

AN ABSTRACT OF THE DISSERTATION OF

Amirhosein “Emerson” Azarbakht for the degree of Doctor of Philosophy in

Computer Science presented on May 18, 2017.

Title: Longitudinal Analysis of Collaboration in Forked Open Source Software

Development Projects

Abstract approved:

Carlos Jensen

Social interactions are a ubiquitous part of our lives, and the creation of

online social communities has been a natural extension of this phenomena. Free

and Open Source Software (FOSS) development efforts are prime examples of

how communities can be leveraged in software development, where groups are

formed around communities of interest, and depend on continued interest and

involvement.

Not everything works smoothly all the time in open source projects. Prob-

lems arise for a variety of reasons, including collaboration and communication

problems, which results in uncertainty about the operational health and sur-

vivability of the projects. Many stake-holders are affected by this uncertainty,

including industry sponsors, individual contributors, corporate developers, and

users, who all have decided to invest time and effort in the project, and will be

affected if a project suffers from troubles.

Forking in FOSS, either as a non-friendly split or a friendly divide, affects

the community. Such effects have been studied, shedding light on how forking

happens. However, most existing research on forking is post-hoc. In this study,

we focus on the seldom-studied run-up to forking events.

We used the following two approaches to study the evolution and social

dynamics of FOSS communities; 1) Time series analysis of the contents of the

messages sent and received on the projects developers mailing list, for the time

period of 10-month run-up to the fork was analyzed for anomalies, indicative

of simmering conflicts. 2) Social network analysis using a developer-oriented

approach to statistically model the changes a community goes through in the

run-up to a fork, in which the model represents tie formation, tie breakage, and

tie maintenance between developers. We estimated several model parameters

that capture the variance in the changes the community goes through. We found

that conflict-driven forks exhibited anomalies; time series analysis of sentiments

showed the anomalies occurred before and close to the fork event. Whereas non-

conflict-driven forks did not suffer from such pre-fork anomalies. The objective

was to be able to evaluate the operational health of the project community, and

intervene if need be. We suggest anomaly detection of the time series analysis

may be used by the project stakeholders/investors as key indicators left in the

record, that can be used to identify problems among developers, and intervene

if need be.

We also found that in conflict-driven forks, (1) the developers maintained

a preference for interacting with developers who had similar out-degrees, in

contrast to the non-conflict-driven forks, where the developers did not require

similar out-degrees. The interpretation may be that a project with non-conflict-

driven forks had a more inclusive and classless core developer team. (2) The

interactions were reciprocal, in contrast to the non-conflict-driven forks, where

the interactions did not need to be reciprocal to happen. The interpretation

may be that the projects with non-conflict-driven forks were more open to inter-

actions whether or not they would get something back in return from the other

developer. (3) In conflict-driven forks, the more senior developers preferred to in-

teract with other more senior developers, in contrast to the non-conflict-driven

forks. The interpretation may be that the senior developers in projects with

conflict-driven forks were less involved with junior developers than in projects

with non-conflict-driven forks. (4) In non-conflict-driven forks, the developers

with high source code contribution levels interacted more with other high source

code contributors. (5) In non-conflict-driven forks, high levels of contribution to

the source code brings you connections more rapidly, while high levels of contri-

butions to the mailing list is not suggestive of this. This can be interpreted as

a sign of meritocracy based on code, rather than talk, which captures a healthy

dynamic in these projects.

©Copyright by Amirhosein “Emerson” Azarbakht

May 18, 2017

All Rights Reserved

Longitudinal Analysis of Collaboration in Forked Open Source Software
Development Projects

by
Amirhosein “Emerson” Azarbakht

A DISSERTATION

submitted to

Oregon State University

in partial fulfillment of
the requirements for the

degree of

Doctor of Philosophy

Presented May 18, 2017
Commencement June 2017

Doctor of Philosophy dissertation of Amirhosein “Emerson” Azarbakht presented

on May 18, 2017

APPROVED:

Major Professor, representing Computer Science

Director of the School of Electrical Engineering and Computer Science

Dean of the Graduate School

I understand that my dissertation will become part of the permanent collection

of Oregon State University libraries. My signature below authorizes release of

my dissertation to any reader upon request.

Amirhosein “Emerson” Azarbakht, Author

ACKNOWLEDGMENTS

I would like to express sincere appreciation to family, friends, colleagues,

and committee members.

TABLE OF CONTENTS

Page

1 Introduction. 1

2 Related Work . 7

3 Methodology and Results . 11

3.1 Time series analysis of open source developers collabo-
ration communication sentiments . 14

3.2 Social network analysis of open source developers inter-
action graphs . 34

4 Discussion . 65

5 Threats to Validity . 69

Appendices . 71

A Appendix A: List of projects forked for undesirable reasons 71

B Appendix B: Initial study: Temporal analysis using the network-

specific measurement approach . 73

B.1 Visualization . 75

B.2 Initial study results and discussion . 76

C Appendix C: Mathematical Definition of Effects in the Statistical

Model . 84

C.1 Structural Effects for the Objective Function 84

C.2 Behavior-related Effects . 86

Bibliography . 88

LIST OF FIGURES

Figure Page

1 Time Series of sentiments in developers’ messages for projects
(From top to bottom, left to right) Kamailio (Conflict-Driven),
ffmpeg (Conflict-Driven), Amarok (Non-Conflict-Driven), Apache
CouchDB (Non-Conflict-Driven), Pidgin (Non-Conflict-Driven),
MPlayer (Non-Conflict-Driven). It is not easy to visually anal-
yse these raw time series. 19

2 Time Series of sentiments in developers’ messages for projects
(From top to bottom, left to right) Asterisk (Non-Conflict-
Driven), freeglut (Non-Conflict-Driven), Ceph (Not Forked),
OpenStack Neutron (Not Forked), and GlusterFS (Not Forked).
It is not easy to visually analyse these raw time series.. 20

3 Time series decomposed into trend, seasonality and residual
time Series for projects (From top to bottom, left to right)
Kamailio (Conflict-Driven), ffmpeg (Conflict-Driven), Amarok
(Non-Conflict-Driven), Apache CouchDB (Non-Conflict-Driven). 21

4 Time series decomposed into trend, seasonality and residual
time Series for projects (From top to bottom, left to right) Pid-
gin (Non-Conflict-Driven), MPlayer (Non-Conflict-Driven), As-
terisk (Non-Conflict-Driven), and freeglut (Non-Conflict-Driven). 22

5 Time series decomposed into trend, seasonality and residual
time Series for projects (From top to bottom, left to right)
Ceph (Not Forked), OpenStack Neutron (Not Forked), and
GlusterFS (Not Forked). 23

6 Time series with outliers detected for project Kamailio (conflict-
driven). 24

7 Time series with outliers detected for project ffmpeg (conflict-
driven). 25

8 Time series with outliers detected for project Amarok (non-
conflict-driven). 26

9 Time series with outliers detected for project Pidgin (non-
conflict-driven). 27

10 Time series with outliers detected for project MPlayer (non-
conflict-driven). 28

LIST OF FIGURES (Continued)

Figure Page

11 Time series with outliers detected for project Asterisk (non-
conflict-driven). 29

12 Time series with outliers detected for project freeglut (non-
conflict-driven). 30

13 Time series with outliers detected for project Ceph (Not forked). 31

14 Time series with outliers detected for project OpenStack Neu-
tron (Not forked). 32

15 Time series with outliers detected for project GlusterFS (Not
forked). 33

16 The methodology in a glance . 35

17 Heat-map color-coded examples Degree, Closeness, Between-
ness, Eigenvector centralities . 74

18 The number of nodes and edges over time, as network-specific
measurements . 77

19 The network diameter change over time, as network-specific
measurements . 78

20 Snapshots from video visualization of Kamailio project’s graph . 79

21 Kamailio top contributors’ betweenness centralities and net-
work diameter over time . 79

22 Amarok project’s top contributors’ betweenness centralities and
network diameter over time . 81

23 Asterisk project’s top contributors’ betweenness centralities and
network diameter over time . 82

LIST OF TABLES

Table Page

1 The main reasons for forking . 5

2 The behavioral measures used by Asur et al. [1] 9

3 The measures of diversity used by Kunegis et al. [31] 11

4 Projects in conflict-driven forks and non-conflict driven forks
categories selected and analyzed based on the criteria described
in section 3.2.1 taken from [47] . 13

5 The number of messages sentiment-analyzed for each project. . . 15

6 Anomalies detected in the time series of sentiments for project
Kamailio (Conflict-Driven). Type column refers to the differ-
ent anomalies as described in section 3.1.3. Note that all listed
outliers are statistically significant with t-statistics greater than
1.96 in absolute value. (sigma2 estimated as 128.8: log likeli-
hood = -1170.2, aic = 2356.41) . 24

7 Anomalies detected in the time series of sentiments for project
ffmpeg (Conflict-Driven). Note that all listed outliers are statis-
tically significant with t-statistics greater than 1.96 in absolute
value. (sigma2 estimated as 57.33: log likelihood = -1043.78,
aic = 2101.57) . 25

8 Anomalies detected in the time series of sentiments for project
Amarok (Non-Conflict-Driven). Note that all listed outliers
are statistically significant with t-statistics greater than 1.96
in absolute value.(sigma2 estimated as 375.6: log likelihood =
-1326.61, aic = 2661.22) . 26

9 Anomalies detected in the time series of sentiments for project
Pidgin (Non-Conflict-Driven). Note that all listed outliers are
statistically significant with t-statistics greater than 1.96 in
absolute value.(sigma2 estimated as 312.3: log likelihood =
-1307.25, aic = 2622.49) . 27

10 Anomalies detected in the time series of sentiments for project
MPlayer (Non-Conflict-Driven). Note that all listed outliers
are statistically significant with t-statistics greater than 1.96
in absolute value.(sigma2 estimated as 225.5: log likelihood =
-1251.94, aic = 2517.88) . 28

LIST OF TABLES (Continued)

Table Page

11 Anomalies detected in the time series of sentiments for project
Asterisk (Non-Conflict-Driven). Note that all listed outliers
are statistically significant with t-statistics greater than 1.96
in absolute value.(sigma2 estimated as 358.2: log likelihood =
-1227.85, aic = 2463.7) . 29

12 Anomalies detected in the time series of sentiments for project
freeglut (Non-Conflict-Driven). Note that all listed outliers
are statistically significant with t-statistics greater than 1.96
in absolute value.(sigma2 estimated as 348.6: log likelihood =
-1307.6, aic = 2619.2) . 30

13 Anomalies detected in the time series of sentiments for project
Ceph (Not forked). Note that all listed outliers are statistically
significant with t-statistics greater than 1.96 in absolute value. . 31

14 Anomalies detected in the time series of sentiments for project
OpenStack Neutron (Not forked). Note that all listed outliers
are statistically significant with t-statistics greater than 1.96 in
absolute value. 32

15 Anomalies detected in the time series of sentiments for project
GlusterFS (Not forked). Note that all listed outliers are statis-
tically significant with t-statistics greater than 1.96 in absolute
value. 33

16 Estimates parameters in the model for Project Kamailio (Conflict-
Driven). The outdegree density, transitive triplets, out-out-
degree assortativity, and developers’ seniority effects are statis-
tically significant. The interpretations are discussed in section
4. 55

17 Estimates parameters in the model for Project ffmpeg (Conflict-
Driven). The outdegree density, transitive triplets, reciprocity,
3-cycles and out-out-degree assortativity are statistically sig-
nificant. The interpretations are discussed in section 4. 56

18 Estimates parameters in the model for Project Amarok (Non-
Conflict-Driven). The outdegree density, transitive triplets,
and developers’ source code activity effects are statistically sig-
nificant. The interpretations are discussed in section 4. 57

LIST OF TABLES (Continued)

Table Page

19 Estimates parameters in the model for Project Apache CouchDB
(Non-Conflict-Driven). The outdegree density, transitive triplets,
and developers’ source code activity effects are statistically sig-
nificant. The interpretations are discussed in section 4. 58

20 Estimates parameters in the model for Project Pidgin (Non-
Conflict-Driven). The outdegree density, transitive triplets,
and developers’ source code activity effects are statistically sig-
nificant. The interpretations are discussed in section 4. 59

21 Estimates parameters in the model for Project MPlayer (Non-
Conflict-Driven). The outdegree density, transitive triplets,
and developers’ source code activity effects are statistically sig-
nificant. The interpretations are discussed in section 4. 60

22 Estimates parameters in the model for Project freeglut (Non-
Conflict-Driven). The outdegree density, transitive triplets ef-
fects are statistically significant. The interpretations are dis-
cussed in section 4. 61

23 Estimates parameters in the model for Project Ceph (Not forked).
The outdegree density, reciprocity, transitive triplets, 3-cycles,
out-out degree assortativity and developers’ alter source code
activity effects are statistically significant. The interpretations
are discussed in section 4. 62

24 Estimates parameters in the model for Project OpenStack Neu-
tron (Not forked). The outdegree density, reciprocity, transitive
triplets, 3-cycles, out-out degree assortativity and developers’
seniority effects are statistically significant. The interpretations
are discussed in section 4. 63

25 Estimates parameters in the model for Project GlusterFS (Not
forked). The outdegree density, transitive triplets, out-out de-
gree assortativity and developers’ alter seniority effects are sta-
tistically significant. The interpretations are discussed in sec-
tion 4. 64

26 Conflict-Driven vs. Non-Conflict-Driven parameter effects 65

27 List of all projects forked because of “personal differences among
the developer team” conflict-driven . 71

LIST OF TABLES (Continued)

Table Page

28 List of all projects forked because of the need for “more community-
driven development” conflict-driven . 72

Longitudinal Analysis of Collaboration in Forked Open

Source Software Development Projects

1 Introduction

Social networks are a ubiquitous part of our social lives, and the creation

of online social communities has been a natural extension of this phenomena.

Social media plays an important role in software engineering, as software devel-

opers use them to communicate, learn, collaborate and coordinate with others

[56]. Free and Open Source Software (FOSS) development efforts are prime

examples of how community can be leveraged in software development, where

groups are formed around communities of interest, and depend on continued

interest and involvement to stay alive [39].

Community splits in free and open source software development are re-

ferred to as forks, and are relatively common. Robles et al. [47] define forking

as “when a part of a development community (or a third party not related to

the project) starts a completely independent line of development based on the

source code basis of the project.”

Although the bulk of collaboration and communication in FOSS commu-

nities occurs online and is publicly accessible by researchers, there are still many

open questions about the social dynamics in FOSS communities. Projects may

go through a metamorphosis when faced with an influx of new developers or the

involvement of an outside organization. Conflicts between developers’ divergent

2

visions about the future of the project may lead to forking of the project and

dilution of the community. Forking, either as an acrimonious split when there is

a conflict, or as a friendly divide when new features are experimentally added,

affect the community [10].

Previous research on forking ranges from the study by Robles et al. [47]

that identified 220 significant FOSS projects that have forked over the past 30

years, and compiled a comprehensive list of the dates and reasons for forking

(listed in Table 1, and depicted by frequency in Figure 1), to the study by

Baishakhi et al. [8] on post-forking porting of new features or bug fixes from

peer projects. It encompasses works of Nyman on developers’ opinions about

forking [41], developers motivations for performing forks [36], the necessity of

code forking as tool for sustainability [40], and Syeed’s work on sociotechnical

dependencies in the BSD projects family [57].

Most existing research on forking, however, is post-hoc. It looks at the

forking events in retrospect and tries to find the outcome of the fork; what

happened after the fork occurred; what was the cause of forking, and such. The

run-up to the forking events are seldom studied. This leaves several questions

unanswered: Was it a long-term trend? Was the community polarized before

the forking happened? Was there a shift in influence? Did the center of gravity

of the community change? What was the tipping point? Was it predictable? Is

it ever predictable? We are missing that context.

