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Chapter 1 : Introduction

With the increasing availability of powerful touchscreen devices, which now

outnumber all other computing platforms, they are becoming an integral part of

our lives. Mobile is increasingly the sole computing platform for large parts of the

world’s population. They are used in schools, houses, and the shops. Neverthe-

less, they are not being used to write programs as laptops or desktop computers.

This is because there are many problems when it comes to inputting programs on

a touchscreen. One of the reasons that make inputting programs a difficult task

on touchscreen devices is the lack of physical keyboards. Not extending coding

paradigms to mobile excludes large populations from engaging in critical skill de-

velopment and personal growth. A world where touchscreen devices are commonly

used to write computer programs rather than watching videos and playing video

games is a better world.

To extend programming access on touchscreen devices, domain-specific soft

keyboards were developed. These custom keyboards allow programs input faster,

more efficiently, and more accurately than the default input method. QWERTY

keyboard is used to write text-based programs like Java. To input block-based

programs like Blockly, drag-and-drop is used. However, these input means are not

designed to take full advantage of touchscreen devices, especially when it comes

to input programs. The custom keyboards, on the other hand, were designed to
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minimize the input effort, time, and errors on touchscreen devices. They do that

by minimizing the fingers’ travel time and the keystrokes.

The design, development, and evaluation of the custom keyboards are discussed

in the following chapters. Chapter 2 discusses the design of a custom soft keyboard

for writing Java source code. It shows how it was designed using syntax-directed

approach and the use of Cognitive Dimension framework to enhance its usage.

In this chapter, the custom keyboard was evaluated by conducting a formal user

study. The results showed how the custom keyboard outperformed the standard

input method (the QWERTY keyboard) when it comes to inputting Java source

code. The custom keyboard has better efficiency and accuracy. On top of that,

the custom keyboard reduces the mental, physical, and temporal demands when

compared to that standard QWERTY keyboard.

In chapter 3, the evolution of the custom keyboard is presented with step by

step on how user feedback and Java source codes statistics influenced the design

decisions. The enhanced custom keyboard then evaluated with a longitudinal study

to measure the performance and user feedback over eight sessions in a period of

two weeks. The results of that evaluation showed the long-term advantages of

using a custom keyboard to input programs on touchscreen devices. Advantages

like the reduce error rate, the enhanced input speed, and increased efficiency. The

study showed an average speed of 30.29 WPM by the eighth session which is 16.5%

faster than the theoretical top speed of an expert QWERTY keyboard user when

inputting Java source code.

By showing that the custom keyboard on a textual programming language like
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Java performs better, we wanted to extend the idea further to visual programming

languages. Chapter 4 presents a visual programming soft keyboard to input blocks

as an alternative to the drag-and-drop method. In this chapter, the design decisions

to create a custom keyboard for blocks input are explained. A user study to

evaluate this keyboard is presented in this chapter. The user study showed how

the custom keyboard for blocks input exceeded the standard blocks input methohd

(the drag-and-drop) in terms of speed, accuracy, and efficiency. In addition to these

advantages, the custom keyboard was preferred over the drag-and-drop when it

comes to blocks input on touchscreen devices.

Finally, chapter 5 represents a general conclusion about custom soft keyboards

for programs input on touchscreen devices. It discusses the advantages of the

custom keyboard with a summery of their performances.

1.1 Contributions

1.1.1 A Syntax-Directed Keyboard Extension for Writing Source

Code on Touchscreen Devices

The custom keyboard idea started with some experimentation guided by Prof.

Ronald Metoyer. I contributed to this work by designing and implementing the

keyboard. In addition, I designed and conducted the user study with the help of

Prof. Ronald Metoyer. Prof. Metoyer and I wrote the paper together. We got

feedback from our colleagues.
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1.1.2 Syntax-Directed Keyboard Extension: Evolution and Evalu-

ation

My contribution to this work was by enhancing the design of the custom key-

board. I collected and analyzed the Java statistic. With the help of Prof. Carlos

Jensen and Prof. Ronald Metoyer, I designed and conducted the user study. I

wrote this paper with the cooperation of Prof. Jensen and Prof. Metoyer.

1.1.3 Evaluation of A Visual Programming Keyboard on Touch-

screen Devices

I contributed to this research by designing and implementing the blocks key-

board. In addition, I designed and ran the user study. I wrote the paper for this

research. Prof. Carlos Jensen and Prof. Ronald Metoyer helped me throughout

the entire research. From the design of the keyboard to enhancing the paper.
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Chapter 2 : A Syntax-Directed Keyboard Extension for Writing

Source Code on Touchscreen Devices

Figure 2.1: Our keyboard extension for Java program input. The extension serves
as the top-level keyboard and provides entry to the standard soft keyboard when
necessary.

2.1 Abstract

As touchscreen mobile devices grow in popularity, it is inevitable that software

developers will eventually want to write code on them. However, writing code

on a soft (or virtual) keyboard is cumbersome due to the device size and lack

of tactile feedback. We present a soft syntax-directed keyboard extension to the

QWERTY keyboard for Java program input on touchscreen devices and evaluate

this keyboard with Java programmers. Our results indicate that a programmer
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using the keyboard extension can input a Java program with fewer errors and using

fewer keystrokes per character than when using a standard soft keyboard alone. In

addition, programmers maintain an overall typing speed in words per minute that

is equivalent to that on the standard soft keyboard alone. The keyboard extension

was shown to be mentally, physically, and temporally less demanding than the

standard soft keyboard alone when inputting a Java program.

2.2 Introduction and Related Work

Touchscreen devices such as smart-phones and tablets are making tremendous

gains in usage in the United States and around the world. According to Pew In-

ternet Research, 58% of American adults own smartphones and 42% own a tablet

device and growth is expected to continue [1, 2]. International Data Corporation

forecasts that between 2013 and 2017, desktop sales will decrease 8.4% while lap-

top, smartphone, and tablet sales will grow 8.7%, 71% and 79% respectively [3].

While touchscreen devices have many strengths, text input using the standard

QWERTY soft keyboard, from here on referred to as the standard soft keyboard,

is not one of them. Unlike physical keyboards, mobile device soft keyboards are

generally small and typically require switching between character and numeri-

cal/symbol input screens [4]. While the research community has explored options

for improving text input on soft keyboards and physical keyboards as well, these

approaches tend to focus on general text entry tasks [4, 5, 6, 7, 8, 9].

Many mobile device tasks, however, are carried out in contexts with very spe-
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cific, structured language and require entry of domain-specific text. For example,

consider the use of mobile devices in a physical therapy setting, where exercise

prescriptions may be input on a tablet device. Therapists are trained to use a par-

ticular protocol based on Frequency, Intensity, Time, and Type (FITT) to specify

prescriptions. For example: Do 3 sets of 4 repetitions (Intensity) of squats (Type),

every other day (Frequency), for one week (Time). Or, consider the domain of

computer programming where the programming language is naturally structured

by the grammar. Domain-specific contexts such as these present unique opportu-

nities to take advantage of this structure to develop more efficient means for text

input on touchscreen devices.

Computer programming presents a particularly interesting domain for touch-

screen device text input. First, as mobile device use grows, developers will even-

tually seek to write code on them [10, 11]. Second, mobile touchscreen devices

are heavily used in K-12 settings where there are also many efforts to introduce

programming [12, 13]. While many drag and drop solutions exist for teaching

programming, there are few tools designed for more traditional text-based pro-

gramming on mobile devices [14,15,16].

In this paper, we present a soft keyboard extension designed specifically with

Java developers in mind. Our goal was to reduce input errors while also improving

speed and efficiency. Our design utilizes frequently used domain primitives instead

of characters as the input unit, spatially groups primitives according to function,

and employs a syntax-directed approach to reduce errors (See Fig. 2.1).

We make two specific contributions in this paper. First, we present our soft
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keyboard extension designed specifically for Java program input on touchscreen

devices. Second, we present empirical results that indicate that users perform

programming input tasks with fewer errors and more efficiency when using the

keyboard extension as compared to the standard soft keyboard alone. Moreover,

using the keyboard extension is mentally, physically, and temporally less demand-

ing.

In the following section, we will present background information to structure

our discussion of keyboard design and evaluation. We will then present our soft

keyboard extension and a laboratory study designed to analyze the effectiveness of

this keyboard as compared to the standard soft keyboard alone. We then discuss

the results of the study and its implications, and we conclude with a discussion of

several avenues of future work.

2.3 Background

In this section we discuss previous work related to keyboard design and eval-

uation. We then present several metrics that will be used to evaluate our soft

keyboard extension and we discuss the syntax-directed approach that we have

built upon in our keyboard.
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2.3.1 Keyboard Design

There are many keyboards designed to improve input efficiency or reduce errors

in general text input tasks, such as writing email, word processing, and texting on

physical keyboards [17], as well as on soft keyboards [4, 5, 9, 18, 19]. On the other

hand, gesture-based entry methods have an acknowledged speed disadvantage and

they are not designed for speed/error improvement, but rather ease of input on a

standard keyboard [20]. In this paper we focus on soft keyboard design for input

in particular domain contexts, as opposed to general text input. Our specific goal

is to demonstrate the efficacy of domain-specific keyboards for reducing errors, as

well as improving typing efficiency and speed for users writing source code.

2.3.2 Programming on Tablet Devices

There are some attempts to ease programming on touchscreen devices [21, 22,

23]. However, these tools focus only on editing existing code. To our knowledge,

TouchDevelop, by Microsoft, represents the only attempt to focus on text-based

code input as opposed to editing of existing code on touchscreen devices [10].

TouchDevelop represents a completely new language and integrated development

environment (IDE) for writing computer programs on touchscreen devices as op-

posed to working with existing languages. They employ a soft keyboard as part

of this IDE. In order to write a program in TouchDevelop, users must move their

fingers between the soft keyboard and other elements of the IDE. With our design,

however, users can input an entire program without lifting their fingers from the
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keyboard area. While it does not specifically target novice users, TouchDevelop

is advertised as being a platform for both teaching and learning programming.

The TouchDevelop keyboards and interface, however, have not been evaluated for

usability or efficiency. Our goal was to evaluate the use of such keyboards for

program input.

2.3.3 Syntax-Directed Editing

Syntax-directed editors were introduced in 1981 to improve programmer effi-

ciency by taking advantage of the hierarchical composition of computational struc-

tures in programs [24]. In doing so, syntax directed editors enforce proper syntax

at all times. For example, a syntax-directed environment may require that the

user type commands in order to generate template code with assignments and

expressions that have to be completed before moving on [24]. A programmer

in this environment, therefore, cannot begin to efficiently use the system before

memorizing the commands. Our keyboard extension also utilizes the hierarchical

components of computational structures, however, we avoid the above problem

by encoding the commands visually in the soft keyboard design as primitives and

augmenting the keyboard with a dynamic component.
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2.3.4 Typing Performance Metrics

There are three primary metrics for measuring text input on a keyboard: ac-

curacy, efficiency, and speed. Accuracy is measured in terms of errors [25]. Error

metrics include the minimum string distance error rate (MSD) and the total error

rate (TER) [26]. MSD is a measure of the total number of errors (i.e., omissions,

substitutions, and insertions) in the resulting typed text. TER, on the other hand,

reflects these same errors in the final typed text, as well as corrections that are

made during the typing of the final text. Keystrokes are categorized into four

classes within an input stream: Correct (C), Incorrect Fixed (IF), Fixes (F), and

Incorrect and Not Fixed (INF) [26]. We will use all four keystroke classes to com-

pute the TER.

Keystrokes per character (KSPC) measures the average number of keystrokes

required to enter a single character [27]. The KSPC on a standard physical QW-

ERTY keyboard is approximately 1.00 [27] but has been shown to reach up to 1.21

when correcting errors [26].

Text entry speed is typically measured in words per minute (WPM), where a

word is assumed to consist of five characters on average. This metric has been

used to compare various hard and soft keyboard designs [28, 29]. We use TER,

KSPC, and WPM to evaluate the efficiency, speed, and accuracy of input on our

soft keyboard extension design as compared to the standard soft keyboard native

to iPad tablet devices.
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2.4 Syntax-Directed Keyboard Extension

Our Syntax-Directed extension is designed to reduce typing and syntactic errors

while increasing source code writing speed and user efficiency. The general design

philosophy is to provide the user with the most commonly used programming con-

structs as primitives on the keyboard extension and to support a syntax-directed

editing approach.

Many keyboard designs have been informed by word and letter frequencies for

“common English” [4, 8]. Our design was informed by analysis of Java programs.

In particular, we performed a frequency analysis to produce a ranking for common

keywords and constructs. We also consulted the Java language grammar to leverage

the hierarchical nature of the language.

The keys on the extension represent the most commonly used programming

keywords (e.g., if, for, return, etc.) and programming constructs (e.g., variable,

function, comment, etc.). These keys make up the bottom four rows of the soft

keyboard. The top row represents the “options” row of the keyboard extension and

is dynamically updated with options that correspond to the previously selected key

(See Fig. 2.1). Fig. 2.2 shows three versions of the the options row as it would

appear after pressing the function, variable, and modifiers keys respectively. Some

keys, such as the “try” key, have no options.

Keys are placed to facilitate search. This is done by grouping related keys

together spatially and encoding them with the same background color. The spatial

and color encoding utilizes gestalt principles to help users visually group elements
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Figure 2.2: The options row is empty until a key is pressed. The top, middle,
and bottom images show the appearance for the options row after pressing the
“function”, “variable”, and “modifiers” keys respectively.

that correspond to similar programming constructs, supporting visual working

memory [30]. For example, keys that represent the keywords of conditionals are

grouped in a row and colored similarly. Likewise, all looping related keys are

grouped together and colored accordingly.

