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This paper presents an application of the wave equation to the

problem of selecting a driving hammer for prestressed concrete piles.

The potentially damaging effects of these types of hammers on various

prestressed concrete piles were analyzed by means of parametric

studies carried out on a. hypothetical group of problems and two case

histories. A computer program written by T. C. Edwards and largely

based on the work of E. A. L. Smith was used to analyze the driving

stresses produced in the pile by driving it with steam-air hammers.

For each hammer the variation of driving stresses in the pile

due to variations of cushion characteristics, soil resistance, depth of

embedment, length of pile and variations in the soil properties was

studied.

Throughout the study it was seen that the tensile stresses pro-

duced by a single acting hammer were much higher than corresponding



stresses produced by a double acting hammer of the same energy with

a heavier ram. The velocity of impact of the ram was found to be of

major significance in determining the magnitude of the driving stresses.

Finally, it was seen that although there was a close interaction

between the pile-soil-cushion system and hammer that no absolute

conclusion can be made regarding the suitability of a certain hammer

for all piles, Each situation should be considered individually on the

basis of a similar approach to the one followed in this study.
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PILE HAMMER SELECTION BY DRIVING
STRESS ANALYSIS

L INTRODUCTION

During the process of driving prestressed concrete piles, failure

of the concrete may occur due to one or a combination of the following

causes:'

1. Excessively high compressive stresses at the head of the

pile.

2. Excessively high compressive stresses at the tip of the pile.

3. Excessive shear stresses created by torsion.

4. Excessive tensile stresses that may occur at certain points

in the pile.

The first two causes produce spoiling of the pile at its head and

tip respectively. The third cause produces spiral cracking of the

concrete. The last cause produces transverse cracking of the concrete,

and it will be the subject of this study.

Numerous cases (2, 21, 23) of transverse cracking on pre-

stressed concrete piles during driving have been reported. The

cracking occurred mainly during the early stages of driving. In some

instances the cracking of the concrete was avoided by making some

changes in the driving technique; for example, reducing the stroke of

the hammer, or using a softer cushion or avoiding jetting before

driving.
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Certainly the conditions under which tensile cracking occurs are

intimately related to the driving hammer. The decision to use a

certain kind of hammer should be based on economical and technical

considerations. It has been suggested that double acting hammers

are unsatisfactory for driving prestressed concrete piles and that

single acting hammers are less dangerous (22). This contention in

certain cases may be true, but there still exists the problem of

deciding which kind of hammer will perform better, in terms of effi-

ciency of driving without damaging the pile. For example, a given

pile may be driven safely with a given hamMer, say a single acting

hammer of a given energy, but the rate of driving may not be suffi-

ciently fast, to the point of making the piling process uneconomi-

cal. On the other hand, the opposite extreme is to use another kind of

hammer that gives a high penetration rate, as a result a quicker driving

operation, but at the expense of the integrity of the pile. Therefore,

the question that arises is how to determine which kind of hammer is

better suited to perform a given job. One of the answers lies with the

experience that foundation engineers may have with equipment used

with different types of piles and soils. However, this is not a quanti-

tative way to relate the pile-soil system to the driving equipment, nor

is it a reliable one. It appears necessary to understand the mechanics

of pile driving to predict the behavior of the hammer-pile-soil system.
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IL PURPOSE AND SCOPE

The purpose of this study was to compare potentially damaging

effects of a double acting steam-air hammer on a prestressed concrete

pile, to those of a single acting hammer of the same rated energy.

To accomplish this purpose use is made of the wave equation to

determine the driving stresses that the hammer induces in the pile.

Parameter studies were made on a group of problems with hypotheti-

cal data and on a second group of problems from case histories. In

the first set of analyses, double acting and single acting steam-air

hammers of the same energy were assumed. For each case the

influence of pile length, depth of embedment, cushion stiffness, soil

resistance and percentage of soil resistance at the tip of the pile was

studied. In the second group, representative of actual problems,

hammer type and soil conditions for a given hammer were varied.
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III. LITERATURE REVIEW

Several authors have suggested the need to recognize that pile

driving problems should be analyzed using dynamic methods. Most

of the effort put forth has been directed to answering questions

related to the load carrying capacity of a pile. Chellis (3) reports 38

pile driving formulas and the editors of the Engineering News Record

have on file more than 400 formulas for the same purpose. Many of

them work well in particular situations. There are still more

formulas that are being proposed from time to time.

The formulas that have been proposed can be classified in three

groups:

a) Empirical formulas, based on statistical investigation of

pile driving experiences.

b) Static formulas, based on the side friction and point bearing

resistance, which in turn depend on the properties of soils.

c) Dynamic formulas which assume that dynamic pile driving

resistance is equal to the static load carrying capacity,

None of the pile formulas takes into consideration all of the

factors that are involved in the process of driving. For example, the

Hi ley formula, often called the "complete formula, " takes into con-

sideration several important factors such as the weight of hammer

ram, weight of pile, energy of hammer, coefficient of restitution,



5

etc. , but neglects others such as the velocity of the ram, and soil

damping, to name two. Furthermore, none of the formulas produces a

prediction of the driving stresses along the pile.

Isaacs (17) is credited with having been the first to observe that

propagation of driving stresses in a pile may be analyzed by the wave

equation. Fox (10) proposed an exact solution to be used for pile-

driving analysis. Later, Glanville, Grime, Fox and Davies (13)

published the first correlations between experimental studies and the

results obtained by Fox's proposed solution to the wave equation.

Fox's solution was too complex to be used in real cases. It was

necessary to make simplifying assumptions, such as zero frictional

side resistance and a perfectly elastic cushion block. Nevertheless,

from their experimental work and Fox's solution, they concluded that

their results were in agreement.

Cummings (5) worked with the wave equation as developed by

Fox, but he arrived at the same conclusion; that the expressions were

too complicated to be used in real cases and even for simple problems

the amount of work involved for the solution was still considerable.

Because a real problem of pile driving analysis involves many

variables, such as the side frictional soil res istance, the soil damp-

ing parameters and other factors that prevent solving the wave equa-

tion directly, it was necessary to obtain expressions, based on wave

propagation concepts, in which these parameters could be represented.
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Smith (26) proposed a mathematical model and its corresponding

numerical analysis which accounted for many of the parameters

involved in pile driving. He continued updating his work (27, 28, 29,

30, 31). However, his works received little attention from the pro-

fession until 1960 (32) when he published a summary of his works. In

this summary he recommended typical values of soil parameters for

use in his solutions. This publication represented a breakthrough in

the pile-analysis problem and two immediate applications to the wave

equation were suggested:

1) A way to estimate the ultimate driving resistance and to

predict driving stresses.

2) Parameter studies to determine the influence of the variables

that are involved in pile driving.

The second application is useful when a better understanding of

the mechanics of a pile driving problem is needed and when some

variables in the problem are not well defined. In this case ranges of

results can be obtained. Since the Smith paper, extensive research

has been carried out at Texas A and M University in joint effort with

the Texas Transportation Institute and the Federal Highway Administra-

tion, under the direction of C. H. Samson (24). Forehand and Reese

(8) worked with the wave equation at Princeton University, They

arrived at conclusions similar to those of Samson and associates.

Both groups used computer programs based on Smith's work. At
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present there is no doubt about the applicability of the Smith model.

Samson, Hirsch, Lowery and associates have continued working,

supplementing the theoretical with experimental work (14, 15, 16, 20,

25), Researchers at Texas A and. M University extended Smith's

original solution. They studied the influence of the size of the ram

and modified the program to include parameters that were more

general; for example the cushion in their solution could have nonlinear

stress-strain behavior. Hirsch and associates modified the expres-

sion to account for damping.

Edwards (7) wrote a computer program based on Smith's pro-

cedure. This program gives results within 0. 1% of Smith's original

program.

Soil damping and quake to be used in the analysis have been

suggested by Forehand and Reese (9). Bowles (1) also gives a way to

evaluate the damping values from laboratory tests, The most recent

work in this field has been done by Coyle (4) and associates, who

found nearly the same values for damping and quake as those proposed

by Smith. More work needs to be done to determine soil parameters

than can be used reliably.
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IV, MATHEMATICAL MODEL

Wave Propagation Concepts

For purposes of continuity a brief review of the phenomenon of

impact in slender bars is given here as applied to prestressed concrete

piles. For more detailed aspects the reader is referred to references

(6) and (34).

When a slender bar is hit on one end by a weight in a short

period of time, the head of the bar will be subject to a compressive

stress caused by the impact. This compressive stress travels to the

other end of the bar. If the weight hits the bar instantaneously and

the impact remains constant for a period of time and assuming that

weight and bar are rigid, the stresses build up in the sequence shown

in Fig. 1, where At is a convenient time interval.