Additionally, studies of FOSS communities tend to suffer from an impor-

tant limitation. They treat community as a static structure rather than a dy-

namic process. Longitudinal studies on open source forking are rare. To better

understand and measure the evolution, social dynamics of forked FOSS projects,

and integral components to understanding their evolution and direction, we need

3

new and better tools. Before making such new tools, we need to gain a better

understanding of the context. With this knowledge and these tools, we could

help projects reflect on their actions, and help community leaders make informed

decisions about possible changes or interventions. This could also help potential

sponsors make informed decisions when investing in a project, and throughout

their involvement to ensure a sustainable engagement.

Identification is the first step to rectify an undesirable dynamic before the

damage is done. A community that does not manage growing pains may end up

stagnating or dissolving. Managing growing pains is especially important in the

case of FOSS projects, where near half the project contributors are volunteers

[21]. Oh et al. [42] have argued that openness in FOSS is

“[...] generally perceived as having a positive connotation, however, the

term can also be interpreted as referring to some nonconstructive characteris-

tics, such as unobstructed exit, susceptible, vulnerable, fragile, lacking effective

regulation, and so on. The unobstructed exit and lack of regulatory force inherent

in the FOSS community can result in a community’s susceptibility and vulner-

ability to herded exits by its participants. Commercial vendor intervention, an

alternative project becoming available, and licensing issues can result in some

original core members ceasing to provide their loyal service for the community,

which can prompt their coworkers to leave as well” [42].

Identification of recipes for success or stagnation, sustainability or fragmentation

may lead to a set of best practices and pitfalls.

In this research, we use time series analysis and longitudinal social net-

work analysis to study the evolution and social dynamics of FOSS communities.

Specifically, we use anomaly detection algorithms to analyze the time series of

sentiments in communications of open source developers, in the run up to the

4

fork, and we also use longitudinal social network analysis to investigate the driv-

ing forces in formation and dissolution of communities. With these techniques

we aim to identify measures associated with unhealthy group dynamics, for ex-

ample a simmering conflict, in addition to early indicators of major events in

the lifespan of a community. One set of dynamics we were especially interested

in, are those that are associated with FOSS projects that have forked.

TABLE 1: Robles and Gonzalez-Barahona [47] defined the following reasons for
forking.

Reason for forking Example forks

Technical (Addition of functionality) Amarok & Clementine Player

More community-driven development Asterisk & Callweaver

Differences among developer team Kamailio & OpenSIPS

Discontinuation of the original project Apache web server

Commercial strategy forks LibreOffice & OpenOffice.org

Experimental GCC & EGCS

Legal issues X.Org & XFree

Research Goals

Social interactions reflect the changes the community goes through, and

so, it can be used to describe the context surrounding a forking event. Social

interactions in FOSS can happen, for example, in the form of mailing list email

correspondence, and source code co-authoring.

For the rest of the discussion, we define conflict-driven forks as projects

that have forked for personal differences, and non-conflict driven forks as projects

that have forked for technical experimentation, and were not forked for personal

differences.

5

We defined conflict-driven (undesirable) as the projects forked because of

“Personal differences among developers team”, or because of the need for “more

community-driven development”. These situations are undesirable because they

imply an increase in cost of maintenance, redundant or wasted efforts, and the

loss of shared values. One-fifth (20.5%) of the 220 forked projects studied by [47]

fall into this category. Examples include Kamailio and OpenSIPS projects. We

defined non-conflict-driven as projects forked for “technical differences (Addition

of functionality)”, and were not forked for personal differences. More than a

quarter (27.3%) of the 220 forked projects studied by [47] fall into this category.

Examples include Amarok and Clementine Player projects. Conflict-driven forks

are especially important, as they are destructive, lead to resentment, and the

dilution of the community workforce. In contrast, the non-conflict driven forks

are friendly and often temporary splits, where developers experimentally modify

the code and/or add new features, often with the intention of returning back

to the original project and merging the new features back into the original

project. In summary, conflict-driven forks are like violent exits with no intention

of coming back, whereas non-conflict-driven forks are temporary trips.

In this study, we analyze, quantify and visualize how the community is

structured, how it evolves, and the degree to which community involvement

changes over time.

Specifically, our overall research objective is to identify these traces/social

patterns associated with different types of conflict-driven forking.

6

Do forks leave traces in the collaboration artifacts of open source
projects in the period leading up to the fork?

To study the properties of possible social patterns, we need to verify their

existence. More specifically, we need to check whether the possible social pat-

terns are manifested in the the collaboration artifacts of open source projects,

e.g., mailing list communications data, source code data. This is going to be

accomplished as explained in section 3.

Do conflict-driven forks and non-conflict-driven forks leave differ-
ent types of traces?

If forks leave traces in the collaboration artifacts, do forks exhibit different

social patterns? Are there patterns that exemplify these categories? For exam-

ple, is there a distinct “conflict-driven” fork collaboration pattern? If so, do

different forking reasons have distinctly different social patterns associated with

them? We are going to investigate this by statistical modeling of the interaction

graphs, as explained in detail in section 3.2.2.

What are the key indicators that let us distinguish between conflict-
driven and non-conflict-driven forks?

What quantitative measure(s) can be used as an early warning sign of an

inflection point (fork)? Are there metrics that can be used to monitor the odds

of change, (e.g. forking-related patterns), ahead of time? This will be accom-

plished by time series analysis and statistical modeling of developer interactions

as explained in more detail in section 3.

7

This dissertation is organized as follows: Section 2 presents related litera-

ture on open source social communities, the gap in the literature, and discusses

why the issue needs to be studied. Then, in section 3 presents our methodology,

including time series and statistical modeling. In section 3.2.5 we present the

results of our analysis. In Section 4 we discuss the findings and their interpreta-

tions and as well their implications. Lastly, in section 5 the threats to validity

are discussed.

2 Related Work

The free and open source software development communities have been

studied extensively. Researchers have studied the social structure and dynamics

of team communications [11][23][27][28][35], identifying knowledge brokers and

associated activities [53], project sustainability [35][40], forking [39], requirement

satisfation [18], their topology [11], their demographic diversity [31], gender

differences in the process of joining them [30], and the role of age and the core

team in their communities [2][3][17][59]. Most of these studies have tended to

look at community as a static structure rather than a dynamic process [16].

This makes it hard to determine cause and effect, or the exact impact of social

changes.

Post-forking porting of new features or bug fixes from peer projects hap-

pens among forked projects [8]. A case study of the BSD family (i.e., FreeBSD,

OpenBSD, and NetBSD, which evolved from the same code base) found that

10-15% of lines in BSD release patches consist of ported edits, and on average

26-58% of active developers take part in porting per release. Additionally, They

found that over 50% of ported changes propagate to other projects within three

8

releases [8]. This shows the amount of redundant work developers need to do to

synchronize and keep up with development in parallel projects.

Visual exploration of the collaboration networks in FOSS communities was

the focus of a study that aimed to observe how key events in the mobile-device

industry affected the WebKit collaboration network over its lifetime [58]. They

found that coopetition (both competition and collaboration) exists in the open

source community; moreover, they observed that the “firms that played a more

central role in the WebKit project such as Google, Apple and Samsung were by

2013 the leaders of the mobile-devices industry. Whereas more peripheral firms

such as RIM and Nokia lost market-share” [58].

The study of communities has grown in popularity in part thanks to ad-

vances in social network analysis. From the earliest works by Zachary [60] to the

more recent works of Leskovec et al. [32][33], there is a growing body of quanti-

tative research on online communities. The earliest works on communities was

done with a focus on information diffusion in a community [60]. The study by

Zachary investigated the fission of a community; the process of communities

splitting into two or more parts. They found that fission could be predicted by

applying the Ford-Fulkerson min-cut algorithm [20] on the group’s communica-

tion graph; “the unequal flow of sentiments across the ties” and discriminatory

sharing of information lead to subcommunities with more internal stability than

the community as a whole [60].

The dynamic behavior of a network and identifying key events was the aim

of a study by Asur et al [1]. They studied three DBLP co-authorship networks

and defined the evolution of these networks as following one of these paths: a)

Continue, b) k-Merge, c) k-Split, d) Form, or e) Dissolve. They used the metrics

listed in Table 2 and defined four possible transformation events for individual

9

members: 1) Appear, 2) Disappear, 3) Join, and 4) Leave. They compared

groups extracted from consecutive snapshots, based on the size and overlap of

every pair of groups. Then, they labeled groups with events, and used these

identified events [1].

TABLE 2: The behavioral measures used by Asur et al. [1]

Metrics Meaning

Stability Tendency of a node to have interactions with the same

nodes over time

Sociability Tendency of a node to have different interactions

Influence Number of followers a node has on a network and how

its actions are copied and/or followed by other nodes.

(e.g., when it joins/leaves a conversation, many other

nodes join/leave the conversation, too)

Popularity Number of nodes in a cluster (how crowded a sub-

community is)

The communication patterns of free and open source software developers

in a bug repository were examined by Howison et al. [27]. They calculated

out-degree centrality as their metric. Out-degree centrality measures the pro-

portion of times a node contacted other nodes (outgoing) over how many times

it was contacted by other nodes (incoming). They calculated this centrality

over time “in 90-day windows, moving the window forward 30 days at a time.”

They found that “while change at the center of FOSS projects is relatively

uncommon,” participation across the community is highly skewed, following a

power-law distribution, where many participants appear for a short period of

time, and a very small number of participants are at the center for long periods.

Our proposed approach is similar to theirs in how we form collaboration graphs.

10

TABLE 3: The measures of diversity used by Kunegis et al. [31]

Network property Network is diverse

when

Diversity Measures

Paths between nodes Paths are long Effective diameter

Degrees of nodes Degrees are equal Gini coefficient of the

degree distribution

Communities Communities have sim-

ilar sizes

Fractional rank of the

adjacency matrix

Random walks Random walks have

high probability of

return

Weighted spectral dis-

tribution

Control of nodes Nodes are hard to con-

trol

Number of driver nodes

Our approach is different in terms of our project selection criteria, the metrics

we examine, and our research questions.

The tension between diversity and homogeneity in a community was stud-

ied by Kunegis et al. [31]. They defined five network statistics, listed in Table

3, used to examine the evolution of large-scale networks over time. They found

that except for the diameter, all other measures of diversity shrunk as the net-

works matured over their lifespan. Kunegis et al. [31] argued that one possible

reason could be that the community structure consolidates as projects mature.

Community dynamics was the focus of a more recent study by Hanne-

mann and Klamma [24] on three open source bioinformatics communities. They

measured ”age” of users, as starting from their first activity and found survival

rates and two indicators for significant changes in the core of the community.

11

They identified a survival rate pattern of 20-40-90%, meaning that only 20%

of the newcomers survived after their first year, 40% of these survivors made it

through the second year, and 90% of the remaining ones, survived over the next

years. As for the change in the core, they suggested that a falling maximum

betweenness in combination with an increasing network diameter as an indicator

for a significant change in the core, e.g., retirement of a central person in the

community. Our initial network-specific study built on their findings, and the

evolution of betweenness centralities and network diameters for the projects in

our study are explained in the following sections.

3 Methodology and Results

We did the following two types of analysis:

● Time series analysis of open source developers collaboration communica-

tion sentiments

● Social network analysis of open source developers interaction graphs

In the following sections, the details of each method as well as the results of

each method are described.

One of the challenges of studying the run-up to forking that you face is

finding projects that have gone through a variety of different types of forking.

We also need for those projects to have survived, and additionally for the records

to have survived. Unfortunately, that leaves us with a small sample, which is

typical of studies in this domain, even though our study features more projects

that is typical of related work as discussed in section 2, which typically feature

only 1-3 projects [8][58][24]. Table 4 lists all the attainable projects that meet

12

the criteria. Of the projects listed in Table 4, projects fall into three categories;

conflict-driven, non-conflict-driven, and not forked. To find these projects, we

looked at the list of all significant open source software forks in the past three

decades as compiled by Robles and Gonzalez-Barahona [47]. Their study found

the reasons behind each fork, listed in Table 1. We applied three selection criteria

to the 220 forked projects on that list to find projects in conflict-driven and non-

conflict-driven categories. A project was short-listed as either a conflict-driven

or non-conflict-driven if the forking was relatively recent, i.e., happened after

the year 2000, its data was existent and available to access and download online,

or was made accessible to us after our requests; and the project had a sizable

developer community, i.e., more than a dozen developers, which means it would

be large enough that requires a meaningful statistical analysis. For the Not

Forked category, we chose well-known, stable projects that had been around for

a while (two years), and had large communities; and had not forked; and were

similar in size of the development team. The preceding criteria resulted in the

projects listed in Table 4.

3.1 Time series analysis of open source developers col-
laboration communication sentiments

Time series analysis is a statistical technique used to understand the past,

and predict the future. It is also used to do forecasting (predicting inference,

a subset of statistical inference), which assumes that present trends continue.

This assumption cannot be checked empirically, but, when we identify the likely

causes for a trend, we can justify the forecasting (extrapolating it) for a few

time-steps at least. Time series analysis is also used for anomaly detection, and

classification (i.e. assigning a time series pattern to a specific category: e.g.

gesture recognition of hand movements in sign language videos) and query by

13

TABLE 4: Projects in conflict-driven forks and non-conflict driven forks cat-
egories selected and analyzed based on the criteria described in section 3.2.1
taken from [47]

Projects Reason for forking Year

forked

Kamailio & OpenSIPS Conflict-driven 2008

ffmpeg & libav Conflict-driven 2011

Asterisk & Callweaver Non-conflict-driven 2007

freeglut & OpenGLUT Non-conflict-driven 2004

Amarok & Clementine Player Non-conflict-driven 2010

Apache CouchDB & BigCouch Non-conflict-driven 2010

Pidgin & Carrier Non-conflict-driven 2008

MPlayer & MPlayerXP Non-conflict-driven 2005

Ceph Not forked NA

OpenStack Neutron Not forked NA

GlusterFS Not forked NA

14

content, i.e. content-based image retrieval.

Time series analysis is a technique with applications in a variety of fields.

Examples include census analysis, business forecasting, disease incidence track-

ing, understanding fluctuations in business sales, airline’s decision to buy air-

planes because of passenger trends and decision to increase/maintain market

share, and monitoring unemployment rate as an economic indicator used by

decision makers.

Sentiment Analysis on the other hand, is a technique to determine the

overall contextual polarity or emotional reaction to a document, interaction, or

event, or the attitude of a writer. It uses natural language processing, statistics,

or machine learning methods to extract, identify, or otherwise characterize the

sentiment content of a text unit.

Sentiment analysis has applications in many fields. It is used for bias

identification in news sources, identifying (in)appropriate content for ad place-

ment, “Flame” detection, analyzing trends, targeting advertising/messages and

gauging reactions, and identifying ideological bias.

3.1.1 Data

A statistical time series analysis of the sentiments for the contents of the

messages sent and received by the developers in the 10-month run-up to the

fork was completed. The messages were collected from the projects’ mailing

list messages, and contained all messages by all developers for that time period.

These projects had on average 9,166 messages in this time period. Table 5 lists

the number of messages for each project in this time period.

15

TABLE 5: The number of messages sentiment-analyzed for each project.

Projects Number of messages Year forked

Kamailio & OpenSIPS 5,450 2008

ffmpeg & libav 20,690 2011

Amarok & Clementine Player 1,642 2010

Apache CouchDB & BigCouch 3,746 2010

Pidgin & Carrier 4,095 2008

MPlayer & MPlayerXP 6,305 2005

Asterisk & Callweaver 28,012 2007

freeglut & OpenGLUT 2,267 2004

Ceph 7,232 NA

OpenStack Neutron 20,153 NA

GlusterFS 1,245 NA

3.1.2 Analysis

Our goal was to find out possible pre-fork negative anomalies happened,

that could be an early indicator of problems in the community.

