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ABSTRACT 
 

 
Identifying the most relevant items in an e-commerce site is becoming more and more 

difficult nowadays because of the heavy overload of information.   A Java Recommender 

System that uses Collaborative Filtering techniques has been developed to reduce such 

information overload and even personalize the information to the individual’s preference.  

The conventional recommendation provided in the earlier systems is not capable to 

recommend items on a specific category that the user is interested in.  Recent 

development of a new capability in the Java Recommender System has fixed this 

problem.  This new capability concentrates on the individual’s interests, and provides 

recommendations based on categories.   A new CORBA API has been developed to 

facilitate distributed environments with different programming languages, different 

platforms.  Finally, the correctness testing has been applied to ensure the stability of the 

whole system. 
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Contributions to a Java Recommender System 

 
 

1 Introduction 
 

The internet is playing an increasingly important role in peoples’ lives.  We read news, 

search for information, and even buy products via the web.  However, there are so many 

pieces of information out in the web, what is relevant to us?  Information overload has 

become a serious problem encountered by internet users.   

 

To overcome this problem, several filtering techniques emerge.  The Google search 

engine (www.google.com) succeeded in PageRank -- a content-based filtering 

technology, which selects documents based on the text and the links in them.  However, it 

concentrates on the documents rather than the user’s preference and the classification of 

the information.  Collaborative filtering systems can help solve this problem. 

 

We see Collaborative Filtering in action every day in our lives.  When we want to know 

whether a book is worth reading, we ask for our friends’ opinions whether they like the 

book. We ask our friends to recommend new restaurants to us when we feel adventurous 

and want to try something different.  Collaborative Filtering is rapidly becoming an 

important tool and achieving widespread success on E-Commerce sites, such as 

www.amazon.com.  It helps to target advertising, bring like-minded people together, push 

information selectively within a business, and direct customer service queries.  Various 

collaborative filtering systems benefit customers by filtering out the irrelevant 

information on the internet and enabling them to find products they like.  Conversely, 

they help businesses by generating more sales.   

 

Most research about Collaborative Filtering and Recommender Systems has attempted to 

improve the quality of the recommendations for the users, and a variety of successful 

algorithms have been developed.  The quality of recommendation, of course, is very 
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important to a recommender system.  But in practice, the scalability and compatibility are 

also critical.  We explain these three factors as follows: 

 

Quality:  System provides predictions and recommendations that accurately reflect the 

users’ tastes. 

Scalability:  As the number of users grows, the quality of predictions should improve and 

the speed should not deteriorate.  

Compatibility:  The system can be easily deployed with existing content. 

 

Our Java Recommender System addresses the above challenges.  Its goal is to provide a 

robust and scalable recommender engine that provides high quality recommendations in a 

variety of environments.  This includes compatibility with a multiple programming 

languages and applicability in both commercial and research domains.  The system can 

be applied to any content domain and also can be a research tool that easily integrates 

new algorithms. 

 

In this report, we present some improvements made on this system, which includes 

adding a new capability (recommendation-by-category) into our recommender system, 

building a new API (Application Program Interface) and testing the correctness of the 

whole system.   

 

The report is structured into six sections.  After a brief introduction, we give an overview 

of the recent Collaborative Filtering techniques and our Java Recommender System.  

Secondly, we will describe the new capability, recommendation-by-category, which gives 

the recommendation on the category that interests the user. Some experimental results 

will also be presented.  Then, we propose two designs about CORBA API and compare 

its performance with Java RMI.  In section 5, we present the discussion of the correctness 

testing of the whole system and its results.  Finally, we will end with some conclusions. 
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2 Overview of Collaborative Filtering and Java Recommender System 
 

The technique of Collaborative Filtering has been widely used on the web, and its goal is 

to provide the user opinions based on the other people’s preferences.  Our Java 

Recommender System is a tool that uses this technique for personalization in 

applications. We will explain this technique and overview the system in this section.   

 

2.1 Overview of Collaborative Filtering 
 

Collaborative Filtering, also called recommender systems, can produce personal 

recommendations by computing the similarity between a person’s preferences and the 

preferences of other people.  It aims to reduce the information overload, and to help the 

users focus attention on what they really want.  The main idea is to automate the process 

of "word-of-mouth" by which people recommend products or services to one another.  If 

someone needs to choose between various options with which he or she does not have 

any experience, he/she will often rely on the opinions of others who do have such 

experience.  However, when there are thousands or millions of options, like on the web, it 

becomes practically impossible for an individual to locate reliable experts that can give 

advice about each of the options.  By shifting from an individual to a collective method 

of recommendation, the problem becomes more manageable. 

 

There are many Collaborative Filtering systems that use various techniques.  One of the 

basic mechanisms behind them is the following: 

 A large group of people's preferences are recorded; 

 Using a similarity metric, a subgroup of people is selected, whose preferences are 

similar to the preferences of the person who seeks advice; 

 A weighted average of the preferences for that subgroup is calculated; 

 A resulting preference function that generates predictions or recommendations, is 

used to recommend options on which the advice-seeker has expressed no personal 

opinion as yet. 
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2.1.1 Collaborative Filtering Algorithms 
 
The algorithms in collaborative filtering predict the utility of the items to an active user 

according to user votes/ratings of the other users.  Algorithms can be classified into two 

categories: Memory-based and Model-based.  Memory-based algorithms operate over the 

user database (part of database with sampling or entire database without sampling) to 

make predictions, while Model-based algorithms use the database to estimate or learn a 

model, then produce predictions based on that particular model. [3] 

 

Memory-Based Algorithms 
 

The characteristic of an algorithm in this class is that it keeps ratings in memory, and uses 

those ratings to generate each prediction. 

 

Most nearest neighbor correlation based algorithms belong to this category.  For instance, 

like the user-user algorithm, item-item algorithm, horting algorithm and etc.  They use all 

the available data to compute similarity between two users or two items.  The advantage 

of the algorithms in this category is that the computation reflects the changing of the data 

(ratings changed or added by the user) immediately, but can take fairly large amounts of 

computations in generating a single prediction, as the number of ratings in memory 

grows.  

