

AN ABSTRACT OF THE DISSERTATION OF

Mingbo Ma for the degree of Doctor of Philosophy in Computer Science presented on

September 5, 2018.

Title: Structured Neural Models for Natural Language Processing

Abstract approved:

Liang Huang

Most tasks in natural language processing (NLP) involves structured information from

both input (e.g., a sentence or a paragraph) and output (e.g., a tag sequence, a parse tree

or a translated sentence). While neural models achieve great successes in other domains

such as computer vision, applying those frameworks to NLP remains challenging for

the following reasons. On the source side, we are dealing with input sentences with

very complex structures. A simple local swap between two adjacent words could lead

to opposite meanings. In addition, input sentences are often noisy as they are collected

from real-world scenarios, e.g. online reviews or tweets. Our models need to be able to

deal with syntactic variety and polysemy. On the target side, we are often expected to

generate structured outputs like translated sentences or parse trees, by searching over an

exponentially large search space. In this case, when exact search is intractable, we resort

to inexact search methods such as beam search. In this thesis, we start by introducing

several classification algorithms with structured information from the source side but

unstructured outputs (sentence level classifications, e.g., sentiment analysis). Then we

explore models which generate structured output from the unstructured input signal

(e.g., image captioning). Finally, we investigate more complex frameworks that deal

with structured information on both input and output sides (e.g., machine translation).

c©Copyright by Mingbo Ma
September 5, 2018

All Rights Reserved

Structured Neural Models for Natural Language Processing

by

Mingbo Ma

A DISSERTATION

submitted to

Oregon State University

in partial fulfillment of

the requirements for the

degree of

Doctor of Philosophy

Presented September 5, 2018

Commencement June 2019

Doctor of Philosophy dissertation of Mingbo Ma presented on September 5, 2018.

APPROVED:

Major Professor, representing Computer Science

Head of the School of Electrical Engineering and Computer Science

Dean of the Graduate School

I understand that my dissertation will become part of the permanent collection of
Oregon State University libraries. My signature below authorizes release of my
dissertation to any reader upon request.

Mingbo Ma, Author

TABLE OF CONTENTS
Page

1 Introduction 1

1.1 Typical Structured Prediction Problems . 1

1.1.1 Sequential Labeling . 1

1.1.2 Parsing . 3

2 Using Structure Information for Sentence Level Classification 5

2.1 Motivation . 5

2.1.1 Introduction . 5

2.2 Dependency-based Convolution . 6

2.2.1 Convolution on Ancestor Paths . 8

2.2.2 Max-Over-Tree Pooling and Dropout 8

2.2.3 Convolution on Siblings . 9

2.2.4 Combined Model . 9

2.3 Experiments . 10

2.3.1 Sentiment Analysis . 11

2.3.2 Question Classification . 11

2.3.3 Discussions and Examples . 13

3 Jointly Training for Sequential Labeling and Sentence Level Classification 16

3.1 Introduction . 16

3.2 LSTM for Labeling and Classification . 18

3.3 Joint Sequence Classification & Labeling . 20

3.3.1 Joint Training Model . 20

3.3.2 Sparse Attention . 21

3.3.3 Label Sequence as Latent Variable 22

3.4 Experiments . 23

3.4.1 Joint Training Experiments . 25

3.4.2 Label Sequence as Latent Variable 25

3.4.3 Sparsity Visualization . 25

4 Group Sparse Convolutional Neural Networks for Learning Label Hierarchy 28

4.1 Problems in Question Answering . 28

4.2 Group Sparse Autoencoders . 30

4.2.1 Sparse Autoencoders . 30

4.2.2 Group Sparse Autoencoders . 31

TABLE OF CONTENTS (Continued)
Page

4.2.3 Visualizing Group Sparse Autoencoders 33

4.3 Group Sparse CNNs . 33

4.4 Experiments . 35

5 Generating Structured Output from

Non-Structured Input 40

5.1 Problems in Multimodal . 40

5.2 Model Description . 41

5.3 Experiments . 42

5.3.1 Datasets . 42

5.3.2 Training details . 42

5.3.3 Beam search with length reward 43

5.3.4 Results . 43

6 Structured Prediction Problems from Structured Input 48

6.1 Problems in Structured Prediction for MT 48

6.1.1 Difference Between Training and Testing Phase 48

6.1.2 Problems of Beam Search . 51

6.2 Training with Beam Search . 51

6.2.1 Preliminaries . 52

6.2.2 Two Types of Violations . 53

6.3 Experiments . 57

6.3.1 Datasets . 57

6.3.2 Results . 58

7 Summary 60

Bibliography 62

LIST OF FIGURES
Figure Page

1.1 Example grammar and desired tree for sentence: Book that flight. 3

1.2 An example of dependency parse tree. 4

2.1 Dependency tree of an example sentence from the Movie Reviews dataset. 6

2.2 Convolution patterns on trees. Word concatenation always starts with m,

while h, g, and g2 denote parent, grand parent, and great-grand parent,

etc., and “ ” denotes words excluded in convolution. 7

2.3 Examples from TREC (a–c), SST-1 (d) and TREC with fine-grained label

(e–f) that are misclassified by the baseline CNN but correctly labeled by

our DCNN. For example, (a) should be entity but is labeled location by

CNN. 12

2.4 Examples from TREC datasets that are misclassified by DCNN but cor-

rectly labeled by baseline CNN. For example, (a) should be numerical but

is labeled entity by DCNN. 13

2.5 Examples from TREC datasets that are misclassified by both DCNN and

baseline CNN. For example, (a) should be numerical but is labeled entity

by DCNN and description by CNN. 15

3.1 The same word “Apple” has different meanings (see tags in blue) in different

different topics. 17

3.2 Examples of various magnitudes of attentions for sentence level classification.

Darker words are more important. 17

3.3 Jointly trained sequence labeling and sentence classification. The green mask

means that convolution operate between one previous tag and two surrounding

words (when window size is 3). Ψ is the attention function in Eq. 3.5. Here the

sentence length is N=8. 18

3.4 Sentence-level accuracy of our latent-variable model on TREC, compared

with various neural network-based models. 23

3.5 Examples that we outperform the model without sparse attention (LSTM+CNN).

Higher weights are darker. 23

LIST OF FIGURES (Continued)
Figure Page

3.6 Comparison between softmax-based attention (upper) and sparse attention (lower)

for for some examples. The sign ‘-’ means mis-classified label, and ‘+’ for the

correct label. Darker blue represents higher weights. 24

4.1 Examples from NYDMV FAQs. There are 8 top-level categories, 47 sub-

categories, and 537 questions (among them 388 are unique; many questions

fall into multiple categories). 29

4.2 The input figure with hand written digit 0. 31

4.3 The visualization of trained projection matrix W on MNIST dataset.

Different rows represent different groups of W in Eq. 4.5. For each group,

we only show the first 15 (out of 50) bases. The red numbers on the left

side are the indices of 10 different groups. 32

4.4 The projection matrix from basic autoencoders.The differences are easier

to see in pdf. 38

4.5 (a): the hidden activations h for the input image in Fig. 4.2. The red

numbers corresponds to the index in Fig. 4.3. (b): the hidden activations

h for the same input image from basic autoencoders. 39

4.6 Group Sparse CNN. We add an extra dictionary learning layer between

sentence representation z and the final classification layer. W is the pro-

jection matrix (functions as a dictionary) that converts z to the group

sparse representation h (Eq. 4.5). Different colors in the projection ma-

trix represent different groups. We show Wᵀ instead of W for presentation

purposes. Darker colors in h mean larger values and white means zero. . . 39

5.1 The image information is feed to both encoder and decoder for initial-

ization. I (in red) represents the image feature that are generated by

CNN. 42

5.2 BLEU vs. beam size . 44

5.3 length ratio vs. beam size . 44

5.4 Two testing examples that image information confuses the NMT model. . 46

LIST OF FIGURES (Continued)
Figure Page

5.5 Two testing examples that image information helps the NMT model. . . . 46

6.1 LSTM-based encoder-decoder model with attention mechanism. 49

6.2 Local normalization introduces label bias problem. 50

6.3 Beam search favors shorter sentences. 52

6.4 Our proposed model, training with beam search. 54

6.5 Geometric understanding of our proposed model. 56

LIST OF TABLES
Table Page

1.1 Example sentence from the introduction of Oregon State University in

Wikipedia. This example combines two different kinds of sequence label-

ing problem: POS tagging and Named Entity Recognition (NER). 2

2.1 Results on Movie Review (MR), Stanford Sentiment Treebank (SST-1),

and TREC datasets. TREC-2 is TREC with fine grained labels. †Results

generated by GPU (all others generated by CPU). ∗Results generated from

[27]’s implementation. 10

3.1 Examples of ATIS sentences and annotated slots and categories. 20

3.2 Main results: Our jointly trained models compared with various inde-

pendent (marked †) and existing joint models. The “Slot” column shows

the F1 score of sequence labeling, and “intent” shows the error rates for

sentence classification. 27

4.1 Summary of datasets. Ct and Cs are the numbers of top-level and sub-

categories, resp. Ndata, Ntest, Nans are the sizes of data set, test set, and

answer set, resp. Multilabel means each question can belong to multiple

categories. 36

4.2 Experimental results. Baselines: †sequential CNNs (α = β = 0 in Eq. 4.5),
‡CNNs with global sparsity (β = 0). WR: randomly initialized projec-

tion matrix. WQ: question-initialized projection matrix. WA: answer

set-initialized projection matrix. There are three different classification

settings for Yahoo: subcategory, top-level category, and top-level accu-

racies on unseen sub-labels. 36

5.1 Summary of datasets statistics. 42

5.2 Experiments on Flickr30K dataset for translation from English to German.

16 systems in total. † represents our system. 45

5.3 Experiments on MSCOCO dataset for translation from English to Ger-

man. 15 systems in total. † represents our system. 45

LIST OF TABLES (Continued)
Table Page

5.4 Experiments on Flickr30K dataset for translation from English to French.

11 systems in total. † represents our system. 45

5.5 Experiments on MSCOCO dataset for translation from English to French.

11 systems in total. 46

6.1 Machine translation performance comparison with different SOTA models

on test set. 58

6.2 Compare our results with baseline on development set. We compare both

BLEU and length ratio. 58

LIST OF ALGORITHMS
Algorithm Page

1 Finished Candidates Beam-Search Optimization 57

Chapter 1: Introduction

Structured information is essential for solving various natural language processing (NLP)

problems. Some general and fundamental tasks in NLP is structured prediction which

expects to generate structured output itself. For the simpler cases, when we expect

unstructured information from structure input, for example, sentimental classification,

question type classification, the structured information could provide a more in-depth

understanding of given sequence compared with linear, surface information. In the task of

structured prediction, such as Part-Of-Speech tagging, constituent/dependency parsing,

and machine translation, structured information becomes more important.

Understanding the structured information is the crucial guidance for utilizing them

with difference algorithm. Before we introduce the proposed algorithm in this paper, we

will first review different forms of structured information in this chapter.

1.1 Typical Structured Prediction Problems

Structure prediction usually takes sentence or paragraph as input. For the output side,

there are many different kinds of outputs are expected on the problems. In this section,

we will first review the sequential prediction problem, e.g., Part-Of-Speech (POS) tagging

problem and Named-Entity Recognition (NER). Then we will survey different kinds of

parsing problems, e.g., constituency and dependency parsing. In the end, we will talk

about machine translation which has different challenges than other structure prediction

problems.

1.1.1 Sequential Labeling

The goal of sequential labeling is to labeling or tagging each word’s semantic role or

function in a sentence for a given task.

A typical sequential labeling is POS tagging. The goal of POS tagging is to give each

word in the sentence a appropriate predefined labeled role, e.g., noun, verb, adjective

2

and so on. The decision for choosing a label for one word also depends on the syntactic

role of other words in the sentence.

Another instants of sequential labeling is NER. In this task, we only need to label

each word’s semantic meaning within given context, such as location, organization or

people’s name entity. The difference between POS and NER tagging is not only about

the predefined label set or the meaning the labels, in some cases, one particular label

could span over a few continues words or sentence segments.

Sequential labeling provides rich information about the neighboring words (nouns

are preceded by determiners and adjectives, verbs by nouns) and about the syntactic

structure around the word (nouns are generally part of noun phrases). In the task of

NER, it also provides a lot of name entity information. Tagging is useful technique

for information extraction, question answering, and shallow parsing. Within a limited

efforts, tagging is considered as much easier task compared with parsing and its accuracy

is quite high.

Fig. 1.1 shows one example of POS and NER tagging. In the POS tagging case, we

annotated different syntactic role of each word. In the NER case, we only considering

the location and organization name entities.

Oregon State University is an
POS tagging NNP NNP NNP VBZ DT

NER ORG ORG ORG - -

international public research university in
POS tagging JJ JJ NN NN IN

NER - - - - -

the northwest United States ,
POS tagging DT NNP NNP NNPS ,

NER - - LOC LOC -
located in Corvallis , Oregon

POS tagging VBN IN NNP , NNP
NER - - LOC - LOC

Table 1.1: Example sentence from the introduction of Oregon State University in
Wikipedia. This example combines two different kinds of sequence labeling problem:
POS tagging and Named Entity Recognition (NER).

3

1.1.2 Parsing

More complicated structure than above sequence labeling problem is classical parsing

problems, which the input is still an sentence, but we are expecting a tree-formed output.

There are two different kinds of parsings in most cases: constituent parsing, or syntactic

parsing, and dependency parsing.

Fig. 1.1 is one example of constituent parse tree with given rule set and desired tree

structure. From the rule set point of view, we are given predefined branching rules from

a parent node (left side) to the children nodes (right side). For example, S has three

different of branching possibilities based on the rule set. The constituent parse tree is

usually be formed by maxing over all the possible rules with top-down or button-up

fashion. Constituent parse is one of the most important core task in NLP. Not only

because of the tree structure but it also provide rich information about each word’s

functionality in the tree.

• S → NP VP

• S → Aux NP VP

• S → VP

• NP → Det Nominal

• Nominal → Noun

• Nominal → Noun Nominal

• Nominal → Nominal PP

• NP → Proper-Noun

• VP → Verb

• VP → Verb NP

S

VP

NP

Nominal

Noun

flight

Det

that

Verb

book

Figure 1.1: Example grammar and desired tree for sentence: Book that flight.

Another type of parsing is dependency parsing, which only analysis the dependent

relationships between words. The label of each word is not important in dependency

parsing. In dependency parsing, a tree edge start from a tail word to a head word,

indicating that the the tail word modifies the head word. One tail word is constrained

by only can have one modify on one head word, but on the other hand, one head word

can be the modified by many tail words. Fig. 1.2 shows one example of dependency

4

Figure 1.2: An example of dependency parse tree.

parsing.

In this dissertation, we only discuss about how to use parsing information to enrich

the sentence representation. Deeper discussion of parsing algorithm is not within the

scope of this paper.

In the following chapters, we will discuss utilizing the structure information step by

step. In Chapter 2, we will first introduce a model deal with enhancing the sequence

representation by implanting structure information into the source side. In this case, we

only consider the source side’s structures and output classification results over the entire

sentence. In Chapter 3, we then introduce a hybrid model between the task of sequential

label and sentence level classification. We will demonstrate how these two different tasks

could help each other. In the following Chapter 4, we introduce a other model which deals

with structured label hierarchical. In this case, we are expecting structured information

on the output side. Image captioning is well-known tasks for text generation problem,

which also tries to learn the structures on the target side. In Chapter 5, we discuss a

simple model which combines image information which are generated from CNNs and

source text inputs from on language to generate the structured text output in a different

language. At last, we introduce several algorithms that deals with structure information

on both sides in Chapter 6. We take machine translation as example, and show how

these information from both sides are incorporate each other. We first review several

famous frameworks for sequence-to-sequence learning and introduce a task, simultaneous

translation. After we discuss the difficulties and challenges for simultaneous translation,

we also propose our solutions to this problems.

5

Chapter 2: Using Structure Information for Sentence Level

Classification

2.1 Motivation

In sentence modeling and classification, convolutional neural network approaches have

recently achieved state-of-the-art results, but all such efforts process word vectors sequen-

tially and neglect long-distance dependencies. To combine deep learning with linguistic

structures, we propose a dependency-based convolution approach, making use of tree-

based n-grams rather than surface ones, thus utilizing non-local interactions between

words. Our model improves sequential baselines on all four sentiment and question

classification tasks, and achieves the highest published accuracy on TREC.

The work presented in this chapter has been published in the Proceedings of Associ-

ation for Computational Linguistics 2015 [40].

2.1.1 Introduction

Convolutional neural networks (CNNs), originally invented in computer vision [36], has

recently attracted much attention in natural language processing (NLP) on problems

such as sequence labeling [10], semantic parsing [78], and search query retrieval [59].

In particular, recent work on CNN-based sentence modeling [26, 27] has achieved ex-

cellent, often state-of-the-art, results on various classification tasks such as sentiment,

subjectivity, and question-type classification. However, despite their celebrated success,

there remains a major limitation from the linguistics perspective: CNNs, being invented

on pixel matrices in image processing, only consider sequential n-grams that are con-

secutive on the surface string and neglect long-distance dependencies, while the latter

play an important role in many linguistic phenomena such as negation, subordination,

and wh-extraction, all of which might dully affect the sentiment, subjectivity, or other

categorization of the sentence.

Indeed, in the sentiment analysis literature, researchers have incorporated long-

6

Despite the film ’s shortcomings the stories are quietly moving .