We used the R (Statistical Computing) [45] package SentimentAnalysis

[19][44] to analyze the sentiments of the cleaned data, and each message was

assigned a sentiment score between [-1, +1], with negative values indicating

negative sentiments, 0 for neutral, and positive value representing positive sen-

timents.

To analyze the raw time series data, we decomposed the raw series into

the trend, seasonality, and residual components. The trend (a non-periodic

systematic change in the time series) and residual series is the component we

are interested in, especially the residual. The residual series is the part that can

16

give us insights into the longitudinal interdependency between the observations.

The trend and seasonality are the long-time non-stationary process that needs

to be removed before doing the time series analysis.

To detect outliers, we used the R (Statistical Computing) [45] package

tsoutliers [34] for outlier detection by estimating outlier effects for four types of

outliers. We found the outliers and fitted models to the series with the outlier

effects removed. Failing to adjust for outliers can result in wrong models or

biased parameter estimates, and increased forecasting error. The four models

for outlier effect that we looked for were Additive outlier (AO), Level shift (LS),

Temporary change (TC), and Innovational outlier (IO).

Figures 6-15 show the detected outliers in the sentiments time series, and

includes both the original and adjusted time series, as well as the outlier effects.

3.1.3 Outlier Detection Models

We were interested in detecting anomalies that might have happened be-

fore the forking event, that could be used as indicators associated with forking.

For this purpose, we used the following anomaly detection approach. All the

following description from [14] describes outlier models.

For an ARIMA(p, d, q) process, we have

Xt =
θ(B)

α(B)φ(B)
Zt (0.1)

Roots of θ(B), φ(B) outside unit circle

α(B) = (1 −B)d

Zt ∼iid Normal(0, σ2)

17

The Observed series is represented as:

X∗
t =Xt + outlier effect (0.2)

AO: X∗
t =Xt + ωIt(t1) (0.3)

LS: X∗
t =Xt +

1

1 −B
ωIt(t1) (0.4)

TC: X∗
t =Xt +

1

(1 − δB)
ωIt(t1) (0.5)

IO: X∗
t =Xt +

θ(B)

α(B)φ(B)
ωIt(t1) =

θ(B)

α(B)φ(B)
[Zt + ωIt(t1)] (0.6)

3.1.4 Outlier Estimation

The following Iterative procedure for detecting outliers, adjusting series,

and fitting (seasonal) ARIMA model from [14] describes how the outliers are

detected by estimation.

Obtain residuals êt from the observed series X∗
t by applying

π(B) =
α(B)φ(B)

θ(B)
= 1 − π1B − π2B

2 − π3B
3 − ...

(Remember Xt =
θ(B)

α(B)φ(B)Zt)

If there were no outliers, result is white noise: π(B)Xt = Zt

When outlier present at t = t1, residuals êt = π(B)X∗
t for t = t1, . . . , n reveal

outlier effect.

Least-squares estimate:

ω̂ =
∑
n
t=t1 êtxt

∑
n
t=t1 x

2
t

18

Divide by standard error:

τ̂ =
ω̂

σ̂/
√
∑
n
t=t1 x

2
t

Approximately ∼ Normal(0, 1)

3.1.5 Outlier Detection

At each t = 1, . . . , n, for each outlier type (AO, LS, TC, IO), Estimate

outlier effect ω̂ and calculate τ̂ . Large ∣τ̂ ∣ (> C) indicates an outlier. Once outlier

is detected, estimated effect can be subtracted to obtain adjusted series.[14]

3.1.6 Results

The time series shown in Figures 1 and 2 show the daily mean sentiment

scores of the developers’ messages.

Figures 3-5 show the decomposed time series into seasonal, trend and

irregular components using moving averages, for all projects.

19

Time Series of Sentiments

Time: Run−up to Fork Days

S
en

tim
en

ts
 S

co
re

0 50 100 150 200 250 300

−
0.

05
0.

00
0.

05
0.

10
0.

15
0.

20

Time Series of Sentiments

Time: Run−up to Fork Days

S
en

tim
en

ts
 S

co
re

0 50 100 150 200 250 300

−
0.

02
0.

00
0.

02
0.

04
0.

06
0.

08
0.

10

Time Series of Sentiments

Time: Run−up to Fork Days

S
en

tim
en

ts
 S

co
re

0 50 100 150 200 250 300

−
0.

1
0.

0
0.

1
0.

2
0.

3

Time Series of Sentiments

Time: Run−up to Fork Days

S
en

tim
en

ts
 S

co
re

0 50 100 150 200 250

−
0.

05
0.

00
0.

05
0.

10
0.

15

Time Series of Sentiments

Time: Run−up to Fork Days

S
en

tim
en

ts
 S

co
re

0 50 100 150 200 250 300

−
0.

05
0.

00
0.

05
0.

10
0.

15
0.

20
0.

25

Time Series of Sentiments

Time: Run−up to Fork Days

S
en

tim
en

ts
 S

co
re

0 50 100 150 200 250 300

−
0.

05
0.

00
0.

05
0.

10
0.

15

FIGURE 1: Time Series of sentiments in developers’ messages for projects
(From top to bottom, left to right) Kamailio (Conflict-Driven), ffmpeg (Conflict-
Driven), Amarok (Non-Conflict-Driven), Apache CouchDB (Non-Conflict-
Driven), Pidgin (Non-Conflict-Driven), MPlayer (Non-Conflict-Driven). It is
not easy to visually analyse these raw time series.

20

Time Series of Sentiments

Time: Run−up to Fork Days

S
en

tim
en

ts
 S

co
re

0 50 100 150 200 250

−
0.

05
0.

00
0.

05
0.

10
0.

15
0.

20

Time Series of Sentiments

Time: Run−up to Fork Days

S
en

tim
en

ts
 S

co
re

0 50 100 150 200 250 300

−
0.

05
0.

00
0.

05
0.

10
0.

15
0.

20

Time Series of Sentiments

Time: Run−up to Fork Days

S
en

tim
en

ts
 S

co
re

0 50 100 150 200 250 300

−
0.

05
0.

00
0.

05
0.

10

Time Series of Sentiments

Time: Run−up to Fork Days

S
en

tim
en

ts
 S

co
re

0 50 100 150 200 250 300

0.
00

0.
05

0.
10

0.
15

Time Series of Sentiments

Time: Run−up to Fork Days

S
en

tim
en

ts
 S

co
re

0 50 100 150 200 250 300

−
0.

1
0.

0
0.

1
0.

2
0.

3

FIGURE 2: Time Series of sentiments in developers’ messages for projects (From
top to bottom, left to right) Asterisk (Non-Conflict-Driven), freeglut (Non-
Conflict-Driven), Ceph (Not Forked), OpenStack Neutron (Not Forked), and
GlusterFS (Not Forked). It is not easy to visually analyse these raw time series.

21

Time

dc
om

p$
x

2 4 6 8 10

20
40

60
80

10
0

12
0

Time

dc
om

p$
se

as
on

al

2 4 6 8 10

−
6

−
4

−
2

0
2

4
6

8

Time

dc
om

p$
tr

en
d

2 4 6 8 10

58
60

62
64

66
68

70
72

Time

dc
om

p$
ra

nd
om

2 4 6 8 10

−
60

−
40

−
20

0
20

40

Time

dc
om

p$
x

2 4 6 8 10

50
60

70
80

90

Time

dc
om

p$
se

as
on

al

2 4 6 8 10

−
4

−
2

0
2

4
6

Time

dc
om

p$
tr

en
d

2 4 6 8 10

70
72

74
76

78

Time
dc

om
p$

ra
nd

om

2 4 6 8 10

−
20

−
10

0
10

20

Time

dc
om

p$
x

2 4 6 8 10

0
20

40
60

80
10

0
12

0
14

0

Time

dc
om

p$
se

as
on

al

2 4 6 8 10

−
10

−
5

0
5

10

Time

dc
om

p$
tr

en
d

2 4 6 8 10

60
65

70
75

80

Time

dc
om

p$
ra

nd
om

2 4 6 8 10

−
60

−
40

−
20

0
20

40
60

Time

dc
om

p$
x

2 4 6 8

20
40

60
80

10
0

Time

dc
om

p$
se

as
on

al

2 4 6 8

−
10

−
5

0
5

10

Time

dc
om

p$
tr

en
d

2 4 6 8

60
65

70
75

80

Time

dc
om

p$
ra

nd
om

2 4 6 8

−
40

−
20

0
20

40

FIGURE 3: Time series decomposed into trend, seasonality and residual time Se-
ries for projects (From top to bottom, left to right) Kamailio (Conflict-Driven),
ffmpeg (Conflict-Driven), Amarok (Non-Conflict-Driven), Apache CouchDB
(Non-Conflict-Driven).

22

Time

dc
om

p$
x

2 4 6 8 10

20
40

60
80

10
0

12
0

14
0

Time

dc
om

p$
se

as
on

al

2 4 6 8 10

−
10

−
5

0
5

10

Time

dc
om

p$
tr

en
d

2 4 6 8 10

80
85

90
95

Time

dc
om

p$
ra

nd
om

2 4 6 8 10

−
60

−
40

−
20

0
20

40

Time

dc
om

p$
x

2 4 6 8 10

20
40

60
80

10
0

12
0

Time

dc
om

p$
se

as
on

al

2 4 6 8 10

−
10

−
5

0
5

10

Time

dc
om

p$
tr

en
d

2 4 6 8 10

75
80

85

Time
dc

om
p$

ra
nd

om

2 4 6 8 10

−
40

−
20

0
20

40

Time

dc
om

p$
x

2 4 6 8 10

50
10

0
15

0

Time

dc
om

p$
se

as
on

al

2 4 6 8 10

−
15

−
10

−
5

0
5

10

Time

dc
om

p$
tr

en
d

2 4 6 8 10

95
10

0
10

5
11

0

Time

dc
om

p$
ra

nd
om

2 4 6 8 10

−
50

0
50

Time

dc
om

p$
x

2 4 6 8 10

20
40

60
80

10
0

12
0

Time

dc
om

p$
se

as
on

al

2 4 6 8 10

−
10

−
5

0
5

10

Time

dc
om

p$
tr

en
d

2 4 6 8 10

58
60

62
64

66
68

70

Time

dc
om

p$
ra

nd
om

2 4 6 8 10

−
40

−
20

0
20

40

FIGURE 4: Time series decomposed into trend, seasonality and residual time
Series for projects (From top to bottom, left to right) Pidgin (Non-Conflict-
Driven), MPlayer (Non-Conflict-Driven), Asterisk (Non-Conflict-Driven), and
freeglut (Non-Conflict-Driven).

23

Time

dc
om

p$
x

2 4 6 8 10

20
40

60
80

10
0

12
0

14
0

Time

dc
om

p$
se

as
on

al

2 4 6 8 10

−
10

−
5

0
5

10

Time

dc
om

p$
tr

en
d

2 4 6 8 10

86
88

90
92

94
96

98

Time

dc
om

p$
ra

nd
om

2 4 6 8 10

−
60

−
40

−
20

0
20

40
60

Time

dc
om

p$
x

2 4 6 8 10

60
80

10
0

12
0

14
0

Time

dc
om

p$
se

as
on

al

2 4 6 8 10

−
10

−
5

0
5

Time

dc
om

p$
tr

en
d

2 4 6 8 10

95
10

0
10

5

Time
dc

om
p$

ra
nd

om

2 4 6 8 10

−
40

−
20

0
20

40

Time

dc
om

p$
x

2 4 6 8 10

20
40

60
80

10
0

12
0

14
0

Time

dc
om

p$
se

as
on

al

2 4 6 8 10

−
15

−
10

−
5

0
5

10

Time

dc
om

p$
tr

en
d

2 4 6 8 10

55
60

65
70

75

Time

dc
om

p$
ra

nd
om

2 4 6 8 10

−
40

−
20

0
20

40

FIGURE 5: Time series decomposed into trend, seasonality and residual time
Series for projects (From top to bottom, left to right) Ceph (Not Forked), Open-
Stack Neutron (Not Forked), and GlusterFS (Not Forked).

24

TABLE 6: Anomalies detected in the time series of sentiments for project Ka-
mailio (Conflict-Driven). Type column refers to the different anomalies as de-
scribed in section 3.1.3. Note that all listed outliers are statistically significant
with t-statistics greater than 1.96 in absolute value. (sigma2 estimated as 128.8:
log likelihood = -1170.2, aic = 2356.41)

type ind coefhat tstat statistical significance (*)

1 AO 83 0.14 4.40 *

2 TC 170 -0.09 -4.12 *

3 TC 253 0.10 4.28 *

4 AO 261 0.14 4.44 *

5 TC 282 -0.10 -4.38 *

Original and adjusted series

−
0.

05
0

0.
05

0.
1

0.
15

0.
2

●

●

●

●

●

Outlier effects

−
0.

1
−

0.
05

0
0.

05
0.

1
0.

15

0 50 100 150 200 250 300

FIGURE 6: Time series with outliers detected for project Kamailio (conflict-
driven).

25

TABLE 7: Anomalies detected in the time series of sentiments for project ffmpeg
(Conflict-Driven). Note that all listed outliers are statistically significant with
t-statistics greater than 1.96 in absolute value. (sigma2 estimated as 57.33: log
likelihood = -1043.78, aic = 2101.57)

type ind coefhat tstat statistical significance (*)

1 AO 62 0.07 5.80 *

2 AO 258 -0.05 -4.25 *

Original and adjusted series

−
0.

02
0

0.
02

0.
06

0.
1

●

●

Outlier effects

−
0.

04
0

0.
02

0.
06

0 50 100 150 200 250 300

FIGURE 7: Time series with outliers detected for project ffmpeg (conflict-
driven).

26

TABLE 8: Anomalies detected in the time series of sentiments for project
Amarok (Non-Conflict-Driven). Note that all listed outliers are statistically sig-
nificant with t-statistics greater than 1.96 in absolute value.(sigma2 estimated
as 375.6: log likelihood = -1326.61, aic = 2661.22)

type ind coefhat tstat statistical significance (*)

1 AO 10 0.19 3.87 *

2 AO 146 0.20 4.12 *

3 AO 235 0.18 3.79 *

4 AO 244 0.19 3.87 *

5 IO 274 0.20 4.62 *

Original and adjusted series

−
0.

1
0

0.
1

0.
2

0.
3

●
●

●
●

●

Outlier effects

−
0.

05
0

0.
05

0.
1

0.
15

0.
2

0 50 100 150 200 250 300

FIGURE 8: Time series with outliers detected for project Amarok (non-conflict-
driven).

27

TABLE 9: Anomalies detected in the time series of sentiments for project Pidgin
(Non-Conflict-Driven). Note that all listed outliers are statistically significant
with t-statistics greater than 1.96 in absolute value.(sigma2 estimated as 312.3:
log likelihood = -1307.25, aic = 2622.49)

type ind coefhat tstat statistical significance (*)

1 IO 217 0.17 4.13 *

Original and adjusted series

−
0.

05
0

0.
05

0.
1

0.
15

0.
2

0.
25

●

Outlier effects

0
0.

05
0.

1
0.

15

0 50 100 150 200 250 300

FIGURE 9: Time series with outliers detected for project Pidgin (non-conflict-
driven).