When the weight hits the bar, the increase of stress at the head

of the bar is sudden. Fig. 1 (c) shows an instant At later. By this

time the stresses have traveled down the bar a certain distance, with

a speed, c, Fig. 1 (e) corresponds to the instant in which the ham-

mer ceases to press the bar head. The front of the compressive

stresses will have traveled a certain distance, c x 4 At, during this

period. The length of this stressed zone is L. This length will

depend on the time that the hammer acts on the bar, as well as on the
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Figure 1. Idealized sequence of stress wave propagation.
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speed of propagation of the stress, which in turn depends on the kind

of material of the bar. Fig. 1 (f) shows the instant when the front

of the stress wave reaches the end of the bar. From this point on,

two extreme developments are possible, depending on whether the end

of the bar is fixed or free. If this end is free, the stress wave will

"reflect" as tensile wave. This phenomenon is illustrated by Smith

(31). He compares the pile to billiard balls lined up and tied together

in some way. If the first ball is struck with the cue ball it is evident

that the impact will transmit to the last ball through the intermediate

ones. The last ball will try to shoot off by itself with a velocity

approximately equal to the cue ball, but as it is tied to the other ball

this one will try to follow the motion of the first one. In turn the

next to the last ball will pull the preceding one and so on. The pulling

action produces the tensile stresses.

If the end is fixed and assuming the bar has no friction on its

sides, at an instant later than 6 At of Fig. 1 (f), the wave will reflect

as a compression wave and for ideal conditions the total stress at the

tip will be double that of the top of the pile. Fig. 2 (a) and (b)

illustrate each case.

In a real situation the impact does not happen instantaneously

and the build up of stresses is gradual. A more realistic representa-

tion of stresses corresponding to Fig. 1 (e) and Fig. 2 (a) and (b) is

given in Fig. 3.
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Theory Review

Timoshenko (34) presents a derivation of the wave equation from

the dynamic equilibrium of the shaded portion in Fig. 4. The stressed

element shown in Fig. 4 (a) travels along the bar at velocity c, pro-

ducing axial displacements, u. Stresses on the element are shown

in Fig. 4 (b). Horizontal summation of forces gives

where

a T
X

-CTxA + xA a x dx.A - ma 0

m = Adxp

and p is the mass per unit volume of the bar.

The acceleration of the mass is

a =
a
2u

at2

Substituting m and a in Eq. (1) and simplifying:

But, by definition

8o- x a
2u

ax P at

au
E

X ax

= EE
X x

Substituting E and o-x in Eq. (2):

(1)

(2)



V////1

ma. cr
x

(a)

A area

(b)

a Crx
0- dx

x ax

Figure 4. Free body diagram for
dynamic equilibrium.

x
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(3)

Eq. (3) is the one dimensional wave equation for stress propagation in

a bar with no friction on the sides.

For friction acting on the sides of the element

2

at

2
2 a u

R
axz

(4)

where c is the velocity of wave propagation and R is soil resistance

per unit mass of pile.

Idealization Equations

Because the solution to Eq. 4 was very cumbersome without

the aid of electronic computers (10), its application was limited to

ideal cases or to a few real problems for which very drastic simpli-

fying assumptions were necessary to make.

Smith proposed a model to represent the hammer-pile-soil

system (32). This idealization consists of a simulation of the soil

medium, the hammer and the pile and the cushion blocks (7), The

hammer and pile are idealized by a system of discrete weights con-

nected with massless springs. The springs represent the stiffnesses

of the pile, and sometimes the ram and the cushion blocks. Because

the cushion blocks have very small weights, these are neglected and

only its spring action is considered. The soil resistance is simulated
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by a spring and a damper acting on each pile segment.

In Fig. 5, Wm is the weight of the ram,
W2)

is the weight of the

pile cap, and W
3) (

through W
8)

are the weights of each segment of pile.
(

K is the spring representing the stiffness of the cushion between the
(1)

ram and pile cap. K represents the combined stiffness of the cushion
(2)

between the pile cap and first segment of pile and the stiffness of this

first segment. K through K are the stiffnesses of the pile segments.
(3) (7)

K' through K' are the stiffnesses of the side soil springs, while J'
(5) (8) (5)

through J' are the damping constants of the side soil spring.
(8)

In general W
m)

represents the weight of mass m,K(m-1) its
(

spring stiffness, K'(m) and J'(m) are the side soil spring and the side

damping constant acting on mass m.

Smith proposed a numerical solution for his model (32). This

solution was based on a repetitive use of the following equations of

motion and equilibrium that he derived for mass m:

(5)D(m, t) =D (m, t-1) + 12 V(m, t-1)

m, t)

F(m, t)

R (m, t)

II(m, t)

=

=

=

D(m, t) D
(m-F 1, t)

C(m, t) K(m)

ID (m, t) D' (m, t)1 K' (m) { 1 +J (m)
V(m, t -1)

(6)

(7)

(8)

(9)V" (rn, t 1

]fiti [F (m-1, t) F(m, t) R(m, t)'W
(111)

where:

rn = mass number
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Figure 5. Mathematical model for pile driving analysis.
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t = time interval number in which a given value is
considered.

At = size of the time interval (sec)

D(m, t)
= total displacement of mass number m during time

interval t (in)

V(m, t) velocity of mass m during time interval t (ft/sec)

C(m, t)
compression of the spring m during time interval
t (in)

F (m, t) force exerted by spring number m between segment
numbers (m) and (m+1) during time interval t (lb)

R(m, t)
total soil resistance acting on segment m (lb/in)

spring rate of mass m (lb/in)K(
m)

K(m) = spring rate of the soil spring causing the external
soil resistance force on mass m (lb /in)

= total inelastic soil displacement or yielding during(m, t) the time t at segment m (in)

J(m) = damping constant for the soil acting on segment
number m (s ec /ft)

gravitational acceleration (ft/sec2)

W
(m)

weight of segment number m (lb)

It can be shown that by combining Eq. (5), (6), (7), (8), and (9)

the following expression can be obtained:

D(m, t) = 2D(m, t-1) D(m, t-2)

12gAt2

(m)

[D(m,t-1) D(rn+1,t-1

[D(m-1, t-1 ) D(rrit- 1)1 K(m-1)

(12)
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This is a difference form of the wave equation, Eq. (4). Eqs. (5)

through (9) are therefore equivalent to the wave equation in its differ-

ence form. This is why Smith's method is called the "wave equation

method. "

In the model shown in Fig. 5, the hammer, pile and soil were

directly represented by the weight-spring-dash-pot system. How-

ever, in order to be aware of some limitations and simplifications

introduced for this particular model, a brief consideration of each of

the parts that form the pile-soil-hammer system is given below.

Hammer. Basically there are five kinds of hammers: drop

hammer, single acting hammer, double acting hammer, differential

hammer, and vibratory hammer (11). This writer is aware that only

the first four kinds of hammers have been simulated in the numerical

solution of the wave equation for pile driving analysis (7, 8, 20). This

study was limited to single acting and double acting steam-air ham-

mers.

In the single acting hammer the energy delivered to the pile

comes entirely from the weight of the ram. Compressed air or steam

lifts the ram to a certain height, after which the ram drops with an

energy equal to the potential energy that the ram acquired when it was

lifted, minus any energy losses.

In the double acting steam-air hammers the energy to drive the

pile comes from the potential energy of the ram plus the energy of the
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steam-air that pushes the ram from the top of its stroke. Again,

energy losses take place.

The differential acting steam-air hammer works basically in

the same way as double acting hammers, but there is a cycle

arrangement that permits getting a mixture of characteristics of the

single acting hammers and double acting hammers. There are advan-

tages and disadvantages for each kind of hammer.

As far as the idealization of the hammers to be simulated in the

wave equation, there is no difference. The ram can be divided into a

number of segments with spring constants, as the pile is divided, but

investigation made by Hirsch, Lowery and Samson (20) showed that

there was very little difference in the driving stresses and maximum

point displacement when the ram was divided into ten segments as

compared to those stresses and displacements when the ram was con-

sidered as a whole. Based on these findings, the ram weight in this

study will be considered concentrated in one segment having an infinite

stiffness relative to the stiffnesses of the rest of the system.

Although the manufacturers of pile driving equipment furnish

maximum energy rating for their hammers, the actual available

energy is less. There are several reasons for this. Among them are

poor hammer conditions, lack of lubrication and wear. Chellis (3) and

Edwards (7) give some recommended values of efficiency for different

hammers. For this study an efficiency of 100% was assumed for the

hammers.
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Cushions. The cushions are needed to limit the driving stresses

in hammer and pile. There are two characteristics pertaining to the

cushions that are important in the pile driving analysis by the wave

equation. They are stiffness and coefficient of restitution. The stiff-

ness is rather simple to control, at least initially. The modulus of

elasticity of the cushion, its area and thickness control the stiff-

ness. Smith (32) proposed a linear variation for the strain-stress

relationship. Hirsch and associates (20) found that the variation

should be a curve. They proposed a parabolic curve for the loading

portion and a linear variation for the unloading. They also concluded

that the dynamic stress-strain relation is very similar to the static

one. From the stress-strain relations found with the wave equation,

they determined coefficients of restitution for several materials.