 

Model-Based Algorithms 
 

Model-based algorithms compute a structured model from the entire data set.  Once the 

model is built, they store the model instead of the entire data and calculate the expected 

value of an explicit value (rating) based on that model.     

 

The famous model-based algorithms include Cluster model, Bayesian network, SVD and 

etc.  It can take a long time to build the model, so the model is usually computed offline.  
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The model must be re-computed periodically as new ratings are added into the ratings 

database.  Therefore, model-based algorithms do not reflect the newly added data on the 

predictions immediately.    

 

2.2 Java Recommender System Overview 
 

 
Figure 1:  An example Usage of Java Recommender System 

 

The Java Recommender System is a tool for personalizing user interests and reducing 

information overload on the Internet.  An example usage is illustrated by Figure 1.  The 

web server-side application is using the CF Recommender System to predict what items 

of specific content should be displayed to which users.   After the web server-side 

application locates the user’s record in the user database and receives the request from 

that user, it sends this request along with the I.D. of that user to the Recommender 

System.  After computation, the Recommender System responds to the web server with a 

ranked list of recommending items.  The server-side application then accesses the content 

associated with the items and displays them to the user [12]. 
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As depicted in Figure 1, the Java Recommender System manages all the ratings, and it is 

also responsible for all the facilities included in Collaborative Filtering.  It provides the 

following functions to the web-server application via the interface: 

 It allows the user to access the ratings database, which includes retrieve, add and 

remove. 

 The user can get prediction of a specific item, or a list of recommendations. These 

are the core methods of Collaborative Filtering.  The server of the Java 

Recommender System manages all the computations. 

 The system gives out the unique user IDs and item IDs.  Some peripheral 

functions, like testing the server, shutting the server down, are also provided. 

 

2.2.2 Architecture of the Java Recommender System 
 

 

 

 

 

 

 

 

 

 

 
 

Figure 2:  Architecture of Java Recommendation System 
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The server side main thread handles the requests from the client.  There are three server-

side threads in addition to the main thread: one is for database updates; the second is for 

updating cache; and the third is for re-sampling that is periodically activated and not 

presented in Figure2.  The last two threads are needed because the JRS supports 

computation on a smaller sampled data set. 

 

The server is designed to deal with the requests from multi clients.  Thus, concurrency 

issues exist and introduce difficulties in the testing and debugging, which will be 

discussed in the later section.   
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3 A New Capability -- Recommendations-By-Category 
 

The Java Recommender System gives predictions and recommendations, which are the 

conventional functions in Collaborative Filtering.  What if the users do not want 

recommendations on all kinds of items?  For example with movies, a user just wants to 

get recommendations on a subset, like comedy, romance, etc. She/he is just simply not 

interested in other classes.  But the conventional recommendations capability only 

recommends movies across all items, mixing the items from all the categories.  In this 

kind of situation, recommendation-by-category becomes an important feature that has to 

be provided in the system.   

 

In this section, we first explain the requirements for the implementation.  Secondly, we 

will introduce 3 algorithms where this new feature has been implemented.  Finally, the 

implementation and the experimental results will be stated. 

 

3.1 Requirements for Implementation 
 

First of all, recommendation-by-category, as a capability of the collaborative filtering, 

needs to provide high quality recommendations to the users.  The result of this capability 

must be accurate.  At least, the recommendations generated by this recommendation-by-

category capability are not worse than those generated by the conventional 

recommendations. 

 

Speed is the second consideration.  Our Java Recommender system promises to be robust 

and scalable.  We don’t want the recommendation-by-category capability to respond 

much slower than the conventional recommendations capability does and degrade the 

system.  A good response time of this new capability is critical to the system.   

 

Consistency is the final requirement.  The rankings in the recommendation-by-category 

have to be consistent with the ones in the recommendations.  The users will not be happy 
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to see the rankings differ between the conventional recommendations and the 

recommendation-by-category. 

  

3.2 Algorithms 
 

First of all, we will talk about the algorithms used for this new capability.  We have 

implemented the recommendation-by-category in three algorithms.   In order to explain 

how this new capability be implemented in the algorithms, we first have to explain the 

basic algorithms in generating recommendations.  Then, describe the algorithms in 

generating recommendation-by-category.  Finally, we explain why it can’t be done by the 

existing system.   

 

3.2.1 Basic Algorithms for Recommendations 
 

In order to generate recommendations for an active user, we compute the predictions for 

every item that hasn’t been rated by the user.  Then, we will sort the predicted ratings, 

considering the item with the highest prediction as ranking top 1.  Finally, the top part of 

sorted list (from top 1 ranking to top N) will be stored in the server side cache, where N is 

a predetermined threshold.  That is to say, the user can only get recommendations in the 

range of 1st ~ thN , and N is a configurable parameter. 

 

During the generation of the recommendations, the important step is computing the 

predictions.  In this section, we will introduce two memory-based algorithms in 

generating predictions: 

 The Simple Pearson algorithm that is the most popular algorithm.  

 The Item-Item algorithm that explores the relationships between items instead of 

users.  

 

3.2.1.1 Simple Pearson Algorithm 
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To generate a prediction, the algorithm first computes the Pearson correlation coefficient 

of two users -- active user a, and one of the other users u -- on all the items rated by both.  

This process has to be repeated on all neighbors.  The formula is given as follows: 
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range of -1 ~ 1, which can reflect distance, correlation, or similarity between user u and 
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where n is the number of users with nonzero weights.  Therefore, the neighbors who have 

the highest weights will most strongly influence the predicted rating. [2] 

 

In practice, there are several important parameters affecting the predicted ratings.  First of 

all, the number of common items – m in formula (1) is critical while computing the 

weights.  Setting a minimum threshold can improve accuracy.  Secondly, who should be 
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considered as neighbors?  Setting a minimum threshold value of the weights can also 

affect accuracy.  Finally, while computing the prediction, the threshold for the minimum 

number of users – n, also plays a significant role.  

