can also propagate toward x = −∞ along y = Y1. Our
numerical experiments show little evidence of this wave, likely because the incident wave is
baroclinic. Accordingly, we will not include the double Kelvin wave in our approximation.

At the intersections between the various domains (at y = Y1 and y = Y2), the
Kelvin wave solutions by themselves cannot necessarily meet all of the no-normal-flow
boundary conditions, and they do not provide continuity of pressure and velocity across
the intersections at every value of x and z. There are additional Poincare modes with
imaginary wavenumbers that decay away from (x = 0, y = Y1) and (x = 0, y = Y2) on the
scale of the appropriate deformation radius. These trapped solutions provide the pressure
and velocity continuity, in addition to satisfying any boundary conditions that the Kelvin
wave solutions fail to satisfy. An example of the individual Kelvin wave and evanescent
Poincare solutions (together with their superposition) at a domain discontinuity in a
two dimensional problem can be seen in Fig. 2 of Durland et al. (2009). An isolated
evanescent solution cannot carry an energy flux, in which case the energy flux balance
must be provided solely by the Kelvin waves. This is the foundation of our approximation,
and it depends on Y2−Y1 � Ldr, where Ldr is the appropriate deformation radius for the
ridge-top domain. When this condition is not met and the solutions trapped to Y1 and
Y2 overlap on the ridge top, additional energy flux can tunnel between the evanescent
modes, thus degrading our approximation. A more rigorously complete treatment could
include the evanescent Poincare modes at y = Y1 and y = Y2, as well as the barotropic
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and baroclinic components of “wave D” along y = Y1. For a lowest order approach
however, we proceed under the assumption that the energy flux balance is dominated by
the Kelvin wave contributions. We then compare our solutions with numerical results
for progressively narrower ridges, to determine the validity limits of our approximations.
Velocities, pressures and energy flux values in what follows refer only to the Kelvin wave
solutions.

3.2.1 Horizontal energy flux balances

Vertically propagating Kelvin waves can carry a vertical energy flux, but all following
references to energy fluxes and their balances apply only to the horizontal fluxes. The
alongshore fluid velocity (V ) of the Kelvin wave is in exact geostrophic balance with the
pressure (P ):

V = (ρ0f0)−1 ∂xP, (3.1)

where f0 is the Coriolis parameter and ρ0 is the Boussinesq mean density. In a periodic
solution, the period averaged alongshore horizontal energy flux is

F =
∫ 0

z=−H
dz

∫ 0

x=−∞
dxV P/2. (3.2)

Taking advantage of (3.1) and the fact that the Kelvin wave decays toward x = −∞, the
energy flux at a given y0 is

F = (2ρ0f0)−1
∫ 0

z=−H
dz

∫ 0

x=−∞
dx ∂xP

2/2 = (4ρ0f0)−1
∫ 0

z=−H
dz P 2(x = 0, y0, z).

(3.3)
At each of the domain intersections, this integral evaluated for the wave on one side of
the intersection must equal the integral evaluated for the wave on the other side of the
intersection.

We make the further assumption that the cross-intersection energy flux balance holds
at every z level. This may not be precisely true, but it is a reasonable lowest order
expectation. For instance, this assumption forces the energy flux into the downstream
basin at y = Y2 to emanate from depths shallower than the submerged ridge top, rather
than from the solid boundary below that level. Applying this principle at y = Y1 implies
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that the energy flux in wave B comes from the incident wave energy flux above z = −Hr,
and the energy flux in wave D comes from the incident wave energy flux below z = −Hr.
Consequently, we expect the following matches of Kelvin wave pressures along the solid
boundary (x = 0) at the domain intersections:

PB(x = 0, y = Y1, z) = PA(x = 0, y = Y1, z), −Hr < z < 0, (3.4)

PD(x = 0, y = Y1, z) = PA(x = 0, y = Y1, z), −Hb < z < −Hr, (3.5)

PC(x = 0, y = Y2, z) = PB(x = 0, y = Y2, z), −Hr < z < 0, (3.6)

PC(x = 0, y = Y2, z) = 0, −Hb < z < −Hr. (3.7)

The subscripts on P refer to the Kelvin waves shown in Fig. 3.1.

3.2.2 Vertical mode projections

For a given profile of buoyancy frequency, N(z), we solve the vertical eigenvalue problems
in each of the domains to yield the structures of the vertical modes, and their associated
Kelvin wave speeds (eigenvalues). For the upstream and downstream basins (depth
Hb), these are labelled Zbn(z), −Hb < z < 0, and Cbn, n = 0, 1, 2, · · · , where n = 0
denotes the barotropic mode.2 For the ridge top domain (depth Hr), they are labelled
Zrn(z), −Hr < z < 0, and Crn. The associated deformation radii are Lbn = f/Cbn and
Lrn = f/Crn. In each domain, the eigenfunctions are normalized so that

∫ 0

−H
dz Zm Zn = δmn, (3.8)

where δmn is the Kronecker delta. For each vertical mode n, the expressions for the
Kelvin wave pressure and velocity are:

Pkn = PnZn(z) exp
[
x

Ln
+ iω0

(
y

Cn

)]
e−iω0t, (3.9)

V kn = 1/(A0f0Ln)Pkn (3.10)
2Although the incident wave A is baroclinic, it will in general project onto the ridge-top barotropic

mode, and the ridge-top pressure may project onto the barotropic mode in the downstream basin.



51

The e−iω0t factors out of summations of vertical modes and will be implied but not
explicitly included in the equations to follow.

The pressure of the incident wave (A) has a unit amplitude, a vertical structure
Zb1(z), and a spatial phase of 0 at y = Y1. The ridge-top pressure of wave B at Y1 is

PB(x = 0, y = Y1, z) =
∞∑
n=0

PBnZrn(z), (3.11)

where the ridge-top modal amplitudes are calculated from the pressure match with Zb1:

PBn =
∫ 0

z=−Hr
Zb1(z′)Zrn(z′) dz′. (3.12)

The full solution for the pressure of Kelvin wave B is

PB(x, y, z) =
∞∑
n=0

PBnZrn(z) exp
[
x

Lrn
+ iω0

(
y − Y1
Crn

)]
, −Hr < z < 0. (3.13)

The vertical structure of Kelvin wave B is y dependent, so the pressure match that
determines wave C will depend on the width of the ridge (Y2 − Y1):

PC(x=0, y=Y2, z) =
∞∑
m=0

PCmZbm(z) (3.14)

=
∞∑
n=0

PBnZrn(z) exp[i(ω0/Crn)(Y2 − Y1)],−Hr < z < 0,(3.15)

= 0, −Hb < z < −Hr. (3.16)

The complex modal amplitudes for wave C are

PCm =
∞∑
n=0

PBn exp[i(ω0/Crn)(Y2 − Y1)]
∫ 0

z=−Hr
Zbm(z′)Zrn(z′) dz′, (3.17)

and the full solution for the pressure of wave C is

PC(x, y, z) =
∞∑
m=0

PCmZbm(z) exp
[
x

Lbm
+ iω0

(
y − Y2
Cbm

)]
, −Hb < z < 0. (3.18)

The infinite summations above are truncated to include a finite number of vertical modes
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that provide reasonable convergence.
The velocities for waves B and C are

VB(x, y, z) = (ρ0f0)−1
∞∑
n=0

PBn
Lrn

Zrn(z) exp
[
x

Lrn
+ iω0

(
y − Y1
Crn

)]
, (3.19)

VC(x, y, z) = (ρ0f0)−1
∞∑
n=0

PCn
Lrn

Zbn(z) exp
[
x

Lbn
+ iω0

(
y − Y2
Cbn

)]
. (3.20)

3.2.3 Limitations of the approximate solution

The approximate solution depends on a pressure match at a domain discontinuity, which
in turn depends on all of the alongshore energy flux being carried by Kelvin waves. This
latter requirement is satisfied for an incident basin Kelvin wave encountering a shallower,
semi-infinite shelf, or for an incident Kelvin wave on a semi-infinite shelf encountering a
drop into a deeper downstream basin. Evanescent Poincare modes that are trapped to
either of these domain discontinuities cannot carry an energy flux.

In the case of the finite-width ridge, however, evanescent modes can tunnel an along-
shore energy flux if the decaying modes trapped to the two domain discontinuities overlap
between the discontinuities. The amount of the energy flux depends on the amplitudes
of the decaying modes at the region of overlap (or alternately, the amplitude of one at
the location of the other discontinuity). For a particular vertical mode, an evanescent
Poincare mode will decay from a domain discontinuity at the relevant deformation radius.
The deformation radii for the barotropic and first two baroclinic modes on the 250m
deep shelf are roughly 2200, 52 and 23 km. The evanescent barotropic modes atop a
ridge of realistic width would clearly have significant overlap, but we still do not expect
them to carry a significant energy flux because the associated alongshore velocity is
proportional to the inverse of the deformation radius. As a lowest order prediction, we
would expect the approximate solution to degrade as the ridge width decreases to the
order of perhaps two deformation radii of the first baroclinic mode, or roughly 100 km.
This prediction in itself can be problematic, because the energy fluxes in the individual
vertical modes are not necessarily orthogonal: the velocity of one mode can act on the
pressure field of another. Further analysis is beyond the scope of this work, and we rely
now on comparisons of the approximate solutions with numerical solutions.

Because of the difference between vertical eigen solutions on either side of a domain
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discontinuity, the Kelvin wave pressure matches at (x = 0, y = Y1) and (x = 0, y = Y2)
imply that the Kelvin wave pressures do not match at Y1 and Y2 for x 6= 0. The Kelvin
wave velocities also do not, in general, match at Y1 and Y2. The velocity matches, and
the pressure matches for x 6= 0 must be provided by the evanescent modes, which we
have ignored.

3.3 Numerical Model

For the purpose of this paper, we consider the true response of an upstream Kelvin wave
propagating over a ridge to be given by the numerical solutions, for which we use the
Regional Ocean Modeling System (ROMS) (Shchepetkin and McWilliams, 2005). To
these solutions we will compare the solutions described in Section 3.2, which we refer to as
the “approximate analytic solutions.” For best comparison with the approximate analytic
solutions, ROMS is configured without viscosity, without non-linear momentum terms
and with a constant Coriolis parameter, appropriate for 9◦N. The basin depth is 3000m,
and the stratification is sub-sampled at 40 sigma levels from the stratification used in the
approximate solution (consistent with values from the 2009 World Ocean Atlas along the
west coast of India). Horizontal grid spacing is 5 km× 5 km. There is a solid meridional
eastern boundary at x = 0, and sponge layers along the northern and western boundaries,
with horizontal viscosity of 1500m2/s for 100 km away from the western boundary. To
simulate a semi-infinite ridge, the offshore ridge projects from x = 0 to the sponge layer
at the western boundary. The southern edge of the ridge (y = Y1) is at 900 km from the
southern boundary of the model domain, and the northern boundary is between 3000
and 6000 km from the southern boundary, depending on the experiment. The ridge top
is at a depth of 250m for all experiments.

The bathymetry for the ROMS configurations of the above scenarios is shown in
Figs. 3.2 b) and 3.4, along with the depths of the sigma levels for undisplaced fluid in the
basin. Because ROMS uses terrain following (sigma) vertical coordinates, the model is
unstable for a bottom slope that is too steep. The maximum recommended value of the
slope parameter (|h2−h1

h2+h1
|) is 0.25. For this reason, the sides of the subsurface ridges are not

vertical; a possible source of discrepancy between the ROMS and approximate solutions.
The slope of the bathymetry along the ridge is smoothed with a slope parameter of 0.20.
This smoothing leads to a gradually sloping of the ridge edges at y = Y1 and y = Y2.
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The slope deformation of the sigma levels between a basin and the ridge top is shown in
Fig. 3.2 a).

Although we are initially motivated by observations of vertically propagating coastal
waves on the west coast of India, our solutions clearly are not intended to represent
realistic solutions over the full range of latitudes implied in the model configuration. Our
intent is to show the effect on a Kelvin wave of the large change in depth that occurs at
both the upstream and the downstream edge of a ridge. Each of these effects occurs over
a small enough range of latitudes that the dominant local physics can be approximated
by f -plane dynamics. The large range of latitudes (y coordinate) for which we show
solutions just simplifies the interpretation of what happens at the depth discontinuities.

A first baroclinic mode Kelvin wave is generated at the southern boundary by imposing
the appropriate meridional velocity there, with a sinusoidal time dependence at a 30 day
period. The maximum amplitude for the meridional velocity forcing is 0.06m/s. After
transients generated by the initial wavefront have been absorbed by the sponge layers, a
time series two periods long is regressed onto a 30 day cycle to determine the amplitude
and phase at each point in the domain.