Variables and functions are used most frequently, so we placed them in the

beginning of the first row. Conditional statements are used more than looping

statements. Therefore, we placed them in the first row after the “Variable” and

“Function” keys. We used the language hierarchy information to place high level,

frequent constructs in the bottom four rows and to present deeper language con-

structs via the options bar. We considered various hierarchy depths and key sets

for the design. More keys, however, require more search and/or memorization by

the user. In addition, a shallower hierarchy decreases the cognitive load associated

with hidden dependencies.

Most of the keys represent the top level elements in the Java language grammar.

When a key is pressed, the keyword and boilerplate syntax for that key are either

inserted into the code or the user is prompted to provide additional information

via the options bar or via the standard soft keyboard. For example, the standard
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keyboard may appear to prompt the user to enter a variable name, or the options

area may change to require further specification of a hierarchical construct (e.g. a

variable type). The options associated with a key are determined by the grammar

and will go three layers deep at most (e.g. variable → type → int). Table. 2.1

shows an example of inputting a Java function. The code in the second column

resulted from pressing the keys shown in the first column of the same row.

For example, when a programmer touches the “Function” key, our keyboard

produces the boilerplate code and displays the QWERTY keyboard for the user

to type the function’s name. When he is done typing the name (Table 2.1, second

row), he can press the “Done” key to see the function options (Fig 2.2, first row).

He can insert the “public” modifier by selecting the “Modifiers” key then the

“public” key (Table 2.1, third row) from the options row (Fig 2.2, third row). The

“void” return type can be inserted using the same method. The keyboard inserts

the modifiers and return type in their correct place.

Table 2.1: Example of creating a new function. The code in the second column
resulted from the key presses in the first column. The length column shows the
number of characters in the code including the new line character and the final
columns shows the total number of keystrokes required.
Key pressed Code length Total Keystrokes

Function
( ){
} 5 1

s , e , t , shift , X , Done
setX( ){
} 9 7

Modifiers , public
public setX( ){
} 16 9

Return Type , void
public void setX( ){
} 21 11

Our keyboard extension supports a limited form of syntax-directed editing
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which presents both advantages and disadvantages. One disadvantage is loss of

flexibility [31]. For example, every inserted statement has to preserve syntactic

correctness, which is not always appreciated by programmers who may wish to

temporarily violate syntactic correctness as they input their code. To mitigate

this problem, the keyboard extension allows the insertion of arbitrary text at any

place in the code by pressing the “ABC” button (See Fig. 2.1) to show the standard

soft keyboard.

Finally, our design does not enforce the order in which options are selected when

multiple are available nor does it enforce the programming language grammar. The

programmer can add modifiers, add a type, or rename a variable’s identifier in any

order. Moreover, the programmer can skip any or all of these option keys to add

the next line of code. This approach helps overcome the inflexibility of syntax

directed editors while still building on the structure they provide.

2.4.1 Syntax-Directed vs. Prediction

The majority of modern integrated development environments and mobile de-

vice text input keyboards employ some form of word prediction and/or auto-

completion methods that attempt to reduce the KSPC by reducing the total num-

ber of keys typed. In these approaches, the user begins typing and the system

infers possible endings and suggests completions. A syntax-directed or structured

approach, on the other hand, uses the grammatical structure of the language to

fill in boilerplate details; no inference is necessary. Brackets, colons, commas,
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and semicolons, for example, can be inserted into their correct place with this

approach. Structured approaches are particularly useful in domains that have a

highly structured grammar. These are exactly the domains in which we suspect

domain-specific keyboard extensions will be effective and thus we have taken a

syntax-directed approach as opposed to a predictive approach.

2.4.2 Cognitive Dimensions Analysis

The design of the keyboard extension layout and interaction went through

several iterations. We used the Cognitive Dimensions framework to inform our

iterations [32] and in the process, we identified several tradeoffs that led to design

modifications. Below we discuss some of the dimensions and the associated design

changes.

Consistency In a consistent notation, the functionality of an element can be

inferred based on what is known about the functionality of other elements. In early

designs, many of the keys originally contained several options and these options

were different for each key. To simplify, we chose a limited subset of options that

are consistent across all similar keys and moved the additional options deeper in

the hierarchy.

Hidden dependencies A hidden dependency exists when the relationship be-

tween two dependent components of a notation is not fully visible. Our original

design contained such dependencies through the use of constraints. For example,
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the “else” key originally was visible only after selecting the “if” key, preserving the

semantics of an if/else statement. This and all similar constraints were removed to

eliminate such hidden dependencies, but done so at the cost of language support.

While the user can now violate the programming language grammar, many of the

hidden dependencies no longer exist. The “options area,” however, still contains

some dependencies. For example, the list of modifiers can be only viewed after

selecting the “modifiers” option. The modifiers options can only be seen when cre-

ating or selecting text to edit. We suspect that such relationships can be quickly

learned, especially by users with programming experience.

Premature commitment Premature commitment refers to the strong con-

straints on the order that tasks must be accomplished in a notation. Some syntax-

directed editors demand correct program structure at all stages of development. In

this case, a programmer needs to have a full hierarchical perspective of the program

from the beginning. Our original keyboard extension design enforced such order

constraints. In the final design, these constraints were removed, allowing a user to

input grammatically incorrect code. This simplified the keyboard by removing the

need for look ahead and reduced premature commitment at the cost of allowing

input of illegal code.

Role-expressiveness Role-expressiveness refers to the degree to which an ele-

ment of the notation indicates its role in the system. In the keyboard extension,

the design has evolved such that the label for each key indicates its role clearly.

This, however, is only true for users with programming experience who are familiar
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with the generic labels used to describe imperative programming concepts.

2.5 Study Design

We now describe a formal user study designed to compare input performance

with the soft keyboard extension to performance using a standard soft keyboard

alone. We chose a copying task as opposed to a programming task to avoid the

confounding factors of the cognitive aspects of programming.

We use iPad 2 machines for our study and we implemented the soft keyboard

extension in JavaScript. To ensure comparable performance, we also reimple-

mented the standard soft keyboard in JavaScript. The syntax-highlighting feature

was included for both the standard soft keyboard and the soft keyboard exten-

sion. We disabled auto-correction and prediction for both keyboards. We decided

to not include auto-completion for several reasons. First, we cannot control the

effectiveness of the auto-complete algorithms being used. To produce results that

generalize beyond the operating system and algorithm, we decided it was best to

exclude it. Second, in order to make a fair comparison, we would have to enable

auto-completion for both keyboards, however, we cannot force participants to use

the feature on either keyboard. We therefore control for this variable to eliminate

this threat to validity.

Both keyboard applications were instrumented with JavaScript code to mea-

sure and log the KSPC, WPM, and TER. The keystroke classes presented in Sec-

tion 2.3.4 (e.g., C, IF, and F ) are automatically calculated by the instrumented
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JavaScript code. Missing keystrokes in the final typed text are classified as INF

and added to the total INF if they prevent compilation.

2.5.1 Tasks

There is no standard code sample in the literature to test program input per-

formance in terms of KSPC, WPM, or TER. Different Java corpus have different

percentages of language elements, therefore, there is no single representative cor-

pus. In addition, some language elements are seldom used. For example, there

are 0.76 conditional statements per method and 0.11 Try/catch statements per

method [33]. To create a representative program where this is true, we would

have to create a very long program that would not be doable in the amount of

time available for the study. We had to come up with a task that is close to the

average program but short enough to reduce task entry time for the purposes of

the study. Our programs have 3.5 methods per class which is similar to reported

statistics [33]. However, they have 1 class field instead of 1.9 and 0.43 local variable

per method instead of 0.87 [33].

We therefore chose two different Java programs that exercise use of the keys

with the most options to test the lower bound performance of the keyboard exten-

sion. These two programs do not use every key in the keyboard extension because

many of the keys, such as all loops, “break”, “continue”, and “return” keys have

no options. A coding task that required all of these keys would give an unfair ad-

vantage to the keyboard extension. The two programs are quite different in terms
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of the constructs used.

2.5.2 Participants

The study participants consisted of 27 males and 5 females all with Java pro-

gramming experience. All of the participants volunteered for the study in response

to an email message circulated to the students in the computer science department

at Oregon State University. Fourteen participants were graduate students, 2 par-

ticipants were recent graduates, and 16 participants were undergraduate students.

All but two participants had never used a tablet device to write code. Eighteen

of the participants considered themselves touch typists (typing without using the

sense of sight to find the keys on a physical keyboard).

2.5.3 Experimental Design and Procedure

We used a within-subjects design with repeated measures. The independent

variable was the soft keyboard used to complete the programming tasks and the

study consisted of two treatments: the standard iPad 2 soft keyboard design and

the soft keyboard extension. We asked each participant to enter two different Java

programs. Both programs were entered using each keyboard. We balanced the

order of the treatments using a Latin Square. The dependent variables were the

KSPC, WPM, and TER. We measured these variables for each keyboard and each

program independently. We measure and report omission, substitution, insertion,
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and spacing errors with the unified error metric, TER [26].

We ran the study in a lab setting in groups of 2-4 participants. After signing

an informed consent document, each participant was randomly assigned to one of

the two experimental conditions as described above. The group was given a 10-

minute tutorial on how to use the keyboard extension and then allowed 5 minutes

to practice with it. We encouraged the participants to ask any questions that they

might have during the course of the study. The participants then carried out two

tasks using the first treatment. After a short break, they carried out the same

two tasks using the second treatment. After each task, we asked the participants

to complete a NASA Task Load Index (NASA-TLX) questionnaire for assessing

subjective mental workload [34]. When all tasks had been completed, we asked

participants to complete a post session questionnaire about their experience with

the two keyboards.

2.6 Results

Our initial hypothesis was that users would input the Java programs faster,

more efficiently, and with fewer errors when using the soft keyboard extension

as compared to the standard soft keyboard alone. Thus, our null hypothesis for

all analyses is that there is no significant difference between the distributions of

corresponding performance measures across the two keyboard designs. For all

measurements we use a paired t-test analysis. Fig. 2.3 summarizes performance

on each metric for each keyboard design.
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Figure 2.3: KSPC, WPM, and TER for both the standard and extension key-
boards. The mean is shown with the “+” sign.

2.6.1 TER

Participants’ mean total error rate for the standard soft keyboard and soft

keyboard extension was 7.81% (SD: 3.74%) and 4.89% (SD: 2.54%), respectively.

There was convincing statistical evidence for an effect of keyboard design on TER

(t (31) = -4.59 , p<.0001). See the third column in Fig. 2.3.
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2.6.2 KSPC

Participants used fewer keystrokes per character when typing programs with

the soft keyboard extension (0.97, SD: 0.09) as compared to the standard soft

keyboard (1.49, SD 0.11). This represents a 34.9% reduction in KSPC with the

soft keyboard extension. In fact, there is convincing statistical evidence for an effect

of keyboard on KSPC (t (31) = -24.66, p<.0001). This improvement is expected

because our design replaces many key presses with single keys that represent entire

words or constructs and the corresponding syntax elements.

2.6.3 WPM

Participants typed on average 10.68 WPM (SD: 1.78) and 10.64 WPM (SD:

2.31) on the standard and extension keyboards, respectively. Pairwise t-tests show

no significant differences in WPM between the two keyboards (t (31) = -0.1348,

p>.05). Fig. 2.3, however, gives us a clearer picture of performance with respect

to WPM. In particular, note that the two largest WPM values for the soft key-

board extension are both higher than the largest WPM value for the standard soft

keyboard, while the worst case performance for both are similar (7.27 and 7.55 for

the standard and extension keyboards respectively).
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2.6.4 NASA-TLX

Table 4.2 shows the mean response values for the NASA TLX questionnaire

measures. While there was no statistical evidence for perceived difference in per-

formance, there was convincing statistical evidence for an effect of keyboard on all

other TLX measures including mental demand (t (31) = -2.655187 , p<.01), tem-

poral demand (t (31) = -4.024615 , p<.001), physical demand (t (31) = -5.574217 ,

p<.0001), effort (t (31) = -5.574217 , p<.0001), and frustration (t (31) = -3.256373 ,

p<.01). Fig. 4.5 summarizes the TLX questionnaire results.

Mental Physical Temporal Performance Effort Frustration

Extension

Standard

Figure 2.4: Boxplot summary for the NASA-TLX measures
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Table 2.2: NASA-TLX measures comparison (mean response) between the stan-
dard iPad keyboard and the keyboard extension.

TLX Measure Extension Standard
Mental Demand 41.88 50.23
Physical Demand 37.66 60.63
Temporal Demand 46.48 58.67
Performance 82.66 84.84
Effort 46.09 67.58
Frustration 41.33 56.41

2.6.5 Participant Feedback

At the end of the study, participants filled out a questionnaire about their

experience with the two keyboards. They were asked to rate the helpfulness of

the two keyboards from 0 (Not helpful) to 100 (Very helpful) when writing a Java

program. Participants on average ranked the keyboard extension (70.2) to be more

helpful compared to the standard keyboard (36.1). When asked to rank ease of

use of the two keyboards on a scale from 0 (Very difficult) to 100 (Very easy),

they ranked the keyboard extension to be easier (68.0) on average to use when

compared to the standard keyboard (42.5). 47% of the participants preferred the

keyboard extension while 31% preferred the standard soft keyboard. 22% had no

preference.