However, since the thickness of wood cushions, for example, change

considerably as it is used, it seems very difficult to predict the real

stress-strain relationship corresponding to each thickness. Based

on the above considerations, the assumption of linear stress-strain

relations for cushions seems to be reasonable, for the purposes of

this study.

Pile. The length of segments in which the pile is divided is

usually 5 feet to 10 feet. The length of each segment is related to the

time interval used for each cycle of calculations, in addition to the

material of the pile. For prestressed concrete piles Smith
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recommends time intervals of 1/3000 sec for segments of pile between

8 feet and 10 feet long. For smaller segments, the time interval

should be reduced proportionally. For the hypothetical part of this

study, five foot segments were considered, while for the case histories

other convenient segment lengths were taken.

Smith suggested that internal damping in the pile might be

significant. He proposed the following expression:

B K(F(m, t) K +C(m,
t) (m) 12 of

[C (m, t) C (m, t-1)1 (13)

where B = 0.002 sec/ft is the internal damping constant (21). The

above equation was derived from the model shown in Fig, 6 (b).

Hirsch, using the concept of static modulus of elasticity, E, and sonic

modulus of elasticity introduced the model of Fig. 6(c), for which he

derived the expressions for including the effects of damping.

The maximum stresses found in the pile usually occur during

the first or second pass of the stress wave along the pile. During this

time the effects of damping are small and they can be neglected (20).

Experimental results confirm this theoretical conclusion. For this

reason model of Fig. 6 (a) will be assumed for the present study.

However, for timber piles, this may not be true since its damping

capacity is much higher than for steel and concrete (20).

Soil Parameters. Possibly dynamic soil resistance is the least

known of all factors involved in pile driving analysis. Smith (32)
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(a) (b) (c)

Figure 6. Idealizations for the spring segment of a pile. (a) no damping present, (b) and
(c) damping is present.

B

D

(a) Elastic-plastic soil resistance curve

Deformation, in

u(m)

Deformation

(b) Generalized soil resistance curve

Figure 7. Ultimate soil resistance versus deformation.
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proposed Fig. 7 (a) to define the soil deformation-static resistance.

Fig. 7 does not include the dynamic soil properties necessary

for pile driving analysis. The resistance function shown is only

defined by Q(m) (ground quake or rebound) and the ultimate static soil

resistance Ru(m) of the pile. Path OABCDEFG represents the load

deformation characteristics of the soil along the pile when the pile

moves downward, or upward. However, for the soil located at the tip

of the pile, only path OABCFG is appropriate, since no forces down-

ward will be present at the tip as the pile rebounds. The spring

constant for the curve between 0 and A can be defined as:

Ru(rn)
K(m)

Q(m)

To include the damping effects of the soil, a third value, J(m)

will be introduced and it is defined as the damping constant of the soil

spring (m). The total resistance of the soil including the effect of

loading rate is given by:

= [D ' ]K' [1 + J ]R(m,
t) (m, t) D(m,

t) (m (m) V (m, t-1)

which was one of the group of equations developed by Smith.

Hirsch (20) worked with a nonlinear relationship for the soil.

Fig. 7 (b) shows such variation of deformations and static load

resistances. He found there was very little difference between this

approach and the results of assuming an elastic-plastic variation.
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Only a drastic change in the soil resistance curve was found to cause

an appreciable difference in the solution. For this reason a linear

soil resistance curve was used in this study.



V. ANALYTICAL STUDIES

Study outline

25

The numerical solution of the wave equation permits variation

of one or more parameters in the analysis while keeping the others

constant. This technique was used for studying the group of prob-

lems described in this section.

A group of hypothetical problems was first considered to

demonstrate the versatility of the analytical method and to indicate

the importance of the influence of the several controlling variables.

The second step was to analyze a problem with tension cracking

from case records and to show how the problem and its solution

are amenable to analysis by the method proposed. Finally, a case

is analyzed to show how the selection of an acceptable hammer from

the standpoint of tension cracking might be made,

For all analysis work, the wave equation program developed

by T. C. Edwards (9) at Texas A and M University was used.

Hypothetical cases

The variation in the magnitude of the driving stresses under

different conditions was considered for the cases described below.

Two types of hammers were assumed: a differential acting

steam-air hammer (Super Vulcan 65C) with 19, 200 lb-ft of energy
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Hammer 32. SH SA

Soil quake Q =0, 10 in
Point soil damping J =0. 15 sec/ft
Side soil damping j'=0, 05 sec/ft

Capblock stiffness K1= 840000 lb/in K1=1680000 lb/in
Cushion stiffness K2=785000 lb/in K2 =1570000 lb/in

Pile section
Pile length

12" x 12"
55'

12" x 12"
110'

Ultimate resistance 10000 100000 10000 100000 200000

Embedment of pile 10' 55' 10' 55' 110'

Percentage of resistance
at pile tip

31% 7.6% 31% 7.6% 3. 9%

Figure 8. Flowchart of problems for hypothetical cases.
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and a ram weight of 6,500 lb, and a hypothetical single acting

steam-air hammer with 19, 200 lb-ft of energy and ram weight

of 3, 250 lb. The latter will be referred as the 32. 5H SA.

It was assumed that each type of hammer was to drive two

12-inch square prestressed concrete piles; one 55 feet and one

110 feet long.

For each combination of hammer and pile, two different

sets of cushions were to be used. One of the sets had a stiffness

equal to twice the stiffness of the other.

For the 55-foot long pile, depths of embedment of 10 feet

and 55 feet were assumed to represent two extreme situations,

while for the 110 foot long pile, the depths of embedment were

10 feet, 55 feet and 110 feet.

For all combinations of situations considered in this group

of hypothetical problems, the values of the soil quake and damping

factors were considered constant.

Fig. 8 shows the organization for this set of 20 problems.

Port of San Francisco Case History

Prestressed concrete piles 67 feet to 89 feet long were used

in the substructure for the dock at Army Street Pier, Port of San

Francisco. In the process of driving the 18-inch octagonal piles,

tension cracking occurred in piles driven with a double acting



Pile section
Pile length

Soil quake
Point soil damping
Side soil damping

Hammer energy
Ram weight

Capblock stiffness
Cushion stiffness

18" Oct.
89'

(;) =0. 10 in
J =0. 15 sec/ft
J'=0, 00 sec/ft

28

36000 lb-ft
14000 lb

K1= 12000000 lb/in
K=

2
2740000 lb/in

36000 lb-ft
20000 lb

K1=12000000 lb/in
K2= 755000 lb/in

Ultimate resistance 99000 lb 62500 lb 24000 lb 62500 lb 24000 lb

Embedment of pile 37' 20' 10' 20' 10'

Percentage of resistance
at pile tip

0% 54% 70% 54% 70%

Figure 9. Flowchart of problems for Port of San Francisco Case History. Variables: hammer:,
stiffness K2 and soil embedment.
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steam-air Vulcan 140C hammer. The damaged piles had been

jetted to within 3 feet of final position by jetting through their

tips. The cracking problems were avoided by eliminating the

jetting, changing the cushion stiffness and increasing the weight

of the hammer ram while decreasing its stroke to maintain the

same energy as the 140C hammer.

From the records of this job each of the above situations

was analyzed and it was determined whether cracking of the piles

could have been predicted.

Fig. 9 shows the organization of the problems solved for

this case history. The problems are representative of those which

occurred in driving piles at the mentioned site.

The 37 feet of embedment corresponds to the depth when

driving by the hammer started. Up to this point the piles had been

jetted into place. The 10-foot and 20-foot embedments correspond

to situations when jetting was not used to drive the pile. The two

hammers used had the same energy. However, one had a ram

weight of 14, 000 lb and the other had a ram weight of 20,000 lb.

For the first case a three-inch thick Douglas-fir plywood cushion

was used which was represented by a stiffness of 2, 400, 000 lb/in,

while for the second case a 12-inch cushion was used with a corre-

spondent stiffness of 755, 000 lb/in.

Fig. 10 and Fig. 11 show how the soil damping parameters



Pile section
Pile length

Hammer energy
Ram weight

Soil quake

Capblock stiffness
Cushion stiffness

Ultimate soil resistance
Embedment of pile
Percentage of resistance

at pile tip

Point soil damping
Side soil damping

18" oct.
89'

36000 lb-ft
14000 lb

Q =0.01 in

K1=12000000 lb/in
K2= 75500 lb/in

24000 lb
10'
70%

J =O. 15 sec/ft
J' =0.05 sec/ft

J =0.21 sec/ft
V=0.07 sec/ft

30

=0. 30 sec/ft
J'=-0. 10 sec/ft

Figure 10. Flowchart of problems for Port of San Francisco Case
History, Variable: Soil damping.



