AN ABSTRACT OF THE THESIS OF

Ronald Leonard Hatteberg for the degree of <u>Master of Science</u>			
inNuclear Engineeringpresented onDecember 5,]977.			
Title: <u>A Simulated Two-Group Method for Computing Boiling Water</u>			
Reactor Power Distributions			
Abstract approved:			
Alan H. Robinson			

A computer code capable of modeling the burnup dependent static behavior of a boiling water reactor was developed. The code calculates three-dimensional quarter core power distributions using a simulated two-group diffusion theory model. Thermal-hydraulic calculations account for the interaction between power, coolant flow, and void fraction distributions. Cross sections are corrected to account for the effect of control rods and local equilibrium xenon concentrations. Burnup step calculations are used to predict the effects of fuel depletion. The code will optionally calculate a unique power distribution which will minimize power peaking throughout a specified operating cycle. With these capabilities, the code can be used to develop BWR fuel loading and operation strategies which can aid in minimizing fuel cycle costs. A Simulated Two-Group Method for Computing Boiling Water Reactor Power Distributions

Ъy

Ronald Leonard Hatteberg

A THESIS

submitted to

Oregon State University

in partial fulfillment of the requirements for the degree of

Master of Science

Commencement June 1978

APPROVED:

Professor of Nuclear Engineering

Head of Department of Muclear Engineering

Dean of Graduate School

Date thesis is presented December 5, 1977.

Typed by Delores Maneshi for Ronald Leonard Hatteberg.

TABLE OF CONTENTS

			Page
1.0	INTRODUC	TION	1
2.0	NEUTRONI	CS MODEL	7
	2.1.1	Formulation of Difference Equations	7
	2.1.2	Boundary Conditions	11
	2.1.3	Solution	16
	2.2	Node Averaging	18
	2.3	Power Distribution and Burnup Calculations	19
3.0	CROSS SE	CTIONS	23
	3.1	Generation of Two-Group Input	23
	3.2	Table Assignment	24
	3.3	Evaluation of Nodal Two-Group Constants	25
	3.3.1	Void and Exposure Dependency	25
	3.3.2	Control Rod Model	26
	3.3.3	Equilibrium Xenon Correction	29
4.0	THERMAL-	HYDRAULIC TREATMENT	32
	4.1	Coolant Flow Distribution	34
	4.2	Quality Calculation	35
	4.3	Void Fraction	. 37
	4.4	MCHFR Calculation	. 37
5.0	HALING S	SOLUTION	. 40
6.0	RESULTS		. 43
	6.1	Benchmarking of the Neutronics Model	. 43
	6.2	Reference Reactor	. 50
	6.3	Power and Void Distributions	. 53
	6.4	Haling Solution	. 65

Page

7.0 CONCLUS	LONS	69
BIBLIOGRAPHY		72
APPENDIX A:	Input Instructions	74
	Sample Input	88
	Sample Output	95
APPENDIX B:	Source Listing	120

LIST OF ILLUSTRATIONS

Figure		Page
2.1	Node Dimensions.	9
2.2	Schematic of Three-Dimensional Node Geometry.	12
2.3	Boundary Condition Representation.	13
2.4	Boundary Node Indexing Convention.	15
2.5	Flow Diagram of Inner and Outer Iterations	17
2.6	Flow Diagram of Power Iteration and Exposure Step Calcu- lation.	21
3.1	BWR Control Rod Geometry.	27
4.1	BWR Coolant Flow Diagram.	33
4.2	Void Fraction vs. Quality Calculated from Modified Armand Correlation at 1035 psia and 548.8 ^O F.	37a
5.1	Illustration of Haling Solution Logic.	41
6.1	Comparison of Calculated and Analytical Solutions of the Relative Flux Distribution for the Center Plane of a Cubical Reactor.	46
6.2	Comparison of Calculated and Analytical Solutions of the Relative Flux Profile through the Center of a Cubical Reactor.	47
6.3	Comparison of Calculated and Analytical Solutions of the Relative Flux Distribution in a 135 cm Semi-Infinite Slab Reactor.	48
6.4	Comparison of Calculated and Analytical Solutions of the Relative Flux Distribution in a 270 cm Semi-Infinite Slab Reactor.	49
6.5	Edwin I. Hatch Nuclear Plant Unit #2 Fuel Loading Pattern.	51
6.6	Axial Power Distribution, HZP, ARO.	54

