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Abstract Approved: 
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This thesis presents the results from Monte Carlo calculations on classical vector spins in 

face-centered-cubic (FCC) lattices. The goal of the study was to understand the effect of 

interlayer coupling, dilution of magnetic atoms in the lattice, and symmetry-changing 

strain. 

Experimental work by T. M. Giebultowicz et al. and J. A. Borchers et al. greatly inspired 

my work [1, 2]. J. A. Borchers’s group studied NiO/CoO superlattices and observed that 

the magnetic order of CoO persisted above its Néel temperature due to the effect of 

interlayer coupling with NiO, which has a higher Néel temperature than CoO [1]. 

Simulating on a model of NiO/CoO bilayer reproduced the experimental results from 

Borchers et al. [1]. I concluded that exchange pinning on the NiO/CoO interface 

preserves the magnetic order of CoO above its Néel temperature significantly. 

Building on this initial result, a ferromagnet/antiferromagnet/ferromagnet (FM/AFM/FM) 

trilayer model was studied, where the ferromagnetic (FM) layers were 

antiferromagnetically coupled. First, I calculated the strength of the AF coupling as a 



         

       

  

     

  

   

     

     

      

 

      

     

    

   

      

       

      

  

  

 

 

 

 

function of the number of antiferromagnetic (AFM) spacer monolayers and concluded 

that the strength of AFM coupling decreases as the number of AFM spacer monolayers 

increases. 

Secondly, I added a uniaxial anisotropy to the model and obtained magnetization curves 

which exhibited hysteresis-like features with an external field and a first order magnetic 

transition. Lastly, I diluted the AFM spacer layer in the FM/AFM/FM trilayer by 

replacing magnetic spins with zero spins in the model. The dilution of AFM spacer layer 

caused fluctuations in the magnetization curves with external field but the strength of 

AFM coupling decreases as the number of AFM monolayers increases as in the non-

diluted cases. 

The experimental results from T.M. Giebultowicz’s group on MnSe/ZnTe superlattices 

by neutron scattering showed incommensurate helical spin order in MnSe, where MnSe 

layers were under tensile strain due to a small mismatching in the lattice parameter [2]. In 

addition, they observed that the pitch of the spin helix increased as the temperature 

increased [2]. I modeled the MnSe/ ZnTe system with Monte Carlo method and found 

that the pitch of the spin helix increased with temperature. In fact, the dependence of 

helix pitch on temperature was present regardless of the thickness of the sample, so I 

concluded that this pitch increase is not from the weakening of coupling of surface spins. 
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MONTE CARLO STUDIES OF CLASSICAL HEISENBERG SPINS 

ON FACE-CENTERED-CUBIC LATTICES:
 

EFFECTS OF STRAIN, INTERLAYER COUPLING, AND DILUTION OF LATTICE 

Chapter 1. INTRODUCTION 

The goal of this work was to model and understand some effects of current 

interest in magnetic thin films using the numerical technique of Monte Carlo (MC) 

simulation of lattices of classical vector spins. A classical spin model is the classical limit 

of a quantum mechanical, localized spin model, which is known to approximate the 

properties of real lattices of quantum spins quite well, especially in the cases with larger 

values of the atomic quantum spin number S such as, for example, S=5/2 in spin lattices 

built up of Mn2+ magnetic ions, which are the component in many magnetic systems [3].  

The work presented in this thesis consists of two major subprojects, which both 

focus on phenomena occurring in thin film structures. The first subproject is about 

“magnetic coupling” between two FM layers separated by a spacer layer that is made of a 

different material.  The second subproject is focused on the effect of symmetry-changing 

strain on a frustrated lattice. The objective for the first subproject is to investigate a 

physical situation that may offer a new method of preparing thin multilayered films with 

controlled coupling strength between the constituent FM layers. The objective for the 

second subproject, the effect of strain, is to explain certain phenomena in a frustrated spin 

lattice under strain that have been observed in the past but have not been fully explained 

until today. The background for these projects is provided in the following sections. 
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 Subproject one: interlayer coupling 

1.1. Interlayer coupling and giant magnetoresistance 

The effect of interlayer coupling (IC) or interlayer exchange coupling (IEC) was 

initially observed in Fe/Cr/Fe multilayer by P. Grünberg and A. Fert independently [4, 5, 

6]. They observed that the magnetizations of the Fe layers separated by the Cr spacer 

“correlated” with each other and aligned parallel or anti-parallel depending on the 

thickness of the Cr spacer [4, 5, 6]. This result was surprising since the spacer material 

Chromium (Cr) is a nonmagnetic (NM) metal. Afterwards, Parkin et al. investigated the 

specimen by cross-section transmission electron microscopy (XTEM) and confirmed that 

indeed the correlation coefficient turned out to be an oscillating function of the NM 

spacer thickness [7]. This discovery enabled one to “manipulate” the sign of 

magnetization correlation (parallel or anti-parallel) of FM layers by changing the 

thickness of the spacer layer by a few atomic layers [8, 9].  

However, a more exciting discovery A. Fert and P. Grünberg made in the 

Fe/Cr/Fe trilayer experiments than IC was an additional effect revealed by the 

experiments [4, 5, 6]. Namely, they found that the resistance of the trilayer depended 

strongly on the relative orientations of magnetizations of the FM layers [4, 5, 6]. The 

resistance R for the anti-parallel alignment of FM magnetizations was significantly 

higher (by 40-80%) than R for the parallel FM magnetizations [4, 5, 6]. If the 

magnetizations of the FM layers are initially anti-parallel, one can make them parallel by 

applying an external magnetic field B increasing gradually in intensity, which will 
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significantly change the resistance of the system [4, 5, 6]. This effect can be used in 

compact magnetic sensors since the magneto-transport behavior is very sensitive to the 

alignment of magnetizations in magnetic layers [10]. 

In fact, Lord Kelvin found that electric resistance of bulk metals and 

semiconductors depends on external magnetic field in 1856 and this effect is called 

magnetoresistance (MR) [11]. MR is relatively weak and therefore it has found few 

practical applications. The change of R in the Fe/Cr/Fe trilayer A. Fert and P. Grünberg 

measured with an external magnetic field B was stronger in orders of magnitude than the 

ordinary MR, so it was named Giant Magnetoresistance (GMR) [11]. Eventually sensors 

based on GMR led to a real revolution in computer hard-drives [11].  

Since there are many other possible applications of GMR-based magnetic sensors, 

such as magneto-resistive random access memory (MRAM), the physical phenomena 

underlying GMR effects became the subject of vigorous theoretical and experimental 

research following P. Grünberg and A. Fert’s discovery [10]. Experimental 

measurements on other thin metallic trilayers composed of ferromagnets and NM mid-

spacer with varying thickness between them revealed an oscillatory behavior of IC and a 

 Ԧሬstrong dependence of R on [8, 9]. It should be stressed that to use such systems asܤ

magnetic field sensors, it is important to have an initial anti-parallel ferromagnet 

alignment of the FM layers [12].  Needless to say, making a high quality magnetic field 

sensor requires a good understanding of the physical mechanism responsible for the 

oscillatory behavior or IC in such metallic trilayers. 
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Theoretical studies on IC in all-metal systems, most notably by P. Bruno and 

Barbara Jones, led to the conclusion that the magnetic interactions were conveyed by 

mobile conduction electrons in the metal spacer [13, 14]. The damped oscillatory 

behavior of IC was found to be caused by quantum effects closely related to those 

occurring in the Rudermann-Kittel-Kasuya-Yosida (RKKY) interactions, which explain 

the mechanism of coupling between magnetic ions in diluted magnetic alloys [13, 14, 15]. 

ሺܬ

The coupling constant J for RKKY interactions is an oscillating function of the form 

~ 
ୡ୭ୱሺଶ୩F୰ሻ with distance between two interacting ions r and a spherical Fermi surface య௥

ሻݎ

of radius kF [13, 14, 15]. 

in GMR systems was ۰ onR    The first explanation on strong dependence of 

given in terms of the two-current model, which views the total electron current as the sum 

of up and down spin currents [16, 17]. A polarized spin flows through a FM film more 

easily when it is parallel to the magnetization of the ferromagnets [16, 17]. If the 

magnetizations of ferromagnets are anti-parallel, both up and down currents are 

attenuated [16]. If the magnetizations of ferromagnets are parallel, one of the currents 

flows with little attenuation causing lower resistance [16, 17]. Therefore, GMR systems 

are the first generation of systems in which the spin state of the current is controlled in 

contrast to conventional systems that control the amount of current. The term spintronics 

was invented to refer to such novel electronic devices [10]. The exact mechanism of the 

phenomenon of GMR is beyond the scope of the present Ph.D. project - however, since 

the effects discussed later in this project play a major role in GMR systems, it is worth 

mentioning it in order to give some context of this project.        
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1.2. Spintronics: semiconductor-based systems 

The strong interest in spintronics research after the success of GMR devices 

motivated new research efforts. For instance, semiconductor spintronics has been very 

attractive research area since one can combine the properties of semiconductors with 

those of magnetic materials [17].  

The theoretical studies on semiconductor multilayers using the tight binding 

model showed that magnetic interactions in semiconductor systems were not conveyed 

by the mobile conduction electrons but by the electrons in the valence band and that the 

interactions cause an AFM coupling [18].  Experimental measurements of AFM IC in II­

IV superlattices (e.g., EuS/PbS, EuS/YbSe) confirmed this theoretical result [19-24].  

However, there was a big obstacle in all semiconductor spintronics research. It 

was the fact that he Curie temperature for semiconductor ferromagnet is low, which made 

it impossible to keep the semiconductor ferromagnet ordered at the room temperature 

[17]. Semiconductor GMR sensors has never been realized but currently research efforts 

on using diluted magnetic semiconductor systems and combining semiconductors with 

metals and other materials continue [17, 20]. 
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1.3. Metallic trilayers with insulating NM spacer 

The new generations of spintronics devices that have emerged in the last decade 

has required a renewed interest in insulating barriers. The novel sensors are also 

composed of two FM metallic films, with a NM spacer sandwiched in-between, but the 

spacer is non-metallic [25, 26]. It is a thin (~1 nm) layer of an insulating material, so 

electron current flows through the insulating barrier due to tunnel effect [28, 29]. These 

trilayers are called Magnetic Tunnel Junctions (MTJs) [26] As in GMR sensors, the 

effective resistance R of MTJs depends on the mutual orientations of magnetization 

vectors in the FM layers [26, 27]. This effect is called Tunnel Magnetoresistance (TMR), 

which was initially found by Michael Jullière [27]. TMR is the result of spin-polarized 

tunneling, which is different from the mechanism for GMR [27]. 

The Rmax / Rmin ratio in TMR sensors can be as high as several hundred %, which 

is much better in performance than that of the GMR sensors [28, 29]. For both TMR 

sensors and GMR devices, the initial orientations of FM magnetizations have to be anti­

parallel [10]. In an experimental study by T. Katayama et al. on Fe/MgO/Fe trilayers it 

was demonstrated that IC between the FM layers may oscillate with the thickness of the 

spacer [28]. As shown by ab initio calculations, such behavior may result from the 

presence of oxygen vacancies in MgO [28]. It makes very thin layers of MgO AFM, even 

though the material is essentially a nonmagnetic insulator [28]. 

However, the concentration of oxygen vacancies in epitaxially grown materials is 

difficult to control. In most situations, MgO or Al2O3 (another material used to make 
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TMR junctions) do not act as efficient media for conveying the magnetic interactions 

between the FM layers [30]. Hence, other methods of ensuring an initial anti-parallel 

orientation of FM layers for TMR devices have been developed [26]. One of them is to 

use FM layers of different coercivities, either by using FM layers of different thicknesses 

or two different FM materials in the trilayer. Another method is to use the effect of 

exchange bias (EB), which is “shorthand” for an effect in which the magnetic hysteresis 

loops, normally centered at zero magnetic field, shifts toward a negative or positive field 

[26]. It should be noted that the EB effect in ferromagnet/antiferromagnet (FM/AFM) 

system, continues to be the subject of considerable interest and is currently studied by 

different groups both experimentally and theoretically [31, 32]. It will be described in 

more detail in Chapter 3. 

The aim of the work described in Chapter 3 of the present thesis was to examine 

yet another possible method of imposing correlations between the magnetization vectors 

of the two FM layers separated by an insulating spacer – namely, by using an AFM 

spacer whose both interfaces are exchange-coupled to the FM blocks. Such an AFM 

spacer has to be composed of an even number of atomic monolayers (mnl) to ensure the 

anti-parallel alignment of the constituent FM layers. The application of an external 

magnetic field would impose opposite torques on the two FM layers, resulting in a “twist” 

of the AFM mid-layer, which would then act as a “torsion spring”.  If such system 

exhibits TMR properties, its resistance R will change as a function of the strength of the 

ሬԦܤ applied field . 




 

 

 

 

 

  

8 

1.4. Objectives for subproject one 

In fact, the concept that an AFM spacer may act as a “connecting rod” with 

certain “magnetic stiffness constant” has been known for some time. As discussed in later 

in Chapter 3, an effect of this type was first considered by J. Slonczewski in 1995, in the 

context of IEC between two FM metallic layers separated by a metallic AFM spaces. Yet, 

in Slonczewski’s  original paper the “torsion spring” effect of the AFM layer was not 

presented as the principal effect responsible for the IEC, but rather as an “auxiliary” 

effect that could, depending on the circumstances, either strengthen or weaken the 

principal FM-FM interlayer interaction conveyed by conduction electrons [25, 33].  

One of the objectives in the present project was to explore another physical 

scenario, in which the “torsion spring” effect in the AFM spacer would act as the sole 

agent transmitting the exchange coupling from one FM layer to another. The model 

seems straightforward then — yet, there are several intriguing questions and important 

aspects of such a model that need to be examined. What is the exact characteristic of the 

“torsion spring”? - does it exhibit a “Hooke’s law-type” behavior, i.e., with the torque 

exerting by the “torsional spring” being approximately proportional to the angle between 

magnetization vectors of the two FM layer? Or, perhaps, is it significantly nonlinear or 

ሬԦܤ even showing a sharp discontinuity at certain threshold value? Is there a hysteresis in 

the “spring” characteristic? 

The MC modeling method is certainly a good theoretical tool getting closer 

insight into the above problems, as well as into other conceivable questions related to the 



 

 

 

 

 

 

 

  

 

 

 

9 

physics of such trilayers. One more important issue is the temperature behavior of the 

“AFM torsion spring”. One’s first thought may be that the “spring action” will cease 

exactly at the Néel point of the spacer material, i.e., at the temperature at which the AFM 

order in the material collapses. However, experimental neutron diffraction results from 

NiO/CoO superlattices reported by the J. A. Borchers’s et al. [1] may make one to 

wonder whether it must be necessarily so. These authors observed that the magnetic order 

in the CoO component persisted well above its bulk Néel temperature when it was 

layered with NiO, a material with much higher Néel temperature than CoO (510 K vs. 

291 K respectively) [1, 34]. 

They concluded that the persistence of magnetic order in CoO is due to the IC 

effects in the NiO/CoO interface [1].  Picturesquely speaking, it is as if the CoO spin 

monolayers, adjacent to the still well-ordered spin lattice of NiO, “borrow” the ordered 

state from it. And if the CoO layer is thin enough and is interposed between two NiO 

layers, this ordered state may spread across its entire width.  Inspired by these findings, I 

decided to check whether an analogous  effect would occur in FM/AFM/FM trilayers – 

namely,  would AFM layers interposed  between two  ferromagnetic  layers retain their 

ordered state even at temperatures higher than  their bulk Néel temperature,  and thus be 

still capable of maintaining interlayer coupling between the two FM blocks? 

The last objective for the first subproject is to check whether a diluted AFM layer 

can convey the magnetic interactions between the FM blocks. The underlying idea for 

this was to propose new possible design schemes for TMR sensors – but I did not know 

whether there exist pure AFM materials suitable for using as spacers in TMR sensors. 
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MgO and Al2O3, which have been proven to be the most efficient spacer materials in 

TMR sensors, are not magnetic [28, 29]. But it is worth checking if alloys of MgO and 

MnO, or MgO and CoO would still offer a suitable spacer material. The numerical 

modeling work performed for this problem was supposed to answer the question of what 

MnO or CoO concentration would be needed for making the alloys capable of 

transferring interactions between the FM layers. 

Subproject two: frustration in AFM lattice 

The second subproject focuses on modeling of effects seen in thin films of an 

AFM material experiencing a symmetry-changing strain. The effects were observed in 

neutron diffraction experiments on artificial superlattices composed of alternating layers 

of two semiconductor materials, MnSe and ZnTe, where ZnTe is a non-magnet and MnSe 

is an antiferromagnet [2]. 

Frustration, which is also called geometrical frustration or topological frustration, 

in AFM spin lattices means that all spin neighbor pairs in the lattice cannot satisfy the 

energy minimizing AFM configuration [35]. Such frustration is a consequence of the 

lattice topology [35]. An example of a non-frustrated system is a square 2D lattice in 

which each spin is antiferromagnetically coupled with its four nearest neighbor (NN) 

spins. In contrast, if one considers a triangular 2D spin lattice with AFM coupling 

between the NN spins, all these bonds cannot be simultaneously minimized – 1/3 of the 

bonds remains “unsatisfied”, or “frustrated” [35, 36].  
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1.5. General overview on frustrated systems 

The first theory of antiferromagnetism was principally developed by L. Néel the 

1930s and initially it met with much skepticism, which radically changed in 1949 when 

C.G. Shull and J. S. Smart experimentally confirmed the existence AFM structures by 

neutron diffraction [37, 38]. In the 1950s, a number of neutron scattering laboratories 

were created worldwide. Many neutron diffraction studies of magnetic materials followed 

the pioneer work of Shull and Smart, and soon it was realized that a vast majority of all 

existing magnetically ordered crystalline substances are antiferromagnets [39]. 

Furthermore, the studies revealed that there is a rich variety of AFM ordering types, 

spanning from quite simple ones with only two magnetic sublattices, to quite “exotic” 

structures with many sublattices and helical periodicity not commensurate with that of the 

“parent” atomic crystal structure [40].  

 Frustrated AFM lattices are a class of spin systems which have been given a great 

deal of interest starting from the early days of research on antiferromagnets – and this 

interest continues until today. A peculiar property of such lattices is that their ground 

states consist of a large number of degenerate configurations [41]. Their degeneracy can 

be lifted by some additional symmetry-changing factors, either intrinsic (i.e., interactions 

between distant neighbors) or extrinsic (i.e., external factors such as external magnetic 

field or symmetry-breaking strain) [42, 43]. Such factors may stabilize a specific ground 

state configuration and thus produce a new unique kind of AFM ordering [42, 43]. 
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The FCC spin lattice with AFM spin-spin interactions is a canonical example of a 

frustrated system. P.W. Anderson performed the first theoretical studies on this class of 

FCC AFM lattices and experimental studies followed [44, 45, 46]. Experimental studies 

on MnS, which became a “prototypical example” of a FCC antiferromagnet, revealed that 

there are two FCC structural modifications of this compound [47, 48]. In both the AFM 

Mn++- Mn++ interactions are of the superexchange type, mediated by an intervening sulfur 

anion. In one modification, of zincblende (ZB) structure, the anions are located in the 

center of a tetrahedron formed by four NN cations [47, 48]. In the other, of NaCl type, 

the anions are positioned between NNN cations [47]. Accordingly, in the ZB 

modification the NN AFM interactions are the dominant ones. But it is “topologically 

impossible” to satisfy the AFM links of a Mn++ cation with all twelve of its NNs. One-

third of these links must remain “unsatisfied”; hence, the ZB modification is often termed 

as “strongly frustrated” [43,47]. In the NaCl-type modification, in contrast, the dominant 

AFM interactions are between the NNNs, and there is a possible arrangement scheme in 

the FCC lattice in which all NNN AFM bonds are simultaneously satisfied. Some of the 

NN bonds still remain “unsatisfied”, but since the NN interactions are now the weaker 

ones, the frustration effects play only a secondary role (such system are sometimes 

referred to as “moderately frustrated”) [47].  

The interest in frustrated spin system has remained strong until today.  Over the 

first few decades following P. W. Anderson’s pioneer work, theoretical studies were done 

primarily on systems consisting of classical vector spins [41, 49]. In fact, in most known 

examples of real frustrated systems in that era, the magnetic lattices were composed of 
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magnetic ions with higher spin quantum numbers (such as Mn2+ and Fe2+ with S=5/2 or 

Eu2+ and Gd3+ with S=7/2). Classical spins were therefore an appropriate approximation 

in theoretical modeling [3].   

1.6. Current trend: magnetic frustration research 

More recently, the attention started shifting more towards frustrated quantum 

antiferromagnets. This new trend was certainly a “side effect” of the great wave of 

excitement around research on high-temperature (high-TC) superconductors in the years 

following the discovery of such materials [50].  Some families of the high-TC compounds 

are often referred to as “cuprates” since they contain weakly-coupled copper oxide layer 

planes (CuO2), in which the constituent Cu2+ ions are magnetic with S=1/2 and the 

interaction between them is AFM [50, 51, 52].   

Due to the low spin quantum number, it is inadequate to use classical 

approximations for this system, so the copper ion planes are viewed as “quasi-2D 

quantum antiferromagnets” [51]. The development of techniques for cuprate preparation 

made it possible to produce a number of 1D and 2D AFM systems with S=1/2 magnetic 

ions [53]. The AFM lattices in many of the new 2D systems were “topologically 

frustrated”, thus creating a strong motivation for new experimental and theoretical studies 

of “frustrated quantum antiferromagnets” [53, 54].  

Even though the frustrated magnetism research is currently dominated by studies 

of quantum systems, there is still justification for doing more model work on frustrated 
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antiferromagnets using classical approximations. Some effects observed in the past in 

experiments on frustrated AFM lattices composed of spins with high quantum number S 

have not been fully understood. One of such problems was chosen for the second 

subproject. Namely, I refer to the results of neutron diffraction experiments on thin layers 

of frustrated FCC antiferromagnets performed in 1990s at the Center for Neutron 

Research of the National Institute of Technology (NCR NIST, Gaithersburg, MD) by T. 

M. Giebultowicz and the university of Notre Dame team [2].  

As noted, a “canonical” example of a frustrated FCC antiferromagnet is the 

zincblende modification of MnS [47, 48]. Sulfur (S) is a representative of the family of 

chalcogens, and two other members of this group are Selenium (Se) and Tellurium (Te) 

[55]. Manganese Selenide (MnSe) and Telluride (MnTe) do not form ZB phases in bulk 

[55]. However, it has been found that these materials can be forced to form zinc-blend 

phases if they were interposed between layers of other ZB type materials with similar 

lattice dimensions — such as e.g., ZnTe, ZnSe, or CdTe [2]. This created an opportunity 

of investigating two entirely new frustrated AFM lattices [2]. 

As shown by P. W. Anderson in his aforementioned study on FCC 

antiferromagnets, if the spins are coupled only by AFM NN interactions, the system may 

form two different ground state configurations [56, 57]. Anderson called them “Type I” 

and “Type III” structures [56, 57]. Weak next-nearest neighbor (NNN) ferromagnetic 

interactions result in the formation of the Type I structure, whereas weak NNN 

antiferromagnetic interactions lead to the Type III ordering [56, 57]. Figure 1 shows 

Type I and Type III AFM order [56, 57]. 
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Figure 1: Type I and Type III of AFM order in FCC lattices [56] 

As shown in Figure 1, the magnetic unit cell in the Type I structure is of the same 

size of “atomic” or “chemical” cubic unit cell in the FCC lattice [34].  In the Type III 

arrangement, on the other hand, the lattice periodicity is doubled along one of the 

principal cubic axes, so that the unit cell  dimension in cubic coordinates is (a, a, 2a) [34]. 

These two ordering types could be easily distinguished as they produce different peak 

patterns in neutron diffraction [34]. Such measurements performed on the ZB 

modification of MnS clearly indicated the Type III order, indicating the NNN interaction 

is AFM [46, 47]. 

The results of neutron diffraction experiments on the MnSe and MnTe layers 

embedded, respectively, in MnSe/ZnSe and MnTe/ZnTe superlattices revealed essentially 

the same AFM structure as that seen in the ZB MnS [42, 43, 55]. But the results obtained 
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from MnSe/ZnTe structures were quite surprising, as they indicated an ordering whose 

periodicity was not doubled, but nearly tripled along the cubic axis [2]. The investigation 

of several samples showed that the change of periodicity was slightly different for each 

specimen [2]. In general, it could be described as (a, a, Λa), with the observed Λ values 

for individual samples between 2.92 and 3.42 [2]. Clearly, the data indicated the 

formation of an incommensurate helical AFM structure, not yet seen in any other FCC 

antiferromagnet [2]. 

The results of experiments were reported in a 1992 paper, together with an 

analysis based on mean-field theory (MFT) arguments [2]. Simple calculations in terms 

of MFT showed convincingly that a distortion of the FCC lattice caused by a tensile 

stress experienced by the MnSe layers in MnSe/ZnTe structures introduces anisotropy in 

the NN interactions [2]. The anisotropy lifts the degeneracy of the frustrated FCC lattice. 

It minimizes the energy of a helical arrangement whose periodicity is longer than the 

original doubling of the FCC unit cell in an undistorted lattice. However, the simple 

model could not explain several facts revealed by the measurement [2]. The mean-field 

model also suggested that another relevant factor influencing the magnitude of Λ might 

be the layer thickness. However, there was not enough basis for resolving which one of 

the two – the magnitude of strain or the layer thickness – plays a greater role.  Another 

important fact revealed by the measurements was the temperature (T) dependence of Λ 

[2]. The Λ(T) graphs shown in the paper reveal that, starting from T values equal roughly 

one-half of the Néel temperature of MnSe, the Λ(T) curves are rapidly increasing [2]. 

Yet, mean-field arguments – which, in fact, are trustworthy only when considering 
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situations just above the ground state – could not offer much clue for understanding the 

observed strong dependence of Λ on T when approaching the phase transition point. 

Cleary, more modeling studies on the system were needed using more sophisticated tools 

than simple mean-field considerations.  
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Chapter 2. Interlayer coupling in a NiO/CoO Superlattices

 2.1. Persistence of magnetic order 

Using neutron diffraction, J. A. Borchers et al. studied artificial superlattices of 

[(NiO)p/(CoO)q]N (NiO/CoO), in which layers of NiO, an antiferromagnet with Néel 

temperature of 520K, are alternated with layers of CoO, an antiferromagnet of the same 

crystallographic structure but with a decisively lower Néel temperature (TNéel,CoO = 291K) 

[1, 34]. They observed that the magnetic order in CoO persisted up to temperatures as 

high as 30% above its bulk Néel temperature [1]. Apparently the effect occurred due to 

interlayer exchange pinning of CoO spins by NiO spins [1, 58]. 

Similar effects have been reported on different magnetic interfaces [58, 59, 60]. 

P.V. van der Zaag et al. found using neutron diffraction that in Fe3O4/CoO bilayers the 

ordering temperature of the CoO layers was enhanced above the CoO bulk Néel 

temperature when the CoO layer thicknesses ݐ ൑ 100Հ due to the proximity of magnetic 

Fe3O4 layers [60]. Fe3O4 is a ferrimagnet and the Néel temperature of CoO increased as 

the thickness of the CoO layer decreased in the Fe3O4/CoO bilayer [60]. Lenz et al. 

studied the ordering temperature of an AFM thin films layered with a FM layer using 

magneto-optic Kerr effect (MOKE) measurements and concluded that the FM layer 

substantially influences the ordering temperature of the AFM layer due to a proximity 

effect [59]. Fe3O4/NiO superlattices were also studied experimentally by J.A. Borchers et 

al. by neutron diffraction [58]. They reported that the AFM order of which, to some 
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simplification, can be treated as a “wave-like” arrangement, propagated through the 

ferrimagnet [58].  

The goal for this chapter is twofold: (1) to obtain a microscopic model to gain 

insight into the effect occurring at the NiO/CoO interface and (2) to test the quality of the 

MC model. Both NiO and CoO form Type II AFM order and they are insulators so the 

electrons are localized [61]. AFM properties of transition metal oxides such as CoO, 

MnO, and NiO are known to arise from superexchange interaction mediated by the 

oxygen bonds [61, 45, 46]. 

AFM oxides and salts, which are most often insulators, are known to form four 

different types of collinear spin structures [61]. In the absence of carrier which mediates 

exchange interaction between distant spins, the relevant interaction in insulating materials 

in FCC structure is usually limited to the first and second nearest neighbors. Different 

types of magnetic order in the FCC lattice are the results of the interplay of competing 

first (or NN) and second-nearest neighbor (or NNN) interactions J1 and J2 [62]. 

In oxides, the NN interaction is either from direct exchange or superexchange and 

NNN interaction is from superexchange [61]. Mediation of oxygen anions is effective, 

therefore, AFM NNN coupling is dominant and this gives rise to the Type II magnetic 

order, which consists of antiferromagnetically-coupled FM sheets arranged along the 

(111)-direction [61, 63, 64]. Each set of FM sheets are called the sublattices of the Type 

II lattice [63]. The magnetic sublattices of Type II magnetic order are shown in Figure 2.  



 

                                                                      

 

 

 

                                     

 

          

20 


Figure 2: Spin structure of NiO and CoO: antiferromagnetically coupled ferromagnetic 
sheets are arranged along the (111) direction for Type II magnetic order [63]. The spins 
of one sublattice are antiferromagnetically coupled to those in the other sublattice [63].  

Exchange interaction can be described by the Heisenberg exchange Hamiltonian, which 

is shown in equation 2.1 [61]. 

2.2. Model for Monte Carlo calculation 

The MC calculations were performed using the Metropolis Algorithm [65, 66]. 

The size of each spin array was 50×50×50 resulting in 125000 vector spins. The lattice 

boundaries were set to be periodic, which is common in magnetism simulations [65, 66]. 

There were three different cases of [(NiO)p/(CoO)q]N superlattices: (1) p = 8, q = 17, (2) p 

= 11, q = 14, and (3) p = 13, q = 12. 
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Figure 3: Three different configurations of NiO/CoO superlattices are shown above: (1) 
[(NiO)8/(CoO)17]N , (2) [(NiO)11/(CoO)14]N, and (3) [(NiO)13/(CoO)12]N. 

௜ܪ The exchange Hamiltonian 

·ܬࡿࡿ ሼൌ ൅ ࢐ ேேא௜ ଵ௜௡ ∑௝ܪ ࡿ  ࢔ ேேאଵ௢௨௧ ∑௡ܬ

are exchange constants for in-plane NN interaction, in-plane ଶ௜௡ܬ, andଵ௢௨௧ܬ,ଵ௜௡ܬ

for a single spin Si in the lattice is  

൅ 
 ௞ , (2.1)אேேே ࢏ሽ࢑ࡿ ∑ ଶ௜௡ܬ

where 

NNN interaction, and out-of-plane NNN interaction respectively. Then the exchange 


Hamiltonian for the whole lattice is the sum of the single spin exchange Hamiltonians for
 

௜ܪ

all the spins in the lattice. 

௘௖௜௧௧௔௟௟௟௜א௔∑ൌ௟௧௢௧௔ܪ (2.2) 
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To achieve a Néel temperature ratio similar to the real one, the exchange constants for 

NiO were set J1,NiO = - 0.5 and  J2,NiO = 1.0 and those for CoO were set J1,CoO  = - 0.25 

and J2,CoO = 0.5. At the interface, I set J2interface = 0.75, which is the average value of the 

two exchange constants J2,NiO and J2,CoO, which was suggested by J. A. Borchers’s et al. 

[1]. 