28

TABLE 10: Anomalies detected in the time series of sentiments for project
MPlayer (Non-Conflict-Driven). Note that all listed outliers are statistically
significant with t-statistics greater than 1.96 in absolute value.(sigma2 estimated
as 225.5: log likelihood = -1251.94, aic = 2517.88)

type ind coefhat tstat statistical significance (*)

1 IO 22 0.11 4.75 *

2 AO 42 -0.11 -4.43 *

3 TC 93 -0.08 -3.91 *

4 AO 100 -0.11 -4.29 *

5 TC 115 -0.08 -3.81 *

Original and adjusted series

−
0.

05
0

0.
05

0.
1

0.
15 ●

●

●

●

●

Outlier effects

−
0.

1
−

0.
05

0
0.

05
0.

1

0 50 100 150 200 250 300

FIGURE 10: Time series with outliers detected for project MPlayer (non-
conflict-driven).

29

TABLE 11: Anomalies detected in the time series of sentiments for project
Asterisk (Non-Conflict-Driven). Note that all listed outliers are statistically
significant with t-statistics greater than 1.96 in absolute value.(sigma2 estimated
as 358.2: log likelihood = -1227.85, aic = 2463.7)

type ind coefhat tstat statistical significance (*)

1 AO 95 -0.11 -3.84 *

2 AO 104 0.12 4.20 *

3 AO 166 -0.12 -4.23 *

4 TC 185 0.10 5.06 *

5 AO 202 0.14 5.07 *

6 TC 210 0.08 4.07 *

7 AO 229 0.10 3.59 *

Original and adjusted series

−
0.

05
0

0.
05

0.
1

0.
15

0.
2

●

●

●

●

●

●

●

Outlier effects

−
0.

1
−

0.
05

0
0.

05
0.

1
0.

15

0 50 100 150 200 250

FIGURE 11: Time series with outliers detected for project Asterisk (non-
conflict-driven).

30

TABLE 12: Anomalies detected in the time series of sentiments for project
freeglut (Non-Conflict-Driven). Note that all listed outliers are statistically sig-
nificant with t-statistics greater than 1.96 in absolute value.(sigma2 estimated
as 348.6: log likelihood = -1307.6, aic = 2619.2)

type ind coefhat tstat statistical significance (*)

1 AO 176 0.13 3.80 *

2 AO 283 0.20 5.62 *

3 AO 294 0.19 5.46 *

Original and adjusted series

−
0.

05
0

0.
05

0.
1

0.
15

0.
2

●

● ●

Outlier effects

0
0.

05
0.

1
0.

15
0.

2
0 50 100 150 200 250 300

FIGURE 12: Time series with outliers detected for project freeglut (non-conflict-
driven).

31

Original and adjusted series

−
0.

05
0

0.
05

0.
1

●

●

●
●

●

Outlier effects

−
0.

1
−

0.
05

0
0.

05
0.

1

0 50 100 150 200 250 300

FIGURE 13: Time series with outliers detected for project Ceph (Not forked).

TABLE 13: Anomalies detected in the time series of sentiments for project
Ceph (Not forked). Note that all listed outliers are statistically significant with
t-statistics greater than 1.96 in absolute value.

type ind coefhat tstat statistical significance (*)

1 IO 7 -0.09 -4.07 *

2 TC 49 0.08 4.47 *

3 AO 154 -0.10 -4.72 *

4 TC 245 -0.10 -5.91 *

5 AO 250 0.13 6.14 *

32

TABLE 14: Anomalies detected in the time series of sentiments for project
OpenStack Neutron (Not forked). Note that all listed outliers are statistically
significant with t-statistics greater than 1.96 in absolute value.

type ind coefhat tstat statistical significance (*)

1 AO 6 0.11 6.34 *

2 AO 20 -0.10 -5.87 *

3 IO 62 -0.09 -5.65 *

4 AO 125 0.09 5.06 *

5 IO 166 0.08 5.01 *

Original and adjusted series

0
0.

05
0.

1
0.

15

●

●
●

●

●

Outlier effects

−
0.

1
−

0.
05

0
0.

05
0.

1

0 50 100 150 200 250 300

FIGURE 14: Time series with outliers detected for project OpenStack Neutron
(Not forked).

33

TABLE 15: Anomalies detected in the time series of sentiments for project
GlusterFS (Not forked). Note that all listed outliers are statistically significant
with t-statistics greater than 1.96 in absolute value.

type ind coefhat tstat statistical significance (*)

1 IO 305 0.28 5.77 *

Original and adjusted series

−
0.

1
0

0.
1

0.
2

0.
3

●

Outlier effects

−
0.

05
0

0.
05

0.
1

0.
15

0.
2

0.
25

0 50 100 150 200 250 300

FIGURE 15: Time series with outliers detected for project GlusterFS (Not
forked).

No anomalies were found in the time series of sentiments for project Apache

CouchDB (Non-Conflict-Driven).

34

The description of these anomalies and how can they be used is discussed

in section 4.

3.1.7 Summary

Time series analysis of open source developers communication sentiments

shows that in conflict-driven forks, we see negative dip anomalies pre-fork near

the fork date, in contrast to the non-conflict-driven forks, where we see either no

anomalies, or positive spikes anomalies pre-fork. We got close to determining

when one vs. other has occurred, however, given the false positives and the

scarcity of projects, we cannot be conclusive. So we turn to social network

analysis 3.2, to figure out whether a detected anomaly is “a storm in a teacup”,

or a situation needing intervention. What do these networks look like, who is

involved, and what are the forces are shaping the community. This is discussed

in the next section (3.2).

3.2 Social network analysis of open source developers in-
teraction graphs

We used a social network analysis developer-oriented approach to statisti-

cally model the changes a community goes through in the run-up to a fork [7].

The model represented tie formation, tie breakage, and tie maintenance between

developers. It uses stochastic estimation methods to estimate several model pa-

rameters that capture the variance in the changes the community goes through.

The model leads us to estimates of the significance of several parameters on this

longitudinal change.

The process is described in detail in the following. Figure 16 show the

overview of the methodology.

35

Data Collection
Mailing Lists
Bug Tracking Repositories
Codebase

Data Cleaning and Wrangling
12 equioespaced directed graphs
for each project

Morkov Chain Monte Carlo Estimation
Rate of Change
Parameter Estimates with p-value and
s.e.

Statistical Model
Test of Goodness of Fit
Relative Importance of Effects

Multi-Parameter T-test and MANOVA
Project Comparison
Multivariate Analysis of Variance be-
tween Multiple Groups, with p-value

Results
Reresented Collaboration with Longitudinal Change
Modeled change and Rate of change statistically
Expressed underlying properties/values of commu-
nity Behavior as model effects and their significance
and relative importance
Good starting point for gaining an understanding of
longitudinal change of underlying properties of an
open source project community

Raw Data

12 Directed Graph representation of each project’s collaborations

Model parameter estimates

A well-fitting statistical model (i.e. weighted sum of effects) for each project

Between group and cross-group comparison results of significance with p-values

FIGURE 16: The methodology in a glance

36

3.2.1 Data

To find patterns uniquely associated with conflict-driven forks, we gath-

ered data on projects from both conflict-driven and non-conflict-driven forking

categories. The data consisted of developer interaction logs on the project’s

developers mailing lists, where developers’ interact by sending and receiving

emails and source-code repository contribution logs, where developers interact

by modifying the code, and/or working on the same source files. The sociograms

was formed based on interactions among developers and the contribution history

was used as a covariate in the model. (Note that the content of the messages

send and received by the top contributors of the project in the months leading

to the forking events was sentiment-analyzed.) The time period for which data

was collected is 10-months leading to when the fork happened. This should

supposedly capture the social context prior, and at the time of the fork.

To find projects in conflict-driven and non-conflict-driven categories, we

looked at the list of all significant open source software forks in the past three

decades as compiled by Robles and Gonzalez-Barahona [47]. Their study found

the reasons behind each fork, listed in Table 1. We applied three selection criteria

to the 220 forked projects on that list to find projects in conflict-driven and non-

conflict-driven categories. A project was short-listed as either a conflict-driven

or non-conflict-driven if a) the forking was relatively recent, i.e., happened after

the year 2000, b) its data was existent and available to access and download

online, or was made accessible to us after our requests; and c) the project had a

sizable developer community, i.e., more than a dozen developers, which means it

would be large enough to make a sociogram for a meaningful statistical analysis.

For the Not Forked category, we chose well-known, stable projects that had been

around for a while (two years), and had large communities; and had not forked;

37

and were similar in size of the development team. Similarity in size is a constrain

that our statistical method imposes for the results to be meaningful, as described

in detail in section 3.2.2. The preceding criteria resulted in the projects listed

in Table 4. The rest of the 220 forked projects were discarded, because they did

not meet the described filtering criteria.

3.2.2 Analysis

Sociogram Formation and Statistical Study

Social connections and non-connections can be represented as graphs, in

which the nodes represent actors (developers) and the edges represent the in-

teraction(s) between actors or lack thereof. Such graphs can be a snapshot of

a network – a static sociogram – or a changing network, also called a dynamic

sociogram. In this phase, we process interactions data to form a communication

sociogram of the community.

Two types of analysis can be done on sociograms: Either a cross-sectional

study, in which only one snapshot of the network is looked at and analyzed; or

a longitudinal study, in which several consecutive snapshots of the network are

looked at and studied. We are interested in patterns in the run-up to forks,

therefore, unlike most existing research on forking, we do a longitudinal study.

A longitudinal study can look at the sociograms in the following two dis-

tinct approaches:

1. A network-specific approach, which can be called a skin-deep measurement-

specific look, in which, we focus on the observed networks, measure their

properties, to describe the structure of the observed networks with numeric

summaries/descriptors, e.g. see Appendix B Figures 18 and 19. Many

studies measuring centralities as their only metrics, fall into this category.

38

2. A population-processes approach, in which we treat an observed network

as one instance from a set of all possible networks with the same num-

ber of nodes, and with similar characteristics. In a population-processes

approach, the observed network is only good to help us understand the

social forces/processes that generated it, because we are interested in the

forces/processes that underlie the structure and changes of the network;

these reflect the values shared or not shared by the community members,

and represent the group behavior, and behavior change trends that lead

to a forking event.

Appendix B Figures 18 and 19 are good examples of the expressiveness

and limitations of a network-specific approach. Appendix B Figure 18 shows

the normalized change in the number of active nodes (developers) and edges

(interaction between developers) for eight FOSS projects from conflict-driven

and non-conflict-driven categories.

The normalized number of nodes and edges for the conflict-driven forks

(i.e., second and third row) show a sudden sharp decrease around the month of

fork. This can be because of dissolution of the development team, who either left

the project, or stopped being active contributors as much as before. Appendix B

Figure 19 shows normalized change of diameter over time for the same projects.

It is hard to make sense of normalized diameter changes across projects, and

this demonstrates the limitations of network-specific approaches, as they may,

or may not (often the case), help us understand the network dynamics.

As an example of expressiveness, Appendix B Figure 18 shows that a

measurements-only approach shows us the trends of change or no-change in the

measured metrics. It also shows one limitation of such an approach: even though

we can see trend changes, it is hard to make sense of such trends given the short

39

scope of the measurements. Additionally, it is hard to constitutes a reference

point and back it up mathematically or statistically.

The following subsection lists the reasons why we need to use a statistical

model, used in the population-processes approach.

Why a statistical model is needed?

One may wonder why we should look beyond the observed network. We

can do measurements on the observed networks data, and get some descriptive

statistics. This would be a superficial look at the data, and even though nec-

essary, is not good enough and has several shortcomings. There is another way

of looking at these networks, in a less-superficial way; namely, finding a model

that fits the data and its longitudinal change. So, instead of a superficial look at

the data, we can find a well-fitting statistical model of our observed interactions

network. The following lists the reasons why we need to go beyond a superficial

measurement-only approach.

1. For the observed network, a small observation error or sampling error,

and the uncertainty involved with real-world communication, can result

in large perturbation in the numeric descriptors used to describe static

graphs.

2. The traditional network-specific approach assumes edges in sociograms

are statistically independent, (and/or identically distributed). This can

be misleading, as, social network data are relational. For example, in real-

life human communication, the likelihood of forming ties with friends of a

friend is higher than a stranger, as Balance Theory suggests [25].

3. In the population-specific approach, we try to identify the social forces that

have formed the observed network, by simulation a population of similar

40

networks of the same characteristics. After finding the statistical distri-

bution of network population, then we can compare the observed network

to the population distribution of possible networks of that size, and see

how significant and likely it is to observe such a graph, as compared to

observing a randomly-generated graph. This is useful, because it gives us

a reference point to compare our observed graph with, and to weed out

the properties generated by random processes, and to find the statistically

significant network statistics. In short, with a statistical model, we can

draw inferences about whether certain network structures and substruc-

tures are more commonly observed in the observed network than might be

expected by chance [46].

4. Stochastic models capture the regularities in the processes that caused the

network ties form, as well as variability that are hard to model otherwise.

A model that considers stochasticity allows us to understand the uncer-

tainty associated with an observed network. It makes it possible to learn

about the distribution of possible networks for a given specification of a

model [46].

5. Different social processes may manifest similar network structures. For

example, clustering in a network might be because of structural effects,

e.g., structural balance, or through node-level effects, e.g., homophily. To

determine which one is the case in our observed network, a statistical

model that incorporates both covariates can help. We then can assess the

contribution of each covariate, and infer which social process underlies the

observed network [46].

6. Localized processes might not scale to the entire network well. The com-

41

bination of the overall structure and the localized processes is hard to

investigate without a model. (This micro-macro difference may be inves-

tigated through model simulation.)[46]

In summary, a measurement-only approach is not capable of explaining

the longitudinal changes in an open source community’s network properly. It

can confuse us, and it can mislead us. Our initial study, described in appendix

section B.2, is an example of a measurement-only approach, which shows such

limitations. This initial study guided in the proper direction; namely, trying to

find a statistical model that can explain the networks’ longitudinal changes. In

the following paragraphs (3.2.2), we described such a model.

The Statistical Model

Longitudinal evolution of a network data is the result of many small atomic

changes occurring between the consecutively observed networks. In our case,

software developers are the actors in the networks, and they can form a con-

nection with another developer, break off an existing connection, or maintain

their status quo. These are the four possibilities of atomic change within our

evolving networks: (1) forming a new tie; (2) breaking off an existing tie; (3)

maintaining a non-connection; and (4) maintaining a connection. We assume a

continuous-time network evolution, even though our observations are made at

two or more discrete time points.

The state-of-the-art in studying longitudinal social networks, is the idea

of actor-oriented models [52], based on a model of developers changing their

outgoing ties as a consequence of a stochastic optimization of an objective func-

tion. This framework assumes that the observed networks at discrete times, are

outcomes of a continuous-time Markov process. In the case of open source de-

42

velopers, the actor-oriented model, can be informally described as open-source-

developer-oriented model, in which, it is assumed that developers are in charge

of their communication and collaboration choices. They choose to have interac-

tions with certain other developers and/or they choose to stop having interac-

tions with another developer. In short, they have autonomy in choosing their

connections.

Let the data for our statistical developer-oriented model be M repeated

observations on a network with g developers. The M observed networks (at

least two) are represented as directed graphs with adjacency matrices X(tm) =

(Xij(tm)) for m = 1, ...,M , where i and j range from a to g. The variable Xij

shows whether at time t there exists a tie from i to j (value 1) or not (value 0).

Be definition, ∀i,Xii = 0 (i.e. the diagonal of the adjacency matrices).

In order to model the network evolution from X(t1) to X(t2), and so on, it

is natural to treat the network dynamics as the result of a series of small atomic

changes, and not bound to the observation moment, but rather as a more of less

continuous process. In this way, the current network structure is a determinant

of the likelihood of the changes that might happen next [15].

For each change, the model focuses on the developer whose tie is changing.