2.7 Discussion

The results of the study indicate that users performed code input tasks better or

no worse when using the soft keyboard extension as measured by TER, KSPC and
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WPM. There are several explanations for this result. The keys in our keyboard are

large and according to Fitts’ law, this will positively affect the typing speed [35].

Larger targets will also result in fewer typing errors. Most importantly, because we

design to the domain and take advantage of the constraints imposed by the domain,

we can insert much of the boiler-plate syntax for the user, hence improving KSPC

and reducing errors. Fig. 2.5 shows an example of a partially input program. In

this example, a programmer switched to the standard keyboard 10 times to type

the highlighted code. The rest of the program was typed using presses strictly from

the keyboard extension. The reduction in the number of keys pressed, due to the

use of keywords as opposed to characters as input units, results in a lower KSPC.

For example, Table 2.1 shows the total keystrokes and the length of the code. In

this example, it took only 11 keystrokes to type 21 characters. The combination of

these factors results in improvements even after using the keyboard extension for

only a short period of time. It is reasonable to suspect that users would perform

better after using it for longer periods, an observation made in the use of other

keyboards [8, 36].

Efficiency and Errors We found that in terms of KSPC, participants were

much more efficient with the keyboard extension than with the standard soft key-

board alone. In fact, for every 100 characters in the code, a participant pressed

approximately 149 keys when using the standard soft keyboard compared to 97

keys on average when using the soft keyboard extension. Although participants

switched from the extension to the standard soft keyboard to write 55% of all
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Figure 2.5: The standard keyboard was only used to type the highlighted code.

characters in the input tasks, KSPC and TER were still improved when using the

soft keyboard extension.

Errors are quite common on soft keyboards due to the small size and because

they produce no tactile feedback. This results in an increase in typing mistakes

such as unintentionally pressing keys adjacent to the intended typed key [37]. This

mistake is magnified as the size of the keys decreases [7]. In our study, the standard

soft keyboard has 12% more keys than our keyboard extension and the keys are

therefore smaller.

In addition, the keyboard extension uses complete word primitives as opposed

to individual characters. These two factors combined result in a lower error rate for
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the soft keyboard extension. In fact, the total error rate was decreased by 37.38%

when using the soft keyboard extension. While this finding is important in general

for this particular domain-specific case of Java program input, it is particularly

important for the large class of users with motor disabilities. These users could

benefit greatly from the use of a soft keyboard that reduces the overall number of

keys required to input code and thus the likelihood of mistyping errors [38].

Speed A slightly lower or equivalent WPM using the keyboard extension is not

surprising, in hindsight, due to the need to learn the layout of the keyboard. For

those who have not memorized the layout, a visual search process is necessary to

find the key to be typed. Our participants did not have the benefit of time to learn

the keyboard extension layout. After only 5 minutes of practice, however, the code

entry speed of participants using the soft keyboard extension was as good as that

using the standard soft keyboard.

NASA-TLX: User Perceptions Participants on average felt that our keyboard

is not as mentally, physically, or temporally demanding as the standard keyboard

alone. A programmer does not have to remember to close parentheses or braces

because the syntax-directed keyboard inserts them at their correct place. By doing

so, our keyboard reduces the mental load. Moreover, it reduces the physical load by

decreasing the keystrokes. The participants also did not feel that they were rushed

with our keyboard. This could be due to the keystrokes reduction. By reducing the

mental and physical demand, participants felt that the syntax-directed keyboard

requires less effort and little frustration compared to the standard keyboard by
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itself.

However, participants perceived that they performed worse using our keyboard

extension despite their better KSPC and TER measures using our keyboard. When

asked about their performance, some participants said that they would perform

better if they were given more time to practice. Even without a significant learning

phase, participants reported a lower mental, physical and temporal demand, as well

as lower perceived effort and frustration when using the soft keyboard extension.

These lower perceived workload measures support the significant advantages found

for the keyboard extension with regards to TER and KSPC.

2.7.1 Threats to Validity

Construct validity: Our JavaScript implementations were instrumented with

code to collect the number of keystrokes, the input program text, and the time

participants spent typing the programs. This code produces an accurate timing

of participants, with the exception of the very last keystroke, eliminating most

potential human timing errors. We therefore obtain accurate KSPC, WPM, and

in-situ error measurements (errors that were fixed during entry). All remaining

errors in the entered programs, that would prevent compilation, were then counted

by the researcher to compute the TER. While efforts were taken to accurately

count errors, there is the possibility of human error and thus a threat to construct

validity. The task that the participants entered could be another threat because

the lack of a comprehensive statistics about Java source code.
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External validity: The tasks that we designed were intended to use keys with

the highest number of options in order to produce a lower bound on performance

with the keyboard extension. While we could have included more programming

constructs, such as loops and conditionals, these constructs contain a significant

amount of boilerplate syntax and few “options” and therefore may bias the results

in favor of the keyboard extension. We have confirmed this bias with sample

test cases that included these constructs. Nonetheless, while we took efforts to

design fair tasks, there is room for human bias and thus a potential threat to

external validity. In addition, the two programs do not cover a wide variety of

programming concepts. Different program types might produce different results

and thus our choice of program may be a threat to external validity.

2.7.2 Limitations

The keyboard extension is not without limitations. Some limitations arise

from using a syntax-directed editing approach [31]. However, these limitations

were mitigated by allowing arbitrary text insertion in the code. This requires

that the user switch from the extension to the standard keyboard, which is done

with an additional key press. Another limitation is that the keyboard extension is

designed for input of the Java programming language only. This can be addressed

by adding support for other languages or by modifying the keyboard design to

apply to a more general class of coding such as “imperative programming.” This

is left for future work. Finally, the keyboard extension represents a completely
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new layout. This may cause significant concern for users who are comfortable with

the standard keyboard layout and not willing to put in the time to learn a new

keyboard layout, primitive set, and functionality.

2.8 Conclusions and Future Work

Our study indicates that a soft keyboard extension for input of Java programs

on touchscreen devices has many benefits including improvements in efficiency and

error rates, while not degrading input speed. In addition, users perceive the soft

keyboard extension to be less mentally, physically, and temporally demanding, as

well as less frustrating, and requiring less effort to use.

The benefits of improved keyboard input on touchscreen devices can impact

programmers as such devices become more ubiquitous. This can have a particularly

important impact on users with motor disabilities or those who simply lack fine

motor skills, like children and older adults. This is especially timely as mobile

touchscreen devices become more prevalent in schools as a computing device.

While our results apply to Java program input only, we suspect that such ben-

efits would be observed for keyboard extensions in other domains that use highly

structured input language. An important avenue of future work is to study alterna-

tive application domains such as exercise prescription and medication prescription.

The soft keyboard extension presented in this paper was designed based on

manual statistical analysis. For many domains, there is a wealth of data to draw

upon in order to inform the design of a soft keyboard extension. We intend to
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explore machine learning techniques to automate this process for the domains of

interest (e.g., large scale Java programs or exercise prescriptions) to determine the

appropriate set of keyboard primitives and to exploit spatial and temporal locality

in the domain language.

Finally, all study participants learned to use the soft keyboard extension in very

little time. We suspect that additional time to learn the interface will significantly

improve users’ efficiency. We plan to study how much experience with the keyboard

is necessary to reach maximum typing speeds.
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Chapter 3 : Syntax-Directed Keyboard Extension: Evolution and

Evaluation

3.1 Abstract

The syntax-directed keyboard extension presented by Almusaly et al. in 2015

allows programmers to input Java source code with fewer errors and keystrokes

compared to the soft QWERTY keyboard and it supports a comparable typing

speed [39]. While these results were obtained after only 10 minutes of practice,

it is unclear how long-term use affects performance. In this paper, we present

an updated design for the original syntax-directed keyboard extension, replicate

the original results, and evaluate the evolved design with Java programmers over

eight sessions in a period of two weeks. Our results indicate that a programmer

using the new keyboard extension for two weeks can input Java programs 16.5%

faster (words per minute) than an expert QWERTY keyboard typist. In addition,

we demonstrate that the efficiency and accuracy for inputting Java source code

improves with repeated use over time and that perceived mental, physical, and

temporal demands of the keyboard extension decrease over time.
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3.2 Introduction

Per Pew Internet Research, half of American adults ages 18-29 report owning

a tablet device, 86% of whom also own smart phones [40]. These touchscreen

devices are becoming more powerful each year and their adoption rates are on the

rise. Furthermore, these devices can be used as application creation environments.

Many popular programming languages like Java, Python and C++ are text-based

languages. However, text input on these predominantly touchscreen driven devices,

a key interaction task across many popular apps, can be difficult.

There are many factors that contribute to the awkwardness of touchscreen de-

vice soft keyboards, key among them being the device and screen size. While

devices come in different screen sizes, their soft keyboards are usually small (when

compared to standard physical keyboards), especially when devices are used in

portrait mode. Another factor is the lack of tactile feedback. Without the help of

tactile feedback, users of soft keyboards are more prone to typing errors where adja-

cent keys are accidentally pressed [37]. The lack of tactile feedback also contributes

to a decrease in typing speed [41]. Moreover, symbols and numbers typically require

switching between character, numerical and symbol keyboards, another source of

error and slowdown. This is particularly troublesome when considering the use of

touchscreen devices to write source code, which often contains symbols and num-

bers. This leads to an increase in the amount of keyboard switching and therefore

an increase in the number of keystrokes required to accomplish the task.

While programming full-fledged applications on mobile devices may seem an
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edge-case, there is a significant drive to deliver educational apps, including many

that introduce to programming (e.g. Swifty, Hopscotch, and Swift Playgrounds

among many), using these devices [42,43,44]. In addition, Tillmann et al. predict

that mobile device will be used as application creation environments and propose

the teaching of programming using them. They presented their experience with

school students which shows that programming directly on mobile devices is ac-

cessible to students who are beginning to learn programming [45]. Therefore, it

is reasonable to expect coding of short modules, or at least the editing of exist-

ing code on mobile devices to soon be a mainstream task on touchscreen mobile

devices. Although programming languages are highly structured, general purpose

soft keyboards do not take advantage of these domain-specific constraints.

The soft keyboard extension of Almusaly et al. was designed to help develop-

ers write Java source code on touchscreen devices [39]. It reduces the number of

keystrokes and errors compared to the soft QWERTY keyboard while maintain-

ing a comparable typing speed. Professional and novice programmers can benefit

from a domain-specific keyboard like the Syntax-Directed Keyboard Extension.

This keyboard enables professional programmers to input source code when they

do not have access to a physical keyboard in a fast, efficient, and accurate way. For

example, professional programmers may find the ability to write or edit code on a

mobile device useful in commuting situations where a laptop is sometimes incon-

venient, especially because ideas and algorithms emerge at any time. Additionally,

the keyboard extension could prove useful for novice programmers, such as K-12

children, learning to program in classroom environments on mobile devices. The
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study presented by Almusaly et al, however, looked at short-term learning effects

only; the long-term impact of using the keyboard extension was not studied [39]. It

is therefore not clear how users will adapt over time to using the Syntax-Directed

Keyboard, whether long-term, habitual use will lead to improvements in perfor-

mance, or how users feel about this keyboard once the novelty wears off.

We therefore seek to make two specific contributions in this paper. First, we

present enhancements to the previously designed soft keyboard extension for Java

program input on touchscreen devices, aimed at further improving performance.

These enhancements include reducing the number of keystrokes, increasing input

speed, and reducing the total error rate. Second, we replicate the results of Al-

musaly et al. after a single use session, and present results of an eight-session

empirical study that shows that the speed, efficiency, and accuracy of users of our

keyboard extension increase over time. The results of this study provide insight

into the change in user performance over time when using a domain-specific key-

board. We also discuss lessons and best practices for designing domain-specific

soft keyboards for programming languages.

3.3 Related Work

In this section, we examine previous work related to keyboard design and eval-

uation, especially as related to programming tasks.
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3.3.1 Text Entry Methods

Keyboards remain the most common mechanism for text input and come in

various sizes and layouts. Some keyboards are designed to enhance general text

input (e.g. writing email and word processing) efficiency or to reduce input errors

in general. They can be physical keyboards [17], or soft virtual keyboards [4, 5, 9,

18,19].

Gesture-based entry methods have also been introduced for general text as well

as source code input [20, 23], however, these either have an acknowledged speed

disadvantage [20] or were not well received by users in evaluation studies [23].

Speech is yet another way to provide text input. SPEED is a program editor

that enables programming by voice and supports writing, editing, and navigating

source code [46]. Nevertheless, programmers face difficulties when the speech rec-

ognizer misinterprets their speech (not unreasonable given special characters and

syntax used in programming), and speech is not always an appropriate option (e.g.

in public or quiet spaces).

Despite the variety in ways to input text, few of these were designed with source

code entry in mind. In this paper, we focus on the design of a soft keyboard opti-

mized for the writing and editing of Java source code, as opposed to general text.

Our specific goal is to demonstrate the potential impact of a syntax-directed key-

board extension, over time, for reducing errors as well as improving input efficiency

and speed.
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3.3.2 Programming on Tablet Devices

Writing or editing programs on touchscreen devices is arguably not as easy

as doing so on desktop computers. Nevertheless, tools have been developed to

ease the task and support such complex tasks as refactoring [21, 22]. Other tools

target computer science education. Tools like Catroid, Hopscotch, ScratchJr, and

YinYang [14, 43, 47, 48] all focus on making programming accessible to leaners.

GROPG enables programmers to debug their applications on their phone [49].