 

3.2.1.2 Item-Item Algorithm 
 

Conventional nearest neighbor collaborative filtering algorithms have focused on the user 

behavior and computed predictions based on the relationship between users.  However, 

the Item-Item algorithm looks into the set of items that the active user has rated and 

computes how close they are to the target item i then selects the ratings of the k most 

similar items to use in computing a prediction. [5] 

 

Several ways have been proposed to compute the similarity between items: cosine-based, 

correlation-based and adjusted-cosine similarity [9].  Adjusted-cosine will be used in our 

implementation, which is given by 
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In this case, U is the set of users that rated both i and j.  The mean of the user u’s ratings 

is shown by ur .  Once we obtain the set of the most similar items, we will use the 

formula (4) to get the predictions.  This is the weighted average over all n similar items 

rated by user u. 
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The same as the Simple Pearson algorithm, this algorithm also has some important 

parameters affecting the predictions: the minimum size of U in computing similarity – in 
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formula (3); the threshold of the minimum allowed value of similarity; and the minimum 

size of n – the number of similar items in computing prediction – in the formula (4). 

 
 

Figure 3: Algorithms for Recommendation-by-category and Recommendations 
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3.2.2 Algorithms for Recommendation-By-Category 
 

We use the basic ideas stated above to develop the algorithms for our new capability — 

recommendation-by-category.  In order to distinguish between recommendation-by-

category and conventional recommendations, we call the latter one the recommendation-

all-categories here.  The recommendation-by-category allows an active user a to require 

the recommendations to be limited to a category Y.   

 

The first step is to get a list of items that belong to the category Y.  Secondly, we generate 

the predictions for all the items in that list.  The final step is to sort the items according to 

their predicted rating and return the sorted result.  The algorithm is described by Figure 3. 

 

The recommendation-by-category uses the same method as the recommendation-all-

categories to generate the correlations (similarity weights).  However, the 

recommendation-by-category generates predictions only for the items in a specific 

category.  Another difference between these two capabilities is that the information about 

the category is necessary in computing the recommendation-by-category. 

 

3.2.3 Reason to develop New Capability  
 

The recommendation-by-category could be done by first performing the 

recommendation-all-categories, then filtering by category.  But just filtering out the 

recommendation-all-categories by category is not feasible, either from the results stored 

in cache or from the direct computing results.  We only store part of the results (top1 - 

top N ) generated by the recommendation-all-categories in the cache, where N is a 

predetermined number, and it is possible that there are no recommendations for a specific 

category within the cache.  Items in the categories that are popular and interested by the 

user get high predictions and could occupy top 1 - top N rankings, and the items in the 

unpopular categories in the lower rankings, which are not kept in the cache. 
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Furthermore, generating the recommendation-all-categories, then filtering out the ones 

that do not belong to a specific category is time-consuming.  Compared to eliminating the 

items during the computation of recommendations, it requires much more computation 

time.  Therefore, post-filtering the results of the recommendation-all-categories by 

category will not work well in the current system. 

  

3.3 Implementation 
 

First, we needed to add functionality for storing category information in the database and 

in memory.  We modified the server to manage computation of the recommendation-by-

category and provide the results to the client.  During the implementation, we added one 

table in the database, developed many methods in the existing recommender system 

modules, and added some structures in the memory cache.  

 

3.3.1 Addition to the database and the existing system 
 

In order to store the information of the categories, we added one table for the server 

database.  The server side table has only two columns: one for item ID and the other for 

category ID, which describes the relations between items and categories.  The server uses 

this table to support all the computation. 

 

The server’s architecture has been stated previously as in Figure 2.  There are many 

methods added into the existing server, which can be classified into the following three 

categories: 

 Providing the results to the client:  In the CFEngine interface and its 

implementation class, a method that provides the results of the recommendation-

by-category was added. 

 Managing the data:  We added some methods in module DataManager.  They 

manage all the data about the categories, which retrieve the categories’ 
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information from the database and pass the computation results to the CFEngine 

interface. 

 Managing the computation:  A method, getRecommendationsByType(), has been 

added into CFAlgorithm interface, and it was further implemented in three 

algorithms: Simple Pearson, Item-Item, and Horting.  This method uses the 

algorithms stated in the previous section to compute the recommendation-by-

category. 

 

3.3.2 Structure added in the cache 
 

Our current system caches the ratings in the main memory to avoid disk I/Os during the 

computation.  The recommendation-by-category uses this caching structure in its 

computation, which gives good performance in calculating the similarity weights, 

selecting the neighbors, and computing predicted ratings.  But we currently do not cache 

the items in each category.   

 

If we don’t cache the categories, the items of a specific category have to be queried from 

the database every time, which takes huge amounts of time.  Caching the categories into 

the memory at the time the server is booting up is a good way to reduce the cost.   

 

Caching the categories will not require much memory, if the number of categories is 

reasonable and no more than the number of items.  The data retrieved from the database 

are item IDs for each category, which are integers (32 bits).  If we have a total of 10,000 

items, and every item belongs to 4 categories on average, we only need less than 2M 

bytes.   Compared to the cache of ratings, it is much smaller.  All the items in one 

category form a vector, and the total n categories become an array of vectors.  The 

operations defined on this cache now are to get all the items of one category and to add 

new items into the category.  Vectors are easier to maintain for these two operations than 

arrays since vector lengths can be fluctuated.  If new operations requiring searching are 

added, such as getting one specific item from a category, vectors can be easily converted 

to arrays.   
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3.4 Implementation vs. Requirements – Experimental Results 
 

Some experimental results are provided to see if the implementations meet the following 

requirements: consistency, speed and accuracy.  First, we will talk about the consistency 

and the performance.  Then, the experimental results about accuracy will be stated. 

 

3.4.1 Consistency and Speed 
 

The recommendation-by-category is guaranteed to be consistent with the 

recommendation-all-categories, since they are using the similarity weights to compute 

the prediction.  No empirical results are necessary. 

 

Time (ms) Simple Pearson Item-Item Horting 

Recommendation-by-
category 

2996 4269 3190

Recommendation-all-
categories 

620 101 94

 
Table 1: The computation time before categories caching applied 

(Recommendation-by-category vs. Recommendation-all-categories) 

 

As to the speed, we compared the response time of the recommendation-by-category with 

the recommendation-all-categories.  Table 1 shows the response time before the 

categories cache was added to the current cache structure, which caches the information 

of all the categories.  In the Simple Pearson algorithm, almost 78% of its response time in 

generating recommendation-by-category is spent in getting the categories.  In the Item-

Item and the Horting algorithm, it almost spends 97% of total response time in getting the 

categories.  It is not comparable with the response time of the recommendation-all-

categories.  