Because we expect a y dependence of the ridge-top solution (eq. 3.15), we begin
by examining a ROMS solution for a semi-infinite shelf, extending from y = Y1 to the
northern boundary. This is referred to as the shelf solution, and it will be compared with
a comparable approximate shelf solution. We then calculate ROMS solutions for finite
ridge widths of Y2 − Y1 = 600, 200, and 120 km. The comparable approximate solutions
use vertical profiles from the approximate shelf solution for the pressure matches at
y = Y2, and we expect that these approximations will degrade as the width is decreased,
due to tunneling by the evanescent modes.

ROMS does not explicitly provide pressure as an output. Potential temperature
and salinity from the output is used to obtain the potential density profile at each grid
point (using the linearized equation of state). The vertical integration of the hydrostatic
balance from surface to a certain depth provides the pressure at that depth. The pressure
perturbation associated with the wave dynamics is obtained after removing the mean
background hydrostatic pressure.
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3.4 Results

This section displays both the ROMS and the approximate solutions for the scenarios
described above. For both ROMS and approximate solutions, each figure shows a y-z
contour plot of the perturbation pressure amplitude (panel a) and phase (panel b) at
x = −∆x/2, the closest that the pressure grid points get to the boundary at x = 0 in
the ROMS staggered C-grid. However, the pressure match that conserves alongshore
energy flux is at x = 0, in the approximate solution. Thus, the figures for the approxi-
mate solution at x = −∆x/2 show a slight discontinuity at domain intersections in the
approximate analytic solutions.

3.4.1 Response of a shallow shelf to an incident 1st mode Kelvin wave

To understand the shelf response on the ridge-top we designed a numerical model with a
semi-infinite shelf. Panel b) of Figure 3.2 shows the bathymetry of the domain. A forced
mode-1 KW propagates from the southern boundary and hits the southern edge of the
shelf (y = Y1) to generate the shelf response on the ridge-top. In the Panel c) of Fig. 3.2,
we show a snapshot of alongshore currents from the ROMS solution for the shelf scenario.
The zero crossing of the incident Kelvin wave is at ∼ -890m in the upstream basin, so
the incident alongshore currents are unidirectional above the 250m depth of the shelf.
Nevertheless, the alongshore currents along the shelf quickly develop a bi-directional
vertical structure. The pressure match at the southern edge of the shelf includes a
significant contribution from the shelf’s barotropic mode, but this mode contributes
little to the alongshore velocity. This is because the Kelvin wave velocity is inversely
proportional to the deformation radius, and the deformation radii for the barotropic and
first baroclinic modes above the shelf are roughly 2200 km and 52 km, respectively.

The approximate analytical solution with the pressure match at (y = Y1) is compared
with the numerical ROMS solution. Figure 3.3 I a) and I b) show the amplitude and
phase of ROMS perturbation pressure at x = −∆x/2, extracted through a least-squared
regression analysis in YZ for a 30 day period, where as, II a) and II b) show the analytical
approximate solution amplitude and phase for the same. The slight discontinuity at the
domain intersection in the approximate solution at x = −∆x/2(mentioned above) is
evident.
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The approximate solution gives a very close match with the numerical solution. The
incident KW pressure has an amplitude maximum near the surface, and it decreases
with depth with no vertical phase change above the level of the ridge top. On the shelf,
however, the amplitude and phase show a multi-modal vertically propagating KW beam
pressure structure emanating from the southern edge of the shelf. The multiple modes
are demonstrated by the horizontally changing vertical structure of the amplitudes over
the shelf.

As these modes travel with different phase speeds, the vertical pressure structure
depends on y. For instance, the pressure amplitude is highest near the surface at the
southern edge of the ridge. At y = 2000 km, however, the pressure amplitude is greater
near the bottom. The y-dependence of the vertical structure on top of the shelf implies
different boundary conditions at y = Y2 for ridges of different widths, which then forces
the responses in the downstream basin.

In the next section, we focus our attention on finite width ridges, where the width of
the ridge is varied and the corresponding basin responses past the ridge are compared.

3.4.2 Basin response downstream of a finite width ridge

In the previous section, the ROMS model run and solutions from the analytical approxi-
mations showed that the vertical structure on top of the semi-infinite shelf is dependent on
the y-location. This suggest that different widths of ridges would have different boundary
conditions for the basin response past the ridge. In this section, we display the output
from several numerical model runs with varying ridge widths: 1) 600 km width, 2) 200
km width, and 3) 120 km width. The first two are categorized as wide ridges (wider
than twice the mode 1 baroclinic Rossby radius of deformation on the shelf: 2λ1 ' 104
km) and the last one as a narrow ridge (close to the limit of twice the Rossby radius of
deformation on the ridge top).

To obtain the response in the downstream basin for the analytical approximation,
we match the pressure at the wall at the southern end of the ridge (y = Y 1) and at the
northern end of the ridge (y = Y2).
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3.4.2.1 Wide Ridges: 600 km and 200 km

The top panel of Figure 3.4 shows the bathymery used for the ROMS model run for
a) a 200 km wide ridge and b) a 600 km wide ridge. The southern boundary is to the
right of the domain at y = 0, where the known incident mode 1 KW is forced. The wall
representing the west coast of India is located along x = 0. The bottom panels show the
vertical slope of the ridge on either side. Black arrows show the northern and southern
end of the ridges where the pressure match is carried out in the approximate solution
(with straight vertical walls) to obtain the basin response on the ridge-top and past the
ridge.

Figures 3.5 and 3.6 show the amplitude and phase for the KW perturbation pressure
for these 2 cases: I) ROMS model run; and II) Basin Response through the analytical
approximations, for a 30 day period. Panel a) represents the amplitude and panel b)
shows the associated phase. The basin response past the ridge for 600 km and 200 km
width ridges are different, which can be seen in both amplitude and phase plots of ROMS
as well as the analytical approximations. The robust feature in both of the cases is a
distinct upward propagating KW beam in amplitude and phase plots emanating from
the top of the ridge at y = Y2. This upward propagating KW beam amplitude intensifies
as it propagates upward. The downward propagating KW beam, however, is lower in
amplitude, possibly because the stratification decreases with depth.

Low latitude f -plane internal Kelvin wave (IKW) beams propagate vertically on a
sloping IKW ray path, which is a function of depth, due to N(z):

dz

dy
= ± σ

N(z) , (3.21)

where N(z) is the buoyancy frequency (Romea, 1983). These are plotted as green lines in
Figures 3.5-3.7. The obtained amplitude and phase structures approximately follow the
IKW ray path ( also know as Wentzel–Kramers–Brillouin [WKB] ray path when derived
with the WKB approximations) with the existence of multiple modes in the downstream
basin.

The green lines representing IKW ray paths follow the upward and downward beams
fairly closely. The phase travels from red to blue (in the negative direction; Green
arrow), suggesting a downward phase propagation (upward energy propagation) in the
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top 250 meters and a upward phase propagation (downward energy propagation) below
250 meters (across the IKW rays).

One of the differences between the 600 and 200 km width ridges is the width of the
upward propagating KW beam. The amplitude and phase plots for the 600 km width
ridge show a wider upward propagating beam when compared to the 200 km width ridge
(Figure 3.5 and 3.6). We believe this is due to the different vertical structures of the
forcing at y = Y2. The criteria to generate a wider upward propagating beam in relation
to the vertical structure at the northern end of the ridge is addressed in detail in section
3.5.

There are several differences between the ROMS and analytical approximation ampli-
tude and phase plots. For instance the amplitude intensification of the upward propagat-
ing beam, as it propagates upward, is more pronounced and robust in the approximate
solution when compared to ROMS. This is seen in the greater pressure amplitude of the
approximate solution at y = 2000 km along the IKW ray. Overall the match between
the approximate solution and ROMS is fairly good for the first 100 - 200 m below the
level of the ridge top, but less good below that. We believe that the increasingly coarse
sigma level spacing in the deep basin may contribute to this discrepancy (see Fig 3.2 a).
ROMS uses terrain following sigma co-ordinates in Z with a higher resolution of sampling
for first few hundred meters below the free surface, and a progressively coarser resolution
of sampling at greater depths, following the bathymetry. Another key difference between
the ROMS model and the approximate solution is that the edge of the ridge in the
latter problem has a sharp corner with a straight vertical wall in Z, whereas ROMS has
smoothly rounded bathymetry with a gradual sloping edge of the ridge. We believe this
may contribute to the difference in width of the upward propagating beam between the
approximate and numerical solutions.

The ROMS solutions contain the trapped Poincare modes at the ridge edges, which
are not present in the approximate solutions. Much of the discrepancy between ROMS
and the analytical approximations near the ridge corners can be associated with these
differences.
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3.4.2.2 Narrow Ridge: 120 km

Figure 3.7 shows the amplitude and phase for the perturbation pressure structure for : I)
ROMS model run II) approximate analytic solutions for the narrow 120 km ridge. The
panel a) represents the amplitude and the panel b) shows the associated phase for a 30 day
period sinusoid. The distinct change from the wide ridges to this narrow one is that the
upward propagating KW beam as in the earlier cases is not as robust. This is especially
evident from the plots of ROMS amplitude. There is also a significant difference between
ROMS and the approximate solution. The phase plot of ROMS suggests that the phase is
moving upward (green arrow) throughout, suggesting a downward propagation of energy.
On the other hand, the approximate solution continues to show an upward propagating
beam. Compared to the wide ridge, however, this upward propagating beam is much
narrower in pressure amplitude and phase for the narrow ridge.

As discussed in the earlier Section 2.3, for narrow ridges, the ridge trapped Poincare
modes interact with each other significantly enough to contribute an alongshore energy
flux into the downstream basin. The approximate solution does not include this energy
flux and so degrades as the ridge width decreases to the order of two deformation radii of
the first baroclinic mode (∼ 104 km). The narrower the width of the ridge, the greater
is the contribution of the trapped modes to the alongshore energy fluxes. Thus, narrow
ridges don’t have a sufficient width to generate a strong upward propagating beam in
the ROMS solution, as seen in Figure 3.7.

3.5 Discussion

In the last section we discussed the influence that the ridge width has on the response of
the downstream basin. Pressure solutions for 600 km and 200 km width ridges showed
different widths of the upward propagating KW beams past the ridge. We have noted that
the Kelvin wave currents are not continuous between the ridge top and the downstream
basin (y = Y2). In this section we address the issue by examining how the vertical profile
of the Kelvin wave current at the beginning of the downstream basin (y = Y2) affects the
characteristics of the upward propagating beam.

In the latter part of this section we discuss model solutions for ridges with finite
lengths. Evidence for the wave trapped to the subsurface ridge (wave D, Fig, 1) is
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shown, and the downstream basin response to the finite-length ridge is compared to the
semi-infinite ridge solution.

3.5.1 Alongshore Velocity in the downstream basin

Figure 3.8 shows the alongshore velocity amplitudes at the wall for both the ROMS and
the approximate analytical solutions for 600 km and 200 km ridge widths. Unlike the
approximate solution, the ROMS velocities are continuous at the domain discontinuities.
The continuity in the ROMS velocity is provided by the trapped modes not present in
the approximate solutions. Velocities on top of the ridge next to the bottom indicate
vertical propagation caused by scattering of multiple shelf-KW modes. In the ROMS
solution these modes appear smoothed by processes generated in the trapped modes at
the leading edge of the ridge. Velocities near the surface are reduced in both ROMS and
approximate solutions for the wider ridge. For the narrower ridge velocities in the ROMS
solution maintain most of their strength near the surface.

In the downstream basin, velocity amplitudes show a wide and robust upward propa-
gating KW beam for the 600 km width ridge. The 200 km width ridge has a narrower
upward propagating KW beam. We are interested in how the different vertical structures
at the northern edge of the ridge in pressure and alongshore currents are related to the
different basin responses.

Figure 3.9 shows the alongshore current amplitude profiles in the deep basin next to
the ridge at at y = Y2 and x = 0 for the two ridge widths [a) Approximate b) ROMS ].
At y = Y2, the KW basin boundary currents are determined by the KW pressure match
at the discontinuity for the approximate solutions. In the ROMS solutions, alongshore
velocities at y = Y2 include components from both the KWs and trapped Poincare modes.
The current amplitude profiles for both solutions include local broad maxima near the
surface and sharper peaks just above the height of the ridge top. Surface currents are
greater for the narrower ridge (especially for ROMS), while subsurface peaks are greater
for the wider ridge.
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3.5.2 Analytical Kelvin wave Current Boundary Conditions

In this section we examine the basin responses to different possible KW boundary con-
ditions in the form of vertical structures of alongshore current at y = Y2 . We impose a
boundary condition at (x = 0, y = Y2) for the Kelvin wave solutions in the downstream
basin, and examine how changes in the vertical structure of this boundary condition affect
the upward propagating beam. In particular we are interested in the relative importance
of local surface maxima in comparison to that of the sharper subsurface peaks.