We assume that developer i has control over the set of outgoing tie variables

(Xi1, ...,Xig) (i.e. the ith row of the adjacency matrix). The network changes

one tie at a time. We call such an atomic change a ministep. The moment at

which developer i changes one of his ties, and the kind of change that he makes,

can depend on attributes represented by observed covariates, and the network

structure. The moment is stochastically determined by the rate function, and

the particular change to make, is determined by the objective function and the

gratification function. We cannot calculate this complex model exactly. Rather

43

than calculating exactly, we estimate it using a Monte Carlo Markov Chain

method. The estimated model is used to test hypotheses about the forked FOSS

communities.

These above three functions and their definitions taken from [51] are ex-

plained in detail the following subsections.

Rate Function

The rate function λi(x) for developer i is the rate at which developer i’s

outgoing connections changes occur. It models how frequently the developers

make ministeps.

The rate function is formally defined [51] by

λi(x) = lim
dt→0

1

dt
P(Xij(t + dt) ≠Xij(t) for some j ∈ {i, ..., g}∣X(t) = x)).

(0.7)

The simplest specification of the rate of change is that all developers have

the same rate of change of their ties.

Objective Function

The objective function fi(s) for developer i is the value attached to the

network configuration x.

The idea is that, given the opportunity to make a change in his outgoing

tie variables (Xi1, ...,Xig), developer i selects the change that gives the greatest

increase in the objective function. We assume that if there is difference between

developers in their objective functions, these differences can be represented based

on the model covariates [51].

Let’s denote the present network by x = X(t). The new network that

would be the result of a ministep (i.e. changing a single tie variable xij into its

44

opposite 1 − xij) by developer i is denoted by x(i↦ j). This choice is modeled

in the following way:

Let U(j) denote a random variable which represents the attraction for i

to j. We assume that these Uj are random variables distributed symmetrically

about 0, and independently generated for each new ministep. In this way, the

developer i chooses to change his tie variable with the other developer j for

whom the following value [51] is the highest:

fi(x(i↦ j)) +U(j) (0.8)

This is a short-sighted stochastic optimization rule: short-sighted because

only the situation one step after the current step is considered; and stochastic

because the unexplained part is modeled by a random variable U(j).

U(j) is chosen to have Gumbel distribution with mean 0 and scale param-

eter 1. In this way, the probability that developer i chooses to change xij for

any particular j, given that such a change happens, is [51],

pij(x) =
exp(fi(i↦ j) − fi(x))

∑
g
h=1,h≠i exp(fi(i↦ h) − fi(x))

(0.9)

Gratification Function

Sometimes the order in which changes occur makes a difference for the

desirability of the network. Such differences cannot be represented by the ob-

jective function. So, we need another function, called gratification function.

The gratification function gi(x, j) for developer i is the value attached

to this developer (in addition to what follows from the objective function) to

the act of changing the tie variable xij from i to j, given the current network

45

configuration x.

In the case that a gratification function is included, the developer i chooses

to change xij for that other developer j for whom the following value [51] is the

highest:

fi(x(i↦ j)) + gi(x, j) +U(j) (0.10)

And we will have

pij(x) =
exp(fi(i↦ j) + gi(x, j) − fi(x))

∑
g
h=1,h≠i exp(fi(i↦ h) + gi(x, j) − fi(x))

(0.11)

Markov Chain Transition Rate Matrix

The components of the developers-oriented model, described above, define

a continuous-time Markov chain on the space χ of all directed graphs on this set

of g developers. This Markov chain is used to estimate the model parameters

stochastically, instead of calculating them exactly, which is not possible for us.

This Markov chain has a transition rate matrix. The transition rate matrix

(also called intensity matrix), for this model is given by

qij(x) = lim
dt→0

1

dt
P(X(t + dt) =X(i↦ j)∣X(t) = x))

= λi(x)pij(x) (0.12)

Expression (0.12) shows the rate at which developer i makes ministeps,

multiplied by the probability that he changes the arc variable Xij, if he makes

a ministep.

46

Markov Chain Simulation

Our Markov chain can be simulated by repeating the following steps [51]:

Start at time t with directed graph x.

1. Define λ+ = ∑
g
i=1 λi(x) and let ∆t be a random variable with the exponen-

tial distribution with parameter λ+(x).

2. The developer i is chosen randomly with probabilities λi(x)
λ+(x)

3. Given this i, choose developer j randomly with probabilities

pij(x) =
exp(fi(i↦ j) + gi(x, j) − fi(x))

∑
g
h=1,h≠i exp(fi(i↦ h) + gi(x, j) − fi(x))

4. Now change t to t +∆t and change xij to (1 − xij)

Model Specification

In the previous sections, we described why we need a statistical model to

describe the longitudinal trends, rather than numerical measurements. We then

described a framework for such a model; namely the developer-oriented model.

We described the components of this statistical model; the rate function; the

objective function, and the gratification function.

In this section, we describe what network effects can be measured and

tested in these functions. Specifically, we need to supply these functions with a

specific model for the rate, objective and gratification functions. These functions

depend on unknown parameters that need to be estimated based on the data.

The estimation is explained in section 3.2.4.

In the following, we explain what model effects can be included in the

objective and gratification functions, to be estimated later.

47

Objective Function

The following weighted sum represents the objective function:

fi(β,x) =
L

∑
k=1

βksik(x) (0.13)

Parameters β = (β1, ..., βL) is to be estimated. Functions sik(x) can be the

following [51]:

3.2.3 Structural Effects

For the structural effects, some of the following effects were used. The

mathematical formulas for the following effects are included in the appendix

section C.

1. The reciprocity effect, which reflects the tendency toward reciprocation of

connections. A high value for its model parameter will indicate a high

tendency of developers for reciprocated interactions.

2. The closure effects (e.g. in friendship networks, it means, friends of friends

tend to become friends) For example,

(a) Transitive triplets effect, which models the tendency toward network

closure. It reflects the preference of developers to be connected to

developers with similar outgoing ties.

(b) Transitive ties, which reflects network embeddedness. It is similar to

transitive triplets effect, however, it only count for the existence of at

least one two-path i → h → j, rather than counting how many such

two-paths exists.

48

(c) Balance effect, which reflects how similar the outgoing ties of devel-

oper i are to the outgoing ties of the other developers to whom i is

connected.

(d) Number of developers at distance two, which reflects and is an inverse

measure of, network closure.

3. Three-cycles, may be interpreted as the tendency toward local hierarchy.

It is similar to reciprocity defined for three developers, and is the opposite

of hierarchy.

4. Density effect which reflects tendency to have connections at all (i.e. the

out-degree of a developer i).

5. Activity, which reflects the tendency of developers with high in-degree/out-

degrees to send out more outgoing connections because of their current

high in-degree/out-degree.

6. Covariate effects: Developers’ covariates may influence the formation or

termination of ties. For example:

(a) Covariate V-related popularity, which reflects the sum of covariate V

for all developers to whom developer i is connected

(b) Covariate V-related activity, which reflects the developer i’s out-

degree multiplied by his covariate V value.

(c) Covariate V-related dissimilarity, which reflects the sum of differences

in covariate V values’ between developer i and all developers to whom

developer i is connected.

We use the following developer attributes as covariates:

49

● Developer’s level of contribution/activity (e.g. code commits per

month, or mailing list posts per month)

● Developer’s seniority as a development community member (i.e. how

long they have been in the community)

7. in-in degree assortativity, which reflects the tendency of developers with

high in-degree to be connected to other developers with high in-degrees

8. in-out degree assortativity, which reflects which reflects the tendency of

developers with high in-degree to be connected to other developers with

high out-degrees

9. out-in degree assortativity, which reflects which reflects the tendency of

developers with high out-degree to be connected to other developers with

high in-degrees

10. out-out degree assortativity, which reflects which reflects the tendency of

developers with high out-degree to be connected to other developers with

high out-degrees

3.2.4 Behavior-related Effects

Properties of developers can be called their behavior. For a behavior-

related variable szik(x, z), we can estimate the following effects.

Let’s denote a dependent behavior variable as Z.

1. Shape, which reflects the drive toward high values on the variable Z.

2. Similarity:

50

(a) Average similarity, which reflects the preference of the developer i to

be similar to his alters, with regard to the behavior variable Z

(b) Total similarity, which reflects the preference of the developer i to be

similar to his alters. The total influence of the alters depends on the

number of the alters

3. Average alter, which reflects that the developers who have alters with

higher average values of Z, have a stronger tendency to having high values

of Z.

Gratification Function

The following weighted sum represents the gratification function:

gi(γ, x, j) =
H

∑
h=1

γhrijh(x) (0.14)

Some possibile functions rijh(x) are the following [51]:

1. Breaking off a reciprocated tie:

rij1(x) = xijxji

2. Number of indirected links for creating a new tie:

rij2(x) = (1 − xij)∑h xihxhj

3. Effect of dyadic covariate W on breaking off a tie:

rij3(x) = xijwij

Markov Chain Monte Carlo (MCMC) Estimation

The described statistical model for longitudinal analysis of open source

software development communities is a complex model and cannot be exactly

51

calculated, but it can be stochastically estimated. We can simulate the longi-

tudinal evolution, and estimate the model based on the simulations. Then we

can choose an estimated model that has a good fit to the network data. The

following section described the simulation and estimation procedures.

Network evolution can be simulated using a MCMC estimation method.

The method of moments (MoM) can be used in the following way [51]:

Let xobs(tm),m = 1, ...,M be the observed networks, and the objective

function be fi(β,x) = ∑
L
k=1 βksik(x). In MoM, the goal is to determine the

parameters βk such that, summed over i and m, the expected values of the

sik(X(tm+1)) are equal to the observed values. In other words, MoM fits the

observed to the expected. The observed target values are:

sobsk =
M−1

∑
m=1

g

∑
i=1

sik(x
obs(tm+1)) (k = 1, ..., L) (0.15)

The simulations run as follows [51]:

1. The distance between two directed graphs x and y is defined as

∥x − y∥ = ∑
i,j

∣xij − yij ∣ (0.16)

and let the observed distances for m = 1, ..., M-1 be

cm = ∥xobs(tm+1) − x
obs(tm)∥ (0.17)

2. Use the β parameter vector and the rate of change λi(x) = 1

3. Do the following for m = 1, ..., M-1

52

(a) Define the time as 0, and start with Xm(0) = xobs(tm)

(b) Simulate the model, as described in 3.2.2 until the first time point,

where

∥Xm(Rm) − xobs(tm)∥ = cm (0.18)

4. For k = 1, ..., L, calculate the following statistics:

Sk =
M−1

∑
m=1

g

∑
i=1

sik(Xm(Rm)) (0.19)

The simulation output will be the random variables (S,R) = (S1, ..., SL,R1, ...,RM−1).

The desirable outcome for the estimation is the vector parameter β̂ for which

the expected and the observed vectors are the same.

So far, we discussed a number of metrics for social networks. We will

investigate their statistical significance and effects to describe the different social

networks that we encounter, to see if there is any systematic differences between

conflict-driven and non-conflict-driven forks.

Hypothesis Testing

So far, we have described what we can model, how to fit a model that

explains the longitudinal changes in an open source community (or any similar

network). Now, we test several hypothesis about these models. For example, we

test whether a particular effect’s (for example, reciprocity’s) statistical signifi-

cance on the model, and make meaningful statements about whether the network

dynamics depends on this parameter with a p-value, indicating the significance

level. Such test is explained in section 3.2.4.

Alternatively, we compare two models for two open source project com-

53

munities, and make conclusions about the difference in several model effects,

for example, reciprocity and three-cycles, using the method described in section

3.2.4.

Lastly, we compare several open source communities (or such networks)

and test the statistical significance of the differences between their models, using

the methods described in section 3.2.4. This allows us to compare within-group

and across-group comparisons of longitudinal models of open-source projects.

In this study, we do all three discussed forms of tests of significance. In the

following subsections, the details of these tests are described.

Single Parameter Test

Using the actor-oriented model, t-type test of single parameters can be

done using the parameter estimates and their standard errors (S.E.). For exam-

ple, for testing the null hypothesis that a component k of the parameter vector

β is 0, the test has approximately a standard normal distribution. For this null

hypothesis:

H0 ∶ βk = 0; (0.20)

the t-test can be done using the following t-statistic:

β̂k

S.E.(β̂k)
(0.21)

Given a p-value ≤ 0.05 would indicate a strong evidence that the network dy-

namics depends on the corresponding parameter’s effect.

Multi-Parameter Differences Between Groups

Given the parameter estimates β̂a and β̂b, and their standard errors S.E.a

and S.E.b, the differences between two groups can be tested using the following

54

t-statistics. This t-statistics, under the null hypothesis of equal parameters, has

an approximately standard normal distribution:

β̂a − β̂b
√
S.E.2a + S.E.

2
b

(0.22)

Multivariate Analysis of Variance Between Multiple Groups

To test the statistical significance of the mean differences between groups

(in our case, the different categories of forking), we may use Multivariate Analy-

sis of Variance (MANOVA) method. In contrast to ANOVA, MANOVA method

tests for the difference in two or more vectors of means.

If the data does not exhibit statistically significant differences, then our

study will not reject the null hypotheses, and our assumptions cannot be veri-

fied. We argue that based on the guiding theories and the collaboration data we

gathered, if the forking reasons were socially-related, they should be reflected in

the data, and so, should be reflected in the longitudinal model of their collabo-

ration network evolution. This is a conjecture, and our study will try to show

that this conjecture is true, using sound statistical modeling.

3.2.5 Results

The tables 16-25 shows the results of the social network analysis longitu-

dinal modeling of the projects. The rate parameter models how frequently the

developers make mini-steps. The effects and their estimates that were found to

be statistically significant are marked with asterisks, with their standard devia-

tions and t statistics.

We describe what the findings mean and how to interpret the findings in

section 4.

55

TABLE 16: Estimates parameters in the model for Project Kamailio (Conflict-
Driven). The outdegree density, transitive triplets, out-out-degree assortativity,
and developers’ seniority effects are statistically significant. The interpretations
are discussed in section 4.

Effect par. (s.e.) t stat.

Rate 1 1.26 (0.30) -

Rate 2 1.99 (0.40) -

Rate 3 2.08 (0.42) -

Rate 4 2.51 (0.48) -

Rate 5 2.93 (0.56) -

Rate 6 2.69 (0.52) -

Rate 7 2.18 (0.46) -

Rate 8 2.45 (0.51) -

Rate 9 2.77 (0.50) -

outdegree (density) –2.11∗∗∗ (0.25) –8.38

reciprocity 1.19� (0.61) 1.95

transitive triplets 2.22∗∗ (0.73) 3.04

3-cycles –1.10� (0.62) –1.78

out-out degree(̂1/2) assortativity –1.00∗ (0.50) –2.01

devSeniority alter 0.00 (0.00) 1.39

devSeniority ego 0.00∗ (0.00) 1.99

devSeniority ego x devSeniority alter 0.00 (31.61) 0.00

devScActivity alter –0.00 (0.01) –0.33

devScActivity ego 0.03 (0.02) 1.50

devScActivity ego x devScActivity alter –0.00 (0.00) –1.54

int. devScActivity ego x devSeniority ego –0.00 (31.61) –0.00
� p < 0.1; ∗ p < 0.05; ∗∗ p < 0.01; ∗∗∗ p < 0.001;

56

TABLE 17: Estimates parameters in the model for Project ffmpeg (Conflict-
Driven). The outdegree density, transitive triplets, reciprocity, 3-cycles and
out-out-degree assortativity are statistically significant. The interpretations are
discussed in section 4.

Effect par. (s.e.) t stat.