Figure		Page
6.7	Axial Power and Void Fraction Distributions at 50% Power, ARO.	55
6.8	Axial Power and Void Fraction Distributions at Hot Full Power, ARO.	56
6.9	Illustration of Control Rod Effects on the Axial Power Distribution.	57
6.10	Control Rod Positions for Control Rod Pattern Case #1.	58
6.11	Control Rod Positions for Control Rod Pattern Case #2.	59
6.12	Control Rod Positions for Control Rod Pattern Case #3.	60
6.13	Axial Power Distributions Calculated from Control Rod Pattern Cases.	61
6.14	Radial Power Distributions Calculated from Control Rod Pattern Cases.	63
6.15	Axial Power Distribution from Edwin I. Hatch Nuclear Plant Unit #2 FSAR.	64
6.16	Radial Power Distribution from Haling Solution Case.	66
6.17	Axial Power and Void Fraction Distributions from Haling Solution Case.	67
6.18	Typical Haling Axial Power Distribution.	6 8
A.1	Quarter Core Plane Indexing Conventions.	75

A Simulated Two-Group Method for Computing Boiling Water Reactor Power Distributions

1.0 INTRODUCTION

Analysis of the burnup dependent static behavior of a reactor core plays an important part in reactor fuel management. The ability to predict this behavior enables core design and operations strategies to be developed which can be used to minimize fuel cycle costs. The purpose of this project was to develop a boiling water reactor (BWR) model which could be used for this type of analysis.

A FORTRAN computer code capable of predicting three-dimensional power distributions in a BWR was developed. The model represents one quarter of a reactor core. Quadrant symetry is assumed. The mutual interaction between the core power, fuel exposure, coolant flow and void fraction, and equilibrium xenon distributions are accounted for. Control rod effects are also included. Only fuel regions can be represented by the code. Reflecting regions surrounding a core are accounted for by appropriate boundary conditions.

The global power distribution is solved by three successive levels of iteration. The inner iteration solves the neutron flux distribution for a fixed fission source distribution. The next level of iteration, the source iteration, calculates the fission source distribution and effective multiplication factor given the nuclear constants of the core. The final level of iteration solves for the power distribution and accounts for the feedback effects between power, void fraction, and equilibrium xenon distributions.

Fuel depletion effects are modeled by burnup step calculations.

During a burnup step the power distribution is assumed to remain constant. The exposure distribution at the end of a step is calculated directly from the initial exposure distribution and the power distribution. Relative power and exposure distribution arrays can be punched by the code to facilitate restart calculations.

Input to the code consists primarily of a description of the core geometry and fuel loading, core thermal-hydraulic parameters, and tables of exposure and void dependent nuclear constants of the fuel. Output includes the predicted core power distribution, effective multiplication factor, coolant flow and void fraction distributions, and the predicted exposure distribution at the end of each burnup step.

BWR's have a strongly negative local power coefficient of reactivity. This is because the reactor coolant is allowed to change phase. Voiding of the coolant causes a large decrease in its moderating ability. There is a natural tendency for the power distribution to peak near the bottom of the core due to the larger void fractions at the top. Increasing the coolant flow rate reduces void fractions. Regulation of the coolant flow provides one of the primary means of BWR reactivity control. Due to these effects, a thermal-hydraulic model is an essential part of a BWR simulator.

A BWR simulator must be able to calculate three-dimensional power distributions, with feedback effects included, using a minimal amount of computer time and memory in order to be practical for routine application. This precludes an accurate but costly fine mesh multi-group diffusion theory type of calculation. One approach, used by the FLARE¹ code, is a one group, coarse mesh model using transport kernels to cou-

2

ple the fluxes at mesh points. This is equivalent to a one-group diffusion theory calculation. Various versions of the FLARE code are currently in wide use, but the model has several drawbacks. It requires extensive a priori normalization.

The neutronics model chosen for this project is an extension of a two-dimensional model developed for PWR analysis by Stout². A simulated two-group diffusion theory model is used. This is based on a one-fast-group 3DB³ type of calculation. The model permits a coarse mesh representation and execution time is on the order of a one group model. It represents a higher order approximation than FLARE, since it is effectively a two-group calculation, and does not require extensive normalization. The applicability of this type of model to BWR analysis has been demonstrated by Børresen⁴.

BWR operation is characterized by the concept of an operating cycle. An operating cycle is a period of operation at the end of which the reactor is shut down for refueling. Approximately one quarter of the most highly depleted fuel assemblies are replaced at this time in order to provide a sufficient amount of reactivity to sustain operation through the next cycle. Some important decisions that must be made by those concerned with fuel management are the length of the cycle, enrichment of the reload fuel, the number of assemblies to be replaced, and the rearrangement of assemblies within the core. A reactor simulator can be used to evaluate the consequences of these types of fuel management decisions.