ROOT

Figure 1: Running example from Movie Reviews dataset.

mensional word representation for the i-th word in
the sentence, and ⊕ is the concatenation operator.
Therefore x̃i,j refers to concatenated word vector
from the i-th word to the (i+ j)-th word:

x̃i,j = xi ⊕ xi+1 ⊕ · · · ⊕ xi+j (1)

Sequential word concatenation x̃i,j works as
n-gram models which feeds local information into
convolution operations. However, this setting can
not capture long-distance relationships unless we
enlarge the window indefinitely which would in-
evitably cause the data sparsity problem.

In order to capture the long-distance dependen-
cies we propose the dependency tree-based con-
volution model (DTCNN). Figure 1 illustrates an
example from the Movie Reviews (MR) dataset
(Pang and Lee, 2005). The sentiment of this sen-
tence is obviously positive, but this is quite dif-
ficult for sequential CNNs because many n-gram
windows would include the highly negative word
“shortcomings”, and the distance between “De-
spite” and “shortcomings” is quite long. DTCNN,
however, could capture the tree-based bigram
“Despite – shortcomings”, thus flipping the senti-
ment, and the tree-based trigram “ROOT – moving
– stories”, which is highly positive.

2.1 Convolution on Ancestor Paths
We define our concatenation based on the depen-
dency tree for a given modifier xi:

xi,k = xi ⊕ xp(i) ⊕ · · · ⊕ xpk−1(i) (2)

where function pk(i) returns the i-th word’s k-th
ancestor index, which is recursively defined as:

pk(i) =

{
p(pk−1(i)) if k > 0

i if k = 0
(3)

Figure 2 (left) illustrates ancestor paths patterns
with various orders. We always start the convo-
lution with xi and concatenate with its ancestors.
If the root node is reached, we add “ROOT” as
dummy ancestors (vertical padding).

For a given tree-based concatenated word se-
quence xi,k, the convolution operation applies a
filter w ∈ Rk×d to xi,k with a bias term b de-
scribed in equation 4:

ci = f(w · xi,k + b) (4)

where f is a non-linear activation function such as
rectified linear unit (ReLu) or sigmoid function.
The filter w is applied to each word in the sen-
tence, generating the feature map c ∈ Rl:

c = [c1, c2, · · · , cl] (5)
where l is the length of the sentence.

2.2 Max-Over-Tree Pooling and Dropout
The filters convolve with different word concate-
nation in Eq. 4 can be regarded as pattern detec-
tion: only the most similar pattern between the
words and the filter could return the maximum ac-
tivation. In sequential CNNs, max-over-time pool-
ing (Collobert et al., 2011; Kim, 2014) operates
over the feature map to get the maximum acti-
vation ĉ = max c representing the entire feature
map. Our DTCNNs also pool the maximum ac-
tivation from feature map to detect the strongest
activation over the whole tree (i.e., over the whole
sentence). Since the tree no longer defines a se-
quential “time” direction, we refer to our pooling
as “max-over-tree” pooling.

In order to capture enough variations, we ran-
domly initialize the set of filters to detect different
structure patterns. Each filter’s height is the num-
ber of words considered and the width is always
equal to the dimensionality d of word representa-
tion. Each filter will be represented by only one
feature after max-over-tree pooling. After a series
of convolution with different filter with different
heights, multiple features carry different structural
information become the final representation of the
input sentence. Then, this sentence representation
is passed to a fully connected soft-max layer and
outputs a distribution over different labels.

Neural networks often suffer from overtrain-
ing. Following Kim (2014), we employ random
dropout on penultimate layer (Hinton et al., 2012).
in order to prevent co-adaptation of hidden units.
In our experiments, we set our drop out rate as 0.5
and learning rate as 0.95 by default. Following
Kim (2014), training is done through stochastic
gradient descent over shuffled mini-batches with
the Adadelta update rule (Zeiler, 2012).

2.3 Convolution on Siblings
Ancestor paths alone is not enough to capture
many linguistic phenomena such as conjunction.

Figure 2.1: Dependency tree of an example sentence from the Movie Reviews dataset.

distance information from syntactic parse trees, but the results are somewhat incon-

sistent: some reported small improvements [16, 46], while some otherwise [12, 31]. As

a result, syntactic features have yet to become popular in the sentiment analysis com-

munity. We suspect one of the reasons for this is data sparsity (according to our exper-

iments, tree n-grams are significantly sparser than surface n-grams), but this problem

has largely been alleviated by the recent advances in word embedding. For the task of

sentence entailment, [81] also show that the sub-tree structure-based entailment could

help the overall prediction. Most importantly, these efforts were all before the deep

learning revolution, Ideally, one would hope to combine the merits of both worlds: In

other words we would like to combine the merits of both worlds: deep learning to control

sparsity, and tree structures for long-distance dependencies.

So we propose a very simple dependency-based convolutional neural networks (DC-

NNs). Our model is similar to [27], but while his sequential CNNs put a word in its

sequential context, ours considers a word and its parent, grand-parent, great-grand-

parent, and siblings on the dependency tree. This way we incorporate long-distance

information that are otherwise unavailable on the surface string.

Experiments on three classification tasks demonstrate the superior performance of

our DCNNs over the baseline sequential CNNs. In particular, our accuracy on the

TREC dataset outperforms all previously published results in the literature, including

those with heavy hand-engineered features.

2.2 Dependency-based Convolution

The original CNN, first proposed by [36], applies convolution kernels on a series of con-

tinuous areas of given images, and was adapted to NLP by [10]. Following [27], one

dimensional convolution operates the convolution kernel in sequential order in Equa-

7

ancestor paths siblings
n pattern(s) n pattern(s)

3
m h g

2
s m

4
m h g g2

3
s m h t s m

5
m h g g2 g3

4
t s m h s m h g

Table 1: Tree-based convolution patterns. Word concatenation always starts with m, while h, g, and g2

denote parent, grand parent, and great-grand parent, etc., and “ ” denotes words excluded in convolution.

2.3 Convolution on Siblings
Ancestor paths alone is not enough to capture
many linguistic phenomena such as conjunction.
Inspired by higher-order dependency parsing (Mc-
Donald and Pereira, 2006; Koo and Collins, 2010),
we also incorporate siblings for a given word in
various ways. See Table 1 (right) for details.

2.4 Combined Model
Powerful as it is, structural information still does
not fully cover sequential information. Also, pars-
ing errors (which are common especially for in-
formal text such as online reviews) directly affect
DTCNN performance while sequential n-grams
are always correctly observed. To best exploit
both information, we want to combine both mod-
els. The easiest way of combination is to con-
catenate these representations together, then feed
into fully connected soft-max neural networks. In
these cases, combine with different feature from
different type of sources could stabilize the perfor-
mance. The final sentence representation is thus:

ĉ = [ĉ(1)a , ..., ĉ(Na)
a︸ ︷︷ ︸

ancestors

; ĉ(1)s , ..., ĉ(Ns)
s︸ ︷︷ ︸

siblings

; ĉ(1), ..., ĉ(N)

︸ ︷︷ ︸
sequential

]

where Na, Ns, and N are the number of ancestor,
sibling, and sequential filters. In practice, we use
100 filters for each template in Table 1. The fully
combined representation is 1100-dimensional by
contrast to 300-dimensional for sequential CNN.

3 Experiments
We implement our DTCNN on top of the open
source CNN code by Kim (2014).1 Table 2
summarizes our results in the context of other
high-performing efforts in the literature. We use
three benchmark datasets in two categories: senti-
ment analysis on both Movie Review (MR) (Pang
and Lee, 2005) and Stanford Sentiment Treebank

1https://github.com/yoonkim/CNN sentence

(SST-1) (Socher et al., 2013) datasets, and ques-
tion classification on TREC (Li and Roth, 2002).

For all datasets, we first obtain the dependency
parse tree from Stanford parser (Manning et al.,
2014).2 Different window size for different choice
of convolution are shown in Table 1. For the
dataset without a development set (MR), we ran-
domly choose 10% of the training data to indicate
early stopping. In order to have a fare compari-
son with baseline CNN, we also use 3 to 5 as our
window size. Most of our results are generated
by GPU due to its efficiency, however CPU poten-
tially could generate better results.3 Our imple-
mentation can be found on Github.4

3.1 Sentiment Analysis
Both sentiment analysis datasets (MR and SST-
1) are based on movie reviews. The differences
between them are mainly in the different num-
bers of categories and whether the standard split
is given. There are 10,662 sentences in the MR
dataset. Each instance is labeled positive or neg-
ative, and in most cases contains one sentence.
Since no standard data split is given, following the
literature we use 10 fold cross validation to include
every sentence in training and testing at least once.
Concatenating with sibling and sequential infor-
mation obviously improves tree-based CNNs, and
the final model outperforms the baseline sequen-
tial CNNs by 0.4, and ties with Zhu et al. (2015).

Different from MR, the Stanford Sentiment
Treebank (SST-1) annotates finer-grained labels,
very positive, positive, neutral, negative and very
negative, on an extension of the MR dataset. There
are 11,855 sentences with standard split. Our
model achieves an accuracy of 49.5 which is sec-
ond only to Irsoy and Cardie (2014). We set batch
size to 100 for this task.

2The phrase-structure trees in SST-1 are actually automat-
ically parsed, and thus can not be used as gold-standard trees.

3GPU only supports float32 while CPU supports float64.
4https://github.com/cosmmb/DTCNN

Figure 2.2: Convolution patterns on trees. Word concatenation always starts with m,
while h, g, and g2 denote parent, grand parent, and great-grand parent, etc., and “ ”
denotes words excluded in convolution.

tion 2.1, where xi ∈ Rd represents the d dimensional word representation for the i-th

word in the sentence, and ⊕ is the concatenation operator. Therefore x̃i,j refers to

concatenated word vector from the i-th word to the (i+ j)-th word:

x̃i,j = xi ⊕ xi+1 ⊕ · · · ⊕ xi+j (2.1)

Sequential word concatenation x̃i,j works as n-gram models which feeds local infor-

mation into convolution operations. However, this setting can not capture long-distance

relationships unless we enlarge the window indefinitely which would inevitably cause the

data sparsity problem.

In order to capture the long-distance dependencies we propose the dependency-based

convolution model (DCNN). Figure 2.1 illustrates an example from the Movie Reviews

(MR) dataset [51]. The sentiment of this sentence is obviously positive, but this is quite

difficult for sequential CNNs because many n-gram windows would include the highly

negative word “shortcomings”, and the distance between “Despite” and “shortcomings”

is quite long. DCNN, however, could capture the tree-based bigram “Despite – short-

comings”, thus flipping the sentiment, and the tree-based trigram “ROOT – moving –

stories”, which is highly positive.

8

2.2.1 Convolution on Ancestor Paths

We define our concatenation based on the dependency tree for a given modifier xi:

xi,k = xi ⊕ xp(i) ⊕ · · · ⊕ xpk−1(i) (2.2)

where function pk(i) returns the i-th word’s k-th ancestor index, which is recursively

defined as:

pk(i) =




p(pk−1(i)) if k > 0

i if k = 0
(2.3)

Figure 2.2 (left) illustrates ancestor paths patterns with various orders. We always

start the convolution with xi and concatenate with its ancestors. If the root node is

reached, we add “ROOT” as dummy ancestors (vertical padding).

For a given tree-based concatenated word sequence xi,k, the convolution operation

applies a filter w ∈ Rk×d to xi,k with a bias term b described in equation 2.4:

ci = f(w · xi,k + b) (2.4)

where f is a non-linear activation function such as rectified linear unit (ReLu) or sigmoid

function. The filter w is applied to each word in the sentence, generating the feature

map c ∈ Rl:

c = [c1, c2, · · · , cl] (2.5)

where l is the length of the sentence.

2.2.2 Max-Over-Tree Pooling and Dropout

The filters convolve with different word concatenation in Eq. 2.4 can be regarded as

pattern detection: only the most similar pattern between the words and the filter could

return the maximum activation. In sequential CNNs, max-over-time pooling [10, 27]

operates over the feature map to get the maximum activation ĉ = max c representing

the entire feature map. Our DCNNs also pool the maximum activation from feature map

to detect the strongest activation over the whole tree (i.e., over the whole sentence). Since

the tree no longer defines a sequential “time” direction, we refer to our pooling as “max-

9

over-tree” pooling. Another issue of sentence length variation are solved naturally by

max-pooling.

In order to capture enough variations, we randomly initialize the set of filters to detect

different structure patterns. Each filter’s height is the number of words considered and

the width is always equal to the dimensionality d of word representation. Each filter

will be represented by only one feature after max-over-tree pooling. After a series of

convolution with different filter with different heights, multiple features carry different

structural information become the final representation of the input sentence. Then,

this sentence representation is passed to a fully connected soft-max layer and outputs a

distribution over different labels.

Neural networks often suffer from over-training. Following [27], we employ random

dropout on penultimate layer [19]. in order to prevent co-adaptation of hidden units. In

our experiments, we set our drop out rate as 0.5 and learning rate as 0.95 by default.

Following [27], training is done through stochastic gradient descent over shuffled mini-

batches with the Adadelta update rule [80].

2.2.3 Convolution on Siblings

Ancestor paths alone is not enough to capture many linguistic phenomena such as con-

junction. Inspired by higher-order dependency parsing [47, 30], we also incorporate

siblings for a given word in various ways. See Figure 2.2 (right) for details.

2.2.4 Combined Model

Powerful as it is, structural information still does not fully cover sequential information.

Also, parsing errors (which are common especially for informal text such as online re-

views) directly affect DCNN performance while sequential n-grams are always correctly

observed. To best exploit both information, we want to combine both models. The

easiest way of combination is to concatenate these representations together, then feed

into fully connected soft-max neural networks. In these cases, combine with different

feature from different type of sources could stabilize the performance. The final sentence

10

Category Model MR SST-1 TREC TREC-2

This work
DCNNs: ancestor 80.4† 47.7† 95.4† 88.4†

DCNNs: ancestor+sibling 81.7† 48.3† 95.6† 89.0†

DCNNs: ancestor+sibling+sequential 81.9 49.5 95.4† 88.8†

CNNs
CNNs-non-static [27] – baseline 81.5 48.0 93.6 86.4∗

CNNs-multichannel [27] 81.1 47.4 92.2 86.0∗

Deep CNNs [26] - 48.5 93.0 -

Recursive NNs
Recursive Autoencoder [63] 77.7 43.2 - -
Recursive Neural Tensor [64] - 45.7 - -
Deep Recursive NNs [22] - 49.8 - -

Recurrent NNs LSTM on tree [84] 81.9 48.0 - -

Other deep learning Paragraph-Vec [35] - 48.7 - -

Hand-coded rules SVMS [60] - 95.0 90.8

Table 2.1: Results on Movie Review (MR), Stanford Sentiment Treebank (SST-1), and
TREC datasets. TREC-2 is TREC with fine grained labels. †Results generated by GPU
(all others generated by CPU). ∗Results generated from [27]’s implementation.

representation is thus:

ĉ = [ĉ(1)
a , ..., ĉ(Na)

a︸ ︷︷ ︸
ancestors

; ĉ(1)
s , ..., ĉ(Ns)

s︸ ︷︷ ︸
siblings

; ĉ(1), ..., ĉ(N)

︸ ︷︷ ︸
sequential

]

where Na, Ns, and N are the number of ancestor, sibling, and sequential filters. In prac-

tice, we use 100 filters for each template in Figure 2.2 . The fully combined representation

is 1,100-dimensional by contrast to 300-dimensional for sequential CNN.

2.3 Experiments

Table 2.1 summarizes results in the context of other high-performing efforts in the liter-

ature. We use three benchmark datasets in two categories: sentiment analysis on both

Movie Review (MR) [51] and Stanford Sentiment Treebank (SST-1) [64] datasets, and

question classification on TREC [37].

For all datasets, we first obtain the dependency parse tree from Stanford parser [45].1

Different window size for different choice of convolution are shown in Figure 2.2. For the

dataset without a development set (MR), we randomly choose 10% of the training data

to indicate early stopping. In order to have a fare comparison with baseline CNN, we

1The phrase-structure trees in SST-1 are actually automatically parsed, and thus can not be used as gold-
standard trees.

11

also use 3 to 5 as our window size. Most of our results are generated by GPU due to its

efficiency, however CPU could potentially get better results.2 Our implementation, on

top of [27]’s code,3 will be released.4

2.3.1 Sentiment Analysis

Both sentiment analysis datasets (MR and SST-1) are based on movie reviews. The

differences between them are mainly in the different numbers of categories and whether

the standard split is given. There are 10,662 sentences in the MR dataset. Each instance

is labeled positive or negative, and in most cases contains one sentence. Since no standard

data split is given, following the literature we use 10 fold cross validation to include every

sentence in training and testing at least once. Concatenating with sibling and sequential

information obviously improves DCNNs, and the final model outperforms the baseline

sequential CNNs by 0.4, and ties with [84].

Different from MR, the Stanford Sentiment Treebank (SST-1) annotates finer-grained

labels, very positive, positive, neutral, negative and very negative, on an extension of

the MR dataset. There are 11,855 sentences with standard split. Our model achieves an

accuracy of 49.5 which is second only to [22].

2.3.2 Question Classification

In the TREC dataset, the entire dataset of 5,952 sentences are classified into the fol-

lowing 6 categories: abbreviation, entity, description, location and numeric. In this

experiment, DCNNs easily outperform any other methods even with ancestor convolu-

tion only. DCNNs with sibling achieve the best performance in the published literature.

DCNNs combined with sibling and sequential information might suffer from overfitting

on the training data based on our observation. One thing to note here is that our best

result even exceeds SVMS [60] with 60 hand-coded rules.