 

After caching the categories, there is a jump in the recommendation-by-category’s 

response time.  It responds almost as fast as the recommendation-all-categories.  The 
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results are shown in Table 2.  The caching enables us compute the recommendation-by-

category at almost no extra cost.  The only cost in the recommendation-by-category is to 

select the items in a specific category instead of looping through all the items. 

 

Time (ms) Simple Pearson Item-Item Horting 

Recommendation-by-
category 

582 103 104

Recommendation-all-
categories 

588 105 95

 
Table 2: The computation time after categories caching applied 

(Recommendation-by-category vs. Recommendation-all-categories) 
 

3.4.2 Accuracy 
 

The experiments focus on the Simple Pearson algorithm and the Item-Item algorithm.  As 

a matter of fact, when a user asks for recommendations, he/she normally asks for “good” 

product.  Almost no one is interested in “bad” products.  Thus, our experiment focuses on 

whether the recommendation-by-category can produce the recommendations with high 

quality.   

 

3.4.2.1 Data set 
 
The dataset we used is from the GroupLens Research Group, and is a part used in the 

MovieLens recommender system that debuted in 1997.  The site has over 35,000 users 

who have contributed their opinions on more than 3,000 different movies.   

 

This data set is randomly selected from the site’s database.  It has 1,682 items, 943 users, 

100,000 ratings and 19 categories.  About 59 people rated each item on average.  Of all 

the ratings, 55,375 were “good”.  In our experiments, we focused on 18 categories, with 

the smallest category containing 50 items and the biggest containing 725 items, ignoring 

the “unknown” category with only 2 items.  We divided the database into 4 sets 

randomly, then one set to be used as the test set (25%) and left three sets to be used as the 

training set (75%). 
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3.4.2.2 Evaluation Metric and Experimental Method 
 

The metrics of Precision and Recall have been borrowed from the field of information 

retrieval.  The relation of precision and recall is depicted in Figure 4 [19].  For these 

metrics, we need to identify items as “good” or “bad” for each user.  We assume items 

rated 4 or greater on a scale of 1-5 are good. 

 

 
Figure 4: Precision and Recall 

  

In the experiments, we have computed the recommendation-by-category for each 

category based on the training set.  From every list of generated recommendations of a 

specific category, we pick out the ones appearing in the test set and known to be “good” 

(rating 4≥ ).  The formulas are given by the following:    
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|___|
|____|

settestingood
settestingoodlisttionrecommendarecall ∩

=  

 

where |___| settestingood  is the number of “good” items of a specific category known 

to be “good” (appearing in the test set).  Here, “good” items means the items with 

existing ratings more than or equal to 4. 

 

Precision is the fraction of the recommended items that is “good”.  Recall is the fraction 

of the “good” items that have been recommended.  In our experiment, we interpolate the 

precision at predetermined recall levels of 0, 5%, 10%, 20%, 30%, …, 100%.  We 

compare the results of recommendations for each category to the baseline of the 

recommendation-all-categories.   

 

During comparison, we will concentrate on the precisions of the recall levels under 50%.  

Higher recalls means more items in the recommendation list.  There is almost no user that 

will be interested in the recommended items ranking the 100th or even the 50th, for 

example in movies, books, music, etc. We believe that the user almost always focuses on 

the first 1~20 recommendations. 

 

Furthermore, we used some constraints in the experiments on both algorithms besides the 

base case (a minimum of 2 items have to be co-rated by user a and user u to generate 

weight), showed as follows.  One of the reasons is that both algorithms showed very low 

precision under the base case.  The other reason is that we want to see if the 

recommendation-by-category behaves like the recommendation-all-categories as the 

conditions in the algorithm changes. 

• Constraint (a): It requires sufficient number of neighbors to predict an item.  

We don’t generate the prediction for the required item i for a particular user a, 

unless there are more than 5 neighbors of user a that rated item i in the Simple 

Pearson.  In the Item-Item, there are at least 5 neighbor items that have been 

rated by a. 
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• Constraint (b):  We only pick the good neighbors. Good neighbors have to be 

similar to the active user in some degree.  User u is considered as a neighbor 

of user a only if their similarity weight is greater than 0.1 in the Simple 

Pearson. In the Item-Item, item j is considered as a neighbor of item i unless 

their similarity is greater than 0.02. 

• Constraint (c):  We have to be confident with the neighbors, and enough 

common items between the active user and his/her neighbors give confidence. 

In order to be considered similar, user a and user u should have a minimum of 

7 items co-rated in order in the Simple Pearson; in the Item-Item, item i and 

item j must have at least 30 users co-rated. 

 

3.4.2.3 Experimental Results 
 
 All 

Categories 
Category 
1 

Category 5 Category 7 Category 8 Category 
10 

Property All 
categories 

Action Comedy Documentary Drama Film-noir 

Total ratings 100,000 25,589 29,832 758 39,895 1,733 

Total "good" 
ratings 

55,375 13,534 14,946 477 24,605 1,244 

Total items 1,682 251 505 50 725 24 

Average 
ratings per item 

59.45303 101.9482 59.0732673 15.16 55.02759 72.20833 

Percentage 
of "good" ratings 

0.55375 0.528899 0.50100563 0.6292876 0.616744 0.71783 

 
Table 3: Representative categories 

 

We pick 5 representative categories from the experimental results and the 

recommendation-all-categories here.  As shown in Table 3, there is one big category with 

725 items and one small category with 24 items.  Among these 5 categories, there is also 

a very sparse category with an average of 15 ratings per item and a more dense category 

with sufficient data which has over 100 ratings per item.  We ran both user-user and item-

item algorithms for the base case. 
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Figure 5: Precision vs. Recall (the Simple Pearson with Base case) 

 