Figures 3.10 - 3.16 display the analytical solution past the ridge for various vertical
structures of alongshore KW current amplitudes as the basin KW boundary conditions.
We first start with a subsurface peak at the depth of the ridge top as KW boundary
condition (Figure 3.10-3.11), followed by broad surface maxima (Figure 3.12). We next
present the basin response for both maxima, with a stronger (Figure 3.13) or a weaker
(Figure 3.14) subsurface maxima. Finally, we use smoothed versions of ROMS alongshore
velocity amplitude profiles next to the downstream edge of the 200 km wide ridge (Figure
3.15) and the 600 km wide ridge (Figure 3.16).

The presence of the subsurface peaks in the KW boundary condition produces distinct
upward and downward propagating KW beams. The width of these vertically propagating
KW beams decrease as the width of the subsurface peaks in the KW boundary current is
reduced. This is clearly seen in panels c where we plot alongshore velocity amplitude as
a function of time and depth at x = 0, y = 300 kms downstream (dashed line in panels
a and b). Note the decrease in the width of the amplitude in the colorbar in (Figure
3.10-3.11 c).

The presence of a broader local surface (0 - 100 m) maximum in the alongshore
velocity amplitude at y = Y2 is associated with a combination of horizontal propagation
of energy (in the surface 100 meters) and broadly downward propagating KW modes.
The time-series in panel c demonstrates a stronger horizontal propagation of amplitude
and a weaker amplitude of downward propagating energy.

Figures 3.13-3.14 combines the effects of the broader surface local maxima with the
effects of the subsurface velocity peaks in the KW boundary current profiles at y = Y2.
When the strength of the surface maximum is greater the basin response includes relatively
stronger horizontal propagation of energy at the surface than in the subsurface vertically
propagating KW beams (Figure 3.13). On the other hand, when the strength of the
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surface maximum is weaker, the strength of the horizontal propagation of energy at the
surface is also weaker than the upward propagating KW beam (Figure 3.14). These
idealized profiles relate to the vertical structures of alongshore currents next to the
downstream edge of the ridge in the ROMS solutions, in the subsurface peaks and the
broader surface maxima in the alongshore velocity amplitudes. The narrower ridge has
a stronger surface local maximum ( Figure 3.9) relative to the subsurface peak similar
to Figure 3.13. The wider ridge has a stronger subsurface peak relative to the surface
maximum, similar to Figure 3.14. It’s important to note that the ROMS velocity profiles
include contributions from the trapped Poincare modes. However, the velocity profiles
derived from the approximate analytic KW solutions (Figure 3.9) show a similar increase
in relative strength of the subsurface peaks as the ridge becomes wider.

For better comparisons of the basin’s analytical response to the ROMS solution, we
used smoothed vertical velocity profiles at the upstream edge of the basin (Figure 3.9 b)
as KW boundary conditions. Figures 3.15-3.16 present the analytical basin response to
smoothed ROMS velocity profiles for the 200 km (Figures 3.15) and 600 km wide (Figures
3.16) ridges. These can be compared to the basin responses to more idealized velocity
profiles in Figures 3.13 - 3.14 and more realistic ROMS basin responses in Figure 3.8 a). In
Figure 3.8 a) the contribution from the trapped modes becomes negligible approximately
200 kms (2 Rossby radii) downstream of the ridge. In contrast the contributions of the
trapped modes to the ROMS velocity profiles used as boundary conditions in Figures
3.15-3.16, become the part of the KW solutions that propagate through the entire basin.
In-spite of this contamination from trapped modes, the analytic representation of the
basin response using the total ROMS velocity profiles includes the basic characteristics of
the basin response to the idealized forcing ( 3.13-3.14) and the full ROMS response (Figure
3.8 a]). Those characteristics are : wider ridges result in a stronger upward propagating
KW beam of energy; narrower ridges result in a stronger horizontal propagation of energy
in a surface layer.

3.5.3 Ridge waves: Wave D

All of the previous numerical and analytical experiments were carried out for the fully
extended submerged ridges. In reality, however, the submerged ridges are finite in length
and the basin response past the ridge contains a contribution from ridge waves traveling
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along the ridge. To explore the ridge wave (wave D) dynamics, we extract the cross-shore
(U) currents along the fully extended ridge. The brown dotted lines in the upper 500 m
(Figure 3.4 bottom panel a) indicate the XZ transect across which the currents along the
ridge (U) are extracted. Figure 3.17 shows the amplitude and phase for these currents:
panel a) north of the ridge and panel b and c) for south of the ridge. Along the southern
side of the ridge, there are significant amplitudes of cross-shore currents. Phase contours
for the same suggest the existence of a multi-modal vertically propagating ridge wave.
This confirms that wave D exists and can extract energy from the incident KW. As
expected for the fully extended ridge, the amplitude of the cross-shore currents (U) is
very low on the northern transect (panel a), showing that the wave D is absorbed by the
off-shore sponge layer. If the ridge is finite in length, however, wave D can propagate
around the ridge and affect the downstream response. Along the northern side of the
ridge, energy generated at x = 0 by the trapped modes cannot travel off-shore with the
wall to the left.

3.5.4 Finite Ridges

As explained earlier, the motivation behind this work came from the observations of
alongshore currents at Kollam mooring which sits close to the ridge-like structure along
the west coast of India. The dimensions of the submerged ridge near Kollam were hard
to model analytically, as the depth of the ridge varies spatially and makes it difficult to
approximate with a single, simple ridge with fixed values for the width, length and the
exact depth. In the previous sections, we discuss the effects of the different ridge widths
on the upward propagation of energy in the downstream basin in the absence of ridge
waves. In this section, we provide a discussion of ridge waves that affect the downstream
basin response through their propagation around finite ridges. Because of the difficulty
of obtaining analytic solutions for the topographic waves in a stratified ocean, results
from the numerical model are shown. Figure 3.18 shows the dimensions of the ridge
bathymetry for the numerical model. The depth of the ridge is 250 m and the offshore
elongation is 160 kms. The model is 3000 m deep everywhere else in the domain. To
compare to the fully extended solution with a least influence of the trapped modes, the
ridge is 600 kms in width. The wall is at x = 0. The model is forced from the southern
boundary with a 30-day sinusoid mode 1 KW. Panels a) show the amplitude and phase
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of 30-day period alongshore currents after the model run is complete.
The finite ridge bathymetry produces a wider and higher amplitude KW beam [Figure

3.19 panel a)] when compared to the fully extended ridge model run [panel b)]. Profiles
of alongshore velocity amplitude in the downstream basin next to the ridge (not shown)
reveal much stronger peak at the depth of the ridge top than for the fully extended ridge.
This also implies a stronger upward propagating beam. We believe the reasons behind
these differences include the contribution of ridge waves traveling along the ridge and
affecting the basin response past the ridge. Thus, for a wide finite ridge the propagation
of ridge waves around the ridge strengthens the upward propagating KW beam. However,
it does not change the qualitative nature of the downstream basin velocity response found
for both approximate analytic and numerical solutions for extended ridges (Figures 3.8
and Figure 3.19).

3.6 Summary

Numerical process modeling supplemented by analytical analysis shows that submerged
ridges projecting from the shoreline can scatter a horizontally propagating single baro-
clinic mode Kelvin wave into both upward and downward propagating Kelvin wave beams,
emanating from the ridge top. Numerical model experiments in the form of semi-infinite
(fully-extended) ridges are designed to prevent the ridge waves from traveling around the
ridge to affect the basin responses. These are compared with the analytical approximate
solutions. The semi-infinite shelf response to the incident single mode KW reveals along-
shore dependence of the vertical structure in the form of multi-modal ridge-top KWs,
suggesting that the width of the ridge is an important factor in determining the basin
response past the ridge. The approximate analytical solutions confirm that the upward
propagating beam becomes weaker and narrower as the width of the ridge gets narrower
(approaching the order of two Rossby radii of deformation on the shelf-top).

A series of numerical model runs further demonstrate the effects of varying the
widths of the extended ridges. Decreasing the ridge width from 600 km to 120 km greatly
reduces the strength of the upward propagating beam. We hypothesize that over narrow
ridges, the trapped solutions at the edges of the ridges overlap and interact to transmit
horizontally propagating energy into the surface layer of the downstream basin. At the
same time narrow ridges result in a weaker subsurface peak in velocity next to the ridge
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top in the downstream basin. This decreases the amplitude of vertically propagating KW
beams.

The relative strengths of horizontally propagating KW modes to that of vertically
propagating KW modes, is explored with the help of broad surface maxima and sharp
subsurface peaks in the alongshore KW velocity profiles as a boundary condition next to
edge of the ridge in the downstream basin. When the strength of the subsurface peaks in
the vertical profile of alongshore currents is greater, the basin response includes relatively
stronger amplitudes of vertically propagating KW beams. On the other hand, when the
strength of the surface maximum is greater, the strength of the horizontal propagation
of energy at the surface is higher relative to the amplitudes of upward propagating KW
beams in the downstream basin.

Numerical model runs are carried out for the somewhat more realistic case scenario
in the form of a finite ridge for an incoming single mode baroclinic KW. The basin
response past the ridge contains additional energy coming in the from of ridge waves. For
the wide ridge considered here, the ridge wave strengthens the upward propagating KW
beam compared to a semi-infinite ridge where the ridge waves are eliminated in the basin
response. The qualitative nature of the upward propagating beam in the semi-infinite
ridge, however, is not changed for the wide ridges. A more complete examination of the
affect of the finite ridges of different lengths and widths is a topic for further study.
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Figure 3.1: Schematic of a coastal Kelvin wave in a basin of depth Hb incident upon a
semi-infinite ridge of depth Hr.
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Figure 3.2: Panel a) and b) Show the bathymetry of a semi-infinite Shelf KW model
including the terrain-following ROMS sigma-grid levels converging on ridge-top (coming
from deep basin). Panel c) shows a snapshot of alongshore currents model run in YZ
cross-section at wall.
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Figure 3.3: I) ROMS solution for amplitude (a) and phase (b) for a 30-day Kelvin wave
incident upon a semi-infinite shelf. II) Approximate solution for amplitude (a panel) and
phase (b panel).
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Figure 3.4: a) Bathymetry for a 200 km width ridge model run; b) Bathymetry for a 600
km width ridge model run. Top panel is in XY cross-section, whereas bottom panel is in
YZ cross-section.
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Figure 3.5: I) ROMS solution for amplitude (a) and phase (b) for a 30-day Kelvin wave
incident upon a 600 km wide ridge. II) Approximate solution for amplitude (a panel)
and phase (b panel).
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Figure 3.6: I) ROMS solution for amplitude (a) and phase (b) for a 30-day Kelvin wave
incident upon a 200 km wide ridge. II) Approximate solution for amplitude (a panel)
and phase (b panel).
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Figure 3.7: I) ROMS solution for amplitude (a) and phase (b) for a 30-day Kelvin wave
incident upon a 120 km wide ridge. II) Approximate solution for amplitude (a panel)
and phase (b panel).
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Figure 3.8: ROMS and Analytical approximate velocity amplitude solution for a 30-day
Kelvin wave incident upon : I) 600 km wide ridge; II) 200 km wide ridge. The black
dotted lines correspond to the transects in Z where the basin boundary currents are
extracted for analytical and ROMS solutions.
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Figure 3.9: Approximate analytical and ROMS velocity amplitudes for a 30 day period
basin currents next to the (one grid-point) edge of the ridge at y = Y2 .
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Figure 3.10: Figure: a) Amplitude and b) Phase for alongshore currents with a subsurface
bottom currents above the forcing as a KW boundary condition next to the edge of the
ridge; c) Time-series plot of vertical profiles of alongshore currents at Y = 300 km and
wall (X=0).
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Figure 3.11: Figure: a) Amplitude and b) Phase for alongshore currents with a weaker
subsurface bottom current above the forcing as a KW boundary condition next to the
edge of the ridge; c) Time-series plot of vertical profiles of alongshore currents at Y =
300 km and wall (X=0).
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Figure 3.12: Figure: a) Amplitude and b) Phase for alongshore currents with a strong
surface currents above the forcing as a boundary condition next to the edge of the ridge
into the basin; c) Time-series plot of vertical profiles of alongshore currents at Y = 300
km and wall (X=0).
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Figure 3.13: Figure: a) Amplitude and b) Phase for alongshore currents with stronger
surface current and a weaker bottom subsurface current above the forcing as a KW
Boundary Condition (B.C.); c) Time-series plot of vertical profiles of alongshore currents
at Y = 300 km and wall (X=0).
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Figure 3.14: Figure: a) Amplitude and b) Phase for alongshore currents with weaker
surface current and a stronger bottom surface current above the forcing as a KWBoundary
Condition (B.C.); c) Time-series plot of vertical profiles of alongshore currents at Y =
300 km and wall (X=0).
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Figure 3.15: Figure: a) Amplitude and b) Phase for alongshore currents corresponding
to a 200 km wide ridge ROMS solution next to the downstream edge of the ridge as a
Boundary Condition (B.C.); c) Time-series plot of vertical profiles of alongshore currents
at Y = 300 km and wall (X=0).