Pile section
Pile length

Point soil damping
Side soil damping

Hammer energy
Ram weight

Capblock stiffness
Cushion stiffness

18" oct.
89'

J =0. 15 sec/ft
J' =0.05 sec/ft

36000 lb- ft
14000 lb

K1= 12000000 lb/in
K2= 755000 lb /in

Ultimate soil resistance
Pile embedment
Percentage of resistance

at pile tip

Soil quake

24000 lb
10'
70%

Q = O. 10 in Q=0. 15 in

31

Q=0,20 in

Figure 11. Flowchart of problems for Port of San Francisco Case
Hi story. Variable Quake.
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and the quake values were varied to study their influence on the

magnitude of the driving stresses,

Oregon State Highway Division Test Pile

The study of potential tension cracking in prestressed con-

crete piles was made on the basis of the analysis of tensile stresses

calculated in a test pile driven for the foundation for the Saint Louis

undercrossing bridge on Interstate 5, North of Salem. The pile was

12-inch square, 46-foot long prestressed concrete pile which was

driven with a differential acting steam-air Vulcan 65C hammer.

The equipment used to drive this test pile was proposed for

use in driving several hundred prestressed concrete piles for other

bridge foundations on a recent project. Pile driving specifications

did not allow the use of double and differential acting hammers to

drive prestressed concrete piles in Oregon. The possibility of

tension cracking in the piles is believed to be the basis for this

specification.

The present analysis was done to show whether tension cracking

should occur for the circumstances under which the test pile was

driven, and also under other hypothetical circumstances using a

single acting hammer of the same energy but lower ram weight.

Fig. 12 sets up the organization of problems solved to determine the
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Hammer 65C DA 32. 5H SA

Soil quake Q=0. 10 in
Point soil damping J =0. 15 sec/ft
Side soil damping J1=0. 05 sec/ft

Capblock stiffness K1= 6480000 lb/in
Cushion stiffness K 2=1150000 lb/in

Pile section 12" x 12"
Pile length 46'

Ultimate soil resistance 44000 lb 1580000 lb
Pile Embedment 9.2' 41.4'
Percentage of resistance

at pile tip
19. 8% 5.1%

Figure 12, Flowchart of problems for Oregon State Highway Division
Test Pile. Variables: Hammer and depth, of embedment.
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Hammer 6SC DA

Soil quake I 10 in
Point soil damping J .;0. 15 sec/ft
Side soil damping J' =0.05 sec/ft

L

Capblock stiffness K
1
=6480000 lb/in

Cushion stiffness K2=1150000 lb/in

Pile section 12" x 12"
Pile length 46'

Ultimate soil resistance I20000 30000 44000I 10000

Pile embedment i 9. 2' 9.2' 9. 2'
1

9, 2'

Percentage of resistance
at pile tip

19. 8% 19.8% 19.8% 19.8%

Figure 13. Flowchart of problems for Oregon State Highway Division Test Pile. Variables:
hammer and soil resistance,
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influence on the magnitude of driving stresses. Depths of embed-

ment of 9.2 feet and 41.4 feet were considered. Fig. 13 shows the

outline of problems solved for the two hammers when the ultimate

soil resistance varies and the pile embedment remains constant at

9. 2 feet below ground level.
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VI. RESULTS AND DISCUSSION

The following results and discussion presume that the hammer

hits the pile perfectly in the center of its cross section, that the

head of the pile is squared and that no torsional effects are induced

while driving. All results are for one blow of the hammer. The

effects of gravity were included for all cases,

Hypothetical cases

The results obtained for the hypothetical situations shown on

the flowchart of Fig. 8 are summarized in Tables 1 and 2. Pre-

liminary solutions had shown that for the same ultimate soil resis-

tance, uniform soil skin friction leads to higher maximum driving

stresses than a triangular distribution. The former is appropriate

for cohesive soils and the latter proper for granular soils. The

results in Tables 1 and 2 are for the uniform skin friction assump-

tion. For comparative purposes any assumption of skin distribution

would be valid. The point and side soil damping were assumed to

be equal to 0.15 sec/ft and 0.05 sec/ft, respectively, while the quake

value was assumed to be 0.10 in. Both assumptions were based on

Smith's recommendations (13) and on the work of Coyle and associ-

ates (24). To account for the influence of the depth of embedment,

for the 55-foot long pile 10 and 55 feet of depths of embedment were
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assumed while for the 110-foot long pile, 10, 55 and 110 foot

embedments were considered. The ultimate soil resistances

were assumed to be as shown below.

Depth of em-
bedment, ft

Ultimate soil re-
sistance, lb

Percentage of re-
sistance at point

10 10, 000 31. 0

55 100, 000 7.6

110 200, 000 3.9

The percentages of soil resistance concentrated at the tip of

the pile were also assumed. It was felt that computed values for

the ultimate soil resistance and its percentage at the pile tip were

not necessary for this hypothetical group of problems, since the

comparisons pursued can be accomplished from assumed values.

As shown in Tables 1 and 2 the maximum value of the tensile

and compressive stresses are consistently higher for the hypo-

thetical single acting hammer than for the double acting hammer.

The longer the pile is the higher the driving stresses are. The

shallower the depth of embedment, the higher the driving stresses.

The higher the stiffnesses of the cushions, the higher the driving

stresses.

The permanent set of the pile per blow of the hammer, is

considerably larger for the double acting hammer than for the



Table 1. Summary of results for hypothetical cases.

= 0. 10 in, J = 0. 15 sec/ft, J' = 0.05 sec/ft

K1 = 840000 lb/in, K2 = 785000 lb/in

el = O. 40, e2 = 0. 40

Energy of hammer = 19200 lb-ft

Hammer type

Length of pile, ft

Embedment, ft

R , tons

% of R at tip
u

Maximum tensile
stresses, psi

Maximum compressive
stresses, psi

Permanent set of
pile, in

65C DA 32. 5H SA

55 110 55 110

10 SS 10 55 110 10 55 10 55 110

5 50 5 50 100 5 50 5 50 100

31 7.6 31 7.6 3.9 31 7.6 31 7.6 3.9

884 718 1584 846 853 1756 1373 2202 1615 1605

2005 1984 2002 2100 1984 2298 2272 2298 2378 2271

3.63 0.74 3.99 0.86 0.33 2.89 0.48 2.89 0.51 0.21



Table 2. Summary of results for hypothetical cases.

Q = 0. 10 in, J = 0. 15 sec/ft, J' = 0.05 sec/ft

Ki = 1680000 lb/in, K2 = 1570000 lb/in

el = O. 40, e2 = O. 40

Energy of hammer = 19200 lb-ft

Hammer type

Length of pile, ft

Embedment, ft

R, tons
u

% of R at tip
u

Maximum tensile
stresses, psi

Maximum compressive
stresses, psi

Permanent set
of pile, in

65C DA 32.5H SA

55 110 55 110

10 55 10 55 110 10 55 10 55 110

5 50 5 50 100 5 50 5 50 110

31 7. 6 31 7. 6 3. 9 31 7. 6 31 7. 6 3. 9

1404 1020 2234 1444 1197 2486 1945 2642 2014 1958

2576 2540 2574 2629 2539 2982 2957 2982 2982 2956

3. 68 0. 89 3. 75 1.00 0. 43 2. 81 0. 59 2. 77 0. 61 0. 27
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single acting hammer.

Taking into consideration the maximum tensile stresses and

the permanent set per blow, Table 1 suggests that in the case of

the 55-foot long pile and with K1=840, 000 lb/in, K2 =785, 000 lb/in,

the double acting hammer would drive more efficiently and with

less tensile cracking possibilities than the single acting hammer.

However, the same hammer would be dangerous to the same pile

under the same conditions if the stiffnesses of the cushions are

doubled, as it is indicated in Table 2.

The stiffness of the capblock can actually be quite different

from the assumed values but in this analysis the results

of Tables 1 and 2 still reflect the different performance ex-

pected using the two different hammers.

The influence of the damping in the pile has been neglected,

since the maximum driving stresses will occur during the first

instants after the blow of the hammer occurred. The segment

length for subdividing the pile was taken as 5 feet which is within

recommended values (7). By selecting this length problems of

instability in the solution were avoided.

Fig. 14 shows that the position of the maximum tensile stresses

along the pile is not restricted to any particular area. It shows

that the tension cracking can be in the lower, upper or middle third
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Figure 14. Maximum tensile stresses for 55-foot pile, hypothetical case.
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and not only in the upper third of the pile as it has been suggested

(12).

For the 65C DA hammer the tensile stresses corresponding

to 55 feet of embedment do not exceed the 800 psi precompression

from the prestressing operation. Theoretically for this situation

the pile will not crack, while it will in the other three situations.