Figure 4 shows the NiO/CoO superlattice model [(NiO)11(CoO)14]N. The spin 

sheets are arranged along the (111) direction with the lattice basis B (eq. A.1 in section 

A1 of Appendix A). A NiO/CoO bilayer was repeated once to reduce the possibility of 

the boundary imposing a periodicity to the lattice. The free boundary condition is another 

option but it requires a larger spin array to allow long-range order.  

Figure 4: NiO/CoO superlattice model with 11 NiO monolayers and 14 CoO monolayers 
with Hamiltonian (in equation 2.2), which results in the Néel temperatures TN,NiO = 1.4 
J2,NiO/kB and TN,CoO = 0.7 J2,NiO/kB. 
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2.3. Data analysis 

The variables calculated for NiO/CoO superlattice model include energy, 

magnetization (M), and reduced magnetization (Mr). The (normalized) magnetization of 

the system M is defined as the sum of all the spins in the lattice divided by the total 

number of spins in the lattice.   

ۻ ൌ  
∑೔ೌא೗೗ ೗ೌ೟೟೔೎೐ (2.3) , ࢏ࡿ

N౟ 

where Ni is the total number of spins in the system. I was interested in investigating 

magnetic order of CoO layer above its bulk Néel temperature. To measure magnetic order 

in AFM systems, it is important to know their magnetic structures. In principle, magnetic 

structures including collinear antiferromagnets are completely determined by specifying 

the magnetic unit cell [16, 38]. Magnetic atoms are linked by distances equal to multiples 

of the magnetic lattice spacing with parallel orientations1 [16, 38]. If one adds other 

atoms with the same spin orientations to these, linked to the original atoms by 

translations within the magnetic cell, then the resultant set of spins is called a “magnetic” 

sublattice [38]. In ordinary AFM substances the lattice of paramagnetic ions is divided 

into two sublattices [38]. For an AFM system, magnetic order is measured in terms of the 

reduced magnetization. The reduced magnetization Mr is defined as 

ൌ 
∑ೕאೞೠ್೗ೌ೟೟೔೎೐ ௌണ (2.4), 

Ԧሬሬሬ

ౠN୰ۻ

 where Nj is the total number of spins in each sublattice of the superlattice. 
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In the AFM state, spins on one sublattice are parallel to each other and antiparallel 

to spins on the other sublattice [67]. A sublattice can be specified by the wave vector k, 

where the magnetic moment m(r) of the ion at the position r is related to the Fourier 

components ࢑࢓ by the expression of equation 2.5 [67, 68].

exp ሺ2௞࢑࢓ ∑ ሻ ൌܚሺܕ

There are structures with more than one pair of sublattices and they are called the multi-k 


 ሻ (2.5)࢘ · ࢑݅ߨ

structure, where the vector k is identified with the propagation of a specified component 

of magnetic moment m(r) [67]. To measure magnetic order in an AFM lattice, an 

appropriate choice of sublattices is required [67].  

The transition metal oxides NiO, MnO, CoO, and FeO crystallize in the rock-salt 

structure and order with a Type II AFM structure characterized by the wave vector 

ଵ ଵ ଵܓ ൌ ሺ , , ሻ [67]. The reduced magnetization for sublattices along the (111)-direction is 
ଶ ଶ ଶ

calculated for each layer for different temperatures since both NiO and CoO exhibit Type 

II magnetic order, as described in Figure 2. The total reduced magnetization calculation 

on the bulk CoO and bulk NiO model confirmed that the magnetic AFM order was 

formed along the (111) direction. The detailed procedures on the reduced magnetization 

calculation are described in Section A2 of Appendix A. 
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2.4. Results and discussion 

Figures 5 and 6 show the reduced magnetization plotted as a function of 

temperature for bulk CoO and NiO model respectively. The Néel temperature 

corresponds to the temperature at which the reduced magnetization goes to zero [38]. 

Figure 5: Reduced magnetization vs. temperature for bulk CoO model: The Néel 
temperatures is approximately TN,CoO = 0.7 J2,NiO/kB. 
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Figure 6: Reduced magnetization vs. temperature for bulk NiO model: the Néel 
temperatures is approximately TN,NiO = 1.4 J2,NiO/kB. 

With the exchange parameters described above, the bulk calculations resulted in 

the Néel temperatures for NiO and CoO TN,NiO =1.4 J2,NiO/kB and TN,CoO = 0.7 J2,NiO/kB 

respectively. After estimating the Néel temperatures for bulk CoO and NiO models, I 

calculated the normalized reduced magnetization of the NiO/CoO superlattice as a 

function of temperature. 

Figure 7 shows the normalized reduced magnetization as a function of 

temperature for the NiO/CoO superlattice model with varying number of NiO and CoO 

monolayers. Reduced magnetization vs. temperature curves for bulk CoO and NiO 

models are plotted together for comparison.  Figure 8 is included to compare the 

simulation result to the experimental result by J.A. Borchers’s group [1]. Figure 8 is the 

plot of the reduced moment (which is equivalent to the normalized reduced magnetization 

in my simulation) vs. temperature measured by J.A. Borchers et al. [1].  The curves for 
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the superlattices in Figure 7 look similar to those from J.A. Borchers’s experimental 

results in Figure 8 [1].  

As I increase the number of NiO monolayers (in Figure 7), the “dip” in the 

reduced magnetization curve above the Néel temperature of the bulk CoO gets 

“shallower”, which is reasonable, since increasing the thickness of NiO and decreasing 

the thickness of CoO should “strengthen” the magnetic order of the system.   

Figure 7: Reduced magnetization of NiO/CoO lattices for three cases: (1) 13 NiO 
monolayers and 12 CoO monolayers, (2) 11 NiO monolayers and 14 CoO monolayers, 
and (3) 8 NiO monolayers and 17 CoO monolayers. 
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Figure 8: Experimental results from J.A. Borchers’s group [1]; the relative intensity of 
the magnetic peak is equivalent to the reduced magnetization in my calculations. 

To investigate the magnetic order of each CoO monolayers in the superlattice 

model, I plotted the reduced magnetization per individual monolayer Mrl for different 

temperatures, which is defined as: 

,࢒࢐ ೞೠ್೗ೌ೟೟೔೎೐,೗אೕࡿ  (2.5)
Nౠౢ 

where l is the spin monolayer index, and they are plotted as a function of the monolayer 

index in Figures 9, 10, and 11. It should be also noted that the bulk Néel temperature of 

CoO model is TN,CoO=0.7 J2,NiO/kB for Figures 9, 10, and 11.  In Figure 9, the reduced 

magnetization does not become zero at the bulk Néel temperature of CoO. The magnetic 

∑
ൌ௥௟ۻ
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order of CoO persists significantly at temperatures up to 0.9J2,NiO/kB, which is 

approximately 28% above the Néel temperature of bulk CoO. As I increase the number of 

NiO monolayers, the magnetic order of CoO persists up to higher temperatures. Also the 

magnetic order grows stronger as the monolayers gets closer to the NiO/CoO interface in 

all the studied cases of NiO/CoO superlattices.  

Figure 9: (Normalized) Reduced magnetization per monolayer (mnl) for superlattice with 
8 NiO monolayers and 17 CoO monolayers for different temperatures, where TN,CoO = 0.7 
J2,NiO/kB and TN,NiO = 1.4 J2,NiO/kB 
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Figure 10: (Normalized) Reduced magnetization per monolayer for 11 NiO monolayers 
and 14 CoO monolayers; the Néel temperatures are TN,CoO = 0.7 J2,NiO/kB and TN,NiO = 1.4 
J2,NiO/kB for CoO and NiO respectively. 
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Figure 11: (Normalized) Reduced magnetization per monolayer (mnl) for 13 NiO 
monolayers and 12 CoO monolayers; the Néel temperatures are TN,CoO = 0.7 J2,NiO/kB and 
TN,NiO = 1.4 J2,NiO/kB for CoO and NiO respectively. 

2.5. Summary and comments 

The results from the MC calculations indicate that the magnetic order of the CoO 

layer persists at temperatures above its bulk Néel temperature. This suggests that CoO 

spins on the NiO/CoO interface are effectively “pinned” to NiO spins by the exchange 

interaction on the interface [1]. Increasing the number of NiO spin sheets “strengthens” 

the magnetic order in the CoO layer. In all the studied cases, magnetic order disappeared 

for temperatures higher than the Néel temperature of NiO model. Therefore, it can be 
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concluded that the results from the MC calculations are in a reasonable agreement with 

the experimental results from J. A. Borchers’s group [1].  

It should be emphasized that the purpose of this chapter is to model and test the 

MC model by comparing the calculation results to the experimental results. Further 

investigation on superlattices composed of antiferromagnets only will be a useful project 

in that one can apply a more complex model to antiferromagnet-only systems and obtain 

a more-detailed model, but it is outside the scope of my Ph.D. project. In the next chapter, 

this MC model is used to perform MC calculations on FM/AFM/FM trilayer systems, 

which does not have associated experimental results. 
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Chapter 3. Interlayer coupling in FM/AFM/FM trilayer lattice 

In the preceding chapter, I discussed effects occurring in artificial layered 

structures composed of two different AFM materials of different Néel temperatures. The 

effect seen in the CoO/NiO superlattices is interesting from the perspective of 

fundamental studies in the physics of magnetism. The results obtained from neutron 

scattering experiments of such superlattices are valuable for the present project as they 

offer excellent material for testing a MC model.  

However, except for their role in fundamental studies of magnetism, systems 

consisting exclusively of AFM components have a relatively limited impact on research 

areas in which application-oriented research and design work on artificial systems is 

more actively conducted. The reason is that antiferromagnetism is essentially a 

phenomenon that can be observed only by research tools operating on a truly microscopic 

level [11, 25, 69]. Because the net magnetic moment of an antiferromagnet is zero, it 

produces no macroscopic effects readily detectable by standard apparatus that is used for 

investigating magnetic materials [11, 25].  For instance, one typically measured “macro” 

characteristic is the magnetic susceptibility of a given material vs. temperature, χ(T) [11]. 

With  the onset of AFM order  (i.e., below the Néel temperature), the χ(T) curve starts 

deviating from the Curie Law obeyed by ordinary paramagnets – but the deviation is 

often very weak and detecting it may require using ultra-sensitive magnetic measuring 

techniques (such as, e.g., SQUID magnetometry) [70]. Because of their very weak 

reaction to external magnetic fields, AFM systems did not find any practical applications 
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in technology – neither bulk materials, nor artificial nanostructures prepared from 

combinations of AFM-only compounds. 

On the other hand, artificial structures in which AFM materials are combined 

with ferromagnets have become the object of great interest since the mid-1990s, of both 

physicists and technologists. The reason was that such systems emerged as crucial 

components in novel generations of nanoscale magnetic field sensors. Most notably, in 

the so-called “spin valves” — i.e., sensors based on the effect of either GMR or TMR 

[10]. 

The simplest GMR device is a trilayer composed of two FM layers sandwiching a 

NM metal [6, 10]. The resistivity of the device changes as the relative orientation of the 

magnetizations of two FM films changes, responding to an applied external magnetic 

field B [6, 10]. The spacer layer must be made from a material that can convey RKKY 

exchange interactions between the two FM films. The sign of the RKKY interaction 

oscillates depending on the distance between the interacting spins [13, 14, 15]. Therefore, 

the thickness of the spacer layer should be such that it leads to an antiparallel orientation 

of the magnetization vectors in the two FM layers [12].   

One can view the RKKY interaction as one in a "torsional spring" connecting the 

two magnetization vectors (M1,  M2) in the FM layers and maintaining their antiparallel 

orientation. Then an external magnetic field B applied to the system exerts a torque on 

each magnetization vector (M1, M2), inclining them to be parallel.  As the angle between 

M1 and M2 vectors gradually changes with increasing B, so does the electric resistance of 

the trilayer (the MR is maximum from antiparallel magnetization vectors, and is the 
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smallest when they are completely parallel) [4, 5, 6]. However, such a system is sensitive 

only to the magnitude of B, not to its direction. 

In many practical applications the information on the magnetic field direction 

may be far more important than knowing its magnitude (for instance - in digital magnetic 

recording) [10]. To make a GMR sensor direction-sensitive, the orientation of the 

magnetization vector in one of the FM films should be immobilized or "pinned down" to 

the substrate on which the trilayer system is prepared [10, 26]. 

One of the methods to pin down or immobilize one of the FM spins is to use the 

phenomenon of exchange bias (EB) [71]. EB was initially observed by Miklejohn and 

Bean in their study of the CoO-Co interfaces [72]. They found that the magnetic 

hysteresis loop for oxidized Co nanoparticles was shifted from the origin [72].  They 

explained that this observation was the result of exchange coupling between the Co spins 

in the Co/CoO interface region – i.e., between those in the metallic cobalt and those that 

are built in the CoO lattice [72].  CoO is an antiferromagnet which in fact, by itself, 

makes its spin lattice very insensitive to an external field [61]. In addition, in CoO, the 

“intrinsic” reluctance of the AFM sublattices to react to external B fields is augmented by 

a strong magneto-crystalline anisotropy [61]. Thus the direction of the Co2+ spins in the 

atomic plane of CoO adjacent to the metallic Co lattice remains fixed. The spins in 

metallic Co in the interface region remain “pinned” to the immobile CoO lattice during 

the magnetization-demagnetization cycle when the magnetic hysteresis of the system is 

measured [72]. It creates a “memory effect” which causes the Co magnetization to return 

to its original orientation after the field is removed. It also manifests itself as an 
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asymmetry in the hysteresis loop [72]. 

Until early 1990s the EB effect was primarily the subject of interest of scientists 

working on fundamental aspects of magnetism. A dramatic increase of interest in EB 

began when it turned out to be crucial for building sensors for read-heads of hard drives – 

the type of sensor commonly called a “spin valve” [10, 73]. 

However, the effect occurring at the FM/AFM interface in spin valves seemed to 

be completely unrelated to the principal physical mechanism underlying the phenomenon 

of GMR itself - i.e., to the interlayer coupling between the constituent FM films, The 

phenomenon of interlayer coupling is crucial for the operation of any MR sensor, with or 

without an FM film immobilized [10, 48]. In a "canonical" GMR, the two FM films 

interact via a NM spacer material [10]. Hence, in the years following the discovery of 

GMR, the attention of researchers was focused primarily on how electrons – mobile ones 

in metals, and valence electrons in certain cases when the spacer material was insulating 

– mediate or convey the interaction across the spacer [13-15, 18]. The spacer itself was 

treated as a mostly passive “blank sheet” for the electrons rather than active players. 

No other mechanisms received any significant attention until in 1995 J. C. 

Slonczewski pointed out that there may yet be another way of conveying interlayer 

exchange across the spacer – a way not involving the electrons directly.  Rather, the 

interactions would be transmitted via magnetic forces acting within the spacer [33]. He 

stressed that some spacer materials used in GMR studies (e.g., Cr, Mn and their alloys) 

were not “NM”, but actually were AFM –– in other words, they were NM in the sense of 

not having a net magnetic moment. But such an AFM spacer, as Slonczewski argued, 
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would no longer be “magnetically neutral”. If the FM films were magnetically coupled to 

it from both sides via interfacial interactions, they would thus be able to modify the 

condition within the thin AFM spacer through an effect that he called proximity 

magnetism [33]. If the M1 and M2 vectors in the FM layers were not ideally parallel, the 

AFM structure would be “twisted” and it would act like a “torsional spring”, producing 

torque that would combine with the action of the electrons [33].  

In fact, in the Slonczewski “magnetic proximity model” there is no “entirely new 

physics”, it’s rather the application of a known concept in an entirely new role. “Spin 

springs” of the same type are known to occur in domain walls in antiferromagnets [63, 

74]. By forming a domain structure, the antiferromagnet may minimize its magnetic 

energy. The process is not exactly the same as in the case of domain structure formations 

in ferromagnets [63]. The ordered spin structure in a ferromagnet is the source of a 

macroscopic magnetic field whose energy is a significant part of the total magnetic 

energy [74]. By forming a multitude of differently oriented FM domains the system 

effectively reduces the macroscopic field and the related energy to zero or nearly zero 

[74]. The price for that is that the formation of the “Bloch walls” between requires 

expending some energy by the system – however, the energy expended for it is less than 

the “energy gain” coming from reducing the macroscopic field [74]. 

In contrast to ferromagnets, atomic moments of AFM structures do not produce 

any macroscopic field but they use other physical mechanisms, which can make the 

formation of domains energetically favorable (e.g., magnetoelastic effects) [75]. As in 

ferromagnets, the AFM domain walls have certain energy and they produce a torque 
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tending to align the AFM spin structures in the domains on both sides. With some 

simplification, it can be said that Slonczewski in his model “found a new possible role for 

the AFM domain walls. by placing them not in between two AFM domains, but between 

two FM layers coupled to them by exchange forces [33].  

The original paper by Meiklejohn and Bean (M&B) on exchange bias is now a 

“classic”, with numerous citations and the 1995 Slonczewski’s paper on the “magnetic 

proximity effect” has also become a “classic” [33, 72]. When I was searching for articles 

focusing on effects occurring in the interface regions of exchange-coupled FM and AFM 

films, I came across many papers that deal with exchange bias, interlayer coupling in 

(AFM/FM)N superlattices and FM/AFM trilayers [39, 76-82]. In many of the papers I 

read, the M&B paper was quoted and in many others the Slonczewski’s paper was – yet, 

what seemed somewhat intriguing to me, those two “classics” were almost never cited in 

the same paper. Since both these effects occur in FM/AFM interfaces, it seemed 

somewhat surprising to me that researchers investigating phenomena occurring in such 

interfaces focused exclusively on one effect or the other, as if they were completely 

unrelated phenomena. 

The reason why authors reporting research on exchange bias seemed to “ignore” 

the Slonczewski’s “proximity effects”, and vice versa, is probably caused by the fact that 

the basic models describing the situations in systems exhibiting “exchange bias”, and 

those exhibiting “proximity effects”, describe two extremes in exchange-coupled 

FM/AFM interfaces [33, 72, 83, 84]. In the exchange bias models the AFM material is 

usually pictured as “extremely rigid”, whereas it is the FM material that yields to the 
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external field B and forms a “spin helix” adjacent to the AFM “rigid wall” [85]. 

 In contrast, in Slonczewski’s basic model of  “magnetic proximity” it is rather the 

antiferromagnet that is “soft” and forms a “sping-like” helix coupling two FM films that 

incline toward the external field B, but spin structure on each of the two films remain 

collinear, not affected by B [33]. The above is illustrated in Figure 12, which shows (a)  a 

“perfectly rigid” AFM film exchange-coupled to a “soft” FM layer, in zero and non-zero 

external field B, and (b) and a “soft” AFM layer exchange-coupled on both sides to 

“perfectly rigid” FM films, in zero and non-zero B. 

The “prototypical situation” in the planned modeling seemed to be an “AFM spin 

spring” as discussed in the Slonczewski’s model [33, 81]. Then a question that naturally 

arises from such a physical picture is: Are all ferromagnetic materials indeed much stiffer 

than antiferromagnets they can be exchange coupled with? Of course, there are no 

“perfectly rigid” FM or AFM spin lattices.    
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Figure 12: Illustrations of behaviors of FM/AFM systems implied in (a) exchange bias 
model and (b) the proximity model: (a) shows a FM/AFM bilayer with a rigid AFM layer 
and (b) shows a FM/AFM/FM trilayer with a rigid FM layers. 

A reasonable assumption is therefore that real systems are positioned somewhere 

in between the two extreme cases, represented by the basic versions of the “magnetic 
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proximity” and the “exchange bias” models. In the model investigated, neither material 

was assumed to be “perfectly rigid”. A torque exerted by an external magnetic field 

would produce a helical twist in both materials — and the magnitude of the “twist effect” 

in each material could be controlled by the input parameters in the model. 

Further, some thoughts were given to the meaning of the word “proximity”. In the 

original Slonczewski’s paper, it was the “proximity” of FM layers that overcomes the 

natural tendency of a simple AFM spin lattice to form a collinear structure [33]. However, 

is it the only possible modification of the behavior of AFM lattice caused by the 

proximity of another magnetic lattice? What comes to one’s mind in this moment is the 

behavior of the CoO layers in the CoO/NiO superlattices discussed in Chapter 2. Here, 

the behavior observed by Borchers et al. – namely, the persistence of the AFM spin 

structure in CoO well above its bulk Neel temperature – was definitely caused by the 

proximity of the NiO layers which retain their AFM structure to much higher a 

temperature than the CoO ones [1]. Would such a “proximity effect” also occur if the 

AFM layer in a FM/AFM/FM trilayer is the AFM layer is already above its bulk Néel 

temperature, but the FM layers are still in the ordered state? Would such proximity 

increase the effective Néel temperature of the AFM layer? 

Thirdly, there is yet another conceivable “proximity effect” that one can think of. 

Namely, temperature is one factor capable of destroying spin order in an antiferromagnet. 

Another one is magnetic dilution. Substitution of some part of magnetic atoms in the 

AFM lattice lowers the Néel temperature, and if it exceeds a certain threshold value, it 

completely destroys the AFM order [86, 87]. So, an interesting question may be, does the 
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“proximity” of ordered FM lattice reduce the tendency of the AFM’s order to collapse? 

Or, conversely, would a diluted AFM lattice be capable of maintaining interlayer 

coupling between FM films? The latter question may have some practical importance: 

namely, a material widely used as a spacer in TMR devices is MgO, which readily 

“mixes” with CoO or MnO to form diluted AFM lattices (such “mixed” oxides can be 

obtained, e.g., by sintering methods) [75, 88].    

The original goal in this project was to investigate the interaction between two 

FM films conveyed by an AFM spacer with MC methods. As noted, this represents a new 

physical situation relative to the much-investigated FM-FM exchange coupling mediated 

by electrons (mobile, or valence-band) in non-magnetic spacers. The fact that such 

coupling is participating in the overall exchange coupling in the systems, showing the 

“magnetic proximity effect”, definitely makes it conceivable that the “spring effect” may 

be the principal player in FM-FM interlayer coupling in systems in which the AFM layer 

is insulating [33, 89]. (The candidate materials are AFM insulators such as CoO, NiO, 

and the strength of interlayer coupling dependent on the materials) When FM layers are 

separated by an AFM insulator, RKKY model is excluded from the picture, since the 

RKKY interaction couples the magnetic moments in FM layers through the conduction 

electrons of a NM metal spacer [61]. And such systems may definitely be of interest 

from the viewpoint of magnetic field sensors utilizing the phenomenon of TMR, where 

the spacer must be an insulator [27-29]. 

In sum, the tasks in the simulation studies essentially focused on investigating a 

variety of “proximity” effects. The coupling of two FM layers just by the “spin spring” in 



 

 

  

 

 

 

 

 

 

 

 

 

   

43 

the AFM layers is the closest to the original concept from Slonczewski – minus the 

coupling effects of the electrons, which are not taken into account in the present work.  

Two other types of possible “proximity effects” are investigated – the persistence 

of the AFM order above the bulk Néel point, and weakening the effects of magnetic 

dilution of the AFM lattice. In addition to that, the model is certainly more realistic than 

the highly idealized system discussed by Slonczewski in his original 1995 paper, in 

which the term “magnetic proximity effects” was coined [33, 90]. The model in the 

present work takes much from the “exchange bias” theory, allowing the FM components, 

not only the AFM ones, to form “spin springs”. 

I also like to point out that there has been a growing interest in the effect of 

interlayer coupling between FM layers mediated by AFM spacers while the present work 

was progressing. Experimental and theoretical papers have been published on 

FM/AFM/FM trilayer structures [89, 91-95]. 
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3.1. FM/AFM/FM trilayer with no anisotropy 

3.1.1. Model for Monte Carlo calculations 

Figure 13: FM/AFM/FM trilayer lattice without external magnetic field B; the boundary 
is periodic for each sheet and there are zero spin sheets on both sides. The monolayers are 
arranged along the (111) direction. 

In this section I discuss a method to control the strength of magnetic correlation 

between the FM layers influenced by the thickness of AFM spacer layer and the strength 

of AFM coupling between the two FM layers when there is no anisotropy in the system. 

Figure 13 shows the FM/AFM/FM trilayer model used for the MC calculations. I used a 
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50 ൈ 50 ൈ 50 lattice, which consists of 125000 classical vector spins. The spin 

monolayers were on the xy-plane and the z-axis was perpendicular plane (growth axis). 

The first and last spin monolayers were set to be zero as a convenient way of imposing 

free boundary conditions in the direction corresponding to the z-direction. Periodic 

boundary was used in the xy-direction and the number of monolayers in the AFM mid-

layer was varied. Calculations were performed for three different AFM layer thicknesses: 

8ൌ஺ிெ݊6 AFM monolayers, and (3) ൌ஺ிெ݊4 AFM monolayers, (2) ൌ஺ிெ݊(1) 

AFM monolayers.  The number of FM monolayers on each side was set identical: 

ସ଼ି௡ಲಷಾ . In all cases, the basis for the lattice vectors was identical to those used in 
ଶ 

NiO/CoO superlattice model. The Hamiltonian Hi for the ith spin in the lattice defined as: 

௜ ଵ௜௡ ∑ ൅ܪ ܬܬ ଵ௢௨௧ ∑ ଶ௢௨௧ ∑ൌܬ · ࢏ࡿ ሺ 
ࡿ ேேאെ۰ሻ௝ ࢑ࡿ ᇱ ൅࢐ࡿ ௜௡ ࢐ ேேא௝ᇱ ,௢௨௧ ேேே,௢௨௧א௞ (3.1)
,

This gives the Hamiltonian H of the lattice 

ܪ∑ܪ ൌ  ௜ ௜௟௔௧௧௜௖௘א (3.2) 


The exchange constants for NN interaction in both the AFM layer and FM layer 

were set to be J1FM =J1AFM =-0.5. The NNN exchange constants were set J2AFM =1.0 and 

J2FM =-1.0 for the AFM layer and the FM layer respectively. These exchange constants 

with the Hamiltonian in eq. 3.2 resulted in the Curie temperature TC=3.50 J2/kB of the 

bulk ferromagnet, where J2 is defined as J2= |J2FM| = |J2AFM|. The Néel temperature of the 

bulk antiferromagnet was TC=1.41J2/kB. For the interface, I used J1interface=-1.0 and 

J2interface = 0.5. The sign of J2interface is not expected to change the result of the calculation 

since both positive and negative J2interface (which correspond to AFM and FM neighbor 

interactions respectively) will cause AFM coupling of the FM layers. 
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3.1.2. Data analysis 

A naïve approach to calculate AFM coupling with external fields is measuring the 

magnetic moment (or magnetization M) of the lattice induced by an external magnetic 

.B against M) and extract the coupling coefficient by plotting۰field (  Before the 

magnetic field is applied, the net magnetic moment of the lattice is approximately zero 

since the number of FM monolayers on each side is the same and the number of AFM 

monolayers is even. As an external magnetic field increases in intensity, the magnetic 

moment of the trilayer is expected to change monotonically until it reaches saturation 

when there is no anisotropy, which is shown in Figure 14.  

Figure 14: Spins on each sheet are expected to move toward the direction of the external 
magnetic field in a uniform fashion. There are two orientations of FM sheet 
magnetization vectors denoted by green and orange colors. 
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The trilayer monolayers are arranged along the (111) direction and I can view 

each individual monolayer as FM. As the magnetic field increases, I assume that the 

magnetization per each monolayer curls toward the direction of the magnetic field 

uniformly. As a result, there appear two types of FM monolayers, which are denoted by 

green and orange colors in Figure 14. The total magnetization of the system induced by 

the external magnetic field (which I call the induced magnetization Minduced) is the sum of 

the magnetizations of the two types (M1 from monolayers in orange and M2 from 

monolayers in green in Figure 14) of spin sheets.   

Figure 15: Expected induced magnetization with nonzero magnetic field: M1 and M2 are 
the magnetizations from two types of FM sheets respectively. The magnetizations will 
curl toward the direction of the external field and the blue arrow will be the result of the 
sum. Minduced = M1 + M2. (In this case, in the direction of the induced magnetization is the 
same as that of the external magnetic field.) 

It is expected that the slope of the Minduced vs. B will be larger as there is a weaker 

AFM coupling between the FM layers. Therefore, I can define the AFM coupling 

coefficient A by plotting Minduced against B and taking the slope u of the plot. Then A is

ଵdefined as A ൌ | |. Larger coefficient A means a stronger AFM coupling between the 
௨

FM layers. 
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3.1.3. Results and discussion 

Figure 16 shows the normalized magnetization of the bulk FM model vs. 

temperature, which gives the Curie temperature for the bulk FM of approximately 

3.5J2/kB. 

Figure 16: Magnetization vs. temperature for bulk ferromagnet using equation 3.1: The 
Curie temperature is approximately TCurie = 3.5 J2/kB. 

The next step is to plot the induced magnetization against the external magnetic 

field B for different temperatures to obtain the AFM coupling coefficient. Figure 17 is an 

example of Minduced vs. B plots. In this case, Minduced is the component of the total 

magnetization of the trilayer that is in the direction of the magnetic field B. 
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Figure 17: Normalized induced magnetization in the direction of the magnetic field B vs. 
the external magnetic field B for the lattice model with 6 AFM monolayers at T = 1.2 
J2/kB. The derivation of units for the variables in the calculations is included in Appendix 
H. 

Section A3 of Appendix A describes basis vector set up schemes for FCC lattices 

and two different sets of basis vectors for the lattice setup (B1 and B2, which corresponds 

to equations A.2 and A.3 respectively) were used for comparison. MC calculations with 

the two different basis sets B1 and B2 produced results with no significant difference, 

which is shown in Figure 18. This implies that the choice of bases (B1 or B2) does not 

influence the result of the calculations. 
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Figure 18: Normalized Minduced vs. magnetic field (B, in J2/μG) at T = 1.2 J2/kB for the 
lattice vectors of bases B1 and B2 (6 AFM monolayers) described in section A3 of 
Appendix A 

          In fact, the scheme for calculating the strength of AFM using the induced 

magnetization Minduced did not turn out to be a good method since the spins on each 

monolayer did not respond to B in the way as I assumed.  Examining the magnetization 

per monolayer showed that there is a non-uniform curling of the spins depending on the 

location of spin monolayer in the lattice. The spins in the FM layers respond to B 

differently depending on the location of the FM monolayer. There are two interactions 

that are in competition: one is the magnetic interaction (with an external field B) and the 

other is the exchange pinning of the spins on the AFM/FM interface. As the spin gets 

farther from the AFM/FM interface the influence from exchange pinning from the AFM 



                                        

 
 

 

 

 

 
 

 

 

 

                                             

51 

layer gets weaker and the influence from B increases in significance. As a result, spins 

form a “helix-like” alignment, which is similar to a Bloch domain wall (See Figure 19) 

[96]. The assumption on uniform sheet FM monolayer is not correct, which makes Figure 

14 depicting the spin alignment on each monolayer in the trilayer incorrect. 

Figure 19: Magnetization per monolayer (mnl) in the trilayer: magnetizations on FM 
(green) monolayer are curling more toward the direction of the external magnetic field as 
the monolayer gets farther from the center (AFM layer, orange). 

To avoid using Minduced for calculating the strength of AFM coupling between two 

FM layers, I redefined the AFM coupling coefficient using spin torque approach. The 

idea is based on a torsion balance. The “twisting” of the AFM layer is measured in terms 

of the spin torque. If the angle between the magnetizations of the first FM layer and that 

of the second FM layer is 180°, the twist (torque) should be reduced if there is a strong 

ଵAFM coupling between the FM layers. Therefore, I define τ = 
A
θ, where τ is the spin 

torque (twist), θ is the angle between the FM magnetizations and A is the AFM coupling 

coefficient. Large A means that AFM coupling is strong. I calculate the spin torque by 

the formula 

ଵ߬ ൌ ሺ|ۻ ൈ ۰| ൅
ଶ ૚ |ൈ ۰૛ۻ| ሻ, (3.3) 
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where M1 and M2 denote the magnetization of each FM layer respectively. B is the 

external magnetic field and ߠ is the angle between the sheet magnetizations m1 and m2 

FM monolayer interfacing the AFM layer. Figure 20 shows M1, M2, m1, and m2 for the 

torque calculation. 