81

Figure 3.16: Figure: a) Amplitude and b) Phase for alongshore currents corresponding
to a 600 km wide ridge ROMS solution next to the downstream edge of the ridge as a
Boundary Condition (B.C.); c) Time-series plot of vertical profiles of alongshore currents
at Y = 300 km and wall (X=0).
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Figure 3.17: Amplitude (a : downstream of the ridge; b : upstream of the ridge) and
phase (c : upstream of the ridge) of wave D currents, along the the submerged ridge.
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Figure 3.18: Bathymetry of a 600 km wide and 160 km long Ridge
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Figure 3.19: Figure: a) Amplitude and Phase for alongshore currents at wall for a 30
day sinusoid for finite 600 km wide and 160 km long ridge; b) Amplitude and Phase for
alongshore currents for a fully extended 600 km wide ridge (same as Fig 3.5 velocity
instead of pressure)
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Chapter 4: Vertical propagation case of Coastal Trapped Waves

4.1 Introduction

The motivation behind this work comes from the observed vertical propagation of energy
at the Kollam mooring (Figure 4.1) and at various other locations along the west coast
of India. In the previous chapter we assumed the west coast of India to be a straight
vertical wall with a flat bottom topography. In this chapter we focus our attention on
the differences between the flat-bottom KWs and the sloping bottom Coastal Trapped
Waves (CTWs) in relation to vertically propagating energy beams downstream of the
ridge.

Previous studies have long represented the west coast of India as a flat-bottom merid-
ional boundary (Nethery and Shankar 2007; Shankar and Shetye 1997). The bottom
bathymetry along with the stratification play an important role in determining whether
the coastal free wave solution behaves as a internal Kelvin wave (IKW) or a CTW. Com-
paring the relative magnitudes of shelf slope width (Mx) and the internal Rossby radius
of deformation δR is key (J Allen 1975; Huthnance 1978; JS Allen and Romea 1980).

The relative effects of bottom topography and stratification can be combined into a
single variable S, defined as: (δR/ Mx)2. According to Brink (1982), for high latitudes,
a typical value of S (< 0.25) is very low, and the generalized phase velocity approaches
that of barotropic shelf waves. The modal structures have nearly vertical isopleths over
the shelf. At low latitudes, the values of S are usually greater and modal structures
can clearly be identified as IKWs, with isopleths that slant outwards considerably. At
extremely low latitudes (S > 4), the phase speed approaches that of a Kelvin wave, as
the shelf width become small relative to the Rossby radius. At moderately low latitudes,
the free (hybrid) long CTW mode 1 phase speed is slightly lower than the IKW phase
speed. However, farther poleward, at intermediate latitudes when the Rossby radius of
deformation is comparable to the shelf slope width (0.25 < S < 4), the free (hybrid)
long CTW phase speed is slightly higher than the mode 1 IKW phase speed due to the
gradual transition to topographically supported waves.



86

The stratification, bathymetry and the latitude close to the Kollam mooring (region
of interest) (Figure 4.1) suggest that the free wave along the coastline behaves more like
an IKW. The phase speed and the eigen-mode structure corresponding to the hybrid
coastal trapped wave, however are not well represented by a flat-bottom IKW. Thus it is
important to study shelf-slope dynamics in that region to obtain an accurate phase speed
and modal structure corresponding to the CTW eigen-mode. We use Brink and Chapman
coastal trapped wave routines (http://www.whoi.edu/cms/files/Fortran_30425.htm)
to determine the CTW eigen-mode structure and the corresponding phase speeds, close
to the Kollam mooring region. The effects of the CTWs on the establishment of vertically
propagating energy beams due to submerged ridges is explored by forcing the numerical
models with the mode 1 CTW eigen-function on a sloping bottom bathymetry.

In section 4.2, we present the step-wise procedures that were carried out to obtain
a clean CTW mode 1 structure using Brink and Chapman routines for the average
bathymetry, Coriolis parameter and stratification near Kollam mooring. The later part
of the section describes the numerical model and its configuration in detail. Section 4.3 of
the chapter show numerical model run results for the case of CTWs, and their comparison
with the KW model runs. In section 4.4, we discuss questions arising from the solutions.
Section 4.5 summarizes the overall results.

4.2 Methods

4.2.1 Brink and Chapman Coastal wave program routines

In several existing papers ( Brink 1982; Chapman 1983; Clarke and Brink 1985), a number
of computer programs have been described which compute properties of linear coastal-
trapped waves and wind-driven motions over the continental shelf. These programs, since
they allow rather arbitrary choices of topography, stratification, etc., may be of fairly
general use to the oceanographic community. A few assumptions are common to all
programs below. First, only linear problems are considered. Second, the water depth
is always assumed to be a function of x only. Third, the Buoyancy frequency may vary
in z only, and must be non-zero everywhere. The general free-wave programs search for
free-wave solutions using resonance iteration. The general approach is to assume that
the dependent variables are sinusoidal in time and the along-shelf direction, e.g. U(x,y,t)

http://www.whoi.edu/cms/files/Fortran_30425.htm
http://www.whoi.edu/cms/files/Fortran_30425.htm
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= U(x) exp[i(ωt + ly)] . These programs calculate free-wave dispersion curves (ω,l pairs)
by resonance iteration, given input parameters including arbitrary bottom topography
and stratification. Options include the choice of a free-surface or a rigid-lid boundary
condition. The user must supply stratification, topography, the Coriolis parameter, and
other information. The programs, after converging to a free wave solution, print out
frequency, wave-number and the modal structure. All program outputs are either in
arbitrary or cgs units.

For instance, the Brink and Chapman coastal wave routines are used to compute the
wave properties at 4 different cross-shore transects along the west coast of India, passing
through; Station 1: 8.39◦ N, Station 2: 8.74◦ N, Station 3: 9.38◦ N, Station 4: 10.53◦N
(Figure 4.2). Data from World Ocean Atlas 2009 are used to get the Buoyancy structure
at these locations. For this computation, we assumed a rigid lid and no planetary β
component. High resolution bathymetry etopo2 from NOAA is used for this analysis.
Figure 4.3 shows the topography and the approximate off-shore slope width along these
various cross-shore transects. Figures 4.4-4.7 show the associated modal structures of
pressure across the pathways. The phase speeds for mode 1 CTW for Station 1-4 are
285, 289.82, 285, 286 cm/s respectively. The isopleths slant considerably outwards (more
horizontal) on the shelf-slope for all the modal structures, suggesting these waves behave
more like IKWs. The phase speed for a mode 1 IKW for the averaged stratification in
this region is ' 245 cm/s. The values of scale ratio S are obtained for all of these cases
using Mx and δR = CIKW /f , where CIKW is the phase speed for the IKW mode and f
is the Coriolis parameter. The values of S for all of these cases (0.26,0.25,0.41,0.29) lie
between 0.25 and 4. This suggests that the shelf-slope width is comparable to the first
Rossby radius of deformation and the hybrid free CTW phase speed should be slightly
higher than the IKW phase speed. Our results from the Brink and Chapman routine
seem to agree with this as the CTW phase speeds (∼ 285, 289.82, 285, 286 cm/s) for all
of the Stations are higher than the IKW mode 1 phase speed (' 245 cm/s).

The dispersion curve of a free CTW solution is investigated for the intra-seasonal
band of frequencies. The dispersion curve for the mode 1 CTW along the cross-shore
path of station 3 suggest that the waves are mostly non-dispersive close to the frequencies
of our interest (Figure 4.8).
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4.2.2 Obtaining a clean CTW mode 1 to force the Numerical Model

We are motivated by the observations of vertical energy propagation at the Kollam moor-
ing. To set up the numerical model bathymetry analytically, we choose the topography
slope steep enough to represent the observed slope along path A (Figure 4.1) which
sits within the constraints of ROMS allowed maximum slope. The left panel of Figure
4.1 shows three different cross-shore transect paths used for the reference. The bottom
slope topography for paths A, B and C are shown in the right panel in color, whereas
the black lines show the chosen analytical coastal decay slope used for numerical model
runs. The Coriolis parameter (f) is set to the latitude of the Kollam mooring, and the
rest-state stratification of the model is taken from local stratification reported by the
2009 World Ocean Atlas. For the given slope (without the ridge) and stratification the
first mode baroclinic CTW eigen solution is computed using the Brink and Chapman
coastal trapped wave routines, for a wider off-shore domain extending more than 1200
kms from the coast.

Figure 4.9 shows the mode 1 CTW velocity structure for the analytical slope. The
CTW solution for that typical coastal decay slope along the west coast of India for a
wider domain produces discontinuities in the form of spurious currents in the region
more than a 1000 kms away from the wall. The manual for the Brink and Chapman
routines state that the program does not perform very well with high slope steepness in
the bathymetry for a wide off-shore domain. To get rid of these spurious currents we
either need to truncate our solution in the off-shore direction and choose a smaller domain
( as in the case of Figures 4.4-4.7), or change the bathymetry to reduce the steepness of
the slope. Neither of the above solutions provides us with a required CTW to force the
numerical model, which has a wider domain and steep slope bathymetry representing a
typical slope close to the Kollam region.

We carry out the following steps to obtain a clean CTW mode 1 eigen structure.
First we truncate the solution to only 600 kms off-shore and let the off-shore amplitude
decay to zero exponentially in X for all Z. This takes out the off-shore bipolar current
discontinuity from the eigen structure. Figure 4.10 show this truncated CTW mode
1 eigen structure for a wider domain. We force the Regional Ocean Modeling System
(ROMS) model with the obtained eigen structure for a 30 day period (period of interest
for this study) for a sloping bottom bathymetry without a ridge. The domain of the
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model is extended in Y to incorporate a length of more than 21,000 kms. Figure 4.11
shows the bathymetry of the model domain (the y-extension is shown only for first 6200
kms). Figure 4.12 shows the snapshot of alongshore currents for the model run at a 450
m deep off-shore transect in YZ. The snapshots of alongshore currents when forced by
the obtained CTW eigen mode clearly show the signs of more than one vertical mode
while sampling at 136 days, 142 days and 148 days (slanted amplitude lines), suggesting
the contamination with higher modes.

The first baroclinic mode CTW has the highest phase speed and with time it leaves
behind the higher modes. At a sufficient distance away from the southern boundary the
amplitude and phase of alongshore currents in the XZ transect are extracted (through
least-square regression analysis) for the time-period when the higher modes do not reach
that location for atleast one period of time (30 days). We then re-run the ROMS model
by forcing with the extracted mode 1 eigen structure. Figure 4.13 show the snapshot
of alongshore currents for the above case at a 450 m deep along an alongshore transect
in YZ (from 0-2800 km). The snapshots of alongshore currents show vertical lines of
amplitudes at all times, suggesting a single vertical mode in the eigen function. Figure
4.14 compares the CTW mode 1 eigen structure for: a) Contaminated CTW mode 1 b)
Clean CTW mode 1.