In the Simple Pearson algorithm, every category has better precision than the 

recommendation-all-categories in the recall levels less than 50%, although many of the 

differences may not be statistically significant.  As shown in Figure 5, category Action 

and Film-noir perform much better than any other category, and the precision at the 20% 

recall are 29.15% and 44.44%.  The cause may primarily be the sufficient available 

ratings they have, with 101 ratings/item and 72 ratings/item respectively.  Category 

Comedy and Drama are the fairly large subsets of the whole item set and have similar 

average ratings per item (59 ratings/item, 55 ratings/item) compared to the 

recommendation-all-categories (59 ratings/item).  Both categories have similar precision 

like the recommendation-all-categories, with 5.39% and 4.40% at the 20% recall vs. the 

recommendation-all-categories’ 3.02%.  Conversely, category Documentary and Film-

noir’s precision, 12.48% and 44.44% at the 20% recall, are much better than the 

recommendation-all-categories, which are the small categories with very small amounts 

of items, 50 and 24 items respectively.   
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Figure 6: Precision vs. Recall (the Item-Item with Base case) 

 

By using the same data set, we present the results of these 5 categories and the 

recommendation-all-categories in the Item-Item algorithm in Figure 6.  The same as in 

the Simple Pearson algorithm, all the categories also have better precision than the 

recommendation-all-categories.  Category Action, Documentary and Film-noir 

outperform the other two categories (Comedy & Drama) and the recommendation-all-

categories, with 29.82%, 25.14% and 50.72% at 20% recall respectively.  The reason 

may be identical to the Simple Pearson case. 

 

Previously we identified several constraints that can improve the accuracy of predictions.  

The interesting thing is that those constraints have significant effects on the quality of 

recommendation-by-category as well as the recommendation-all-categories.  We ran two 

algorithms, the Simple Pearson and the Item-Item, based on four cases: base case, 

Constraint (a), Constraint (b) and Constraint (c).  The results show that the tighter 

constraints on the neighbors result in better precision. We see consistent improvement 

due to constraints in all categories. 
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(1) All categories in the Simple Pearson (2) All categories in the Item-Item
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Figure 7:  Four cases of the recommendation-all-categories 

in the Simple Pearson and the Item-Item algorithms 

 

In both the Simple Pearson and the Item-Item algorithm, the precision of the 

recommendation-all-categories in the base case are incredibly low, approx. 3.02% and 

4.67% at the 20% recall.  Constraint (a) increases the precision by more than 200% to 

9.47% in the Simple Pearson and by 100% to 9.55% in the Item-Item algorithm.  

Constraint (b) gives the precision another jump to 14.01% and 22.97% respectively.  

Compared to Constraint (a) and Constraint (b), the improvement of the precision made 

by Constraint (c) is not significant.  The results are shown in Figure 7. 

 

The same with the recommendation-all-categories, the precision of almost all the 

categories improve as the constraint gets tighter. Worthy to be noticed is that from 

Constraint (b) to Constraint (c), the precision of categories Documentary and Film-noir 

that are small categories show almost no improvement.  More interesting thing is that 

category Film-noir even starts to decline in the Simple Pearson (from 60.41% in 

Constraint (b) to 60.22% in Constraint(c)), which is depicted in Figure 9.  Category 

Comedy and Drama that are big categories show very little improvement from constraint 

(b) to (c), shown in Figure 8 (category Comedy only).  From Constraint (a) to (b), or 

from Constraint (b) to (c) are one step tighter eliminating neighbors.  Tighter constraint, 
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of course, gives a pool of high quality neighbors, but it also shrinks the pool size of 

potential neighbors.  When the constraint becomes too tight, the pool size becomes too 

small for the active user to get enough neighbors.   

 

    (a) Category Comedy in Simple Pearson (b) Category Comedy in Item-Item
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Figure 8:  Four cases of Category Comedy in the Simple Pearson and the Item-Item 

 

    (a) Category Film-noir in Simple Pearson (b) Category Film-noir in Item-Item
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Figure 9:  Four cases of Category Film-noir in Simple Pearson and Item-Item 
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3.4.3 Conclusion of the Experiments 
 

The experimental results show that the implementation of this new capability meets the 

three requirements: consistency, speed and quality.   

  

In the experiment, neither the Simple Pearson nor the Item-Item algorithm shows very 

good results in the recommendation-all-categories, especially in the base case.   This 

precision is lower than the precision values reported by other collaborative filtering 

researchers.  The reason may be that we treat items unrated in the test set as “bad” instead 

of not counting them by other researchers. 

 

The recommendation-by-category shows better precision than the recommendation-all-

categories, especially for the small categories and the categories that have dense ratings.  

The less dense categories tend to perform like the recommendation-all-categories, but 

they still perform a little better than the recommendation-all-categories. 

 

Both the recommendation-by-category and the recommendation-all-categories are 

sensitive to the neighbors’ size and quality, which give us a plenty of space to give 

constraints.  But it is also hard to balance:  higher threshold in eliminating neighbors 

produces good quality recommendations, but left more users unpredictable; lower 

threshold degrades the quality, but a lot more people can get recommendations.   

 

3.5 Discussions and Future Works 
 

The implementation of this new capability is successful, but it also leaves us plenty of 

questions about the algorithms we have used.  Here, we will discuss a different way 

generating the similarity weight for the recommendation-by-category and ask some 

questions for future works. 
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3.5.1 Discussions 
 

The similarity weight used in the recommendation-by-category is in some sense biased.  

For example, user A and B who have similar opinions in category X, may differ in every 

other category. But user A and C who have opposite opinions in category X, agree with 

each other in all the other categories.  Under this situation, weight BAw ,  and CAw ,  

generated by function (1) stated in section 3.2.1 cannot present the closeness of user A 

and B, and the closeness of A and C in category X.   To generate recommendations for 

category X to user A, it might be better to re-compute the similarity between A and B, and 

the similarity between A and C through all the items in that category.  Theoretically, the 

recommendation-by-category will be much more precise in this manner. 