It should be pointed out if the pile has not been cracked during

handling or by shrinkage, it will be able to withstand tension up to

an amount equal to the sum of the precompression stress plus the

tensile strength of the concrete. An average value for the ultimate

tensile strength of the concrete is 0.08 (18). For a concrete of

5000 psi and a precompression of 800 psi, the ultimate cracking

tensile strength will be 1200 psi. Accounting for the concrete

strength, the 65C DA hammer should not cause tensile cracking in

the pile. The tensile stresses produced by the 32. 5H SA are

much higher than the ultimate tensile strength of the concrete plus

the precompression stress, and therefore would produce cracking

in the concrete.

The position of the cracking zones for the 32. 5H SA hammer

and 55 feet of pile embedment are shown as shaded areas.

The maximum compressive stresses in the pile for the four

situations presented in Fig. 14 are much less than the ultimate



Table 3. Maximum driving stresses in psi, along a 12" x 12" x 55" prestressed concrete pile,
hypothetical case.
Q = 0. 10 in, J = 0.15 sec/ft, J' = 0.05 sec/ft
K1 = 840000 lb/in, K2 = 785000 lb/in

e
1

= 0. 40, e2 = O. 40

Type of hammer
Wt. of ram

65C DA, 19200 lb-ft 32, 5H SA, 19200 lb-ft
6500 lb 3250 lb

Embedment, ft
Ru, lb
To of Ru at tip

Distancea, ft

10
10000

31

55
100000

7.6

10
10000

31

55
100000

7.6

Tens. Comp. Tens. Comp. Tens. Comp. Tens. Comp.

5

10
15
20
25
30
35
40
45
50
55

547
794
884
647
332
421
611
804
822
547

0

2001
2001
2003
2005
2002
1956
1813
1537
1141
642

52

325
465
622
718
577
293
566
681
651
436

0

1984
1947
1910
1872
1824
1733
1567
1310

951
525
109

1030
1380
1756
1633
963

1005
1533
1566
1587
1023

0

2298
2297
2297
2298
2298
2275
21 71
1891
1502
1072

56

584
1096
1361
1200
533
731

1003
1330
1373
898

0

2272
2231
2190
2150
2109
2044
1900

6 029112

1204

805
119

Permanent set
of pile, in 3. 63 0. 74 2.89 0. 48

aFrom head of pile.



Table 4. Maximum driving stresses in psi, along a 12" x 12" x 55' prestressed concrete pile,
hypothetical case.

Q = 0. 10 in, J = 0. 15 sec/ft, J' = 0. 05 sec /ft

K
1

= 1680000 lb /in, K2 = 1570000 lb/in

el = 0. 40, e2 = O. 40

Type of hammer
Weight of ram

65C DA, 19200 lb-ft 32. 5H SA, 19200 lb-ft
6500 lb 3250 lb

Embedment, ft
Ru, lb
% of Ru at tip

Distances, ft

10
10000

31

55
100000

7.6

10
10000

31

55
100000

7. 6

Tens. Comp. Tens. Comp. Tens. Comp. Tens. Comp.

5 979 2570 628 2540 1310 2982 1074 2957
10 1312 2570 799 2499 1927 2966 1429 2897
15 982 2570 779 2459 1915 2958 1388 2845
20 1404 2572 704 2420 2429 2954 1668 2796
25 1387 2574 801 2383 2486 2951 1945 2752

30 931 2576 566 2345 1982 2949 1481 2710
35 687 2559 397 2289 1091 2935 798 2662

40 1127 2401 657 2120 1883 2840 1362 2531

45 1306 1936 1020 1678 2176 2372 1911 2082
50 1041 1089 715 957 1617 1373 1406 1216

55 0 60 0 130 0 65 0 142

Permanent set
of pile, in 3.68 0.89 2.81 O. 59

aFrom head of pile.
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compressive strength for the concrete (taken as 0.85 f! (19)),

which for a 5000 psi concrete is 4250 psi. For this reason they

were not shown in Fig. 14.

The results for the rest of the problems for the hypothetical

cases are shown in tabular form,

Table 3 shows the maximum values that the stresses take

for one blow of hammer. It is seen that if a 55-foot pile is driven

with a 65C DA hammer and if the depth of embedment is 10 feet,

the maximum compressive stress occurs at 20 feet from the head

of the pile, The permanent set of the pile per blow of the hammer

is 3.63 in. The same table shows that if the same pile under the

same conditions is driven by the hypothetical single acting hammer

the maximum compressive stresses increase slightly to 2298 psi,

while the maximum tensile stresses increase significantly up to

almost double of those of the corresponding double acting hammer

case. The permanent set for the second case decreased to 2.89

in/blow, while for the double acting hammer the permanent set

was 3.63 in/blow. If the pile was at 55 feet of embedment, the,

maximum tensile stress and compressive stress would decrease-

slightly. The permanent set per blow for the 65C DA hammer is

0.74 in, considerably lower than the corresponding permanent set

at 10 feet of embedment of the pile. Obviously, the soil resistance

is much greater for the deeper embedment.
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The only difference in the assumption between the situations

in Tables 3 and 4, is the values of the cushion stiffnesses. In

Table 4 the stiffnesses of the cushions are double those of the

corresponding cases of Table 3. For example, the maximum

tensile stress in the pile when the harder cushions were used was

1404 psi and it occurred at 20 feet from the head of the pile, whereas

for the softer cushions the maximum tensile stress was 884 psi and

it occurred at 15 feet from the head of the pile. The permanent

set per blow was slightly affected; the higher values generally

corresponded to the stiffer cushions. This observation illustrates

the importance of using adequate cushion material and thickness to

control driving stresses, but using the minimum required to pro-

mote driving efficiency.

Tables 5, 6, 7 and 8 show the maximum tensile and com-

pressive stresses on a 110-foot long pile. Table 5 shows the results

corresponding to a differential acting steam-air hammer, Again,

the hammer with lower weight of ram and higher velocity of impact

causes higher tensile and compressive stresses than a double acting

hammer of the same energy. The tensile stresses are particularly

sensitive to the differences in impact velocity. The increase in

tensile stresses at 10 feet of embedment using a single acting

hammer was 39% more than the tensile stresses resulting from

using a double acting hammer. At 55 feet of embedment this
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Table 5. Maximum driving stresses in psi., along a 12" x 12" x 110'
prestressed concrete pile, hypothetical case.
Q = 0. 10 in, J = 0, 15 sec/ft, J' = O. 05 sec/ft

K
1 ,= 840000 lb /in, K 2 = 785000 lb/in

el = 0. 40, e2 = 0. 40
Hammer 65C DA, 19200 lb-ft, Weight of ram = 6500 lb

Embedment, ft
Ru, lb
% of Ru at tip

Distancea, ft

10
10000

31

55
100000

7. 6

110
200000

3. 9

Tens, CompzTenLComp: Tens, Comp.,,

5 646 2001 380 2001 287 1984
10 1045 2001 656 2001 460 1945
15 1391 2002 765 2003 500 1906
20 1474 1998 663 2005 398 1867
25 1399 1979 709 2008 488 1829
30 1510 1949 791 2012 591 1790
35 1584 1958 823 2017 685 1752
40 1570 1962 846 2024 679 1714
45 1445 1966 688 2038 589 1676
50 1158 1972 493 2065 571 1639
55 1133 1976 405 2100 499 1602
60 1287 1981 578 2064 627 1565
65 1340 1986 671 2028 740 1530
70 1328 1991 817 1992 853 1496
75 1197 1994 688 1954 678 1461

80 838 1992 384 1903 367 1426
85 833 1943 372 1812 406 1371

90 1018 1806 567 1625 527 1265

95 957 1536 740 1347 739 1073

100 903 1171 728 978 699 785
105 510 692 388 543 396 430
110 0 53 0 112 0 99

Permanent set
of pile, in 3. 99 O. 86 0. 33

aFrom head of pile
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Table 6. Maximum driving stresses in psi, along a 12" x 12" x 11Q'
prestressed concrete pile, hypothetical case,
Q = 0. 10 in, J = 0. 15 sec/ft, J'= 0.05 sec/ft
K1 = 840000 lb /in, K2 = 785000 lb /in

e1 = 0. 40, e2 = 0. 40

Hammer 32, 5H SA, 19200 lb-ft, Weight of ram = 3250 lb

Embedment, ft
Ru, lb
% of Ru at tip

Distancea,
ft

10
10000

31

55
100000

7. 6

110
200000

3. 9

Tens, Comp. Tens. Comp. Tens. Comp.