4.2.3 Numerical Model

The ROMS numerical model is used to carry out a series of experiments. For this study, we
configured the ROMS model in an idealized version of the west coast of India/Sri Lanka,
including a short subsurface ridge extending from the coastline for a distance. The model
basin is 3000m deep, and has an off-shore slope similar to that of a typical off-shore
decay along the west coast of India. The depth of the subsurface ridge near Kollam in
the real case scenario varies spatially with an average minimum depth of 250 meters. In
the model domain we chose ridge-top depths between 200 and 250 meters. Figure 4.15
shows the bathymetry for one such model run that has a 200 km wide and 80 km long
ridge. The width of the ridge represents alongshore distance and the length of the ridge
represents the off-shore distance away from the wall. The coastal decay slope in the
domain is shown in the right-hand panel, overlapped with a ridge slope at y= 3000 km
from the southern boundary.
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There are 40 sigma (terrain following) levels in the model. The grid resolution is
5 km× 5 km in alongshore and cross-shore directions. The model has open boundaries to
the north and to the west of the domain. The boundary to the west is more than 1000
km away from X=0 (eastern boundary) and the boundary to the north is between 3000
and 6000 km from Y = 0 (southern boundary). A viscous sponge layer is placed on the
north and the west boundaries of the domain with a viscosity of 1500m2/s for 100 kms
extending away from each boundary. This viscous sponge layer plays an important role
in absorbing the forced coastal wave signal when it reaches the boundary. A no-slip
condition is present at bottom, creating a bottom boundary layer.

We are interested in frequencies at which Rossby waves cannot propagate freely, so to
simplify the dynamics, we start with solutions on an f -plane. The Coriolis parameter (f)
is set to the latitude of the Kollam mooring, and the rest-state stratification of the model
was taken from local stratification reported by the 2009 World Ocean Atlas. We force
the model with a 30-day frequency by varying the southern boundary normal velocity,
appropriately as per the first eigen mode velocity structure (Figure 4.16 a). The model
is run for 150 days.

After transients generated by the initial wavefront have been absorbed by the sponge
layers, a time series two periods long is regressed onto a 30 day cycle to determine the
amplitude and phase at each point in the domain.

4.3 Results

This section summarizes the results from several numerical model runs. First we show
the results from a CTW model run having a coastal slope comparable to that of typical
slopes along the west coast of India. We then show the results from a KW model run
having a flat-bottom bathymetry with a vertical wall representation of the west coast of
India. Both the model domains have a ridge in the middle of the domains, with similar
dimensions. The results from the KW model run are qualitatively compared with the
CTW model run. It is shown that the Kelvin wave assumption yields similar upward
propagation of energy results to that of the CTW scenario, but the extent of downward
propagation in amplitude is missing in case of the CTWs.
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4.3.1 CTW Model Run

The best way to interpret the results for vertical propagation is to look at the amplitude
and phase for alongshore currents for the applied frequency. Figure 4.16 b) shows the
amplitude and phase of alongshore currents extracted through a least-squared regression
analysis along a 300 m deep cross section in YZ (black arrow in panel a). The middle
of the ridge is at 3000 kms away from the southern boundary. The upper right panel
represents the amplitude and the lower right panel shows the associated phase. The CTW
reaches the ridge top with almost a constant amplitude in the horizontal direction and the
associated phase changes with distance in Y (alongshore) with mostly vertical contours
suggesting not a significant vertical propagation of phase before the CTW hits the ridge.
Past the ridge, both amplitude and phase lines show signs of vertical propagation. The
phase travels from red to blue (decreasing), suggesting a downward phase propagation
(upward energy propagation) in the top 250 meters and a slight upward phase propagation
(downward energy propagation) below 250 meters. The corresponding amplitudes show
a clear beam emanating from the top of the ridge above 250 meters. The downward
propagating beam below 250 meters reflects back from the bathymetry (300 meters deep
for the extracted cross-section) giving rise to interference, henceforth it is difficult to see
a clean downward propagating beam unless we look at a cross-section farther offshore.
Both, the amplitude and phase suggest a significant upward propagation of energy above
250 meters past the ridge.

4.3.2 KW Model Run

To determine the similarities between a CTW numerical solution to that of a KW scenario
we design a KW numerical model with similar ridge dimensions as that of CTW case. We
assume the west coast of India as a vertical wall with a flat bottom topography. Figure
4.17 a) shows the bathymetry of a KW domain. The ridge dimensions are similar to that
of the CTW case that is 200 km wide and 80 km long. We force the model with the first
vertical mode eigen structure of alongshore currents from the given stratification (Figure
4.17 b)) with a 30 day period.

The comparison between the boundary forcing of a mode 1 KW alongshore velocity
structure to that of CTW eigen function is shown in Figure 4.18. The phase speed of
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mode 1 CTW in that region is slightly greater than the IKW mode 1 phase speed in the
deep ocean. The surface amplitude for the KW decays off-shore faster than the CTW.
Figure 4.19 shows the exponential decay rates for the surface amplitude for CTW as well
as KW scenarios.

A similar amplitude and phase extraction is carried out through a least-squared
regression analysis for a 30 day period along a YZ cross section for alongshore currents at
the wall (X=0). Figure 4.17 c) shows the extracted amplitude and phase past the ridge.
The difference between the CTW domain with that of KW domain is that the depth of
the YZ cross section past the ridge for KW, will always be at 3000 meters (although in
figure we show top 1200 meters only). The upper right panel presents amplitude and
the bottom right panel presents the associated phase. Before hitting the ridge, KW has
an amplitude mostly horizontal with the highest amplitude largely concentrated in the
top 100 meters. The associated phase is mostly constant in the vertical direction and
changes with a 180o phase shift at 800 to 1000 meters depth. This is due to the zero
crossing (depth) in first eigen mode vertical structure of alongshore currents (Figure 4.17
b)) in the forcing. The amplitude past the ridge shows a clear beam emanating from
top of the ridge suggesting a similar upward propagation of energy as that of the CTW
case. The downward propagating beam is weaker in amplitude due to the fact that the
stratification amplitude decreases with depth. The phase lines show a distinct downward
propagation of energy (upward propagation of phase) below 250 meters (phase travels
from red to blue, with decreasing values).

4.3.3 Comparison between CTW and KW model run amplitudes

We ran several numerical model runs to compare the vertically upward propagating
beams in amplitude for different cases of KWs and CTWs. One case is shown in Figure
4.20, where both the domains have a ridge at 1000 kms from the southern boundary.
The length and width of the ridge is same in both cases, as is the maximum amplitude
with which the models are forced. Qualitatively both the cases yield a distinct upward
propagating energy beam.
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4.4 Discussion

In the previous chapter we demonstrate that the width of the ridge plays a key role in
producing a wide and robust upward propagating energy beam. For a given forcing in
the numerical model solutions the observed upward propagation of energy gets weaker
as the width of the ridge narrows. In this section we investigate the effects of varying
widths of the ridges on CTW upward propagating energy beams, for finite ridges.

We design several numerical model runs where we change the width of the ridge,
keeping all other parameters the same. Figures 4.21 - 4.23 show the bathymetry of
three different model domains that have a ridge widths of 200 km, 100 km and 40 kms
respectively with a constant off-shore length of 50 km at the top of the ridge. The
remaining dimension of the domain are kept the same for all the three scenarios. The left
panels show the contours of the bathymetry and the right panels give the decay slope of
the model bathymetry overlapped with the ridge decay slope at y = 1000 kms.

After the model runs are complete, the amplitude and phase of alongshore currents are
extracted through a least-squared regression analysis at a depth of 300 meters along an
alongshore transect in YZ. Figures 4.24 - 4.26 show the amplitude and phase correspond-
ing to regression over the three 30 day periods between 30-89 days. The phase plots of
all the three cases show slanted contours at the bottom in each of the YZ transects. This
is probably due to a bottom boundary layer. Hence we neglect the vertical propagation
of phase at the bottom, as the dynamics in that region is dominated by the bottom drag.

The upward propagation of energy is more robust in the case of the 200 km width
ridge, and it gets weaker as the width of ridge gets narrower. The amplitude and phase
plots of 40 km wide ridge does not produce a significant upward propagation of energy
(Black arrows show the direction of phase propagation).

The above results are similar to that of KW model runs with varying widths of the
ridges (Chapter 3) suggesting a minimum width of the ridge is required to produce a
strong and robust upward propagating energy beams.

4.5 Conclusion

The differences between the flat-bottom KWs and sloping bottom CTWs in response to
a sudden change in bathymetry in the form of a submerged ridge are investigated with
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the help of numerical model runs. The west coast of India near Kollam has a comparable
shelf-slope width to that of that of the first mode Rossby radius of deformation. The scale
ration S in this region suggests that free wave solutions close to Kollam mooring behave
more like IKWs. The corresponding phase speed and modal structure of IKWs however,
does not accurately represent the hybrid mode 1 CTW phase speed and cross-shore
structure.

In this study, we put-forth step by step procedures used to obtain a clean CTW mode
1 eigen function when the Brink and Chapman routines fail for the cases of steep bottom
slopes and wide domains in cross-shore directions. Two different models runs in terms of
a CTW domain and a KW domain, with a similar ridge dimensions, yield qualitatively
similar upward propagating energy beams.

The effect of varying widths on the upward propagation of energy for CTWs is carried
out using three different model runs of the widths of 200 km, 100 km and 40 kms by
keeping all other dimensions the same. The upward propagation of energy gets weaker
as the width of ridge gets narrower.
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Figure 4.1: Cross-shore Bathymetry along the west cost of India, showing different slopes
along path A, B and C; represented by A (red), B (blue) and C (green) in the figure to
the right. The downward black arrow shows the Kollam morring Depth (KMD). Two
different slopes in black, one with coastal decay and one on top of the ridge (Y=3000
km) in the CTW model domain are plotted on top.
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Figure 4.2: Bathymetry along the west coast of India. Black lines represent the off-shore
path for Station 1, 2, 3 and 4, located on the coastline.
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Figure 4.3: The bottom topography of the cross-shore paths starting from Station 1, 2,
3 and 4. Mx represents the shelf-slope width at each of these locations.
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Figure 4.4: Pressure structures of eigen mode 1 in arbitrary units at Station 1. (C1=285
cm/s), S = 0.26
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Figure 4.5: Pressure structures of eigen mode 1 in arbitrary units at Station 2.
(C1=289.82 cm/s), S = 0.25
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Figure 4.6: Pressure structures of eigen mode 1 in arbitrary units at Station 3. (C1=285
cm/s), S = 0.41
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Figure 4.7: Pressure structures of eigen mode 1 in arbitrary units at Station 4. (C1=286
cm/s), S = 0.29
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Figure 4.8: Dispersion curve for mode 1 CTW eigen structure along the path of Station
3.
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Figure 4.9: The velocity structure of mode 1 CTW obtained from Brink and Chapman
solution for a typical slope along the west coast of India.
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Figure 4.10: The velocity structure of mode 1 CTW after eliminating the off-shore
discrepancies of the Brink and Chapman solution for a steep slope bathymetry. The
obtained modal structure is not perfect and contains the contamination from higher
modes, although, with low amplitudes.



105

Figure 4.11: Bathymetry and slope along the west coast of India.
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Figure 4.14: Right panel : The velocity structure of clean mode 1 CTW after eliminating
all the contamination from higher modes, for a typical slope along the west coast of India.
Left Panel: Same as Figure 4.10.
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Figure 4.15: Figure to the left shows a bathymetry of the CTW domain with a 200
km wide and 80 km long ridge. The Figure to the right shows the coastal decay slope
overlapped on top of ridge slope at y = 3000 kms.
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Figure 4.16: a) The cross-shore amplitude structure of alongshore current boundary
forcing for a clean mode 1 CTW b) The CTW model output in terms of Amplitude and
Phase for alongshore currents (V) at Kollam Mooring Depth (KMD) in Y-Z cross-section.
T represents the time period (30 days), used to extract the sinusoidal Amplitude and
Phase
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Figure 4.17: a) Bathymetry of KW domain with a 200 km wide and 80 km long ridge b)
The cross-shore amplitude structure of alongshore current boundary forcing for a mode 1
KW c) KW model output in terms of Amplitude and Phase for alongshore currents (V)
at wall. T represents the time period (30 days), used to extract the sinusoidal Amplitude
and Phase
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Figure 4.18: The amplitude of alongshore current boundary forcing for CTW and KW
domain is plotted with a unit amplitude normalization for the maximum amplitude.
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Figure 4.19: The surface amplitude decay of alongshore current boundary forcing for
CTW and KW mode 1.
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Figure 4.20: Comparison of alongshore currents 30 day period Amplitude for a) KW
model run b) CTW model run
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Figure 4.21: Bathymetry of a 50 km long and 200 km wide Ridge
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Figure 4.22: Bathymetry of a 50 km long and 100 km wide Ridge
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Figure 4.23: Bathymetry of a 50 km long and 40 km wide Ridge
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Figure 4.24: ROMS Amplitude and Phase of alongshore currents at a certain depth
off-shore transect in YZ for a 50 km long and 200 km wide Ridge. Black Arrow show the
direction of phase propagation
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Figure 4.25: ROMS Amplitude and Phase of alongshore currents at a certain depth
off-shore transect in YZ for a 50 km long and 100 km wide Ridge. Black Arrow show the
direction of phase propagation.
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Figure 4.26: ROMS Amplitude and Phase of alongshore currents at a certain depth
off-shore transect in YZ for a 50 km long and 40 km wide Ridge. Black Arrow show the
direction of phase propagation.
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Chapter 5: Conclusions

In the research described in this thesis our overall focus is on aspects of ocean circulation
along the west coast of India. Periodic and propagating signals are examined with the
intra-seasonal frequencies. In Chapter 2 we examine the relative importance of different
sources of energy for signals that propagate along the west coast of India. These include
local wind forcing and remote forcing in the form of waves trapped next to the coast.
These waves may be generated at the tip of India and Sri-Lanka, along the east coast of
India, the mid-Bay of bengal or even from the wave-guide extending from the equator
north into the Bay of Bengal.