Figure 20: Spin torque (τ) calculation: M1 and M2 are the total magnetizations of FM 
layer 1 and FM layer 2 respectively. m1 band m2 are the magnetizations of FM 
monolayers interfacing the AFM layer. 

To calculate the coupling coefficient A, I plot the spin torque over the angle 

between the sheet magnetizations on the two FM monolayers interfacing the AFM spacer. 

The torque decreases as the magnetic field decreases. As I increase magnetic field in both 

directions, the angle between the spins on the two FM monolayers increases. To obtain 

the AFM coupling coefficient, I need to remove the “V” shape of the plot (Figure 21) by 

considering the relative angle between m1 and m2 and select a linear region. The absolute

ଵvalue of the slope for torque vs. angle plot gives 
஺
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Figure 21: Spin torque vs. the angle between the two FM monolayers: the “V” shape can 
be removed by reflecting the upper curve about θ = 180°. 

Figure 22 shows the AFM coupling coefficient A for trilayers with 4, 6, and 8 

AFM monolayers calculated with varying temperature. The AFM coupling coefficient 

decreases as temperature increases. As I reduce the number of AFM spacer monolayers, 

the AFM coupling coefficient A increases. The AFM coupling is significant above the 

Néel temperature of the AFM layer.  
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Figure 22: AFM coupling constant A vs. temperature: as the number of AFM monolayers 
increases, the AFM coupling strength decreases. Note that the magnetic order persists 
above the Néel temperature TN = 1.41 J2/kB of the antiferromagnet. 
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3.2. FM/AFM/FM trilayer with anisotropy 

        In the previous section, the MC model did not include magnetic anisotropy. In 

reality, however, proper magnetic anisotropy is always required for any type of 

applications of magnetic systems [97]. One of the underlying effects giving rise to 

magnetic anisotropy is a relativistic phenomenon: spin-orbit coupling [97, 98]. It is well-

known that single crystals of FM and AFM substances are magnetically anisotropic even 

when extrinsic origin of anisotropy such as the shape effect is removed [99].  

Also it is possible to introduce anisotropy by magnetic annealing, plastic 

deformation, and irradiation [96]. Anisotropy of FM metals is not well understood, but 

anisotropy in ionic compounds, either FM or AFM, has been extensively studied [99]. 

There are mainly three classes in the origin of anisotropy energy [99]. One class is 

aforementioned anisotropic interactions between spins of two ions which arise from the 

spin-orbit coupling and various electrostatic interactions between the ions [99, 100]. The 

second class is the classical magnetic dipolar energy, and the second is energies which 

depend on spin states only [99, 100]. There is a temperature dependence of anisotropy 

constants, which is usually associated with the temperature dependence of magnetization 

[101, 102]. 

On ultrathin film and multilayer magnetism, understanding the nature of the 

anisotropy in a given structure and how to control it became an issue [96]. The anisotropy 

energy controls the orientation of magnetization in the ground state of the ultrathin film 

[96]. The effective magnetic anisotropy energy is associated with two factors: the spin­
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orbit coupling (which is called the “magnetocrystalline anisotropy”) and the 

magnetostatic dipole-dipole interaction (which is also called the “shape anisotropy”) [98­

100, 102]. Magnetic anisotropy can be affected by factors such as film thickness, strain, 

structure, and broken symmetry at the surface and interface [99, 102, 103].  

3.2.1. Model for Monte Carlo calculation 

Types of anisotropy need to be considered before introducing anisotropy to the 

௟ᇱא஺ிெ

௟ᇱא஺ிெ

௟ᇱא஺ி 

system. When the structure is composed of ferromagnets and other material, there are 

competing anisotropy contributions, such as the composition of nonmagnetic spacer 

layers, lattice distortions at the interface, and perpendicular uniaxial and exchange 

anisotropies [96]. The uniaxial anisotropy was used for this study since it is observed 

most commonly [96]. The following Hamiltonians H1, H2, and H3 have uniaxial 
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Since the magnetic field is set to be in the x-direction, Hamiltonian H1 (eq. 3.6) 

was chosen. The anisotropy parameter for FM and AFM layers are denoted KF and KA 

respectively. If KF, KA < 0, it represents an easy-axis anisotropy along the x-direction and 

if KF, KA > 0, it represents a hard-axis anisotropy along the x-direction (i.e., an easy-

plane anisotropy on the yz - plane) [104]. All the details on the trilayer model except for 

the Hamiltonian were set to be identical to those on the trilayer with no anisotropy. 

3.2.2. Data Analysis 

In order to study the effect of magnetic anisotropy, the total induced 

magnetization was calculated and plotted vs. magnetic field B for different temperatures. 

The induced magnetization curve (Minduced) with a varying external magnetic field B with 

hard-axis anisotropy, where KF = 0.0063 and KA= 0.0125, did not show a significant 

difference from the Minduced vs. B curve for the case without anisotropy. Figure 23 shows 

the induced magnetization as a function of the magnetic field B, where there is no visible 

hysteresis. The unit of magnetic field B is J2/μG, where μG  is the gyromagnetic ratio for 

the magnetic ion of interest. The details on the units used in this project are described in 

Appendix H. 
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Figure 23: Induced magnetization component parallel to the direction of the magnetic 
field (Minduced) vs. magnetic field B (in the unit of J2/μG) with strong hard axis anisotropy 
along the magnetic field direction 

On the other hand, the magnetization vs. B with easy-axis anisotropy showed a 

significant difference. There was a hysteresis in the magnetization and the magnetic 

transition seems to be of the first order. There was a step-like transition. However, I 

should note that there is no experimental result to verify this result. 

 With KF = - 0.0063 and KA = - 0.0125, I could observe a fairly symmetric looking 

magnetization vs. magnetic field curve for each temperature. The external magnetic field 

value for the magnetic transition decreased as the temperature increased.  
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Figure 24: Normalized induced magnetization component parallel to the direction of the 
magnetic field vs. magnetic field with temperature KA = - 0.0125, KF = - 0.0063 

As the temperature increases, the gap in the hysteresis-like loop decreased. This is 

reasonable since thermal fluctuation can cause the onset of magnetic transitions. As the 

temperature increases there are more thermal fluctuations. Therefore, the threshold 

magnetic field for the magnetic transition decreases. Once the temperature reaches T = 

1.2 J2/kB, the gap does not decrease as much with increasing temperature.  
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3.2.3. Results and discussion 

With hard-axis anisotropy, the induced magnetization vs. magnetic field curve did 

not significantly differ from the curve for the case without anisotropy. However, the 

induced magnetization curve showed a hysteresis with easy-axis anisotropy. This result is 

consistent with Stoner-Wolfarth theory, where there is hysteresis when there is easy-axis 

anisotropy only. [105]. However, it should be noted that the there is currently no 

experimental result for FM/AFM/FM trilayer systems to compare the simulation results 

to [106, 107]. 
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3.3. FM/AFM/FM trilayer with diluted AFM spacer layer 

3.3.1. Preliminary study: diluting bulk AFM 

Before running calculations on a trilayer lattice, how the Néel temperature of a 

bulk AFM model lattice is influenced by the concentration of magnetic sites was 

investigated. The purpose of this calculation is to measure “the persistence” of magnetic 

order in an AFM lattice with different concentrations of magnetic ions.  

In principle, in order to determine the Néel temperature, a fit of the function 

ሺT െ TNéୣ୪ሻఊ can be applied to sublattice magnetization vs. T data: Heisenberg systems 

ଵusually obey this rule, with the γ value close to . However, in diluted systems the 
ଷ

sublattice (or reduced) magnetization Mr(T) is no longer “well-behaved”. T. M 

Giebultowicz et al., who studied CopMg1-pO using neutron diffraction, (CopMg1-pO is a 

diluted FCC antiferromagnet and it has the original structure of CoO) found by fitting 

power-law dependence functions to the sublattice magnetization data from systems with 

p < 1.0 that such systems exhibit “smeared” AFM phase transition [108, 109]. Not 

surprisingly, attempts of fitting Mr(T) data to simple power-dependence functions failed. 

As dilution increases, the magnetic order disappears at lower temperatures [109]. In other 

words, the Néel temperature decreases as dilution increases. 
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3.3.1.1. Model for Monte Carlo calculation 

The size of the lattice is 50×50×50, which is composed of 125000 spins. I set the 

first and last monolayers empty to have zero spins to simulate the free boundary. Each 

spin monolayer had the periodic boundary on the xy-direction. The spin lattice model is 

identical to the AFM model described previously except that there are zero spins on 

random sites in the AFM monolayers. To produce a diluted lattice I initialized the array 

with zero spins then I randomly chose spin sites without repeat and put nonzero spins 

according to a given nonzero spin concentration. This method does not affect the method 

of calculating the energy but the MC steps need to skip zero spins after checking if the 

magnitude of the spin is nonzero.  There are other methods such as “marking” the zero 

spins with another array element to reduce the number of “if” statements to increase 

computation speed, but I did not use such method since it complicates the program 

significantly. 

 The Hamiltonian I used was 

ଵܬሺܪ ൌ  ∑
· ࢏ࡿ  ൅ ࢐ࡿ 
∑ ଶܬ௜,௞אேே ࢏ࡿ · ሻ஺ிெ, (3.9)௜࢑ࡿ ௝ ேேேא,

 which gives the transition temperature of AFM TN,AFM = 1.4 J2/kB. 

3.3.1.2. Data analysis 

The reduced magnetization plot (Figure 25) shows that magnetic order exists at 

concentration 45%, though it disappears at about 0.4 J2/kB. This result is consistent with 
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the experimental results from T.M. Giebultowicz et al.  [108, 109]. If I like to know if the 

neutron diffraction peaks are present, I can choose to calculate the structure factor with 

the spin output files from the MC programs as I did in Chapter 4. 

Figure 25: Normalized reduced magnetization vs. temperature: bulk AFM model for 
different concentrations of magnetic ions. The nondiluted bulk AFM results in the Néel 
temperature TN,AFM = 1.4 J2/kB. 
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3.3.2 Dilution of AFM spacer layer in FM/AFM/FM trilayer 

The main goal of this part is to investigate the behavior of FM/AFM/FM trilayer 

lattices with different magnetic ion concentrations in the AFM spacer layer. The main 

question on this system is how much the behavior of FM/AFM/FM trilayer systems with 

diluted mid-layer resembles the behavior of FM/AFM/FM lattices with non-diluted mid-

layer. No other complicating factor (such as anisotropy) was added to the system. 

3.3.2.1. Model for Monte Carlo calculations 

The Hamiltonian I used was identical to the non-diluted trilayer case except that there are 

some zero spins on the lattice. The Hamiltonian for a single spin Hi

൯െ ൅ݐ2݉ܽ ∑ࡿ࢑۰ ·ܬݐ1݉ܽ ∑ܬ ൫௜ܪ

is written as

ൌ ࡿ ࢏࢐ࡿ ܰܰא݆ ܰא݇ܰܰ . (3.10) 


This gives the the Hamiltonian for the whole system, which is written as 

ܪ ൌ∑ܪ ௜א௟௔௧௧௜௖௘ ௜, (3.11) 


, where J1mat, and J2mat denote the NN and NNN exchange constants for a material 

respectively. 

Monte Carlo calculation parameters such as exchange constants are set to be 

identical to the previous non-diluted cases. The concentration of the AFM spacer layer 

model was varied from 40% to 100%. After initializing the spins in the array with zero, 

spin sites were selected randomly and set to be a nonzero value.  Once the MC program 

reads in the spin values, it skips all the zero spins. 
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3.3.2.2. Data analysis 

To understand the effect of dilution of the AFM spacer layer on the AFM 

coupling, the induced magnetization of the whole lattice was plotted as a function of 

external magnetic field. In this case, calculating the spin torque becomes inadequate due 

to the fact that hysteresis is expected in the result. The magnetic interactions are 

conveyed by the AFM layer. 

3.3.2.3. Results and discussion 

Figure 26: Induced magnetization vs. magnetic field for AFM magnetic concentration 
75%, T = 1.2 J2/kB 4, 6, 8, 24 AFM monolayers (mnl): as I increase the number of AFM 
monolayers, the saturation magnetization decreases and the slope of the curve increases 
indicating the strength of AFM coupling decreases. 
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Figure 26 above shows the induced magnetization vs. an external magnetic field 

with 75 % NiO concentration. The slope of Minduced vs. B gets steeper as the number of 

the AFM spacer monolayers increases, which indicates that AFM coupling between the 

FM layers increases when the thickeness of AFM mid-layer increases.  For all the given 

cases of AFM layer thicknesses, the induced magnetization showed hysteresis.  

Figure 27: Normalized induced magnetization vs. B for 6 AFM monolayers (mnl) at T = 
1.2 J2/kB for magnetic ion concentrations 45%, 50%, 80%, 90% and 100%: the gap of the 
hysteresis loops increases as I decrease the AFM concentration. Also it should be noted 
that the magnetic hysteresis loop is not centered about zero magnetic field.  

Figure 27 shows the  Minduced vs. B curve with different concentrations of 

magnetic ions in the AFM spacer layer. The general trend is that the slope of the Minduced 

vs. B increases as the dilution of magnetic ions increases.  This is reasonable since there 
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will be less magnetic correlations with higher dilution rate of the AFM mid-layer. 

Another feature to note is that the gap of the hysteresis loop in each curve increases as the 

dilution of the AFM mid-layer increases. This might be due to the fact that diluted lattices 

are more likely to have more magnetic domains [74].  

Note that the hysteresis loops are not centered about zero magnetic field and that 

as the gap of the hysteresis loops increases the center of the hysteresis loops move away 

from the zero magnetic field. There were studies on the effect of dilution (of AFM layer) 

in systems with exchange bias and  they showed that there is an  enhancement of 

exchange bias in diluted systems [110-114]. 

Lastly the saturation magnetization value is increases for the lattices when 

dilution of magnetic ions in the AFM spacer layer increases. As I dilute the AFM spacer 

layer more, I expect that there will be more “isolated” spins, which will respond to an 

external field paramagnetically. Therefore, it is not unreasonable to have the value of 

saturation magnetization increasing with dilution.    
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Figure 28: Normalized induced magnetization vs. external magnetic field B for 4 AFM 
monolayers (mnl) with varying temperature and 75% magnetic concentration in the AFM 
layer, the slope of the curve increases as the temperature increases. 

Figure 28 shows the dependence of the slope of the Minduced vs. B curve on 

temperature. As in the FM/AFM/FM systems without diluted layers, the slope of the 

Minduced vs. B curve increases as the temperature increases. Therefore, I can conclude that 

FM/AFM/FM systems with diluted AFM mid-layer exhibit behaviors that are similar to 

the behaviors of the system without dilution but that the weakening of magnetic 

correlation in the diluted AFM mid-layer causes hysteresis and  weaker AFM coupling 

between the FM layers. 
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Chapter 4. Incommensurate Helical spin order in MnSe/ZnTe superlattice 

4.1. Motivation for studying magnetic order in MnSe/ZnTe superlattices 

T. M. Giebultowicz et al. studied MnSe/ZnTe superlattices using neutron 

scattering and observed an incommensurate helical spin order whose pitch varied with 

temperature [2]. It was surprising since the Type I order was observed in MnTe/ZnSe, 

which is a system similar to MnSe/ZnTe superlattice [113]. The reason for the different 

behavior of the spin systems in those layered structures was successfully explained by 

considering strain effects. Namely, due to a small difference in the lattice parameters, the 

lattice experienced a tensile strain and got distorted [2].  

Since the strength of the spin-spin exchange interaction J is a sensitive function of 

the spin-spin distance, the small distortion of the FCC lattices resulted in meaningful 

changes in the pattern of interaction of spins with their 12 nearest neighbors [116]. In the 

case of the compressive layer strain, the resulting changes in JNN further stabilized the 

Type III order – but, as was shown based on mean-field-theory arguments, the anisotropy 

in the JNN pattern resulting from tensile strain led to an energy minimum for an AFM 

helical arrangement of the spins. This model also indicated that the helix period Λ should 

depend monotonically on the lattice distortion magnitude – and since there were some 

differences between the strains in the samples, it explained the differences in Λ values 

obtained from individual samples [2]. 
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4.2. Previous simulation work and objective 

An attempt to get more theoretical insight into the problem was undertaken by M. 

Collins and W. Saslow in 1995 [117]. They used the numerical technique of MC 

simulation [117]. For simplicity they used the so-called “XY model” in which vector 

spins are confined to a plane, not 3D Heisenberg interactions, [117]. A sensitive issue in 

MC simulations of helical magnetism is the choice of boundary conditions [119]. 

Periodic boundary conditions are used most commonly in MC modeling of magnetic 

systems, but they have obvious limitations: they are “safe” in the case of Ising spins, and 

for XY and fully 3D models they are appropriate only for systems with collinear spin 

order [117]. If such boundary conditions were used for modeling incommensurate helical 

spin structures, they would impose periodicity on them, so that the Λ values obtained 

from such models would not be reliable [35]. One possible solution is to do simulation on 

very large “spin supercells” created in the computer memory, with “free boundaries”. 

Physically, such a situation is certainly even closer to that occurring in a real system than 

when using periodic boundary conditions. Yet, it requires a very large “spin array” – 

certainly, a reasonable criterion for the size would be  more than an order of magnitude 

longer than the expected value of Λ. At the time when M. Collins and W. Saslow 

performed their work, it was a requirement far exceeding the potential of the 

computational resources, which imposed them on creating their own boundary condition 

[117]. 
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The work from M. Collins and W. Saslow was definitely a partial  success  - it 

confirmed that the  MC modeling, which is a technique enabling one to simulate the 

behavior of systems at finite temperatures, showed that the spin order obtained from  the 

mean-field model is stable at finite temperatures (in the case of complicated spin 

structures, the mean-field approach can offer only reasonable predictions concerning the 

ground state configuration, but is no longer a good tool for predicting the behavior of the 

system  in the  T>0 region [117].  However, as the authors admitted, their work still had 

some “weak spots” from the viewpoint of MC methodology: the use of the XY model 

instead of the more realistic 3D Heisenberg interactions, and boundary conditions which 

did not offer a 100% guarantee of not introducing artifacts [117]. In addition, not all 

relevant questions concerning the physical mechanisms underlying the effects seen in the 

experiments were not addressed; the Λ (T) dependence in the spin structures modeled had 

not been systematically investigated, so that it could not be checked whether the shape of 

the Λ(T) characteristics, which  is certainly an important aspect of the spin ordering 

forming in the real system, was correctly reproduced by the numerical model [117]. Also, 

the influence of the layer thickness on Λ was not investigated [117]. 

Considering the above issues discussed above, it was determined that undertaking 

renewed efforts of numerical modeling of the phenomena seen in the MnSe/ZnTe would 

be a useful project. Advances in computer technology enabled me to complete 

calculations with a full 3D Hamiltonian for large spin arrays whose linear sizes 

correspond to 30-50Λ within a realistic time.  Therefore, in the present project I decided 

to use vector spins with unrestricted freedom of turning, and “the free boundary 
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conditions”. Also the Λ(T) dependence in the systems modeled was systematically 

investigated, as well as the  influence of the layer thickness on the value of Λ - including 

simulations of hypothetical “bulk” MnSe with its FCC lattice distorted in an analogous 

fashion as in the MnSe layers experiencing a tensile strain. 

One of the factors that can induce anisotropy into a magnetic system is 

mechanical strain [113, 117]. To study the effect of strain on AFM magnetic order, T.M. 

Giebultowicz et al. studied MnSe/ZnTe superlattices with neutron scattering [2]. ZnTe is 

non-magnetic and MnSe is AFM [2]. Single crystals of ZnTe and MnSe have zincblende 

structure and Mn2+ ions are arranged in an FCC lattice [2, 40, 113]. In bulk, MnSe does 

not form the zincblende structure but In MnSe/ZnSe superlattices MnSe resembles the 

structure of the substrate [2, 40, 113] MnSe layer experiences a compressive strain and 

Type III magnetic order was observed [42]. In the case of MnSe/ZnTe superlattices T.M. 

Giebultowicz et al. found an incommensurate helical spin order [2]. In addition, they 

found that the pitch of the helical order increased with temperature [2].  

The MnSe/MnTe superlattice is characterized by the lattice constant a(MnSe) = 

a(ZnTe) = a in the direction of the layer plane and c(MnSe) ≠  c(ZnTe) in the direction 

perpendicular to the layer plane [2]. Due to this difference in the lattice parameters Mn2+ 

ions experience a tensile strain [2]. 

As mentioned in Chapter 1, M. Collins and W. Saslow performed Monte Carlo 

calculations using an XY-spin model and they concluded that the pitch of helical spin 

order increased with temperature and that the AFM phase depended on two parameters α 

௃భ೔೙ି௃భ೚ೠ೟ ௃మand η, where ߙ ൌ  
௃భ೔೙

 and ߟ ൌ  
௃భ

 is a measure of how much the lattice is ߙ .[117] 
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distorted and ߟ is a measure of the relative strengths of NN and NNN interactions [117]. 

To replicate this result without a boundary condition that “assists” the formation of a spin 

helix, Monte Carlo calculations were performed with Heisenberg spins with different 

boundary conditions.

 4.3. Mean field theory calculation 

When the lattice is under a tensile strain, one can imagine the lattice is 

compressed, twisted, or stretched depending on the type of the strain. In the case of a 

tensile strain, I consider a lattice that is stretched as shown in Figure 29. It has been found 

that the coupling is a function of distance between the magnetic ions [116, 120]. 

Therefore, the lattice distortion will affect the strengths of spin-spin interactions [120]. 

Figure 29: FCC lattice spin model under tensile strain: the lattice parameters a and c and 
not equal to each other but a > c. 
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 for each spin neighbor pair and let the ࢒

growth axis and the lattice parameter in the growth direction be [001] and c respectively 

[120]. Also I denote the lattice parameter in the layer plane by a, and the number of 

monolayers in a single MnSe layer by N [120]. I only include the NN interaction and the 

NNN interaction [120]. Both NN interaction and NNN interaction are AFM in MnSe, so 

the exchange constants J1 = JNN < 0 and J2 = JNNN < 0 [120]. The exchange constants J1 

and J2 are the same everywhere in an undistorted lattice since the lattice parameters a and 

c are equal to each other [120].  

Once a tensile strain is introduced, the lattice parameter ratio 
௔
൏ 1 the distance 

) is slightly larger than that between the ଵܴצ between the “in-plane” neighbors (denoted by 

). As a result, the AFM coupling between the “in-plane” ଵୄܴ“out-of-plane” neighbors (

൐ܬ |ܬ| | |ଵୄ ଵצ

ଶୄ as well I set 

௖

NNs is weaker than the coupling between the “out-of-plane” NNs (i.e., 

െצThe same rule can be applied to ଵ .ܬצandଶܬ ଵୄൌܬ  .Now let[120] ܬ∆ଵܬ

.ଶצെ ଶୄൌܬ ܬଶୄܬצandଶ ܬ∆ଶܬ

) 


| | ൐ | |

Figure 1 on page 15 shows the Type I and Type III magnetic order; both 

structures show (100)-type AFM planes. Each spin is antiferromagnetically coupled with 

its four nearest neighbors on the same plane [120]. The exchange coupling is very 

sensitive to the distance between interacting magnetic ions [114]. There are also four next 

nearest neighbors in the plane. The resulting in-plane coupling energy per spin is E0 = ­

8J1 + 8J2. Since |J1| > |J2|, E0 is negative. 

An important feature of the FCC lattice is that the energy of interaction with the 

eight nearest neighbors on the adjacent planes always sums up to zero. So the coupling 
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energy contribution from the neighbors in adjacent planes is always zero [120].The only 

nonzero term in the total magnetic energy is from the interactions with the two NNNs on 

[120]. The signଶ4ܬצൌ േଶ௡ௗ௣௟௔௡௘ܧ the second-nearest spin planes , which can be written 

of E2ndplane depends on the orientation of the spin on the second adjacent plane. Due to the 

effective “decoupling” of the adjacent planes, the spins on adjacent planes are not 

necessarily collinear [120]. 

ଵ∆ܬ

and the ground state configuration becomes an incommensurate helical order [120]. 

If I stretch the lattice to model the MnSe lattice under tensile strain, c / a < 1 and

് 0  [18]. Then the spin interaction energy between adjacent planes is no longer zero 

Figure 30: Stretched MnSe lattice model: spin neighbors: the out-of plane neighbors are 
closer than the in-plane neighbors [120] 
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The helical spin configuration can be derived from the Type I order by successive 

rotation of the spin planes at φ, 2φ, 3φ, … The total magnetic energy per spin become 

൅∆ܬଵ߮ݏ݋ܿ 4െܬ2߮ଶ௜௡ݏ݋ܿ	 (4.1) 8଴ܧൌ ܷ

଴ܧ To calculate the energy minimum assuming is constant, differentiate eq. 4.1 with 

respect to φ. 

ௗ௎
ௗఝ 
ൌ െ8∆ ൌܬ∆8 െ 2߮݊݅ݏଶܬ8צ ൅ ܬ߮݊݅ݏଵ	 ଵ 

଴ൌ ௠௜௡ܷ andሻభ∆௃߮ܧ ൌ arccos ሺ Solving eq.4.2 gives 
ଶ௃మצ

ൌ ܿ߮݊݅ݏ߮ݏ݋ଶܬ16צ ൅ ߮݊݅ݏ 0
  (4.2) 


ଵܬ൅ 4 ሾ1 ൅ ቀ∆௃భቁ
௃మ 

ଶ
ሿ  for 0 ൑ ߮ ൑  

90° [120]. 


At this point, I assume
 ൌ ଶୄൌܬ ܬצଶܬ

is a function of߮. Then the angle ଶܬצ

E0 and ߮ as functions of ∆௃భ, I find that Type I and Type III structures occur when the 
ଶ௃మ

lattice is undistorted and the helical configuration leads to a lower magnetic energy than 

Type I and Type III configuration for 0 ൑  
∆௃భ
మ
൑ 4  [120]. Now let the modulation period 

ଶ௃

ଵ ௖ ∆௃భor the pitch of spin helix Λ ൌ 
ఝ
గ ܽ ൌ  

ଵି௤
. If I decrease 

௔
, 
ଶ௃మ 

increases and the helix angle 

߮ decreases. When the ∆௃భ is 4, ߮ becomes zero and Λ ൌ ∞, which corresponds to a
ଶ௃మ

collinear Type I order [34].   

ଶ since the minimum energy configuration 

∆௃భ భ
ଶ௃మצ 
ൌ 
∆௃
ଶ௃మ

depends only on [120]. If I plot both U­
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Figure 31: Incommensurate helical spin order, the spins on each consecutive spin plane 
gets rotated by an angle. 

In fact, the spins on the boundaries do not have a full set of neighboring spins.  If 

the thickness of the sample is small, then the spins on the surface will affect the magnetic 

energy of the system significantly [120].  Table 1 below shows the set of neighbors for 

spins on the surface [120]. 

Table 1. Neighbors for inner and out-of-plane spins 

Spin layer 
index 

Nearest and next nearest neighbors to a given spin located in (100)­
type AFM planes which are: 
In-plane

൅ୄ2ܰܰ 2ܰܰܰ ୄܰܰܰ൅ 1  

Adjacent planes

4ܰܰ ܰܰ൅ 2  

Next nearest 

1 or N צ
(missing ൅ୄ2ܰܰ 1 ୄܰܰܰ ሻ

൅ୄ4ܰܰ 2ܰܰܰ ୄܰܰܰ൅ 1

צ ୄ
ܰ2ܰ      (missing ୄ) 

Full set 

2 or N-1 צ
(missing ୄܰܰ1ܰ ሻ 

Full set Full set 

3 to N-2 Full set Full set Full set 

൅ୄ4ܰܰ The full set of neighbors consists of 

2ܰܰܰ in the two adjacent planes and ୄܰ4ܰ

modified to 

ଵܬצ଴ൌ ଵ ௢௥ ேܷܧ

2
 in plane andୄܰܰܰ൅ 4ܰܰצ ܰܰܰצ2 ൅ 

צ out of plane. Then the interaction energy is 

൅  ሺ െ 8ଵୄ4ܬ ሻ െ ܿ߮ݏ݋ ଶ4ܬ  2߮ݏ݋ܿ
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൅  ሺ െ 4 ሻ െ ܿ߮ݏ݋ 4
  for the layers 1 and N. ܿܧܬ∆8ܬܬ 2߮ݏ݋ ൌ ଴ ଵ ଵୄ ଶ

For layers 2 and N-1, the interaction energy is  

ଶܬെ ܿ߮ݏ݋ଵܬצെ 8ଵୄ8ܬ൅଴ൌ ேିܷܧ 2߮ݏ݋ܿ ൌ ܧܬ ଴ ଵ 

Then take the “weighted” average of the energy values.  

ଶ
ே ൅

ேିଶ ሻܿ߮ݏ݋ െ ଵୄܬ∆8ܬ= (|ሻܷሺ߮
ே,௡ୀ|ܷ

ே ଵ ଵ 

Again, differentiate this average energy by ߮ to minimize it and obtain 

ሺ ሻ 4
 ൅  8∆ ଶܬെ 4  ଵ ௢௥ ଶ 2߮ݏ݋ܿ.

ܷሺ߮ሻതതതതതതത ൌ ሺ߮ሻ െ ଶ4ܬ  2߮ݏ݋ܿ(
଼
ே௡ୀଶ…,ேିଵ,

భൌ arccos ሺ
∆௃

ଶ௃

ିಿ
భ 

మ
തതതതതതതത߮|௎೘ഢ೙ 

௛߮௘௟௜௫ ൌ

ሻ

∆௃భିಿ
భ௃

ሺ
ଶ௃ 

భ఼

మ 
ܽݏ݋ܿܿݎ ሻ 

ଵ∆ܬ Since the 

߮௛௘௟௜௫ ൌ

ଵܬ

ܰ ∞,՜௛௘௟௜௫߮ ݏ݋ܿܿݎܽ ՜ . As 

ଵൎ  is small compared to , one can approximate and obtain ܬଵୄܬ

∆௃భିಿ
భ௃

ሺ
ଶ௃ 

భ఼

మ 
ሻ ܽݏ݋ܿܿݎ ∆௃భሺ

ଶ௃మ
ሻ. 

It is known that MnSe has the exchange constant J1 that is 5 or 10 times larger than J2 

[49]. Then one can conclude that the increase in the layer thickness will affect the pitch 

of the helix pitch Λ [120]. 

Then I need to think of a way to explain the relaxation of the spin helix with 

temperature. One possible explanation can be that the spins on the boundary/surface have 

incomplete set of neighbors and the exchange coupling of those spins gets weaker as 

temperature increases due to thermal fluctuations. To test this idea, it is necessary to have 

the layer thickness as the control variable. 
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4.4. Monte Carlo calculations 

4.4.1. Model for Monte Carlo calculations 

In fact, T.M. Giebultowicz and J.K. Furdyna studied  Type III AFM lattice with 

MC methods, where the alternating ferromagnetic sheets are arranged along the layer 

growth direction [49].With the exchange parameters JNN = 1.0 and JNNN = 0.1, they found 

the Néel temperature to be TN = 0.47JNN/kB and the transition to be of the first order [49]. 