The TREC dataset also provides subcategories such as numeric:temperature, nu-

meric:distance, and entity:vehicle. To make our task more realistic and challenging, we

also test the proposed model with respect to the 50 subcategories. There are obvious

2GPU only supports float32 while CPU supports float64.
3https://github.comw/yoonkim/CNN_sentence
4
https://github.com/cosmmb/DCNN

12

Category Model MR SST-1 TREC TREC-2

This work
DTCNNs: ancestor 80.4† 47.7† 95.4† 88.4†

DTCNNs: ancestor+sibling 81.7† 48.3† 95.6† 89.0†

DTCNNs: ancestor+sibling+sequential 81.9 49.5 95.4† 88.8†

CNNs
CNNs-non-static (Kim, 2014) – baseline 81.5 48.0 93.6 86.4∗

CNNs-multichannel (Kim, 2014) 81.1 47.4 92.2 86.0∗

Deep CNNs (Kalchbrenner et al., 2014) - 48.5 93.0 -

Recursive NNs
Recursive Autoencoder (Socher et al., 2011) 77.7 43.2 - -
Recursive Neural Tensor (Socher et al., 2013) - 45.7 - -
Deep Recursive NNs (Irsoy and Cardie, 2014) - 49.8 - -

Recurrent NNs LSTM on tree (Zhu et al., 2015) 81.9 48.0 - -
Other deep learning Paragraph-Vec (Le and Mikolov, 2014) - 48.7 - -
Hand-coded rules SVMS (Silva et al., 2011) - 95.0 90.8

Table 2: Results on Movie Review (MR), Stanford Sentiment Treebank (SST-1), and TREC datasets.
TREC-2 is TREC with fine grained labels. †Results generated by GPU (all others generated by CPU).
∗Results generated from Kim (2014)’s implementation.

What is Hawaii ’s state flower ?

root

(a) enty⇒ loc

What is natural gas composed of ?

root

(b) enty⇒ desc

What does a defibrillator do ?

root

(c) desc⇒ enty

Nothing plot wise is worth emailing home about

root

(d) mild negative⇒ mild positive

What is the temperature at the center of the earth ?

root

(e) NUM:temp⇒ NUM:dist

What were Christopher Columbus ’ three ships ?

root

(f) ENTY:veh⇒ LOC:other

Figure 2: Examples from TREC (a–c), SST-1 (d)
and TREC with fine-grained label (e–f) that are
misclassified by the baseline CNN but correctly
labeled by our DTCNN. For example, (a) should
be entity but is labeled location by CNN.

3.2 Question Classification
In the TREC dataset, the entire dataset of 5,952
sentences are classified into the following 6 cate-
gories: abbreviation, entity, description, location
and numeric. In this experiment, DTCNNs eas-
ily outperform any other methods even with an-
cestor convolution only. DTCNNs with sibling
achieve the best performance in the published lit-
erature. DTCNNs combined with sibling and se-
quential information might suffer from overfitting
on the training data based on our observation. One
thing to note here is that our best result even ex-
ceeds SVMS (Silva et al., 2011) with 60 hand-
coded rules. We set batch size to 210 for this task.

The TREC dataset also provides subcategories
such as numeric:temperature, numeric:distance,
and entity:vehicle. To make our task more real-
istic and challenging, we also test the proposed
model with respect to the 50 subcategories. There
are obvious improvements over sequential CNNs
from the last column of Table 2. Like ours, Silva
et al. (2011) is a tree-based system but it uses
constituency trees compared to ours dependency
trees. They report a higher fine-grained accuracy
of 90.8 but their parser is trained only on the Ques-
tionBank (Judge et al., 2006) while we used the
standard Stanford parser trained on both the Penn
Treebank and QuestionBank. Moreover, as men-
tioned above, their approach is rule-based while
ours is automatically learned. For this task, we set
batch size to 30.

3.3 Discussions and Examples
Compared with sentiment analysis, the advantage
of our proposed model is obviously more substan-
tial on the TREC dataset. Based on our error anal-

Figure 2.3: Examples from TREC (a–c), SST-1 (d) and TREC with fine-grained label
(e–f) that are misclassified by the baseline CNN but correctly labeled by our DCNN. For
example, (a) should be entity but is labeled location by CNN.

13

What is the speed hummingbirds fly ?
(noun)

root

(a) num⇒ enty

What body of water are the Canary Islands in ?

root

(b) loc⇒ enty

What position did Willie Davis play in baseball ?

root

(c) hum⇒ enty

Figure 3: Examples from TREC datasets that are
misclassified by DTCNN but correctly labeled by
baseline CNN. For example, (a) should be numer-
ical but is labeled entity by DTCNN.

ysis, we conclude that this is mainly due to the
difference of the parse tree quality between the
two tasks. In sentiment analysis, the dataset is
collected from the Rotten Tomatoes website which
includes many irregular usage of language. Some
of the sentences even come from languages other
than English. The errors in parse trees inevitably
affect the classification accuracy. However, the
parser works substantially better on the TREC
dataset since all questions are in formal written
English, and the training set for Stanford parser5

already includes the QuestionBank (Judge et al.,
2006) which includes 2,000 TREC sentences.

Figure 2 visualizes examples where CNN errs
while DTCNN does not. For example, CNN la-
bels (a) as location due to “Hawaii” and “state”,
while the long-distance backbone “What – flower”
is clearly asking for an entity. Similarly, in (d),
DTCNN captures the obviously negative tree-
based trigram “Nothing – worth – emailing”. Note
that our model also works with non-projective de-
pendency trees such as the one in (b). The last
two examples in Figure 2 visualize cases where
DTCNN outperforms the baseline CNNs in fine-
grained TREC. In example (e), the word “temper-
ature” is at second from the top and is root of a
8 word span “the ... earth”. When we use a win-
dow of size 5 for tree convolution, every words
in that span get convolved with “temperature” and
this should be the reason why DTCNN get correct.

5http://nlp.stanford.edu/software/parser-faq.shtml

What is the melting point of copper ?

root

(a) num⇒ enty and desc

What did Jesse Jackson organize ?

root

(b) hum⇒ enty and enty

What is the electrical output in Madrid , Spain ?

root

(c) enty⇒ num and num

Figure 4: Examples from TREC datasets that are
misclassified by both DTCNN and baseline CNN.
For example, (a) should be numerical but is la-
beled entity by DTCNN and description by CNN.

Figure 3 showcases examples where baseline
CNNs get better results than DTCNNs. Exam-
ple (a) is misclassified as entity by DTCNN due
to parsing/tagging error (the Stanford parser per-
forms its own part-of-speech tagging). The word
“fly” at the end of the sentence should be a verb
instead of noun, and “hummingbirds fly” should
be a relative clause modifying “speed”.

There are some sentences that are misclassified
by both the baseline CNN and DTCNN. Figure 4
shows three such examples. Example (a) is not
classified as numerical by both methods due to the
ambiguous meaning of the word “point” which is
difficult to capture by word embedding. This word
can mean location, opinion, etc. Apparently, the
numerical aspect is not captured by word embed-
ding. Example (c) might be an annotation error.

From the mistakes made by DTCNNs, we find
the performance of DTCNN is mainly limited by
two factors: the accuracy of the parser and the
quality of word embedding. Future work will fo-
cus on these two issues.

4 Conclusions and Future Work

We have presented a very simple dependency tree-
based convolution framework which outperforms
sequential CNN baselines on various classification
tasks. Extensions of this model would consider
dependency labels and constituency trees. Also,
we would evaluate on gold-standard parse trees.

Figure 2.4: Examples from TREC datasets that are misclassified by DCNN but correctly
labeled by baseline CNN. For example, (a) should be numerical but is labeled entity by
DCNN.

improvements over sequential CNNs from the last column of Table 2.1. Like ours, [60] is

a tree-based system but it uses constituency trees compared to ours dependency trees.

They report a higher fine-grained accuracy of 90.8 but their parser is trained only on

the QuestionBank [24] while we used the standard Stanford parser trained on both the

Penn Treebank and QuestionBank. Moreover, as mentioned above, their approach is

rule-based while ours is automatically learned.

2.3.3 Discussions and Examples

Compared with sentiment analysis, the advantage of our proposed model is obviously

more substantial on the TREC dataset. Based on our error analysis, we conclude that

this is mainly due to the difference of the parse tree quality between the two tasks.

In sentiment analysis, the dataset is collected from the Rotten Tomatoes website which

includes many irregular usage of language. Some of the sentences even come from lan-

guages other than English. The errors in parse trees inevitably affect the classification

14

accuracy. However, the parser works substantially better on the TREC dataset since all

questions are in formal written English, and the training set for Stanford parser5 already

includes the QuestionBank [24] which includes 2,000 TREC sentences.

Figure 2.3 visualizes examples where CNN errs while DCNN does not. For example,

CNN labels (a) as location due to “Hawaii” and “state”, while the long-distance backbone

“What – flower” is clearly asking for an entity. Similarly, in (d), DCNN captures the

obviously negative tree-based trigram “Nothing – worth – emailing”. Note that our

model also works with non-projective dependency trees such as the one in (b). The last

two examples in Figure 2.3 visualize cases where DCNN outperforms the baseline CNNs

in fine-grained TREC. In example (e), the word “temperature” is at second from the top

and is root of a 8 word span “the ... earth”. When we use a window of size 5 for tree

convolution, every words in that span get convolved with “temperature” and this should

be the reason why DCNN get correct.

Figure 2.4 showcases examples where baseline CNNs get better results than DCNNs.

Example (a) is misclassified as entity by DCNN due to parsing/tagging error (the Stan-

ford parser performs its own part-of-speech tagging). The word “fly” at the end of the

sentence should be a verb instead of noun, and “hummingbirds fly” should be a relative

clause modifying “speed”.

There are some sentences that are misclassified by both the baseline CNN and DCNN.

Figure 2.5 shows three such examples. Example (a) is not classified as numerical by

both methods due to the ambiguous meaning of the word “point” which is difficult to

capture by word embedding. This word can mean location, opinion, etc. Apparently,

the numerical aspect is not captured by word embedding. Example (c) might be an

annotation error.

5
http://nlp.stanford.edu/software/parser-faq.shtml

15

What is the speed hummingbirds fly ?
(noun)

root

(a) num⇒ enty

What body of water are the Canary Islands in ?

root

(b) loc⇒ enty

What position did Willie Davis play in baseball ?

root

(c) hum⇒ enty

Figure 3: Examples from TREC datasets that are
misclassified by DTCNN but correctly labeled by
baseline CNN. For example, (a) should be numer-
ical but is labeled entity by DTCNN.

ysis, we conclude that this is mainly due to the
difference of the parse tree quality between the
two tasks. In sentiment analysis, the dataset is
collected from the Rotten Tomatoes website which
includes many irregular usage of language. Some
of the sentences even come from languages other
than English. The errors in parse trees inevitably
affect the classification accuracy. However, the
parser works substantially better on the TREC
dataset since all questions are in formal written
English, and the training set for Stanford parser5

already includes the QuestionBank (Judge et al.,
2006) which includes 2,000 TREC sentences.

Figure 2 visualizes examples where CNN errs
while DTCNN does not. For example, CNN la-
bels (a) as location due to “Hawaii” and “state”,
while the long-distance backbone “What – flower”
is clearly asking for an entity. Similarly, in (d),
DTCNN captures the obviously negative tree-
based trigram “Nothing – worth – emailing”. Note
that our model also works with non-projective de-
pendency trees such as the one in (b). The last
two examples in Figure 2 visualize cases where
DTCNN outperforms the baseline CNNs in fine-
grained TREC. In example (e), the word “temper-
ature” is at second from the top and is root of a
8 word span “the ... earth”. When we use a win-
dow of size 5 for tree convolution, every words
in that span get convolved with “temperature” and
this should be the reason why DTCNN get correct.

5http://nlp.stanford.edu/software/parser-faq.shtml

What is the melting point of copper ?

root

(a) num⇒ enty and desc

What did Jesse Jackson organize ?

root

(b) hum⇒ enty and enty

What is the electrical output in Madrid , Spain ?

root

(c) enty⇒ num and num

Figure 4: Examples from TREC datasets that are
misclassified by both DTCNN and baseline CNN.
For example, (a) should be numerical but is la-
beled entity by DTCNN and description by CNN.

Figure 3 showcases examples where baseline
CNNs get better results than DTCNNs. Exam-
ple (a) is misclassified as entity by DTCNN due
to parsing/tagging error (the Stanford parser per-
forms its own part-of-speech tagging). The word
“fly” at the end of the sentence should be a verb
instead of noun, and “hummingbirds fly” should
be a relative clause modifying “speed”.

There are some sentences that are misclassified
by both the baseline CNN and DTCNN. Figure 4
shows three such examples. Example (a) is not
classified as numerical by both methods due to the
ambiguous meaning of the word “point” which is
difficult to capture by word embedding. This word
can mean location, opinion, etc. Apparently, the
numerical aspect is not captured by word embed-
ding. Example (c) might be an annotation error.

From the mistakes made by DTCNNs, we find
the performance of DTCNN is mainly limited by
two factors: the accuracy of the parser and the
quality of word embedding. Future work will fo-
cus on these two issues.

4 Conclusions and Future Work

We have presented a very simple dependency tree-
based convolution framework which outperforms
sequential CNN baselines on various classification
tasks. Extensions of this model would consider
dependency labels and constituency trees. Also,
we would evaluate on gold-standard parse trees.

Figure 2.5: Examples from TREC datasets that are misclassified by both DCNN and
baseline CNN. For example, (a) should be numerical but is labeled entity by DCNN and
description by CNN.

16

Chapter 3: Jointly Training for Sequential Labeling and Sentence

Level Classification

Sentence-level classification and sequential labeling are two fundamental tasks in lan-

guage understanding. While these two tasks are usually modeled separately, in reality,

they are often correlated, for example in intent classification and slot filling, or in topic

classification and named-entity recognition. In order to utilize the potential benefits

from their correlations, we propose a jointly trained model for learning the two tasks

simultaneously via Long Short-Term Memory (LSTM) networks. This model predicts

the sentence-level category and the word-level label sequence from the stepwise output

hidden representations of LSTM. We also introduce a novel mechanism of “sparse at-

tention” to weigh words differently based on their semantic relevance to sentence-level

classification.

The work presented in this chapter has been published in the Proceedings of INTER-

SPEECH 2017 [43].

3.1 Introduction

We consider the dichotomy between two important tasks in spoken language understand-

ing: the global task of sentence-level classification, such as intention or sentiment, and

the local task of sequence labeling or semantic constituent extraction, such as slot filling

or named-entity recognitions (NER). Conventionally, these two tasks are modeled sepa-

rately, with algorithms such as SVM [5] for the former, and Conditional Random Fields

(CRF) [33] or structured perceptron [9] for the latter.

In reality, however, these two tasks are often correlated. Consider the problems of

sentence topic classification and NER in Figure 3.1. Different sentence-level classifica-

tions provide different priors for each word’s label; for example if we know the sentence is

about IT news then the word “Apple” is almost certainly about the company. Likewise,

different word-level label sequence also influence the sentence-level category distribution;

for example if we know the word “Apple” is about fruits then the sentence topic is more

17

Topic: IT news
Apple’s new iPad will be out soon ... (Company)

Topic: Agriculture reports
Apple harvest in Washington state (Fruit)

Topic: Tourist information
“Big Apple” is a nickname of NYC ... (Location)

Figure 3.1: The same word “Apple” has different meanings (see tags in blue) in different different
topics.

Category: Geography
Texas is located in the South Central region...

Category: Date or Time
The train leaves at nine o’clock

Category: Positive review
A smart , sweet and playful romantic comedy.

Figure 3.2: Examples of various magnitudes of attentions for sentence level classification. Darker
words are more important.

likely to be agricultural.

Indeed, previous work has explored joint modeling between the two tasks. For exam-

ple, Jeong and Lee [23] propose a discrete CRF model for joint training of sentence-level

classification and sequence labeling. A follow-up work [75] leverages the feature represen-

tation power of convolution neural networks (CNNs) to make the CRF model generalize

better for unseen data. However, the above CRF-based methods still suffer from the

following limitations: firstly, although CRF is trained globally, it still lacks the ability

for capturing long-term memory at each time step which is crucial for sentence-level

classification and sequential labeling problem; secondly, the CNNs-based CRF [75] only

use CNNs for nonlinear local feature extraction. But globally, it is still a linear model

which has limited generalization power to unseen data.

In order to overcome the two above issues, we propose a novel LSTM-based model

to jointly train sentence-level classification and sequence labeling, which incorporates

long-term memory and nonlinearity both locally and globally. We make the following

contributions:

18

• Our Long Short-Term Memory (LSTM) [20] network analyzes the sentence using fea-

tures extracted by a convolutional layer. Basically, each word-level label is greedily

determined by the hidden representation from LSTM in each step, and the global sen-

tence category is determined by an aggregate (e.g., pooling) of hidden representations

from all steps (Sec. 3.3.1).

• We also propose a novel sparse attention model which promotes important words

in a given sentence and demotes semantically vacuous words (Fig. 3.2; Sec. 3.3.2).

• Finally, we develop a latent variable version of our jointly trained model which can

be trained for the single task of sentence classification by treating word-level labels as

latent information (Sec. 3.3.3).

3.2 LSTM for Labeling and Classification

Buffalo buffalo Buffalo buffalo buffalo buffalo Buffalo buffalo

CITY Animal Animal Action CITYAction Animal

from previous

step (t-1)

to next step (t+1) .
.
.

.

.

.

.

.

.

.

.

.
Attention

function

sentence
level

classification

 (H,↵)

Tt�1 Tt Tt+1

LSTM (ext, ht�1, ct�1)

fconv(·)! ext

(ht�1, ct�1)

(ht, ct)

softmaxT (ht)

ht 2 Rd

H 2 Rd⇥N

bh 2 Rd

CITY

…..
…..