In Chapter 3 we look more closely at waves with a single frequency and investigate a
possible mechanism for the observed upward and downward propagation of energy along
the west coast of India. The focus is the scattering of a single vertical mode KW by a
subsurface ridge. Chapter 4 extends the study in Chapter 3 to look at the effects of a
sloping bottom (Coastal Trapped Waves) in comparison to a vertical wall (Kelvin Waves)
for the vertical propagation of energies.

5.1 Summary of Chapter 2

Chapter 2 investigates the importance of different forcing factors, remote versus local,
for the sea level variability in the intra-seasonal band of periods (30-120 days).

Analysis of 10 years of altimeter SLA data and the ECMWF winds on intra-seasonal
time scales of 30-120 days are consistent with previous studies that report the presence
of Coastal Trapped Wave (CTW) dynamics along the west coast of India. Sea level at H1
(the west coast of India) is highly correlated with sea level and alongshore winds farther
south along the coastal wave guide. Sea level at H1 is also moderately well correlated
with the sea level east of Sri-Lanka and along the Sumatra coast, implying a more distant
connection to the Equator. Sea level at H1 is also weakly correlated with sea level and
winds along the south east coast of India. Leads of 3 to 4 weeks are found for sea level
between Sumatra and Sri Lanka, followed by a lead of several days between Sri Lanka
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and H1. Between the south-east coast of India and H1, the leads are 11 to 12 days for
sea level.

The highest correlation for the wind forcing when correlated with SLA at H1 comes
from the winds at the tip of India(TA3) with a lead of 6 days, which is too long to
represent the creation of CTWs at the tip of India that propagate to H1. Wind forcing
from other key locations also produce a lead close to 6 days when correlated with SLA at
H1, suggesting the large scale nature of wind forcing. However, a multivariate regression
model and coherence calculations give more realistic leads due to the interaction of
SLA and winds within a narrower band of 40-60 day periods. In this narrow band, high
coherences between H1 and local alongshore winds identify lags of 0-2 days, more realistic
for a coastal response to local winds. High coherences between H1 and the south-east
coast of India correspond to lags of 8-12 days for the same band. A final band-pass
filtering of winds and sea levels to reduce periods outside of the 40-60 day band brings
the lags from the correlation calculations of H1 sea level and winds into agreement with
the coherence calculations and the regression model. In particular, the lead between local
winds and sea level at H1 reduces to a more realistic 0-2 days lead.

Hovmöller diagrams illustrate the propagation of signals through a Rossby wave
pathway and an east coast pathway. Rossby wave phase speeds estimated from the slope
of Hovmöller plots are around 57 cm/s which is consistent with the previous observations
by Webber et al. (2012) for intra-seasonal periods. The observed phase speed produces
a lead of 3 to 4 weeks for SLA signals near Sumatra(X8) to travel to a location south of
Sri-Lanka(X4), and then to travel quickly in the form of CTWs to reach H1. The phase
speed of CTWs along the west coast of India is also estimated from the Hovmöller plots
to be around 178 cm/s. Propagation on the east coast pathway is not robust and does
not occur as often as along the Rossby wave pathway. This result provides a possible
explanation for the modelling study by Suresh et al. (2013), in which the contribution
of equatorial forcing for intra-seasonal SLA variability decreases as we move along the
coastal wave guide from the northern Bay of Bengal to the eastern coast of Sri Lanka.
The correlations then increase along the wave guide from south of Sri Lanka to the west
coast of India. The Hovmöller diagrams provide evidence that the increased connection
between the west coast of India and the equator is explained by the signals arriving along
the Rossby wave pathway.
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5.2 Summary of Chapter 3

Numerical process modeling supplemented by analytical approximations show that sub-
merged ridges projecting from the shoreline can scatter a horizontally propagating single
baroclinic mode Kelvin wave into both upward and downward propagating Kelvin wave
beams, emanating from the ridge top. Numerical model experiments in the form of semi-
infinite (fully-extended) ridges are designed to prevent the ridge waves from traveling
around the ridge to affect the basin responses. These are compared with the analytical
approximate solutions. The semi-infinite shelf response to the incident single mode KW
reveals alongshore dependence of the vertical structure in the form of multi-modal ridge-
top KWs, suggesting that the width of the ridge is an important factor in determining
the basin response past the ridge. The approximate analytical solutions confirm that the
upward propagating beam becomes weaker and narrower as the width of the ridge gets
narrower (approaching the order of two Rossby radii of deformation on the shelf-top).

A series of numerical model runs further demonstrate the effects of varying the widths
of the extended ridges. Decreasing the ridge width from 600 km to 120 kms greatly
reduces the strength of the upward propagating beam. We hypothesize that over narrow
ridges, the trapped solutions at the edges of the ridges overlap and interact to transmit
horizontally propagating energy into the surface layer of the downstream basin. At the
same time narrow ridges result in a weaker subsurface peak in velocity next to the ridge
top in the downstream basin. This decreases the amplitude of vertically propagating KW
beams.

The relative strengths of horizontally propagating KW modes to that of vertically
propagating KW modes, is explored with the help of broad surface maxima and sharp
subsurface peaks in the alongshore KW velocity profiles as a boundary condition next to
edge of the ridge in the downstream basin. When the strength of the subsurface peaks in
the vertical profile of alongshore currents is greater the basin response includes relatively
stronger amplitudes of vertically propagating KW beams. On the other hand, when the
strength of the surface maximum is greater, the strength of the horizontal propagation
of energy at the surface is higher relative to the amplitudes of upward propagating KW
beams in the downstream basin.

Numerical model runs are carried out for somewhat more realistic case scenarios in
the form of finite ridges for an incoming single mode baroclinic KW. The basin response
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past the ridge contains additional energy coming in the from of ridge waves. For the
wide ridge considered here, the ridge wave strengthen the upward propagating KW beam
compared to a semi-infinite ridge where the ridge waves are eliminated in the basin
response. The qualitative nature of the upward propagating beam in the semi-infinite
ridge, however, is not changed for the wide ridges.

5.3 Summary of Chapter 4

Chapter 4 analyzes the vertical propagation of energy by modeling the west coast of India
with a sloping bottom. This is preliminary work done to assess how a more realistic
sloping coastal boundary would affect the solutions in Chapter 3.

The differences between the flat-bottom KWs and sloping bottom CTWs in response
to a sudden change in bathymetry in the form of a submerged ridge are investigated with
the help of numerical model runs. The west coast of India near Kollam has a comparable
shelf-slope width to that of that of the first mode Rossby radius of deformation. The scale
ratio S in this region suggests that free wave solutions close to Kollam mooring behave
more like IKWs. The corresponding phase speed and modal structure of IKWs however,
does not accurately represent the hybrid mode 1 CTW phase speed and cross-shore
structure.

In this study, we put-forth step by step procedures used to obtain a clean CTW mode
1 eigen function when the Brink and Chapman routines fail for the cases of steep bottom
slopes and wide domains in cross-shore directions. Two different models runs in terms of
a CTW domain and a KW domain, with a similar ridge dimensions, yield qualitatively
similar upward propagating energy beams.

The effect of varying widths on the upward propagation of energy for CTWs is carried
out using three different model runs of the widths of 200 km, 100 km and 40 kms by
keeping all other dimensions the same. The upward propagation of energy gets weaker
as the width of ridge gets narrower.
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Appendix A: Meridional Energy Flux Near an Eastern Boundary
Within the Turning Latitudes of an Equatorial Basin

A.1 Introduction

Interaction of the atmosphere with the ocean plays an important role in the ocean
dynamics and vice versa. The changes in the properties of the ocean, such as sea surface
temperature (SST), sea surface height (SSH) etc. affect the atmosphere by altering
the boundary layer above the surface of the ocean (Sweet et al., 1981). These air sea
interactions act as a feedback mechanism for each other. For instance, strong SST fronts
in the ocean affect the atmospheric thermal boundary layer, altering the wind stress
experienced by Ocean surface (DB Chelton et al., 2004). Similarly, wind stress on the
ocean acts as a forcing term in the momentum equation, altering the properties of the
ocean through different dynamics processes. Hence, atmosphere and ocean communicate
with each other by changing the properties of one another.

Another important phenomenon regarding air sea interactions is El-Niño Southern
Oscillation (ENSO) events in the Pacific Ocean. Instability in the coupled interaction of
ocean and atmosphere may help to trigger these events (Philander et al., 1984). Consistent
easterly winds on the equator pile up the warm water on the west. However the relaxation
of these winds triggers packets of equatorial trapped Kelvin waves (Cane, 1983). During
an El-Niño event a strong downwelling Kelvin wave is generated along the equator which
then reflects from the American continents leading to westward propagating Rossby waves
and poleward propagating coastal Kelvin waves (McPhaden and Yu, 1999). Poleward
propagating Coastal Kelvin waves, linked to these ENSO events, bring the warm waters to
the coast, deepening the thermocline on the large scale (Alexander et al., 2012). Changes
in the SST anomalies induced due to distant equatorial air-sea dynamics thus can alter
the local air sea properties.

A similar phenomenon occurs in the Indian ocean, where changes in the Equatorial
trade winds in the form of Madden Julian oscillation (MJO) can trigger equatorial trapped
oceanic Kelvin waves. Rao et al. (2010) showed how these Equatorial Kelvin waves can
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then alter the distant oceanic conditions, all the way to the west coast of India, through
poleward propagating Coastal Kelvin waves.

Thus it shows that air-sea coupling in the equatorial region can alter the distant
atmospheric and oceanic condition in the form of propagating Coastal Kelvin waves.
However, it is unclear how the energy is transferred from eastward propagating Kelvin
wave into the poleward propagating Coastal Kelvin waves, after they are reflected from
the boundary.

When a low frequency Kelvin wave on an equatorial beta plane reflects from an eastern
meridional boundary, it generates a finite number of westward propagating Rossby modes
and infinite number of evanescent modes. Moore (1968) showed that poleward of the
turning latitude, the sum of these evanescent modes is equivalent to a coastal trapped
wave. However, within the turning latitudes, the meridional energy flux associated with
evanescent modes is significantly less than to the poleward energy flux in Coastal Kelvin
Waves. The net energy flux (referred solely as period averaged fluxes) associated with
individual (finite and real) Rossby modes is due westwards(zonal), as the meridional
velocity associated with these modes is orthogonal to pressure signals, implying no
meridional energy flux associated with Rossby modes (Clarke, 1983). The above scenario
of energy fluxes leads to an important and fundamental question: How does the energy
flux from the incident Kelvin wave gets transferred through the narrow strip within the
turning latitude, where there is negligible poleward energy flux, to the turning latitude,
where there is strong poleward energy flux in the form of coastal Kelvin wave? This
work will try to answer the above question by analytical computation of the energy fluxes
linked to the interactions of different modes with each other.

This study will thus focus on understanding this fundamental dynamics in more depth,
as these poleward propagating Kelvin waves carry the information from the Equator to
large distances along the wave-guide.