 

However, the above method has some practical difficulties.  If we compute different 

similarity weights for each category, we will encounter two problems. The first is the 

sparsity problem.  Narrowing down to a subset (category) of items makes the rating 

matrix become much more sparse, which means we will have less ratings per user.  If an 

active user has less ratings, he/she will have less overlap with the other users.  Less 

overlapping means less neighbors in generating predictions, and we will have less 

confidence about the neighbors.  For example, we have a category that has a total of 50 

items and 758 associated ratings with an average rating of 15 per item.  In such a 

category, we are not able to get any good quality predictions or even predictions at all if 

we only compute similarities based on ratings for the same category.   

 

The other problem with computing separate similarity weights for each category is 

consistency.  The recommendation-all-categories and recommendation-by-category will 

give the same item different scores and rankings.  The users will not be happy once they 

see the rankings of the same set of items differ depending on how they request a 

recommendation. 

 

3.5.2 Future Works 
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In the future, we may focus on how to balance the constraints to get an optimized size 

and quality of the neighbors in the future.  Should recommendation-by-category use a 

different method to compute similarity that is category owned?  We could penalize other 

categories when generating predictions?  Or perhaps even penalize the weight from 

categories that the user doesn’t like in computing the conventional recommendations.  All 

these questions could be considered. 
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4 CORBA API of Java Recommender System 
 

The Java Recommender System initially uses Java RMI as its remote interface, which 

prevents the server from talking to the clients in programming language other than Java.  

In this section, we will explain the CORBA API that can be used to support a wide 

variety of languages and platforms. 

 

Consider CORBA as the middleware because it integrates machines from many vendors, 

ranging from mainframes through desktops to hand-holds and embedded systems, and 

allows the computer network to work together by using the standard protocol -- IIOP 

(Internet Inter-ORB Protocol).  It also has various language mappings including Java and 

C++.    

 

We initially expected the CORBA implementation to be easy.  But in the implementation, 

we faced many problems.  In order to understand what we did and the problems we 

encountered, we give a brief overview of CORBA.  Then, we explain the designs and 

problems we had.  And finally, we present the empirical result of comparing CORBA and 

Java RMI. 

 

4.1 CORBA Overview  
 

CORBA (The Common Object Request Broker Architecture) is an open distributed 

object computing infrastructure being standardized by the OMG (Object Management 

Group).  As a distributed system middleware, CORBA can potentially operate across 

different hardware platforms and use different operating systems and programming 

languages. 

 

Like RPC (Remote Procedure Call), CORBA is used in distributed computing 

environment. But the main difference is that CORBA is Object Oriented. The CORBA 

object resides in the server and is invoked by the client that must obtain the CORBA 
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object reference.  The CORBA object is location transparent, which means we can do the 

operations in the same syntax no matter where the object is.  CORBA has a lot of 

language mappings, including C, C++, Java, COBOL, Ada, Lisp and Smalltalk.  It also 

supports bridges connecting other distributed computing environment, like Microsoft’s 

DCOM. 

 

The services that an object provides are given by its interface.  The interface to a CORBA 

object is defined by OMG’s IDL (Interface Definition Language), which is adapted to 

different programming languages.  IDL allows us to define interfaces for CORBA objects 

in a way that is platform, implementation independent, and language neutral.  IDL 

compiler is necessary in developing CORBA applications.  The compiler maps the IDL 

definition to a specific programming language, and generates stub code for client side 

invocation and skeleton code for server defining CORBA object implementation. 

 

An object's IDL defines the interface of the object and consequently how to invoke it.  An 

IOR (Interoperable Object Reference) is a globally unique identifier for a CORBA object.  

If an object's IOR is known, it can be invoked without further knowledge of where it is, 

what machine it runs on, how it is implemented and so on. This is one of the chief 

strengths of CORBA, since it hides a lot of nasty details that programmers would 

otherwise have to worry about. 

 

4.2 API Design 
 

There were two CORBA-like approaches we could take: RMI-IIOP, and pure CORBA.  

They both have advantages, as well as drawbacks.  RMI-IIOP can free us from 

developing the IDL, which is the necessary step for CORBA.  But RMI-IIOP is newer 

yet, so it isn’t well supported. 

 

4.2.1 RMI-IIOP Design  
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To use Java RMI over IIOP as the server side protocol and CORBA in the client side was 

our first thought.  This translates CORBA requests from a client to Java RMI requests to 

a server.   This would allow CORBA clients to connect to our server with minimal 

changes to the server.  And the compiler rmic generating IDL file from Java programs is 

freely available. 

 

RMI-IIOP Overview 

 

According to the Java documents, Java RMI over IIOP (RMI-IIOP), in a sense, is a 

marriage between RMI and CORBA.  It allows CORBA client to talk to Java RMI 

servers.  Like CORBA, RMI-IIOP is based on open standards defined by OMG and uses 

IIOP as its communication protocol.     

 

RMI-IIOP preserves existing investment in RMI binaries, so it can communicate with 

RMI without any source-code changes or recompilation.  As to CORBA, since the IDL 

file can be generated by rmic compiler, the CORBA client will easily talk to RMI-IIOP 

server.  The semantics of CORBA objects defined in IDL are a superset of those available 

to RMI-IIOP objects. 

 

Problem Encountered 

 

Developing the server was quite simple.  Migrating to RMI-IIOP required only changing 

a few lines of code.  However, in client side development, we encountered far more 

difficulties than what we expected.  Instead of one IDL file, there are a number of 

recursively connected IDL files full of value types (pass-by-value objects) generated by 

rmic, the RMI compiler.   An essential property of value types is that their 

implementations are always local, and the receiving side of a parameter passed by value 

receives a description of the state of the object, then instantiates a new instance with the 

state but having a separate identity from that of the sending side. 
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The reason is that all the Java serializables are mapped to the CORBA value types in the 

Java language to IDL specification.  Therefore, every Java serializable to be passed 

between client and server must be re-implemented in the language of the client. 

This means we have to develop a lot of C++ codes which are compatible to a large 

amount of Java basic classes like java.lang.Throwable, java.lang.Exception, etc.  To our 

knowledge, only Websphere implements these in C++ and includes them in their release.  

This cause the coding become so complicated -- almost need to develop a library, and it 

will take too much time. 

 

4.2.2 Pure CORBA Design 
 
The pure CORBA was our second choice.   In this design, server and client will both use 

CORBA to communicate.  Unlike in RMI_IIOP, we can manually construct our IDL file 

to avoid value types. 