TouchDevelop, for instance, was designed to ease writing programs on touch-

screen devices (e.g. smart-phones) for use on touchscreen devices by creating a new

programming language [10]. Another approach has been to develop hybrid solu-

tions allowing the tablet to work in concert with a desktop IDE. Domain-specific

gesture languages, performed on a tablet device, have been used to input or ma-

nipulate text on a connected desktop IDE [23]. Deverywhere is a tool that uses

templates and allows its users to input with speech and touch [50]. However, none

of these tools focus on editing or writing code for conventional text-based pro-

gramming languages (e.g. Java, C, or Python) on touchscreen devices efficiently,

accurately, and fast.

3.3.3 Syntax Directed Keyboard Extension

A keyboard extension is a keyboard that serves as the top-level keyboard for the

soft QWERTY keyboard. In this study, we build on the Syntax-Directed Keyboard

Extension of Almusaly et al., which was designed to ease the task of inputting Java
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Figure 3.1: The Syntax Directed Keyboard Extension for Java program input.
Call-outs give examples of text inserted when button is pressed.

programs on touchscreen devices [39]. This design employs frequently-used domain

primitives as the unit of input, instead of individual characters. These primitives

are spatially grouped per their function, and the keyboard uses a syntax-directed

approach to reduce errors (See Figure 3.1).

Complete statements are inserted by pressing a single key. The call-outs in

Figure 3.1 show examples of the statements inserted when the ”if”, ”do”, and

”continue” buttons are pressed. After pressing one of these keys, the keyboard

switches to a standard QWERTY keyboard to let the programmer complete the

missing parts of the expression. Additionally, the top row of the keyboard - called

the ”option area” - presents the programmer with context (statement) dependent

key options. Examples of these include modifiers, types, or parameters.

The original keyboard design was evaluated with Java programmers and showed

that programmers using this keyboard could input Java source code with fewer er-
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rors and fewer keystrokes than when using a soft QWERTY keyboard. Moreover,

this keyboard was shown to be less demanding both mentally and physically than

the standard soft keyboard for inputting source code on a mobile device. Addi-

tionally, programmers maintain a typing speed that is comparable to that on the

standard soft QWERTY keyboard. In this paper, we present an enhanced design

for the syntax-directed keyboard extension, and perform a more longitudinal study

to examine performance and user receptiveness after extended use.

3.4 Improving the Syntax-Directed Extension

We started from the ad hock design of the keyboard extension developed by

Almusaly et al. to determine what the long-term impact or potential associated

with using a syntax-directed keyboard extension in writing programs on a mobile

device [39]. This extension had already been shown to be reasonably effective

and accurate. However, the design process of this extension was largely driven by

an iterative conversation with programmers, that while well-grounded, might have

been biased by what developers thought would be most useful/effective rather than

what would prove to be most efficient from a statistical perspective. The original

design was developed with the cognitive dimensions in mind [32]. We introduced

enhancements upon the existing keyboard without violating these cognitive di-

mensions. We improved the Syntax-Directed-Keyboard extension by leveraging a

statistical analysis of general purpose Java source code, and the terms most fre-

quently used. Users’ feedback of the original keyboard were also used to drive the
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Figure 3.2: The original keyboard extension for Java program input. The extension
serves as the top-level keyboard and provides entry to the standard soft keyboard
when necessary.

Figure 3.3: The revised keyboard extension for Java program input.

new modifications. We first rearranged a few key locations based on their sta-

tistical usage without breaking their functional grouping. In addition, we added

more options to the options area and included symbols and data types that are fre-

quently used. These enhancements to the keyboard design are intended to reduce

keystrokes and speed Java source code input.

In this section, we describe in detail the statistical analysis and the process

that led to the new design and highlight differences between the new and original

design.
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3.4.1 Java Statistics

Our redesign began with a statistical analysis of the way Java is used in the real

world. Our goal was to better understand the usage frequency of Java language

constructs so that we could present the most important constructs at the top level

of the keyboard. To ensure that our design supports input of typical Java programs,

we gathered and analyzed 10,968 Java projects, modeling the recommendations

in [51]. Next, we downloaded all the Java files in these projects and used the

JavaParser [52] to obtain the abstract syntax tree (AST) for each file. From the

AST, we calculated the use statistics of Java primitives and constructs.

Finally, we took this information and modified the design developed by Al-

musaly et al., removing less frequently used keys, and adding more frequently used

keys. These keys were then arranged from the most-used keys (top rows) to the

least used keys (bottom rows), while retaining the semantic clustering in the orig-

inal design. Table 3.1 shows the summary statistics of expressions used in our

sample.

Some of the changes we made based directly on the use statistics. For example,

the ”try”, ”catch”, and ”throw” statements are more common than the ”for”,

”do”, and ”while” statements. For this reason, we switched the location of these

elements. However, the ”return” statement has a higher frequency than all the

looping and error handling statements combined. We did not change its location

to maintain the grouping of the ”return”, ”break”, and ”continue” statements. The

”Array” and ”Container” keys in the previous keyboard were replaced with the
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Java Construct Count per File Task
Variable Declaration 9.23 7
Method Declaration 7.98 8
Parameter 8.46 7
Import Declaration 7.48 7
Return Statement 5.86 6
If Statement 5.83 6
Object Creation Expression 5.56 5
Field Declaration 4.02 4
This Expression 3.18 3
Line Comment 2.95 3
Class or Interface Declaration 1.21 1
Package Declaration 0.99 1
Switch Entry 0.89 0
Constructor Declaration 0.87 1
Catch Clause 0.84 1
Try Statement 0.81 1
Throw Statement 0.77 1
For Statement 0.60 1
While Statement 0.25 0
Switch Statement 0.14 0
Do Statement 0.03 0
Annotation Declaration 0.01 0

Table 3.1: Java source codes statistics. The second column shows the number of
times each construct appeared, on average, over the examined source code files.
The third column shows the number of times the construct appeared in the sample
Java source code task used in our evaluation study.

”Object” key because the Object declaration is very common in Java source code

and therefore needs its own key to reduce keystrokes. We removed the ”Math” key

because it is a function call that is not used often. Users can input math statement

using the ”ABC” key to open the standard QWERTY soft keyboard.

As can be seen when comparing Figure 3.2 to Figure 3.3, the changes were
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relatively minor, though we hope impactful. We did not perform an evaluation of

which keyboard performed best. The reason for performing these optimizations

was a desire to avoid annoying our subjects as the novelty of using this system

wore off, as well as a desire to create the most optimal conditions for our users.

3.4.2 Interaction Design Updates

The original design, while effective, had several shortcomings [39]. For example,

when the ”option area” (the top row of the keyboard) displays types (after pressing

variable or function, for example), the rest of the keyboard is unused, showing the

static top level keys that are disabled until a type key has been selected. The

programmer must select the ”Custom Type” key to input a type that is not in the

option area as it is shown in Figure 3.4. By showing the QWERTY keyboard in

place of the disabled static keys, we save a keystroke every time the user wishes

to input a custom type that is not in the list. Figure 3.5 shows the revised design

that allows for selecting an existing type or creating a new type. In addition, this

design contains more primitive types to choose from that are displayed from most

common (int) to least common (double).

Some symbols and operators tend to appear more frequently than others in

general-purpose programming. For example, in conditional statements, relational,

equality, and logical operators are far more common than the rest of the other

operators. Based on our statistical analysis of Java programs, we added the most

common operators in the top row ”option area” as a shortcut to reduce the number
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Figure 3.4: The original “types” keyboard view.

Figure 3.5: The new “types” keyboard view.

Figure 3.6: 1 default keys, 2 conditional keys, 3 assignment keys, and 4 import
keys.

of keystrokes. We display a different operator set depending on the current state-

ment. This approach more consistently eliminates the need to switch keyboards

to input an operator. Table 3.2 shows the frequency of the symbols used in Java

source code. Figure 3.6, shows the options area that corresponds to the default set,
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Symbol Per File Symbol Per File
* 13.9 : 1.2
) 12.9 + 1.2
( 12.9 \ 1.0
; 10.1 [ 0.8
/ 6.9 ] 0.8
= 5.9 ’ 0.7
, 5.8 ! 0.6
” 5.0 & 0.5
} 3.7 $ 0.4
{ 3.7 — 0.3

3.5 # 0.3
- 3.0 ? 0.2
. 1.8 % 0.1
¿ 1.6 ˆ 0.01
¡ 1.6 ‘ 0.01
@ 1.6 ˜ 0.01

Table 3.2: The frequency of symbols in Java source code.

conditional keys, assignment keys, and import keys respectively. Notice that not

all the symbols or operators are presented to the user such as the curly brackets

and the semicolon. These symbols are inserted by the keyboard automatically in

the correct syntactical location.

3.5 Methodology

In this section, we discuss key performance measures for text input and key-

board design, and how we went about evaluating the long-term impact of our

prototype.
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3.5.1 Evaluating Typing Performance

Among the most important metrics when evaluating a (soft) keyboard are text

input accuracy, efficiency, and speed. How prone a user is to committing typing er-

rors is the most commonly used definition of accuracy [25]. Substitution, intrusion,

omission, and transposition are the most common typing errors.

There are several ways to measure accuracy, including, but not limited to, the

Minimum String Distance (MSD) error rate, and the Total Error Rate (TER) [26].

MSD is a measure of the minimum number of primitives (insertions, deletions, or

substitutions) to transform one string into the other. TER is a measure of the

total number of errors in the final typed text, including corrections made during

the typing of the final text. We use the TER measure in this paper because it

overcomes the weaknesses of the other measures and reflects all errors committed

by a participant [26]. Keystrokes are categorized into four classes within an input

stream: Correct (C), Incorrect Fixed (IF), Fixes (F), and Incorrect and Not Fixed

(INF) [26]. We use all four keystroke classes to compute the TER.

To measure how effective our keyboard is in reducing the number of keystrokes

required to enter a single character, we used the Key Strokes Per Character (KSPC)

measure [27]. The KSPC on a standard physical QWERTY keyboard is approxi-

mately 1.00 [27]. However, it has been shown to be as high as 1.21 when accounting

for the need to correct errors [26].

To measure user input speed, we computed the Words Per Minute (WPM)

typing speed, where a word is assumed to consist of on average five characters. The
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WPM metric has been used to compare various hard and soft keyboard designs

[7, 29]. We measure the input speed in WPM using the following equation:

WPM =

(
Number Of Characters

Total T ime

)
×
(

60

5

)
(3.1)

Total Time is the time it takes to input the source code. The 60 in equation

3.1 is to convert the seconds to minutes. While the 5 is to convert the Num-

ber Of Characters to the number of words. This number is selected by assuming

that the average number of characters in a word is five.

3.5.2 Study Design

We now describe a formal user study designed to evaluate the use of our key-

board extension over an extended period.

We used iPad 4’s for our study and implemented the soft keyboard extension

in JavaScript. The iPad has a 9.7-inch diagonal screen with 1536 x 2048 pixels.

The pixel density is 264 pixels per inch (PPI). Next, we created a sample Java

program that met the ”average” statistics for Java programs (see Table: 3.1). We

decided to use this program as a stand-in for a generic Java program, which our

subjects would be asked to key in using our prototype. This was done to remove

confounding variables associated with having to design a program independently

and on the spot. We designed the source code so the average user would be able

to key it in less than 30 minutes (to avoid input fatigue). The auto-completion
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capability was disabled to measure the raw performance of the keyboard like the

original keyboard study design [39].

We asked our participants to key this program eight times over an eight-session

span. This presents an ideal situation, where the developers know what they want

to write, and over time potentially become more familiar with their task. This

would allow us to set the stage for optimal learning over a short period, while

controlling for variables such as programming experience and prowess (while more

experienced developers might be better at remembering or anticipating the next

commands, less experienced developers would not be at too much of a disadvan-

tage). Our keyboard application was instrumented to log data needed for the

KSPC, WPM, and TER measures.

3.5.3 Participants

The study participants consisted of 10 students (2 female and 8 male) all with

previous Java programming experience. All the participants volunteered for the

study in response to an email message circulated to the students in the computer

science department at [omitted for anonymous review]. No participant previously

used a tablet device to write source code.
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3.5.4 Experimental Procedure

We asked each participant to enter the same Java program eight times over

the course of eight sessions. We measured the KSPC, WPM, and TER of all

participants for each of the eight sessions. We measured and report omission,

substitution, insertion, and spacing errors with the unified error metric, TER [26].

We ran the study in a lab setting, each participant working individually. Only

in the first session, participants were given a 10-minute tutorial on how to use the

keyboard extension and then allowed 5 minutes to practice with it. We encouraged

the participants to ask any questions that they might have during the study. Par-

ticipants then carried out the assigned task using our keyboard. After each session,

we asked the participants to complete the NASA Task Load Index (NASA-TLX)

questionnaire to assess subjective mental workload [34]. At the end of the study,

we asked participants to complete a questionnaire about their experience with the

keyboard.

The longest time a participant took to finish the first session was 31 minutes.

The average session time was a proximately 17 minutes. Participants spent a total

of 2 hours and 15 minutes on average using the keyboard. The eight sessions

spanned 10 to 14 days across all participants, with no participant doing more than

one session per day.
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3.6 Results

We present the speed, accuracy, and efficiency of participants using our key-

board in the following section. In the interest of replicating the results of Almusaly

et al. [39] (though our keyboards differed slightly), we also report these measures

for the first session separately. We conclude the section with the NASA task load

index measures as well as questionnaire results.

3.6.1 Words Per Minute

A one-way repeated measures ANOVA was conducted to compare the effect of

(IV) our keyboard’s usage time on (DV) the speed of input (WPM) during the

8-session span. There was a statistically significant effect of usage on the input

speed (WPM), F(7, 63) = 83.74, p<.001. The participants’ average typing speed

in the first session was 15.87 WPM (SD = 2.82) and gradually increased to 30.29

WPM (SD = 5.59) by the eighth and final session. This represents a 91% increase

in average typing speed over 8 sessions (see Figure 3.7). There was no evidence to

show that participants had reached their top speed by the end of the experiment.