5 684 2298 521 2298 0 2271
10 1285 2297 868 2297 179 2228
15 1619 2297 974 2297 459 2186
20 1746 2297 1094 2298 730 2145
25 1887 2287 1233 2300 950 2103
30 1988 2254 1319 2302 1092 2063
35 2053 2240 1371 2305 1232 2022
40 2026 2266 1313 2310 1226 1982
45 1783 2278 1038 2320 992 1943
50 1719 2255 895 2342 848 1904
55 1734 2258 996 2378 1112 1865
60 1912 2263 1216 2340 1356 1827
65 2195 2266 1495 2300 1605 1793
70 2202 2269 1615 2261 1600 1759
75 1785 2274 1277 2221 1230 1725
80 978 2274 543 2177 527 1690
85 1061 2253 622 2107 785 1640
90 1511 2147 1017 1957 1188 1542
95 1662 1873 1374 1662 1379 1339

100 1549 1413 1344 1224 1272 998
105 957 792 838 677 788 551
110 0 56 0 121 0 108

Permanent set
of pile, in 2, 89 0, 51 0. 21

aFrom head of pile
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Table 7. Maximum driving stresses in psi, along a 12" x 12" x 110'
prestressed concrete pile, hypothetical case.
Q = 0. 10 in, J = 0. 15 sec/ft, 3' = 0. 05 sec/ft
K

1
= 1680000 lb /in, K2 = 1570000 lb/in

e 0. 40 , e2 = 0 40e .

Hammer 65C DA, 19200 lb-ft, Weight of ram = 6500 lb

Embedment,
Ru, lb
% of Ru at tip

Distancea ft

ft 10
10000

31

55
100000

7. 6

110
200000

3. 9

Tens, Come, Tens. Come, Tens. Come.

5 945 2570 746 2570 626 2539
10 1702 2570 1293 2570 1079 2497
15 2154 2570 1444 2570 1197 2455
20 2234 2572 1406 2572 1191 2415
25 2205 2574 1328 2574 1177 2376
30 2207 2572 1286 2576 1169 2338
35 2102 2550 1178 2579 1100 2300
40 2098 2518 1172 2582 1124 2263
45 1941 2525 1062 2586 1101 2227
50 1896 2528 1012 2599 1085 2190
55 1874 2530 880 2629 1059 2154
60 1781 2533 986 2586 1017 2119
65 1680 2536 880 2543 926 2085
70 1506 2538 837 2500 819 2050
75 1452 2542 762 2458 846 2017
80 1518 2545 991 2417 814 1984
85 1160 2546 716 2374 614 1950
90 798 2521 485 2306 402 1904
95 1067 2347 755 2109 854 1761

100 1193 1899 977 1676 952 1424
105 831 1076 678 964 583 823
110 0 60 0 130 0 119

Permanent set
of pile, in 3.75 1.01 0.43

aFrom head of pile
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Table 8. Maximum driving stresses in psi, along a 12" x 12" x 110'
prestressed concrete pile, hypothetical case.

Q 0. 10 in, J = 0. 15 sec/ft, = 0. 05 sec/ft

K
1

9= 1680000 lb /in, K = 1570000 lb /in

el = 0. 40, e2 = 0. 40
Hammer 32. 5H SA, 19200 lb-ft, Weight of ram = 3250 lb

Embedment,
R , lb
% of Ru at tip

Distancea ft

ft 10
10000

31

55
100000

7. 6

110
200000

3. 9

Tens. Corn Tens. Com Tens. Come,

5 1142 2982 1006 2982 350 2956
10 2000 2966 1588 2966 718 2894
15 2478 2958 1889 2958 1120 2840
20 2642 2954 1868 2954 1434 2790
25 2566 2951 1765 2951 1541 2746
30 2571 2947 1798 2949 1584 2702
35 2575 2928 1814 2948 1668 2660
40 2630 2890 1798 2947 1739 2618
45 2463 2885 1582 2948 1567 2577
50 2432 2889 1593 2958 1621 2537
55 2544 2888 1634 2991 1839 2498
60 2622 2890 1821 2944 1899 2460
65 2205 2890 1447 2897 1468 2423
70 2004 2891 1352 2851 1390 2387
75 2477 2894 1719 2805 1850 2352
80 2561 2895 2014 2760 1958 2317
85 1812 2896 1318 2714 1182 2282
90 1241 2876 876 2649 791 2237
95 1932 2752 1482 2491 1636 2102

100 2147 2291 1895 2040 1836 1739
105 1454 1329 1281 1192 1149 1097
110 0 65 0 142 0 131

Permanent set
of pile, in 2, 77 O. 61 0. 27

aFrom head of pile
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increase was 90%.

Tables 7 and 8 show the same relationship between magnitude

of tensile stresses and type of hammer.

The results of this section illustrate that tensile stresses

during driving can be controlled by proper selection of the hammer

and cushioning materials. The type of hammer is not of particular

significance. The impact velocity of the ram is of overriding impor-

tance.

Port of San Francisco Case History

The 18-inch octagonal prestressed concrete piles were jetted

to within three feet of penetration and then driven the final three

feet (23), A double acting steam-air Vulcan 140C hammer with

36, 000 lb-ft of energy was used. The ram weight was 14, 000 lb.

The cushion block was three inch thick Douglas-fir plywood.

When driving with the hammer started, tension cracks appeared

at about 12 inches on centers from the water line to top of pile. The

cracks were noticed when puffs of dust occurred at each hammer

blow. After several piles cracked and were replaced, jetting was

eliminated. Occasional cracks still appeared. Finally the problem

was solved by inserting 12 inches of cushion block and using a

20, 000 lb ram weight, while maintaining the 36, 000 lb-ft of energy.

In this study it was intended to determine whether the
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cracking and no cracking situations could have been predicted.

To complete information necessary to solve these problems, the

weight of the pile cap was assumed to be 2, 000 lb; the capblock was

assumed to be a Micarta (Nema grade C) which had a stiffness

K1=12, 000, 000 lb per inch. Its coefficient of restitution was

0,80. The stiffness for the three-inch thick Douglas-fir plywood

was estimated from information provided by the Port of San

Francisco. The skin friction was assumed to increase linearly with

depth, The values of soil quake and damping for sands were as-

sumed as suggested by Coyle (4). For the tip capacities of this

case history the formula of bearing capacity for circular footings

was used, although the actual cross section of the pile was an 18-

inch octagon.

Since the pile was jetted through its tip into granular soil the

percentage of ultimate soil resistance concentrated at the point

was assumed to be zero. The ultimate soil resistance was then

mainly due to the side friction. A friction angle of 30 degrees

was assumed for the sand, the cohesion was assumed to be zero and

the buoyant unit weight of the soil was 50 lb/ft3. With this infor-

mation the ultimate soil resistance was estimated from the static

formulas, using the bearing capacity factors as given by Terzaghi

(33),
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Table 9. Maximum driving stresses in psi, along a 18" octagonal,
89' prestressed concrete pile, Port of San Francisco Case
History,

Q = 0. 10 in, J = 0, 15 sec/ft, J' = 0. 00 sec /ft
K

1
12400000 lb/in, K2 = 2740000 lb/in

el = 0. 80, e2 = 0. 52
Energy of hammer = 36000 lb-ft, Weight of ram = 14000 lb

Embedment, ft
Ru, lb
% of Ru. at tip

Distancea ft

37
99000

0

20
62500

54

10
24000

70

Tens. Corn Tens, Come, Tens. Corn

5 1099 2739 1007 2739 1140 2739
10 1578 2735 1475 2735 1713 2735
15 1780 2736 1664 2736 1927 2736
20 1977 2740 1860 2740 2129 2740
25 1894 2746 1790 2746 2058 2745
30 1582 2743 1431 2743 1704 2739
35 1706 2677 1592 2677 1832 2671
40 1907 2602 1804 2591 2074 2586
45 1706 2631 1533 2630 1776 2625
50 1376 2786 1243 2782 1497 2777
55 1908 2796 1726 2791 1977 2785
62 1889 2794 1522 2800 1779 2794
69 1152 2778 808 2806 1073 2796
74 1387 2681 941 2742 1283 2730
79 1644 2272 1138 2377 1518 2366
84 1221 1343 761 1513 1000 1461
89 0 0 0 367 0 189

Permanent set
of pile, in 3. 34 2. 29 3. 12

aFrom head of pile
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Table 10. Maximum driving stresses in psi, along a 18" octagonal,
89' prestressed concrete pile, Port of San Francisco Case
History.
Q = 0. 10 in, J = 0. 15 sec/ft, J' = 0. 00 sec /ft
K1 12000000 lb/in, K2 = 755000 lb/in

el = 0. 80, e2 = 0, 44
Energy of hammer = 36000 lb-ft, Weight of ram 20000 lb

Embedment, ft
Ru, lb
% of Ru at tip

Distances, ft

20
62500

54

10
24000

70

Tens. Corn Tens. Corn

5 411 1563 423 1558
10 593 1585 633 1579
15 605 1592 653 1591
20 461 1623 516 1622
25 294 1669 344 1667
30 392 1685 433 1684
35 441 1627 452 1623
40 271 1526 318 1516
45 112 1388 147 1383
50 329 1411 361 1405
55 349 1414 360 1407
62 237 1395 294 1385
69 40 1312 150 1295
74 188 1141 227 1126
79 171 895 237 891
84 18 663 173 544
89 0 270 0 140

Permanent set
of pile, in 2, 32 3. 18

aFrom head of pile
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Tables 9 and 10 show the results for the problems outlined

in Fig. 9. According to Table 9, when the 89 foot long pile is

driven with a differential acting steam-air hammer Vulcan 140C

and using the cushions indicated in the same table, the pile should

have cracked whether it was embedded 10 feet, 20 feet or 37 feet,

since the tensile stresses were considerably higher than the sum of

the precompression stress and the ultimate tensile strength of the

concrete. In the last case the jetting used to drive the pile 37 feet

only adds to the problems, since no tip resistance will oppose the

downward motion of the pile. The information from the field con-

firms that the pile suffered tensile cracking just after the driving

was started.