Rate 1 5.21 (0.54) -

Rate 2 4.52 (0.43) -

Rate 3 4.52 (0.46) -

Rate 4 5.62 (0.62) -

Rate 5 4.08 (0.40) -

Rate 6 4.69 (0.54) -

Rate 7 4.39 (0.53) -

Rate 8 27.77 (5.86) -

Rate 9 3.46 (0.32) -

outdegree (density) –2.20∗∗∗ (0.06) –39.64

reciprocity –2.52∗ (1.27) –1.98

transitive triplets 3.63∗∗∗ (0.85) 4.27

3-cycles –2.80∗∗ (1.05) –2.67

out-out degree(̂1/2) assortativity –1.42∗∗∗ (0.40) –3.56

devSeniority ego N.A. (N.A.) -

devScActivity ego N.A. (N.A.) -

int. devScActivity ego x devSeniority ego N.A. (N.A.) -
� p < 0.1; ∗ p < 0.05; ∗∗ p < 0.01; ∗∗∗ p < 0.001;

57

TABLE 18: Estimates parameters in the model for Project Amarok (Non-
Conflict-Driven). The outdegree density, transitive triplets, and developers’
source code activity effects are statistically significant. The interpretations are
discussed in section 4.

Effect par. (s.e.) t stat.

Rate 1 1.29 (0.33) -

Rate 2 2.15 (0.63) -

Rate 3 2.12 (0.63) -

Rate 4 5.09 (1.79) -

Rate 5 3.96 (1.16) -

Rate 6 6.21 (2.27) -

Rate 7 1.57 (0.39) -

Rate 8 0.62 (0.20) -

Rate 9 0.68 (0.21) -

outdegree (density) –4.33∗∗∗ (0.25) –17.21

reciprocity –3.47 (6.23) –0.56

transitive triplets 2.91∗∗∗ (0.85) 3.42

3-cycles –2.58 (8.58) –0.30

out-out degree(̂1/2) assortativity 0.14 (0.38) 0.37

devSeniority alter –0.00 (0.00) –1.01

devSeniority ego 0.00 (0.00) 1.37

devSeniority ego x devSeniority alter 0.00 (31.61) 0.00

devScActivity alter –0.01 (0.01) –1.02

devScActivity ego 0.01∗∗ (0.01) 2.79

devScActivity ego x devScActivity alter –0.00 (0.00) –0.26

int. devScActivity ego x devSeniority ego –0.00 (31.61) –0.00
� p < 0.1; ∗ p < 0.05; ∗∗ p < 0.01; ∗∗∗ p < 0.001;

58

TABLE 19: Estimates parameters in the model for Project Apache CouchDB
(Non-Conflict-Driven). The outdegree density, transitive triplets, and develop-
ers’ source code activity effects are statistically significant. The interpretations
are discussed in section 4.

Effect par. (s.e.) t stat.

Rate 1 1.31 (0.33) -

Rate 2 2.24 (0.67) -

Rate 3 2.21 (0.68) -

Rate 4 5.36 (1.94) -

Rate 5 4.11 (1.19) -

Rate 6 6.40 (2.35) -

Rate 7 1.62 (0.41) -

Rate 8 0.65 (0.21) -

Rate 9 0.70 (0.22) -

outdegree (density) –4.37∗∗∗ (0.26) –17.02

reciprocity –3.97 (7.73) –0.51

transitive triplets 2.98∗∗∗ (0.84) 3.53

3-cycles –1.57 (5.86) –0.27

out-out degree(̂1/2) assortativity 0.14 (0.40) 0.34

devSeniority alter –0.00 (0.00) –0.89

devSeniority ego 0.00 (0.00) 1.20

devSeniority ego x devSeniority alter –0.00 (31.61) –0.00

devScActivity alter –0.01 (0.01) –1.04

devScActivity ego 0.02∗∗ (0.01) 3.02

devScActivity ego x devScActivity alter –0.00 (0.00) –0.36

int. devScActivity ego x devSeniority ego –0.00 (31.61) –0.00
� p < 0.1; ∗ p < 0.05; ∗∗ p < 0.01; ∗∗∗ p < 0.001;

59

TABLE 20: Estimates parameters in the model for Project Pidgin (Non-
Conflict-Driven). The outdegree density, transitive triplets, and developers’
source code activity effects are statistically significant. The interpretations are
discussed in section 4.

Effect par. (s.e.) t stat.

Rate 1 1.31 (0.34) -

Rate 2 2.22 (0.67) -

Rate 3 2.17 (0.67) -

Rate 4 5.20 (1.88) -

Rate 5 4.07 (1.22) -

Rate 6 6.35 (2.40) -

Rate 7 1.59 (0.40) -

Rate 8 0.63 (0.20) -

Rate 9 0.70 (0.22) -

outdegree (density) –4.38∗∗∗ (0.26) –16.91

reciprocity –4.93 (10.13) –0.49

transitive triplets 2.96∗∗∗ (0.85) 3.47

3-cycles –2.87 (9.06) –0.32

out-out degree(̂1/2) assortativity 0.17 (0.40) 0.43

devSeniority alter –0.00 (0.00) –0.72

devSeniority ego 0.00� (0.00) 1.83

devSeniority ego x devSeniority alter 0.00 (31.61) 0.00

devScActivity alter –0.02 (0.01) –1.27

devScActivity ego 0.01∗ (0.01) 2.57

devScActivity ego x devScActivity alter –0.00 (0.00) –0.22

int. devScActivity ego x devSeniority ego –0.00 (31.61) –0.00
� p < 0.1; ∗ p < 0.05; ∗∗ p < 0.01; ∗∗∗ p < 0.001;

60

TABLE 21: Estimates parameters in the model for Project MPlayer (Non-
Conflict-Driven). The outdegree density, transitive triplets, and developers’
source code activity effects are statistically significant. The interpretations are
discussed in section 4.

Effect par. (s.e.) t stat.

Rate 1 1.28 (0.33) -

Rate 2 2.17 (0.65) -

Rate 3 2.11 (0.66) -

Rate 4 5.02 (1.77) -

Rate 5 3.99 (1.16) -

Rate 6 6.07 (2.21) -

Rate 7 1.57 (0.39) -

Rate 8 0.63 (0.19) -

Rate 9 0.69 (0.21) -

outdegree (density) –4.35∗∗∗ (0.25) –17.18

reciprocity –6.27 (9.93) –0.63

transitive triplets 2.79∗∗∗ (0.81) 3.44

3-cycles –2.40 (4.89) –0.49

out-out degree(̂1/2) assortativity 0.24 (0.36) 0.65

devSeniority alter –0.00 (0.00) –0.68

devSeniority ego 0.00 (0.00) 1.58

devSeniority ego x devSeniority alter 0.00 (31.61) 0.00

devScActivity alter –0.02 (0.01) –1.29

devScActivity ego 0.01∗ (0.00) 2.47

devScActivity ego x devScActivity alter –0.00 (0.00) –0.30

int. devScActivity ego x devSeniority ego –0.00 (31.61) –0.00
� p < 0.1; ∗ p < 0.05; ∗∗ p < 0.01; ∗∗∗ p < 0.001;

61

TABLE 22: Estimates parameters in the model for Project freeglut (Non-
Conflict-Driven). The outdegree density, transitive triplets effects are statis-
tically significant. The interpretations are discussed in section 4.

Effect par. (s.e.) t stat.

Rate 1 2.32 (0.51) -

Rate 2 3.40 (0.62) -

Rate 3 11.19 (4.12) -

Rate 4 2.65 (0.50) -

Rate 5 2.36 (0.48) -

Rate 6 2.36 (0.52) -

Rate 7 2.07 (0.49) -

Rate 8 1.58 (0.39) -

Rate 9 4.06 (0.96) -

outdegree (density) –2.80∗∗∗ (0.22) –13.01

reciprocity 0.28 (0.28) 1.00

transitive triplets 0.43∗∗∗ (0.09) 4.84

3-cycles –0.18 (0.12) –1.50

out-out degree(̂1/2) assortativity 0.16 (0.10) 1.61
� p < 0.1; ∗ p < 0.05; ∗∗ p < 0.01; ∗∗∗ p < 0.001;

62

TABLE 23: Estimates parameters in the model for Project Ceph (Not forked).
The outdegree density, reciprocity, transitive triplets, 3-cycles, out-out degree
assortativity and developers’ alter source code activity effects are statistically
significant. The interpretations are discussed in section 4.

Effect par. (s.e.) t stat.

Rate 1 7.03 (0.83) -

Rate 2 5.40 (0.48) -

Rate 3 5.64 (0.56) -

Rate 4 6.22 (0.67) -

Rate 5 6.77 (0.64) -

Rate 6 22.78 (3.49) -

Rate 7 11.85 (1.02) -

Rate 8 7.92 (0.77) -

Rate 9 7.19 (0.64) -

outdegree (density) –2.85∗∗∗ (0.08) –36.95

reciprocity 1.03∗∗∗ (0.22) 4.76

transitive triplets 1.85∗∗∗ (0.25) 7.27

3-cycles –2.77∗∗∗ (0.42) –6.59

out-out degree(̂1/2) assortativity –0.51∗∗∗ (0.11) –4.59

devSeniority alter 0.00 (0.00) 0.48

devSeniority ego 0.00 (31.61) 0.00

devSeniority ego x devSeniority alter –0.00 (31.61) –0.00

devScActivity alter –0.02∗∗∗ (0.00) –3.73

devScActivity ego 0.00 (0.00) 1.41

devScActivity ego x devScActivity alter 0.00 (0.00) 0.02

int. devScActivity ego x devSeniority ego –0.00 (31.61) –0.00
� p < 0.1; ∗ p < 0.05; ∗∗ p < 0.01; ∗∗∗ p < 0.001;

63

TABLE 24: Estimates parameters in the model for Project OpenStack Neutron
(Not forked). The outdegree density, reciprocity, transitive triplets, 3-cycles,
out-out degree assortativity and developers’ seniority effects are statistically
significant. The interpretations are discussed in section 4.

Effect par. (s.e.) t stat.

Rate 1 1.94 (0.17) -

Rate 2 2.75 (0.24) -

Rate 3 3.25 (0.29) -

Rate 4 3.00 (0.25) -

Rate 5 3.09 (0.28) -

Rate 6 9.52 (1.15) -

Rate 7 4.68 (0.34) -

Rate 8 4.39 (0.33) -

Rate 9 3.73 (0.31) -

outdegree (density) –3.45∗∗∗ (0.06) –57.09

reciprocity –3.80∗∗∗ (0.81) –4.71

transitive triplets 2.65∗∗∗ (0.34) 7.80

3-cycles –2.65∗ (1.10) –2.41

out-out degree(̂1/2) assortativity –0.54∗∗∗ (0.12) –4.36

devSeniority alter 0.00∗ (0.00) 2.03

devSeniority ego 0.00∗∗∗ (0.00) 3.43

devSeniority ego x devSeniority alter –0.00 (0.00) –0.39

devScActivity alter 0.04� (0.02) 1.94

devScActivity ego 0.09� (0.05) 1.96

devScActivity ego x devScActivity alter –0.02 (0.03) –0.62

int. devScActivity ego x devSeniority ego –0.00∗ (0.00) –2.04
� p < 0.1; ∗ p < 0.05; ∗∗ p < 0.01; ∗∗∗ p < 0.001;

64

TABLE 25: Estimates parameters in the model for Project GlusterFS (Not
forked). The outdegree density, transitive triplets, out-out degree assortativity
and developers’ alter seniority effects are statistically significant. The interpre-
tations are discussed in section 4.

Effect par. (s.e.) t stat.

Rate 1 4.56 (0.74) -

Rate 2 3.68 (0.65) -

Rate 3 4.61 (1.01) -

Rate 4 6.78 (1.50) -

Rate 5 3.96 (0.64) -

Rate 6 2.70 (0.40) -

Rate 7 2.65 (0.51) -

Rate 8 5.55 (1.16) -

Rate 9 8.19 (1.77) -

outdegree (density) –2.78∗∗∗ (0.12) –23.25

reciprocity –0.78 (0.68) –1.14

transitive triplets 2.29∗∗∗ (0.37) 6.15

3-cycles –0.88� (0.53) –1.65

out-out degree(̂1/2) assortativity –0.54∗∗ (0.19) –2.88

devSeniority alter –0.00∗∗∗ (0.00) –3.38

devSeniority ego –0.00 (0.00) –0.13

devSeniority ego x devSeniority alter –0.00 (31.61) –0.00

devScActivity alter –0.09� (0.05) –1.83

devScActivity ego 0.02 (0.04) 0.39

devScActivity ego x devScActivity alter 0.01 (0.01) 0.45

int. devScActivity ego x devSeniority ego 0.00 (0.00) 0.73
� p < 0.1; ∗ p < 0.05; ∗∗ p < 0.01; ∗∗∗ p < 0.001;

65

Table 26 illustrates the distinct patterns associated with Conflict-Driven vs.

Non-Conflict-Driven forking categories. Negative three-cycles, positive transi-

tive triplets, and out-out degree assortativity effects were statistically significant

in the conflict-driven forks, and not statistically significant in the non-conflict-

driven forks. Also, developers source code activity effect was statistically

significant for non-conflict-driven forks, and non-significant for conflict-driven

forks. The interpretations of these effects are discussed in the following section 4.

TABLE 26: Conflict-Driven vs. Non-Conflict-Driven parameter effects

Effects Conflict-Driven Non-Conflict-Driven

Negative three-cycles Statistically Significant (*)

Positive transitive triplets Statistically Significant (*)

Out-out degree assortativity Statistically Significant (*)

Developers source code activity Statistically Significant (*)

4 Discussion

In this research, we investigated the pre-fork time periods for open source

projects that had forked. Our aim was to investigate whether there are patterns

left in the projects records that could be used to identify the pre-fork dynamics,

and use them as key indicators to identify problems, and design an intervention,

if needed, before the project disintegrates and the irreversible damage is done.

Several stakeholders benefit from such important research findings, as involve-

66

ment in open source software development, either as an individual developer, or

a business/government sponsor, is an investment of time, energy and resources.

The findings of our research helps decision-makers make better informed

decisions both when choosing to be affiliated with or involved in certain open

source projects, and when there have been involved in the projects.

We analyzed both the contents and the relationship representations of the

developers in forked open source software projects, that had gone through

various types of forking. Contents of the developer communication messages

were analyzed using time series analysis and sentiment analysis (Section 3.1),

and the interaction patterns were analyzed using social network analysis

methods for longitudinal change (Section 3.2).

Our research goals were whether we can identify if there is a problem; whether

we can do this early enough that we can actually do something about it, and

whether we can do this using objectively automate-able processes without

having to be intimately familiar with the projects. Our results show that

monitoring the communication patterns, both with regard to message contents,

and relationship representations address all three research questions.

Our findings show that the conflict-driven forks experienced a period of pre-fork

negativity, manifested in the developers’ communication sentiments, as shown

in Tables 6-7. Our anomaly detection algorithms detected these anomalies.

In contrast, the non-conflict-driven forks did not exhibit any anomalies, or

67

showed periods of positive spikes (Figures 8-12), which is indicative of positive

communication sentiments.

Our findings also show that in conflict-driven forks, the combination of negative

three-cycles and positive transitive triplets were statistically significant, as

shown in Tables 16-17. According to Snijders et al. [52], this combination is

the indicator of the tendency for local hierarchies. So, in conflict-driven forks

the social graph tended to have local hierarchies, which was manifested as

statistically significant negative three-cycles effects combined with statistically

significant positive transitive triplets effects (Table 26). This indicated several

local hierarchies within the project community, which depending on the context,

can be an indicator of several factions.