This shows the importance of giving participants time to acclimate and thoroughly

learn how to use new input systems.
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Figure 3.7: The input speed in WPM over the eight sessions. Each dot represents
a participant’s typing speed for a given session. The gray area is the Confidence
Interval of the Loess smoother. The dashed line represents the theoretical speed
of an expert QWERTY keyboard typist

3.6.2 Total Error Rate

A one-way repeated measures ANOVA was conducted to compare the effect

of (IV) the enhanced keyboard’s usage time on (DV) the input accuracy (TER)

during 8 session span. There was no statistical significant effect of usage on the

input accuracy (TER), F(7, 63) = 1.568, p = 0.162. The total error rate in the
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first session was 3.69% (SD = 1.71). This rate was reduced to 2.61% (SD = 1.32)

by the eighth session; a decrease of 29%. This decrease in total error rate is shown

in Figure 3.8.
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Figure 3.8: The total error rate over the eight sessions.

Because typing errors are somewhat misleading due to the amount of text

inserted automatically (and therefore correctly) by the syntax-directed keyboard,

we also wanted to look at how often users simply chose the wrong key on the

keyboard extension. On average, participants pressed the wrong key in the first
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session 20.3 times, and this number decreased to 5.9 times by the final session.

3.6.3 Key Strokes Per Character

A one-way repeated measures ANOVA was conducted to compare the effect

of (IV) the enhanced keyboard’s usage time on (DV) the input efficiency (KSPC)

during 8 session span. There was a statistically significant effect of usage on the

input efficiency (KSPC), F(7, 63) = 4.436, p<.0001. The average KSPC is perhaps

a more telling measure than the TER, as it indicates how many keys the user must

touch to enter the code. The KSPC for the first session was 0.88. (SD = 0.05) By

the end of the eighth session, participants reached an average KSPC of 0.81 (SD

= 0.03). As expected, KSPC reduces slightly over time as participants make fewer

errors as measured by TER. Figure 3.9 shows the changes in participants’ KSPC

over the eight sessions.

3.6.4 NASA-TLX

We used the NASA-TLX measure to obtain participants’ perception of work-

load when using the syntax-directed-keyboard and report the Raw TLX. As seen

in Figure 3.10, the average perceived workload of the participants decreased over

time for all facets of the measure: mental, physical, temporal, performance, effort

and frustration.
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Figure 3.9: Input efficiency in KSPC over the eight sessions.

First session Last session Improvement
Mental 46 27 41%
Physical 48 25 48%
Temporal 43 25 42%
Performance 78 71 9%
Effort 51 29 43%
Frustration 28 19 32%

Table 3.3: The average improvement in the perceived workload.
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Figure 3.10: The Raw NASA-TLX results over the eight sessions. Each line rep-
resents one of the NASA-TLX questions, and each point represents the average
response for all participants. Questions are out on a 100-point scale, with higher
scores representing higher workloads.

3.6.5 Participant Feedback

After the eighth and final session, participants completed a questionnaire about

their overall experience with the keyboard. All participants indicated that they

were between neutral and very positive about using our keyboard to write Java

source code. None of the participants said they were unlikely to use the syntax-
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directed keyboard. Most of the participants found the keyboard to be helpful or

very helpful for writing source code. All but one participant thought the keyboard

was easy to use. Figure 3.11 shows each question and a box-plot of the participants’

average answers to each question.

Question

In the future, how likely would you be to use this keyboard to write source code?

How helpful was the keyboard in your task?

Adapting to this keyboard was

Using this keyboard was

The visual design of the keyboard was

How efficient do you think you were when using this keyboard?

Very Likely Very Helpful Very Easy Very Easy Very Good Very Fast

Very Unlikely Not Helpful Very Difficult Very Difficult Very Bad Very Slow

Figure 3.11: The results of the post study questionnaire. Each column represents
a question. The Tukey boxplot shows the average response on a 5-point scale.
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3.7 Discussion

In this section, we discuss our results with specific attention paid to how par-

ticipant performance changed over the course of the experiment (8 session) and

how the updated keyboard design compares to the original keyboard design of Al-

musaly et al. [39] after a single session. However, it is important to know that our

keyboard was evaluated using a different source code that matches the collected

statistics.

3.7.1 Efficiency

The source code keyed in our study task can in theory be input using our syntax-

directed keyboard with a KSPC of 0.723 when no mistakes are made. While none

of our participants achieved the optimal input rate, their KSPC clearly improves

over the 8 sessions, with an average KSPC of 0.81 at the end of the study. This

KSPC includes correcting errors while keying the text. In Figure 3.9, we can also

see that the performance rate levels off after about 5 sessions, suggesting that users

can learn to use a custom keyboard layout effectively after a relatively short use

duration.

Assuming no errors, the lowest KSPC of an expert QWERTY physical keyboard

user while keying the same source code is calculated to be 1.32. Our participants’

average KSPC of 0.81 represents a 35.5% improvement over the best possible KSPC

with a physical QWERTY keyboard, even when correcting errors while typing. If

no errors are made, our KSPC would be further reduced to an optimal rate that
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is 44.55% better than the optimal QWERTY physical keyboard input.

To replicate the results of Almusaly et al. [39], we analyzed the performance

of users with our updated design after using it for only one session. Our updated

design appears to perform slightly better than the keyboard design of [39]. Looking

only at the first session, the average efficiency in our first session was 0.88 KSPC

compared to 0.97 KSPC for the previous design. This is a 9.3 % improvement

over the original design. Thus, our updated design produced better results, and

users still have significant room for improvement over the 8 sessions of the study.

While we are happy with this, it is likely that there is still room for improvement,

and further study should be devoted to methods for optimizing these types of

keyboards.

3.7.2 Accuracy

From Figure 3.8, we can see a steady decrease in the error rate over the course of

the 8 sessions. In addition, the average number of times that participants pressed

the wrong key on the keyboard also decreased over the 8 sessions. We expect a

low error rate because the keyboard extension inserts keywords and many of the

symbols for the user and typical Java source code contains many symbols and

keywords. This limits the room for error by constraining the input space.

Participant performance using our design also resulted in better accuracy than

was reported by Almusaly et al. [39]. Their total error rate was 4.89%, while we

saw an average error rate of 3.64% in the first session; a 25.6 % reduction in the
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total error rate compared to the previous keyboard design. While these numbers

are compelling and encouraging, we caution the reader that we do not have a

measure of statistical significance.

3.7.3 Speed

With increased use and familiarization with the keyboard layout and hierarchy,

we would expect input speed to increase as well. The average input speed of the

eighth session (the highest performance session) was 30.3 WPM. This is compara-

ble to an expert user’s theoretical speed on our enhanced keyboard extension as

computed using Fitt’s Law (42 WPM). The theoretical speed of an expert QW-

ERTY keyboard user, however, is 26 WPM when inputting the same source code.

Our participants’ average input speed was therefore 16.5% faster than the theo-

retical top speed of an expert QWERTY physical keyboard user. This is of course

an artifact of extensive templating, but does show that such keyboard overlays,

though often unfamiliar and requiring some adaptation, quickly pay off.

In the first session, our participants’ average input speed was 15.87 WPM,

which is 48.6% faster than reported in Almusaly et al. [39] (10.68 WPM).

3.7.4 User Experience

Participants’ perceived mental, physical and temporal demands were all some-

what high at the beginning at the study, which is to be expected given the novelty
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of the keyboard and task. We would also expect high perceived effort and frus-

tration level scores, as shown in Figure 3.10. Each of these measures, however,

steadily declines over the eight sessions as participants became more comfortable

with the keyboard design.

Perceived performance, however was somewhat high in the beginning, and con-

trary to expectations, it declined over time. This means that despite improvements

in efficiency, speed, and accuracy, and improvements in all other perceived mea-

sures, participants did not believe they were getting faster. In fact, they believed

they were getting slower. Perhaps this is due to an equal rise in expectations of

oneself as users become more familiar with the keyboard.

Overall, participants’ experiences as measured by the post study questionnaire

were positive. When combined with the TLX results, the prospect of users adopting

domain-specific keyboards, specifically for programming, is promising.

3.7.5 Threats to Validity

Our study is not free from threats to its validity, though we tried to minimize

and address them. Our sample size of 10 participants was small, therefore it may

not generalize to a much larger sample size, and we were not able to perform tests

for statistical significance. The results are applicable to the task that we gave

to our participants, however it is not clear how results would generalize to new

source code samples. In addition, touchscreen devices come in many shapes and

sizes - our study was carried out on one device size only. Finally, while we tested
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the keyboard using common Java constructs, not all source code will necessarily

contain the same statistics. and performance will vary depending on the frequency

of the Java constructs in the source code. This is true, however, for all keyboard

designs.

3.8 Conclusions and Future Work

In this paper, we have presented an improved design of the syntax-directed key-

board extension of Almusaly et al. [39], validated their original results regarding

the benefits of using a syntax-directed keyboard extension for coding on a mobile

device when compared to a regular QWERTY keyboard. We also demonstrated

that over time, user performance on such keyboard extensions improve markedly.

This suggests that the use of custom-designed keyboard extensions for domain

specific situations may be more beneficial than the use of only the standard QW-

ERTY keyboard on touchscreen devices. It also points to the need to adopting

more longitudinal formats in the study and evaluation of novel input methods.

While we presented some improvements to the keyboard originally proposed by

Almusaly et al. [39], we make no claims to having developed the definitive keyboard

extension for Java. There are likely still significant improvements to be made. The

syntax-directed keyboard extension can also be improved with additional features

such as auto-completion of variable names and function calls. This is left as future

work.

Finally, the original syntax-directed keyboard extension was created ad-hoc,
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based on Java source code statistics and the language grammar. An interesting

avenue of future work is the automatic creation of syntax-directed keyboards for

additional programming languages by combining an optimization method with the

statistical analysis and the language grammar.
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Chapter 4 : Evaluation of A Visual Programming Keyboard on

Touchscreen Devices

4.1 Abstract

Block-based programming languages are used by millions of people around the

world. Blockly is a popular JavaScript library for creating visual block program-

ming editors. To input a block, users use a drag-and-drop input style. However,

there are some limitations to this input style. We introduce a custom soft key-

board to input Blockly programs. This keyboard allows inputting, changing or

editing blocks with a single touch. We evaluated the keyboard’s speed, the num-

ber of touches, and errors while inputting a Blockly program and compared it to

the drag-and-drop method. Our keyboard reduces the input errors by 68.37% and

the keystrokes by 47.97%. Moreover, it increases the input speed by 71.26% when

compared to the drag-and-drop. The keyboard users perceived it to be physically

less demanding with less effort than the drag-and-drop method. Moreover, par-

ticipants rated the drag-and-drop method to have a higher frustration level. The

Blockly keyboard was the preferred input method.
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4.2 Introduction

Computer science jobs are increasing. More than 50% of all science, technology,

engineering, and math (STEM) jobs are projected to be in computer science-related

fields by the year 2018 [53]. The Computer Science for All (CS for All) initiative is

aimed to enable all American students at K-12 schools to learn computer science.

This includes teaching computational thinking skills. However, there are many

programming languages. Blocks programming environments are being used by

millions of people of all ages and backgrounds. They offer many advantages to

the beginner programmer. They eliminate syntax issues because they represent

program syntax trees as compositions of visual blocks. Block-based programming

is a popular way to teach programming concepts. Alice, Scratch, and Blockly

are examples of such block-based languages [15,54,55]. Their visual characteristic

benefits them because recognition is easier than recall. Despite their advantages,

there have their drawbacks. One of these drawbacks is the time and the number of

blocks it takes to compose a program in the block-based interface compared to the

text-based alternative [56]. Dragging blocks from a toolbox is slower than typing.

Some attempts were made to blur the line between blocks and text programming

[57, 58, 59, 60]. Few of them did that by allowing blocks to be typed using the

keyboard. However, these researches did not focus on blocks input performance.

They are trying to ease the transition from blocks to text-based programming

while we are trying to ease the input of existing block-based language, especially

on touchscreen devices.
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Most block-based programming environments rely on the mouse as the primary

means of inputting blocks. Using touchscreen devices, blocks can only be input by

drag-and-drop. However, using the drag-and-drop input method has its disadvan-

tages when compared to the point-and-click input method. The point-and-click

input method is faster, more accurate, and it is preferred over the drag-and-drop

for adults and children alike [61,62]. Drag-and-drop requires careful manipulation

of blocks to insert them in the right place. The careful manipulation requirement

adds physical and cognitive demands. These demands affect users negatively, es-

pecially people with motor disabilities or children. The drag-and-drop interaction

also changes as the canvas gets zoomed in or out. A zoomed-out canvas makes

connecting blocks more difficult as the blocks’ connectors become smaller, mak-

ing it more difficult to aim for. This drag-and-drop entry method does not take

advantage of all fingers for inputting the blocks. In addition, blocks have many

options that can be changed. However, these options can be changed using small

icons. These factors make block entry a slow and difficult process. Furthermore,

these factors might lead to frustrated users, which might affect the performance

and adoption of visual languages. That is why we are interested in addressing

these issues.