Table 10 shows the maximum driving stresses and permanent

set per blow when the weight of the ram was increased to 20, 000 lb

and the thickness of the cushion had been increased to 12 inches.

The maximum tensile stresses are less than the precompression

stress, therefore, no cracking in the pile would be expected. The

information from the field reveals that when these changes were

made, tensile cracking of the piles did not develop.

Fig. 15 illustrates the situations of presence and absence of

tension cracking in the pile. Both situations are for 10 feet of

embedment. The cracking case corresponds to the lighter ram and
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Figure 15. Maximum tensile stresses in an 89-foot prestressed concrete pile, Port of San Francisco Case History.
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Table 11. Maximum driving stresses in psi, along a 18" octagonal,
89' prestressed concrete pile, Port of San Francisco Case
History.

Q =-- 0. 10 in, Emb. = 10 ft, Ru = 24000 lb, 70% at tip

K1 = 12000000 lb/in, K2 = 755000 lb/in

= 0. 80, e2 = 0. 44

Energy of hammer = 36000 lb-ft, Weight of ram = 14000 lb

J , sec/ft
J', sec/ft
Distancea,

O. 15
O. 05

0.21
O. 07

0. 30
O. 10

ft Tens. comps Tens. Comp. Tens. Comp.

5 537 1614 527 1614 512 1614
10 725 1630 709 1630 686 1630
15 724 1664 695 1664 659 1664
20 521 1699 509 1699 491 1699
25 419 1757 398 1757 360 1757
30 539 1767 514 1767 484 1768
35 559 1677 527 1678 483 1679
40 375 1552 335 1552 289 1552
45 414 1587 372 1587 320 1587
50 544 1612 509 1612 458 1613
55 500 1613 466 1614 416 1614
62 332 1589 288 1589 235 1590
69 547 1486 497 1487 432 1490
74 631 1289 582 1293 514 1297
79 499 1018 463 1023 410 1030
84 288 620 255 640 207 668
89 0 143 0 173 0 218

Permanent set
of pile, in 3. 03 2, 91 2. 78

aFrom head of pile
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Table 12. Maximum driving stresses in psi, along a 18" octagonal,
89' prestressed concrete pile, Port of San Francisco Case
History.

J = 0.15 sec/ft, J' = 0.05 sec/ft
K1 = 12000000 lb /in, K2 = 755000 lb/in

el = 0.80, e2 = 0.44

Emb. = 10 ft, Ru = 24000 lb, 70% at tip
Energy of hammer = 36000 lb-ft, Weight of ram = 14000 lb

Q, in
Distance a, ft

0.10 0.15 0.20

Tens. Comp Tens. Comp. Tens. Comp.

5 537 1614 537 1614 537 1614
10 725 1630 725 1630 725 1630
15 724 1664 724 1664 724 1664
20 521 1699 521 1699 521 1699
25 419 1757 419 1757 419 1757
30 539 1767 539 1767 539 1767
35 559 1677 559 1677 559 1677
40 375 1552 375 1552 375 1552
45 414 1587 414 1587 414 1587
50 544 1612 544 1612 544 1612
55 500 1613 500 1613 500 1613
62 332 1589 332 1589 332 1589
69 547 1486 547 1486 547 1486
74 631 1289 631 1289 631 1289
79 499 1018 499 1018 499 1018
84 288 620 288 620 288 620
89 0 143 0 143 0 143

Permanent set
of pile, in 3.03 3.14 3.25

aFrom head of pile
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higher stiffness of cushion, while the no cracking case corresponds

to the heavier ram and softer cushion.

Finally, Tables 11 and 12 show the results for the problems

outlined in Figs, 10 and 11. Table 11 indicates that the higher

the soil damping factors, the lower the tensile stresses and the

permanent set of the pile per blow of hammer, Table 12 indicates

that the variation of soil quake has no effect on the values of

driving stresses. However, the permanent set of the pile increases

as the quake increases. The fact that the driving stresses are not

very sensitive to changes of the quake value was observed by

Smith (32). This observation is significant since it permits the

quake to be taken equal to 0.1 inches for most soils. Soil damping

appears to be a significant factor and must be estimated with care.

The results presented for the San Francisco Case History

indicate that for real situations, wave equation analysis is capable

of predicting driving stresses with sufficient accuracy to forecast

and solve tension cracking problems.

Oregon State Highway Division Test Pile

The test pile was a 12-inch square, 46-foot long prestressed

concrete pile, it was driven with a differential acting steam-air

Super Vulcan 65C hammer for the foundation of the Saint Louis
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TEST PILE DRIVING RECORD

Bridge name St. Louis Rd. U-xing

Pile Location-Bent No. Ftng. No.- Pile No 46-58 Pile Type 12" x 12" Prest, Conc.

Resident Engineer

Date 8/31/73 19 Hammer Type Diff. Act. Steam-air

No.

62

Inspector

9. 2
10

20

30

40
41.4

50

Name Super Vulcan
Size 65C

HAMMER PILE

Drop Weight Energy Length
Diameter

Butt Tip

1. 29 ft 6500 lb 19200 lb-ft 46 ft 12 in 12 in

Elev. 0.5 1.0 1.5 2.0

0,4

2.0

0.5 1.0
Number blows/in

1.5

Figure 17. Driving record for Oregon State Highway Division Test Pile.

2.0
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undercrossing bridge on Interstate 5, North of Salem. It was be-

lieved that high tensile stresses in the pile produced by the differ-

ential acting hammer could cause tensile cracking in the pile. This

study was directed to determine whether such tension cracking was

possible to predict under the circumstances which prevailed during

driving.

The information available consisted of the driving record for

the test pile shown in Fig. 17. In this particular case history the

ultimate soil resistances were found from the wave equation solu-

tion (7) instead of computing them from static equations. Fig. 16 (a)

and Fig. 16 (b) are such solutions and they were obtained with the

same information used for the problems of Table 13. The driving

record for the pile indicates that at 9.2 feet of embedment the number

of blows per inch was 0.5, this value was entered into the curve of

Fig. 16 (a) and the corresponding ultimate soil resistance was ob-

tained. In similar way the ultimate soil resistance at 41.4 feet of

embedment was determined using the 2.0 blows per inch of the

driving record and entered into the curve of Fig. 16 (b). These two

values of the ultimate soil resistances were used for the problems,

the results of which are shown in Table 13.

In this instance, the main assumptions required were the

values of soil parameters. For soft soils the value of quake Q was

assumed to be 0.10 inches, point soil damping J equal to 0.15 seconds



Table 13. Maximum driving stresses in psi, along a 12" x 12" x 46' prestressed concrete pile,
Oregon State Highway Division Test Pile.
Q = O. 10 in, J = 0. 15 sec /ft, J' = O. 05 sec/ft
K1 = 1260000 lb /in, = 1150000 lb/in
el = 0. 40, e2 = 0. 40
Energy of hammer = 19200 lb-ft

Embedment, ft
R , lb
%uof Ru at tip
Hammer type
Distancea, ft

9. 2
44000
19.8

41. 4
158000

5. 1

65C DA 32. 5H SA 65C DA 32. 5H SA
Tens. Corn Tens. Corn Tens. Corn Tens. Corn

4.6 442 2272 812 2623 304 2351 541 2708
9.2 610 2270 1364 2615 353 2269 977 2616

13.8 624 2270 1560 2611 567 2189 965 2528
18.4 577 2270 971 2611 649 2109 591 2442
23. 0 186 2249 546 2608 528 2006 469 2353
27.6 293 2150 965 2552 430 1847 872 2215
32.2 517 1896 1290 2314 673 1565 1301 1935
36. 8 639 1486 1479 1839 660 1150 1471 1453
41.4 459 824 1012 1203 469 626 1016 826
46.0 0 150 0 164 0 119 0 131

Permanent set
of pile, in 1. 80 1. 37 0. 47 O. 31

aFrom head of pile
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per foot and side soil damping J' equal to 0.05 seconds per foot (4).

Table 13 shows that the maximum tensile stresses in the

pile produced by driving with a differential acting hammer are

less than the precompression stress of 800 psi, Therefore, the

pile would not crack due to tensile stresses, The field information

agrees with the above observation. The values of the compressive

stresses shown in Table 13 are much lower than the ultimate com-

pressive strength of the concrete. Therefore, no spalling of the

concrete would be expected.