For the MC calculations I used Heisenberg spins with NN and NNN spin-spin interaction 

only. I assume that the tensile strain “stretches” the lattice so that the lattice parameter of 

the out-of-plane direction becomes larger than that of in-plane direction. This causes the 

exchange parameters scale accordingly, i.e., J1in <  J1out and J2in <  J2out. For simplicity I 

are in-plane and out-of-and J2in  J2out = J2. J1in and J1out and J2ଵ௢௨௧് 
= assumedܬଵ௜௡ܬ

plane NN exchange constants and the NNN exchange constant respectively.   

The Hamiltonian for a single spin ࢏ࡿ

·ܬࡿ൅ܬ ሾܪ௜ ଵ௜௡ ଵ௢௨௧ ࢐ ∑ ∑ 

in the lattice is 

ଶܬ൅࢐ᇱ· ൌࡿ ࡿ ∑
ேேא௝ ࢏ᇱሿ࢑ࡿ  ௝′אேே ,௞′אேேே  (4.3) 


To simulate a system without a strain, I used J1in = J1out = J1 = 1.0 and J2in = J2out = 0.1 

as the exchange constants for in-plane and out-of-plane NN interaction and in-plane and 

out-of-plane NNN interaction respectively. For a lattice with strain, exchange constants 

that are used are as follows. J2in = J2out = 0.1 was used for all calculations. Each case 

includes both increasing and decreasing temperature directions. 
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                 Table 2. In-plane and out-of-plane nearest neighbor exchange constants 

Trial J1in J1out 
1 0.925 1.075 
2 0.9125 1.0875 
3 0.95 1.05 
4 0.94 1.06 
5 0.9625 1.0375 
6 0.96 1.04 
7 0.9 1.1 
8 0.965 1.035 
9 0.913397 1.086602 
10 0.923395 1.076604 

I set J1in = 1 - α and J1out = 1 + α, where 0 < α < 1, which sets ߙ ൌ  
Δ
ଶ
௃భ. 


For the lattice with 1-dimensional spin array, I used lattice with three different sizes and 


two boundary conditions; the free boundary and the periodic boundary condition.  


4.4.2. Data analysis: simulated neutron diffraction 

Experimentally neutron diffraction is used to measure the magnetic order of the 

system [121, 122]. The scattering vector q is used to describe neutron scattering process 

[122, 121]. The neutron diffraction intensity is associated with the structure factor. [4] 

(r) is the neutron f, where݀qି௜׬݂ݎ݁࢘·ܙ ݂

scattering intensity. [121,122]. The scattering cross section is proportional to |f(q)|2. To 

ሺqሻ ൌ ሺ ሻThe structure factor is defined as

calculate magnetic scattering intensity, the impact parameter is replaced by the spin 

for generalି௜ܾ࢘·ܙ ݁ ∑ൌሻqሺ݂

ି௜࢘·ܙ for magnetic scattering [121,122]. 

vector, which will give an extra “periodicity [122]. 

݁Ԧൌ ܵሻሺ݂scattering and q
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To simulate neutron diffraction, I calculate the structure factor Fhkl for each q-

vector q = (h k l).The total non-magnetic scattering per unit cell is given by  

ൌ 
గN ݀୦୩୪ߨ4ܨ୦୩୪∑
ଶ఑

ሻ߮ሺܧ ଶబ
మ ୦୩୪, where dhkl is the spacing between the atoms and Fhkl

2 is 

the square of the structure factor and N0 is the number of unit cells per unit volume [122]. 

The square of the structure factor is written 

ሻሻሽቚܾ݁݌ݔ ୦୩୪∑ൌ ቚ  
ଶ

୦୩୪ܨ ሼ ሺ2݅ߨሺ௛௫
௔
೙ ൅ 

௞௬
௕
೙ ൅ 

௟௭
௖
೙ଶ , 


where b is called the scattering amplitude and it taken at each atomic position [122] for a 

non-magnetic scattering [122].  

௘మఊࢍࢇ࢓ࡲ ൌ 
௠௖మ
∑ ௡ ܙ௡ ܁ ሼ2݅ߨሺ௛௫

௔
೙ ൅exp 

ሻሽ , where q = K – ε (ε · K) [4] and ε is the unit scattering vector [4]. Replacing 

gives ࡿܖ 

௡The magnetic structure factor is expressed by  

௞௬
௕
೙ ൅ 

௟௭೙
௖ 

q by K – ε (ε · K) and K by 

exp ܖ൉ ሺെࡿ ࢿ  ∑௡ࡿሾܖ 

Note that ࢍࢇ࢓ࡲ is a vector quantity and its squared magnitude gives the magnetic 

ሺ௛௫݅ߨൌ ሿ ሼ2 ࢍࢇ࢓ࡲ
௔
೙ ൅ 

௞௬
௕
೙ ൅ 

௟௭
௖
೙ሻሽ. ௘మఊ

௠௖మ ࢿ
 ሻ 

scattering intensity [122]. 

Figure 32: Magnetic Scattering vector q 
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,a, b, whererlሻଶగ
௔

k,ଶగ
௔

h,ଶగ
௔
ሺൌሻk, lൌ ሺh, ሻ, q, qൌ ሺqqԦሬvector can be written ܙ Any ୶ ୷ ୸

and c are lattice parameters [122].  

௡ݔ ௡ݕ ௡ݖ ௡ݔ ௡ݕ ௡ݖ
ܾܾܿܽܿܽቀiπ2ቂexp ௡෍ܵอൌ௛௞௟ܨ

௡ 

The helix pitch is defined Λ ൌ  

݄ ൅  ݇ ൅  ݈ቁቃอ ൌ อ෍ܵ௡ exp ቂ2πi ቀ
௡ 

݄ ൅  ൅ ቁቃอ 

ଵ
ଵି୯

, where q is the scattering vector. For each temperature 

and each set of exchange constants, spin images are output and the structure factor is 

calculated for each spin output along different q-vector values. For a Type I spin order, 

ଵthe diffraction peak should be formed at about q = (0, 0, ) since the system is AFM [122]. 
ଶ

Figure 33: Calculating the magnetic structure factor 


 The algorithm for calculating the structure factor is in the section A4 of Appendix A. 




 
 

 

 

 

     

 

83 


4.5. Results and discussion

 4.5.1. Testing the structure factor program 

To test the program that calculates the structure factor, I used model inputs. FM 

and AFM spin arrays of 320 nonzero spin produced diffraction peaks in the correct 

positions. The pattern of diffraction peaks for an FCC ferromagnet exist for q = (1, 1, 1) 

and q = (2, 2, 2), which was shown in Figure 47 [34]. For the case of a Type I 

antiferromagnet, it gives a diffraction peak at q = (001) as suggested by T.M. 

Giebultowicz et al. in their studies using neutron scattering [34].  

Figure 34: Structure factor for an FCC ferromagnet: the diffraction peaks are located at q 
= (222). 
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Figure 35: Structure factor for a Type I FCC antiferromagnet: the diffraction peak is 
located at q = (0 0 1). 

4.5.2. Results of structure factor calculations 

To verify that my MC simulation  program produces the correct output, I 

calculated the spin outputs for J1in = J1out = 1.0 and J2in = J2out = 0.1, which is supposed to

ଵproduce the Type III AFM spin lattice. The diffraction peak is expected to be at ሺ1, , 0ሻ
ଶ 

and I obtained the peak at the correct position, which is shown in Figure 36 [40]. 
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Figure 36: Neutron diffraction peak at temperature T = 0.20 J1/kB for the 1-dimensional 
spin (i = 145), Type III lattice: the peak is located at q = (1 

ଶ
ଵ 0). 

The next step is to calculate the structure factors for MnSe/ZnTe lattice models 

for different exchange constant ratios. I used the q-vectors in (qx, 0, 1) to analyze the data. 

For J1in = 0.925 and J1out = 1.075, the neutron diffraction scan along (qx, 0, 1) are located 

about qx = 0.35 (See Figure 37). As the temperature increases, the diffraction peak gets 

shifted to a lower qx value and the diffraction intensity decreases. The diffraction peaks 

are relatively well-defined compared to the other neutron diffraction plots I produced 

with different J1in / J1out ratios. 
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Figure 37: Diffraction peaks for J1in = 0.925 and J1out = 1.075, 1-dimensional spin array (i 
= 145) with the free boundary condition 

The peak intensity decreased as the temperature increased, which is reasonable 

since magnetic order gets weaker with temperature increase. Another factor influencing 

the peak intensity is that the orientation of helical spin order shifts since it is not coupled 

to the lattice, which was confirmed when the spin lattices were examined. Also it is 

necessary to note that the spin projection value changes systematically as I change the q-

vector value since neutron diffraction simulation only sums up the value of the spin 

component projected onto the plane perpendicular to the q-vector.  
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Figure 38: Diffraction intensities vs. qx, 1- dimensional spin array with the free boundary 
condition (i = 145) for J1in = 0.9125 and J1out = 1.0875 

In the case of calculations with J1in = 0.9125 and J1out = 1.0875, many diffraction 

peaks are visible, which might indicate there are multiple helical phases in the lattice.  As 

I increase the temperature, the group of diffraction peaks appears to move toward a 

smaller qx value. However, it is impossible to make a conclusion on the motion of the 

helix peaks from Figure 38 due to the issue of identifying diffraction peaks.  

The periodic boundary case with J1in = 0.925 and J1out = 1.075 does not produce a 

well-defined single diffraction peaks. There is no significant shift of the position of the 

diffraction peaks (Figure 39). 
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Figure 39: Periodic boundary: Diffraction intensity vs. (qx, 0, 1): 1-dimensional spin 
array (i=145) for J1in = 0.9125 and J1out = 1.0875 

With the periodic boundary and J1in = 0.9125 and J1out = 1.0875, the neutron 

diffraction scan for q = (qx, 0, 1) for the 1-dimensional periodic lattice with size I = 145 

looks like Figure 39. There are many diffraction peaks accumulated in the region 

ሾ0.01, 0.2ሿ and the peak positions do not get shifted as much as the case of the free 

boundary as the temperature increases. 
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Figure 40: 3D spin array J1in = 0.9125, 3-dimensional spin array with the free boundary 
condition (the dimensions were nx = ny = 100, nz = 10) 

For a 3-dimensional spin array with J1in = 0.9125 and the free boundary condition,

ሾ0.2,0,4ሿ,the diffraction peak positions were located in q୶

of qx for the 1-dimensional spin array case. High peaks are near qx

א  which is similar to the range 

= 0.3 and there are 

many other peaks in the plot. I notice that the neutron diffraction peaks did not 

completely visible at temperatures 0.02 J1/kB, 0.08 J1/kB, and 0.18 J1/kB. From the plots, it 

is difficult to make any conclusions on the positions of diffraction peaks. 
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Figure 41: 3D spin array J1in = 0.9125 periodic boundary nx = ny = 100, nz = 10 

With the periodic boundary the diffraction peaks are located at q୶

where the highest peaks are at about qx= 0.1. The location of the diffraction peaks gets 

א ሾ0.0, 0.2ሿ, 

shifted as the temperature increases, but the direction of the shift is not identifiable. For 

example, the diffraction peaks for T = 0.08 J1/kB are at a larger qx value than those for T 

= 0.02 J1/kB. The location of peaks for this case is similar to that for the 1D spin array 

case with the periodic boundary. The quality of data I obtained from my calculations was 

not good enough to make judgments. 

Since the periodic boundary condition seems to “impose” a periodicity on the 

lattice edges, I concluded that it is inadequate to use periodic boundaries for simulating 

incommensurate magnetic ordering, as it was mentioned in Chapter 1 [35]. Rough 
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estimates from simulation data show that the diffraction peaks are fluctuating in a fixed 

range of qx values. 

The last step for the simulation was to investigate how the size of the system 

influences the helical pitch, I performed MC calculations of both 1-dimensional and 3­

dimensional spin arrays of different sizes.  

Figure 42: Neutron diffraction intensities for 1-dimensional spin array with free boundary 
(i = 135) for J1in = 0.9125 and J1out = 1.0875 

Figure 42 shows the simulated neutron diffraction peaks for 1-dimensional spin 

array of size i = 135. Multiple peaks are observed for most of the temperatures. For both 

3-dimensional and 1-dimensional spin arrays, the neutron peak formation gets more 

difficult as I decrease the size of the lattice with the same number of MC iteration per 

spin. 
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The lattice size can influence the formation of long range order, whose idea 

comes from the arguments for Mermin-Wagner theorem [123, 124]. Mermin-Wagner 

theorem states that there is no long range order in 1-dimensional or 2-dimensional lattice 

[124]. M. Manojlović et al. reported that Mermin-Wagner theorem can be extended to 3­

dimensional isotropic spin lattices after studying La2CuO4-type compound using an 

isotropic spin model [124]. I might be able to apply this idea to a more general case, but it 

is beyond the scope of this project. 

4.5.3. Discussion on the quality of data 

In the previous section, I stated that it is difficult to make conclusions on the 

positions of neutron diffraction peaks since in many cases the peaks were not completely 

formed. One of the difficulties in using the Metropolis algorithm was that equilibration at 

low temperatures is highly inefficient [65]. At temperature 0.02J1/kB the neutron 

diffraction peak was not formed at all in many cases. In the trilayer studies in Chapter 3, 

the temperature range was above TN = 1.2 J2,NiO/kB with H in eq. 3.1, but the transition 

temperature for simulating helical spin order is 0.28 J1/kB [49]. 

I concluded that the system was not fully equilibrated with the Metropolis 

algorithm due to its low spin flip rate at low temperatures. The programs started 

calculations from a random spin configuration and it should have made the equilibration 

more difficult. Another issue is that using a variable-sized array significantly slowed 
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down the calculations. In sum, the result suggested that revising the scheme for 

simulating a thick lattice is required.  

4.6. Resolving the issues with the MC calculations 

4.6.1. Walker and Walstedt Algorithm 

There are several options to improve the quality of the data. One is to run the 

current MC program for a longer period of time to check if a stable single helix gets 

formed. Another is to use a simpler program, possibly with a fixed-sized spin array to 

speed up the calculation. A third is to use an algorithm that does not lose efficiency at 

low temperatures.  The fourth is to add easy-plane anisotropy to “facilitate” the formation 

of helix on a specific plane. 

The Metropolis algorithm becomes inefficient at low temperatures since the spin 

flip rate is low [65, 66]. To improve the results, I used an alternative MC algorithm, 

which is called Walker and Walstedt (W & W) algorithm. It was developed by L. R. 

Walker and R. E. Walstedt and it was discussed in their article published in 1980 [125]. 

In parallel to the W & W algorithm with fixed-sized spin arrays, I wrote a program that 

uses the Metropolis algorithm with a fixed-sized spin array to cross-examine the result.  

It is quite straightforward to implement the W & W algorithm with 3­

dimensional classical vector spins. The key to running MC simulation is to generate an 

appropriate random set of states according to the Boltzmann probability distribution and 
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the two major requirements that have to be satisfied for Monte Carlo calculations are 

ergodicity and the detailed-balance principle [65, 66]. Ergodicity means that there must 

be a nonzero probability between any two states that are picked and the detailed balance 

means the rate at which the system makes transitions into and out of any state must be 

equal [65, 66]. In other words, the detailed balance principle states 

ሺൌ݁ݐܽݐܵ ՜ ݁ݐܽݐܵ ܲሻ ܵ݁ݐܽݐ ՜ ܵܲ݁ݐܽݐሺ ሻ1
 2
 2
 1
 . 


ሺࣟሻ ൌ ܥ ౡ
షࣟ
BT ܲ is ݁ 
 ,The Boltzman probability distribution where is aܥ

normalization constant and ࣟ is the total magnetic energy. Without anisotropy the 

Hamiltonian is 

ଵܪܬ ൌ െ ∑ ∑ ࡿ  · ࡿ െ ܬ ∑ ∑௜ ௝א௡௕ ࢐ ࢏ ଶ ௜ ࢏ࡿ · 	 . ௞א௡௡௕࢑ࡿ (4.4) 


 I define the total effective field as  

௘௙௙ࡱܬ ൌ െ ଵ ∑௝ െ ࢐ࡿ ଶܬ ∑௞ ࢑ࡿ  (4.5) 


 and rewrite the Hamiltonian 

௘௙௙ࡱ௜∑ൌ ܪ

 ௘௙௙ andࡱ ௜ is the angle between the two vectorsߠ

= ௘௙௙ܧ௜∑· ࡿ 
 ௜ܵ

ሺࣟ௠௜௡, ࣟ௠௔௫ሻ 

࢏௜ሻߠሺݏ݋ܿ (4.6)
, 


 where . The probability density is࢏
ࡿ

ܲሺ ݀Ԫ ൅ ሻ ൌ ሺԪሻ݌ ൌ ݀Ԫܥ݁ ܲ and ݀ԪT
షԪ
BౡԪ, Ԫ
 ൌ1 [125]. 

Putting Eeff in the direction of the z-component of the spin SZ makes           

௘௙௙ܵܧ∑=· ܪ௜ࡿ ൌ ∑ ∑௜ 
௜ ௭ ࢏ 	௘௙௙ࡱ 

ିԪ


݀Ԫ BT୩

. 


ࣟ 

ሺെkBT݁୩
ିࣟ
|Ԫ ሻ ൌ ሺkBT݁୩ܥ

ࣟ
B
೚
T െ kBT݁୩

ିࣟ
BT ିࣟ೚ 

BT

ଵ 

ሺࣟሻ ൌ නܥ
ࣟ

ܲ ݁ ൌ ܥ ሻ
೘೔೙ 

For normalization, ܥ ൌ  
ଵ

೘೔೙,ࣟ೘ೌೣሻ 
ൌ

௉ሺࣟ ష
ࣟ
ౡ
೘೔೙
BT ି௞்ሺ௞்௘ ௘

షࣟ
ౡ
೘ೌೣ
BT 

.
ሻ
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Set the maximum total energy Ԫ௠௔௫ ൌ Ԫ௢ and the minimum total energy  

Ԫ௠௜௡ ൌ െԪ௢ , since the maximum and minimum energy values have the same absolute 

value. 

kBT
ࣟ௢

ܶ݁B 

kBT
ࣟ

ିࣟ
୩BT

ࣟ
௞்
೚ 
െ ݁ ݁

BT െ kBT݁୩
ିࣟ೚
BT 

ࣟ
B
೚
T െ ݁

ିࣟ ࣟ
୩ ୩BT ୩BT

ൌ 
1 െ ݁

ିଶ

ࣟ
B
೚
T െ ݁

ିࣟ೚ 

1 െ ݁
ିଶࣟ೚

୩ ୩BT
ൌ
݁

݁
ܲሺെԪ , Ԫሻ௢ ൌ ሾ0,1ሿ.
ൌ ܴ ,ݓ 
 ݄ࣟ݁ݎܴ݁ א

୩k

೚ 

୩BT 

Solve the above equation for energy Ԫ [125]. 

షమԪబ 

െ  ܴെ ሺTBౡ 

షమԪబ 

െܴെ ሺBTౡTln ሾܴB

ሾܴ Sinceܴ ൌ . א 1 െ  ܴ Take another random number 

షమԪ
ౡBT ൌ ܴ݁ ݁ 1ሻ  (4.7) 


Ԫ ൌ െ

ᇱ

k ݁ ሿ

ሿ, ܴ 0,1

షమԪ
ౡBT െ ܴԢሿ

1ሻ  (4.8)


ᇱ א ሾ0,1ሿ. 

Ԫ ൌ െkBTln ሾሺܴᇱ െ 1ሻ݁
బ 

(4.9) 


షԪ
ౡBT െThe equation written by L. R. Walker et al. is of the form Ԫ ൌ െkBTln ሾሺܴᇱ െ 1ሻ݁
బ 

ܴԢ݁ౡ
Ԫ
B
బ
Tሿ, which is equivalent to eq. 4.9 [125]. 

For each Monte Carlo step the previous value of the spin is not considered. 

Instead a new spin that satisfies the Boltzmann probability distribution is generated and 

′ܴ For each Monte Carlo step, pick a random number replaces the old spin value [125]. 

and calculate energy by the equation 

షమԪ

Ԫ ൌ െkBTln ሾሺܴ′ െ 1ሻ݁ ౡBT
బ 

െ ܴ′ሿ. (4.10)

Ԫ and set ࢠࡿSet the magnitude of the z-component of the spin to be  

to the z-component of the effective field vector ࢠࢌࢌࢋࡱ. 

to be parallel 
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ൌ௜௭ܵ andሾ0,1ሿ א ܴand generate a random number 

; this ensures that ሻሽ௜ߠሺ௜ܵ௘௙௙ܧሼൌ max  ௘௙௙ൌ െ݇ܶߝ௢ܧ ln ൤ሺܴ െ 1ሻ݁
షమ
ೖ೅
Ԫబ
െ ܴ൨  where ,ݏ݋ܿ

the exchange energy of the chosen spin satisfies the Boltzmann probability distribution.  

Then generate the Six and Siy randomly by picking a random angle ߮ and setting 

ܵ௜ܵ௫ ൌ ௜௬ ൌ
ටଵିௌ೔೥

ටா೐೑೑ೣమାா೐೑೑೤

మୡ୭ୱ ఝ ටଵିௌ೔೥

ටா೐೑೑ೣమାா೐೑೑೤

మୱ୧୬ ఝ 

మାா೐೑೑೥మ
 and 

మାா೐೑೑೥మ
. Update the spin and energy 

and other calculated variables. 

The detailed balance principle states

ሺൌ݁ݐܽݐܵ ܲሻ ܵ݁ݐܽݐ ՜ ܵܲ݁ݐܽݐሺ 1
 2
 2
 
՜ 1 ݁ݐܽݐܵሻ. [65]. 


For the construction I have above, the detailed balance principle is satisfied since 

ሺൌݓ݁݊ ݊݅݌ݏ ՜݋݈݀ ݊݅݌ݏ ݁ ܲሻ݊ݓ݁ ݊݅݌ݏ՜ ݈ܲ݀݋ ݊݅݌ݏሺ ሻ ൌ ܥ ିఌ೚/௞். 

In fact, the method described above is not the only method that I can use to generate a 

random spin. For example, I can choose to use the rotation matrix with Euler angles; I 

decided not to use it since it takes more operations and slows down my program. 

Also it should be noted that W & W algorithm works well only for Heisenberg 

spins since it is more difficult to develop a method for generating a random XY-spin 

ܲ since there is no analytical solution to the integral ሺࣟሻ ൌ ܥ
೘೔೙ 

ࣟ׬ࣟ ݀ԪT
షԪ
Bౡe , as the energy 

is not equal to SzEeff. For detailed computational procedures, see Appendix C.  
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4.6.2. Results and discussion 

The spin flipping rate for the Metropolis algorithm at the temperature T = 0.02 

J1/kB was about 1% for the Metropolis algorithm, which is fairly low. I checked that 

before the system gets equilibrated there is a phase of multiple helices in the system that 

causes multiple neutron diffraction peaks. Eventually a single peak “survives” as the 

number of MC steps increases. The MC program with the Metropolis algorithm with 

fixed-sized spin arrays produced results similar to the results from the W&W algorithm. 

Figure 43: Diffraction intensity vs. qx in (qx,1,0) with J1in = 0.9125, J1out = 1.0875 with 
W&W algorithm 
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As in Figure 43, the value of qx increases with temperature for the case with 

J1in=0.9125 and J1out=1.0875. Note that the scan direction is different from my previous 

plots, which was (qx, 0, 1). If I scan the spin lattice along the (qx,0,1), the peaks will 

move to lower qx value as I increase the temperature. The helix pitch Λ ൌ
୯
ଵ

౮
 for (qx, 0, 1) 

ଵscan Λ ൌ
ଵି୯౮

 for (qx, 1, 0). 

Figures 44 and figure 45 show the helix pitch Λ as a function of temperature for 

thin and thick films. For a thick film the pitch changes faster than the thin film case 

regardless of the direction of the temperature change. Also it is notable that the value of 

the pitch Λ depends on whether the temperature is increasing or decreasing. The helix 

pitch does not change linearly with the temperature. At low temperature region, the pitch 

changes more slowly with temperature than the high temperature region. 

Figure 44: Helix pitch Λ vs. temperature T for MnTe/ZnSe model with J1in = 0.925 
and J1out = 1.075 for thin and thick films 
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Figure 45: Helix pitch Λ vs. temperature T for J1in = 0.9125 and J1out = 1.0875 for thin 
and thick films 
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Figure 46: Comparison to experimental result: the slope of the helix period vs. 
temperature plot: the experimental helix period starts “flat” and it changes to a “steep 
curve” as the temperature increases. Compared to the experimental result, the calculated 
helix pitch exhibits a curve whose slope increases as the temperature increases, but the 
plot is not “flat” at the lower temperature region. 

Figure 46 shows the plots of the pitch of spin helix vs. temperature from 

simulation data (left) and from experimental data (right) from T. M. Giebultowicz et al. 

[2]. Experimental data show that the helix pitch Λ stays rather flat until a threshold 

temperature and starts increasing after the threshold temperature [2]. Simulation plot also 

shows an increase of helix pitch with temperature. However, there is no “flat region” in 

the Λ vs. temperature curve from the simulation, though the slope of  simulated Λ curve 

is smaller at low temperatures.  It is probable that the discrepancy is due to the fact that 

the MC model used is not simulating long-range order at low temperatures.  
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4.6.3. Summary and comments 

The calculation of structure factor from the spin outputs from the Monte Carlo 

calculations yielded diffraction peaks whose pitch increases with temperature as in 

experimental results [2]. As the thickness of the lattice gets larger, the pitch of the spin 

helix increased. For the free boundary conditions, regardless of the lattice size, the 

diffractions peaks were located near qx = 0.35. For the periodic boundary cases, the peaks 

were concentrated at about qx = 0.15, which is due to the fact that the boundary condition 

imposes a periodicity to the lattice. 

The initial idea was that the change in the pitch of spin helix with temperature 

might be caused by the weakening of exchange coupling of surface spins at high 

temperatures due to the fact that surface spins have incomplete neighbor sets. This 

possibility is completely ruled out since the pitch changed with temperature for regardless 

of the thickness of the lattices. In this case, consideration of the free energy of the system 

is necessary to understand the mechanism that underlies the change in pitch of spin helix 

since the stabilization of magnetic structures will depend on the free energy [65].  
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Chapter 5. Concluding remarks 

In the beginning of this project, a MC model for NiO/CoO superlattice systems 

was developed to simulate experimental results from J.A. Borchers’s group, which 

indicates that the magnetic order of an antiferromagnet persists above its Néel 

temperature when it is layered with another antiferromagnet of a higher Néel temperature 

due to exchange pinning on the interface [1]. The simulated behavior of the superlattice 

was in a good qualitative agreement with the experimental data [1]. It was an important 

test for the MC model that was used in the next stages of the project.   

Then I applied the MC model developed for NiO/CoO systems to simulation of 

FM/AFM/FM trilayer systems. The two FM layers in the trilayer were 

antiferromagnetically coupled by placing an AFM spacer with an even number of AFM 

monlayers. The simplest case was a FM/AFM/FM model without complicating factors 

such as anisotropy or disorder in the lattice. The simulation result showed that the AFM 

coupling between the two FM layers increases as the thickness of the AFM mid-layer 

decreases. It also indicated that AFM coupling between the FM layers is present at 

temperatures above the Néel temperature of the antiferromagnet and a helix-like spin 

arrangement similar to a “Bloch wall” is formed in the AFM/FM interface region [74]. 

The simulated magnetization vs. external magnetic field curve exhibits no hysteresis. 

After studying the simplest FM/AFM/FM trilayers, I added anisotropy to the 

system. Two different anisotropy models were used: (1) hard-axis anisotropy and (2) 

easy-axis anisotropy along the direction of the external magnetic field. In the case of 
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hard-axis anisotropy, the magnetization curve vs. external magnetic field exhibited 

behaviors identical to those without anisotropy.  On the other hand, with easy-axis 

anisotropy along the direction of the magnetic field, there was a hysteresis-like feature in 

the induced magnetization vs. magnetic field curve. As the temperature increased, the 

threshold magnetic field for the transition decreased. In all hysteresis curves, the 

magnetic transition was of the first order. 

Lastly for FM/AFM/FM systems, the AFM spacer layer in the trilayer lattice was 

diluted. Before the trilayer calculations, magnetic order in a bulk AFM lattice was 

calculated with various concentrations of magnetic ions. The calculation result showed 

that magnetic order is present up until 50% concentration of magnetic ions in the AFM 

lattice, which is consistent with experimental results from T. M. Giebultowicz’s group 

[108, 109]. The MC calculation for trilayers with diluted AFM mid-layer showed that the 

induced magnetization vs. external magnetic field curve exhibits hysteresis and that the 

gap in the hysteresis curve increases as the magnetic concentration in the AFM mid-layer 

decreases. The hysteresis curve was not centered at the zero magnetic field.  

The last part of this project involved modeling helical spin order in MnSe/ZnTe 

superlattices, which is an FCC lattice under tensile strain [2]. Assuming that the distance 

between the magnetic ions influences the strength of exchange interaction, I set J1in-plane < 

J1out-of-plane and used a free boundary condition, which is not supposed to “facilitate” the 

formation of helical spin order [117]. For both thin and thick film models, the pitch of the 

spin helix increased as the temperature increased, which implies that the increasing pitch 
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is not associated with the thickness of the lattice. This means that there might be other 

mechanisms that influence the pitch of the helix and it requires a further study.   

            There are several items to note on the project. One is that is no experimental data 

for FM/AFM/FM superlattices to verify the relationship between the strength of AFM 

coupling of the FM layers and the thickness of the AFM mid-layer since the focus of 

many groups who study FM/AFM/FM systems is mainly on the effect of exchange bias 

[91, 94, 95]. Persistence of AFM coupling of the FM layers at temperatures above the 

Néel temperature is consistent with Lenz et al.’s observation of magnetic order in 

FM/AFM systems [59]. 

Another is that The behavior of the trilayer system with anisotropy is consistent 

with Stoner-Wohlfarth model, which shows hysteresis only for easy-axis anisotropy 

[105]. Anisotropy can be controlled experimentally by adjusting parameters when one is 

fabricating a multilayer, so it is possible to investigate this phenomenon experimentally 

[103, 126]. 

A third is that diluting the AFM mid-layer in the FM/AFM/FM trilayers increases the 

gap of the magnetic hysteresis loop, which seems to promote the effect of exchange bias 

by moving the center of the hysteresis loop further from zero field. This can be studied 

experimentally since diluted systems give more feasibility to experimental studies since 

diluted magnetic layers can be fabricated with current technology [108, 109]. 

The last is regarding the MnSe/ZnTe superlattice model and it is that the free 

energy of the system should be calculated to understand the behavior of the system, 

which was not performed for this project [65].   
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Appendix A. Spin loading and miscellaneous calculations

 A1. Basis of the lattice vectors for NiO/CoO and FM/AFM/FM lattices 

Calculations for both NiO/CoO superlattices and FM/AFM/FM trilayer lattices 

were based on the same basis vectors.      

ଵ ଵ ଵ ଵ ଵ ଵܤ ൌ ቄቀെ , , 0ቁ , ቀെ , 0, ቁ , ቀ0, , ቁቅ. (A.1)
ଶ ଶ ଶ ଶ ଶ ଶ

. 

ଵ ଵFigure A.1: Lattice vectors with the basis B: The lattice vectors are ࢎ ൌ ቀ0, , ቁ , ࢑ ൌ  
ଶ ଶ

ଵ ଵ ଵ ଵቀെ , , 0ቁ , ࢒ ൌ  ቀെ , 0, ቁ, denoted by red arrows. The spin on the lower right figure
ଶ ଶ ଶ ଶ
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(black dot) has 6 in-plane NNs (green dots) and 3 NNs (green dots) and 3 NNNs (blue 
dots) on each adjacent plane. 