A.2 Methods

In order to gain the deep understanding of the dynamics we will look into the the energy
fluxes due to interactions of different modes with one another.
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Equatorial Rossby waves

We assume a shallow water model on an equatorial β-plane (f = β y) with the Boussinesq
approximations. Linearised momentum equations are as follows:

∂u∗

∂t∗
− f∗v∗ = g

∂η∗

∂x∗
(A.1)

∂v∗

∂t∗
+ f∗u∗ = g

∂η∗

∂y∗
(A.2)

∂η∗

∂t∗
+ g

c2

(
∂u∗

∂x∗
+ ∂v∗

∂y∗

)
= 0 (A.3)

Here u∗ and v∗ are zonal and meridional velocities respectively where as η∗ is the sea
level fluctuations from the mean and c is the gravity wave speed. Non-dimensionalisation
of the above variables using Matsuno (1966) :

(x∗, y∗) =
√
c

β
(x , y )

( t∗ ) =
√

1
βc

( t )

(u∗, v∗) = c (u , v )

( η∗ ) = c2

g
( η )

(h ) = c2

g

Substituting the above non-dimensionalised variables in Equations 1, 2 and 3, we
obtain:

∂u

∂t
− y v = ∂η

∂x
(A.4)

∂v

∂t
+ y u = ∂η

∂y
(A.5)

∂η

∂t
+
(
∂u

∂x
+ ∂v

∂y

)
= 0 (A.6)



130

Re-arranging the above three equations in terms of the meridional velocity we obtain:(
y ∂
∂t (4)− ∂2

∂t2 (5) + ∂2

∂t ∂y (6) + ∂2

∂x2 (5)− ∂2

∂x ∂y (4)
)

∂3v

∂3t
+ y2 ∂v

∂t
+ ∂

∂t

(
∂2 v

∂2 x
+ ∂2 v

∂2 y

)
− ∂v

∂x
= 0 (A.7)

Using the Fourier Transform in time and zonal direction, i.e. substituting in the
above equation v = V0(y) ei(k x−ω t), We obtain :

∂2V0
∂2y

+
(
ω2 − k2 − k

ω
− y2

)
V0 = 0 (A.8)

The above equation is very well known in mathematics as a Hermite equation. It has
a solution bounded at infinity in the form of meridional modes as a function of Hermite
polynomials. Thus the nth meridional mode can be written as vn = Anψn(y) ei(kn x−ω t).
Substituting in above equation we get :

∂2ψn
∂2y

+
(
λ2
n − y2

)
ψn = 0 (A.9)

Where λn is an eigen value and λ2
n = ω2−k2

n− kn
ω . For an unbounded basin λ2

n = 2n+ 1;
and n = 0, 1, 2, .. such that limy→±∞ ψn(y) = 0

Thus we obtain the dispersion relation for Equatorial waves

ω2 − k2
n −

kn
ω

= λ2
n (A.10)

Solving for kn
kn = − 1

2ω ±
√
ω2 + 1

4ω2 − λ
2
n (A.11)

ψn are Hermite functions, related to Hermite polynomials by

ψn(y) = e(−y2/2)√
2n n!

√
π
Hn(y) (A.12)

Where as Hermite polynomials can be generated by Rodrigues formula:

Hn(y) = (−1)n exp (y2) ∂
n (e−y2)
∂ny

(A.13)
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Hence the obtained solution can be written as :
u

v

η

 =
∑
n


un(y)
vn(y)
ηn(y)

 ei(kn x−ω t) (A.14)

Using Equations 4, 5 and 6 we can write u and η in terms of v as follows:

(
∂2

∂2t
+ ∂2

∂2x

)[
un

ηn

]
=

 y ∂
∂ t + ∂2

∂x ∂y

−y ∂
∂ x + ∂2

∂t ∂y

 vn (A.15)

Substituting Equation 14 in Equation 13 and using the Fourier transform we can get
: 

u

v

η

 =
∑
n

−i An
k2
n − ω2


ω y − kn∂y
i(k2

n − ω2)
kn y − ω ∂y

 ψn(y) ei(kn x−ω t) (A.16)

Assuming Bn = −i An
√

2n
kn+ω ; αn = kn+ω

kn−ω , We obtain:


u

v

η

 =
∑
n

Bn√
2n


(αn − 1) y − (αn + 1) ∂y

2 i (kn + ω)
(αn − 1) y − (αn + 1) ∂y

 ψn(y) ei(kn x−ω t) (A.17)

Rearranging the above equation
u

v

η

 =
∑
n

Bn√
2n


αn(y − ∂y)− (y + ∂y)

2 i (kn + ω)
αn(y − ∂y) + (y + ∂y)

 ψn(y) ei(kn x−ω t) (A.18)

Using the property of Hermite functions that is (y − ∂y)ψn =
√

2(n+ 1)ψn+1 and
(y + ∂y)ψn =

√
2nψn−1, we get


u

v

η

 =
∑
n

Bn√
2n


αn
√

2(n+ 1)ψn+1 −
√

2nψn−1

2 i (kn + ω)ψn
αn
√

2(n+ 1)ψn+1 +
√

2nψn−1

 ei(kn x−ω t) (A.19)
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Assuming γn =
√

n+1
n αn We get,


u

v

η

 =
∑
n

Bn


γn ψn+1 − ψn−1

i
√

2
n(kn + ω)ψn

γn ψn+1 + ψn−1

 ei(kn x−ω t) (A.20)

Kelvin Waves

Another way to satisfy the above sets of equations and the boundary condition, is to
have no meridional velocity through out the domain. Using Equations 4, 5 and 6 and
substituting v = 0 we get eastward and westward propagating Kelvin Waves (Rattray,
1965). The eastward propagating solution is referred as an equatorial Kelvin Wave.

u

v

η


Kelvin

= Bκ


1
0
1

 ψ0(y) ei(kκ x−ω t) (A.21)

kκ = ω (A.22)

A.2.1 Reflection from Eastern Boundary

Assume a Kelvin wave with an amplitude of Bκ reflects from an Eastern Boundary
at x = 0 , generating finite real Rossby modes and infinite evanescent Rossby modes.
Considering the symmetry of the problem about the equator we will consider only odd
Rossby modes which can provide the symmetric solutions for u and η about the equator.

Incident Kelvin Wave at (x, t) = 0 :
[

u(y)
η(y)

]
Kelvin

= Bκ

[
1
1

]
ψ0(y) (A.23)

Reflected Rossby waves:[
u(y)
η(y)

]
Rossby

=
∞∑
n=0

B2n+1

[
γ2n+1 ψ2n+2 − ψ2n

γ2n+1 ψ2n+2 + ψ2n

]
(A.24)
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Here the value of γn is computed such that kn is appropriate for an eastern boundary
reflection, i.e., the reflected Rossby modes have westward group velocity or decay; given
by:

γn =
√
n+ 1
n

kn + ω

kn − ω
; kn = − 1

2ω − i
√

2n+ 1−
(

(ω2 + 1
4ω2

)
(A.25)

Combining Equation 23 and 24:[
u(y)
η(y)

]
Kelvin

+
[

u(y)
η(y)

]
Rossby

=
[

u(y)
η(y)

]
(x=0,t=0)

(A.26)

[
u

η

]
EB, x=0

= Bκ

[
1
1

]
ψ0(y) +

∞∑
n=0

B2n+1

[
γ2n+1 ψ2n+2 − ψ2n

γ2n+1 ψ2n+2 + ψ2n

]
(A.27)

Rearranging Equation (27) and re-indexing as a Hermite Series we obtain:

[
u

η

]
EB, x=0

=
[

Bκ −B1

Bκ +B1

]
ψ0 +

∞∑
n=1

[
γ2n−1B2n−1 −B2n+1

γ2n−1B2n−1 +B2n+1

]
ψ2n (A.28)

The boundary condition uEB(y) = 0 requires the co-efficient of each Hermite function
to vanish. Hence from Equation (28) we get:

B1 = Bκ (A.29)

B2n+1 = γ2n−1B2n−1 (A.30)

Incorporating Equation (29) and (30) together we obtain:

B2n+1 = Bκ

n∏
m=1

γ2m−1 (A.31)

such that for n = 0
n∏

m=1
γ2m−1 = 1 (A.32)
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A.2.2 Energy Flux

Time averaged energy fluxes are computed separately for zonal and meridional directions.
Interaction of each mode with one another is looked upon to get corresponding energy
fluxes. We categorized Rossby modes broadly into 2 classes 1) Real Finite Rossby modes
( real wave number) 2) infinite evanescent modes (imaginary wave number). Energy
fluxes are categorized broadly into two categorizes according to the interaction of modes
with one another.

1) Energy flux due to interaction of a mode with itself (individual) 2) Energy flux
due to interaction of distinct modes (distinct). The above two categories are then further
sub-categorized as follows:

[ EK= Incident kelvin mode, E(m/n)= evanescent distinct Rossby modes, E(M/N)=
real distinct Rossby modes, involved in computation of energy flux ]

1) Energy flux due to interaction of a mode with itself (Individual)

(a) Incident Kelvin mode interacting with itself (EKK)

(b) Real Rossby mode interacting with itself (EMM/ENN)

(c) Evanescent Rossby mode interacting with itself (Emm/Enn)

2) Energy flux due to interaction of distinct modes (distinct)

(a) Incident Kelvin mode interacting with Rossby modes (EKN/EKn)

(b) Real Rossby mode interacting with distinct real Rossby mode (EMN)

(c) Evanescent Rossby mode interacting with distinct evanescent Rossby mode (Emn)

(d) Real Rossby mode interacting with evanescent Rossby mode (EMn)

A.2.3 Zonal Energy Flux Computation

Zonal energy flux is computed by integrating the period averaged zonal flux, meridionaly
over the entire domain.

Ex = <
{∫ ∞
−∞

dy
ω

2π

∫ 2π/ω

0
dt u η

}
(A.33)
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For all of the above cases we will compute the flux for individual modes first and then
sum them up.

A.2.3.1 Kelvin Wave Interaction with Rossby modes

For the case of a Kelvin wave mode (k) interacting with the nth Rossby mode, this can
be computed as follows:

EKnx =
∫ ∞
−∞

dy
ω

2π

∫ 2π/ω

0
dt <

{
(uk ηn + un ηk)

}
(A.34)

Assume,

uk ηn = ω

2π

∫ 2π/ω

0
dt (uk ηn) (A.35)

<
{
uk ηn

}
=
(
u∗k + uk

2

)(
η∗n + ηn

2

)
(A.36)

Where u∗k and η∗n are complex conjugates of uk and ηn respectively. Using the
expression for uk and ηn from equations (20) and (21) we obtain:

u∗k η
∗
n = uk ηn = 0 (A.37)

u∗k ηn = uk η∗n (A.38)

From Equation (36),(37) and (38) we get:

<
{
uk ηn

}
= 1

2<
{
ukη

∗
n

}
(A.39)

Similarly,
<
{
un ηk

}
= 1

2<
{
ηku
∗
n

}
(A.40)

Hence from Equation (34),(39) and (40)

EKnx =
∫ ∞
−∞

dy
1
2<
{
ukη

∗
n + ηku

∗
n

}
(A.41)

Substituting the expressions for uk and ηn from equations (20) and (21) and neglecting
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the meridional integration of the flux we get:

EKnx =
∞∑
n=1

ψ0 ψn+1 <
{
BκB

∗
n γ
∗
n e

i(ω−k∗
n)x} (A.42)

A.2.3.2 Rossby mode Interaction with itself (Individual)

Following the similar procedure to obtain the energy flux due to interaction of Rossby
modes with itself we get (Includes EMM/Enn ):

Ennx =
∫ ∞
−∞

dy
ω

2π

∫ 2π/ω

0
dt <

{
un ηn

}
(A.43)

Ennx =
∫ ∞
−∞

dy
1
2<
{
ηnu

∗
n

}
(A.44)

Substituting the expressions for un and ηn we obtain:

Ennx =
∞∑
n=1
<
{
BnB

∗
n [γ∗n γn ψ2

n+1 − ψ2
n−1] ei(kn−k∗

n)x} (A.45)

A.2.3.3 Rossby mode Interaction distinct Rossby mode

This includes interactions of real Rossby modes with distinct real Rossby modes (EMN ),
interactions of evanescent rossby modes with real Rossby modes(EmN ) and interactions
of evanescent Rossby modes with distinct Evanescent Rossby modes (Emn). However we
will represent all the above categorize by a generalized form as Emn.

Emnx =
∫ ∞
−∞

dy
ω

2π

∫ 2π/ω

0
dt <

{
(um ηn + un ηm)

}
(A.46)

Emnx =
∫ ∞
−∞

dy
1
2<
{
u∗mηn + η∗mun

}
(A.47)

Substituting the expressions for u and η we obtain:

Emnx =
∞∑
n=1

∞∑
m=n+1

<
{
BnB

∗
m [γ∗m γn ψm+1 ψn+1 − ψn−1ψm−1] ei(kn−k∗

m)x} (A.48)
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A.2.3.4 Kelvin Mode Interaction with itself

This includes the incident energy that has been brought into the system by incoming
Kelvin wave. Kelvin wave will only have the zonal component as the meridional velocity
vanishes for the Kelvin wave. Following the similar steps we can get the expression for
the Energy flux which is given by:

EKKx =
∫ ∞
−∞

dy
ω

2π

∫ 2π/ω

0
dt <

{
uκ ηκ

}
(A.49)

EKKx =
∫ ∞
−∞

dy
1
2<
{
uκη

∗
κ

}
(A.50)

Substituting values for uκ and ηκ we get:

EKKx = 1
2 <

{
BκB

∗
κ ψ

2
0
}

(A.51)

A.2.4 Meridional Energy Flux Computation

Meridional Energy fluxes are computed in the similar manner as discussed above in case
of Zonal fluxes. Instead of going into detail expression for the meridional Energy fluxes
are directly given in same order as the Zonal Energy flux.