The primary limiting factor which must be dealt with in reactor core design is the critical heat flux. This is a limiting heat flux beyond which a sharp jump in the surface temperature of the fuel cladding occurs. The ratio of the critical heat flux to the maximum local heat flux is called the minimum critical heat flux ratio (MCHFR). A MCHFR calculation, using a design limit correlation, has been included in the code. Recent BWR designs have used a MCHFR design limit of 1.9. The reactors are designed so that critical heat flux ratios will not fall below this limit during normal operation.

Another important consideration in reactor design and operation is the power peaking ratio. It is defined as the ratio of the peak to average local power densities in a reactor. This is important for several reasons. Reactor fuel and thermal-hydraulic performance are generally improved by reducing power peaking ratios. Operation with a large power peak accelerates fuel depletion in the region of the peak. Excessive local fuel exposures incure an increased risk of fuel failure. Power peaking also limits the core power density, since design limits, such as the MCHFR limit, must not be exceeded at the power peak. Typical power peaking ratio design limits are 1.5 in the axial direction, 1.4 radially, and 2.6 overall.

BWR power peaking occurs in regions of relatively high reactivity, such as in freshly loaded or highly enriched fuel, and near the bottom of a core due to voiding. It can be controlled by inlet orificing, burnable poison distributions, and by the choice of fuel loading pattern and control rod positions.

The economic benefits of a reduction in power peaking can be very large. This is particularly true of nuclear generating systems built using the stretch concept⁵. Such a system is built with a turbine gen-

4

erator capable of handling a boiler rated at a higher output than the nominal output of the reactor. The purpose of this was to allow for expected improvements in technology and operating limits. A reduction in power peaking permits operation at a higher power density and increases the capacity of the generating system. Higher than expected power peaking could also force operation at less than the nominal or designed power density in order to stay within safe operating limits. Fuel fabrication costs can also be reduced if power peaking ratios are low.

A major problem in BWR operation is determining control rod withdrawal patterns which will optimize reactor performance. Optimal performance generally means maintaining the lowest possible power peaking ratio throughout the cycle. Control rods can be used to shape the power distribution, but are ideally fully withdrawn at the end of a cycle.

An option has been included in the code which will calculate the optimal power distribution for an operating cycle. This is called the Haling solution⁶. A Haling solution gives the end of life power and fuel exposure distrubutions which would result if the same power distribution were maintained throughout the cycle. This is determined from the beginning of cycle fuel loading and exposure distributions and the cycle length in terms of the average fuel exposure increment. If maintained, the Haling power distribution will minimize power peaking throughout the cycle. Haling solutions are useful for comparing fuel loading patterns as well as for determining optimal burnable poison distributions and control rod patterns.

The remainder of this thesis discusses the methods used in develop-

ing the code and results that have been obtained. The neutronics model is described in Chapter 2. Cross section input generation and evaluation are discussed in Chapter 3. Chapter 4 describes the thermalhydraulic model and Chapter 5 describes the Haling solution logic. Results obtained from benchmarking and testing the code are given in Chapter 6. Conclusions are given in Chapter 7. Input instructions and a source listing are provided in the appendices.

6

2.0 NEUTRONICS MODEL

The reactor power distribution is calculated using a model which represents the reactor as a group of geometrically identical nodes. A node is defined as a homogeneous volume whose boundaries are defined by mesh lines. Mesh lines are chosen to lie between fuel assemblies and along the core periphery. The number of axial nodes represented is optional, but should be chosen such that the node height is approximately equal to the width.

The power distribution calculation is based on a finite difference approximation to the two-group neutron diffusion equations. The fast and thermal fluxes are calculated at points taken to be at the center of each node. An averaging scheme is then used to calculate node averaged fast and thermal fluxes. The power distribution is calculated from the node averaged flux distributions.

2.1.1 Formulation of Difference Equations

The two-group neutron diffusion equations may be written as

$$-D_{1}\nabla^{2}\phi_{1} + (\Sigma_{a1} + \Sigma_{r})\phi_{1} = \frac{1}{k_{eff}} (\nu\Sigma_{f1}\phi_{1} + \nu\Sigma_{f2}\phi_{2})$$
(2-1a)

$$-D_{2}\nabla^{2}\phi_{2} + \Sigma_{a2}\phi_{2} = \Sigma_{r}\phi_{1}$$

$$\phi_{1}, \phi_{2} = \text{fast and thermal fluxes}$$

$$D_{1}, D_{2} = \text{fast and thermal diffusion coefficients}$$

$$\Sigma_{a1}, \Sigma_{a2} = \text{fast and thermal macroscopic absorbtion cross}$$
sections
$$(2-1b)$$

 Σ_{r} = fast removal cross section $\nu \Sigma_{f1}, \nu \Sigma_{f2}$ = fast and thermal ν -fission cross sections k_{eff} = effective multiplication factor

These coupled equations are not suitable for direct formulation of coarse mesh difference equations. A mesh size characteristic of a BWR fuel assembly pitch (\sim 15 cm) would lead to a break down of the difference approximation for the thermal group. This is due to the comparitively small (3-7 cm) mean free path of thermal neutrons. This is not a problem for the fast group since the mean free path for this group is nearly the same as the assembly pitch.