Each spin has six in-plane NNs, six out-of-plane NNs, and six out-of-plane NNNs. The 

spin neighbor coordinates are in Table A.1. 

Table A. 1. Neighbor coordinates for spin at (h, k, l): NiO/CoO superlattices 

Layer Nearest neighbors Next nearest neighbors 
Upper layer (l+1) (h,k,l+1), (h, k-1, l+1), 

(h-1,k,l+1) 
(h-1,k-1,l+1), (h+1, k-1, l+1), 
(h-1, k+1, l+1) 

In-plane (l) (h+1, k ,l), (h-1, k ,l), (h, k­
1, l),(h+1,k-1,l), (h, k+1,l), 
(h-1,k+1,l) 

None 

Lower layer (l-1) (h, k, l-1), (h+1, k, l-1), (h, 
k+1, l-1) 

(h+1, k+1, l-1), (h-1, k+1, l-1), 
(h+1, k-1, l-1) 

          Let nx, ny, and ny be the dimensions of the 3-dimensional spin array. To load spins, 

read in the spin and figure out the spin coordinates. The neighbor coordinates are 

calculated as the following for the spin at (h, k, l). To identify the periodic boundary, I set 

the coordinates as the following, where 

hup = (h + 1) % nx 


hdn = (h – 1 + nz) % nx 


kup = (k + 1) % ny 


kdn = (k – 1 + ny) % ny 


lup = (l + 1) % nz 


ldn = (l - 1 + nz) % nz
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        A2. Reduced magnetization calculation procedure for NiO/CoO model 

To calculate the reduced magnetization, I sum up the spins according to the following 

method. 

(1) Read in a spin. 

(2) Calculate the coordinates for the spin (h,k,l) by the formula in the Monte Carlo 

setup section. 

(3) Define the sign of the lattice by the formulas; there are two sublattices of spins 

inter-penetrating each other and opposite in the spin orientations. Here, % is the 

modulo-arithmetic operator. 

sign1 = (h % 2)*2-1 

sign2 = (k % 2)*2-1 

sign3 = (l % 2)*2-1 

sign4 = ((h + k + l) % 2)*2-1 

In this case, sign4 corresponds to the sublattices along the (111) direction. 

(4) Add the spins multiplied by the sign to the reduced magnetization sum, which was 

initially set to be zero. 

Reduced magnetization = Reduced magnetization + sign1*spin(h,k,l) 

(5) Repeat this until the end of spin array is reached. 

(6) For the layer reduced magnetization, sum up the spins per each layer. 
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For the layer reduced magnetization, I follow the same steps but sum up the spins per 

each layer.

  A3. Spin loading: CoO/NiO superlattice and FM/AFM/FM trilayer lattice model 

The lattice vectors used in the FM/AFM/FM trilayer lattices are similar to those 

that were used for the NiO/CoO superlattice model. In fact, the basis used for NiO/CoO 

superlattice model calculations is one of the six possible bases. There are three choices 

ଵ ଵ ଵ ଵfor the out-of-plane lattice vector ࢒ ൌ  ቀ0, , ቁ , ࢒ ൌ ቀ , 0, ቁ , ݋
ଶ ଶ ଶ ଶ

ݎ ଵ ଵ࢒ ൌ ቀ , , 0ቁ
ଶ ଶ

 and there 

are two options for choosing the in-plane vectors h and k for each l. Each set of lattice 

vectors h, k, and l will result in different neighbor coordinates. Figure A.2 below shows 

the lattice vector options. 
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Figure A.2: Options for choosing basis vectors: there are six options since each out-of­
plane lattice vectors will have two options for choosing the in-plane vectors. 

However, the choice of lattice vector basis should not affect the result of the 

calculations in principle. For example, I can pick

ଵ ଵ ଵ ଵ ଵ ଵൌ ቄቀെ , , 0ቁ , ቀെ , 0, ቁ , ቀ0, , ቁቅ
ଶ ଶ ଶ ଶ ଶ ଶ

ଵ, 0ቁ , ቀെ , 0 ቁ , ቀ , 0

ଵ
ଶ

ଵܤ

ଶܤ

 (A.2) 


(A.3)
ൌ ቄቀെ ቁቅଵ
ଶ
ଵ
ଶ

ଵ
ଶ

ଵ
ଶ

ଵ
ଶଶ

,
 ,
 ,


െቀൌ ቄଷܤ
ଵ, 0ቁ , ቀെ , 0
ଶ

ଵ, 0ቁ , ቀെ , 0

ቁ , ቀ

ଵ , 0

, 0

ቁቅ , I get the neighbor 

ቁቅଵ
ଶ
ଵ
ଶ

ଵ ଵ
ଶ ଶ

,
 ,
 ,
  (A.4) 


െቀൌ ቄଵܤ If I choose the basis ቁ , ቀ
ଶ ଶ

ଵ ଵ
ଶ ଶ

ଵ
ଶ

ଵ
ଶ

,
 ,
 ,


coordinates in the Table 2 and they are consistent with Figure A.3. 
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ଵ ଵ ଵ ଵ ଵ ଵൌ ቄቀെ , , 0ቁ , ቀെ , 0, ቁ , ቀ , 0, ቁቅ
ଶ ଶ ଶ ଶ ଶ ଶଵܤLattice vectors forFigure A.3: 

Table A.2. Neighbor coordinates for spin at (h, k, l) for basis B1: FM/AFM/FM trilayer 

Layer Nearest neighbors Next nearest neighbors 
Upper layer (l+1) (h,k,l+1), (h+1, k, l+1), 

(h,k-1,l+1) 
(h+1,k+1,l+1), (h-1, k-1, l+1), 
(h+1, k-1, l+1) 

In-plane (l) (h-1, k ,l), (h+1, k ,l), (h, 
k-1, l),(h-1,k-1,l), 
(h, k+1,l), (h+1,k+1,l) 

None 

Lower layer (l-1) (h, k, l-1), (h-1, k, l-1), 
(h, k+1, l-1) 

(h-1, k+1, l-1), (h+1, k+1, l-1), 
(h-1, k-1, l-1) 
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To verify that the choice of this vector does not affect the simulation result, I 

included both B1 and B2 (equations (3.3) and (3.4)) in my calculations. The spin neighbor 

coordinates corresponding to B2 are listed in Table 3. 

Table A.3. Neighbor coordinates for spin at (h, k, l) for basis B2: FM/AFM/FM trilayer 

Layer Nearest neighbors Next nearest neighbors 
Upper layer (l+1) (h,k,l+1), (h+1, k, l+1), 

(h,k-1,l+1) 
(h-1,k-1,l+1), (h+1, k-1, l+1), 
(h+1, k+1, l+1) 

In-plane (l) (h+1, k ,l), (h-1, k ,l), 
(h, k-1, l),(h-1,k-1,l), 
(h, k+1,l), (h+1,k+1,l) 

None 

Lower layer (l-1) (h, k, l-1), (h-1, k, l-1), 
(h, k+1, l-1) 

(h+1, k+1, l-1), (h-1, k+1, l-1), 
(h-1, k-1, l-1) 

The method for spin loading and spin neighbor coordinate calculation is included in the 

next sections. The procedure for the Metropolis algorithm is described in the Appendix B. 

A4. MnSe/ZnTe superlattice model 

1-dimensional spin array with free boundary 

I start with the size of the array, denoted by i, which is variable but an odd integer. Then I 

define the double spin index n of the lattice and it marks all possible spin sites on the 
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cubic lattice. Since the lattice is FCC, only the half of the lattice is occupied with real 

spins. Therefore, I define another variable N, which is the single spin index ܰ ൌ  
௡
ଶ
, and it 

stores the count of the real spins in the lattice. Any double spin site index is written n = h 

+ ki + li2, where (h, k, l) are spin coordinates on the lattice. The actual number of real 

೟೚೟ೌ೗௡ൌ௧௢௧௔௟ܰ spins stored in the array including the zero spins on the boundaries is 
ଶ 

where ntotal is the total number of sites in the cubic lattice.  

ൌ ܰݎ݁ݕ݈ܽݎ݁݌݉ݑ Then I calculated the number of nonzero spins per monolayer 

ଶ
௜ିൌ ܰݓ݋ݎݎ݁݌݉ݑ and the number of spins per row 

, 


ሺ௜ିହሻమ

ଶ 

ହ. Spins are loaded according 

to the following formulas. As each spin is read out of the spin input file, I track the spin 

count (denoted as count) and calculate n using the value of each input spin count. 

l = (count / Numperlayer) + 2 

k = (count % numperlayer) / numperrow + 2 

h = 2(count % numperrow + 1) + (l + k) % 2 

ncount = h + ki + li2 

೎೚ೠ೙௡ൌ௡௭௦௣௜௡ܰ The single index of a nonzero spin is 
ଶ 
೟ 

௟௧௢௧௔ܰ , the spin values are stored. The size of the spin array is For each Ncount

4൅ ݈ܽݎܾ݁݉ݑ݊ ݂݋ ݋ݎ݁ݖ݊݋݊ ݏݎ݁ݕሾሺ ሿ

ൌ 

݅ଶ ൌ 
௡೟೚೟ೌ೗
ଶ

ଵ
ଶ 

To perform the Monte Carlo spin flip, it is necessary to retrieve the spin coordinate 

information. I choose a random site by multiplying Ntotal by a random number r such that 

.௧௢௧௔௟ܰൌ  r א ௣௜௖௞ܰ . i.e.,then calculate npick=2Npickሾ0,1ሿݎ

Subsequently I calculate 
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hpick = 2(npick % numperlayer+1) + (hpick+kpick)%2,  


kpick = (npick % numperrow) +2,  


and lpick = npick / numperlayer + 2. 


For example, if I take a spin lattice with dimension i = 145 with the number of nonzero 


ൌ 9800 
మଵସ଴ൌ

మሺ௜ିହሻ ൌ ݊ݎ݁ݕ݈ܽݎ݁݌݉ݑ spin monolayers is numnzlayer = 10, there are 
ଶ ଶ 

௜ିହ ൌ 
ଵସ଴spins per monolayer and 

ଶ ଶ 
ൌ 70  nonzero spins per each row on the spin 

monolayer. Each monolayer has 140 rows of 70 nonzero spins. The actual spin array has 

14 monolayers since it includes the two empty monolayers on each layer boundary. The 

spin coordinates are calculated as follows. 

l = count / 9800 + 2 

k = (count % 9800)/70 + 2 

h = 2(count%7 + 1) + (l + k) % 2 

n = h + (145)k + (21025)l 

మሺଵ଴ାସሻ=147175 and the total number of 
ଶ

ଵସହൌ்௢௧௔௟ܰ The total number of real spin sites is 

nonzero spins is 9800 (number of nonzero spins per monolayer). 

Each spin has four nearest neighbors and four next nearest neighbors in plane and eight 

nearest neighbors and four next nearest neighbors out of plane. With the orthogonal spin 

lattice vectors  

B = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}, the spin neighbor coordinates are as follows. 

In each Monte Carlo step, I pick a spin from the set of nonzero spins so that I do not have 

to check if the spin is zero using an “if” statement. I convert the index of the chosen spin 

into (h, k, l) coordinates. 
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Npick = r×98000, where r is a random number such that 

Then I set npick = 2Npick. 

hpick = 2[(npick %numperlayer)+1]+(h+k)%2, 

kpick = (npick%numperlayer)/numperrow+2, 

lpick = npick /numperlayer+2 

The 1-dimensional neighbor coordinates are listed in Table A.4. 

.ሾ0,1ሿ ݎא

Figure A.4: 1-dimensional spin array with the free boundary 

Table A.4. 1D spin array with basis B = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}: for the spin at N 

Plane Nearest neighbors Next nearest neighbors 
Upper plane (l+2) None N + [(h-2)+( k-2)i+( l+2)i2]/2 
Upper-plane (l+1) N+[h+ ki + i2 (l+2) ] / 2, 

N+[(h-1)+ ki+( l+1)i2]/2, 
None 
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N+[h+ (k-1)i+(l+1)2]/2, 
N+[(h-1)+ (k-1)i+(l+1)i2]/2 

In plane (l) N+[( h+1)+ ki+ li2]/2, 
N +[ h+(k+1)i+ li2]/2, 
N + [(h-1)+ ki+li2)/2 
N + [h+( k-1)i+li2]/2 

N + [(h+1)+(k+1)i+ li2]/2, 
N + [(h-1)+( k+1)i+ li2]/2, 
N + [(h+1)+(k-1)i+li2]/2, 
N + [(h-1)+(k-1)i+ li2]/2 

Lower plane (l-1) N + [h+ki+( l-1)i2]/2, 
N + [(h+1)+ ki+( l-1)i2]/2, 
N + [h+(k+1)i+(l-1)i2]/2, 
N +[(h+1)+(k+1)i+(l-1)i2]/2 

None 

Lower plane (l-2) None N+ [h+2+( k+2)i+(l-2)i2]/2 

Periodic spin lattice with 1-dimensional spin array 

To compare the system with the free boundary I also set up Monte Carlo calculations on 

the FCC lattice with the periodic boundary condition. It is reasonable to consider a spin 

lattice with no spin with incomplete neighbor set. My question in this case would be 

whether a similar helical spin order will be formed in the periodic lattice and whether the 

pitch of the spin helix will change with temperature.  

I consider a 1-dimensional spin array similar to the case with the free boundary 

but I identify the neighbor spins on the boundary edges with the ones on the other 

boundary edge. The spin coordinates have to be modified accordingly. With this 

formulation there is not supposed to be free boundary spins on the edge, but I kept some 

“technical” spin sites on the edge since to ensure that the double spin index n is always 

even. 

I load the spins as I track the spin count and use the spin count to figure out the 

double spin index n in the 1-dimensional array. Note that the size of the spin array is half 



 
 

 

 

 

   

 

 

116 

of the ntotal, where ntotal is the total number of spin sites (both real and technical) in the 

cubic lattice with dimension i.

      Figure A.5: 1-dimensional spin array with the periodic boundary 

The figure above is an example of the spin lattice model I used for the periodic boundary 

i issites on the cubic sheet, where ൌ 121 11ൌ 11 ൈ ݅݅ ൈcase. In the figure, there are 

the dimension (size) of the lattice. The formulas for setting the coordinates are similar but 

now the empty spins are on the upper edge and the right edge only.  

మሺ௜ିଵሻ ൌ ݊ݎ݁ݕ݈ܽݎ݁݌݉ݑ The number of spins per monolayer becomes 
ଶ 
.
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.ሺ௜ିଵሻ ൌ ݊ݓ݋ݎݎ݁݌݉ݑ The number of spins per row is 
ଶ 

I load the spin according to the following. 

݈ ൌ
ݐ݊ݑ݋ܿ

 ݎ݁ݕ݈ܽݎ݁݌݉ݑ݊

݇ ൌ  
௖௢௨௡௧%௡௨௠௣௘௥௟௔௬௘௥

௡௨௠௣௘௥௥௢௪

ሺ2%ݐ݊ݑ݋ܿݓ݋ݎݎ݁݌݉ݑ݊

൅൅݄

, 


݄ ൌ

݊ ൌ ݅݇ ݈݅

ሻ ൅ ሺ݈ ൅ ݇ሻ%2
 

ܰ ൌ  
௡
ଶ
. 

ଶ, 

The spin values are stored for each N. The size of the spin array is 

ൌ௧௢௧௔௟ܰ ሺ௡௨௠௡௭௟௔௬௘௥௦ሻ௜మ 

since there is no free boundary layer.
ଶ

 Table A.5. Neighbor coordinates for a spin at N 

Plane Nearest neighbors Next nearest neighbors 
Upper plane (l+2) None (h-2, k-2, l+2) 
Upper-plane (l+1) (h,k,(l+1)) 

(h-1, k, l+1), 
(h,k-1, l+1), 
(h-1, k-1, l+1) 

None 

In plane (l) (h+1, k, l), 
(h, k+1, l), 
(h-1, k , l), 
(h, k-1, l) 

(h+1, k+1, l), 
(h-1, k+1, l), 
(h+1, k-1, l), 
(h-1, k-1, l) 

Lower plane (l-1) (h, k, l-1), 
(h+1, k, l-1), 
(h,k+1, l-1), 
(h+1, k+1, l-1) 

None 

Lower plane(l-2) None (h+2, k+2, l-2) 

As in the case with the free boundary, each 3-dimensional coordinates are converted into 

the 1-dimensional coordinate by the formula  
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ൌ 
௛೎೚೚ೝ೏೔೙ೌ೟೐ା௞೎೚೚ೝ೏೔೙ೌ೟೐௜ା௟೎೚೚ೝ೏೔೙ೌ೟೐௜మ 

.௘ ଶ 

In the Monte Carlo step, I pick a random index Npick, which is the product of number of 

 Then multiply Npick.ሿ0,1ሾݎ ݎ where r is a random number such that , א

by 2 to obtain npick and extract the coordinates (hpick, kpick, lpick) for the picked index using 

nonzero spins and 

the following formula.  

௣௜௖௞ܰൌ 2௣௜௖௞݊

௣௜௖௞݊
 ݎ݁ݕ݈ܽݎ݁݌݉ݑ݊

ൌ௣௜௖௞݈

݇௣௜௖௞ ൌ 
௡೛೔೎ೖ%௡௨௠௣௘௥௟௔௬௘௥

௡௨௠௣௘௥௥௢௪ 
, 


݄ ௣௜௖௞݊൫ൌݓ݋ݎݎ݁݌݉ݑ݊% 2௣௜௖௞ ൯ ൅ ሺ݈ ൅ ݇ሻ%2. 


If the picked coordinates are (hpick, kpick, lpick) for instance, the corresponding 1­

ା௜೛೔೎ೖା௜௞೛೔೎ೖ௛ൌ௣௜௖௞ܰ dimensional coordinate is 
ଶ 

మ௟೛೔೎ೖ . 


3-dimensional spin array with free boundary 

To eliminate the possibility of geometrical effects of spin lattice on the simulation result, 

ଵ ଵ ଵ ଵ ଵ ଵI included calculations with the basis ܤ ൌ  ቄቀ , , 0ቁ , ቀെ  , , 0ቁ , ቀ0,  , ቁቅ. The system 
ଶ ଶ ଶ ଶ ଶ ଶ

size is defined as Ntotal = (nx + 4)(ny + 4)(nz + 4), where nx, ny, nz are the nonzero spin 

layer dimensions; Ntotal includes zero spins on the free boundary spins. Since the basis 

vectors are “slanted”, the spin sheets are shifted up as the layers propagate on the growth 

direction. I store the spins in a 3-dimensional array.  
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Figures A.6 and A.7 show the spin layer configurations with the basis B. 

Figure A.6: 3-dimensional spin planes 

Figure A.7: 3-dimensional spin array with the free boundary 

For the system with the free boundary I leave the edge spins empty. The system 

size parameter nx, ny, and nz are known, so spin loading function uses them. The size of 

the spin array is (nx+4)×(ny+4)× (nz+4), where nx×ny× nz is the inner nonzero spin lattice 

size. 
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For each input spin count, the spin loading formula becomes as the following. 

h = count % nx + 2 

k = (count % (nxny)) / nx + 2

 l = count / (nxny) + 2 

I add 2 to each coordinate since there are zero boundary spins. In the Monte Carlo spin 

flip step, I only choose from the pool of nonzero spins to avoid “if” statements.  

For the Monte Carlo step, let the picked spin index be Npick and the total number of 

 is a ሾ0,1ሿ ݎ א, where௡௢௡௭௘௥௢ܰൌ  ௣௜௖௞ܰ andnonzero spins be Nnonzero. Nnonzero=nxnynzݎ

nonzero random number. Then the 3-dimensional coordinates are calculated from the 

formulas below. 

hpick = Npick % nx + 2 

kpick = (Npick % (nxny)) / nx + 2

 lpick = Npick / (nxny) + 2 

For both energy calculation and the Monte Carlo steps, neighbor coordinates have 

to be configured. Let hup = h+1, hup2 = h+ 2, hdn =  h-1, hdn2 = h-2, kup = k+1, kup2 = 

k + 2, kdn=k-1, kdn2 = k – 2, lup = l+1, lup2 =  l + 2, ldn = l-1, and ldn2 = l – 2, then the 

neighbor coordinates are as in the table A.6.  

                          Table A.6.  Neighbor coordinates for a spin at (h, k, l) 

Plane Nearest neighbors Next nearest neighbors 
Upper plane (l+2) None (hdn2, kdn2, lup2) 
Upper-plane (l+1) (h, k, lup), (hup, k, lup), 

(h, kdn, lup), (hdn, kdn, lup) 
None 

In plane (l) (hup, k, l),(h, kup, l), 
(hdn, k ,l), (h, kdn, l) 

(hup, kup, l), (hdn, kup, l), 
(hup, kdn, l),(hdn, kdn, l) 

Lower plane (l-1) (h, k, ldn), (hup, k, ldn), 
(h,kup,1dn),(hup, kup, ldn) 

None 
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Lower plane(l-2) None (hup2, kup2, ldn2) 

3-dimensional spin array with periodic boundary 

In the case of the periodic boundary I remove all free boundary spins and identify edge 

spins. The total size of the system is Ntotal = nx×ny×nz, where nx, ny, nz are lattice 

dimensions. The diagram below shows the spin lattice. 

Figure A.8: 3-dimensional spin array with periodic boundary with the basis vector ࡮ ൌ 

0ቁ ሺ0, ଵ ૚ሻሽଵ ଵ ଵ ଵሼቀ , , 0ቁ , ቀെ , , , ,
ଶ ଶ ଶ ଶ ଶ ૛

Since there is no zero spin, spin loading formulas gets simplified to 

h = count % nx 
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k = count % (nxny) / nx 

l = count / (nxny), where count is the loaded spin count. 

The neighbor coordinates are identical except that the boundary coordinates will be 

identified with the spin sited on the other edge using modulo arithmetic.  

lup = (l + 1) % nz, ldn = (l – 1+nz) % nz, lup2 = (l + 2) % nz, ldn2 = (l – 2+nz) % nz, kup 

= (k + 1) % ny, kdn = (k – 1+ny) % ny, kup2 = (k + 2) % ny, kdn2 = (k – 2+ny) % ny, hup 

= (h + 1) % nx, hdn = (h – 1+nx) % nx ,hup2 = (h + 2) % nx, hdn2 = (h – 2+nx) % nx. 

There are other ways to simulate the periodic boundary. One method I considered was to 

copy the nonzero edge spins on the boundary; the drawback of this method is that I need 

to update the image of the edge spin whenever I update an edge spin, which will slow 

down the calculation. 

To speed up the calculation, I used a neighbor table; I stored the list of neighbor 

coordinates so that both energy calculation function and Monte Carlo spin flip function 

can access it. 

                                    Structure factor algorithm

   The algorithm for calculating the structure factor is as the following. 

ሬሬሬԦపܵൌ ሺԦపݎሬሬ

(1) Read the spin input file. 

(2) Calculate the coordinates

, ,௬ݍ ሺԦݍݍ ൌݍ-vectorq(3) Set the ௫ ௭

,௜ݔ ,௜ݕ ௜ሻݖ

ሻ

 of each spin  in the FCC lattice.  

. 
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is a vector ሬԦ ሬԦܲ , whereܲ vector and the spin vector, calculate the vectorq-(3) Using the 

that represents the spin projected on the plane perpendicular to   

ൈ (4)ܥԦሬԦݍ Take the cross product: ൌ ܲ Ԧ

to obtain the component of the spin that isԦపܵሬሬሬԦܥ

· ܵԦܫሬሬప ሬሬሬపԦ

. Now for each q-vector value, I take the dot 

product of and the spin 

perpendicular to the q-vector and to the vertical axis vector, i.e., 

ሬሬ௩ሬԦ ሬԦ ሬሬሬపԦ· ܵൌ ܫܲ

ൌ Ԧܥ . Also 

I calculate the dot product to obtain the component of the spin vector 

that is in the same direction as the vertical axis vector. Then I sum up the value of 

ԦపݎሬሬԦ ሬሬԦݎሬԦపܫሬ݅ߨexp ሺ2ݍ· ሬሬܫԦప݅ߨexp ሺ2ݍ·

calculate the real part and the imaginary part of the exponential and sum up each 

݁ܿߠݏ݋ ൅ ߠ݊݅ݏ݅.

the exponential ) and ௩ሬԦ ). Computationally I 

of them separately using the Euler formula ௜ఏ ൌ

(5) Sum up the squared imaginary and the squared real part. 

(6) Plot the sum as a function of the q-vector 

Appendix B. The Metropolis algorithm 

The following describes MC calculation procedures with the metropolis algorithm. 

Before the MC calculation starts, calculate the energy of the spin lattice using the 

Hamiltonian given for the model. Then perform MC spin flips, each of which is described 

below. 

(1) Pick a random spin site in the lattice. 

(2) Generate a random spin value for the picked spin site and calculate the energy 

difference between the new and old spin configuration. 
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(3) Check if the energy difference is negative or not. 

(4) If the energy difference is negative, accept the new spin value (flip the spin). 

ݎ number(5) א If the energy difference is not negative, generate a random

 and compare it to expԹݓ,݄݁ݎ݁ݎאሿ0,1ሾ

(6) If the random number r is smaller than exp

ሺି∆ாሻ.
௞் 

ି∆ாሺ
௞்
ሻ, accept the new spin value. 

௝ᇱא 

(7) If not, keep the old value of the spin. 

Repeat the MC step as many times as necessary to equilibrate the system. In low 

temperatures, the acceptance rate is generally low so the system evolves quite slowly [65].  

Appendix C. Implementation of W & W algorithm: calculation procedures   

௞ᇱאேேே

Only the Monte Carlo step will be affected by changing from the Metropolis 

algorithm to the W & W algorithm. This algorithm was implemented in a 3-dimensional 

spin array with a fixed array sizes since variable-sized spin arrays for simplicity; fixing 

the array sizes significantly speeds up the program. The spin array size used was 10 

monolayers of 100×100 spins. Let the total number of spin sites be numsites and the 

index of a randomly picked spin be ransite. The effective field ࢌࢌࢋࡱ is defined as the sum 

of coupling of the spin neighbors. Note that there is no external magnetic field is applied 

to the system. 

൅ܬ෍ܬ ෍ܬ൅ ෍ܬଵ௜௡ ଵ௢௨௧ ଶ௜௡ ଵ௢௨௧
ேேே ௜௡א௞ேே ௢௨௧ 
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௝אேே 
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(1) Pick a random spin site. ransite = random*numsites 

(2) Obtain the effective field ࢌࢌࢋࡱ for the selected spin site. 

ൌ௬ܵ

ଵݎሺ െ 1ሻ 

௫ܵ

ଵݎ

߮  angle א

௭ܵ

ሾ0, ߨሿ

ൌ ݇ ݈݊ܶ ሺ ቀെ 
ଶா
௞்
೐೑೑ቁ െ  ଵሻexpݎ

ൌ ට1 െ ܵ

(3) Pick a random number and set . 


ଶ߮ݏ݋ܿ
௭(4) Pick a random  and andset 

ට1 െ ܵ௭ଶ .߮݊݅ݏ 

(5) Select two vectors J and k that are perpendicular to the ࢌࢌࢋࡱ by taking the cross 

products ࡶ ൌ ࢌࢌࢋࡱ  ൈ ࢏ࡿ  and ࢑ ൌ ࢌࢌࢋࡱ  ൈ  ࡶ

(6) Project Sx and Sy onto vectors J and k. 

(7) Update the spin value to (Sx, Sy, Sz). 

(8) Repeat. 

Appendix D. Comments on the boundary condition 

In studying spin lattices with MC methods, the choice of the boundary condition 

can influence the behavior of the system.  For example, the periodic boundary condition 

eliminates the boundary effect but it suffers the finite size effect [26]. If the size of the 

௅lattice is L, the correlation length becomes and the resultant property of the system 
ଶ 

differs from those of the corresponding infinite lattice [26]. Finite sizes can affect the 

order of phase transition [26]. 

A way to reduce finite size effect is to introduce an effective field which acts only 

on the boundary spins and which is adjusted to keep the magnetization of the boundary 



 

 

 

  

 

 

      

 

 

126 

equal to the mean magnetization of the bulk; this method is called the mean field 

boundary condition [26]. There are other boundary conditions such as screw periodic 

boundary conditions and anti-periodic boundary condition [26]. To study surface effects, 

the free boundary condition is a reasonable choice [26].   

W.A. Saslow et al. used the self-determined boundary condition, which seems 

“facilitating” the formation of spin helix since at the boundary a random helical phase 

was chosen [117]. To study the effect of the thickness of the material one can either 

increase the size of the lattice and study the effect or fix the spins on the boundaries so 

that the spins on the layers near the edge are pinned to the fixed spins. 

Appendix E. Notes on random number generators 

The programs were written using the BOOST random number generator as well 

as with xorshift random number generator [127, 128]. For the BOOST random number 

generator, it should be noted that the sequence of random numbers started from the same 

seed number.  Another option for the random number generator was the xorshift random 

number generator by Georege Marsaglia, which uses a set of five random unsigned 

integers as the seed numbers [128]. There was no significant difference in the results 

from both random number generators.  
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Appendix F. Comments on programming 

I used the Matrix library in the C++ programming language to construct variable-

sized multi-dimensional spin arrays [129]. Dynamic arrays in C++ allow variable-sized 

arrays but they are limited to building 1-dimensional arrays [129].  Matrix library allows 

up to 3-dimensional spin arrays of a variable size [129]. 

On average 40000 MC spin flips per spin were performed to equilibrate the 

system and data was taken after performing extra 20000 flips per spin. Note that the 

equilibration time was not calculated in my projects. To estimate the equilibration time, 

the time-displaced auto-correlation function is calculated for a variable (i.e., 

magnetization, energy, and etc [65]. The time-displaced auto-correlation function for 

magnetization is defined         

ܺሺݐሻ ൌ න݀ݐ 
ᇱሾ݉ሺݐᇱሻ ݉ሿሾ൐݉ െ൏ ሺݐᇱ ൅  ሻݐ

ଶ൐݉ െ൏ 

൐݉ െ൏ ሿ 

ൌ ᇱ ൅ݐᇱሻ݉ሺݐᇱሾ݉ሺݐ݀׬ ሻ ሿݐ  (F. 1) 


The auto-correlation function is expected to fall exponentially. X(t)~e-t/τ, where τ is 

defined as the correlation time and a form of discrete sum is used to calculate this 

quantity in simulations [65].  

Also it should be noted that the free energy of the system was not calculated. The 

challenge is to calculate the entropy of the system. It is also possible to measure entropy 
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using the Metropolis MC algorithm by using the specific heat C by the following 

formula , which is the equation [65] 

ܶሺ ݀ܶ ்
஼்

଴׬

However, it requires numerical integration techniques that add a significant complexity to 

the problem [65].   

Appendix G. Comments on magnetic interactions 

Two magnetic dipoles μ1 and μ2 separated by r have energy equal to

ܧ ൌ  
ସగ
ఓబ
௥య ቂࣆ૚ ൉  ૛ െࣆ

௥
ଷ
మ 
ሺࣆ૚ ൉ ૛ ൉ࣆሻሺ࢘ .ሻቃ࢘  (G.1) [11] 

The order of magnitude of this effect for the moments each of μ =1 μB separated by 1 Å is 

approximately 
ସగ
ఓమ

௥య ~10ିଶଷJ which is equivalent to 1 K in temperature [11]. Since many 

materials are in order at much higher temperatures, the magnetic dipolar interaction is too 

weak to account for the ordering of magnetic materials [11]. This is associated with the 

long range order, which is related to the formation of domain walls [11] 

Exchange interactions are electrostatic interactions which arise because charges of 

the same sign cost energy when they are close together and they save energy when they 

are apart [23]. The Pauli’s exclusion principle is behind this [11, 37]. 