Our findings also show that conflict-driven forks had communities where there

existed a tendency for heavy mailing-list poster developers to be interacting

with to other heavy mailing-list poster developers, which was manifested

as a statistically significant out-out degree assortativity effect. In contrast,

non-conflict-driven forks has communities where there existed a tendency for

heavy code contributors to be interacting with other heavy code contributors,

as shown in Tables 18-22, which was manifested as a statistically significant

developer source code activity effect. This can be interpreted as a unhealthy

vs. healthy dynamic, whereas, in the non-conflict-driven forked projects more

code contributions translated into more conversations, so, the communication

was backed by solid code. Whereas, in conflict-driven forked projects, the could

68

have been much talk and not much code. One cannot help but think of Linus

Torvald’s quote “Talk is cheap. Show me the code.”

In summary, we represented longitudinal dynamics in conflict-driven vs.

non-conflict-driven forks. We suggested indicators of unhealthy dynamics to

suggest intervention. We detected pre-fork anomalies suggestive of negative

communication sentiments, and we expressed underlying properties and values

of community behavior as model effects with their statistical significance.

Further research is needed to be able to generalize. This is a good starting point

for gaining an understanding of longitudinal changes of underlying properties

of an open source projects’ community.

69

5 Threats to Validity

One of the threats to validity is the size of the data we had access to and

could attain. The projects is this research study were selected from a pool of

projects, based on a filtering criteria that included availability of their data.

Given access, a larger number of projects as the sample size could result in a

more robust investigation, that may be give a better external validity and the

power to generalize. This is an important limitation of our study, because even

though, our quantitative analysis featured more projects that typical studies in

this domain, still, it is not possible to infer and generalize the results and expect

the predictions to be valid for all open source projects.

Secondly, there is an inherent limitation with regard to any study that uses

data from online communications, as the sole source of communication. It is

possible for the developers to have had interactions in person, or via other

private or unattainable means of communication. The assumption that all the

communication can be captured by mining repositories is intuitively imperfect,

but inevitable.

Additionally, social interactions data is noisy, and our study might be affected

by the noise. The trade-off between representativeness and signal-noise ratio

is another limiting decision in the context of our work. Hence, our approach

findings are not exact and clean signals, but rather an approximation.

Third, the statistical model we use to model the longitudinal evolution of col-

laboration networks is estimated stochastically, rather than being calculated

exactly. The stochastic process might not always arrive at the same results. To

70

counter this issue, we ran the algorithm several times to double-check for such

irregularities.

Acknowledgments

I would like to thank my academic adviser, Prof. Carlos Jensen, and Prof.

Drew Gerley, Prof. Ron Metoyer, Prof. Cindy Grimm, Prof. Alex Groce and

Prof. Chris Scaffidi for their help. I would also like to thank Derric Jacobs, of

the Sociology Department at Oregon State University, for his help with search

for theories and lending his books to me; and again, many thanks goes to Prof.

Drew Gerkey, of the Department of Anthropology at Oregon State University

for his advice and pointers to theories about human behavior in social sciences.

I would also like to thank the open source developers of the projects studied

for making their data available, without which this study would not have been

possible.

71

Appendices

A Appendix A: List of projects forked for undesirable
reasons

TABLE 27: List of all projects forked because of “personal differences among
the developer team” conflict-driven [47] in chronological order. N/A means Not
Applicable

Original Forked Date
M.L. data accessi-

ble?
Collected?

GNU Emacs X Emacs 1991, ? No, only after 2000 N/A

NetBSD OpenBSD 1995, Oct Yes, scarce, unusable N/A

xMule aMule 2003, Aug No, only 2006-2007 N/A

lMule xMule 2003, Jun No N/A

Sodipodi Inkscape 2003, Nov No N/A

Nucleus CMS Blog:CMS 2004, May No, only after 09/2004 N/A

BMP Audacious 2005, Oct No N/A

ntfsprogs NTFS-3G 2006, Jul No N/A

OpenWRT FreeWRT 2006, May No, only after 10/2006 N/A

QtiPlot SciDavis 2007, Aug No N/A

Kamailio OpenSIPS 2008, Aug Yes Yes

Blastwave.org OpenCSW 2008, Aug No N/A

jMonkeyEngine Ardor3D 2008, Sept Yes, scarce, unusable N/A

Frog CMS Wolf CMS 2009, Jul No N/A

Aldrin Neil 2009, ? No N/A

Ffmpeg libav 2011, Mar Yes Yes

72

TABLE 28: List of all projects forked because of the need for “more community-
driven development” conflict-driven [47] in chronological order. N/A means Not
Applicable

Original Forked Date
M.L. data accessi-

ble?
Collected?

Nethack Slash’EM 1996, ? No N/A

GCC EGCS 1997, ? No N/A

SourceForge Savane 2001, Oct No N/A

PHPNuke PostNuke 2001, Sum No, not found N/A

QTExtended OPIE 2002, May No N/A

GraphicsMagick Graphics 2002, Nov No, only after 2003 N/A

freeglut OpenGLUT 2004, Mar Yes Yes

Mambo Joomla! 2005, Aug No N/A

SER Kamailio 2005, Jun No, only after 2006 N/A

PHPNuke RavenNuke 2005, Nov No, not found N/A

Hula Bongo 2006, Dec No N/A

Compiere A Dempiere 2006, Sept No N/A

Compiz Beryl 2006, Sept No, only after 06/2007 N/A

SQL-Ledger LedgerSMB 2006, Sept No N/A

Asterisk Callweaver 2007, Jun Yes Yes

CodeIgniter KohanaPHP 2007, May No, not found N/A

OpenOffice.org Go-oo.org 2007, Oct No, only after 06/2011 N/A

Mambo MiaCMS 2008, May No N/A

TORCS Speed Dreams 2008, Nov Yes, scarce, unusable N/A

MySQL MariaDB 2009, Jan Yes, too large, unusable N/A

Nagios Icinga 2009, May No N/A

Project Dark-

star
RedDwarf 2010, Feb Yes, scarce, unusable N/A

SysCP Froxlor 2010, Feb No N/A

Dokeos Chamilo 2010, Jan No, not found N/A

GNU Zebra Quagga 2010, Jul No N/A

rdesktop FreeRDP 2010, Mar Yes Yes

OpenOffice.org LibreOffice 2010, Sept No, only after 06/2011 N/A

Redmine ChiliProject 2011, Feb Yes, scarce, unusable N/A

73

B Appendix B: Initial study: Temporal analysis using
the network-specific measurement approach

In our initial study [4][5][6], which was a network-specific study, we wanted

to analyze the network-specific changes that happen to the community over a

given period of time, e.g., three months before and three months after the year in

which the forking event happened. For this network-specific study, we measured

the betweenness centrality [12] of the most significant nodes in the graph, and

the graph diameter over time. Figures 21, 22, and 23 show the betweenness

centralities over the 1.5 year period for the Kamailio, Amarok and Asterisk

projects respectively. To do temporal analysis, we had two options; 1) look at

snapshots of the network state over time, (e.g., to look at the network snapshots

in every week, the same way that a video is composed of many consecutive

frames), and 2) look at a period through a time window. We preferred the

second approach, and looked through a time window three months wide with

1.5 month overlaps. To create the visualizations, we used a 3 months time frame

that progressed six days a frame. In this way, we would have had a relatively

smooth transition.

There are many ways of looking at an individual’s importance/prestige/status

within a network. One is called closeness centrality. The farness of a node is

defined as the sum of its distances to all other nodes. The closeness of a node

is defined as the inverse of the farness. More informally, the more central a

node is the lower its total distance to all other nodes. Closeness centrality can

be used as a measure of how fast information will spread through the network

[13]. Secondly, if we are looking for people who can serve as bridges between

74

FIGURE 17: Heat-map color-coded examples are shown above. Nodes with
higher centrality metric are colored with warmer color: red is the warmest color
here. The same network is analyzed four times with the following centrality mea-
sures: A) Degree centrality, B) Closeness centrality, C) Betweenness centrality
and D) Eigenvector centrality [48]

two distinct communities, we could measure the node’s betweenness centrality.

Betweenness centralities for mediators who act as intermediate entities between

other nodes are higher [13]. Third, if cross-community collaboration is the fo-

cus, we can measure edge betweenness centrality. Edges connecting nodes from

different communities have higher edge centrality values. In the community col-

laboration graph, edge betweenness or stress of an edge is the number of these

shortest paths that the edge belongs to, considering all shortest paths between

75

all pairs of nodes in the graph. Fourth, one can claim that certain people in

the community are more important than others, and whoever is close to them,

is relatively more important than others. In graph terms, this is measured

by eigenvector centrality, which is based on the assumption that connections

to high-profile nodes contribute more to the importance of a node. Google’s

PageRank link-analysis algorithm [43] is a variant of the eigenvector central-

ity measure. In short, centrality measures have been used in several studies to

identify key player in a community.

In addition to the centrality measures, we planned to look into the resilience

of the community as well. By resilience, we mean how well the network holds

its structure and form when some parts of it are deleted, added, or changed.

For a graph, the resilience of a graph is a measure of its robustness to node or

edge failures. This could occur for instance when an influential member of the

community leaves. Many real-world graphs are resilient to random failures but

vulnerable to targeted attacks. Resilience can be related to the graph diameter :

a graph whose diameter does not increase much on node or edge removal has

higher resilience [13].

B.1 Visualization

Several visualization techniques and tools are used in the field of social network

analysis, for instance, Gephi [9], which is a FOSS tool for exploring and ma-

nipulating networks. It is capable of handling large networks with more than

20,000 nodes and features several SNA algorithms. We used it for dynamic net-

work visualization. We visualized the dynamic network changes using Gephi [9].

76

The videos1 show how the community graph is structured, using a continuous

force-directed linear-linear model, in which the nodes are positioned near or far

from one another proportional to the graph distance between them. This results

in a graph shape between Früchterman & Rheingold’s [22] layout and Noack’s

LinLog [37].

B.2 Initial study results and discussion

B.2.1 Kamailio Project

Figure 20 shows four key frames from the Kamailio project’s social graph around

the time of their fork (the events described here are easier to fully grasp by

watching the video. A node’s size in a proportional to the number of interactions

the node (contributor) has had within the study period and the position and

edges of the nodes change if they had interactions within the time window

shown, with six day steps per frame. The 1 minute and 37 seconds video shows

the life of the Kamailio project between October 2007, and March 2009. Nodes

are colored based on the modularity of the network. The community starts

with the GeneralList as the the biggest node, and four larger core contributors

and three lesser size core contributors. The big red-colored node’s transitions are

hard to miss, as this major contributor departs from the core to the periphery of

the network (Video minute 1:02) and then leaves the community (Video minute

1:24) capturing either a conflict or retirement. This corresponds to the personal

difference category of forking reasons.

1Video visualizations available at http://eecs.oregonstate.edu/˜azarbaam/OSS2014/

http://eecs.oregonstate.edu/~azarbaam/OSS2014/

77

Amarok ApacheCouchDB Pidgin

Asterisk Freeglut Rdesktop

Kamailio Ffmpeg

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Sep Nov Jan Mar Apr Jun Aug Oct Dec Feb Apr Jun

Feb Apr Jun Aug Nov Jan Mar May Nov Jan Mar May

Mar May Jul Sep Nov Oct Dec Feb Apr Jun

Time

N
o
d
e
s
 a

n
d
 E

d
g
e
s

variable

N

E

Nodes & Edges vs. Time

FIGURE 18: Nodes and Edges over Time. The number of nodes and number
of edges are normalized to the range [0,1] to make comparison across projects
meaningful, by emphasizing change in ratio, rather than the varying counts.
Hence, the measurements were normalized for drawing this graph. The three
projects in the first row belong to the “technical differences” forking reason
category, the three projects in the second row belong to the “more community-
driven development” forking reason category, and the two projects in the third
row belong to the “personal differences” forking reason category.

78

Amarok ApacheCouchDB Pidgin

Asterisk Freeglut Rdesktop

Kamailio Ffmpeg

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Sep Nov Jan Mar Apr Jun Aug Oct Dec Feb Apr Jun

Feb Apr Jun Aug Nov Jan Mar May Nov Jan Mar May

Mar May Jul Sep Nov Oct Dec Feb Apr Jun

Time

D
ia

m
e
te

r

Fork

Normal

Fork

Diameter vs Time

FIGURE 19: Diameter changes over Time. Note that the diameter measure-
ments were normalized to the range [0,1]. The three projects in the first row
belong to the “technical differences” forking reason category, the three projects
in the second row belong to the “more community-driven development” forking
reason category, and the two projects in the third row belong to the “personal
differences” forking reason category.

Figure 21 shows the betweenness centrality of the major contributors of Kamailio

project over the same time period. The horizontal axis marks the dates, (each

mark represents a 3-month time window with 1.5 months overlap). The vertical

79

(a) (b) (c) (d)

FIGURE 20: Snapshots from video visualization of Kamailio’s graph (Oct. 2007
- Mar. 2009) in which a core contributor (colored red) moves to the periphery
and eventually departs the community.

FIGURE 21: Kamailio top contributors’ betweenness centralities and network
diameter over time (Oct. 2007 to Mar. 2009) in 3-month time windows with
1.5-month overlaps

axis shows the percentage of the top betweenness centralities for each node. The

saliency of the GeneralList – colored as light blue – is apparent because of its

continuous and dominant presence in the stacked area chart. The chart legend

80

lists the contributors based on the color and in the same order of appearance on

the chart starting from the bottom. Around the ”Aug. 15, 2008 - Nov. 15, 2008”

tick mark on the horizontal axis, several contributors’ betweenness centralities

shrink to almost zero and disappear. This suggests the date of fork with a

month accuracy. The network diameter of the Kamailio project over the same

time period is also shown in Figure 21. An increase in the network diameter

during this period is noticeable; this coincides with findings of Hannemann and

Klamma [24].

This technique can be used to identify the people involved in conflict and the

date the fork happened with a months accuracy, even if the rival project does

not emerge immediately.

B.2.2 Amarok Project

The video for the Amarok project fork is available online2, and the results from

our quantitative analysis of the betweenness centralities and the network di-

ameters are shown in Figure 22. The results show that the network diameter

has not increased over the period of the fork, which shows a resilient network.

The video shows the dynamic changes in the network structure, again typical

of a non-unhealthy network, rather than of simmering conflict. These indica-

tors suggest that the Amarok fork in 2010 belongs to the “addition of technical

functionality” rationale for forking, as there are no visible social conflict.

2Video visualizations available at http://eecs.oregonstate.edu/˜azarbaam/OSS2014/

http://eecs.oregonstate.edu/~azarbaam/OSS2014/

81

FIGURE 22: Amarok project’s top contributors’ betweenness centralities and
network diameter over time between Oct. 2009 to Mar. 2011 in 3-months time
windows with 1.5 months overlaps

B.2.3 Asterisk Project

The video for the Asterisk project is also available online3, and the results from

our quantitative analysis of the betweenness centralities and the network di-

ameters are shown in Figure 23. The results show that the network diameter

remained steady at 6 throughout the period. The Asterisk community was by

far the most crowded project, with 932 nodes and 4282 edges. The stacked area

chart shows the distribution of centralities, where we see an 80%-20% distribu-

tion (i.e., 80% or more of the activity is attributed to six major players, with

3Video visualizations available at http://eecs.oregonstate.edu/˜azarbaam/OSS2014/

http://eecs.oregonstate.edu/~azarbaam/OSS2014/

82

FIGURE 23: Asterisk project’s top contributors’ betweenness centralities and
network diameter over time between Oct. 2009 to Mar. 2011 in 3-months time
windows with 1.5 months overlaps

the rest of the community accounting for only 20%). This is evident in the video

representation as well, as the top-level structure of the network holds through-

out the time period. The results from the visual and quantitative analysis links

the Asterisk fork to the more community-driven category of forking reasons.