We created a custom soft keyboard to input blocks on touchscreen devices. This

keyboard was made specifically as a drag-and-drop alternative. The keyboard en-

ables programmers to input blocks using a point-and-click interaction style. We

want to reduce the time required to input programs using the keyboard. In addi-

tion, a point-and-click input method like the keyboard should decrease the errors.
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Moreover, a faster and more accurate way to input blocks could reduce physical

and temporal demands thus reducing frustrations. The keyboard also enables in-

teracting with the blocks of the same base regardless of the canvas zooming because

the keys’ sizes do not change. Finally, a faster, more accurate, and more efficient

input method will make blocks entry more accessible to a wider range of users and

more appealing.

We chose Blockly as our keyboard target because it is a popular library for

creating block programming editors [55]. Section 4.3 presents the related work.

Then, Section 4.4 presents our visual programming Keyboard and its design. After

that, section 4.5 presents our user study design. Section 4.6 presents the user

study results and section 4.7 discusses the results. Lastly, section 4.8 mentions the

conclusions and the future work.

4.3 Related Work

4.3.1 Blocks-based Programming

Blocks-based languages are gradually used to introduce novices to program-

ming. In these languages, programs are constructed by connecting blocks via

connectors. Alice, Scratch, and Blockly are examples of such block-based lan-

guages and environments [15, 54, 55]. These visual programming languages and

environments aim to remove the syntax barrier of textual programming languages.

They are engaging millions of kids with programming through drag-and-drop [63].
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Moreover, they were designed explicitly with learners in mind [64]. However, our

keyboard is different because it is trying to reduce the gap between novice and

experts users. It does that with better input efficiency by reducing the number of

touches required to input. In addition, increasing the input speed and reducing

the errors make the keyboard a better alternative. Novice users might benefit from

the reduced physical demand while experts might benefit from the increased speed.

Novice and experts will benefit from the reduced errors.

4.3.2 Keyboard Designs

Keyboards are designed to minimize discomfort, speed input, or both. Soft

keyboards are no exception. Most keyboards are designed and evaluated for text

entry [4]. The design of the blocks keyboard is similar to the syntax-directed-

keyboard extension [39]. Instead of using the Java syntax, the blocks keyboard

uses the Blockly rules. However, designing a keyboard for blocks input is different.

Moreover, blocks are input via dragging which is vastly different from keyboards.

In section 4.4.2, we discuss in detail the design of the keyboard.

4.3.3 Input Performance Metrics

There are many measures to evaluate an input method. We used three com-

mon input measures for evaluation keyboards’ performance. Namely, the input

accuracy, efficiency, and speed.
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4.3.3.1 Accuracy

Different keyboards have different accuracy. The more prone a keyboard to

errors the less accurate it is. Errors will be misspellings or typos when using a text

entry keyboard. However, the inputted elements in visual programming are blocks.

Thus, error types will be different. We defined errors to be the actions that the

user did not intend to do when inputting blocks. These actions are misplacing a

block, failing to connect a block to another, selecting the wrong field, and inputting

the wrong block. Misplacing a block occurs when the participant inputs a block

and connects it to the wrong block. When the participant inputs a block far from

another block’s connector, the inserted block will not be connected. This is counted

as failing to connect a block to another error. Selecting the wrong option occurs

when a participant did not choose a block’s field correctly. When a participant

inputs the wrong block, it is counted as inputting the wrong block error. The error

rate is the sum of all the error types.

4.3.3.2 Efficiency

Keystrokes per character (KSPC) is frequently used characteristic of text entry

methods [65]. For a given text entry method, it measures the number of keystrokes

required, on average, to generate a character of text. However, blocks are not char-

acters. We defined a similar block-based characteristic for block entry methods.

The keystrokes per block (KSPB) is a measurement of the number of keystrokes

required, on average, to generate a block. Thus, a block entry technique with lower
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KSPB is more efficient.

4.3.3.3 Speed

To evaluate the speed of text entry techniques, words per minute (WPM) is

used. WPM, as the name implies, is the average number of words that can be

inputted in a minute by a text entry method, assuming 5 letters per word. We

defined a related measure for evaluating the speed of block entry methods. Blocks

per Minute (BPM), equation 4.1, is the average number of blocks that can be

inputted in one minute by a block entry technique. A faster entry method is the

one with a higher BPM.

BPM =
NumberOfBlocks

T ime
(4.1)

4.4 The Keyboard Design

Section 4.4.1 explains how the keyboard works while section 4.4.2 describes the

main iterations that led to the keyboard’s final version. In section 4.4.3, some

user-interface design principles that helped to fine-tune the keyboard design are

mentioned.
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4.4.1 How Does It Work

The keyboard works like text entry keyboards, however, instead of inputting

letters it inputs blocks. Each key inputs a block or changes a field. Version 3 in

figure 4.1 shows the current layout of the keyboard. Once a block is inserted, the

keyboard selects and highlights the first unoccupied input connector. Navigating

the blocks through their connectors is available by using the arrow keys. When

a connector is selected, it gets highlighted. The keyboard’s keys will be enabled

or disabled according to the highlighted connector. The “if” block, for example,

does not allow numbers to be connected to its “condition” connector. Thus, the

“Number” and “Arithmetic” keys will be disabled if the condition connector is

selected. The grayed-out keys in figure 4.1 are disabled. The top row will list the

options for the current block, the block with a highlighted connector. As a user

moves through the blocks, the top row updates the list of options automatically.

For example, the right side of figure 4.2 shows how the top row displays the options

for the “Compare” block.

4.4.2 Block Frequency

There are many ways to layout the keys in the keyboard. Just like many key-

board designs that utilize the letter or word frequencies to layout their keys, we

want to utilize the blocks’ frequencies. To do this, we looked for Blockly program

sources. Code Studio, a website offering online courses created by Code.org, is

used by millions of students [63]. It relies heavily on Blockly to teach program-
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ming concepts. Therefore, we chose it as a reference for Blockly programs. We

counted the frequency of each block that was asked to be input in all the offered

activities. However, if the activity asks the users to input less than 10 blocks we

did not include that activity in the statistics. We chose not to include such activ-

ities because they have fewer blocks that do not represent a common block-base

program. Commonly, an activity with few blocks just teaches how to input blocks

rather than teaching programming concepts or problem solving. This left us with

47 Blockly programs from courses 2,3, and 4. We found that the average input

task consists of 19 blocks. Table 4.1 shows the frequency of block types. The Code

Studio activities did not ask the students to input all the block types in Blockly

as can be noticed from the table.

Table 4.1: The frequency of inputted blocks.
Block Type Frequency
function call 34.1%
number 23.7%
get variable 14.4%
repeat time 9.2%
arithmetic 5.5%
set variable 5.4%
for loop 3.2%
if 1.6%
function define 1.3%
color with 0.6%
repeat while 0.1%

The keyboard underwent many iterations and the blocks’ statistics served as

a guide for placing the keys throughout these iterations. First, we placed block

types as keys from most frequent (right of the top row) to least frequent (left
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of the bottom row). Then, we placed block categories, that contain a list of

blocks with similar functionality, as keys from most frequent to least frequent after

the block keys based on the sum of their block usage. By this stage, we had

version 1 of the keyboard which is shown in figure 4.1. However, the block types

were scattered across the keyboard. We grouped the keys by swapping the next

frequent key of the same category for each key with the key underneath it. For

example, “Arithmetic” is the next frequent key after the “Number” key from the

same category. We swapped “Arithmetic” with “if”. After repeating the same

process for the rest of the keys we had the second version. For the second version,

we manually moved the “repeat while” key underneath its category because it is

the least frequent block type to maintain the grouping. After placing the blocks

and their categories, three keys were not assigned. We choose to assign them to

“Text”, “Boolean”, and Compare blocks to enable access for other data type blocks

and the comparison block. Finally, we listed the predefined functions in the first

row because function call blocks have the highest frequency of all. The first row

acts like a dynamic placeholder for blocks and their options. It lists the options of

the last inputted block alongside the predefined functions. For instance, when the

“Arithmetic” block is inputted, the dynamic row lists all of its six options: +, −,

×, ÷, and ∧.
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Version 1

Version 2

Version 3

Figure 4.1: The main versions that our keyboard passed through.
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4.4.3 User-Interface Design Principles

While the keyboard was evolving, we adhered to the general user-interface

design principles listed by Wickens et al [66]. These general design principles help

to ensure the keyboard’s ease of use and adaptability.

4.4.3.1 Make invisible things visible

Opposite to the drag-and-drop, the Blockly keyboard lists the block’s options

making them readily available with one touch. These options are hidden in a

drop-down menu. Figure 4.2 shows how the keyboard displays the options for the

“Compare” block as opposed to the hidden options of different blocks.

VS

Figure 4.2: An example of how the keyboard makes the options more accessible.

4.4.3.2 Consistency and standards

Each block and its option are expressed as a key with the same height and width

except the dynamic top row. The size of a block, yet, changes and its connectors

move. In addition, keys have two actions, which are input a block or change an

option. This is consistent throughout the keyboard. Furthermore, keys with the

same functionality are grouped together.
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4.4.3.3 Error prevention, recognition, and recovery

To prevent errors from occurring in the first place, our keyboard disables keys

to prevent inputting the wrong block in the wrong place. Without the keyboard,

users can connect the wrong blocks together. Blockly then disconnects the wrong

blocks without prompting the user, which might be confusing.

4.4.3.4 Memory

The keyboard keys are named and colored which utilize see-and-point instead

of remember-and-type. Our keyboard exposes the most common blocks instead of

hiding them inside a toolbox and reveals their options. The users do not have to

remember the locations of the common block inside the toolbox nor do they need

to search for the options from their menu. This reduces the reliance on memory.

4.4.3.5 Flexibility and efficiency of use

The keys and the option keys act as shortcuts and accelerators. Our keyboard

gives the users the option to speed up frequent actions by listing the most frequent

inputted blocks, the Function call blocks. In addition, the dynamic top row gives

shortcuts for the block’s options.
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4.4.3.6 Simplicity and aesthetic integrity

The keyboard’s keys are aligned with uniform width and height to make them

look good using a simple design. To make information appear in a natural order,

the options and keys are presented from left to right based on their usage frequency.

4.5 User Study

The formal user study was designed to compare the input performance of the

keyboard to the drag-and-drop method when inputting a Blockly program. We

presented the participants with a letter sized paper that has a Blockly program

printed in colors. The participants then were asked to copy the program with both

input methods. We chose a copying task as opposed to a programming task to

avoid the confounding factors of the cognitive aspects of programming. When the

keyboard is shown, the drag-and-drop is disabled to measure the native keyboard

performance. We used an iPad 4 for our user study. Both input methods were

implemented in JavaScript. The same JavaScript code was used to measure and

log the participant’s interactions, time, and errors. The error types presented in

section 4.3.3.1 were collected by the instrumented JavaScript code.

4.5.1 Task

To see how the input methods were going to perform in a common block-base

program, we collected statistics from Code.org website. We asked the participants
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to input the one Blockly program, which consisted of 29 blocks. In addition, we

designed the task to conform to the collected statistics from Table 4.1. The input

task consisted of 10 “function call” blocks, 7 “number” blocks, 4 “get variable”

blocks, 3 “repeat” blocks, 2 “arithmetic” blocks, 2 “set variable” blocks, and 1

“for” block. Figure 4.3 shows the input task.

Figure 4.3: The Blockly input task.
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4.5.2 Participants

The study participants consisted of 14 male and two female students. All

participants volunteered for the study in response to an email message circulated

to the students in the computer science department at Oregon State University.

Two participants were graduate students and 14 were undergraduate students. All

participants had never used Blockly. Nine of the participants were not familiar

with block-based programming. None of the participants used a tablet device to

input any block-based program. 10 participants reported having a tablet device.

The participants were compensated for participating in the study.

4.5.3 Experimental Design and Procedure

To study the difference between the two input methods, we used a within-

subjects design with repeated measures. The independent variable was the input

method used to complete the task and the study consisted of two treatments:

the drag-and-drop and the keyboard. We asked each participant to enter the

Blockly program using each input method. We counterbalanced the order of the

treatments by dividing the subjects into two groups. One group started with the

drag-and-drop, followed by the keyboard, and the other started with the keyboard

followed by the drag-and-drop. The dependent variables were the time, errors,

and the number of touches. We measured these variables for each input method,

independently.

We ran the study in a lab setting one participant at a time. After signing
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an informed consent document, each participant was randomly assigned to one of

the two experimental conditions as described above. Each participant was given

a tutorial on how to use the drag-and-drop and the keyboard to input a Blockly

program. We encouraged the participants to ask any questions that they might

have during the study. The participants then carried out the input task using the

two treatments. After each task, we asked the participants to complete a NASA

Task Load Index (NASA-TLX) questionnaire for assessing subjective mental work-

load [34]. When the task had been completed, we asked participants to complete

a post-session questionnaire about their experience.

4.6 Results

Our initial hypothesis was that users would input a Blockly program faster,

more efficiently, and with fewer errors when using the keyboard as compared to

the drag-and-drop. Thus, our null hypothesis for all analyses is that there is

no significant difference between the distributions of corresponding performance

measures across the two input methods. For all measurements, we used a paired

t-test analysis. Figure 4.4 summarizes the performance of each input method.

4.6.1 Errors

Participants’ mean errors for the drag-and-drop and the keyboard methods

were 6.13% (SD: 4.21%) and 1.93% (SD: 1.84%), respectively. This represents a
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Figure 4.4: The number of touches, time, and errors for both the drag-and-drop
and keyboard. The mean is shown with the “+” sign.

68.37% reduction in errors with the keyboard. There was a convincing statistical

evidence for an effect of the input method on errors (t (15) = 3.5564, p<.01). See
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the third column in figure 4.4.