There are also other mechanisms such as direct exchange, superexchange, double 

exchange, anisotropic exchange interaction (Dzyaloshinsky-Moriya interaction), and 

RKKY interaction [45, 46, 74, 130].  

ܵ ሻ ൌ  , where S(T0=0)=0 is assumed.  (F. 2) 
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Appendix H. Units used for the MC calculations 

The units used in the calculations are not the standard SI units. Therefore, it is 

worth showing how the units for MC simulations were configured. A reference unit 

variable was chosen and the units for the other variables were adjusted to the reference 

variable. In this case, the reference variable Jref is the exchange constant for the most 

dominant energy term in the Hamiltonian, which is either J1 or J2 depending on which 

one has a larger magnitude.  

 Let the reference variable be |Jref|. Note that the absolute value is taken for Jref to 

eliminate the possibility of having a negative temperature unit. The reference exchange 

constants are |J2,NiO|, |J2|, and |J1| for NiO/CoO, FM/AFM/FM, and MnTe/ZnSe systems 

respectively. First I set |Jref| =1.0. Then I consider a general form of the Hamiltonian H 

used for the MC calculations.

ܪ ൌ  ∑௜ ࢏ࡿ · ሺJ୰ୣ୤ ∑௝ఢ௡௘௜௚௛௕௢௥ଵ ࢐ࡿ ൅ J୬୭୬୰ୣ୤ ∑௞א௡௘௜௚௛௕௢௥ଶ ࢑ࡿ െ ۰ሻ, (H. 1) 

where Jref and Jnonref are reference and non-reference exchange constants respectively. The 

unit for any Hamiltonian is energy.  Let the unit of a spin be [S] and the unit of energy 

ሾுሿ[H], then the unit for the exchange constants Jref and Jnonref is మ. Then the unit for the 
ሾௌሿ

ଶሿܬൌ |ሿܪሾHamiltonian is ௥௘௙|ሾܵ . 
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The magnetic interaction term is included to derive the unit for the magnetic field 

for an electron is defined௠௔௚ܧ . The magnetic interaction energy (Zeeman energy) B 

ൌߤ െ௠௔௚ܧ ܕ۰, ·஻ (H.2)



ߤ஻ are magnetic field, magnetic moment of the material, and the Bohr where B, m, and 

magneton respectively [131]. However, since our system is composed of magnetic ions, 

ߤ  ஻ has to be replaced by the gyromagnetic ratio ீ for a magnetic ion which is not anߤ

is the g-factor ݃ , where ஻ߤൌ  electron. The gyromagnetic ratio of an atom or an ionߤீ݃

for the particle of interest [131]. 

,′௠௔௚ܧ In other words, magnetic interaction energy for a magnetic ion is 

′ · ۰ ൌ െீߤ ࡿ ∑ . The unit of the magnetic field is  · ܧ௜௠௔௚࢏۰

where 

ൌܕ െ  

ൌ 
ൣா೘ೌ೒ᇱ൧ ൌ 

ሾுሾ࡮ሿ 
ఓಸሾௌሿ ఓಸሾௌ

ሿ 
ሿ
 =
 
௃ೝ೐೑ሾௌ
ఓಸሾௌ

ሿ
ሿ

మ 

ൌ 
௃ೝ೐೑ሾௌሿ
ఓಸ 

. 
 (H.3) 


The unit for the reduced temperature comes from the following equation. 

ଶሿሾܵ௥௘௙ൌ ሿሾ஻ൌܬ ݇ሿܪ T  (H. 4)ሾ

Rearranging the terms gives the unit of temperature ሾܶሿ ൌ 
௃ೝ೐೑ሾௌሿమ

௞ಳ 
. 


, the magnetic ۰ ࣎ ൌ ൈܕ  To obtain the unit of magnetic torque, I use the equation 

ሾ࣎ሿ ൌ ሾ ۰ሿሾܕ ሿ 
మ

ൌ 
௃ೝ೐೑
ఓ
ఓ

ಸ

ಸሾௌሿ ൌ 
 . .௥௘௙ሾܵሿଶmoment has the unit of spinܬ

I assume that the spin is normalized (i.e., normalized) for the MC calculations. Therefore, 

the unit of the spin [S] = 1. If I substitute [S] with unity, I obtain the reduced units for 

magnetic field, magnetic torque, and temperature. 

ሾTሿ ൌ 
௃
௞
ೝ೐೑
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ሾ࣎ሿ ൌ  ௥௘௙ܬ

ൌ 
௃
ఓ
ೝ೐೑

ಸ 
,


B is the Boltzmann constant and
 

ሾ ሿ۰

where k
 
ߤீ  is the gyromagnetic ratio of the magnetic ion 

of interest. For the simulation of NiO/CoO and FM/AFM/FM superlattices, the reference 

variable |Jref| = |J2| = J2, where J2 > 0. For the MnSe/ZnTe system, |Jref| = |J1| = J1, sinceJ1 

> 0. 
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Appendix J. Some programs used in the project 

J1. MC program for diluted AFM lattice 

#include "Matrix.h" 
#include "MatrixIO.h" 
#include <iostream> 
#include <fstream> 
#include <math.h> 
#include <iomanip>
#include <sstream> 
#include <string> 

// Diluted layer so that I can use this for a bulk simulations 

// xorshift RNG -renamed from niocoo_h.cpp on April 8, 2012 

/*
The basis vectors h=(-0.5, 0.5, 0),k=(-0.5, 0, 0.5),l=(0,

0.5, 0.5) 

    j1[0][nz]: upper layer neighbor 
    j1[1][nz]: same layer neighbor 
    j1[2][nz]: lower layer neighbor 

    j2[0][nz]: upper layer neighbor 
    j2[1][nz]: same layer neighbor 
    j2[2][nz]: lower layer neighbor 

Free boundary layers on both ends 

For NiO/CoO system, the proposed parameter file:
param_nc.dat 

nx 
itemp
ibext 

ny
deltemp
delbext 

nz 
numtemp
numbext 

MC0 MC1 MC2 
j1NiO
j2NiO
j1CoO
j2CoO 

j1inNiO
j2inNiO
j1inCoO
j2inCoO2 

j1outNiO
j2outNiO
j1outCoO
j2outCoO 
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numNiO numCoO 

The final scaling factor is decided by 

    j1[0][nz]= j1mat1*j1inmat1 
    j2[0][nz]= j2mat1*j2inmat1 

    j1[0][nz]: upper layer 
    j1[1][nz]: current layer 
    j1[2][nz]: lower layer 

*/ 

using namespace std;
using namespace Numeric_lib;//for Matrices 

void cal_mag_op(Matrix<double,2>& multk, Matrix<double,1> &
m ,Matrix<double, 2> & ml, Matrix<double,3>& spinx, Matrix<double,3>&
spiny, Matrix<double, 3>& spinz,

Matrix<double,3>& multkl,double 
temperature, double bextx); 

  void optest_l(Matrix<double,2>& multk,Matrix<double,3>& 
spinx, Matrix<double,3>& spiny, Matrix<double, 3>& spinz,double
temperature, double bextx, 

Matrix<double,3>& multkl); 

void namegen(double itemp, double deltemp, int numtemp,
double ibext, 

double delbext, int numbext, string series); 

void spinoutput( Matrix<double,3>& spinx, Matrix<double,3>&
spiny, Matrix<double, 3>& spinz,char filename[]);

int spinload(Matrix <double, 3>& spinx, Matrix <double, 3>&
spiny, Matrix <double,3>& spinz, char filename[]); 

void neighborcheck(Matrix <double,3>& spinx, Matrix
<double,3>& spiny, Matrix <double,3>& spinz);

void spinprint(Matrix <double,3>& spinx, Matrix <double,
3>& spiny, Matrix <double, 3>& spinz); 

//Monte Carlo calculation and energy calculation 

void randomspin(double &sx, double &sy, double &sz);//drand
function 

void randomspin_xorshift(double &sx, double &sy, double
&sz);//drand function 
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void scale_NiOCoO( Matrix <double, 2>& j1scale, Matrix
<double,2>& j2scale 

,double j1inNiO,double j1outNiO, 
double j2inNiO,double j2outNiO 

,double j1inCoO,double j1outCoO, 
double j2inCoO,double j2outCoO, 

int numNiO,int numCoO ); 

  double energycal_scale(Matrix<double,3> &spinx, 
Matrix<double,3>& spiny, Matrix<double, 3>& spinz, 

Matrix <double, 2>& 
j1scale, Matrix <double,2>& j2scale, 

double bextx, 
Matrix<double,1>& m,Matrix<double,2> & multk); 

//not only the energy, this function calculates
magnetization and reduced magnetization; 

  void MonteCarlo_niocoo_dil(Matrix<double,2>& multk, 
Matrix<double,3>& spinx, Matrix<double,3>& spiny,

Matrix<double, 3>&
spinz,Matrix <double, 2>& j1scale, Matrix <double,2>& j2scale, double
bextx, 

Matrix<double,1>& m, double
&energy,double temperature,int MC1,int MC2, Matrix<double,3>& multkl); 

//this function also performs equilibration runs 

//xorshift RNG
static unsigned long xxx,yyy,zzz,www,vvv;
//xorshift random number generator 

  unsigned long xorshift(void); 

  // Global variables 

int nx, ny, nz; //dimension
  int numperlayer; 

int numspin;
int nzspin; //number of nonzero spins 

  int main() 
{

   //for the xorshift RNG 
   unsigned int ran; 
   char filename3[15]="fiverands.dat"; 

   ifstream xo; 
xo.open(filename3);
xo >> vvv >> www >> xxx >> yyy >> zzz; 
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 //RNG 

int i, ii,iii; //general indices
cout.setf(ios::fixed);
cout.precision(10); 

double invtemp; // 1.0/temperature

double temperature; // temperature

double bextx; // magnetic field 


//spin arrays
Matrix<double, 1> kmag(4); //magnitude of the k vectors 

//spin variables 

char spinfile[25]="afm.out";

char filename[25]= "postspin.out";

char filename2[25]="prespin.out";

int h,k,l;


int count=0; 

double sx,sy,sz;

double bext(0.0);

double energy; 


int br; //break point 

ifstream param;
param.open("param_nc.dat"); 

double itemp,deltemp;

double ibextx,delbextx;

int numbextx,numtemp; 


int MC0,MC1,MC2;

string series;

double j1NiO,j1inNiO,j1outNiO;

double j2NiO,j2inNiO,j2outNiO;

double j1CoO,j1inCoO,j1outCoO;

double j2CoO,j2inCoO,j2outCoO;

int numNiO,numCoO; 


param >> series;

param >> nx >> ny >> nz; 

param >> itemp >> deltemp >> numtemp;

param >> ibextx >> delbextx >> numbextx; 

param >> MC0 >> MC1 >> MC2; 

param >> j1NiO >> j1inNiO >> j1outNiO;

param >> j2NiO >> j2inNiO >> j2outNiO; 
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param >> j1CoO >> j1inCoO >> j1outCoO;

param >> j2CoO >> j2inCoO >> j2outCoO;

param >> numNiO >> numCoO; 


cout << series << endl; 

cout << nx <<" " << ny << " " <<nz << endl; 

cout << itemp <<" " << deltemp << " " <<numtemp <<


endl; 
cout << ibextx <<" " << delbextx << " " << numbextx 

<< endl; 
cout << MC0 <<" "<< MC1 << " " << MC2 << 

endl; 
cout << j1NiO <<" "<< j1inNiO << " " << j1outNiO <<

endl; 
cout << j2NiO <<" "<< j2inNiO << " " << j2outNiO <<

endl; 
cout << j1CoO <<" "<< j1inCoO <<" " << j1outCoO <<

endl; 
cout << j2CoO <<" "<< j2inCoO <<" " << j2outCoO <<

endl; 
cout << numNiO <<" "<< numCoO <<" " << endl; 

param.close(); 

Matrix<double,3>spinx(nx,ny,nz); //create the spin matrix
Matrix<double,3>spiny(nx,ny,nz);
Matrix<double,3>spinz(nx,ny,nz); 

Matrix <double,2> ml(3,nz);
Matrix <double,3> multkl(3,4,nz); 

Matrix <double,1> m(3); //magnetization
Matrix <double,2> multk(3,4); //reduced magnetization 

//scaling factors 

Matrix<double, 2>j1scale(3,nz);
Matrix<double, 2>j2scale(3,nz); 

numperlayer=nx*ny;

numspin=nx*ny*nz; 


//NiO: antiferromagnet 

j1inNiO = j1NiO*j1inNiO;
j2inNiO = j2NiO*j2inNiO;
j1outNiO = j1NiO*j1outNiO;
j2outNiO = j2NiO*j2outNiO; 
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//CoO: antiferromagnet 

   j1inCoO= j1CoO*j1inCoO; 
   j2inCoO = j2CoO*j2inCoO; 
   j1outCoO = j1CoO*j1outCoO; 
   j2outCoO = j2CoO*j2outCoO; 

   //generate file names 
   namegen(itemp,deltemp, numtemp, ibextx, delbextx, 
numbextx, series); 

//set the scaling factors 

scale_NiOCoO(j1scale,j2scale,j1inNiO,j1outNiO,
j2inNiO,j2outNiO 

,j1inCoO,j1outCoO,j2inCoO,
j2outCoO,numNiO,numCoO); 

invtemp = 1.0/itemp;
cout << "The inverse temperature is " << invtemp <<

endl; 

count = spinload(spinx, spiny,spinz,spinfile); 

// for debugging, print spins

// spinprint(spinx,spiny,spinz); 


cout<<"There are "<<count<<" spins total."<<endl;
if(count!=nx*ny*nz) cout << "The spin count is wrong."

<< endl; 

//neighborcheck(spinx,spiny,spinz); 

//this has to be changed to the energy with scales 

//assume that k=k1+k2+k3+k4, where ki are 3-dimensional
vectors 

energy = energycal_scale(spinx, spiny, spinz, j1scale,
j2scale, ibextx, m, multk); 

cout << "The energy per spin is" << energy /
double(count) << endl;

cal_mag_op(multk, m ,ml,spinx,spiny,spinz, multkl, itemp,
ibextx); 

optest_l(multk,spinx, spiny, spinz,itemp, ibextx,
multkl); 

for(iii=0;iii<2;iii++)
{ 

kmag(0)=kmag(0)+multk(iii,0)*multk(iii,0); 
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kmag(1)=kmag(1)+multk(iii,1)*multk(iii,1);
kmag(2)=kmag(2)+multk(iii,2)*multk(iii,2);
kmag(3)=kmag(3)+multk(iii,3)*multk(iii,3);

} 

kmag(0)=sqrt(kmag(0))/double(count);
kmag(1)=sqrt(kmag(1))/double(count);
kmag(2)=sqrt(kmag(2))/double(count);
kmag(3)=sqrt(kmag(3))/double(count); 

cout <<"The reduced magnetization is " <<"("<< kmag(0)
<<" " << kmag(1) <<" "<<kmag(2) <<" "<<kmag(3)<<")" << endl; 

   // spinoutput(spinx,spiny,spinz,filename2); 

ifstream file; 
file.open("filenams.dat"); 

for(ii=0;ii<numtemp;ii++)
{ //there is no magnetic field loop; should I add

one? Maybe not. 
for(iii=0;iii<numbextx;iii++)
{ 

file>>filename;
bextx=ibextx + double(iii)*delbextx;

temperature=itemp+ii*deltemp;
cout<<"The current temperature is " <<

temperature << endl;
cout<<"The current magnetic field is " << bextx << 

endl; 
cout<<"The current file name is "<<filename<<endl;
MonteCarlo_niocoo_dil(multk, spinx, spiny, spinz,

j1scale, j2scale, bextx, m, energy, temperature,MC1,MC2,multkl);
cal_mag_op(multk, m ,ml,spinx,spiny,spinz, multkl,

temperature, bextx); 
optest_l(multk,spinx, spiny, spinz,temperature,

bextx, multkl); 
spinoutput(spinx,spiny, spinz,filename);

} 

} 

return 0; 

} 

void randomspin(double &sx, double &sy, double &sz)
{ 
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 //generates a random spin 


double r1,r2,r3;

double angle, height;

double pi=3.1415926535897932384626; 


r1=drand48();

r2=drand48();

angle=2.0*pi*r1; 


sx= 2.0*r2-1.0;

height=sqrt(1.0-sx*sx); 


sy=height*cos(angle);

sz=height*sin(angle); 


return;

}
 

void randomspin_xorshift(double &sx, double &sy, double
&sz) 

{

 //generates a random spin using Boost random number
generator 

unsigned int ran1,ran2,ran3;

double r1, r2,r3;

double angle, height;

double pi=3.1415926535897932384626; 


ran1=xorshift();

r1 = ran1*2.3283064e-10;

ran2=xorshift();

r2 = ran2*2.3283064e-10; 


angle=2.0*pi*r1; 

sx= 2.0*r2-1.0;

height=sqrt(1.0-sx*sx); 


sy=height*cos(angle);

sz=height*sin(angle); 


return; 

} 

void neighborcheck(Matrix <double,3>& spinx, Matrix
<double,3>& spiny, Matrix <double,3>& spinz)

{
 //this program checks for the neighbors 
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int h,k,l;

int flag=0;

int hp,hm,kp,km,lp,lm; 


while(flag==0) 

{
 cout<<"The neighbor check!"<<endl;
cout <<"Please enter the spin coordinates."<<endl; 

cout<<"h:";
cin >> h;
cout<<"k:";
cin>> k;
cout<<"l:";
cin>>l; 

cout <<"You entered ("<<h<<", "<<k<<",
"<<l<<")"<<endl; 

cout <<"The spin values are
(sx,sy,sz)="<<spinx(h,k,l)<<", "<<spiny(h,k,l)<< ",
"<<spinz(h,k,l)<<")"<<endl; 

hp = (h + 1)%nx;
hm = (h + nx-1)%nx;
kp = (k + 1)%ny;
km = (k + ny-1)%ny;
lp = (l + 1)%nz;
lm = (l + nz-1)%nz; 

cout<<"The neighbor coordinates:"<<endl; 

cout<<"The same layer<<"<<endl;
cout<< "(" << hp << "," << k << "," << l << ")" <<

" (" << spinx(hp,k,l) << "," << spiny(hp,k,l) << "," << spinz(hp,k,l)
<< ")" << endl; 

cout<< "(" << h << "," << kp << "," << l << ")" <<
" (" << spinx(h,kp,l) << "," << spiny(h,kp,l) << "," << spinz(h,kp,l)
<< ")" << endl; 

cout<< "(" << hm << "," << kp << "," << l << ")" <<
" (" << spinx(hm,kp,l) << "," << spiny(hm,kp,l) << "," <<
spinz(hm,kp,l) << ")" << endl;

cout<< "(" << hm << "," << k << "," << l << ")" <<
" (" << spinx(hm,k,l) << "," << spiny(hm,k,l) << "," << spinz(hm,k,l)
<< ")" << endl; 

cout<< "(" << hp << "," << km << "," << l << ")" <<
" (" << spinx(hp,km,l) << "," << spiny(hp,km,l) << "," <<
spinz(hp,km,l) << ")" << endl; 
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cout<< "(" << h << "," << km << "," << l << ")" <<
" (" << spinx(h,km,l) << "," << spiny(h,km,l) << "," << spinz(h,km,l)
<< ")" << endl; 

cout<<"Different layers"<<endl; 

cout<< "("<<h<<","<<k<<","<<lp<<")"<<" 
("<<spinx(h,k,lp)<<","<<spiny(h,k,lp)<<","<<spinz(h,k,lp)<<")"<<endl;

cout<< "("<<h<<","<<km<<","<<lp<<")"<<" 
("<<spinx(h,km,lp)<<","<<spiny(h,km,lp)<<","<<spinz(h,km,lp)<<")"<<endl
; 

cout<< "("<<hm<<","<<k<<","<<lp<<")"<<" 
("<<spinx(hm,k,lp)<<","<<spiny(hm,k,lp)<<","<<spinz(hm,k,lp)<<")"<<endl
; 

cout<< "("<<hp<<","<<km<<","<<lp<<")"<<" 
("<<spinx(hp,km,lp)<<","<<spiny(hp,km,lp)<<","<<spinz(hp,km,lp)<<")"<<e
ndl; 

cout<< "("<<hm<<","<<kp<<","<<lp<<")"<<" 
("<<spinx(hm,kp,lp)<<","<<spiny(hm,kp,lp)<<","<<spinz(hm,kp,lp)<<")"<<e
ndl; 

cout<< "("<<hm<<","<<km<<","<<lp<<")"<<" 
("<<spinx(hm,km,lp)<<","<<spiny(hm,km,lp)<<","<<spinz(hm,km,lp)<<")"<<e
ndl; 

cout<< "("<<h<<","<<k<<","<<lm<<")"<<" 
("<<spinx(h,k,lm)<<","<<spiny(h,k,lm)<<","<<spinz(h,k,lm)<<")"<<endl;

cout<< "("<<hp<<","<<k<<","<<lm<<")"<<" 
("<<spinx(hp,k,lm)<<","<<spiny(hp,k,lm)<<","<<spinz(hp,k,lm)<<")"<<endl
; 

cout<< "("<<h<<","<<kp<<","<<lm<<")"<<" 
("<<spinx(h,kp,lm)<<","<<spiny(h,kp,lm)<<","<<spinz(h,kp,lm)<<")"<<endl
; 

cout<< "("<<hp<<","<<km<<","<<lm<<")"<<" 
("<<spinx(hp,km,lm)<<","<<spiny(hp,km,lm)<<","<<spinz(hp,km,lm)<<")"<<e
ndl; 

cout<< "("<<hm<<","<<kp<<","<<lm<<")"<<" 
("<<spinx(hm,kp,lm)<<","<<spiny(hm,kp,lm)<<","<<spinz(hm,kp,lm)<<")"<<e
ndl; 

cout<< "("<<hp<<","<<kp<<","<<lm<<")"<<" 
("<<spinx(hp,kp,lm)<<","<<spiny(hp,kp,lm)<<","<<spinz(hp,kp,lm)<<")"<<e
ndl; 

cout<<"If you want to repeat, please enter 0:";
cin >>flag; 

} 
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cout<<"End of neighbor print."<<endl;
return; 

} 

void spinoutput( Matrix<double,3>& spinx, Matrix<double,3>&
spiny, 

Matrix<double, 3>& spinz, char filename[])
{
 

int h,k,l; 

ofstream outspin; 

outspin.open(filename); 


ofstream spincheck; 
spincheck.open("spincheck.dat"); //for debugging 

cout<<"Spin output function." << endl; 

for(l=0;l<nz;l++)
{ 
for(k=0;k<ny;k++)
{ 

for(h=0;h<nx;h++)
{ 

outspin <<spinx(h,k,l)<<" 
"<<spiny(h,k,l)<<" "<<spinz(h,k,l)<<endl;

spincheck << "hkl: "<<
h<<","<<k<<","<<l <<"," << spinx(h,k,l)<<", "<<spiny(h,k,l)<<",
"<<spinz(h,k,l)<<endl; 

}

}


}
 

outspin.close();

spincheck.close(); 


return; 

} 

int spinload(Matrix <double, 3>& spinx, Matrix <double, 3>&
spiny, Matrix <double,3>& spinz, char filename[])

{

   //for debugging 

   ofstream loadcheck; 


loadcheck.open("load.dat"); 


   //initialize the spin variables 
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spinx=0.0;

spiny=0.0;

spinz=0.0; 


   ifstream inspin; 

   double sx, sy,sz; 
   int h,k,l; 
   int count=0; 

nzspin=0; 

   int br; //break point 
numperlayer=nx*ny; 

inspin.open(filename); 

   cout << "Loading spins."<<endl; 

while(inspin >> sx >> sy >> sz)
{

 h = count%nx;
k = (count%numperlayer)/nx;
l = count/numperlayer; 

loadcheck << "count: "<< count <<" (hkl)="<<h<<"
"<< k<<" "<<l<<endl; 

spinx(h,k,l)=sx;
spiny(h,k,l)=sy;
spinz(h,k,l)=sz; 

loadcheck << "The spin is
"<<spinx(h,k,l)<<","<<spiny(h,k,l)<<","<<spinz(h,k,l)<<endl; 

if(sqrt(spinx(h,k,l)*spinx(h,k,l)+spiny(h,k,l)*spiny(h,k,l)+spinz(h,k,l
)*spinz(h,k,l)) > 0.99) nzspin = nzspin + 1; 

count=count+1; 

// cout <<"the spin is input"<<endl;
} 

inspin.close();
cout << " There are " << count << " spins total according

to the loading function." << endl;
cout << "There are "<< nzspin << "nonzero spins according to

the loading function." << endl; 

loadcheck << " There are " << count << " spins total
according to the loading function." << endl; 
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 loadcheck << " There are " << nzspin << " spins total
according to the loading function." << endl;

loadcheck.close(); 

return count;

}
 

void spinprint(Matrix <double,3>& spinx, Matrix <double,
3>& spiny, Matrix <double, 3>& spinz)

{
 int h,k,l; 

// cout<<"spin load test"<<endl;
cout <<"(h,k,l) and spinx spiny spinz"<<endl; 

for(l=0; l<nz; l++)
{
 for(k=0 ;k< ny; k++)

{ 
for(h=0;h< nx;h++) 

{ 
cout<<"("<<h<<","<<k<<","<<l<<"),("

<<spinx(h,k,l)<<","<<spiny(h,k,l)<<","<<spinz(h,k,l)<<")"<<endl; 

}

}


}
 

return; 

}

  double energycal_scale(Matrix<double,3> &spinx, 
Matrix<double,3>& spiny, Matrix<double, 3>& spinz,

Matrix <double, 2>& 
j1scale, Matrix <double,2>& j2scale, 

double bextx, 
Matrix<double,1>& m,Matrix<double,2> & multk)

{

 double denergy,energy;
int h,k,l;
int hp,hm,kp,km,lp,lm; 

double sum_1,sum_2,sum_3,sum_4,b_sum; 

Matrix <double,1> eff(3); //effective field 

//initialization of variables 
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int sign1,sign2,sign3,sign4; 

sum_1=0.0;

sum_2=0.0;

sum_3=0.0;

sum_4=0.0;

b_sum=0.0; 


   m=0.0; //magnetization 
   multk=0.0; //order parameter 

//magnetization and reduced magnetization can be
calculated from m and op

// cout << "Energy function calculation starts here." 
<<endl; 

for(l=0;l<nz;l++)
{ 

for(k=0;k<ny;k++)
{

 for(h=0;h<nx;h++)
{ 

//implement the periodic boundary 
condition 

hp = (h+1)%nx; 
hm = (h+nx-1)%nx; 
kp = (k+1)%ny; 
km = (k+ny-1)%ny; 
lp = (l+1)%nz; //upper layer
lm = (l+nz-1)%nz; //lower layer 

eff(0)=0.0;
eff(1)=0.0;
eff(2)=0.0; 

//maybe I add some break points? 