B.2.4 Initial study conclusion

We studied the collaboration networks of three FOSS projects using a combina-

tion of temporal visualization and quantitative analysis. We based our study on

two papers by Robles and Gonzalez-Barahona [47] and Hannemann and Klamma

[24], and identified three projects that had forked in the recent past. We mined

the collaboration data, formed dynamic collaboration graphs, and measured so-

cial network metrics over an 18-month period time window.

83

We also visualized the dynamic graphs (available online) and as stacked area

charts over time. The visualizations and the quantitative results showed

the differences among the projects in the three forking reasons of personal

differences among the developer teams, technical differences (addition of new

functionality) and more community-driven development. The novelty of the

approach was in applying the network-specific temporal analysis rather than

static analysis, and in the temporal visualization of community structure. We

showed that this approach shed light on the structure of these projects and

reveal information that cannot be seen otherwise.

More importantly, the initial study showed the limitations of a network-specific

approach, and hence, we adopted a population-processes approach for our main

study as explained in section 2.

84

C Appendix C: Mathematical Definition of Effects in the
Statistical Model

C.1 Structural Effects for the Objective Function

1. Reciprocity

∑
j

xijxji

2. Closure effect: Transitive triplets

∑
j,h

xihxijxjh

3. Closure effect: Transitive ties

∑
j

xijmaxh(xihxhj)

4. Closure effect: Balance

n

∑
j=1

xij
n

∑
h=1,h≠i,j

∣(b0 − xih − sjh)∣

b0 is a constant equal to the mean of ∣xih − xjh∣

5. Closure effect: The number of developers at distance two

∑
j

(1 − xij)maxh(xihxhj)

85

6. Three-cycles

∑
j

xij∑
h

xjhxhi

7. Betweenness

∑
j,h

xhjxij(1 − xhj)

8. Density (or out-degree)

∑
j

xij

9. Activity: Out-degree

∑
j

xijxj+ = ∑
j

xij∑
h

xjh

10. Covariate V-related popularity

∑
j

xijvj

11. Covariate V-related activity

vixi+

12. Covariate V-related dissimilarity

∑
j

xij ∣vi − vj ∣

13. in-in degree assortativity

∑
j

xijx
1/c
+i x

1/c
+j

86

with c = 1 or 2

14. in-out degree assortativity

∑
j

xijx
1/c
+i x

1/c
j+

with c = 1 or 2

15. out-in degree assortativity

∑
j

xijx
1/c
i+ x

1/c
+j

with c = 1 or 2

16. out-out degree assortativity

∑
j

xijx
1/c
i+ x

1/c
j+

with c = 1 or 2

C.2 Behavior-related Effects

For a behavior variable szik(x, z), the following formulas cab be used.

1. Shape zi

2. Quadratic Shape z2i

3. Total Similarity

∑
j

xij(sim
z
ij −

¯simz)

87

where

simz
ij = (1 − ∣zi − zj ∣/maxij ∣zi − zj ∣)

4. Average Similarity

1

xi+
∑
j

xij(sim
z
ij −

¯simz)

where

simz
ij = (1 − ∣zi − zj ∣/maxij ∣zi − zj ∣)

5. Average alter
zi(∑j xijzj)

∑j xij

88

Bibliography

1. Asur, S., S. Parthasarathy, and D. Ucar, (2009), “An event-based frame-
work for characterizing the evolutionary behavior of interaction graphs,”
ACM Trans. Knowledge Discovery Data. 3, 4, Article 16, (November 2009),
36 pages. 2009.

2. Azarbakht, A. and C. Jensen, “Drawing the Big Picture: Temporal Visu-
alization of Dynamic Collaboration Graphs of OSS Software Forks,” Proc.
10th Int’l. Conf. Open Source Systems, 2014.

3. Azarbakht, A. and C. Jensen, “Temporal Visualization of Dynamic Col-
laboration Graphs of OSS Software Forks,” Proc. Int’l. Network for Social
Network Analysis (INSNA) Sunbelt XXXIV Conf., 2014.

4. Azarbakht, A., “Drawing the Big Picture: Analyzing FLOSS Collabora-
tion with Temporal Social Network Analysis,” Proc. 9th Int’l. Symp. Open
Collaboration, ACM, 2013.

5. Azarbakht, A. and C. Jensen, “Analyzing FOSS Collaboration & Social
Dynamics with Temporal Social Networks,” Proc. 9th Int’l. Conf. Open
Source Systems Doct. Cons., 2013.

6. Azarbakht, A., “Temporal Visualization of Collaborative Software Devel-
opment in FOSS Forks,” Proc. IEEE Symp. Visual Languages and Human-
Centric Computing, 2014.

7. Azarbakht, E.A. and C. Jensen, “Longitudinal Analysis of the Run-up to
a Decision to Break-up (Fork) in a Community,” Proc. 13th IFIP Inter-
national Conference on Open Source Systems. Springer, Cham, 2017.

8. Baishakhi R., C. Wiley, and M. Kim, “REPERTOIRE: a cross-system
porting analysis tool for forked software projects,” Proc. ACM SIGSOFT
20th Int’l. Symp. Foundations of Software Engineering, ACM, 2012.

9. Bastian, M., S. Heymann, and M. Jacomy, “Gephi: an open source soft-
ware for exploring and manipulating networks,” Int’l AAAI Conf. on We-
blogs and Social Media, 2009.

10. Bezrukova, K,, C. S. Spell, J. L. Perry, “Violent Splits Or Healthy Divides?
Coping With Injustice Through Faultlines,” Personnel Psychology, Vol 63,
Issue 3. 2010.

89

11. Bird, C., D. Pattison, R. D’Souza, V. Filkov, and P. Devanbu, “Latent
social structure in open source projects,” Proc. 16th ACM SIGSOFT Int’l.
Symposium on Foundations of software engineering, ACM, 2008.

12. Brandes, U. “A Faster Algorithm for Betweenness Centrality”, Journal of
Mathematical Sociology 25(2):163-177, 2001.

13. Chakrabarti, D., and C. Faloutsos. “Graph mining: Laws, generators, and
algorithms,” ACM Computing Surveys, 38, 1, Article 2, 2006.

14. Chen, C. and Liu, Lon-Mu, “Joint Estimation of Model Parameters and
Outlier Effects in Time Series,” Journal of the American Statistical Asso-
ciation, 88, 284–297. 1993.

15. Coleman, J.S. “Introduction to Mathematical Sociology,” New York etc.:
The Free Press of Glencoe. 1964.

16. Crowston, K., K. Wei, J. Howison, and A. Wiggins. “Free/Libre open-
source software development: What we know and what we do not know,”
ACM Computing Surveys, 44, 2, Article 7, 2012.

17. Davidson, J, R. Naik, A. Mannan, A. Azarbakht, C. Jensen, “On older
adults in free/open source software: reflections of contributors and com-
munity leaders,” Proc. IEEE Symp. Visual Languages and Human-Centric
Computing, 2014.

18. Ernst, N., S. Easterbrook, and J. Mylopoulos, “Code forking in
open-source software: a requirements perspective,” arXiv preprint
arXiv:1004.2889, 2010.

19. Feuerriegel S. and N. Proellochs. “SentimentAnalysis:
Dictionary-based sentiment analysis”, R package version 1.1-0.
https://github.com/sfeuerriegel/SentimentAnalysis. 2016.

20. Ford, L. R. and D. R. Folkerson, “A simple algorithm for finding maximal
network flows and an application to the Hitchcock problem,” Canadian
Journal of Mathematics, vol. 9, pp. 210-218, 1957.

21. Forrest, D., C. Jensen, N. Mohan, and J. Davidson, “Exploring the Role
of Outside Organizations in Free/ Open Source Software Projects,” Proc.
8th Int’l. Conf. Open Source Systems, 2012.

90

22. Fruchterman, T. M. J. and E. M. Reingold, “Graph drawing by force-
directed placement,” Softw: Pract. Exper., vol. 21, no. 11, pp. 1129-1164,
1991.

23. Guzzi, A., A. Bacchelli, M. Lanza, M. Pinzger, and A. van Deursen. “Com-
munication in open source software development mailing lists,” Proc. 10th
Conf. on Mining Software Repositories, IEEE Press, 2013.

24. Hannemann, A and , R. Klamma “Community Dynamics in Open Source
Software Projects: Aging and Social Reshaping,” Proc. Int. Conf. on Open
Source Systems, 2013.

25. Heider, F. The Psychology of Interpersonal Relations. John Wiley & Sons.
1958.

26. Howison, J. and K. Crowston. “The perils and pitfalls of mining Source-
Forge,” Proc. Int’l. Workshop on Mining Software Repositories, 2004.

27. Howison, J., K. Inoue, and K. Crowston, “Social dynamics of free and open
source team communications,” Proc. Int’l. Conf. Open Source Systems,
2006.

28. Howison, J., M. Conklin, and K. Crowston, “FLOSSmole: A collabora-
tive repository for FLOSS research data and analyses,” Int’l. Journal of
Information Technology and Web Engineering, 1(3), 17-26. 2006.

29. Krivitsky, P. N., and M. S. Handcock. “A separable model for dynamic
networks,” Journal of the Royal Statistical Society: Series B (Statistical
Methodology) 76, no. 1: 29-46. 2014.

30. Kuechler, V., C. Gilbertson, and C. Jensen, “Gender Differences in Early
Free and Open Source Software Joining Process,” Open Source Systems:
Long-Term Sustainability, 2012.

31. Kunegis, J., S. Sizov, F. Schwagereit, and D. Fay, “Diversity dynamics in
online networks,” Proc. 23rd ACM Conf. on Hypertext and Social Media,
2012.

32. Leskovec, J., Kleinberg, J., and Faloutsos, C.: “Graphs over time: den-
sification laws, shrinking diameters and possible explanations,” Proc.
SIGKDD Int’l. Conf. Knowledge Discovery and data Mining, 2005.

91

33. Leskovec, J., K. J. Lang, A. Dasgupta, and M. W. Mahoney, “Statis-
tical properties of community structure in large social and information
networks,” Proc. 17th Int’l. Conf. World Wide Web, ACM, 2008.

34. Lopez-de-Lacalle, J. “tsoutliers: Detection of Outliers in Time Series”,
R package version 0.6-5. https://CRAN.R-project.org/package=tsoutliers,
2016.

35. Nakakoji, K., Y. Yamamoto, Y. Nishinaka, K. Kishida, and Y. Ye. “Evo-
lution patterns of open-source software systems and communities,” Proc.
Int’l. Workshop Principles of Software Evolution, ACM, 2002.

36. Mikkonen, T., L. Nyman, “To Fork or Not to Fork: Fork Motivations in
SourceForge Projects,” Int’l. J. Open Source Softw. Process. 3, 3. July,
2011.

37. Noack, A., “Energy models for graph clustering,” J. Graph Algorithms
Appl., vol. 11, no. 2, pp. 453-480, 2007.

38. Nowak, M. A. “Five rules for the evolution of cooperation,” Science 314,
No. 5805: 1560-1563. 2006.

39. Nyman, L. , “Understanding code forking in open source software,” Proc.
7th Int’l. Conf. Open Source Systems Doct. Cons., 2011.

40. Nyman, L., T. Mikkonen, J. Lindman, and M. Fougère, “Forking: the
invisible hand of sustainability in open source software,” Proc. SOS 2011:
Towards Sustainable Open Source, 2011.

41. Nyman, L., “Hackers on Forking,” Proc. Int’l. Symp. on Open Collabora-
tion, 2014.

42. Oh, W., Jeon, S., “Membership Dynamics and Network Stability in the
Open-Source Community: The Ising Perspective” Proc. 25th Int’l. Conf.
Information Systems. 2004.

43. Page, B, B. Sergey, R. Motwani and T. Winograd, “The PageRank Ci-
tation Ranking: Bringing Order to the Web,” Technical Report, Stanford
InfoLab, 1999.

44. Proellochs, Feuerriegel and Neumann: “Generating Domain-Specific Dic-
tionaries Using Bayesian Learning”, Proceedings of the 23rd European
Conference on Information Systems (ECIS 2015), Muenster, Germany,
2015.

92

45. R Core Team. “R: A language and environment for statistical comput-
ing. R Foundation for Statistical Computing”, Vienna, Austria. URL
https://www.R-project.org/. 2016.

46. Robins, G., P. Pattison, Y. Kalish, and D. Lusher. “An introduction to ex-
ponential random graph (p*) models for social networks,” Social networks
29, no. 2: 173-191. 2007.

47. Robles, G. and J. M. Gonzalez-Barahona, “A comprehensive study of soft-
ware forks: Dates, reasons and outcomes,” Proc. 8th Int’l. Conf. Open
Source Systems, 2012.

48. Rocchini, C. (Nov. 27 2012), Wikimedia Commons, Available:
http://en.wikipedia.org/wiki/File:Centrality.svg, 2012.

49. Singer, L., F. Figueira Filho, B. Cleary, C. Treude, M. Storey, and K.
Schneider. “Mutual assessment in the social programmer ecosystem: an
empirical investigation of developer profile aggregators,” Proc. Conf. Com-
puter supported cooperative work, ACM, 2013.

50. Snijders, T. AB. “Markov chain Monte Carlo estimation of exponential
random graph models,” Journal of Social Structure 3, no. 2: 1-40. 2002.

51. Snijders, Tom AB. “Models for longitudinal network data,” Models and
methods in social network analysis 1: 215-247. 2005.

52. Snijders, Tom AB., GG Van de Bunt, CEG Steglich, “Introduction to
stochastic actor-based models for network dynamics,” Social networks 32
(1), 44-60. 2010.

53. Sowe, S., L. Stamelos, and L. Angelis, “Identifying knowledge brokers that
yield software engineering knowledge in OSS projects,” Information and
Software Technology, vol. 48, pp. 1025-1033, Nov 2006.

54. Spence, M. “Job market signaling,” Quarterly Journal of Economics, 87:
355-374. 1973.

55. Steglich, C., T. AB Snijders, and M. Pearson. “Dynamic networks and
behavior: Separating selection from influence,” Sociological methodology
40, no. 1: 329-393. 2010.

56. Storey, M., L. Singer, B. Cleary, F. Figueira Filho, and A. Zagalsky, “The
(R) Evolution of social media in software engineering,” Proc. Future of
Software Engineering, ACM, 2014.

93

57. Syeed, M. M., “Socio-Technical Dependencies in Forked OSS Projects: Ev-
idence from the BSD Family,” Journal of Software 9.11 (2014): 2895-2909.
2014.

58. Teixeira, J., and T. Lin, “Collaboration in the open-source arena: the
webkit case,” Proc. 52nd ACM conf. Computers and people research
(SIGSIM-CPR ’14). ACM, 2014.

59. Torres, M. R. M., S. L. Toral, M. Perales, and F. Barrero, “Analysis of the
Core Team Role in Open Source Communities,” Int. Conf. on Complex,
Intelligent and Software Intensive Systems, IEEE, 2011.

60. Zachary, W., “An information flow model for conflict and fission in small
groups,” Journal of Anthropological Research, vol. 33, no. 4, pp. 452-473,
1977.

	Introduction
	Related Work
	Methodology and Results
	Time series analysis of open source developersâ•Ž collaboration communication sentiments
	Social network analysis of open source developersâ•Ž interaction graphs

	Discussion
	Threats to Validity
	Appendices
	Appendix A: List of projects forked for undesirable reasons
	Appendix B: Initial study: Temporal analysis using the network-specific measurement approach
	Visualization
	Initial study results and discussion

	Appendix C: Mathematical Definition of Effects in the Statistical Model
	Structural Effects for the Objective Function
	Behavior-related Effects

	Bibliography