…..

Figure 3.3: Jointly trained sequence labeling and sentence classification. The green mask means
that convolution operate between one previous tag and two surrounding words (when window
size is 3). Ψ is the attention function in Eq. 3.5. Here the sentence length is N=8.

We use LSTM to model the representation of the sentence at each word step, which

is powerful in modeling sentence semantics [66, 7]. Assume the length of the sentence is

N . LSTM represents the meaning of the sentence at the t-th word by a pair of vectors

(ht, ct) ∈ (Rd,Rd), where ht is the output hidden representation of the word, ct is the

memory of the network, and d is the number of dimensions of the representation space:

19




it

ft

ot

ĉt




=




σ

σ

σ

tanh



WLSTM · [xt, ht−1] (3.1)

ct = ft � ct−1 + it � ĉt (3.2)

ht = ot � tanh(ct) (3.3)

Here xt represents the t-th word, which is usually the word embedding vector, and

vectors it, ft, and ot are gated activations that control flow of hidden information. The

separation of the output representation ht from its internal memory ct, in principle, makes

the knowledge about the sentence prefix be remembered by the network for longer time

to interfere with the current output at word xt. These carefully designed activation gates

alleviate the problem of vanishing gradient problem in vanilla recurrent neural network

models.

In the task of sequence labeling, the label for each word is determined by hidden

representation ht. As described in Eq. 3.3, at time step t, we will get an output ht which

represents all the current information. The probability distribution of the t-th word’s

label is calculated by softmaxT (WT · ht), where weight WT ∈ Rd×|T | maps ht to the

space of the labels, and |T | is the number of possible labels. For the sequence labeling

problem, the loss `seq is calculates as the sum of the Negative Log-Likelihood (NLL) over

this label distribution softmaxT (ht) at each time step.

In the task of sentence classification, the entire sentence representation is obtained

by aggregating all history outputs ht which are stored in H ∈ Rd×N , where N is the

length of sequence. Similar to CNNs, max pooling [10, 27, 40] operates over the history

outputs H to get the average activation ĥ = pooling(H) summarizing the entire outputs.

Then, this sentence representation is passed to a fully connected soft-max layer which

outputs a distribution over sentence categories.

In above two different tasks, the hidden representation ht functions as a key compo-

nent in different, separate ways. In many cases, when sequence-level labels and sentence

categories are both available we should use both information within the same framework

by joint training the two tasks.

20

3.3 Joint Sequence Classification & Labeling

3.3.1 Joint Training Model

Sentence 1 I want to go from Denver to Boston today Category

Slots O O O O O B-FromCity O B-ToCity B-Date Flight

Sentence 2 to come back to Los Angeles on Friday evening Category

Slots O O O O B-ReturnCity I-ReturnCity O B-RETURN.DAY B-RETURN.PERIODOFDAY Return

Table 3.1: Examples of ATIS sentences and annotated slots and categories.

We aim at developing a model which could learn the label sequence and sentence-

level category simultaneously. To this end, we modify the standard LSTM structure to

generate the word labels on the fly based on output ht, and predict the sentence category

with the sequence of ht, t = 1, . . . , N .

In LSTM, at time step t, only information of the current word xt is being fed into the

network. This mechanism overlooks the problem that the meanings of the same word in

different contexts might vary (cf. Fig. 3.1). In particular, words that follow xt are not

represented at step t in LSTM.

This observation motivates us to include more contextual information around the

current word and previous tags as part of the input to LSTM. We employ convolutional

neural network (CNN) to automatically mine the meaningful knowledge from both the

context of word xt and previous tags Tt−1, and use this knowledge as the input for LSTM.

We formally define the new input for LSTM as:

x̃t = fconv(Wconv · xt,k + bconv) (3.4)

where fconv is a non-linear activation function like rectified linear unit (ReLU) or sigmoid,

and xt,k is a vector representing the context of word xt and previous tags Tt−k...Tt−1,

e.g., the concatenation of the surrounding words and previous tags,

xt,k = [xt−k, . . . , xt+k, Tt−k, . . . , Tt−1] in Eq. 3.4, where the convolution window size is

2k + 1 and Tt−1 represents the embedding for tag Tt−1. Wconv is the collection of filters

applied on the context. During the convolution, each row of Wconv is a filter that will

be fired if it matches some useful pattern in the input context. The convolutional layer

functions as a feature extraction tool to learn meaningful representation from both words

and tags automatically. Note that the above contextual representation is different from

21

bi-LSTM which only learns surrounding contextual of a given word. However, our model

can learn both contextual and label information by convolution.

In our model, the joint training between sentence-level classification and sequential

labeling is done in two directions: in forward pass, word label representation sequence

is used for sentence level classification; during backward training, the sentence level

prediction errors also fine-tune the label sequence.

Fig. 3.3 illustrates our proposed model with one classical NLP exemplary sentence

which only contains the word “buffalo” as the running example. At each time step,

we first use the convolutional layer as a feature extractor to get the nonlinear feature

combinations from the embeddings of words and tags. In the case of window size equaling

to 1, the convolution operates over the t − 1, t and t + 1 words and the t − 1 tag. The

contextual representation xt,1 = [xt−1, xt, xt+1, Tt−1] is then fed into the convolution

layer to find feature representation x̃t following Eq. 3.4. x̃t is used as the input for the

following LSTM to generate ht and ct, based on history information ht−1 and previous

cell information ct−1.

The example in Fig 3.3 is a grammatically correct sentence in English [54]. The

word “buffalo” has three different meanings: Buffalo, NY (city), bison (animal), or bully

(action). It is hard for standard LSTM to differentiate the different meanings of “buffalo”

in different time step since the xt is the same all the time. However, in our case, instead

of simply using word representation xt itself, we also consider the contextual information

with their tags through convolution from xt,k (Eq. 3.4).

3.3.2 Sparse Attention

In the previous section, the sentence-level representation ĥ is obtained by a simple aver-

age pooling on H. This process assumes every words contribute to the sentence equally,

which is not the case in many scenarios. Fig. 3.2 shows a few examples of different

words with different magnitudes of attention in different sentence categories. In order

to incorporate these differences into consideration, we further propose a novel sparse at-

tention constraint for sentence level classification. The sparse constraint assigns bigger

weights for important words and lower the weights or even totally ignores the less mean-

ingful words such like “the” or “a”. The attention-based sentence-level representation is

22

formulated as follows:

ĥ = Ψ(H,α) =
∑

ht∈H
ψ(ht · α)ht (3.5)

where α ∈ Rd is an attention measurement which decides the importances for different

inputs based on their semantics hi. This importance is calculated through a nonlinear

function ψ which can be sigmoid or ReLU and we use sigmoid in our case.

Sparse Autoencoders [50, 44] show that getting sparse representations in the hidden

layers can further improve the performance. In our model, we apply similar sparse

constraints by first calculating the average attention over the training samples in the

same batch:

ρ̂t =
1

m

m∑

i=1

ψ(hit · α) (3.6)

where m is the size of training batch, and hit is the output of LSTM at step t for example i.

In order to keep the above attention within a fix budget, similar to Sparse Autoencoders

[50], we have an extra penalty term as follows:

KL(ρ||ρ̂t) = ρ log
ρ

ρ̂t
+ (1− ρ) log

1− ρ
1− ρ̂t

,

where ρ is the desired sparsity of the attention. This penalty term uses KL divergence

to measure the difference between two distributions. Then our new objective is defined

as follows:

`sparse(·) = `seq(·) + `sent(·) + β

N∑

t=1

KL(ρ||ρ̂t), (3.7)

where N is the number of hidden units, `seq is the sequence labeling loss, and `sent is

the sentence classification loss. β controls the weight of the sparsity penalty term. Note

that the term ρ̂t is implicitly controlled by optimizing α and output ht.

3.3.3 Label Sequence as Latent Variable

In practice, it is expensive to annotate the data with both sequential label and sequence

category. In many cases, the sequence labels are missing since it requires significantly

more efforts to annotate the labels word-by-word. However, even without this sequence

23

labeling information, it is still helpful if we could utilize the possible hidden labels for

each words.

In our proposed model, we could consider the sentence-level classification task as the

major learning objective and treat the unknown sequence labels as latent information.

The only adaptation we need to make is to replace the Tt (tag embedding) with ht

(output at time step t) in xt,k. In this case, we exploit the latent meaning representation

to further improve the feature extraction of the convolutional layer.

3.4 Experiments

Model Sent. Acc.

CNN non-static [27] 93.6

CNN multichannel [27] 92.2

Deep CNN [26] 93.0

Independent LSTM (baseline) 92.2

latent LSTM + CNN 92.6

latent LSTM + CNN + attention 93.4

latent LSTM + CNN + sparse att. 94.0

Figure 3.4: Sentence-level accuracy of our latent-variable model on TREC,
compared with various neural network-based models.

Figure 3.5: Examples that we outperform the model without sparse attention
(LSTM+CNN). Higher weights are darker.

24

Figure 3.6: Comparison between softmax-based attention (upper) and sparse attention (lower)
for for some examples. The sign ‘-’ means mis-classified label, and ‘+’ for the correct label.
Darker blue represents higher weights.

We start by evaluating the performance on a conventional joint learning task (Sec. 3.4.1).

Then we show the performance when we treat the label sequence as hidden information

in Sec. 3.4.2. We also analyze some concrete examples to show the performance of the

sparse attention constraint in our model (Sec. 3.4.3).

In the experiments, we set the convolution window sizes as 3, 5, and 7. There are

100 different filters for each window size. Word embeddings are randomly initialized in

the ATIS experiments. In the TREC experiments, we use 300 dimension pre-trained

word embeddings. We use AdaDelta for optimization [80] with learning rate 0.001 and

minibatch 16. The weights in our framework are uniformly randomly initialized between

[−0.05, 0.05]. We use ReLu at the convolutional layer and also regularize the feature

with dropout 0.5 [19].

We evaluate on ATIS[23] and TREC [37] datasets. We follow the TriCRF paper[23]

in our evaluation on ATIS. There are 5, 138 dialogs with 21 types of intents and 110 types

of slots annotated 1. This dataset is first used for joint learning model with both slot and

intent labels in the joint learning experiments (Sec. 3.4.1). We later use it for evaluating

the performance when the slot labels are not available (Sec. 3.4.2). The TREC dataset2

is a factoid question classification dataset, with 5, 952 sentences being classified into 6

categories. Since only the sentence-level categories are annotated, we treat the unknown

tags as latent information in our experiments (Sec. 3.4.2).

1 Note we do not compare our performance with [17] since their ATIS dataset is not published and is different
from our ATIS dataset.

2http://cogcomp.cs.illinois.edu/Data/QA/QC/

25

3.4.1 Joint Training Experiments

We first perform the joint training experiments on the ATIS dataset. Tab. 3.1 shows two

examples from the ATIS dataset. As mentioned in Sec. 3.3.2, only a few keywords in the

two sentences in Tab. 3.1 are relevant to determining the category, i.e., locations (cities)

and date for sentence I, and locations, date, and time for sentence II. Our model should

be able to recognize these important keywords and predict the categories mostly based on

them. Once the model knows the tags of the words in the sentence, it is straightforward

to determine the categories of the sentence.

We show the performance of our model comparing with other individually trained

or jointly trained models in Tab. 3.2. We observe that due to its strong generalization

power, neural networks based models outperform discrete models with an impressive

margin. Our jointly trained neural model achieves the best performance, with an F1

boost of ∼2 points in slot filling. After adding the sparse attention constraint, our

model achieves the lowest error rate for the sentence classification on ATIS.

3.4.2 Label Sequence as Latent Variable

We further show the performance of our jointly trained model when the sequence label

information is missing. Tab. 3.2 (bottom) shows the results on ATIS dataset. There

is a small increase of error rate when sequence labels are unobserved, but our model

still outperforms existing models. Similarly, Fig. 3.4 compares our latent-variable model

with conventional (non-latent) neural models on TREC dataset (in sentence category

accuracy). Our model outperforms others after adding sparse attention.

3.4.3 Sparsity Visualization

In Fig. 3.5, we compare the sparse attention model to the model without sparse con-

straints. We list a few examples that the sparse attention is better than the one without

sparse attention constraint. The labels on the right side are mis-classified by the model

without sparse attention constraint. The label on the left side of the arrow is the ground

truth.

In Fig. 3.6, we also compare the difference between two attention mechanisms:

softmax-based attetion and sparse attention. From the first sentence, we can tell that

26

softmax-based attention puts more emphasis on “Luxembourg” while sparse attention

prefers “currency” which leads to the correct prediction of entity instead of human. In

some cases, like the third example in Fig. 3.6, softmax-based sometimes gets confused by

distributing the probabilities flatly. Compared with the attention model between dual

sentences, the phenomenon of flat distribution is more obvious in single sentence atten-

tion. Similar results can be found in the first figure in [8] as the word “run” is aligned to

many unrelated words. It is possible that in single sentence attention, the softmax-based

attention is easier to get confused since there is no obvious alignment or corresponding

relationship between words for a given sentence or the words and their corresponding

sentence category.

27

Model Slot Intent

Independent Model
CRF [23] 90.67† 7.91†

CNN [75] 92.43† 6.65†

CRF Joint Model
TriCRF [23] 94.42 6.93
CNN TriCRF [75] 95.42 5.91

Independent Model Vanilla LSTM
(baseline)

93.74† 7.21†

+ joint 95.54 6.32
Jointly Trained Model + joint + CNN 97.35 5.96
(Secs. 3.3.1 & 3.3.2) + joint + CNN +

attention
96.73 5.71

+ joint + CNN +
sparse att.

96.98 5.12

Independent Model Vanilla LSTM
(baseline)

- 7.21†

Seq. Label as Latent Var.
+ joint + CNN - 6.43

(Sec. 3.3.3)
+ joint + CNN +
attention

- 5.61

+ joint + CNN +
sparse att.

- 5.42

Table 3.2: Main results: Our jointly trained models compared with various indepen-
dent (marked †) and existing joint models. The “Slot” column shows the F1 score of
sequence labeling, and “intent” shows the error rates for sentence classification.

28

Chapter 4: Group Sparse Convolutional Neural Networks for

Learning Label Hierarchy

Question classification is an important task with wide applications. However, traditional

techniques treat questions as general sentences, ignoring the corresponding answer data.

In order to consider answer information into question modeling, we first introduce novel

group sparse autoencoders which refine question representation by utilizing group infor-

mation in the answer set. We then propose novel group sparse CNNs which naturally

learn question representation with respect to their answers by implanting group sparse

autoencoders into traditional CNNs.

The work presented in this chapter has been published in the Proceedings of Associ-

ation for Computational Linguistics 2017 [41].

4.1 Problems in Question Answering

Question classification has applications in many domains ranging from question answer-

ing to dialog systems, and has been increasingly popular in recent years. Several recent

efforts [27, 26, 40] treat questions as general sentences and employ Convolutional Neu-

ral Networks (CNNs) to achieve remarkably strong performance in the TREC question

classification task.

Most existing approaches to this problem simply use existing sentence modeling

frameworks and treat questions as general sentences, without any special treatment.

For example, several recent efforts employ Convolutional Neural Networks (CNNs) to

achieve remarkably strong performance in the TREC question classification task as well

as other sentence classification tasks such as sentiment analysis [27, 26, 40].

We argue, however, that those general sentence modeling frameworks neglect two

unique properties of question classification. First, different from the flat and coarse

categories in most sentence classification tasks (i.e. sentimental classification), question

classes often have a hierarchical structure such as those from the New York State DMV

29

1: Driver License/Permit/Non-Driver ID
a: Apply for original (49 questions)
b: Renew or replace (24 questions)
...
2: Vehicle Registrations and Insurance
a: Buy, sell, or transfer a vehicle (22 questions)
b: Reg. and title requirements (42 questions)
...
3: Driving Record / Tickets / Points
...

Figure 4.1: Examples from NYDMV FAQs. There are 8 top-level categories, 47 sub-
categories, and 537 questions (among them 388 are unique; many questions fall into
multiple categories).

FAQ1 Another unique aspect of question classification is the well prepared answers for

each question or question category. These answer sets generally cover a larger vocabulary

(than the questions themselves) and provide richer information for each class. We believe

there is a great potential to enhance question representation with extra information from

corresponding answer sets.

To exploit the hierarchical and overlapping structures in question categories and

extra information from answer sets, we consider dictionary learning [6, 55] which is a

common approach for representing samples from many correlated groups with external

information. This learning procedure first builds a dictionary with a series of grouped

bases. These bases can be initialized randomly or from external data (from the answer

set in our case) and optimized during training through Sparse Group Lasso (SGL) [61].

To apply dictionary learning to CNN, we first develop a neural version of SGL,

Group Sparse Autoencoders (GSAs), which to the best of our knowledge, is the first

full neural model with group sparse constraints. The encoding matrix of GSA (like the

dictionary in SGL) is grouped into different categories. The bases in different groups can

be either initialized randomly or by the sentences in corresponding answer categories.

Each question sentence will be reconstructed by a few bases within a few groups. GSA

can use either linear or nonlinear encoding or decoding while SGL is restricted to be

1Crawled from http://nysdmv.custhelp.com/app/home.

30

linear. Eventually, to model questions with sparsity, we further propose novel Group

Sparse Convolutional Neural Networks (GSCNNs) by implanting the GSA onto CNNs,

essentially enforcing group sparsity between the convolutional and classification layers.

This framework is a jointly trained neural model to learn question representation with

group sparse constraints from both question and answer sets.