// cout<<"h k l: "<<h<<" "<<k<<"
"<<l<<endl; 

// check << "hkl: "<< h << "," << k <<
"," << l << endl; 

// check <<"lm j1scale(0,l):
"<<j1scale(0,l)<<endl; 

// check <<"l j1scale(1,l):
"<<j1scale(1,l)<<endl; 

// check <<"lp j1scale(2,l):
"<<j1scale(2,l)<<endl; 

// check <<"lm j2scale(0,l):
"<<j2scale(0,l)<<endl; 
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// check <<"l j2scale(1,l):
"<<j2scale(1,l)<<endl; 

// check <<"lp j2scale(2,l):
"<<j2scale(2,l)<<endl; 

//Do the neighbor sums; there are 18 neighbors 

eff(0) = eff(0)+ 
j1scale(1,l)*(spinx(hp,k,l)+spinx(h,kp,l)+spinx(hm,kp,l)+spinx(hm,k,l) 

+spinx(hp,km,l)+spinx(h,km,l)); //current layer neighbors 

eff(1) = eff(1)+ 
j1scale(1,l)*(spiny(hp,k,l)+spiny(h,kp,l)+spiny(hm,kp,l)+spiny(hm,k,l) 

+spiny(hp,km,l)+spiny(h,km,l)); 

eff(2) = eff(2)+ 
j1scale(1,l)*(spinz(hp,k,l)+spinz(h,kp,l)+spinz(hm,kp,l)+spinz(hm,k,l) 

+spinz(hp,km,l)+spinz(h,km,l)); 

//check << "in-plane j1 eff: " <<
eff(0) << "," << eff(1) << "," << eff(2) << endl; 

// lower layer 

eff(0) = eff(0) + 
j1scale(2,l)*(spinx(h,k,lp) + spinx(h,km,lp) + spinx(hm,k,lp));//lower
layer neighbors 

eff(1) = eff(1) + 
j1scale(2,l)*(spiny(h,k,lp) + spiny(h,km,lp) + spiny(hm,k,lp));

eff(2) = eff(2) + 
j1scale(2,l)*(spinz(h,k,lp) + spinz(h,km,lp) + spinz(hm,k,lp)); 

// check << "lp j1 eff: " << eff(0) <<
"," << eff(1) << "," << eff(2) << endl; 

eff(0) = eff(0) + 
j2scale(2,l)*( spinx(hp,km,lp) + spinx(hm, kp, lp) + spinx(hm, km,
lp)); // lower layer neighbors 

eff(1) = eff(1) + 
j2scale(2,l)*( spiny(hp,km,lp) + spiny(hm, kp, lp) + spiny(hm, km,
lp)); 

eff(2) = eff(2) + 
j2scale(2,l)*( spinz(hp,km,lp) + spinz(hm, kp, lp) + spinz(hm, km,
lp)); 

// check << "lp j2 eff: " << eff(0) <<
"," << eff(1) << "," << eff(2) << endl; 

//upper layer 
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eff(0) = eff(0)+ 
j1scale(0,l)*(spinx(h,k,lm)+spinx(hp,k,lm)+spinx(h,kp,lm));//upper
layer neighbors 

eff(1) = eff(1)+ 
j1scale(0,l)*(spiny(h,k,lm)+spiny(hp,k,lm)+spiny(h,kp,lm));

eff(2) = eff(2)+ 
j1scale(0,l)*(spinz(h,k,lm)+spinz(hp,k,lm)+spinz(h,kp,lm)); 

// check << "lm j1 eff: " << eff(0) <<
"," << eff(1) << "," << eff(2) << endl; 

eff(0) = eff(0)+ j2scale(0,l)*(spinx(hp,
km, lm) + spinx(hm, kp, lm) + spinx(hp, kp, lm));//upper layer
neighbors 

eff(1) = eff(1)+ j2scale(0,l)*(spiny(hp,
km, lm) + spiny(hm, kp, lm) + spiny(hp, kp, lm));

eff(2) = eff(2)+ j2scale(0,l)*(spinz(hp,
km, lm) + spinz(hm, kp, lm) + spinz(hp, kp, lm)); 

// check << "lm j2 eff: " << eff(0) <<
"," << eff(1) << "," << eff(2) << endl; 

//02-16-2010 magnetic field term 
b_sum=b_sum + spinx(h,k,l)*bextx; 

// check <<"b_sum: "<<b_sum<<" and the
magnetic field increment is "<<spinx(h,k,l)*bextx << endl; 

m(0)= m(0)+ spinx(h,k,l); 
m(1)= m(1)+ spiny(h,k,l); 
m(2)= m(2)+ spinz(h,k,l); 

//order parameter 

sign1=(h%2)*2-1;
sign2=(k%2)*2-1;
sign3=(l%2)*2-1;
sign4=((h+k+l)%2)*2-1; 

multk(0,0)=multk(0,0)+double(sign1)*spinx(h,k,l); 

multk(1,0)=multk(1,0)+double(sign1)*spiny(h,k,l); 

multk(2,0)=multk(2,0)+double(sign1)*spinz(h,k,l); 

multk(0,1)=multk(0,1)+double(sign2)*spinx(h,k,l); 

multk(1,1)=multk(1,1)+double(sign2)*spiny(h,k,l); 
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multk(2,1)=multk(2,1)+double(sign2)*spinz(h,k,l); 

multk(0,2)=multk(0,2)+double(sign3)*spinx(h,k,l); 

multk(1,2)=multk(1,2)+double(sign3)*spiny(h,k,l); 

multk(2,2)=multk(2,2)+double(sign3)*spinz(h,k,l); 

multk(0,3)=multk(0,3)+double(sign4)*spinx(h,k,l); 

multk(1,3)=multk(1,3)+double(sign4)*spiny(h,k,l); 

multk(2,3)=multk(2,3)+double(sign4)*spinz(h,k,l); 

denergy= denergy + 
spinx(h,k,l)*eff(0)+spiny(h,k,l)*eff(1)+spinz(h,k,l)*eff(2);

//check <<"The nb energy increment is
"<< spinx(h,k,l)*eff(0)+spiny(h,k,l)*eff(1)+spinz(h,k,l)*eff(2)<<endl;

//check <<"The magnetic field increment
is " <<b_sum<<endl; 

}

 }

 energy= denergy*0.5 + b_sum; 

//check<<"The b_sum is " << b_sum << endl;
//check<<"The double energy is "<< denergy << " and

the halved energy is " << energy << endl;
//Maybe I need to check this program again 

}
   // check.close(); 

return energy; 

}
 

void namegen(double itemp,double deltemp, int
numtemp,double ibextx, double delbextx, int numbextx, string series)

{ 
//this function generates spin output file names

   int q,r; 
   string te="t"; 
   string be="b"; 
   string tempnum,bfieldnum; 
   double temp,bfield; 
   ofstream filenam; 
   string ofilename; 
   string extension=".out"; 
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filenam.open("filenams.dat"); 

for(q=0;q<numtemp; q++)
{ 

for(r=0;r<numbextx;r++)
{

 temp=itemp+q*deltemp;
    bfield = ibextx+ r*delbextx; 
    ostringstream ss0; 
    ostringstream ss1; 

ss0.setf(ios::fixed);
ss0.precision(4);

    ss0 << temp; 
    tempnum =ss0.str(); 

ss1.setf(ios::fixed);
ss1.precision(4);

    ss1 << bfield; 
    bfieldnum =ss1.str(); 

    ofilename= series +te+ 
tempnum+be+bfieldnum+extension;
    cout << ofilename << endl; 
    filenam << ofilename << endl; 

}

} 


filenam.close();

return;


}
 

void cal_mag_op(Matrix<double,2>& multk, Matrix<double,1> &
m ,Matrix<double, 2> & ml, Matrix<double,3>& spinx, Matrix<double,3>&
spiny, Matrix<double, 3>& spinz, 

Matrix<double,3>& multkl,double 
temperature, double bextx)

{ 
//combined magnetization and reduced magnetization

calculations 
//normalization has to be done as well; =D 

Matrix<double, 1> kmag(4); 

Matrix<double,2> kmagl(4,nz); 

Matrix <double,1> mmagl(nz); //layer magnetization 


int count = nx*ny*nz; //number of spins in the

system 

int iii,ii; 
int h,k,l; 
int numl; 
double sign1,sign2,sign3,sign4; 
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double mmag; //magnetization 

//Normalized variables 

double nmmag; 

Matrix<double,1> nmmagl(nz); 

Matrix<double,2> nkmagl(4,nz); 

Matrix<double,1> nkmag(4); 


multk = 0.0; //order parameter

multkl = 0.0;//layer order parameter

m=0.0;//magnetization

ml=0.0;//layer magnetization 


cout<<"The number of spins is "<< numspin << endl; 


//magnetization and reduced magnetization can be
calculated from m and op 

for(l=0;l<nz;l++)
{
for(k=0;k<ny;k++)
{ 

for(h=0;h<nx;h++)
{ 

//implement the periodic boundary 
condition 

//order parameter 

sign1=double(h%2)*2.0-1.0;
sign2=double(k%2)*2.0-1.0;
sign3=double(l%2)*2.0-1.0;
sign4=double((h+k+l)%2)*2.0-1.0; 

      if(sign1!=1.0 && sign1!=-
1.0)cout<<"wrong sign!"<<endl; 

      //regular order parameter 
calculation 

multk(0,0)=multk(0,0)+sign1*spinx(h,k,l);//x-comp 

multk(1,0)=multk(1,0)+sign1*spiny(h,k,l);//y-comp 

multk(2,0)=multk(2,0)+sign1*spinz(h,k,l);//z-comp 

multk(0,1)=multk(0,1)+sign2*spinx(h,k,l); 

multk(1,1)=multk(1,1)+sign2*spiny(h,k,l); 
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 multk(2,1)=multk(2,1)+sign2*spinz(h,k,l); 

multk(0,2)=multk(0,2)+sign3*spinx(h,k,l); 

multk(1,2)=multk(1,2)+sign3*spiny(h,k,l); 

multk(2,2)=multk(2,2)+sign3*spinz(h,k,l); 

multk(0,3)=multk(0,3)+sign4*spinx(h,k,l); 

multk(1,3)=multk(1,3)+sign4*spiny(h,k,l); 

multk(2,3)=multk(2,3)+sign4*spinz(h,k,l); 

//layer order parameter calculation 

multkl(0,0,l)=multkl(0,0,l)+sign1*spinx(h,k,l); 

multkl(1,0,l)=multkl(1,0,l)+sign1*spiny(h,k,l); 

multkl(2,0,l)=multkl(2,0,l)+sign1*spinz(h,k,l); 

multkl(0,1,l)=multkl(0,1,l)+sign2*spinx(h,k,l); 

multkl(1,1,l)=multkl(1,1,l)+sign2*spiny(h,k,l); 

multkl(2,1,l)=multkl(2,1,l)+sign2*spinz(h,k,l); 

multkl(0,2,l)=multkl(0,2,l)+sign3*spinx(h,k,l); 

multkl(1,2,l)=multkl(1,2,l)+sign3*spiny(h,k,l); 

multkl(2,2,l)=multkl(2,2,l)+sign3*spinz(h,k,l); 

multkl(0,3,l)=multkl(0,3,l)+sign4*spinx(h,k,l); 

multkl(1,3,l)=multkl(1,3,l)+sign4*spiny(h,k,l); 

multkl(2,3,l)=multkl(2,3,l)+sign4*spinz(h,k,l); 

      m(0)= m(0)+spinx(h,k,l); 
      m(1)= m(1)+spiny(h,k,l); 
      m(2)= m(2)+spinz(h,k,l); 

ml(0,l)=ml(0,l)+spinx(h,k,l);
ml(1,l)=ml(1,l)+spiny(h,k,l);
ml(2,l)=ml(2,l)+spinz(h,k,l); 
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}

}


}


 //regular order parameter 

kmag(0) = multk(0,0)*multk(0,0) +
multk(1,0)*multk(1,0) + multk(2,0)*multk(2,0);

kmag(1) = multk(0,1)*multk(0,1) +
multk(1,1)*multk(1,1) + multk(2,1)*multk(2,1);

kmag(2) = multk(0,2)*multk(0,2) +
multk(1,2)*multk(1,2) + multk(2,2)*multk(2,2);

kmag(3) = multk(0,3)*multk(0,3) +
multk(1,3)*multk(1,3) + multk(2,3)*multk(2,3); 

//layer order parameter 

for(ii=0; ii<nz; ii++)
{ 

kmagl(0,ii)=
multkl(0,0,ii)*multkl(0,0,ii)+multkl(1,0,ii)*multkl(1,0,ii)+multkl(2,0,
ii)*multkl(2,0,ii); 

kmagl(1,ii)=
multkl(0,1,ii)*multkl(0,1,ii)+multkl(1,1,ii)*multkl(1,1,ii)+multkl(2,1,
ii)*multkl(2,1,ii); 

kmagl(2,ii)=
multkl(0,2,ii)*multkl(0,2,ii)+multkl(1,2,ii)*multkl(1,2,ii)+multkl(2,2,
ii)*multkl(2,2,ii); 

kmagl(3,ii)=
multkl(0,3,ii)*multkl(0,3,ii)+multkl(1,3,ii)*multkl(1,3,ii)+multkl(2,3,
ii)*multkl(2,3,ii); 

cout<<"multkl(0,2): " << 
multkl(0,2,ii) << "multkl(1,2): " << multkl(1,2,ii) << " multkl(2,2): "
<< multkl(2,2,ii) << endl; 

cout<< " kmagl(0,"<<ii<<"): " <<
kmagl(0,ii) << " kmagl(1,"<< ii <<"): " <<kmagl(1,ii) << "
kmagl(2,"<<ii<<"): " << kmagl(2,ii) << " kmagl(3,"<<ii<<"): " <<
kmagl(3,ii) << endl; 

mmagl(ii)=
ml(0,ii)*ml(0,ii)+ml(1,ii)*ml(1,ii)+ml(2,ii)*ml(2,ii);

} 

//normalization 

//total order parameter 

//cout << "Before the normalizaion, the
k vectors are:"<<endl; 

//cout << "(k0):" << sqrt(kmag(0)) <<
endl; 
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//cout << "(k1):" << sqrt(kmag(1)) <<
endl; 

//cout << "(k2):" << sqrt(kmag(2)) <<
endl; 

//cout << "(k3):" << sqrt(kmag(3)) <<
endl; 

nkmag(0)=sqrt(kmag(0))/double(count);
nkmag(1)=sqrt(kmag(1))/double(count);
nkmag(2)=sqrt(kmag(2))/double(count);
nkmag(3)=sqrt(kmag(3))/double(count); 

numl=nx*ny; //number of spins per layer; 

    //layer order parameter 

for(ii=0;ii<nz;ii++)
{

 nkmagl(0,ii)=sqrt(kmagl(0,ii))/double(numl); 

nkmagl(1,ii)=sqrt(kmagl(1,ii))/double(numl); 

nkmagl(2,ii)=sqrt(kmagl(2,ii))/double(numl); 

nkmagl(3,ii)=sqrt(kmagl(3,ii))/double(numl);
//nml(ii)=mmagl(ii)/double(count);

}

 ofstream dataout1;

ofstream dataout2;

ofstream dataout3;

ofstream dataout4; 


dataout1.open("mncl.dat",ios::app);
dataout2.open("mnc.dat",ios::app);
dataout3.open("opnc.dat",ios::app);
dataout4.open("opncl.dat",ios::app); 

//layer magnetization and layer reduced magnetization 


nmmag=sqrt(m(0)*m(0)+m(1)*m(1)+m(2)*m(2))/double(count);

for(ii=0;ii<nz;ii++)

{ 


dataout1 << temperature <<" "<< bextx << " " << ii 
<<" "<< ml(0,ii) << " " << ml(1,ii) << " " << ml(2,ii) << " " << 
mmagl(ii) << endl;

dataout4 << temperature <<" "<< bextx << " " << ii 
<<" "<< nkmagl(0,ii) << " " << nkmagl(1,ii)<<" "<< nkmagl(2,ii) <<
" " << nkmagl(3,ii) << endl;

} 

dataout2 << temperature << " " << bextx << " " << m(0)
<< " " << m(1) << " " << m(2) << " " << nmmag << endl; 
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dataout3 << temperature << " " << bextx << " " << 
nkmag(0) << " " << nkmag(1) << " " << nkmag(2) << " " << nkmag(3)
<< endl; 

dataout1.close();

dataout2.close();

dataout3.close();

dataout4.close(); 


return;

} 


void scale_NiOCoO(Matrix <double, 2>& j1scale, Matrix
<double,2>& j2scale 

,double j1inNiO,double j1outNiO, 
double j2inNiO,double j2outNiO 

,double j1inCoO,double j1outCoO,
double j2inCoO,double j2outCoO, 

int numNiO,int numCoO) 
{ 

//generation of scaling factors;NiO/CoO 
bilayer system 

//in fact there are five interfaces,
where I need to use the average exchange interaction] 

int index1,index2,index3;
double j1inave,j2inave,j1outave,j2outave;
int numNiO2,numCoO2; 

    int interface0_2, interface1_1,interface1_2, 
interface2_1,interface2_2, interface3_1,interface3_2; 

//If I use the periodic boundary condition,
I get five interfaces 

j1inave=0.5*(j1inNiO+j1inCoO);
j2inave=0.5*(j2inNiO+j2inCoO);
j1outave=0.5*(j1outNiO+j1outCoO);
j2outave=0.5*(j2outNiO+j2outCoO); 

numCoO2=numCoO; 

cout << "The total number of layers is "
<< nz << endl; 



 
      
 
      
      
      
      

      

     

 
      
      
      
      
 
      
      
      
      
 
      
      
      
      
 
    

 
    
    
 
         

         
         
         
         
         
 
 
       
 
      
 
         
         
         
         
         
         
 
       

166 

numNiO2= nz-(numCoO2+numCoO+numNiO); 

cout << "The system size:"<<endl; 
cout << "The NiO1:"<< numNiO<<endl; 
cout << "The CoO1:"<< numCoO<<endl; 
cout << "The second 

NiO:"<<numNiO2<<endl; 
cout << "The second 

CoO:"<<numCoO2<<endl; 
cout << "The total layer number is "<<

numNiO2 + numCoO2 + numCoO + numNiO << endl; 

cout << "J1inNiO:"<< j1inNiO<<endl; 
cout << "J1outNiO:"<< j1outNiO<<endl; 
cout << "J2inNiO:"<<j2inNiO<<endl; 
cout << "J2outNiO:" <<j2outNiO<<endl; 

cout << "J1inCoO:"<< j1inCoO<<endl; 
cout << "J1outCoo:"<< j1outCoO<<endl; 
cout << "J2inCoO:"<<j2inCoO<<endl; 
cout << "J2outCoO:" <<j2outCoO<<endl; 

cout << "J1inave:"<< j1inave<<endl; 
cout << "J1outave:"<< j1outave<<endl; 
cout << "J2inave:"<<j2inave<<endl; 
cout << "J2outave:" <<j2outave<<endl; 

if (numNiO2 + numCoO2 + numCoO + numNiO !=
nz) cout<<"Wrong layer sum."<<endl; 

//upper layer j1scale[0][nz]
//the first layer interface 0 

j1scale[0][0]=j1outave;//CoO-NiO
interface 

j1scale[1][0]=j1inNiO;
j1scale[2][0]=j1outNiO;
j2scale[0][0]=j2outave;
j2scale[1][0]=j2inNiO;
j2scale[2][0]=j2outNiO; 

for(index1=1;index1<(numNiO-1);index1++) 

{//Inner region I: NiO 

j1scale[0][index1]=j1outNiO;
j1scale[1][index1]=j1inNiO;
j1scale[2][index1]=j1outNiO;
j2scale[0][index1]=j2outNiO;
j2scale[1][index1]=j2inNiO;
j2scale[2][index1]=j2outNiO; 

} 
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interface1_1=numNiO-1;
interface1_2=numNiO; 

//two interlayer-coupled layers -interface I 

j1scale[0][interface1_1]=j1outNiO; 

j1scale[1][interface1_1]=j1inNiO; 

j1scale[2][interface1_1]=j1outave; 

j2scale[0][interface1_1]=j2outNiO; 

j2scale[1][interface1_1]=j2inNiO; 

j2scale[2][interface1_1]=j2outave; 

//first CoO layer 

j1scale[0][interface1_2]=j1outave; 

j1scale[1][interface1_2]=j1inCoO; 

j1scale[2][interface1_2]=j1outCoO; 

j2scale[0][interface1_2]=j2outave; 

j2scale[1][interface1_2]=j2inCoO; 

j2scale[2][interface1_2]=j2outCoO; 

for(index2 = interface1_2 + 1; index2
< (numNiO+numCoO-1);index2++) 

{//second CoO layer through the
second to the last layer of CoO; inner region II 

j1scale[0][index2]=j1outCoO;
j1scale[1][index2]=j1inCoO;
j1scale[2][index2]=j1outCoO;
j2scale[0][index2]=j2outCoO;
j2scale[1][index2]=j2inCoO;
j2scale[2][index2]=j2outCoO;

} 

//The second set of the interface layers 

     //two interlayer-coupled layers; 
interface II 

interface2_1= numNiO+numCoO-1; 
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interface2_2=interface2_1+1; 

j1scale[0][interface2_1]=j1outCoO; 

j1scale[1][interface2_1]=j1inCoO; 

j1scale[2][interface2_1]=j1outave; 

j2scale[0][interface2_1]=j2outCoO; 

j2scale[1][interface2_1]=j2inCoO; 

j2scale[2][interface2_1]=j2outave; 

//first CoO layer 

j1scale[0][interface2_2]=j1outave; 

j1scale[1][interface2_2]=j1inNiO; 

j1scale[2][interface2_2]=j1outNiO; 

j2scale[0][interface2_2]=j2outave; 

j2scale[1][interface2_2]=j2inNiO; 

j2scale[2][interface2_2]=j2outNiO; 

for(index1=numCoO+numNiO+1;index1<(numNiO+numCoO+numNiO2-1);index1++)
{ // the secont set of NiO monolayers;

inner region III 

j1scale[0][index1]=j1outNiO;
j1scale[1][index1]=j1inNiO;
j1scale[2][index1]=j1outNiO;
j2scale[0][index1]=j2outNiO;
j2scale[1][index1]=j2inNiO;
j2scale[2][index1]=j2outNiO; 

} 

interface3_1=numNiO+numCoO+numNiO2-1; 

interface3_2=numNiO+numCoO+numNiO2; 

      // two interlayer-coupled layers 

j1scale[0][interface3_1]=j1outNiO; 
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j1scale[1][interface3_1]=j1inNiO; 

j1scale[2][interface3_1]=j1outave; 

j2scale[0][interface3_1]=j2outNiO; 

j2scale[1][interface3_1]=j2inNiO; 

j2scale[2][interface3_1]=j2outave; 

// first CoO layer 

j1scale[0][interface3_2]=j1outave; 

j1scale[1][interface3_2]=j1inCoO; 

j1scale[2][interface3_2]=j1outCoO; 

j2scale[0][interface3_2]=j2outave; 

j2scale[1][interface3_2]=j2inCoO; 

j2scale[2][interface3_2]=j2outCoO; 

for(index3 = interface3_2+1; index3 <
(numNiO + numCoO + numNiO2 + numCoO2-1); index3++)
       {//second CoO layer through 
the second to the last layer of CoO: inner region IV 

j1scale[0][index3]=j1outCoO;
j1scale[1][index3]=j1inCoO;
j1scale[2][index3]=j1outCoO;
j2scale[0][index3]=j2outCoO;
j2scale[1][index3]=j2inCoO;
j2scale[2][index3]=j2outCoO; 

}
      //the last layer 
      interface0_2= numNiO + numCoO + 
numNiO2 + numCoO2-1; 

      cout<<"The index for the last layer 
is " << interface0_2<<endl; 

j1scale[0][interface0_2]=j1outCoO; 


j1scale[1][interface0_2]=j1inCoO; 


j1scale[2][interface0_2]=j1outave; 
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j2scale[0][interface0_2]=j2outCoO; 

j2scale[1][interface0_2]=j2inCoO; 

j2scale[2][interface0_2]=j2outave; 

ofstream scaleout; 
scaleout.open("scaleout.dat"); 

      for(index1=0; index1 < 
nz ;index1++) 

{ 

scaleout<<"Layer:"<<index1<<endl; 

scaleout << "Upper layer J1:"<<
j1scale[0][index1] << endl; 

scaleout << "Current layer 
J1:"<< j1scale[1][index1] << endl; 

scaleout << "Lower layer J1:"<<
j1scale[2][index1] << endl<<endl; 

scaleout << "Upper layer J2:"<<
j2scale[0][index1] << endl; 

scaleout << "Current layer 
J2:"<< j2scale[1][index1] << endl; 

scaleout << "Lower layer J2:"<<
j2scale[2][index1]<<endl<<endl; 

} 

scaleout.close(); 

return;

}
 

//xorshift random number generator 

  unsigned long xorshift(void) 
{ 

// Define a random number generator and
initialize it with a reproducible seed.

// (The seed is unsigned, to avoid trouble with
some generators.) 

unsigned long ttt; 

ttt = xxx ^ (xxx >> 7);
xxx = yyy;
yyy = zzz; 
zzz = www; 
www = vvv; 
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vvv = (vvv ^ (vvv << 6)) ^ (ttt ^ (ttt << 13)); 

return (yyy + yyy + 1) * vvv; 

}

  void MonteCarlo_niocoo_dil(Matrix<double,2>& multk, 
Matrix<double,3>& spinx, Matrix<double,3>& spiny,

Matrix<double, 3>&
spinz,Matrix <double, 2>& j1scale, Matrix <double,2>& j2scale, double
bextx, 

Matrix<double,1>& m, double
&energy,double temperature,int MC1,int MC2, Matrix<double,3>& multkl)

{ 

//Dilution only affects the Monte Carlo function 

int br; //break point 

// boost random number generator 
// this function includes both 

equilibration and data run 
// Prior to this function, the order

parameter has to be recalculated? 

int pick; 

double r1,r2; 

unsigned int ran1, ran2; 

double refenergy; 


double delsx,delsy,delsz; 

double sxnew,synew,sznew; 

double hp,hm,kp,km,lp,lm; 

double invtemp; 


double sign1,sign2, sign3,sign4;
double b_sum; //magnetic field sum 

// Statistical calculations 

          // add the standard deviation of the energy,
magnetization, and the reduced magnetization 

//in the for loop 

double ensum=0.0;
double ensqsum=0.0; 

double magsq;
double magsqsum=0.0; 
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double msumx=0.0;
double msumy=0.0;
double msumz=0.0; 

double kmags0,kmags1,kmags2,kmags3; //squared
magnitudes 

double ksqsum0=0.0;
double ksqsum1=0.0;
double ksqsum2=0.0;
double ksqsum3=0.0; 

double k0sumx=0.0;
double k0sumy=0.0;
double k0sumz=0.0; 

double k1sumx=0.0;
double k1sumy=0.0;
double k1sumz=0.0; 

double k2sumx=0.0;
double k2sumy=0.0;
double k2sumz=0.0; 

double k3sumx=0.0;
double k3sumy=0.0;
double k3sumz=0.0; 

//outside the for loop 

double mmags; //squared magnitude 

double envar, k0var,k1var,k2var,k3var;
double mvar; 

//do I want to normalize it; normalization
requires dividing the variance by the square of the number of nonzero
spins? 

invtemp=1.0/temperature;
ofstream data; 

data.open("datav.dat",ios::app); 

// cout<<"Real data run."<<endl; 


int i,j,ii;

int s=0;

int s1=0;

int n(0),nn(0),n1(0),nn1(0); //flip non-


flip counters for equilibration and data collection
int h,k,l; //selected coordinates 
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//number of spins per layer 

Matrix<double,1> eff(3); 

double efff; 

cout<<"The initial energy is "<<energy<<endl;
cout<<"Equilibration"<<endl; 

for(i=0;i<MC1;i++)
{ //repeat this for the number of

preruns*number of spins 

for(ii=0;ii<numspin;ii++)
{ 

ran1 = xorshift(); 
r1 = ran1*2.3283064e-10; 
pick = r1*numspin; 
h = pick % nx; 
k = (pick % numperlayer)/nx; 
l = pick / numperlayer; 

if(sqrt(spinx(h,k,l)*spinx(h,k,l)+spiny(h,k,l)*spiny(h,k,l)+spinz(h,k,l
)*spinz(h,k,l))>0.99) 

{ 
//random spin

generation 

randomspin_xorshift(sxnew,synew,sznew); 

//calculate the efffective field 

delsx=sxnew-
spinx(h,k,l); 

delsy=synew-
spiny(h,k,l); 

delsz=sznew-
spinz(h,k,l); 

// cout<<" sxdel: " 
<<sxnew-spinx(hpick,kpick,lpick)<<endl; 

// cout<<" sydel: " 
<<synew-spiny(hpick,kpick,lpick)<<endl; 

// cout<<" szdel: " 
<<sznew-spinz(hpick,kpick,lpick)<<endl; 

hp = (h + 
1)%nx; 
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hm = (h + nx-
1)%nx; 

kp = (k + 
1)%ny; 

km = (k + ny-
1)%ny; 

lp = (l + 
1)%nz; 

lm = (l + nz-
1)%nz; 

eff(0)=0.0;
eff(1)=0.0;
eff(2)=0.0; 

eff(0) = 
eff(0)+
j1scale(1,l)*(spinx(hp,k,l)+spinx(h,kp,l)+spinx(hm,kp,l)+spinx(hm,k,l) 

+spinx(hp,km,l)+spinx(h,km,l)); //current layer neighbors
eff(1) = 

eff(1)+
j1scale(1,l)*(spiny(hp,k,l)+spiny(h,kp,l)+spiny(hm,kp,l)+spiny(hm,k,l) 

+spiny(hp,km,l)+spiny(h,km,l)); 
eff(2) = 

eff(2)+
j1scale(1,l)*(spinz(hp,k,l)+spinz(h,kp,l)+spinz(hm,kp,l)+spinz(hm,k,l) 

+spinz(hp,km,l)+spinz(h,km,l)); 

//upper layer 

eff(0) = eff(0) 
+ j1scale(2,l)*(spinx(h,k,lp)+spinx(h,km,lp)+spinx(hm,k,lp));//upper
layer neighbors 

eff(1) = eff(1) 
+ j1scale(2,l)*(spiny(h,k,lp)+spiny(h,km,lp)+spiny(hm,k,lp));

eff(2) = eff(2) 
+ j1scale(2,l)*(spinz(h,k,lp)+spinz(h,km,lp)+spinz(hm,k,lp)); 

eff(0) = eff(0) + 
j2scale(2,l)*(spinx(hp,km,lp)+spinx(hm,kp,lp)+spinx(hm,km,lp));//upper
neighbor neighbors 

eff(1) = eff(1) 
+ j2scale(2,l)*(spiny(hp,km,lp)+spiny(hm,kp,lp)+spiny(hm,km,lp));

eff(2) = eff(2) 
+ j2scale(2,l)*(spinz(hp,km,lp)+spinz(hm,kp,lp)+spinz(hm,km,lp)); 
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eff(0) = 
eff(0)+j1scale(0,l)*(spinx(h,k,lm)+spinx(hp,k,lm)+spinx(h,kp,lm));//low
er layer neighbors 

eff(1) = 
eff(1)+j1scale(0,l)*(spiny(h,k,lm)+spiny(hp,k,lm)+spiny(h,kp,lm));

eff(2) = 
eff(2)+j1scale(0,l)*(spinz(h,k,lm)+spinz(hp,k,lm)+spinz(h,kp,lm)); 

eff(0) = 
eff(0)+j2scale(0,l)*(spinx(hp,km,lm)+spinx(hm,kp,lm)+spinx(hp,kp,lm));/
/lower layer neighbors 

eff(1) = 
eff(1)+j2scale(0,l)*(spiny(hp,km,lm)+spiny(hm,kp,lm)+spiny(hp,kp,lm));

eff(2) = 
eff(2)+j2scale(0,l)*(spinz(hp,km,lm)+spinz(hm,kp,lm)+spinz(hp,kp,lm)); 

b_sum=delsx*bextx; 

//cout<<"The
magnetic field sum: " << b_sum << endl; 

efff= 
delsx*eff(0)+delsy*eff(1)+delsz*eff(2)+b_sum; //to remove the double-
count 

//cout << "The 
energy is before update is" << energy << endl; 

//cout << "The 
effective field is "<< efff << endl; 

//efff is the 
energy difference 

if(efff < 0.0) 
{ 

//update
the spin, magnetization, and energy 

//it is 
possible to update the magnetization too 

energy = energy + efff; 

m(0)=m(0)+delsx; 

m(1)=m(1)+delsy; 

m(2)=m(2)+delsz; 

spinx(h,k,l) = sxnew; 
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spiny(h,k,l) = synew; 

spinz(h,k,l) = sznew; 

implemented for order parameter calculation 

sign1=(h%2)*2-1; 

sign2=(k%2)*2-1; 

sign3=(l%2)*2-1; 

sign4=((h+k+l)%2)*2-1; 

multk(0,0)=multk(0,0)+double(sign1)*delsx; 

multk(1,0)=multk(1,0)+double(sign1)*delsy; 

multk(2,0)=multk(2,0)+double(sign1)*delsz; 

multk(0,1)=multk(0,1)+double(sign2)*delsx; 

multk(1,1)=multk(1,1)+double(sign2)*delsy; 

multk(2,1)=multk(2,1)+double(sign2)*delsz; 

multk(0,2)=multk(0,2)+double(sign3)*delsx; 

multk(1,2)=multk(1,2)+double(sign3)*delsy; 

multk(2,2)=multk(2,2)+double(sign3)*delsz; 

multk(0,3)=multk(0,3)+double(sign4)*delsx; 

multk(1,3)=multk(1,3)+double(sign4)*delsy; 

multk(2,3)=multk(2,3)+double(sign4)*delsz; 

cout <<"The updated energy is "<< energy<<endl; 

cout<<"spin is flipped"<<endl; 

//sign has to be 

           //  

           //  
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n=n+1; 
} 

else 
{
//generate a 

random number 

ran2 = 
xorshift(); 

r2  =  
ran2*2.3283064e-10; 

if (r2 < 
exp(-invtemp*efff)) 

{ 

//update the spin, magnetization, and energy 

energy = energy + efff; 

m(0)=m(0)+delsx; 


m(1)=m(1)+delsy; 


m(2)=m(2)+delsz; 


// cout<<"The effective field is "<< efff<<endl; 


//sign has to be implemented for order parameter calculation 

sign1=(h%2)*2-1; 


sign2=(k%2)*2-1; 


sign3=(l%2)*2-1; 


sign4=((h+k+l)%2)*2-1; 


multk(0,0)=multk(0,0)+double(sign1)*delsx; 


multk(1,0)=multk(1,0)+double(sign1)*delsy; 


multk(2,0)=multk(2,0)+double(sign1)*delsz; 
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multk(0,1)=multk(0,1)+double(sign2)*delsx; 


multk(1,1)=multk(1,1)+double(sign2)*delsy; 


multk(2,1)=multk(2,1)+double(sign2)*delsz; 


multk(0,2)=multk(0,2)+double(sign3)*delsx; 


multk(1,2)=multk(1,2)+double(sign3)*delsy; 


multk(2,2)=multk(2,2)+double(sign3)*delsz; 


multk(0,3)=multk(0,3)+double(sign4)*delsx; 


multk(1,3)=multk(1,3)+double(sign4)*delsy; 


multk(2,3)=multk(2,3)+double(sign4)*delsz; 


//cout <<"The updated energy is "<<energy<<endl; 

spinx(h,k,l) = sxnew; 


spiny(h,k,l) = synew; 


spinz(h,k,l) = sznew; 


//cout <<"spin is flipped"<<endl; 

n=n+1; 

}//if
loop 

else 
nn=nn+1; //the spin is not flipped; 

} 
//else

loop 
}//if loop (for skipping) 

else s=s+1; 

//recalculate the energy 

refenergy = energycal_scale(spinx, spiny, spinz,j1scale, j2scale,bextx,
m, multk); 
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// cout<< "The
current energy is " << energy << endl; 

//
cout<<"The reference energy is "<< refenergy<<endl; 