4.6.2 Number of Touches

The average touches to input the same Blockly program with the keyboard

were fewer, 72.81 touches (SD: 6.19), than the drag-and-drop, 139.94 touches (SD

30.27). This means that the drag-and-drop has a 4.83 KSPB compared to the 2.51

KSPB for the keyboard. This represents a decrease of 47.97% in the keystrokes

required to input a block. There is a convincing statistical evidence for an effect of

the keyboard on the number of touches (t (15) = 9.0083, p<.01). The first column

in figure 4.4 shows the difference in the number of touches between the two input

methods for the exact program.

4.6.3 Time

Participants, on average, took 174.88 seconds (SD: 32.74) and 299.31 seconds

(SD: 68.18) to input the program on the keyboard and drag-and-drop, respectively.

In another word, the keyboard has a speed of 9.95 BPM while the drag-and-drop

has a speed of 5.81 BPM. The keyboard is 71.26% faster than the drag-and-drop

method and the pair-wise t-test shows a significant difference in the speed between

them (t (15) = 7.9963, p<.01). The second column in figure 4.4 gives us a picture

of the performance with respect to time.
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4.6.4 NASA-TLX

Table 4.2 shows the mean response values for the RAW NASA-TLX measures.

While there was no statistical evidence for the mental demand, temporal demand,

or performance, there was convincing statistical evidence for an effect of input

method on the other measures. These are the physical demand (t (15) = 4.332,

p<.01), effort (t (15) = 2.9929, p<.01), and frustration level (t (15) = 3.7284, p<.01).

Figure 4.5 summarizes the TLX questionnaire results.

Mental Physical Temporal Performance Effort Frustration

Figure 4.5: A summary of the NASA-TLX measures.
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Table 4.2: NASA-TLX measures comparison (mean responses) between the drag-
and-drop and the keyboard. The percentage column shows the decrease rate of
the keyboard. A negative value indicates an increase.

TLX Measure Drag-and-Drop Keyboard Percentage
Mental Demand 29.69 21.88 26.32%
Physical Demand 40.31 19.06 52.71%
Temporal Demand 30.00 29.68 1.04%
Performance 90.31 92.81 -2.77%
Effort 28.13 18.12 41.41%
Frustration 30.94 10.63 65.66%

4.6.5 Participants’ Preference

After inputting the task with both input methods, participants completed a

questionnaire about their overall experience with the keyboard. 75% of the par-

ticipants indicated that they are likely to use the keyboard and 18.75% of them

felt neutral. Only one participant indicated that he/she is not likely to use the

keyboard in the future. In addition, 93.75% of participants found the keyboard to

be helpful for inputting the Blockly program. 87.5% of the participants thought

it was easy to adapt to the keyboard and 93.75% thought it was easy to use. 75%

of the participants thought that the design of the keyboard is good and the rest

felt neutral about the design. All the participants felt that they were efficient

when using the keyboard. Figure 4.6 shows each question and a box-plot of the

participants’ average answers to each question.
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How efficient do you think you were when using this keyboard?
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Figure 4.6: The results of the post-study questionnaire. Each column represents a
question. The boxplots show the average response on a 5-point scale.

4.7 Discussion

The results of the study show that users performed better blocks input when

using the keyboard as measured by BPM, KSPB, and errors. It is worth noting that

these results were obtained after only 10 minutes of practice. It is expected to see a

better input performance from a point-and-click input style like our keyboard when

compared to a drag-and-drop method as was mentioned earlier. One explanation

for this result is the shorter distance that fingers must travel when using the

keyboard. Moreover, the average key size of the keyboard is larger than the average

drag-and-drop touch targets. Per Fitts’ law, the shorter distance and the larger
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target size will positively affect the speed of the input task [35]. This can be seen

in figure 4.7. In this figure, the touch locations are spread across a larger area

for the drag-and-drop, by contrast, they are restricted to a smaller area for the

keyboard.
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D
ra

g 
op

er
at

io
n

s
To

uc
h 

lo
ca

tio
ns

Figure 4.7: A visualization of the dragging and touching locations when inputting
the Blockly program for all participants. The drag operation lines start from black
and end in red.
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4.7.1 Accuracy

The keyboard allows the users to input blocks with fewer errors than the drag-

and drop (68.37%). There are many reasons for this result. First, the keyboard

inputs each block to the highlighted connector automatically. Consequently, the

errors from connecting a block to the wrong connector are eliminated. Second, the

errors are reduced because of the large size of the keys compared to the toolbox

or the block’s options menu sizes. Finally, as can be seen in figure 4.7, that the

participants’ fingers travel longer distances while dragging blocks. The keyboard,

nevertheless, requires no dragging. Despite that, few participants tried to drag the

blocks because they thought that they could drag blocks when using the keyboard

even though they were told otherwise. The same figure shows that the touch

locations for the keyboard are more confined whereas they are more scattered for

the drag-and-drop method. Therefore, the chance of introducing errors is increased

with more scattered touches and longer travel distances. These reasons combined

make the keyboard a more accurate way to input blocks.

4.7.2 Efficiency

There is a considerable difference between our keyboard and the drag-and-drop

method when it comes to the number of touches. Our keyboard allows inputting

blocks with almost half the number of touches without dragging (47.97% fewer

touches). This reduction happens largely because of two reasons. First, the re-

duction in errors means less need for corrections. Thus, reducing the number of
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touches. The second reason is the ability to change the options without touching

the drop-down menus to open them. This requires one less touch each time an op-

tion needs to be changed. Many blocks rely on changing options and this impacts

the efficiency of the drag-and-drop method negatively.

4.7.3 Speed

The keyboard is exceedingly fast in comparison to the drag-and-drop (71.26%

faster speed). The reduced errors and keystrokes lead to this boost in the input

speed. In addition, the automatic insertion of the blocks in the right connector

without the need to drag is another area that helped the keyboard’s speed. The

blocks, however, need careful and precise positioning when dragging which slows

the input.

Although the keyboard is fast, we suspect that the keyboard will be even faster

after a longer period of use. Just like all keyboards, the key locations will be

memorized and the visual scanning will take less time resulting in faster input

speed. The input speed result in our study is for novice users. An expert user

of a keyboard will input with higher speed [4]. However, the same thing cannot

be said for the drag-and-drop method. The blocks reshape themselves after being

connected to other blocks or after changing the options. For example, renaming the

variables or changing the number in blocks will change the size of the block. Figure

4.3 shows how blocks with the same type have different shapes and connector

locations, making dragging operations too difficult to memorize. In figure 4.7, we
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can see how one program has many ways of dragging operations. Therefore, we

suspect that the keyboard will be much faster after practice than the drag-and-

drop.

4.7.4 NASA-TLX and Participants’ Preference

Preferring a point-and-click style like the keyboard over the drag-and-drop

method was shown by different studies [61,62]. Our keyboard is no different. The

NASA-TLX and the participants’ feedback demonstrate that participants prefer

the keyboard over the drag-and-drop method. Inputting blocks with fewer touches

makes the keyboard less physically demanding which was confirmed by our par-

ticipants’ perceived physical demand (53% less physical demand). This may also

affect the perceived effort (36% less effort). However, the lower frustration may

be caused by the lower errors and the faster input (66% less frustration). From

the post-task questionnaire, the majority of the participants preferred to use the

keyboard and found it to be easy to adapt and use. The participants’ preference

is clear from their comments too. For example, participant 1 said, “Keyboard was

more easier than drag and drop”. While participant 8 said, “The automatic move-

ment of the cursor was better than the drag and drop function it not only reduces

the work of properly pairing two parts together but also was easy and smart”. Par-

ticipant 9 said, “The keyboard helps to reduce the dragging time which is helpful”.

Participants 10 and 11 respectively said, “I prefer the keyboard. It was much faster

than moving the blocks around” and “adapting to the keyboard was so easy and
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natural and faster than the drag and drop method”.

4.7.5 Limitations

Just like other keyboards, there are some limitations for our keyboard. These

results were gotten for a specific task. Any Blockly program that does adhere

to the collected statistics will perform differently. In that case, however, we can

safely assume that the keyboard input performance will not suffer dramatically.

We assume that because the low number of touches, the faster speed, and the

reduced errors will still hold due to the lack of dragging and the confined keyboard

area when inputting different Blockly programs. We tested our keyboard on the

original Blockly code. However, there are many derivatives of Blockly. Each one of

them will have different input performance. Our keyboard holds a list of commands

and their key names. One can change this list to call different or new blocks to

accommodate different visual languages if they run on JavaScript.

4.8 Conclusions and Future Work

We presented a drag-and-drop alternative, a keyboard, to input Blockly pro-

grams. We talked about the motivation and the design of this keyboard. The user

study showed how our keyboard surpasses the drag-and-drop method in terms of

accuracy, efficiency, and speed when inputting a Blockly program. In addition,

most of the participants preferred the keyboard and found it to be easy to use and
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learn. They also perceived it to have less physical demand, less effort, and less

frustration level.

This keyboard opens the door to potential future work. The results were ob-

tained after a 10-minute practice. Better results are expected after prolonged use.

A longitudinal study of the keyboard will show how far the input performance

will go. The keyboard might make blocks input accessible for people with visual

impairments because many of them rely on keyboards [67]. It could be beneficial

for people with motor skill disabilities to input blocks without dragging. An-

other area of interest would be to see how a custom keyboard like this performs

in other visual programming languages. Although our keyboard was tested on

adults, children from different age groups may benefit from using such a keyboard

differently because of the variation of their abilities. This makes children potential

participants for future work. The keyboard could serve as an intermediate step to

learning how to write textual programs because Blockly has a mapping of blocks

to JavaScript, Python, PHP, Lua, and Dart. A study of the potential impact of

this keyboard as a transitional step toward text-based languages might be useful.

Lastly, enabling the two input methods at the same time might bring the positives

from both. We are now extending the keyboard capabilities to work in conjunction

with the drag-and-drop method. Studying the effects of both input methods at

the same time is undergoing.
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Chapter 5 : Conclusion

As was pointed out in the chapter 1, touchscreen devices need to extending

coding paradigms to engage large populations in critical skill development. To do

so, the domain-specific soft keyboards were developed. In Chapter 2, the design of

a custom soft keyboard for writing Java source code was discussed. The formal user

study showed how fast, efficient, and accurate the custom keyboard in comparison

to the QWERTY keyboard. The total error rate was decreased by 37.38% and

KSPC by 34.9%. The 10.64 WPM from first time users is encouraging. This is

shown by the positive feedback from the users. In addition, the custom keyboard

was shown to be mentally, physically, and temporally less demanding.

Chapter 3 showed how fast a typist can go when using the custom keyboard

over eight sessions to input a Java source code. The study showed that the custom

keyboard outperforms the theoretical limit of the QWERTY keyboard after 5

sessions. The participants’ average speed gradually increased to 30.29 WPM by

the eighth session. This is 16.5% faster than the theoretical top speed of an expert

QWERTY typist. The total error rate was 2.61% and the KSPC was 0.81 by the

eighth session. The custom keyboard was rated positively in terms of design, ease

of use, and ease of adaptation by the users.

In chapter 4, the visual programming soft keyboard advantages when inputting

blocks were discussed. The design of the blocks keyboard was explained. The
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blocks keyboard was also compared to the drag-and-drop method using a formal

user study. The study has shown that the custom keyboard outperforms the drag-

and-drop method when it comes to speed, accuracy, and efficiency. The user study

has shown that the keyboard reduced the blocks input errors by 68.37%. It also has

shown that the keystrokes reduced by 47.97%. Moreover, the keyboard increased

the input speed by 71.26% when compared to the drag-and-drop. The keyboard

users perceived it to be physically less demanding with less effort. In addition, the

users preferred the custom keyboards over the default input methods.

These custom keyboard designs and their good performance shed the light

on program input using touchscreen devices for different programming languages

whether it is text-based or block-based. This means that other programming

languages with similar syntax or structure would also benefit from such custom

keyboards on touchscreen devices. By making program input faster, more accu-

rate, and more efficient, the custom keyboards will make touchscreen devices more

appealing to a larger audience. These custom keyboards designs are the right steps

toward making program input on touchscreen devices a common reality.



96

Bibliography

[1] Pew Internet Research, “E-reading rises as device ownership jumps,” Pew
Research Center’s Internet & American Life Project, 2014. [Online]. Available:
http://www.pewinternet.org/files/2014/01/PIP E-reading 011614.pdf

[2] ——, “Smartphone Ownership – 2013 Update,” Pew Research Cen-
ter’s Internet & American Life Project, 2013. [Online]. Avail-
able: http://www.pewinternet.org/files/old-media//Files/Reports/2013/
PIP Smartphone adoption 2013 PDF.pdf

[3] International Data Corporation, “Press release: Tablet shipments forecast to
top total pc shipments in the fourth quarter of 2013 and annually by 2015,”
2013.

[4] I. S. MacKenzie, S. X. Zhang, and R. W. Soukoreff, “Text entry using soft
keyboards,” Behaviour & information technology, vol. 18, no. 4, p. 235244,
1999.

[5] X. Bi, B. A. Smith, and S. Zhai, “Quasi-qwerty soft keyboard
optimization,” in Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems. ACM, 2010, p. 283286. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1753367

[6] F. C. Y. Li, R. T. Guy, K. Yatani, and K. N. Truong, “The 1line keyboard:
A QWERTY layout in a single line,” in Proceedings of the 24th Annual
ACM Symposium on User Interface Software and Technology, ser. UIST
’11. New York, NY, USA: ACM, 2011, p. 461470. [Online]. Available:
http://doi.acm.org/10.1145/2047196.2047257

[7] A. Sears, D. Revis, J. Swatski, R. Crittenden, and B. Shneiderman, “Inves-
tigating touchscreen typing: the effect of keyboard size on typing speed,”
Behaviour & Information Technology, vol. 12, no. 1, pp. 17–22, 1993.