4.2 Group Sparse Autoencoders

4.2.1 Sparse Autoencoders

Autoencoder [4] is an unsupervised neural network which learns the hidden represen-

tations from data. When the number of hidden units is large (e.g., bigger than input

dimension), we can still discover the underlying structure by imposing sparsity con-

straints, using sparse autoencoders (SAE) [50]:

Jsparse(ρ) = J + α

s∑

j=1

KL(ρ‖ρ̂j) (4.1)

where J is the autoencoder reconstruction loss, ρ is the desired sparsity level which is

small, and thus Jsparse(ρ) is the sparsity-constrained version of loss J . Here α is the

weight of the sparsity penalty term defined below:

KL(ρ‖ρ̂j) = ρ log
ρ

ρ̂j
+ (1− ρ) log

1− ρ
1− ρ̂j

(4.2)

where

ρ̂j =
1

m

m∑

i=1

hij

represents the average activation of hidden unit j over m examples (SAE assumes the

input features are correlated).

As described above, SAE has a similar objective to traditional sparse coding which

tries to find sparse representations for input samples. Besides applying simple sparse

constraints to the network, group sparse constraints is also desired when the class cat-

egories are structured and overlapped. Inspired by group sparse lasso [79] and sparse

group lasso [61], we propose a novel architecture below.

31

Figure 4.2: The input figure with hand written digit 0.

4.2.2 Group Sparse Autoencoders

Group Sparse Autoencoder (GSA), unlike SAE, categorizes the weight matrix into dif-

ferent groups. For a given input, GSA reconstructs the input signal with the activations

from only a few groups. Similar to the average activation ρ̂j for sparse autoencoders,

GSA defines each grouped average activation for the hidden layer as follows:

η̂p =
1

mg

m∑

i=1

g∑

l=1

‖hip,l‖2 (4.3)

where g represents the size of each group, and η̂j first sums up all the activations within

pth group, then computes the average pth group respond across different samples’ hidden

activations.

Similar to Eq. 4.2, we also use KL divergence to measure the difference between

estimated intra-group activation and global group sparsity:

KL(η‖η̂p) = η log
η

η̂p
+ (1− η) log

1− η
1− η̂p

(4.4)

32

1

2

3

4

5

6

7

8

9

10

Figure 4.3: The visualization of trained projection matrix W on MNIST dataset. Dif-
ferent rows represent different groups of W in Eq. 4.5. For each group, we only show the
first 15 (out of 50) bases. The red numbers on the left side are the indices of 10 different
groups.

where G is the number of groups. Then the objective function of GSA is:

Jgroupsparse(ρ, η) = J + α
s∑

j=1

KL(ρ‖ρ̂j)

+ β

G∑

p=1

KL(η‖η̂p)
(4.5)

where ρ and η are constant scalars which are our target sparsity and group-sparsity

levels, resp. When α is set to zero, GSA only considers the structure between difference

groups. When β is set to zero, GSA is reduced to SAE.

33

4.2.3 Visualizing Group Sparse Autoencoders

In order to have a better understanding of GSA, we use the MNIST dataset to visualize

GSA’s internal parameters. Fig. 4.3, Fig. 4.4 and Fig. 4.5 illustrate the projection matrix

and the corresponding hidden activations. We use 10,000 training samples. We set the

size of the hidden layer to 500 with 10 groups. Fig. 4.2 visualizes the input image for

hand written digit 0.

In Fig. 4.3, we find similar patterns within each group. For example, group 8 has

different forms of digit 0, and group 9 includes different forms of digit 7. However, it is

difficult to see any meaningful patterns from the projection matrix of basic autoencoders

in Fig. 4.4.

Fig. 4.5(a) shows the hidden activations with respect to the input image of digit 0.

The patterns of the 10th row in Fig. 4.3 are very similar to digit 1 which is very different

from digit 0 in shape. Therefore, there is no activation in group 10 in Fig. 4.5(a). The

majority of hidden layer activations are in groups 1, 2, 6 and 8, with group 8 being

the most significant. When compared to the projection matrix visualization in Fig. 4.3,

these results are reasonable since the 8th row has the most similar patterns of digit 0.

However, we could not find any meaningful pattern from the hidden activations of basic

autoencoder as shown in Fig. 4.5(b).

GSA could be directly applied to small image data (e.g. MINIST dataset) for pre-

training. However, in tasks which prefer dense semantic representations (e.g. sentence

classification), we still need CNNs to learn the sentence representation automatically. In

order to combine advantages from GSA and CNNs, we propose Group Sparse Convolu-

tional Neural Networks below.

4.3 Group Sparse CNNs

CNNs were first proposed by [36] in computer vision and adapted to NLP by [10]. Re-

cently, many CNN-based techniques have achieved great successes in sentence modeling

and classification [27, 26].

Following sequential CNNs, one dimensional convolutions operate the convolution

kernel in sequential order xi,j = xi ⊕ xi+1 ⊕ · · · ⊕ xi+j , where xi ∈ Re represents the e

dimensional word representation for the i-th word in the sentence, and ⊕ is the concate-

34

nation operator. Therefore xi,j refers to concatenated word vector from the i-th word

to the (i+ j)-th word in sentence.

A convolution operates a filter w ∈ Rn×e to a window of n words xi,i+n with bias

term b′ by ai = σ(w · xi,i+n + b′) with non-linear activation function σ to produce a

new feature. The filter w is applied to each word in the sentence, generating the feature

map a = [a1, a2, · · · , aL] where L is the sentence length. We then use â = max{a} to

represent the entire feature map after max-pooling.

In order to capture different aspects of patterns, CNNs usually randomly initialize

a set of filters with different sizes and values. Each filter will generate a feature as

described above. To take all the features generated by N different filters into count,

we use z = [â1, · · · , âN] as the final representation. In conventional CNNs, this z will

be directly fed into classifiers after the sentence representation is obtained, e.g. fully

connected neural networks [27]. There is no easy way for CNNs to explore the possible

hidden representations with underlaying structures.

In order to exploit these structures, we propose Group Sparse Convolutional Neu-

ral Networks (GSCNNs) by placing one extra layer between the convolutional and the

classification layers. This extra layer mimics the functionality of GSA from Section 4.2.

Shown in Fig. 4.6, after the conventional convolutional layer, we get the feature map z

for each sentence. In stead of directly feeding it into a fully connected neural network

for classification, we enforce the group sparse constraint on z in a way similar to the

group sparse constraints on hidden layer in GSA from Sec. 4.2. Then, we use the sparse

hidden representation h in Eq. 4.5 as the new sentence representation, which is then fed

into a fully connected neural network for classification. The parameters W in Eq. 4.5

will also be fine tunned during the last step.

Different ways of initializing the projection matrix in Eq. 4.5 can be summarized

below:

• Random Initialization: When there is no answer corpus available, we first ran-

domly initialize N vectors to represent the group information from the answer set.

Then we cluster these N vectors into G categories with g centroids for each cat-

egory. These centroids from different categories will be the initialized bases for

projection matrix W which will be learned during training.

• Initialization from Questions: Instead of using random initialized vectors, we

35

can also use question sentences for initializing the projection matrix when the

answer set is not available. We need to pre-train the sentences with CNNs to get

the sentence representation. We then select G largest categories in terms of number

of question sentences. Then we get g centroids from each category by k-means.

We concatenate these G× g vectors to form the projection matrix.

• Initialization from Answers: This is the most ideal case. We follow the same

procedure as above, with the only difference being using the answer sentences in

place of question sentences to pre-train the CNNs.

4.4 Experiments

Since there is little effort to use answer sets in question classification, we did not find

any suitable datasets which are publicly available. We collected two datasets ourselves

and also used two other well-known ones. These datasets are summarized in Table 4.1.

Insurance is a private dataset we collected from a car insurance company’s website.

Each question is classified into 319 classes with corresponding answer data. All ques-

tions which belong to the same category share the same answers. The DMV dataset is

collected from New York State the DMV’s FAQ website. The Yahoo Ans dataset is

only a subset of the original publicly available Yahoo Answers dataset [15, 58]. Though

not very suitable for our framework, we still included the frequently used TREC dataset

(factoid question type classification) for comparison.

We only compare our model’s performance with CNNs for two following reasons: we

consider our “group sparsity” as a modification to the general CNNs for grouped feature

selection. This idea is orthogonal to any other CNN-based models and can be easily

applied to them; in addition, as discussed in Sec. 4, we did not find any other model in

comparison with solving question classification tasks with answer sets.

There is crucial difference between the Insurance and DMV datasets on one hand

and the Yahoo set on the other. In Insurance and DMV, all questions in the same

(sub)category share the same answers, whereas Yahoo provides individual answers to

each question.

For multi-label classification (Insurance and DMV), we replace the softmax layer

in CNNs with a sigmoid layer which predicts each category independently while softmax

36

Datasets Ct Cs Ndata Ntest Nans Multi-label

TREC 6 50 5952 500 - No

Insurance - 319 1580 303 2176 Yes

DMV 8 47 388 50 2859 Yes

Yahoo Ans 27 678 8871 3027 10365 No

Table 4.1: Summary of datasets. Ct and Cs are the numbers of top-level and sub-
categories, resp. Ndata, Ntest, Nans are the sizes of data set, test set, and answer set,
resp. Multilabel means each question can belong to multiple categories.

TREC Insur. DMV
Yahoo dataset

sub top unseen

CNN† 93.6 51.2 60 20.8 53.9 47
+sparsity‡ 93.2 51.4 62 20.2 54.2 46

WR 93.8 53.5 62 21.8 54.5 48
WQ 94.2 53.8 64 22.1 54.1 48
WA - 55.4 66 22.2 55.8 53

Table 4.2: Experimental results. Baselines: †sequential CNNs (α = β = 0 in Eq. 4.5),
‡CNNs with global sparsity (β = 0). WR: randomly initialized projection matrix. WQ:
question-initialized projection matrix. WA: answer set-initialized projection matrix.
There are three different classification settings for Yahoo: subcategory, top-level cate-
gory, and top-level accuracies on unseen sub-labels.

is not.

All experimental results are summarized in Table 4.2. The improvements are sub-

stantial for Insurance and DMV, but not as significant for Yahoo and TREC. One

reason for this is the questions in Yahoo/TREC are shorter, which makes the group

information harder to encode. Another reason is that each question in Yahoo/TREC

has a single label, and thus can not fully benefit from group sparse properties.

Besides the conventional classification tasks, we also test our proposed model on an

unseen-label case. In these experiments, there are a few sub-category labels that are not

included in the training data. However, we still hope that our model could still return

the correct parent category for these unseen subcategories at test time. In the testing set

of Yahoo dataset, we randomly add 100 questions whose subcategory labels are unseen

37

in training set. The classification results of Yahoo-unseen in Table 4.2 are obtained by

mapping the predicted subcategories back to top-level categories. The improvements are

substantial due to the group information encoding.

38

Figure 4.4: The projection matrix from basic autoencoders.The differences are easier to
see in pdf.

39

1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10
(a) (b)

Figure 4.5: (a): the hidden activations h for the input image in Fig. 4.2. The red
numbers corresponds to the index in Fig. 4.3. (b): the hidden activations h for the same
input image from basic autoencoders.

Any interesting places to visit in Lisbon

… … … … … …

N
 fi

lte
rs

(

Pooling Feed
 into
NN

Group Sparse Auto-Encoder

Convolutional Layer

WTz h

z h�W,b(·)�W,b(·)�W,b(·)
Figure 4.6: Group Sparse CNN. We add an extra dictionary learning layer between
sentence representation z and the final classification layer. W is the projection matrix
(functions as a dictionary) that converts z to the group sparse representation h (Eq. 4.5).
Different colors in the projection matrix represent different groups. We show Wᵀ instead
of W for presentation purposes. Darker colors in h mean larger values and white means
zero.

40

Chapter 5: Generating Structured Output from

Non-Structured Input

Multimodal is a special task which takes two types of inputs, image and text, and predicts

the source text in a different language. In this task, all the sentence pairs are image

captions in different languages. The key difference between this task and conventional

machine translation is that we have corresponding images as additional information for

each sentence pair. In this paper, we introduce a simple but effective system which

takes an image shared between different languages, feeding it into the both encoding

and decoding side.

The work presented in this chapter has been published in the Proceedings of the

second conference on Machine Translation [42].

5.1 Problems in Multimodal

Natural language generation (NLG) is one of the most important tasks in natural lan-

guage processing (NLP). It can be applied to a lot of interesting applications such like

machine translation, image captioning, question answering. In recent years, Recurrent

Neural Networks (RNNs) based approaches have shown promising performance in gen-

erating more fluent and meaningful sentences compared with conventional models such

as rule-based model [48], corpus-based n-gram models [71] and trainable generators [65].

More recently, attention-based encoder-decoder models [1] have been proposed to

provide the decoder more accurate alignments to generate more relevant words. The re-

markable ability of attention mechanisms quickly update the state-of-the-art performance

on variety of NLG tasks, such as machine translation [39], image captioning [73, 77], and

text summarization [56, 49].

However, for multimodal translation [14, 83], where we translate a caption from one

language into another given a corresponding image, we need to design a new model since

the decoder needs to consider both language and images at the same time.

This paper describes our participation in the WMT 2017 multimodal task 1. Our

41

model feeds the image information to both the encoder and decoder, to ground their

hidden representation within the same context of image during training. In this way,

during testing time, the decoder would generate more relevant words given the context

of both source sentence and image.

5.2 Model Description

For the neural-based machine translation model, the encoder needs to map sequence of

word embeddings from the source side into another representation of the entire sequence

using recurrent networks. Then, in the second stage, decoder generates one word at a

time with considering global (sentence representation) and local information (weighted

context) from source side. For simplicity, our proposed model is based on the attention-

based encoder-decoder framework in [39], refereed as “Global attention”.

On the other hand, for the early work of neural-basic caption generation models [69],

the convolutional neural networks (CNN) generate the image features which feed into

the decoder directly for generating the description.

The first stage of the above two tasks both map the temporal and spatial information

into a fixed dimensional vector which makes it feasible to utilize both information at the

same time.

Fig. 5.1 shows the basic idea of our proposed model (OSU1). The red character I

represents the image feature that is generated from CNN. In our case, we directly use the

image features that are provided by WMT, and these features are generated by residual

networks [18].

The encoder (blue boxes) in Fig. 5.1 takes the image feature as initialization for gen-

erating each hidden representation. This process is very similar to neural-basic caption

generation [69] which grounds each word’s hidden representation to the context given

by the image. On the decoder side (green boxes in Fig. 5.1), we not only let each de-

coded word align to source words by global attention but also feed the image feature as

initialization to the decoder.

42

x0 x1 x2 x3 x4

I
s0 s1h0 h1 h2 h3 h4

[y0;] [y1;s0]

…

I
Figure 5.1: The image information is feed to both encoder and decoder for initialization.
I (in red) represents the image feature that are generated by CNN.

5.3 Experiments

5.3.1 Datasets

In our experiments, we use two datasets Flickr30K [13] and MSCOCO [38] which are

provided by the WMT organization. For both datasets, there are triples that contains

English as source sentence, its German and French human translations and corresponding

image. The system is only trained on Flickr30K datasets but are also tested on MSCOCO

besides Flickr30K. MSCOCO datasets are considered out-of-domain (OOD) testing while

Flickr30K dataset are considered in-domain testing. The datasets’ statics is shown in

Table 5.1

Datasets Train Dev Test OOD ?

Flickr30K 29, 000 1, 014 1, 000 No

MSCOCO - - 461 Yes

Table 5.1: Summary of datasets statistics.

5.3.2 Training details

For preprocessing, we convert all of the sentences to lower case, normalize the punctu-

ation, and do the tokenization. For simplicity, our vocabulary keeps all the words that

show in training set. For image representation, we use ResNet [18] generated image

features which are provided by the WMT organization. In our experiments, we only use

average pooled features.

43

Our implementation is adapted from on Pytorch-based OpenNMT [28]. We use two

layered bi-LSTM [67] on the source side as encoder. Our batch size is 64, with SGD

optimization and a learning rate at 1. For English to German, the dropout rate is 0.6,

and for English to French, the dropout rate is 0.4. These two parameters are selected

by observing the performance on development set. Our word embeddings are randomly

initialized with 500 dimensions. The source side vocabulary is 10,214 and the target side

vocabulary is 18,726 for German and 11,222 for French.

5.3.3 Beam search with length reward

During test time, beam search is widely used to improve the output text quality by giving

the decoder more options to generate the next possible word. However, different from

traditional beam search in phrase-based MT where all hypotheses know the number of

steps to finish the generation, while in neural-based generation, there is no information

about what is the most ideal number of steps to finish the decoding. The above issue

also leads to another problem that the beam search in neural-based MT prefers shorter

sequences due to probability-based scores for evaluating different candidates. In this

paper, we use Optimal Beam Search [21, 76] (OBS) during decoding time. OBS uses

bounded length reward mechanism which allows a modified version of our beam search

algorithm to remain optimal.

Figure 5.2 and Figure 5.3 show the BLEU score and length ratio with different rewards

for different beam size. We choose beam size equals to 5 and reward equals to 0.1 during

decoding.

5.3.4 Results

WMT organization provides three different evaluating metrics: BLEU [52], METEOR [34]

and TER [62].