 

 

 

 

 

 

 

 
 

Figure 10: structs in IDL file 

 

IDL file 

 

Rather than defining value types, we can use simple structs to pass rating and prediction 

data between client and server, as shown in Figure 10.  Compared to the value types, it 

simplifies coding on both server and client side, which free us from keeping two copies 

module server { 
struct ItemPredictionCorba { 

   long itemID; 
        float prediction; 
        long userID;         
    }; 
 
     struct ItemRatingCorba { 
   long itemID; 
        float rating; 
        long userID;         
    }; 
    …  … 
}; 
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of implementation of the same object and registering the factories in both (server and 

client) side.   

 

Exception Handling 
 

Another important thing is how to deal with the exceptions caught in the server side.  In 

the server side, there are two types of exceptions: CF user exceptions (application-

specific exceptions) and Java exceptions.  For each CF user exceptions, related CORBA 

user exceptions have been created.  In CORBA implementation class of the server side, 

all the CF exceptions are caught and thrown as related CORBA user exceptions. 

 

Since Java exceptions are all Java serializables and the value type is the only way to 

implement these objects on the client side, we would encounter the same problem as in 

RMI-IIOP design.  To avoid using value types, we implemented a wrapper class on the 

server side that catches all Java exceptions and throws a single CORBA user exception.  

Thus, besides all the CF user exceptions, a CORBA user exception – 

org::recommender::server::corba::CFEx – is defined in IDL to catch all the Java 

exceptions.  

 

4.2.3 Discussion  
 

Our two API designs are two different perspectives.  RMI-IIOP design is not desirable 

due to lack implementation of Java basic serializable C++ implementations.  As RMI-

IIOP gets mature and libraries become available, RMI-IIOP will become more desirable.  

By using Pure CORBA on the server side, we can manipulate server objects and 

exceptions in an easier way: using struct wrapping the server side objects – 

ItemPrediction and ItemRating; throwing CORBA user exceptions on the client side. On 

the other hand, downside of using pure CORBA is that we need two separate server 

implementations. 
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4.3 Comparison of CORBA and Java RMI 
 

The basic functionality of RMI and CORBA is similar since they both hide the 

communication details of remote method invocations.  However, RMI and CORBA were 

built with different goals.  RMI is designed for Java and support all the details of Java 

language.  On the other hand, it only offers basic functionality of ORB (Object Request 

Broker).  CORBA is a middleware that is not bound to a particular programming 

language and offers a rich set of object services, common facilities and domain facilities 

besides ORB.  It can be easily seen that CORBA is more complex. 

 

Some performance comparisons between RMI and CORBA have been made by Juric, 

Zivkovic and Rozman [6].  Here we will focus on the unique objects of our Java 

Recommender System.  In our CF System, Java RMI and CORBA only have tiny 

differences on the server core, where some objects passing rating and prediction in the 

CORBA implementation are the structs whose values passed by the rating and prediction 

class of the RMI version.  This apparently introduced a little redundancy.   Those 

redundancies can be ignored when a large amount of computation is performed.  

 

In order to compare these two models, a CORBA Java Client has been developed since 

we want to measure the remote protocol overhead only.  In our experiments, we will only 

compare the performance of the core method of our Recommender System, which is the 

recommendation.  We then simulated single and multiple client scenarios. 

 

4.3.1 Single Client 
 

In this single client experiment, we compare the execution time of fixed number of 

recommendations in two cases: the server and the client on the same machine, and on 

different machines.  

 

Figure 11 shows that RMI is consistently faster than CORBA.  We believe this is because 

of the much greater complexity of the CORBA architecture.  But RMI introduced more 
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overhead than CORBA when the server and the client are running on different machines.  

Compared the different machines to the same machine case, the average performance 

degradation of RMI is 4.29% vs. CORBA’s 2.09%.  This could indicate that CORBA 

handles network communication better than RMI.  But even with this advantage, CORBA 

is still slower than the RMI on the network. 
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Figure 11:  Single Client Scenario: Average Time for Top 200 recommendations 

(number of recommendations = 200) 

 

4.3.2 Multiple Clients 
 

Each server object will have to handle multiple clients.  To test that, we create multiple 

threads which simulate multiple clients, each performing the same task – get 

recommendations. The experiment was performed on the computer which has two 

processors and is heavily loaded by many processes. 

 

Figure 12 shows the execution time increases in both RMI and CORBA with the number 

of the clients increasing.  But the performance degradation of RMI is slightly larger than 

CORBA, but not significant. The reason might be the less optimized RMI code.  RMI is 

almost 500ms faster in the 1 client scenario.  While the number of clients increases, 
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RMI’s performance degradation is slightly larger than CORBA.  After the point of 30 

clients, CORBA’s speed started to exceed RMI’s about 200 ~ 300 ms, however, the 

difference is not so obvious. 
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Figure 12:  Multi Clients scenario: RMI vs. CORBA 
(number of recommendations per thread = 10) 

 

4.3.3 Discussion 
 

It’s not clear for our application that either CORBA or RMI performs significantly better 

than the other.  To our Java Recommender System that is set for middle size database, 

Java RMI is enough for pure Java environment.  CORBA can be seen as a helping API 

which provides cross-language function to bridge different platforms. 
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5 Correctness Testing for Java Recommender System 
 

The goal of the correctness testing is to ensure that our Java Recommender System 

working correctly and free of bugs.  After finishing the implementations of the initial 

Java Recommender System, we ran into some problems.  First of all, the system didn’t 

respond correctly to some extreme inputs.  Secondly, the synchronization part in our 

system didn’t work properly.  The server crashed within 20 minutes while 10 client 

threads were running.  

 

The above problems made testing not only necessary but also urgent.  However, which 

kind of test should be done?  There are many modules and plenty of threads in the server 

side, as depicted in Figure 2 of section 2.  As to the modules, unit test was the first that 

have come to our thought, but was not practical to finish testing all the units and threads 

and bug-fixing in two and half months’ time limit.   

 

Thus we focused on end-to-end testing of the whole system.  It can be divided into two 

parts: CF Interface Component test and Multi Thread test.   