//cout<<"The reference magnetic moment is " << m(0) << "," <<
m(1) << "," << m(2) << endl; 

}//ii-for loop 

} //i-for loop 

cout << "Spin was flipped for" << n << "
times." << endl; 

cout << "Spin was not flipped for
"<<nn<<" times."<< endl; 

cout << "Empty spin was skipped for "<< s
<< " times." << endl; 

cout << "After the Monte Carlo run, the
energy is " << energy << endl; 

     //recalculate energy 

     refenergy = energycal_scale(spinx, spiny, 
spinz,j1scale, j2scale,bextx, m, multk);
     cout<<"The reference energy is "<< 
refenergy<<endl; 
     cout<<"The reference magnetic moment is " 
<< m(0) << "," << m(1) << "," << m(2) << endl; 

     cout << "Data Collection." << endl; 

for(i=0;i<MC2;i++)
{ //repeat this for the number of

preruns*number of spins 

for(ii=0;ii<numspin;ii++)
{ 

ran1 = 
xorshift(); 

r1=ran1*2.3283064e-10; 
pick = 

r1*numspin; 
h=pick%nx; 

k=(pick%numperlayer)/nx; 
l=  

pick/numperlayer; 
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//random spin 
generation 

if(sqrt(spinx(h,k,l)*spinx(h,k,l)+spiny(h,k,l)*spiny(h,k,l)+spinz(h,k,l
)*spinz(h,k,l))> 0.99) 

{ 

randomspin_xorshift(sxnew,synew,sznew); 

delsx=sxnew-spinx(h,k,l); 

delsy=synew-spiny(h,k,l); 

delsz=sznew-spinz(h,k,l); 

hp = (h + 1)%nx; 

hm = (h + nx-1)%nx; 

kp = (k + 1)%ny; 

km = (k + ny-1)%ny; 

lp = (l + 1)%nz; 

lm = (l + nz-1)%nz; 

eff(0)=0.0; 

eff(1)=0.0; 

eff(2)=0.0; 

eff(0) = eff(0)+ 
j1scale(1,l)*(spinx(hp,k,l)+spinx(h,kp,l)+spinx(hm,kp,l)+spinx(hm,k,l) 

+spinx(hp,km,l)+spinx(h,km,l)); //current layer neighbors 

eff(1) = eff(1)+
j1scale(1,l)*(spiny(hp,k,l)+spiny(h,kp,l)+spiny(hm,kp,l)+spiny(hm,k,l) 

+spiny(hp,km,l)+spiny(h,km,l)); 

eff(2) = eff(2)+
j1scale(1,l)*(spinz(hp,k,l)+spinz(h,kp,l)+spinz(hm,kp,l)+spinz(hm,k,l) 

+spinz(hp,km,l)+spinz(h,km,l)); 
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//upper layer 

eff(0) = eff(0) +
j1scale(2,l)*(spinx(h,k,lp)+spinx(h,km,lp)+spinx(hm,k,lp));//upper
layer neighbors 

eff(1) = eff(1) +
j1scale(2,l)*(spiny(h,k,lp)+spiny(h,km,lp)+spiny(hm,k,lp)); 

eff(2) = eff(2) +
j1scale(2,l)*(spinz(h,k,lp)+spinz(h,km,lp)+spinz(hm,k,lp)); 

eff(0) = eff(0) +
j2scale(2,l)*(spinx(hp,km,lp)+spinx(hm,kp,lp)+spinx(hm,km,lp));//upper
neighbor neighbors 

eff(1) = eff(1) +
j2scale(2,l)*(spiny(hp,km,lp)+spiny(hm,kp,lp)+spiny(hm,km,lp)); 

eff(2) = eff(2) +
j2scale(2,l)*(spinz(hp,km,lp)+spinz(hm,kp,lp)+spinz(hm,km,lp)); 

//lower layer 

eff(0) =
eff(0)+j1scale(0,l)*(spinx(h,k,lm)+spinx(hp,k,lm)+spinx(h,kp,lm));//low
er layer neighbors 

eff(1) =
eff(1)+j1scale(0,l)*(spiny(h,k,lm)+spiny(hp,k,lm)+spiny(h,kp,lm)); 

eff(2) =
eff(2)+j1scale(0,l)*(spinz(h,k,lm)+spinz(hp,k,lm)+spinz(h,kp,lm)); 

eff(0) =
eff(0)+j2scale(0,l)*(spinx(hp,km,lm)+spinx(hm,kp,lm)+spinx(hp,kp,lm));/
/lower layer neighbors 

eff(1) =
eff(1)+j2scale(0,l)*(spiny(hp,km,lm)+spiny(hm,kp,lm)+spiny(hp,kp,lm)); 

eff(2) =
eff(2)+j2scale(0,l)*(spinz(hp,km,lm)+spinz(hm,kp,lm)+spinz(hp,kp,lm)); 
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b_sum=delsx*bextx; 

efff= delsx*eff(0)+delsy*eff(1)+delsz*eff(2)+b_sum; //to remove the
double-count 

//efff is the energy difference 

if(efff < 0.0) 

{ 

//update the spin, magnetization, and energy 

//it is possible to update the magnetization too 

energy = energy + efff; 

m(0)=m(0)+delsx; 

m(1)=m(1)+delsy; 

m(2)=m(2)+delsz; 

   spinx(h,k,l) = sxnew; 

   spiny(h,k,l) = synew; 

   spinz(h,k,l) = sznew; 

//sign has to be implemented for order parameter calculation 

sign1=(h%2)*2-1; 


sign2=(k%2)*2-1; 


sign3=(l%2)*2-1; 


sign4=((h+k+l)%2)*2-1; 


multk(0,0)=multk(0,0)+double(sign1)*delsx; 
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multk(1,0)=multk(1,0)+double(sign1)*delsy; 

multk(2,0)=multk(2,0)+double(sign1)*delsz; 

multk(0,1)=multk(0,1)+double(sign2)*delsx; 

multk(1,1)=multk(1,1)+double(sign2)*delsy; 

multk(2,1)=multk(2,1)+double(sign2)*delsz; 

multk(0,2)=multk(0,2)+double(sign3)*delsx; 

multk(1,2)=multk(1,2)+double(sign3)*delsy; 

multk(2,2)=multk(2,2)+double(sign3)*delsz; 

multk(0,3)=multk(0,3)+double(sign4)*delsx; 

multk(1,3)=multk(1,3)+double(sign4)*delsy; 

multk(2,3)=multk(2,3)+double(sign4)*delsz; 

n1=n1+1; 


} 


else 

{ 

//generate a random number 

ran2 = xorshift(); 


r2=ran2*2.3283064e-10; 


if (r2 < exp(-invtemp*efff)) 

{ 

//update the spin, magnetization, and energy 

energy = energy + efff; 
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 m(0)=m(0)+delsx; 

m(1)=m(1)+delsy; 

m(2)=m(2)+delsz; 

// cout<<"The effective field is "<< efff<<endl; 

//sign has to be implemented for order parameter
calculation 

sign1=(h%2)*2-1; 

sign2=(k%2)*2-1; 

sign3=(l%2)*2-1; 

sign4=((h+k+l)%2)*2-1; 

multk(0,0)=multk(0,0)+double(sign1)*delsx; 

multk(1,0)=multk(1,0)+double(sign1)*delsy; 

multk(2,0)=multk(2,0)+double(sign1)*delsz; 

multk(0,1)=multk(0,1)+double(sign2)*delsx; 

multk(1,1)=multk(1,1)+double(sign2)*delsy; 

multk(2,1)=multk(2,1)+double(sign2)*delsz; 

multk(0,2)=multk(0,2)+double(sign3)*delsx; 

multk(1,2)=multk(1,2)+double(sign3)*delsy; 

multk(2,2)=multk(2,2)+double(sign3)*delsz; 

multk(0,3)=multk(0,3)+double(sign4)*delsx; 

multk(1,3)=multk(1,3)+double(sign4)*delsy; 

multk(2,3)=multk(2,3)+double(sign4)*delsz; 

//cout <<"The updated energy is "<<energy<<endl; 
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   spinx(h,k,l) = sxnew; 

   spiny(h,k,l) = synew; 

   spinz(h,k,l) = sznew; 

   //cout <<"spin is flipped"<<endl; 

n1=n1+1; 

  }//if loop 

else nn1=nn1+1; //the spin is not flipped; 

} 

//else loop 
} //if loop 
else s1=s1+1; 

//recalculate energy here 

//  
check for energy and magnetization and etc 

}//ii-for loop 

// statistical calculation 

ensum=ensum+energy; 

ensqsum=ensqsum+energy*energy; 

magsq=m(0)*m(0)+m(1)*m(1)+m(2)*m(2); 

magsqsum=magsqsum+magsq; 

kmags0 = multk(0,0)* multk(0,0)+ multk(1,0)*multk(1,0) +
multk(2,0)*multk(2,0); 

kmags1 = multk(0,1)* multk(0,1)+ multk(1,1)*multk(1,1) +
multk(2,1)*multk(2,1); 

kmags2 = multk(0,2)* multk(0,2)+ multk(1,2)*multk(1,2) +
multk(2,2)*multk(2,2); 
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kmags3 = multk(0,3)* multk(0,3)+ multk(1,3)*multk(1,3) +
multk(2,3)*multk(2,3); 

ksqsum0 = ksqsum0 + kmags0; 

ksqsum1 = ksqsum1 + kmags1; 

ksqsum2 = ksqsum2 + kmags2; 

ksqsum3 = ksqsum3 + kmags3; 

//magnetization 

msumx=msumx+m(0); 

msumy=msumy+m(1); 

msumz=msumz+m(2); 

//reduced magnetization 

k0sumx=k0sumx+ multk(0,0); 

k0sumy=k0sumy+ multk(1,0); 

k0sumz=k0sumz+ multk(2,0); 

k1sumx=k1sumx+ multk(0,1); 

k1sumy=k1sumy+ multk(1,1); 

k1sumz=k1sumz+ multk(2,1); 

k2sumx=k2sumx+ multk(0,2); 

k2sumy=k2sumy+ multk(1,2); 

k2sumz=k2sumz+ multk(2,2); 

k3sumx=k3sumx+ multk(0,3); 

k3sumy=k3sumy+ multk(1,3); 

k3sumz=k3sumz+ multk(2,3); 
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} //i-for loop 

cout << "In the data run, the spins were
flipped for "<<n1<<" times."<<endl;

cout << "The spins were not flipped for
" << nn1 << " times." << endl;

cout << "Empty spins were encounterd for "<<s1<<
" times." << endl; 
     //statistical variable calculations 

ofstream debug;
debug.open("statcheck.dat");
debug.close();
envar=ensqsum/double(MC2)-

ensum*ensum/double(MC2*MC2);
mmags=msumx*msumx+msumy*msumy+msumz*msumz;
mvar=magsqsum/double(MC2)-(mmags)/double(MC2);

k0var=ksqsum0/double(MC2)-
(k0sumx*k0sumx+k0sumy*k0sumy+k0sumz*k0sumz)/double(MC2*MC2);

k1var=ksqsum1/double(MC2)-
(k1sumx*k1sumx+k1sumy*k1sumy+k1sumz*k1sumz)/double(MC2*MC2);

k2var=ksqsum2/double(MC2)-
(k2sumx*k2sumx+k2sumy*k2sumy+k2sumz*k2sumz)/double(MC2*MC2);

k3var=ksqsum3/double(MC2)-
(k3sumx*k3sumx+k3sumy*k3sumy+k3sumz*k3sumz)/double(MC2*MC2);; 

ofstream st;
st.open("stddev.dat",ios::app); 

//cout << "The temperature is " <<
temperature << endl; 

//cout << "The energy varienace is "<<
envar<<endl; 

//cout <<"The magnetization variance is 
" << magvar<<endl 

st << temperature << " "<<bextx<<" 
"<<envar <<" "<< mvar << " " << k0var << " " << k1var << " " << 
k2var << " " << k3var << endl; 

st.close(); 

return;

}


  void optest_l(Matrix<double,2>& multk,Matrix<double,3>& 
spinx, Matrix<double,3>& spiny, Matrix<double, 3>& spinz,double
temperature, double bextx,

Matrix<double,3>& multkl)
{ 
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Matrix<double, 1> kmag(4);
Matrix<double,2> kmagl(4,nz); 

kmag=0.0;

kmagl=0.0; 


multk=0.0; //order parameter
multkl=0.0;//layer order parameter

int count=numspin;
cout <<"optest: the number of spins is "<<count<<endl;
int iii,ii;
int h,k,l;
int numl;
double sign1,sign2,sign3,sign4; 

ofstream opout;

ofstream opout2;

opout.open("optest.dat",ios::app);

opout2.open("optest_l.dat",ios::app); 


//magnetization and reduced magnetization can be
calculated from m and op 

for(l=0;l<nz;l++)
{ 

for(k=0;k<ny;k++)

{
 

for(h=0;h<nx;h++)
{ 

//implement the periodic boundary condition 

//order parameter 

sign1=double(h%2)*2.0-1.0;
sign2=double(k%2)*2.0-1.0;
sign3=double(l%2)*2.0-1.0;
sign4=double((h+k+l)%2)*2.0-1.0; 

if(sign1!=1.0 && sign1!=-1.0)cout<<"wrong
sign!"<<endl; 

//regular order parameter calculation 

multk(0,0)=multk(0,0)+sign1*spinx(h,k,l);//x-
comp 

multk(1,0)=multk(1,0)+sign1*spiny(h,k,l);//y-
comp 

multk(2,0)=multk(2,0)+sign1*spinz(h,k,l);//z-
comp 

multk(0,1)=multk(0,1)+sign2*spinx(h,k,l); 
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 multk(1,1)=multk(1,1)+sign2*spiny(h,k,l);
multk(2,1)=multk(2,1)+sign2*spinz(h,k,l); 

multk(0,2)=multk(0,2)+sign3*spinx(h,k,l);
multk(1,2)=multk(1,2)+sign3*spiny(h,k,l);
multk(2,2)=multk(2,2)+sign3*spinz(h,k,l); 

multk(0,3)=multk(0,3)+sign4*spinx(h,k,l);
multk(1,3)=multk(1,3)+sign4*spiny(h,k,l);
multk(2,3)=multk(2,3)+sign4*spinz(h,k,l); 

//layer order parameter calculation 

multkl(0,0,l)=multkl(0,0,l)+sign1*spinx(h,k,l); 

multkl(1,0,l)=multkl(1,0,l)+sign1*spiny(h,k,l); 

multkl(2,0,l)=multkl(2,0,l)+sign1*spinz(h,k,l); 

multkl(0,1,l)=multkl(0,1,l)+sign2*spinx(h,k,l); 

multkl(1,1,l)=multkl(1,1,l)+sign2*spiny(h,k,l); 

multkl(2,1,l)=multkl(2,1,l)+sign2*spinz(h,k,l); 

multkl(0,2,l)=multkl(0,2,l)+sign3*spinx(h,k,l); 

multkl(1,2,l)=multkl(1,2,l)+sign3*spiny(h,k,l); 

multkl(2,2,l)=multkl(2,2,l)+sign3*spinz(h,k,l); 

multkl(0,3,l)=multkl(0,3,l)+sign4*spinx(h,k,l); 

multkl(1,3,l)=multkl(1,3,l)+sign4*spiny(h,k,l); 

multkl(2,3,l)=multkl(2,3,l)+sign4*spinz(h,k,l); 

}

}


} 
for(iii=0;iii<2;iii++)
{ 
//regular order parameter
kmag(0)=kmag(0)+multk(iii,0)*multk(iii,0);
kmag(1)=kmag(1)+multk(iii,1)*multk(iii,1);
kmag(2)=kmag(2)+multk(iii,2)*multk(iii,2);
kmag(3)=kmag(3)+multk(iii,3)*multk(iii,3); 

for(ii=0;ii<nz;ii++)
{ 
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kmagl(0,ii)=kmagl(0,ii)+multkl(iii,0,ii)*multkl(iii,0,ii); 

kmagl(1,ii)=kmagl(1,ii)+multkl(iii,1,ii)*multkl(iii,1,ii); 

kmagl(2,ii)=kmagl(2,ii)+multkl(iii,2,ii)*multkl(iii,2,ii); 

kmagl(3,ii)=kmagl(3,ii)+multkl(iii,3,ii)*multkl(iii,3,ii);
} 

} 

//normalization 

//total order parameter 

cout<<"Before the normalizaion, the k vectors
are:"<<endl; 

cout << "(k0):"<<sqrt(kmag(0))<<endl;
cout << "(k1):"<<sqrt(kmag(1))<<endl;
cout << "(k2):"<<sqrt(kmag(2))<<endl;
cout << "(k3):"<<sqrt(kmag(3))<<endl; 

kmag(0)=sqrt(kmag(0))/double(count);
kmag(1)=sqrt(kmag(1))/double(count);
kmag(2)=sqrt(kmag(2))/double(count);
kmag(3)=sqrt(kmag(3))/double(count); 

numl=nx*ny; //number of spins per layer;
   //layer order parameter 

for(ii=0;ii<nz;ii++)
{ 

kmagl(0,ii)=sqrt(kmagl(0,ii))/double(numl);
kmagl(1,ii)=sqrt(kmagl(1,ii))/double(numl);
kmagl(2,ii)=sqrt(kmagl(2,ii))/double(numl);
kmagl(3,ii)=sqrt(kmagl(3,ii))/double(numl);

} 

opout << temperature << " " << kmag(0)<<"
"<<kmag(1)<<" "<<kmag(2)<<" "<<kmag(3)<<endl;

for(ii=0;ii<nz;ii++)
{
//opout2<<"The layer number is "<<ii<<endl;
opout2 << ii << " " << temperature << " " << 

kmagl(0,ii)<<" "<<kmagl(1,ii)<<" "<<kmagl(2,ii)<<" "<<kmagl(3,ii) <<
endl; 

}
cout << temperature <<" "<<kmag(0)<<" "<<kmag(1)<<"

"<<kmag(2)<<" "<<kmag(3)<<endl;
opout.close();
opout2.close(); 
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return; 

} 

J2. Structure factor program for MnSe/ZnTe superlattice model 

#include <math.h> 
#include <iostream> 
#include <fstream> 
#include "Matrix.h" 
#include "MatrixIO.h" 

/*
* There are two versions of this program
* 3d spin array

* 

* 

* Created Date: February 19, 2009 (Thursday)
* Author: Seongweon Park

* 

* Program description:

* 

* This program gets two input files.
* One is the spin input file and the other is the scan parameter
* file. Once it gets the input files, it calculates the structure
* factor of the spin system.

* 

* Algorithm description:

* 

* The spin input files has the spin vectors (sx,sy,sz) and if it has
* N nonzero spins (each spin file starts with 5 lines of zero spins.),
* the program converts N into the spin location coordinate (u,v,w).

* 

* The structure factor is written as the following:
* F=sum(Sj*exp(2*pi*i*(huj+kvj+lwj))),
* where the q=(h,k,l) and r=(uj,vj,wj) and pi=3.141592... and i is
the 
* imaginary part in this case. 

* *************************************************************** 
* The q vector parameters are input manually.

* 

* ************************************************************** 

* To figure out the spin projected onto the plane
* perpendicular to the q vector:

*/ 
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using namespace std;
using namespace Numeric_lib; 

//function declaration 

void print_qvector(Matrix<double, 3> & qvx, Matrix<double, 3> & qvy,
Matrix<double, 3> & qvz);
void coordinateconverter(int flag);
void structure_factor(Matrix<double, 3> & spinx, Matrix<double, 3> &
spiny, Matrix<double, 3> & spinz, Matrix<double, 3> & qvx,

Matrix<double, 3> & qvy, Matrix<double, 3> &
qvz, double px, double py, double pz);
void print_spin(Matrix<double, 3> & spinx, Matrix<double, 3> & spiny,
Matrix<double, 3> & spinz);
double read_spin(char filename[], Matrix<double, 3> & spinx,
Matrix<double, 3> & spiny, Matrix<double, 3> & spinz);
int file_counter(char filename[]); 

int numqx, numqy, numqz;

int numnzspin;

int nx,ny,nz;

int hmin, hmax, kmin, kmax, lmin, lmax; 


int main() { 


double qxi, qyi, qzi; //initial q values

double delqx, delqy, delqz; //q step sizes

double qx, qy, qz;


double qbx,qby,qbz; //cross product
double spinv, spinh; 

// Coordinate dimension of the spin system 

 int n; 

 int numperlayer; 


int flag = 9; 


 int count1; 

int h, k, l;

int i, ii, iii; 


char filename[15], spinfile[25]; //file names of the spin file 

cout << "Getting the spin input file." << endl; 

cout << "Enter the input spin file name: ";
cin >> filename; 

count1 = file_counter(filename); 

cout << "There are " << count1 << " nonzero spins." << endl; 

 ifstream qs; 
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qs.open("qspec3dt.dat"); 

qs >> qxi >> qyi >> qzi;

qs >> delqx >> delqy >> delqz;

qs >> numqx >> numqy >> numqz; 


qs >>nx >> ny >> nz;

qs.close(); 


cout << "qxi: "<< qxi <<" qyi: "<< qyi <<" qzi: "<< qzi<<endl;
cout << " delqs: "<< delqx << " delqy: "<< delqy << " delqz: " <<

delqz << endl;
cout << "numqx: "<< numqx <<" numqy: "<< numqy <<" numqz: "<<

numqz << endl;
cout << "nx: "<< nx <<" ny: "<< ny <<" nz: "<< nz<<endl; 

numnzspin=nx*ny*nz; 

cout << "The total number of spins is " << numnzspin << endl; 

Matrix <double, 3> spinx(nx, ny, nz);

Matrix <double, 3> spiny(nx, ny, nz);

Matrix <double, 3> spinz(nx, ny, nz); 


Matrix<double, 3> qvx(numqx, numqy, numqz);

Matrix<double, 3> qvy(numqx, numqy, numqz);

Matrix<double, 3> qvz(numqx, numqy, numqz); 


qvx = 0.0;

qvy = 0.0;

qvz = 0.0; 


// load the qvector array with values 

for (i = 0; i < numqz; i++) {

for (ii = 0; ii < numqy; ii++) {


for (iii = 0; iii < numqx; iii++) { 


qvx(iii, ii, i) = qxi + double(iii) * delqx;
qvy(iii, ii, i) = qyi + double(ii) * delqy;
qvz(iii, ii, i) = qzi + double(i) * delqz;

}

}


} 


print_qvector(qvx, qvy, qvz); 

count1 = read_spin(filename, spinx, spiny, spinz); 

if (numnzspin != count1) cout <<"Something is wrong."<<endl;
cout << "There are " << count1 << " spins loaded." << endl; 

print_spin(spinx,spiny,spinz); 
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 coordinateconverter(flag);

cout<<"Coordinates are all printed out"<<endl;

structure_factor(spinx, spiny, spinz, qvx, qvy, qvz,px,py,pz); 


 return 0; 


} 

int file_counter(char filename[])
{ 

int num = 0;
int i, j;
double sx, sy, sz; 

 ifstream in_file1; 

in_file1.open(filename); 


while (in_file1 >> sx >> sy >> sz) {

num = num + 1;


} 


in_file1.close(); 

cout << "The file " << filename << " has " << num << " lines. 
\n"; 
 return num; 
} 

double read_spin(char filename[], Matrix<double, 3> & spinx,
Matrix<double, 3> & spiny, Matrix <double,3> & spinz) { 

int spincount = 0;

//number of nonzero spins 


 int h,k,l; 

double sx, sy, sz;


int nxny=nx*ny; 


 ifstream inspin; 

inspin.open(filename); 


while (inspin >> sx >> sy >> sz) {

  h= spincount%nx; 

  k= (spincount%nxny)/nx; 

  l= spincount /nxny; 


  spinx(h,k,l) = sx; 

  spiny(h,k,l) = sy; 

  spinz(h,k,l) = sz; 


spincount = spincount + 1;

} 
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cout << "There are " << spincount << " nonzero spins in the
file." << endl;

cout << "Spins are loaded." << endl;
inspin.close(); 

 return spincount; 

} 

void print_spin(Matrix<double, 3> & spinx,Matrix <double, 3> & spiny,
Matrix <double, 3> & spinz ) { 

  int i; 

 int flag; 


int h, k, l;

int numperlayer = nx*ny; 


 ofstream spinp; 

spinp.open("pspin.out"); 


spinp << "The stored values of the spins are the following:" <<
endl 
   << endl; 

for (i = 0; i < numnzspin; i++)

{ 


h=i%nx;

k=(i%numperlayer)/nx;

l=i/numperlayer; 


spinp << i << " " << h <<" " << k << " " << l << " " 
<< spinx(h,k,l) << " " << spiny(h,k,l) << " " << spinz(h,k,l) <<
endl; 

}
// return to the main function after printing out the spins 

spinp << "Printing spins ended." << endl;

spinp.close(); 


return; 

} 

void structure_factor(Matrix<double, 3> & spinx,Matrix <double,3> &
spiny, Matrix<double, 3> & spinz, Matrix<double, 3> & qvx

, Matrix<double, 3> & qvy, Matrix<double, 3> & qvz,double
px, double py, double pz) { 

/*
* The structure factor is given by

F=sumj(Pj*exp{2pi*i*(qx*x+qy*y+qz*z)}
* Fxi,Fyi,Fzi, Fxr,Fyr,Fzr (real part vector and imaginary

vector) 
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*/ 

 //spin coordinates 

int h, k, l;

double u, v, w;

double Arg, si, co;

double qmag; // to normalize q vectors 


double sdotq, spprx, sppry, spprz;

double c0, s0, c1, s1, c2, s2;


/*

* Arg is the power in the exponential
* and the expr and expi are the real part and the imaginary part

of the exponential respectively
*/ 

double sumfxi, sumfyi, sumfzi; //imaginary parts vector

double sumfxr, sumfyr, sumfzr; //real part vector

double fxi, fyi,fzi;

double fxr, fyr,fzr;

double pi = 3.14159265358979;

double Fabsx, Fabsy, Fabsz;


 int h,k,l; 


int j, jj, jjj;

 int i; 


int br; //break point

int scount = 0;

double qunx, quny, qunz;

double sdotq, spprx, sppry, spprz; 


double numperregion = (hmax-hmin)*(kmax- kmin)*(lmax-lmin);
//number of nonzero spins per layer
numperrow = nx; //number of nonzero spins per row 

 ofstream strf3; 

strf3.open("strab.dat"); 

cout << "The Structure factor function."<<endl;

cout << "The number of spins is " << numnzspin << endl; 


pmag=sqrt(px*px+py*py+pz*pz);

px=px/pmag;

py=py/pmag;

pz=pz/pmag; 


for (j = 0; j < numqz; j++) { 

for (jj = 0; jj < numqy; jj++) { 

for (jjj = 0; jjj < numqx; jjj++) { 
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qmag=sqrt(qvx(jjj,jj,j)*qvx(jjj,jj,j)+qvy(jjj,jj,j)*qvy(jjj,jj,j)+qvz(j
jj,jj,j)*qvz(jjj,jj,j)); 

qunx=qvx(jjj,jj,j)/qmag; 

quny=qvy(jjj,jj,j)/qmag; 

qunz=qvz(jjj,jj,j)/qmag; 

sumfxi = 0.0;
sumfyi = 0.0; 
sumfzi = 0.0; 

sumfxr = 0.0; 
sumfyr = 0.0; 
sumfzr = 0.0; 

for (l = lmin; l < lmax; l++)
{ //calculate the coordinate of the spin 

for(k = kmin; k < kmax; k++)
{ 

for(h=hmin;h<hmax; h++)
{ 

l = i / (numperlayer);
k = (i % numperlayer) / nx;
h = i % numperrow; 

     u = (double(k-h))*0.5; 
     v = (double(k+h+l))*0.5; 
     w = double(l)*0.5; 

     sdotq = spinx(h,k,l)*qunx + 
spiny(h,k,l)*quny + spinz(h,k,l)*qunz;
     spprx = sdotq*spinx(h,k,l)-spinx(h,k,l); 
     sppry = sdotq*spiny(h,k,l)-spiny(h,k,l); 

spprz = sdotq*spinz(h,k,l)-spinz(h,k,l); 

Arg = 2.0 * pi * (u * qvx(jjj, jj, j) + v
* qvy(jjj, jj, j) + w * qvz(jjj, jj, j));
     si = sin(Arg); //imaginary part 
     co = cos(Arg); //real part 

fxi = spprx * si; // imaginary part
fyi = sppry * si; // imaginary part

fzi = spprz * si; // imaginary part
fxr = spprx * co; // real part
fyr = sppry * co; // real part

fzr = spprz * co; // real part
     sumfxi = sumfxi + fxi; 
     sumfyi = sumfyi + fyi; 
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     sumfzi = sumfzi + fzi; 

     sumfxr = sumfxr + fxr; 
     sumfyr = sumfyr + fyr; 

sumfzr = sumfzr + fzr; 

} 

Fabsx = sumfxi * sumfxi + sumfxr * sumfxr; 

Fabsy =sumfyi * sumfyi + sumfyr * sumfyr; 

Fabsz = sumfzi*sumfzi + sumfzr * sumfzr; 

strf3 << qvx(jjj, jj, j) << " " << qvy(jjj, jj,
j) << " " << qvz(jjj, jj, j) << " " << Fabsx << " "<<Fabsy<<" "<< 
((Fabsx+Fabsy+Fabsz)*100.0)/double(numperregion*numperregion) << endl;

cout << qvx(jjj, jj, j) << " " << qvy(jjj, jj,
j) << " " << qvz(jjj, jj, j) << " " << Fabsx << " "<<Fabsy<<" "<< 
((Fabsx+Fabsy+Fabsz)*100.0)/double(numperregion*numperregion) << endl; 

}

}


} 


strf3.close(); 

return;
} 

void coordinateconverter(int flag) { 

double u, v, w; //the spin coordinates
int h, k, l;
//the spin loading coordinates as in my Monte Carlo Program
int numperlayer; //number of nonzero spins per row and per layer

 int i; 

//num1=number of nonzero spins per layer

//num2=number of nonzero spins per line 


numperlayer = nx*ny;

cout << "The number of nonzero spins per layer is " <<


numperlayer << endl;
ofstream coord;
coord.open("ccheck.dat"); 

for(i=0;i<numnzspin;i++) { 



 
   
  
   
  
  
  
 
 

 
  

   

 

  
 

 
 
 
 

 
 
  
   
    

    

 
 

 

 
 
 

199 

coord << "The current array index number is " << i << endl; 

l = i / numperlayer;

k = (i % numperlayer) / nx;

h = (i % nx); 


coord << "(h,k,l)=(" << h << ", " << k << ", " << l << ")" <<
endl; 
  u = (double(k-h))*0.5; 
  v = (double(k+h+l))*0.5; 
  w = double(l)*0.5; 

coord << "The corresponding spin coordinate (u,v,w)=(" << u
<< ", " << v << " ," << w << " )" << endl; 

}
coord.close();
return;

} 

void print_qvector(Matrix<double, 3> & qvx, Matrix<double, 3> & qvy
, Matrix<double, 3> & qvz)
{ 

int j, jj, jjj;

cout << "Printing out the q vector set" << endl; 


 ofstream qbug; 

qbug.open("qprint.dat"); 


for (j = 0; j < numqz; j++) {
for (jj = 0; jj < numqy; jj++) {

for (jjj = 0; jjj < numqx; jjj++) {
qbug << "Index: " << jjj << "," << jj << "," <<

j << endl; 
qbug << "(qx,qy,qz)=(" << qvx(jjj, jj, j) <<

"," 
      << qvy(jjj, jj, j) << "," << 
qvz(jjj, jj, j) << ",)" 
      << endl; 

}
}

} 

qbug.close();
return;

} 
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