Table 5.2 to Table 5.5 summarize the performance with their corresponding rank

among all other systems. We only show a few top performing systems in the tables

to make a comparison. OSU1 is our proposed model and OSU2 is our baseline system

without any image information. For MSCOCO dataset, the translation from English to

German (Table 5.3), which is the hardest tasks compared with others since it is from

44

 39

 39.1

 39.2

 39.3

 39.4

 39.5

 39.6

 39.7

 39.8

 0 1 2 3 4 5 6 7 8 9 10 11

D
e
v
 s

e
t
B

L
E

U

beam size

r=0

r=0.1

r=0.2

r=0.3

r=0.4

Figure 5.2: BLEU vs. beam size

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 1.02

 0 1 2 3 4 5 6 7 8 9 10 11

L
e

n
g

th
 r

a
ti
o

 o
n

 d
e

v

beam size

r=0
r=0.1
r=0.2
r=0.3
r=0.4

Figure 5.3: length ratio vs. beam size

45

English to German on OOD dataset, we achieve best TER score across all other systems.

System Rank TER METEOR BLEU

UvA-TiCC 1 47.5 53.5 33.3

NICT 2 48.1 53.9 31.9

LIUMCVC 3 & 4 48.2 53.8 33.2

CUNI 5 50.7 51 31.1

OSU2† 6 50.7 50.6 31

OSU1† 8 51.6 48.9 29.7

Table 5.2: Experiments on Flickr30K dataset for translation from English to German.
16 systems in total. † represents our system.

System Rank TER METEOR BLEU

OSU1† 1 52.3 46.5 27.4

UvA-TiCC 2 52.4 48.1 28

LIUMCVC 3 52.5 48.9 28.7

OSU2† 8 55.9 45.7 26.1

Table 5.3: Experiments on MSCOCO dataset for translation from English to German.
15 systems in total. † represents our system.

System Rank TER METEOR BLEU

LIUMCVC 1 28.4 72.1 55.9

NICT 2 28.4 72 55.3

DCU 3 30 70.1 54.1

OSU2† 5 32.7 68.3 51.9

OSU1† 6 33.6 67.2 51

Table 5.4: Experiments on Flickr30K dataset for translation from English to French. 11
systems in total. † represents our system.

As describe in section 3.3.1, OSU1 is the model with image information for both

encoder and decoder, and OSU2 is only the neural machine translation baseline without

any image information. From the above results table we found that image information

would hurt the performance in some cases. In order to have more detailed analysis,

we show some test examples for the translation from English to German on MSCOCO

dataset.

Fig 5.4 shows two examples that NMT baseline model performances better than

46

System Rank TER METEOR BLEU

LIUMCVC 1 34.2 65.9 45.9

NICT 2 34.7 65.6 45.1

DCU 3 35.2 64.1 44.5

OSU2† 4 36.7 63.8 44.1

OSU1† 6 37.8 61.6 41.2

Table 5.5: Experiments on MSCOCO dataset for translation from English to French. 11
systems in total.

input a finger pointing at a hotdog with cheese , sauerkraut and ketchup .
OSU1 ein finger zeigt auf einen hot dog mit einem messer , wischmobs und napa .
OSU2 ein finger zeigt auf einen hotdog mit hammer und italien .

Reference ein finger zeigt auf einen hotdog mit kse , sauerkraut und ketchup .

input a man reaching down for something in a box
OSU1 ein mann greift nach unten , um etwas zu irgendeinem .
OSU2 ein mann greift nach etwas in einer kiste .

Reference ein mann bckt sich nach etwas in einer schachtel .

Figure 5.4: Two testing examples that image information confuses the NMT model.

input there are two foods and one drink set on the clear table .
OSU1 da sind zwei speisen und ein getrnk am klaren tisch .
OSU2 zwei erwachsene und ein erwachsener befinden sich auf dem rechteckigen tisch .

Reference auf dem transparenten tisch stehen zwei speisen und ein getrnk .

input a camera set up in front of a sleeping cat .
OSU1 eine kameracrew vor einer schlafenden katze .
OSU2 eine kamera vor einer blonden katze .

Reference eine kamera , die vor einer schlafenden katze aufgebaut ist

Figure 5.5: Two testing examples that image information helps the NMT model.

47

OSU1 model. In the first example, OSU1 generates several unseen objects from given

image, such like knife. The image feature might not represent the image accurately. For

the second example, OSU1 model ignores the object “box” in the image.

Fig 5.5 shows two examples that image feature helps the OSU1 to generate better

results. In the first example, image feature successfully detects the object “drink” while

the baseline completely neglects this. In the second example, the image feature even

help the model figure out the action of the cat is “sleeping”.

48

Chapter 6: Structured Prediction Problems from Structured Input

In this chapter, we talk about the most widely used sequence generation framework,

RNN-based sequence-to-sequence model. Different from all the models that are from

previous chapter, in this type of framework, we only expect structure inputs and generate

another form of structure outputs on the target side. This kind of framework is very

popular in the application of parsing, machine translation and summarization. In this

chapter, we only discuss the application of machine translation.

In recent years, neural text generation with RNN-based sequence-to-sequence model

has attracted many attentions and we witnessed a rapid growth and progress in many

different variants of RNN-based models in order to suit different usages in different

scenarios. This RNN-based model quickly setting up the state-of-the-art paradigms in

machine translation [25, 68, 2], summarization [57, 53] and image captioning [70, 74].

Thought the great successfulness in RNN-based framework, the current NMT still

has its own shortcoming in many different ways. In this chapter, we will first discuss

some penitential problems, for example, label bias, training and testing metric mismatch

and so on. Then we would propose our own solution.

6.1 Problems in Structured Prediction for MT

6.1.1 Difference Between Training and Testing Phase

The most popular approach for training NMT system is as a conditional language model,

with training maximizing the likelihood of each successive target word conditioned on

the input sequence and the gold history of target words. In this way, the training signal is

guided word-level loss, e.g., cross-entropy loss over target vocabulary. This approach has

demonstrated its effectiveness in both efficiency and accuracy for training NMT models.

Fig. 6.1 show one example for typical encoder-decoder model with attention mecha-

nism. In this model, the encoder will encoder all the source side words into a sequence of

hidden state with recurrent fashion. On the other side, the decoder takes tth word from

49

gold sequence to generate the (t + 1)th word representation. In this step, the decoder

side’s word will also be attended to source side to get the alignment. Based on the hidden

state and attended context representation, the decoder will generate the most possible

word based on word probabilities. Minimizing the difference between this predicted word

distribution and the gold word probability is the training goal for this system. We refer

this per-word based training style as local training based on the fact that gold reference

will be feed into the decoder at each time step.

However, this kind of per-word or local training mechanism must be different from

real testing time decoding due to the face that the gold sequence is unknown to the

system. In this way, we have a training and testing time mis-match problem since the

model never generate fully-formed word sequences.

there is a cat on a red mat

ऀ ৼ Ӥ ํ Ӟ ݝ ሞᕁ ᜋ

there is a cat on a red mat

</s>

<s>

Encoder

Decoder
Figure 6.1: LSTM-based encoder-decoder model with attention mechanism.

In practice, beam search is used for exploring better candidates which are sorted by

the model score. However, the mis-match between training and testing phase are still

problematical due to the following issues.

The first problem is Exposure Bias. Since the model is never exposed to its own errors

50

during training time, in this case, the inferred histories at test time do not resemble the

gold training histories. Once the decode meet a unseen path from the history during

testing time. There is no way that the gold reference could come back to the beam

again. Multi-reference training [82] is one approach to introduce more possible search

path during training which potentially release the exposure bias problem.

The second problem is Loss-Evaluation Mismatch. As we mentioned above, during

training time, we do local training. In this way, we only could use word level loss.

However, during test time, we evaluate our model’s performance with BLEU score which

is global evaluation. BLEU score is hard to incorporate into training phase due to the

face that BLEU score is undecomposable and undifferentiable.

The third problem is Label Bias [32]. Since the word-level probability are normalized

by softmax, guaranteeing that successors of incorrect histories receive the same mass as

do the successors of the true history. As it is shown in Fig.6.2, State 1 almost always

prefers to go to state 2 and state 2 almost prefers to go to state 2. Based the cumulative

calculation with per-step probability, the path 1-1-1-1 has the probability of 0.09 and

path 2-2-2-2 has the probability of 0.018. Since the local choice is always normalized by

the overall number of choice, sometimes, the probability numbers do not represent the

real preferred choice of model.

State 1

Step 1 Step 3Step 2 Step 4

State 2

State 3

State 4

State 5

0.4 0.45 0.5

0.6 0.55 0.50.2
0.2

0.2

0.2

0.2

0.2
0.3

0.3

0.1

0.1

0.1
0.3

0.2

0.2

0.2

Figure 6.2: Local normalization introduces label bias problem.

51

6.1.2 Problems of Beam Search

The last problem is about beam search for beam search is used in practice for exploring

better candidates. However, there is key difference between the beam search of phrase-

based MT or shift-reduce parsing and the one in neural generation. In phrase-based

MT or shift-reduce parsing, all the hypotheses finish at the same number of steps, while

in NMT, different hypotheses do not have to finish at the same number of steps. In

NMT, once a hypotheses completed generation by decoding a </s> symbol, all other active

hypotheses which survive in the beam still can continue to grow, and some of them

potentially could get better scores. Therefore, this problem leads to another type of

question: when can you end the beam search?

There are many different kind of approaches for solving this problem, for example,

the widely influential RNNsearch [2] propose to use “shrinking beam” method: alway

reduce the beam size by 1 when you get a finished hypothesis. In OpenNMT [29], they

terminate the beam search whenever the highest-ranking hypothesis in the current step

is completed.

Another thread of beam search problems is about candidates ranking methods. As

it is describe in [21, 76], since all the hypotheses are evaluated by probabilistic measure-

ments, in this case, beam search always return the highest hypotheses which is often the

shortest candidates from beam search 6.3. RNNsearch propose to use “length normal-

ization” methods, which normalize the score by the length of the hypothesis since the

beam search favors shorter sentences.

6.2 Training with Beam Search

In this chapter, in order to get rid of the above mentioned problems, we propose a

non-probabilistic framework based on existing RNN-based model. In our model, instead

of locally normalized on each step, we directly use raw score for evaluating the model

preference. Inspired by the work named Learning as Search Optimization [11, 72], we

directly defines the loss function during beam search in stead of word-level cross-entropy

loss. Furthermore, our algorithm also measures the loss on sequence level, which matches

the training and testing time decoding strategy.

We first introduce the background and set up the notation for later discussion. Then

52

0.360.4 0.16 0.14 0.06

1 0.5 0.4 0.2 0.15 0.12Start
<s> how are things going </s>

hello </s> you doing today

Figure 6.3: Beam search favors shorter sentences.

we introduce our approach for solving the previously mentioned issue.

6.2.1 Preliminaries

Our model is adapted based the most popular seq2seq framework. Assume we have a

collection of source and target sequence pairs. Our goal is to learn the predicted based

on given training instance. The task of MT is to first encode the source side sentence

and compress the input information into a collection of hidden representations x. In this

chapter, we use x to represent the encoded source sentence representation.

After we obtain the collection of source-side representation, another part of seq2seq

model, decoder, will start generating the predicted sequence word-by-word based on

the x as input signal. The generated words from decoder are constraint with a given

vocabulary V. More specifically, during testing time decoding, words are generated one-

by-one based on the condition on the input representation x and the history which is

previously generated words. We use w1..T to refer any word sequence with length of T ,

and y1..T to represent the gold sequence for target side for a given input x.

The following equation is one simple representation of hidden state’s representation

on target side:

ht ← RNN(mt, ht−1; θ) (6.1)

53

where the θ represents the model parameters, which are kept the same over time in

order to reduce the model complexity. Based on the above definition, the RNN-based

framework recursively generate the hidden state based on the previously generated state

and new coming words mt. In this case, mt represents the word embeddings.

For the decoder side, the model functions more like a conditional language model,

which is conditional on the given context x and previously generated words:

p(wt|w1:t−1, x) = g(wt, ht−1, x) (6.2)

where g is a linear or nonlinear mapping from each decoder’s hidden state to the word

space followed by a softmax layer. Softmax layer attempts to normalize the probability

distribution given the raw-score value which is generated from projection layer. During

training time, the model is to to minimize the cross-entropy loss at each time-step while

conditioning on the gold history when decoder follows the gold path. This is what we

call local training. And the loss function is defined as follows:

−
T∑

1

logp(yt|yt−1,x) (6.3)

Once our model is trained based on above definition, during testing time decoding,

we could generate the predicted sentence with maximizing the following conditional

distribution:

ŷ1..T = argmax
T∑

1

logp(yt|yt−1,x) (6.4)

The above searching criterion is so-called greedy search. However, in real application,

in order to improve the searching quality, we usually use a small beam to explore more

possibilities.

6.2.2 Two Types of Violations

We adopt the seq2seq model by making small changes over different steps. The first

change is, instead of predicting the probability of the next word, we instead learn to

produce (non-probabilistic) scores for ranking sequences. We define f(wt, ht−1, x) as

54

the function of model score over a sequence consisting of history w1:t−1 followed by a

single word wt. f is a parameterized function examining the current hidden-state of the

relevant RNN at time t − 1 as well as the input representation x. In our model, f is

the same with the previous RNN-based generation model but without the final softmax

transformation layer, which converts unnormalized raw scores into probabilities, in this

way, allowing the model to avoid issues associated with the label bias problem. Please

note that we do not use probability model in our framework, and this is the first key

difference between previous work.

In our proposed method, we have two different kinds of violations, the internal vio-

lations and last step violations. Fig. 6.4 shows one running example of these violations.

a big cat smells at with

the dog dog barks bad to

red blue dog meows home

with

home

aquickly

runs

red

…
…

record all the violations model

score

[0,T-1]

TGold
<latexit sha1_base64="TfEtLVotss+NYytEUQAZtPK0gPc=">AAAB93icdVDLSgNBEJz1GeMjqx69DAbB07IblzxuQQ96jJCYQBKW2ckkGTL7YKZXjEu+xIsHFa/+ijf/xtkkgooWNBRV3XR3+bHgCmz7w1hZXVvf2Mxt5bd3dvcK5v7BjYoSSVmLRiKSHZ8oJnjIWsBBsE4sGQl8wdr+5CLz27dMKh6FTZjGrB+QUciHnBLQkmcWml7aA3YH6WUkBrOZZxZtq1Ytl9wyti3brjglJyOlinvmYkcrGYpoiYZnvvcGEU0CFgIVRKmuY8fQT4kETgWb5XuJYjGhEzJiXU1DEjDVT+eHz/CJVgZ4GEldIeC5+n0iJYFS08DXnQGBsfrtZeJfXjeBYbWf8jBOgIV0sWiYCAwRzlLAAy4ZBTHVhFDJ9a2YjokkFHRWeR3C16f4f9IqWTXLuXaL9fNlGjl0hI7RKXJQBdXRFWqgFqIoQQ/oCT0b98aj8WK8LlpXjOXMIfoB4+0TKPqToQ==</latexit><latexit sha1_base64="TfEtLVotss+NYytEUQAZtPK0gPc=">AAAB93icdVDLSgNBEJz1GeMjqx69DAbB07IblzxuQQ96jJCYQBKW2ckkGTL7YKZXjEu+xIsHFa/+ijf/xtkkgooWNBRV3XR3+bHgCmz7w1hZXVvf2Mxt5bd3dvcK5v7BjYoSSVmLRiKSHZ8oJnjIWsBBsE4sGQl8wdr+5CLz27dMKh6FTZjGrB+QUciHnBLQkmcWml7aA3YH6WUkBrOZZxZtq1Ytl9wyti3brjglJyOlinvmYkcrGYpoiYZnvvcGEU0CFgIVRKmuY8fQT4kETgWb5XuJYjGhEzJiXU1DEjDVT+eHz/CJVgZ4GEldIeC5+n0iJYFS08DXnQGBsfrtZeJfXjeBYbWf8jBOgIV0sWiYCAwRzlLAAy4ZBTHVhFDJ9a2YjokkFHRWeR3C16f4f9IqWTXLuXaL9fNlGjl0hI7RKXJQBdXRFWqgFqIoQQ/oCT0b98aj8WK8LlpXjOXMIfoB4+0TKPqToQ==</latexit><latexit sha1_base64="TfEtLVotss+NYytEUQAZtPK0gPc=">AAAB93icdVDLSgNBEJz1GeMjqx69DAbB07IblzxuQQ96jJCYQBKW2ckkGTL7YKZXjEu+xIsHFa/+ijf/xtkkgooWNBRV3XR3+bHgCmz7w1hZXVvf2Mxt5bd3dvcK5v7BjYoSSVmLRiKSHZ8oJnjIWsBBsE4sGQl8wdr+5CLz27dMKh6FTZjGrB+QUciHnBLQkmcWml7aA3YH6WUkBrOZZxZtq1Ytl9wyti3brjglJyOlinvmYkcrGYpoiYZnvvcGEU0CFgIVRKmuY8fQT4kETgWb5XuJYjGhEzJiXU1DEjDVT+eHz/CJVgZ4GEldIeC5+n0iJYFS08DXnQGBsfrtZeJfXjeBYbWf8jBOgIV0sWiYCAwRzlLAAy4ZBTHVhFDJ9a2YjokkFHRWeR3C16f4f9IqWTXLuXaL9fNlGjl0hI7RKXJQBdXRFWqgFqIoQQ/oCT0b98aj8WK8LlpXjOXMIfoB4+0TKPqToQ==</latexit><latexit sha1_base64="TfEtLVotss+NYytEUQAZtPK0gPc=">AAAB93icdVDLSgNBEJz1GeMjqx69DAbB07IblzxuQQ96jJCYQBKW2ckkGTL7YKZXjEu+xIsHFa/+ijf/xtkkgooWNBRV3XR3+bHgCmz7w1hZXVvf2Mxt5bd3dvcK5v7BjYoSSVmLRiKSHZ8oJnjIWsBBsE4sGQl8wdr+5CLz27dMKh6FTZjGrB+QUciHnBLQkmcWml7aA3YH6WUkBrOZZxZtq1Ytl9wyti3brjglJyOlinvmYkcrGYpoiYZnvvcGEU0CFgIVRKmuY8fQT4kETgWb5XuJYjGhEzJiXU1DEjDVT+eHz/CJVgZ4GEldIeC5+n0iJYFS08DXnQGBsfrtZeJfXjeBYbWf8jBOgIV0sWiYCAwRzlLAAy4ZBTHVhFDJ9a2YjokkFHRWeR3C16f4f9IqWTXLuXaL9fNlGjl0hI7RKXJQBdXRFWqgFqIoQQ/oCT0b98aj8WK8LlpXjOXMIfoB4+0TKPqToQ==</latexit>