 

5.1 CF Interface Component Test 
 
The component test is the most basic part, which ensures main server interface methods 

work properly.  A test plan was made for each main interface method. 

 

Test Plan & Implementation 

 

The plan is combined with 14 individual test modules, and each module is for one 

CFEngine interface method.  For each individual module, various test cases have been 

involved.  Generally, all the test cases are developed from the following basics. 

 Illegal Parameter:  It is important to deal with all predictable illegal parameters in 

every method.  The server should be robust to such errors from the clients. 
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 Single User:  Our second case is to simulate one user.  A CFEngine interface 

method is executed once or several times and the result is checked.  

 Multiple Users:  This test case is to demonstrate several users doing the same 

operation on different items. 

 New Users (Items):  All the new users and items not appearing in the database and 

the cache have to be handled correctly.  That the user or item doesn’t appear in 

the database does not mean that it does not exist. 

 

During the implementation, all the server interface methods have been classified into 

three groups: core components, DB components and peripheral components.  There are 

group specific testing criteria in developing each testing module.  For example with the 

group of core components, the return values of getRecommendations() and 

getPredictedRating() can be compared to see if they have the same predicted rating. 

 

Results of Testing 

 

When the server is initially designed, there were no coding standard.  Thus, each team 

member has programmed in his or her own way.  This meant the majority of the methods 

have some problems.  For example, almost no method has dealt with the illegal 

parameters correctly and those illegal parameters caused various Java exceptions to be 

thrown.  We also found that an inconsistency exists between the predicted rating of 

getRecommendations() and getPredictedRating(). 

 
In the process of writing tests, we were forced to clearly define the specifications for each 

method.  The specifications for each object and function has been developed and applied, 

after all the problems have been found.  The specifications, as a basic of our system, not 

only help fixing the existing problems, but will also apply to the future development.   

 

5.2 Multiple Thread Test 
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The cache makes the computation in the server side much faster, but the multiple server 

threads accessing the cache concurrently does introduce a lot of concurrency issues.  

Thus, the right synchronization scheme is critical to make the server work correctly, and 

a careful plan and strategy is very important. 

 

Test Plan & Implementation 

 

To test all the server side threads, we decided to run many client threads, which simulate 

different users doing various operations.  To ensure a correct synchronization scheme, the 

interaction of different types of threads also need be tested.  Based on the above thoughts, 

we have designed the testing cases that can be used in different threads’ interaction if the 

server is appropriately configured. 

1. Several threads of getRecommendations() simulating multiple readers.  They read 

the information from the cache only. 

2. One or more threads of getRecommendations() interacting with one thread of 

setRating().  It simulates that one client is writing to the cache, while the other 

ones are reading. 

3. Several threads of setRating().  This test case can be used to assure that only one 

writer is allowed at a time if both threads are ran by same user. 

4. One or more threads of setRating() and one or more threads of removeRating().  It 

performs the same task as in test case 3 and provides another perspective. 

5. Several threads each of getRecommendations(), setRating(), removeRating().  

Further tests on the synchronization of the cache. 

6. Multiple threads:  More than 10 threads randomly select the operations of 

CFEngine interface.  

 

Result of Testing 

 

The majority of the bugs and deadlocks were due to the server cache structure and 

carelessness in the synchronization design.  For example, the entries of the big hash maps 

(UserInfo and ItemInfo) were synchronized hash map.  It not only made a lot of 
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operations in these two objects unnecessarily synchronized, but also introduced a lot of 

synchronized blocks into the server’s main module – DataManager.  This made it very 

hard for us to trace the deadlocks.  Since the cache behaves exactly like the reader-writer 

problem, a much neater scheme -- reader-writer lock -- has been developed instead.  We 

have changed these two objects to non-synchronized hash maps and created a reader-

writer lock for each object.  This new scheme drastically reduced the number of 

synchronized blocks in the DataManager and makes testing much easier. 

 

The result of this multiple-thread testing is significant.  In the beginning of this testing, 

the system could not run for more than 20 minutes without crashing.  During the period 

of whole test, more than 30 synchronization bugs and deadlocks have been fixed, and 

some basic synchronization schemes have been changed.  The system is much more 

stable and has run more than 2 days with 20 threads. 

 

5.3 Discussion 
 

The correctness testing ensures the stability of the Java Recommender System.  If we had 

made object and function specifications available before we started to create the software 

in the first place, we would have saved much time in debugging and overall development.  

We could have made the testing cases, which are based on the specifications, available 

before programming.   

 

Programming is not the only part in building software.  A careful and detailed picture or 

model is critical, which is the macro view of the software.  It not only gives the direction 

to programming, it also can save time in testing.  On the other hand, testing is also an 

important part in software engineer.  It can give a micro view and help to consider every 

details of the system. 
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6 Conclusion 
 

In this project, we developed a new capability, a new remote API and created correctness 

testing code for the Java Recommender System.   The new capability, recommendation-

by-category, makes the system more functional, which gives the user an option to limit 

recommendations to a category they are interested in.  The experimental results show that 

this new capability performs well compared to the conventional recommendation 

capability.  The CORBA API makes the system much more compatible and suitable for 

distributed multiple platforms and various programming languages.  Finally, the 

correctness testing makes the whole system much more stable and ready to run.  During 

the testing, not only the specifications for the whole system have been considered, a 

much simpler and neater way that utilizes the reader-writer object locks for 

synchronization has also been provided. 

 

The Java Recommender System implements Collaborative Filtering techniques to 

alleviate the effects of information overload.  It achieves scalability by limiting the 

amount of data in cache.  Caching technique also makes the whole system robust and 

fast.  It suits distributed multiple platform applications via Java RMI and CORBA IDL.  

Furthermore, it is also a great tool for research.  For research purposes, it provides a lot of 

collaborative filtering algorithms and an experimental class to test the algorithm without 

little effort.  It also can integrate new algorithms easily through the CFAlgorithm 

interface.   

  

Future works may focus on building the client in various programming languages and 

refine cache structures to enhance the performance and reduce the memory requirements.  

It is possible to improve the quality of recommendations in some algorithms by 

constraining the important parameters to reach an optimal point. 
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