[8] I. S. MacKenzie and S. X. Zhang, “The design and evaluation of
a high-performance soft keyboard,” in Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, ser. CHI ’99.

http://www.pewinternet.org/files/2014/01/PIP_E-reading_011614.pdf
http://www.pewinternet.org/files/old-media//Files/Reports/2013/PIP_Smartphone_adoption_2013_PDF.pdf
http://www.pewinternet.org/files/old-media//Files/Reports/2013/PIP_Smartphone_adoption_2013_PDF.pdf
http://dl.acm.org/citation.cfm?id=1753367
http://doi.acm.org/10.1145/2047196.2047257


97

New York, NY, USA: ACM, 1999, pp. 25–31. [Online]. Available:
http://doi.acm.org/10.1145/302979.302983

[9] S. Zhai, M. Hunter, and B. A. Smith, “The metropolis keyboard - an
exploration of quantitative techniques for virtual keyboard design,” in
Proceedings of the 13th Annual ACM Symposium on User Interface Software
and Technology, ser. UIST ’00. New York, NY, USA: ACM, 2000, pp.
119–128. [Online]. Available: http://doi.acm.org/10.1145/354401.354424

[10] N. Tillmann, M. Moskal, J. de Halleux, and M. Fahndrich, “Touchdevelop:
programming cloud-connected mobile devices via touchscreen,” in Proceed-
ings of the 10th SIGPLAN symposium on New ideas, new paradigms, and
reflections on programming and software. ACM, 2011, pp. 49–60.

[11] Two Lives Left, 2015. [Online]. Available: http://twolivesleft.com/Codea/

[12] D. Leonard, “The iPad goes to school,” BusinessWeek: technology,
Oct. 2013. [Online]. Available: http://www.businessweek.com/articles/
2013-10-24/the-ipad-goes-to-school-the-rise-of-educational-tablets

[13] A. Briggs and L. Snyder, “Computer science principles and the CS 10k
initiative,” ACM Inroads, vol. 3, no. 2, p. 29, Jun. 2012. [Online]. Available:
http://www.nsf.gov/pubs/2014/nsf14523/nsf14523.htm

[14] A. Strawhacker, M. Lee, C. Caine, and M. Bers, “Scratchjr demo: A coding
language for kindergarten,” in Proceedings of the 14th International Confer-
ence on Interaction Design and Children. ACM, 2015, pp. 414–417.

[15] S. Cooper, W. Dann, and R. Pausch, “Alice: a 3-d tool for introductory pro-
gramming concepts,” in Journal of Computing Sciences in Colleges, vol. 15,
no. 5. Consortium for Computing Sciences in Colleges, 2000, pp. 107–116.

[16] M. Resnick, “Starlogo: An environment for decentralized modeling and decen-
tralized thinking,” in Conference companion on Human factors in computing
systems. ACM, 1996, pp. 11–12.

[17] F. P. Miller, A. F. Vandome, and J. McBrewster, Keyboard Layout: Keyboard
(Computing), Typewriter, Alphanumeric Keyboard, QWERTY, Portuguese
Alphabet, QWERTZ, AZERTY, Dvorak Simplified Keyboard, Chorded Key-
board, Arabic Keyboard, Hebrew Keyboard. Alpha Press, 2009.

http://doi.acm.org/10.1145/302979.302983
http://doi.acm.org/10.1145/354401.354424
http://twolivesleft.com/Codea/
http://www.businessweek.com/articles/2013-10-24/the-ipad-goes-to-school-the-rise-of-educational-tablets
http://www.businessweek.com/articles/2013-10-24/the-ipad-goes-to-school-the-rise-of-educational-tablets
http://www.nsf.gov/pubs/2014/nsf14523/nsf14523.htm


98

[18] S. Zhai and P. O. Kristensson, “Interlaced qwerty: accommodating ease of
visual search and input flexibility in shape writing,” in Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems. ACM, 2008,
pp. 593–596.

[19] D. Langendorf, “Textware solutions fitaly keyboard v1. 0 easing the burden
of keyboard input,” WinCELair Review, February, 1998.

[20] S. Zhai and P. O. Kristensson, “The word-gesture keyboard: reimagining
keyboard interaction,” Communications of the ACM, vol. 55, no. 9, pp. 91–
101, 2012.

[21] B. Biegel, J. Hoffmann, A. Lipinski, and S. Diehl, “U can touch this: touchify-
ing an ide,” in Proceedings of the 7th International Workshop on Cooperative
and Human Aspects of Software Engineering. ACM, 2014, pp. 8–15.

[22] F. Raab, C. Wolff, and F. Echtler, “Refactorpad: editing source code on touch-
screens,” in Proceedings of the 5th ACM SIGCHI symposium on Engineering
interactive computing systems. ACM, 2013, pp. 223–228.

[23] M. Bacikova, M. Maricak, and M. Vancik, “Usability of a domain-specific lan-
guage for a gesture-driven ide,” in Computer Science and Information Systems
(FedCSIS), 2015 Federated Conference on. IEEE, 2015, pp. 909–914.

[24] T. Teitelbaum and T. Reps, “The cornell program synthesizer: a syntax-
directed programming environment,” Communications of the ACM, vol. 24,
no. 9, pp. 563–573, 1981.

[25] I. S. MacKenzie and R. W. Soukoreff, “Text entry for mobile computing:
Models and methods, theory and practice,” Human–Computer Interaction,
vol. 17, no. 2-3, pp. 147–198, 2002.

[26] R. W. Soukoreff and I. S. MacKenzie, “Metrics for text entry research: an
evaluation of msd and kspc, and a new unified error metric,” in Proceedings
of the SIGCHI conference on Human factors in computing systems. ACM,
2003, pp. 113–120.

[27] I. S. MacKenzie, “Kspc (keystrokes per character) as a characteristic of text
entry techniques,” in International Conference on Mobile Human-Computer
Interaction. Springer, 2002, pp. 195–210.



99

[28] K. Curran, D. Woods, and B. O. Riordan, “Investigating text input methods
for mobile phones,” Telematics and Informatics, vol. 23, no. 1, pp. 1–21, 2006.

[29] C. L. James and K. M. Reischel, “Text input for mobile devices: comparing
model prediction to actual performance,” in Proceedings of the SIGCHI con-
ference on Human factors in computing systems. ACM, 2001, pp. 365–371.

[30] D. J. Peterson and M. E. Berryhill, “The gestalt principle of similarity benefits
visual working memory,” Psychonomic bulletin & review, vol. 20, no. 6, pp.
1282–1289, 2013.

[31] T. F. Lunney and R. H. Perrott, “Syntax-directed editing,” Software
Engineering Journal, vol. 3, no. 2, p. 3746, 1988. [Online]. Available:
http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=6888

[32] T. R. G. Green and M. Petre, “Usability analysis of visual programming en-
vironments: a cognitive dimensions framework,” Journal of Visual Languages
& Computing, vol. 7, no. 2, pp. 131–174, 1996.

[33] M. Grechanik, C. McMillan, L. DeFerrari, M. Comi, S. Crespi, D. Poshyvanyk,
C. Fu, Q. Xie, and C. Ghezzi, “An empirical investigation into a large-scale
java open source code repository,” in Proceedings of the 2010 ACM-IEEE In-
ternational Symposium on Empirical Software Engineering and Measurement.
ACM, 2010, p. 11.

[34] S. G. Hart and L. E. Staveland, “Development of NASA-TLX (Task Load
Index): Results of empirical and theoretical research,” Advances in psychology,
vol. 52, p. 139183, 1988.

[35] P. M. Fitts, “The information capacity of the human motor system in control-
ling the amplitude of movement.” Journal of experimental psychology, vol. 47,
no. 6, p. 381, 1954.

[36] E. Clarkson, J. Clawson, K. Lyons, and T. Starner, “An empirical study
of typing rates on mini-qwerty keyboards,” in CHI’05 extended abstracts on
Human factors in computing systems. ACM, 2005, pp. 1288–1291.

[37] E. Hoggan, S. A. Brewster, and J. Johnston, “Investigating the effectiveness
of tactile feedback for mobile touchscreens,” in Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems. ACM, 2008, pp. 1573–
1582.

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6888


100

[38] A. Carlberger, J. Carlberger, T. Magnuson, S. Hunnicutt, S. E. Palazuelos-
Cagigas, and S. A. Navarro, “Profet, a new generation of word prediction:
An evaluation study,” in Proceedings, ACL Workshop on Natural language
processing for communication aids, 1997, pp. 23–28.

[39] I. Almusaly and R. Metoyer, “A syntax-directed keyboard extension for writ-
ing source code on touchscreen devices,” in Visual Languages and Human-
Centric Computing (VL/HCC), 2015 IEEE Symposium on. IEEE, 2015, pp.
195–202.

[40] Pew Internet Research, “Technology device ownership: 2015,” Pew Research
Center’s Internet & American Life Project, 2015. [Online]. Available: http:
//www.pewinternet.org/2015/10/29/technology-device-ownership-2015/

[41] Y. Kuno, B. Shizuki, and J. Tanaka, “Long-term study of a software keyboard
that places keys at positions of fingers and their surroundings,” in Human-
Computer Interaction. Towards Intelligent and Implicit Interaction. Springer,
2013, pp. 72–81.

[42] “Swifty: Learn how to code in Swift,” Swifty Team., 2016. [Online].
Available: https://getmimo.com/swifty/

[43] W. A. Fryer, “Hopscotch challenges: Learn to code on an ipad!” Publications
Archive of Wesley Fryer, vol. 1, no. 1, 2014.

[44] “Swift Playgrounds,” Apple, 2016. [Online]. Available: https://www.apple.
com/swift/playgrounds/

[45] N. Tillmann, M. Moskal, J. de Halleux, M. Fahndrich, and S. Burckhardt,
“TouchDevelop: app development on mobile devices,” in Proceedings of
the ACM SIGSOFT 20th International Symposium on the Foundations
of Software Engineering. ACM, 2012, p. 39. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2393641

[46] A. Begel and S. L. Graham, “An assessment of a speech-based programming
environment,” in Visual Languages and Human-Centric Computing, 2006.
VL/HCC 2006. IEEE Symposium on. IEEE, 2006, pp. 116–120.

[47] W. Slany, “Catroid: a mobile visual programming system for children,” in
Proceedings of the 11th International Conference on Interaction Design and
Children. ACM, 2012, pp. 300–303.

http://www.pewinternet.org/2015/10/29/technology-device-ownership-2015/
http://www.pewinternet.org/2015/10/29/technology-device-ownership-2015/
https://getmimo.com/swifty/
https://www.apple.com/swift/playgrounds/
https://www.apple.com/swift/playgrounds/
http://dl.acm.org/citation.cfm?id=2393641


101

[48] S. McDirmid, “Coding at the speed of touch,” in Proceedings of the 10th
SIGPLAN symposium on New ideas, new paradigms, and reflections on pro-
gramming and software. ACM, 2011, pp. 61–76.

[49] T. A. Nguyen, C. Csallner, and N. Tillmann, “Gropg: A graphical on-phone
debugger,” in 2013 35th International Conference on Software Engineering
(ICSE). IEEE, 2013, pp. 1189–1192.

[50] Y. A. Feldman, A. Gam, A. Tilkin, and S. Tyszberowicz, “Deverywhere:
develop software everywhere,” in Mobile Software Engineering and Systems
(MOBILESoft), 2015 2nd ACM International Conference on. IEEE, 2015,
pp. 121–124.

[51] M. Allamanis and C. Sutton, “Mining Source Code Repositories at Massive
Scale using Language Modeling,” in The 10th Working Conference on Mining
Software Repositories. IEEE, 2013, pp. 207–216.

[52] javaParser, “Javaparser,” 2015. [Online]. Available: http://javaparser.org/

[53] A. P. Carnevale, N. Smith, and M. Melton, “Stem: Science technology engi-
neering mathematics.” Georgetown University Center on Education and the
Workforce, 2011.

[54] M. Resnick, J. Maloney, A. Monroy-Hernández, N. Rusk, E. Eastmond,
K. Brennan, A. Millner, E. Rosenbaum, J. Silver, B. Silverman et al., “Scratch:
programming for all,” Communications of the ACM, vol. 52, no. 11, pp. 60–67,
2009.

[55] N. Fraser et al., “Blockly: A visual programming editor,” URL: https://code.
google. com/p/blockly, 2013.

[56] D. Weintrop and U. Wilensky, “To block or not to block, that is the question:
students’ perceptions of blocks-based programming,” in Proceedings of the
14th International Conference on Interaction Design and Children. ACM,
2015, pp. 199–208.

[57] J. Monig, Y. Ohshima, and J. Maloney, “Blocks at your fingertips: Blurring
the line between blocks and text in gp,” in Blocks and Beyond Workshop
(Blocks and Beyond), 2015 IEEE. IEEE, 2015, pp. 51–53.

http://javaparser.org/


102

[58] D. Bau, D. A. Bau, M. Dawson, and C. Pickens, “Pencil code: block code
for a text world,” in Proceedings of the 14th International Conference on
Interaction Design and Children. ACM, 2015, pp. 445–448.

[59] D. Bau, “Droplet, a blocks-based editor for text code,” Journal of Computing
Sciences in Colleges, vol. 30, no. 6, pp. 138–144, 2015.
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