beam TMax
<latexit sha1_base64="0pJVUxUunTN/rsrUCRyR3QG6G7o=">AAAB9HicdVDLSgNBEJz1GeMr6tHLYBA8hZ0gJrkFvXgRImRNIFnD7GSSDJl9MNOrCcv+hxcPKl79GG/+jbNJBBUtaCiquunu8iIpNNj2h7W0vLK6tp7byG9ube/sFvb2b3QYK8YdFspQtT2quRQBd0CA5O1Icep7kre88UXmt+640iIMmjCNuOvTYSAGglEw0m2zl3SBTyC5opM07RWKdsm2bUIIzgipnNmG1GrVMqliklkGRbRAo1d47/ZDFvs8ACap1h1iR+AmVIFgkqf5bqx5RNmYDnnH0ID6XLvJ7OoUHxuljwehMhUAnqnfJxLqaz31PdPpUxjp314m/uV1YhhU3UQEUQw8YPNFg1hiCHEWAe4LxRnIqSGUKWFuxWxEFWVggsqbEL4+xf8Tp1yqlcj1abF+vkgjhw7RETpBBFVQHV2iBnIQQwo9oCf0bN1bj9aL9TpvXbIWMwfoB6y3T+Jukvo=</latexit><latexit sha1_base64="0pJVUxUunTN/rsrUCRyR3QG6G7o=">AAAB9HicdVDLSgNBEJz1GeMr6tHLYBA8hZ0gJrkFvXgRImRNIFnD7GSSDJl9MNOrCcv+hxcPKl79GG/+jbNJBBUtaCiquunu8iIpNNj2h7W0vLK6tp7byG9ube/sFvb2b3QYK8YdFspQtT2quRQBd0CA5O1Icep7kre88UXmt+640iIMmjCNuOvTYSAGglEw0m2zl3SBTyC5opM07RWKdsm2bUIIzgipnNmG1GrVMqliklkGRbRAo1d47/ZDFvs8ACap1h1iR+AmVIFgkqf5bqx5RNmYDnnH0ID6XLvJ7OoUHxuljwehMhUAnqnfJxLqaz31PdPpUxjp314m/uV1YhhU3UQEUQw8YPNFg1hiCHEWAe4LxRnIqSGUKWFuxWxEFWVggsqbEL4+xf8Tp1yqlcj1abF+vkgjhw7RETpBBFVQHV2iBnIQQwo9oCf0bN1bj9aL9TpvXbIWMwfoB6y3T+Jukvo=</latexit><latexit sha1_base64="0pJVUxUunTN/rsrUCRyR3QG6G7o=">AAAB9HicdVDLSgNBEJz1GeMr6tHLYBA8hZ0gJrkFvXgRImRNIFnD7GSSDJl9MNOrCcv+hxcPKl79GG/+jbNJBBUtaCiquunu8iIpNNj2h7W0vLK6tp7byG9ube/sFvb2b3QYK8YdFspQtT2quRQBd0CA5O1Icep7kre88UXmt+640iIMmjCNuOvTYSAGglEw0m2zl3SBTyC5opM07RWKdsm2bUIIzgipnNmG1GrVMqliklkGRbRAo1d47/ZDFvs8ACap1h1iR+AmVIFgkqf5bqx5RNmYDnnH0ID6XLvJ7OoUHxuljwehMhUAnqnfJxLqaz31PdPpUxjp314m/uV1YhhU3UQEUQw8YPNFg1hiCHEWAe4LxRnIqSGUKWFuxWxEFWVggsqbEL4+xf8Tp1yqlcj1abF+vkgjhw7RETpBBFVQHV2iBnIQQwo9oCf0bN1bj9aL9TpvXbIWMwfoB6y3T+Jukvo=</latexit><latexit sha1_base64="0pJVUxUunTN/rsrUCRyR3QG6G7o=">AAAB9HicdVDLSgNBEJz1GeMr6tHLYBA8hZ0gJrkFvXgRImRNIFnD7GSSDJl9MNOrCcv+hxcPKl79GG/+jbNJBBUtaCiquunu8iIpNNj2h7W0vLK6tp7byG9ube/sFvb2b3QYK8YdFspQtT2quRQBd0CA5O1Icep7kre88UXmt+640iIMmjCNuOvTYSAGglEw0m2zl3SBTyC5opM07RWKdsm2bUIIzgipnNmG1GrVMqliklkGRbRAo1d47/ZDFvs8ACap1h1iR+AmVIFgkqf5bqx5RNmYDnnH0ID6XLvJ7OoUHxuljwehMhUAnqnfJxLqaz31PdPpUxjp314m/uV1YhhU3UQEUQw8YPNFg1hiCHEWAe4LxRnIqSGUKWFuxWxEFWVggsqbEL4+xf8Tp1yqlcj1abF+vkgjhw7RETpBBFVQHV2iBnIQQwo9oCf0bN1bj9aL9TpvXbIWMwfoB6y3T+Jukvo=</latexit>

Figure 6.4: Our proposed model, training with beam search.

Similar with BSO [72], for internal violation, the violation is always defined on the

same time step. For example, at a arbitrary time step t, when beam size is K, we collect

all the sentences with length t to form the candidates in beam. We will compare the last

candidate in beam, dKt , with the gold reference d∗t . If the model score of candidate dKt

is greater than the gold reference at t, d∗t , by a margin 1, we define this is a violation.

The goal of internal violation is try to keep the gold reference inside of the beam. In

55

this way, during testing time decoding, the gold reference will be likely to be reach in

practice. The violation is defined as follows:

scorew(x, d∗t) < scorew(x, dKt) + 1 (6.5)

When we have a internal violation, we will restart the beam like LaSO. This force

action will guarantee that the gold reference is always alive in the beam.

During checking the internal violation, we also keep track of finished sentences. We

put all the finished candidate sentences into a ordered set. This ordered set is sorted by

the model score with a testing metric loss, e.g. BLEU score, which is defined in Eq. 6.6.

For last step violation, when the gold reference reaches the last symbol, we compare

the loss-augmented models score of the gold sequence against to the finished candidates.

The violation is defined as follows:

d∗T < dT ′

d∗T = scorew(x, dKt)

dT ′ = arg max scorew(x, df)−∆(y(df), y),

∆(y(df), y) = 1− BLEU(y(df), y)

(6.6)

The most important difference between BSO and our framework, the above equation

basically compare the gold reference against to all the finished candidates. In BSO,

they only compare the candidates who are in the same time step with gold. This kind of

comparison neglects the nature between finished candidates and unfinished candidates.

As it is shown in Fig. 6.5, all the red dots represent the finished candidates during

searching. Among these candidates, some of the sentences have a very low BLEU score,

and some of them have high models score. The motivation of above equation is trying

to find the candidate with the highest score sum over the model and ∆BELU score. In

this way, we always can find the worst candidate, who has a better model score but it’s

BLEU is very low.

Algorithm 1 shows the detailed algorithms for our proposal. Different from BSO,

instead of stop the beam search at time step T , we encourage the beam search proceed

even further, which is 1.5 × T , where T is the source side length. During beam search

56

Model Score

BLEU Score

BLEU=1

dT 0
<latexit sha1_base64="BnJOAUhyFI/djVbyljJdhMxnY3k=">AAAB7HicdVDLSsNAFJ3UV62vqks3g0V0FZIa+tgV3bis0LSFNpTJZNKOnUzCzEQoof/gxoWKWz/InX/jpK2gogcuHM65l3vv8RNGpbKsD6Owtr6xuVXcLu3s7u0flA+PujJOBSYujlks+j6ShFFOXEUVI/1EEBT5jPT86XXu9+6JkDTmHTVLiBehMachxUhpqRuMss75fFSuWGazUas6NWiZllW3q3ZOqnXn0oG2VnJUwArtUfl9GMQ4jQhXmCEpB7aVKC9DQlHMyLw0TCVJEJ6iMRloylFEpJctrp3DM60EMIyFLq7gQv0+kaFIylnk684IqYn87eXiX94gVWHDyyhPUkU4Xi4KUwZVDPPXYUAFwYrNNEFYUH0rxBMkEFY6oJIO4etT+D9xq2bTtG+dSutqlUYRnIBTcAFsUActcAPawAUY3IEH8ASejdh4NF6M12VrwVjNHIMfMN4+ARUVjwI=</latexit><latexit sha1_base64="BnJOAUhyFI/djVbyljJdhMxnY3k=">AAAB7HicdVDLSsNAFJ3UV62vqks3g0V0FZIa+tgV3bis0LSFNpTJZNKOnUzCzEQoof/gxoWKWz/InX/jpK2gogcuHM65l3vv8RNGpbKsD6Owtr6xuVXcLu3s7u0flA+PujJOBSYujlks+j6ShFFOXEUVI/1EEBT5jPT86XXu9+6JkDTmHTVLiBehMachxUhpqRuMss75fFSuWGazUas6NWiZllW3q3ZOqnXn0oG2VnJUwArtUfl9GMQ4jQhXmCEpB7aVKC9DQlHMyLw0TCVJEJ6iMRloylFEpJctrp3DM60EMIyFLq7gQv0+kaFIylnk684IqYn87eXiX94gVWHDyyhPUkU4Xi4KUwZVDPPXYUAFwYrNNEFYUH0rxBMkEFY6oJIO4etT+D9xq2bTtG+dSutqlUYRnIBTcAFsUActcAPawAUY3IEH8ASejdh4NF6M12VrwVjNHIMfMN4+ARUVjwI=</latexit><latexit sha1_base64="BnJOAUhyFI/djVbyljJdhMxnY3k=">AAAB7HicdVDLSsNAFJ3UV62vqks3g0V0FZIa+tgV3bis0LSFNpTJZNKOnUzCzEQoof/gxoWKWz/InX/jpK2gogcuHM65l3vv8RNGpbKsD6Owtr6xuVXcLu3s7u0flA+PujJOBSYujlks+j6ShFFOXEUVI/1EEBT5jPT86XXu9+6JkDTmHTVLiBehMachxUhpqRuMss75fFSuWGazUas6NWiZllW3q3ZOqnXn0oG2VnJUwArtUfl9GMQ4jQhXmCEpB7aVKC9DQlHMyLw0TCVJEJ6iMRloylFEpJctrp3DM60EMIyFLq7gQv0+kaFIylnk684IqYn87eXiX94gVWHDyyhPUkU4Xi4KUwZVDPPXYUAFwYrNNEFYUH0rxBMkEFY6oJIO4etT+D9xq2bTtG+dSutqlUYRnIBTcAFsUActcAPawAUY3IEH8ASejdh4NF6M12VrwVjNHIMfMN4+ARUVjwI=</latexit><latexit sha1_base64="BnJOAUhyFI/djVbyljJdhMxnY3k=">AAAB7HicdVDLSsNAFJ3UV62vqks3g0V0FZIa+tgV3bis0LSFNpTJZNKOnUzCzEQoof/gxoWKWz/InX/jpK2gogcuHM65l3vv8RNGpbKsD6Owtr6xuVXcLu3s7u0flA+PujJOBSYujlks+j6ShFFOXEUVI/1EEBT5jPT86XXu9+6JkDTmHTVLiBehMachxUhpqRuMss75fFSuWGazUas6NWiZllW3q3ZOqnXn0oG2VnJUwArtUfl9GMQ4jQhXmCEpB7aVKC9DQlHMyLw0TCVJEJ6iMRloylFEpJctrp3DM60EMIyFLq7gQv0+kaFIylnk684IqYn87eXiX94gVWHDyyhPUkU4Xi4KUwZVDPPXYUAFwYrNNEFYUH0rxBMkEFY6oJIO4etT+D9xq2bTtG+dSutqlUYRnIBTcAFsUActcAPawAUY3IEH8ASejdh4NF6M12VrwVjNHIMfMN4+ARUVjwI=</latexit>

update direction

a.k.a fear

a.k.a hope

gold with highest model score

all finished candidates

gold references

Figure 6.5: Geometric understanding of our proposed model.

training, we have two different violation pool: internal violation and last step violation.

The internal violation is defined based on 6.5 which is similar with BSO. Our proposed

framework is mainly about the difference of last step violation. In BSO, the last step

violation only compares with the candidates which are in the same time step. However,

in our last step violation, we compare with all the finished candidates during beam

search. This major difference will encourage the model to learn the right length ratio

for the candidates. For example, in probabilistic model, the predicted sentence are tend

to shorter, then our model will compare the gold with the shorter sentence, in this way,

we encourage the model to generate longer sentence.

57

Algorithm 1 Finished Candidates Beam-Search Optimization

1: procedure Finished BSO(x,K, succ)
2: Initialization: gold sequence ŷ1..T ; previously generated sequence y1..t ;
3: and corresponding hidden state ĥ1..t; internal violations, interv ← {0};
4: last step violations, lastv ← {0}; r ← 0.
5: for t = 1, ..., 1.5× T do
6: if score(yt, ht−1) < score(ŷKt , h

K
t−1) + 1 then

7: ĥr:t−1 ← ĥKr:t−1

8: ŷr+1:t ← ŷKr+1:t

9: Add t to interv
10: r ← t
11: St+1 ← TopK(succ(y1:t));
12: else
13: St+1 ← TopK(

⋃K
k=1 succ(ŷk1:t));

14: for k = 1, ...,K do
15: if ykt is </s> then
16: Add ykt to lastv

6.3 Experiments

6.3.1 Datasets

For our machine translation task, we evaluate our model on a small dataset, which allow

our model to train with larger beam size more efficiently. We use the TED talk dataset

from the work [53]. This dataset is a small portion from IWSLT 2014 machine translation

evaluation campaign. There are 153K training sentence pairs, 7K development dataset

and 7K test sentences. In order to make fair and accurate comparison, we use the same

split and preprocessing as [53].

To keep different model with roughly within the same complexity, we also use single-

layer LSTM decoder with 256 units. We set the dropout rate as 0.2 between each LSTM

layer. We choose to use global attention as our attention mechanism.

Our code base is developed based on OpenNMT code base with PyTorch while the

original BSO is implemented with Lua-based packages. In order to keep both work on

the same level of starting point, we first re-implement the Lua-base BSO with PyTorch.

58

6.3.2 Results

K=1 K=5 K=10

Seq2Seq (Lua) 22.53 24.03 23.87
BSO (Lua) [72] 23.83 26.36 25.48

DAD [3] 20.12 22.25 22.40
MIXER [53] 20.73 21.81 21.83

Seq2Seq (Ours Implementation) 25.7 27.21 26.91
BSO (Ours Implementation) 26.32 27.97 27.51

Our proposed model 27.28 28.44 28.03

Table 6.1: Machine translation performance comparison with different SOTA models on
test set.

Table 6.1 showcases the performance comparison between our proposed model and

other state-of-the-art models. We achieve the best performance on test set across differ-

ent models. Both BOS and our model are first got pre-trained on conventional Seq2seq

model. BSO is originally developed on Lua. Their pre-trained achieves 24.03 in BLEU

score and BSO further improve the performance to 26.36.

In order to make a fair comparison, we first use our pre-trained model which has the

performance 27.21. Since our pre-trained model even achieves much better performance

compare with BSO (around 1 point in BLEU), we re-implement the BSO framework

on our code base. Our version of BSO achieve 27.97 in BLEU. Based on our BSO

implementation, we make further adaptation to get our model, and our model sets up a

higher SOTA performance on this dataset.

K=2 K=4 K=6 K=8

BSO (Ours Implementation) 29.3 (0.95) 31.25 (1.007) 30.71 (1.03) 30.42 (1.05)

Our proposed model 29.4 (0.94) 31.67 (1.005) 31.13 (1.02) 30.61 (1.03)

Table 6.2: Compare our results with baseline on development set. We compare both
BLEU and length ratio.

Table 6.1 illustrates the performance between BSO and our model with different

beam size. Since BSO and our model use raw score instead of probability-based score,

59

the generated sentence tend to be longer instead of shorter. In probabilistic model,

shorter sentences usually have larger model score since in every step, we only add a

negative per-step score to that sequence. However, in raw score-based model, usually

the raw score are most positive, therefore, the longer sentences always have better score.

In our proposed model, we propose to define the last step violation across all finished

candidates. In this way, all the candidates which are not in the right length will be

penalized by the model. From the Table 6.1, we also conclude that we learn better

length ratio compare with BSO.

60

Chapter 7: Summary

In this dissertation, we reviewed several popular neural-based framework for several well-

known NLP tasks. We grouped these NLP tasks into different categories by the natural

of their input and output requirements.

We started from the most simple task, sentence classification Chapter 2, which is

been recognized as popular unstructured problem. But in our analysis, we found that

including tree-based structure could improve the framework’s ability to handle long-

distance structure information. Figure 2.3 illustrates the intuition of the reasons why

our model works better than the baseline models. Furthermore, Figure 2.4 and Figure 2.5

also point out the limitations of our proposed model and general problems for neural-

based model. These phenomenons also appoint us the new directions for improving the

existing models.