Fig. 18 is a plot of the tensile stresses shown in Table 13.

The advantage of showing the results in this form is that the loca-

tion of the cracking zone of the pile is immediately evident. Accord-

ing to these results, the pile would crack if it is driven with a

single acting hammer of 19, 200 lb-ft of energy and with a weight of

ram of 3, 250 lb.

Going back to Table 13, the permanent set of the pile per blow

of double acting hammer is higher than its corresponding one for

single acting hammer.

Tables 14 and 15 show the results for the problems outlined

in Figure 13. The capblock was assumed to be a Micarta (Nema

Grade C) with a coefficient of restitution e=0.80, and with a stiff-

ness of 6, 480, 000 lb/in. The effect of these changes is to in-

crease the driving stresses on the pile. Tables 14 and 15 also
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Figure 18. Maximum tensile stresses for Oregon State Highway Division Test Pile.



Table 14. Maximum driving stresses in psi, along a 12" x 12" x 46' prestressed concrete pile,
Oregon State Highway Division Test Pile.
Q = 0. 10 in, J = 0. 15 sec/ft, J' = 0. 05 sec/ft
K

1
= 6480000 lb /in, K2 = 1150000 lb /in

el = 0.80, e2 = 0.40
Emb. = 9. 2 ft, Hammer 65C DA, 19200 lb-ft

R , lb
%uof Ru at tip

Distance, a ft

10000
19. 8

20000
19. 8

30000
19. 8

44000
19. 8

Tens. Comp. Tens. Comp. Tens. Comp. Tens. Comp.

4.6 958 2515 874 2515 776 2515 744 2515
9.2 1286 2511 1089 2511 918 2511 842 2511

13.8 1186 2510 884 2510 773 2510 624 2510
18. 4 1457 2510 1330 2510 1209 2510 1046 2510
23.0 1347 2510 1198 2510 1079 2510 916 2510
27.6 911 2505 638 2505 578 2506 486 2507
32. 2 1083 2407 928 2410 815 2412 662 2416
36. 8 1383 2033 1214 2048 1100 2060 944 2076
41.4 969 1209 896 1212 823 1217 725 1224
46.0 0 38 0 76 0 112 0 160

Permanent set
of pile, in 3. 62 2. 70 2. 19 1. 75

aFrom head of pile



Table 15, Maximum driving stresses in psi, along a 12" x 12" x 46' prestressed concrete pile,
Oregon State Highway Division Test Pile.

Q = 00 10 in, J = 0. 15 sec/ft, J' = 0. 05 sec/ft
K1 = 6480000 lb/in, K2 = 1150000 lb/in

el = 0. 80, e2 = 0. 40
Emb. = 9< 2 ft, Hammer 32, 5H SA, 19200 lb-ft

R , lb
%a of Ru at

Distance a,

tip
10000
19.8

20000
19.8

30000
19. 8

44000
19.8

ft Tens Corn Tens Coma Tens Coma Tens. Corn_a_,

4, 6 1204 3119 1151 3119 1116 3119 1066 3119
9. 2 1765 3111 1598 3111 1481 3111 1322 3111

13. 8 2381 3103 2230 3103 2101 3103 1925 3103
18. 4 2485 3097 2350 3097 2214 3097 2030 3097
23. 0 1849 3092 1663 3092 1545 3092 1384 3092
27, 6 1797 3079 1375 3080 1175 3081 969 3082
32, 2 2093 2977 1877 2981 1721 2985 1555 2991
36. 8 2308 2534 2178 2547 2046 2558 1866 2573
41. 4 1636 1511 1549 1514 1465 1522 1351 1532
46, 0 0 44 0 87 0 129 0 184

Permanent set
of pile, in 3, 19 2. 33 1.91 1.50

aFrom head of pile
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show that the higher the ultimate soil resistance, the lower the

driving stresses will be. The permanent set of the pile per blow

of hammer was higher for the double acting hammer than for the

single acting hammer.

Table 14 shows that at 9. 2 feet of embedment, the 46-foot

pile driven by a full hammer blow with a Super Vulcan 65C will

crack. To avoid this, the stiffness of the capblock may be modified

by increasing its thickness or taking a softer material. This leads

to the first case of Table 13.

In Table 15 the single acting hammer causes very high

tensile stresses and cracking of the concrete would be immediate

if necessary modifications would not be made. Such modifications

might include changes of the cushion stiffnesses and some driving

techniques. A half blow of the hammer would be helpful. Overall,

the damaging effects of using the single acting hammer to drive

the 46-foot pile of the example are very clear. The use of the

double acting hammer would be more appropriate in this case.

The results presented for the Oregon State Highway Division

Test Pile indicate that the wave equation analysis can be used to

determine whether tension cracking problems can occur in a pre-

stressed concrete pile driven with a certain type of hammer.
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VII. SUMMARY AND CONCLUSIONS

On the basis of the hypothetical and case studies made, it is

shown that potentially damaging effects on prestressed concrete

piles are not exclusive with double acting steam-air hammers.

Single acting hammers can also be harmful.

The behavior of a pile depends on the energy delivered by the

hammer to the pile and the velocity of impact of the ram. The

cushioning material and its thickness are important in the way the

energy of the hammer is delivered to the pile. No absolute con-

clusions regarding the fitness of a pile hammer can be drawn for

all cases of a given soil-pile system. A hammer that appears to

be inadequate for a given situation, may perform satisfactorily by

making some changes, such as decreasing the stiffness of the

cushion or striking blows with a fraction of the full energy in the

early stages of driving in soft soils.

Each individual situation can be considered using the methods

of mechanics to select the best driving equipment. Discarding or

accepting a given hammer on the basis of past experience alone is

not necessary. The wave equation provides an efficient way to

analyze potential choices.

When jetting is used to drive prestressed concrete piles, it

is prudent to use reduced hammer energy until the driving
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resistance increases. As the soil resistance increases, the energy

of the hammer may be increased up to full capacity.

A double acting hammer that may be damaging to a given

pile may not be harmful if some changes in the cushioning material

and the driving practices are made.

The action designation of a hammer does not really describe

the hammer in terms of how the pile-soil system responds to

each blow. For example, as far as the driving stresses are con-

cerned, it would make no difference whether 15,000 lb-ft of energy is

delivered by a single acting hammer Vulcan 1 or by a double acting

hammer Vulcan 50C, because in both cases the velocity of impact at

the head of the pile is practically the same.

Although several values of soil damping parameters have been

suggested, more research in this respect is needed to obtain values

for different types of soils that can be used in the wave equation,

with more confidence. The value of 0.1 inch for the soil quake

appears to be reasonable and changes from it have little influence

on the magnitude of the driving stresses.

The value of the coefficient of restitution for the concrete to

be used in the model needs more research. Since the stress-strain

curve for the concrete is quite different from being linearly elastic,

the coefficient of restitution may be different from 100%,
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especially for higher values of stress on the concrete. Finally, an

improvement on this method of analysis might be made by including

the fatigue effects that successive blows of hammer on the pile

may have, and hundreds of alterations in stresses that occur

from one blow of the hammer.
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NOTATION

A = cross sectional area, in square inches

B = damping constant for internal spring m, in seconds per foot

= compression of internal spring m in time interval t,
(m, t) in inches

c = velocity of propagation of stress wave, in inches per second

= displacement of external spring m in time interval t,D(m,
t) in inches

D' = plastic displacement of external spring m in time
(m, t) interval t, in inches

dx = infintesimal distance in x direction, in inches

E = modulus of elasticity, in pounds per square inch

e(m) coefficient of restitution of internal spring m

F(m,
t)

= force in element m in time interval t, in pounds

g = acceleration due to gravity, in feet per second per second

J(p)

J(Im)

K(m)

K'
(m)

Ks

m

p

= point soil damping constant, in seconds per foot

= side soil damping constant at element m, in seconds
per foot

spring constant associated with internal spring m, in
pounds per inch

= spring constant of external spring m, in pounds per inch

= spring constant to account for the dynamic application of
load, in pounds per inch

= element number

= number of m at point pile
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Q = quake or maximum ground deformation, in inches

= force exerted by external spring m on element m in timeR(m,
t) interval t, in pounds

Ru(m) = ultimate ground resistance for external spring m,
in pounds

Slack
(m)

= amount of movement required before K(m) will take
tension, in inches

time for which calculations are being made

u = axial displacement of a bar cross section in x direction,
in inches

V
(m, t) velocity of element m in time interval t, in feet per second

W(m) weight of element m in pounds

x = direction of longitudinal axis of bar

E

p

x

At

)

= axial strain of a bar in x direction

= mass per unit volume, in pounds second squared per inch
to the fourth power

= axial stress in x direction, in pounds per square inch

= size of time interval, in seconds

= functional designation