A.2.4.1 Kelvin Wave Interaction with Rossby modes

Kelvin wave mode (k) interacting with nth Rossby mode can be computed as follows:

EKny =
∫ ∞
−∞

dx
ω

2π

∫ 2π/ω

0
dt <

{
(vn ηκ

}
(A.52)

EKny =
∫ ∞
−∞

dy
1
2<
{
(vn η∗κ

}
(A.53)

Substituting the expressions for vn and ηκ from equations (20) and (21) and neglecting



138

the meridional integration of the flux we get:

EKny =
∞∑
n=1

ψ0 ψn√
2n
<
{
i BnB

∗
κ (kn + ω) ei(kn−ω)x} (A.54)

A.2.4.2 Rossby mode Interaction with itself (Individual)

Following the similar procedure to obtain the energy flux due to interaction of Rossby
modes with itself we get (Includes EMM/Enn ):

Enny =
∫ ∞
−∞

dx
ω

2π

∫ 2π/ω

0
dt <

{
vn ηn

}
(A.55)

Enny =
∫ ∞
−∞

dx
1
2<
{
vnη
∗
n

}
(A.56)

Substituting the expressions for un and ηn we obtain:

Enny =
∞∑
n=1

ψ0 ψn√
2n
<
{
i BnB

∗
n (kn + ω)ψn [γ∗n ψn+1 + ψn−1] ei(kn−k∗

n)x} (A.57)

A.2.4.3 Rossby mode Interaction with distinct Rossby mode

Similar to the zonal Energy fluxes, this includes interactions of real Rossby modes with
distinct real Rossby modes (EMN ), interactions of evanescent rossby modes with real
Rossby modes(EmN ) and interactions of evanescent Rossby modes modes with distinct
Evanescent Rossby modes (Emn).

Emny =
∫ ∞
−∞

dx
ω

2π

∫ 2π/ω

0
dt <

{
(vm ηn + vn ηm)

}
(A.58)

Emny =
∫ ∞
−∞

dx
1
2<
{
v∗mηn + η∗mvn

}
(A.59)
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Substituting the expressions for v and η we obtain:

Enny =
∞∑
n=1

∞∑
m=n+1

1√
2
<
{
i BnB

∗
m

[ (kn + ω)ψn√
n

(γ∗m ψm+1 + ψm−1)

− (k∗m + ω)ψm√
m

(γn ψn+1 + ψn−1)
]
ei(kn−k

∗
m)x
}

(A.60)

A.2.5 Analytical Model Description

Energy fluxes due to interaction of different modes are computed using a simple linear
analytical model. For all the computations, it is assumed that a Kelvin wave of unit
energy flux i.e. an amplitude of square root of 2 with a given frequency is incident onto the
boundary at x=0. East and north are assumed to be positive axes in x and y directions
respectively. All the parameters used in the analysis are non-dimensionalised with values
typical of the equatorial Pacific or Indian Ocean, for which c being 2.7m/s and β being
2.28× 10−11m−1s−1. The same analysis is carried for a few different frequencies.

Moore (1968), showed that for a given frequency there exist a latitude (YT±), poleward
of which the solution of u and η have exponential behavior in at-least one direction.

YT± = ±
√
ω2 + 1

4ω2 (A.61)

Equator-ward of the turning latitude, the solution is oscillatory in both x and y directions.
Also using a different frequency for the analysis leads to a different number of real Rossby
modes that are reflected from the wall (Eq 25; the dispersion relation for Equatorial
Rossby waves).

A.3 Results

This section encompasses all the results obtained from the analytical model described in
the above section. Energy fluxes are computed using the summation of first 801 modes.
The final solution for u, η and v at the wall approaches the asymptote as the number of
modes used increases. We choose 801 modes for this computation as the structure of u,
p and v approaches to asymptote (Figure A.1, for T=90 days).

Zonal Energy flux for individual modes has eastward fringes as we go poleward. Figure
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A.2 shows the zonal Energy flux for individual Rossby modes for the incident Kelvin
wave with a period of 60 days. On the equator all the energy is propagating to the
west, however as we move away from the equator we get a flux of energy going to the
east. Figure A.3 shows the meridional energy flux for individual modes for the same case.
There is no meridional energy flux for individual real (long Rossby or real wave numbers)
modes (top panel of Figure A.3 ). We can also see this from Equation (20) itself: v and
η are in quadrature with each other for real wave numbers. The meridional energy flux
due to the evanescent modes feeds the coastal Kelvin wave at the wall; however there is
no meridional flux at the equator close to the wall. This leads to the question how does
the westward energy flux at the equator turns back to eastward fringes as we move away
from the equator ?

To answer the above question we looked into the energy fluxes that occur due to
interactions of two different distinct modes. Figure A.4 shows the quiver plot of meridional
and zonal energy flux due to interactions of distinct Rossby modes (Equation (48) and
(60)). We can see the circulation pattern in the energy flux that takes the energy from
the equator and feeds into the eastward going energy flux fringes, away from the equator.
These eastward energy fringes then transfer the energy into the coastal trapped waves
propagating away from the Equator. The important point to remember is that we are
looking only at the liner interactions between different modes for a single frequency.

The number of such circulating patterns differs with changes in the frequency. Higher
period(lower frequency) waves have more long Rossby (real) modes leading to more of
such circulating patterns. Figure A.5 and Figure A.6 shows the zonal and meridional
energy fluxes respectively for an incident Kelvin wave with a period of 60 days. This
frequency gives rise to just 2 long Rossby modes after reflection from the wall. Figure
A.7 shows the quiver plot of the zonal and meridional energy fluxes for the same. This
figure shows that there is less energy flux adjacent to the wall within the turning latitude,
away from the turning latitude we get poleward energy flux indicating the CTW. The
large percentage of the energy which is being extracted efficiently from the equator to
feed this CTW is away from the wall. Figure A.7 shows that for the period of 60 days
most of the energy is extracted at around −2.50. This can also be seen in Figure A.5
and Figure A.6 where we can see that around the same longitude, meridional energy flux
takes the energy away from the equator where as the zonal energy flux take the energy
to the east and then ultimately feeding to the CTWs through meridional energy fluxes
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close to the turning latitudes.
The longitude at which the energy is extracted the most efficient way from the equator

to feed the CTWs changes with change in frequency of the incident Kelvin wave. Figure
A.8 - A.10 show the comparisons of these different circulating patterns. The periods 41,
55 and 67 days are chosen as these periods are critical for 1, 2 and 3 long Rossby (real)
modes respectively. At 41 days, there is only one reflected long Rossby mode. The mode
interaction terms circulate the energy flux from the narrow equatorial band poleward to
the fringes of the long Rossby wave, from whence it feeds into the beginning of the coastal
Kelvin wave. The circulating pattern extracts the energy around a latitude of −20 to
feed the CTWs however the patterns close to the boundary of this latitude are more of a
trapped nature trying to direct the energy towards this latitude. At 55 days, (Figure A.9),
two long Rossby modes are available, and the circulation pattern becomes more complex.
This complexity increases with increasing numbers of available long Rossby modes (i.e.,
decreasing frequency) as we can see for 67 day period with three long Rossby modes.
However the fundamental picture of energy flux transfer from the incident equatorial
Kelvin wave to the poleward coastal Kelvin waves remains the same. At 55 days, the
circulating pattern seems to extract the energy in the direction of CTW at around −30

(Figure A.9, last column), where as for 67 days it happens around (Figure A.10) −40.

A.4 Summary

Incident Kelvin wave on an eastern boundary reflects back as a sum of infinite Rossby
modes. This infinite sum leads up to a Coastal Trapped wave (CTW) poleward of the
turning latitudes (Moore, 1968). However within the turning latitude this summation
leads up to a negligible meridional energy flux compared to that of CTW, poleward of
turning latitude. This study focuses on understanding the dynamics equator-ward of
turning latitudes where the meridional energy flux adjacent to the eastern boundary is
negligible. Interactions of different Rossby modes with each other and with the incident
Kelvin wave leads to certain circulating patterns of the energy fluxes which takes out
the energy from the equator and transfer it to the poleward propagating CTWs. The
complexity of these circulating patterns increases with increase in the period of incident
Kelvin wave. The distance from the eastern boundary where the extraction of energy
from the equator to direct the energy towards the CTWs is most efficient, also increases
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Figure A.1: Structure of U, V and P for the summation of modes at different stages with
the final stage being n=801

with increment in the period of Kelvin wave. This simple analysis revels the possibility
of transferring the energy from the equator towards the CTWs simply due to linear
interaction of different modes.
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Figure A.2: Zonal Energy flux for single mode at T=60 days.
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Figure A.3: Meridional Energy flux for individual mode at T=60 days.
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Figure A.4: Quiver plot of Energy Flux due to interaction of distinct Rossby
modes(Arrows indicating the direction of the energy flux and dotted red lines repre-
sent the turning latitude)



146

Figure A.5: Net Zonal Energy Flux: EKK (Incoming Incident Kelvin Wave) + EKN
(Interaction of Kelvin wave with Rossby modes) + ENN (Individual Rossby modes) +
EMN (Interaction of distinct Rossby modes)
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Figure A.6: Net Meridional Energy Flux: EKN (Interaction of Kelvin wave with Rossby
modes) + ENN (Individual Rossby modes) + EMN (Interaction of distinct Rossby modes)
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Figure A.7: Quiver plot of total Energy Flux (dashed red lines indicate the turning
latitude for a period of 60 days)
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Appendix B: Computation of N*

Assigning confidence limits to our calculated correlations and regression models requires
estimates of the effective sample sizes (degrees of freedom). Because of the decorrela-
tion scales associated with large-scale oceanic phenomena, this is not a straightforward
procedure. Here we use the Artificial Skill Method (ASM), described by DB Chelton
(1983), to compute the effective sample size (N*). Assuming that N* is proportional to
the record length, we can define a proportionality between N* and the total number of
observations, N:

N∗ = ν N (B.1)

where ν represents the degrees of independence of the observations which is an intrinsic
property of the process of interest.

Consider a lagged regression Model with a lag τk ( = k∆t):

y(tn) =
M∑
m=0

βmkXm(tn + τk) + ε̂k(tn) (B.2)

where,M is the total number of input parameters used in the model and the εk represents
the error associated with the model corresponding to the lag τk. The expected value of
skill(fraction of variance explained by the model) of the regression model can be written
as:

〈Ŝk〉 = Sk + SA(τk) (B.3)

Here, sample skill 〈Ŝk〉 is a positively biased estimate of the true skill Sk of the postulated
model, whereas SA(τk) represents artificial skill due to sampling errors. At long lags τk,
the true skill Sk is assumed to go to 0, so that the sample skill at those lags is purely
due to sampling errors, given by (ibid.):

〈Ŝk〉 = SA(τk) '
M

N∗
= M

νNk
(B.4)
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where, Nk represents the total number of observations at a long lag τk. We can thus
estimate the value of ν as follows:

ν = M

〈Nk Ŝk〉
(B.5)

The above expression is valid only at long lags where the true skill of the postulated
model is assumed to be 0. The expected value in the denominator can be estimated
by the arithmetic average over a range of long lags, from k1 to k2, both positive and
negative:

〈Nk Ŝk〉 = 1
2 (k2 − k1 + 1)

k2∑
k=k1

[
Nk Ŝk +N−k Ŝ−k

]
(B.6)

The lower cut-off (k1) has to be such that true skill of the lagged regression model is zero,
and the upper cut-off (k2) should avoid very long lags at which Sk can be very noisy
because of the small number of samples, Nk. In this analysis we assume 20-70% of the
record length to be an approximation for making the arithmetic average of Nk Ŝk which
constitutes long lags.

For the case of estimating the confidence intervals over the lagged correlation between
two time series, the ASM is used with a 2 parameter univariate regression model (M=1)
to compute the effective size of independent samples (N*).
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