Following the above discussion, in Figure 2.5 we found that words’ syntactic variety

and polysemy sometime confuses the framework easily. Therefore, in Chapter 3, we

propose a joint model for eliminating this kind of ambiguities. As shown in Figure 3.1,

given a sentence-level category, the word ambiguities will be highly eliminated. In the

other way around, given a correct understand of words, the model will be also very

certain about the sentence-level category.

Starting from Chapter 4, we introduce another types of frameworks, which expects

the output also to be structured. We start from introducing the most simple case, the

input is still non-structured, but we need to predict the hierarchical labels on the target

side. The above mentioned sentence classification is one type of sentence modeling

techniques whose labels are mutually exclusive to each other. However, this is not

necessary in other kind of sentence classification task, question answering. In the task

of question answering, question classes often have a hierarchical structure and those

classes are often related to each other. Our proposed model successfully handles these

information with a dictionary which learn by CNNs.

In Chapter 5, we introduce another framework which takes the unstructured image

input feature and structured source text in one language to a different language. We

61

demonstrate that incorporating the image information as one extra input sometimes

improves the target side predictions.

In Chapter 6, we briefly introduce several existing common problems for neural gen-

eration problems. Based on BSO, we did some simple adaptation based on existing

models and propose our global training framework. Our proposed model could learn

better length ratio which improves the overall performance.

62

Bibliography

[1] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine transla-
tion by jointly learning to align and translate. CoRR, 2014.

[2] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine trans-
lation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473,
2014.

[3] Samy Bengio, Oriol Vinyals, Navdeep Jaitly, and Noam Shazeer. Scheduled sampling
for sequence prediction with recurrent neural networks. In Proceedings of the 28th
International Conference on Neural Information Processing Systems - Volume 1,
NIPS’15, pages 1171–1179, Cambridge, MA, USA, 2015. MIT Press.

[4] Yoshua Bengio, Pascal Lamblin, Dan Popovici, and Hugo Larochelle. Greedy layer-
wise training of deep networks. In B. Schölkopf, J.C. Platt, and T. Hoffman, editors,
Advances in Neural Information Processing Systems 19, pages 153–160. MIT Press,
2007.

[5] Bernhard E. Boser, Isabelle M. Guyon, and Vladimir N. Vapnik. A training algo-
rithm for optimal margin classifiers. In Proceedings of the Fifth Annual Workshop
on Computational Learning Theory, 1992.

[6] Emmanuel J. Candè and Michael B. Wakin. An Introduction To Compressive Sam-
pling. In Signal Processing Magazine, IEEE, volume 25, 2008.

[7] Jianpeng Cheng, Li Dong, and Mirella Lapata. Long short-term memory-networks
for machine reading. 2016.

[8] Jianpeng Cheng, Li Dong, and Mirella Lapata. Long short-term memory-networks
for machine reading. arXiv preprint arXiv:1601.06733, 2016.

[9] Michael Collins. Discriminative training methods for hidden markov models: Theory
and experiments with perceptron algorithms. In Proceedings of EMNLP, 2002.

[10] R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu, and P. Kuksa.
Natural language processing (almost) from scratch. volume 12, pages 2493–2537,
2011.

63

[11] Hal Daumé, III and Daniel Marcu. Learning as search optimization: Approximate
large margin methods for structured prediction. In Proceedings of ICML, 2005.

[12] Kushal Dave, Steve Lawrence, and David M Pennock. Mining the peanut gallery:
Opinion extraction and semantic classification of product reviews. In Proceedings of
the 12th international conference on World Wide Web, pages 519–528. ACM, 2003.

[13] D. Elliott, S. Frank, K. Sima’an, and L. Specia. Multi30k: Multilingual english-
german image descriptions. Proceedings of the 5th Workshop on Vision and Lan-
guage, pages 70–74, 2016.

[14] Desmond Elliott, Stella Frank, and Eva Hasler. Multi-language image description
with neural sequence models. CoRR, 2015.

[15] Simon Fleming, Dan Chalmers, and Ian Wakeman. A deniable and efficient question
and answer service over ad hoc social networks. volume 15, pages 296–331. Springer
Netherlands, 2012.

[16] Michael Gamon. Sentiment classification on customer feedback data: noisy data,
large feature vectors, and the role of linguistic analysis. In Proceedings of the 20th
international conference on Computational Linguistics, page 841. Association for
Computational Linguistics, 2004.

[17] Daniel Guo, Gokhan Tur, Wen-Tau Yih, and Geoffrey Zweig. Joint semantic utter-
ance classification and slot filling with recursive neural networks. In IEEE Workshop
on Spoken Language Technology (SLT), 2014.

[18] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. Conference on Computer Vision and Pattern Recognition
CVPR, 2016.

[19] Geoffrey E. Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. Improving neural networks by preventing co-adaptation of feature
detectors. Journal of Machine Learning Research, 15, 2014.

[20] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Cambridge,
MA, USA, 1997.

[21] Liang Huang, Kai Zhao, and Mingbo Ma. Optimal beam search for neural text
generation (modulo beam size). In EMNLP 2017, 2017.

[22] Ozan Irsoy and Claire Cardie. Deep recursive neural networks for compositionality
in language. In Advances in Neural Information Processing Systems, pages 2096–
2104, 2014.

64

[23] Minwoo Jeong and Geunbae G. Lee. Triangular-Chain Conditional Random Fields.
Audio, Speech, and Language Processing, IEEE Transactions on, 16, 2008.

[24] John Judge, Aoife Cahill, and Josef van Genabith. Questionbank: Creating a corpus
of parse-annotated questions. In Proceedings of COLING, 2006.

[25] Nal Kalchbrenner and Phil Blunsom. Recurrent continuous translation models. In
EMNLP, volume 3, page 413, 2013.

[26] Nal Kalchbrenner, Edward Grefenstette, and Phil Blunsom. A convolutional neural
network for modelling sentences. In Proceedings of the 52nd Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), pages 655–
665, Baltimore, Maryland, June 2014. Association for Computational Linguistics.

[27] Yoon Kim. Convolutional neural networks for sentence classification. In Proceed-
ings of the 2014 Conference on Empirical Methods in Natural Language Processing
(EMNLP), pages 1746–1751, Doha, Qatar, October 2014. Association for Compu-
tational Linguistics.

[28] G. Klein, Y. Kim, Y. Deng, J. Senellart, and A. M. Rush. Opennmt: Open-source
toolkit for neural machine translation. ArXiv e-prints, 2017.

[29] G. Klein, Y. Kim, Y. Deng, J. Senellart, and A. M. Rush. OpenNMT: Open-Source
Toolkit for Neural Machine Translation. ArXiv e-prints, 2017.

[30] Terry Koo and Michael Collins. Efficient third-order dependency parsers. In Proceed-
ings of the 48th Annual Meeting of the Association for Computational Linguistics,
pages 1–11. Association for Computational Linguistics, 2010.

[31] Taku Kudo and Yuji Matsumoto. Proceedings of the 2004 conference on empirical
methods in natural language processing. 2004.

[32] John Lafferty, Andrew McCallum, and Fernando Pereira. Conditional random fields:
Probabilistic models for segmenting and labeling sequence data. In Proceedings of
ICML, 2001.

[33] John D. Lafferty, Andrew McCallum, and Fernando C. N. Pereira. Conditional
random fields: Probabilistic models for segmenting and labeling sequence data. In
Proceedings of the Eighteenth International Conference on Machine Learning, 2001.

[34] Alon Lavie and Michael J. Denkowski. The meteor metric for automatic evaluation
of machine translation. Machine Translation, 2009.

[35] Quoc V Le and Tomas Mikolov. Distributed representations of sentences and doc-
uments. 2014.

65

[36] Y. LeCun, L. Jackel, L. Bottou, A. Brunot, C. Cortes, J. Denker, H. Drucker,
I. Guyon, U. Mller, E. Sckinger, P. Simard, and V. Vapnik. Comparison of learning
algorithms for handwritten digit recognition. In INTERNATIONAL CONFER-
ENCE ON ARTIFICIAL NEURAL NETWORKS, pages 53–60, 1995.

[37] Xin Li and Dan Roth. Learning question classifiers. In Proceedings of the 19th
International Conference on Computational Linguistics - Volume 1, COLING ’02,
pages 1–7, Stroudsburg, PA, USA, 2002. Association for Computational Linguistics.

[38] Tsung-Yi Lin, Michael Maire, Serge J. Belongie, Lubomir D. Bourdev, Ross B.
Girshick, James Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and C. Lawrence
Zitnick. Microsoft COCO: common objects in context. 2014.

[39] Minh-Thang Luong, Hieu Pham, and Christopher D. Manning. Effective approaches
to attention-based neural machine translation. CoRR, 2015.

[40] Mingbo Ma, Liang Huang, Bing Xiang, and Bowen Zhou. Dependency-based con-
volutional neural networks for sentence embedding. In Proceedings of ACL 2015,
2015.

[41] Mingbo Ma, Liang Huang, Bing Xiang, and Bowen Zhou. Group sparse cnns for
question classification with answer sets. In Proceedings of the 55th Annual Meeting
of the Association for Computational Linguistics, ACL 2017, Vancouver, Canada,
July 30 - August 4, Volume 2: Short Papers, pages 335–340, 2017.

[42] Mingbo Ma, Dapeng Li, Kai Zhao, and Liang Huang. Osu multimodal machine
translation system report. In Proceedings of the Second Conference on Machine
Translation, pages 465–469. Association for Computational Linguistics, 2017.

[43] Mingbo Ma, Kai Zhao, Liang Huang, Bing Xiang, and Bowen Zhou. Jointly trained
sequential labeling and classification by sparse attention neural networks. In Inter-
speech, 2017.

[44] Alireza Makhzani and Brendan Frey. K-sparse autoencoders. In International Con-
ference on Learning Representations. 2014.

[45] Christopher D. Manning, Mihai Surdeanu, John Bauer, Jenny Finkel, Steven J.
Bethard, and David McClosky. The Stanford CoreNLP natural language processing
toolkit. In Proceedings of 52nd Annual Meeting of the Association for Computational
Linguistics: System Demonstrations, pages 55–60, 2014.

[46] Shotaro Matsumoto, Hiroya Takamura, and Manabu Okumura. Sentiment classifi-
cation using word sub-sequences and dependency sub-trees. In Proceedings of the

66

9th Pacific-Asia Conference on Advances in Knowledge Discovery and Data Mining,
2005.

[47] Ryan McDonald and Fernando Pereira. Online learning of approximate dependency
parsing algorithms. In Proceedings of EACL, 2006.

[48] Danilo Mirkovic, Lawrence Cavedon, Matthew Purver, Florin Ratiu, Tobias Schei-
deck, Fuliang Weng, Qi Zhang, and Kui Xu. Dialogue management using scripts
and combined confidence scores. US Patent, pages 7,904,297, 2011.

[49] Ramesh Nallapati, Bowen Zhou, and Mingbo Ma. Classify or select: Neural archi-
tectures for extractive document summarization. CoRR, 2016.

[50] Andrew Ng. Sparse autoencoder. 2011.

[51] Bo Pang and Lillian Lee. Seeing stars: Exploiting class relationships for sentiment
categorization with respect to rating scales. In Proceedings of ACL, pages 115–124,
2005.

[52] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: A method
for automatic evaluation of machine translation. Proceedings of the 40th Annual
Meeting on Association for Computational Linguistics, 2002.

[53] Marc’Aurelio Ranzato, Sumit Chopra, Michael Auli, and Wojciech Zaremba. Se-
quence level training with recurrent neural networks. ICLR, 2016.

[54] William J. Rapaport. A history of the sentence ”buffalo buffalo buffalo buffalo
buffalo.”. 2012.

[55] R. Rubinstein, A. M. Bruckstein, and M. Elad. Dictionaries for sparse representation
modeling. 2010.

[56] Alexander M. Rush, Sumit Chopra, and Jason Weston. A neural attention model
for abstractive sentence summarization. 2015.

[57] Alexander M Rush, Sumit Chopra, and Jason Weston. A neural attention model
for abstractive sentence summarization. arXiv preprint arXiv:1509.00685, 2015.

[58] Chirag Shah and Jefferey Pomerantz. Evaluating and predicting answer quality in
community qa. In Proceedings of the 33rd International ACM SIGIR Conference
on Research and Development in Information Retrieval, SIGIR ’10, pages 411–418,
New York, NY, USA, 2010. ACM.

67

[59] Yelong Shen, Xiaodong he, Jianfeng Gao, Li Deng, and Gregoire Mesnil. Learning
semantic representations using convolutional neural networks for web search. WWW
2014, April 2014.

[60] J. Silva, L. Coheur, A. C. Mendes, and Andreas Wichert. From symbolic to sub-
symbolic information in question classification. Artificial Intelligence Review, 35,
2011.

[61] Noah Simon, Jerome Friedman, Trevor Hastie, and Rob Tibshirani. A sparse-group
lasso. 2013.

[62] Matthew Snover, Bonnie Dorr, Richard Schwartz, Linnea Micciulla, and John
Makhoul. A study of translation edit rate with targeted human annotation. In
Proceedings of Association for Machine Translation in the Americas, 2006.

[63] Richard Socher, Jeffrey Pennington, Eric H. Huang, Andrew Y. Ng, and Christo-
pher D. Manning. Semi-Supervised Recursive Autoencoders for Predicting Senti-
ment Distributions. In Proceedings of the 2011 Conference on Empirical Methods
in Natural Language Processing (EMNLP), 2011.

[64] Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D. Manning,
Andrew Y. Ng, and Christopher Potts. Recursive deep models for semantic com-
positionality over a sentiment treebank. In Proceedings of the 2013 Conference on
Empirical Methods in Natural Language Processing, pages 1631–1642, Stroudsburg,
PA, October 2013. Association for Computational Linguistics.

[65] Amanda Stent, Rashmi Prasad, and Marilyn Walker. Trainable sentence planning
for complex information presentation in spoken dialog systems. Proceedings of the
42Nd Annual Meeting on Association for Computational Linguistics, 2004.

[66] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with
neural networks. In Advances in neural information processing systems, pages 3104–
3112, 2014.

[67] Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. Sequence to sequence learning
with neural networks. Proceedings of the 27th International Conference on Neural
Information Processing Systems, 2014.

[68] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with
neural networks. In Advances in neural information processing systems, pages 3104–
3112, 2014.

68

[69] Oriol Vinyals, Alexander Toshev, Samy Bengio, and Dumitru Erhan. Show and
tell: A neural image caption generator. IEEE Conference on Computer Vision and
Pattern Recognition, pages 3156–3164, 2015.

[70] Oriol Vinyals, Alexander Toshev, Samy Bengio, and Dumitru Erhan. Show and
tell: A neural image caption generator. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 3156–3164, 2015.

[71] Tsung-Hsien Wen, Milica Gasic, Dongho Kim, Nikola Mrksic, Pei-hao Su, David
Vandyke, and Steve J. Young. Stochastic language generation in dialogue using
recurrent neural networks with convolutional sentence reranking. CoRR, 2015.

[72] Sam Wiseman and Alexander M. Rush. Sequence-to-sequence learning as beam-
search optimization. volume abs/1606.02960, 2016.

[73] Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron Courville, Ruslan
Salakhudinov, Rich Zemel, and Yoshua Bengio. Show, attend and tell: Neural im-
age caption generation with visual attention. Proceedings of the 32nd International
Conference on Machine Learning (ICML-15), 2015.

[74] Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron C Courville, Ruslan
Salakhutdinov, Richard S Zemel, and Yoshua Bengio. Show, attend and tell: Neural
image caption generation with visual attention. In ICML, volume 14, pages 77–81,
2015.

[75] Puyang Xu and Ruhi Sarikaya. Convolutional neural network based triangular crf
for joint intent detection and slot filling. In ASRU, pages 78–83. IEEE, 2013.

[76] Yilin Yang, Liang Huang, and Mingbo Ma. Breaking the beam search curse: A
study of (re-)scoring methods and stopping criteria for neural machine translation.
In Proceedings of the 2018 Conference on Empirical Methods in Natural Language
Processing, 2018.

[77] Zhilin Yang, Ye Yuan, Yuexin Wu, William W. Cohen, and Ruslan Salakhutdinov.
Review networks for caption generation. Advances in Neural Information Processing
Systems, 2016.

[78] Wen-tau Yih, Xiaodong He, and Christopher Meek. Semantic parsing for single-
relation question answering. In Proceedings of the 52nd Annual Meeting of the
Association for Computational Linguistics (Volume 2: Short Papers), pages 643–
648. Association for Computational Linguistics, 2014.

[79] Ming Yuan and Yi Lin. Model selection and estimation in regression with grouped
variables. volume 68, pages 49–67, 2006.

69

[80] Mattgew Zeiler. Adadelta: An adaptive learning rate method. Unpublished
manuscript: http://arxiv.org/abs/1212.5701, 2012.

[81] Kai Zhao, Liang Huang, and Mingbo Ma. Textual entailment with structured at-
tentions and composition. volume abs/1701.01126, 2017.

[82] Renjie Zheng, Mingbo Ma, and Huang Liang. Multi-reference training with pseudo-
references for neural translation and text generation. 2018.

[83] Renjie Zheng, Yilin Yang, Mingbo Ma, and Huang Liang. Ensemble sequence level
training for multimodal mt: Osu-baidu wmt18 multimodal machine translation sys-
tem report. 2018.

[84] Xiaodan Zhu, Parinaz Sobhani, and Hongyu Guo. Long short-term memory over
tree structures. 2015.