A zero thermal buckling approximation can be made which will alleviate this problem. This is a reasonably good approximation for large node sizes. Equation 2-1b becomes

$$\phi_2 = \frac{\Sigma_r \phi_1}{\Sigma_{a2}} \qquad (2-2)$$

Equation 2-2 gives the asymptotic thermal flux solution.

It is now convienient to define a new v-fission cross section.

$$v\Sigma_{f} = v\Sigma_{f1} + \frac{\Sigma_{r}}{\Sigma_{a2}} v\Sigma_{f2}$$
(2-3)

Using equations 2-2 and 2-3, equation 2-1a can be reformulated as

$$-D_{1}\nabla^{2}\phi_{1} + (\Sigma_{a1} + \Sigma_{r})\phi_{1} = \frac{1}{k_{eff}}\nabla\Sigma_{f}\phi_{1} \qquad (2-4)$$

The difference equations are obtained by integrating equation 2-4 over the node volume. A mesh point is taken to be at the center of a node of height DZ and width and depth DX as shown in figure 2.1.

Integration of the leakage term is accomplished by first trans-

Figure 2.1 Node Dimensions.

forming the volume integral to a surface integral by means of Green's theorem.

$$\int_{\mathcal{Y}} \nabla \nabla^2 \phi dV = \int_{\mathcal{Y}} \nabla \nabla \phi dA$$
(2-5)

The surface integral is carried out over the six faces of the node.

Evaluation of the flux gradient at the interface is easily understood by considering a one-dimensional case where two mesh points, ℓ and $\ell+1$, are separated by a distance, d, and equidistant from a mesh line separating two regions. The region to the left of the mesh line has diffusion coefficient D_{ℓ} , and that to the right has $D_{\ell+1}$.

Using difference approximations, continuity of the neutron current at the boundary gives

$$\frac{-D_{\ell}(\phi_{\ell+\frac{1}{2}} - \phi_{\ell})}{d/2} = \frac{-D_{\ell+1}(\phi_{\ell+1} - \phi_{\ell+\frac{1}{2}})}{d/2} .$$
(2-6)

 $\phi_{\ell}, \phi_{\ell+\frac{1}{2}}$, and $\phi_{\ell+1}$ refer to the fluxes at point ℓ , the mesh line, and point $\ell+1$ respectively. The flux at the interface is given by

$$\phi_{\ell+\frac{1}{2}} = \frac{D_{\ell}\phi_{\ell} + D_{\ell+1}\phi_{\ell+1}}{D_{\ell} + D_{\ell+1}} .$$
 (2-7)

Using this expression, the flux gradient at the interface can be written in terms of ϕ_{ℓ} and $\phi_{\ell+1}$.

$$\nabla \phi_{\ell+\frac{1}{2}} = \left\{ \frac{D_{\ell+1}}{D_{\ell} + D_{\ell+1}} \right\} \left\{ \frac{\phi_{\ell+1} - \phi_{\ell}}{d/2} \right\}$$
(2-8)

The difference approximation of equation 2-4 for mesh point o becomes

$$\sum_{i=1}^{6} \frac{D_{o}D_{i}}{D_{o}+D_{i}} \frac{(\phi_{o}-\phi_{i})A_{i}}{d_{i}/2} + (\Sigma_{a1}+\Sigma_{r})_{o}\phi_{o}V_{o} = \frac{1}{k_{eff}} \nu\Sigma_{fo}\phi_{o}V_{o}$$
(2-9)

A_i = area of the interface between nodes o and i
V_o = volume of node o
d_i = distance between mesh points o and i

The summation is over all six nodes adjacent to node o as shown in figure 2.2. Since all nodes in the problem have equal dimensions, equation 2-9 can be simplified by dividing by V_0 . It can then be expressed in a more convenient form as

$$\phi_{0} = \frac{S_{0} + \sum_{i=1}^{6} C_{i} \phi_{i}}{\frac{1}{C_{7}}} \qquad (2-10)$$

$$S_{o} = \frac{1}{k_{eff}} v \Sigma_{fo} \phi_{o}$$
(2-11)

$$C_{i} = \frac{2D_{o}D_{i}}{d_{i}^{2}(D_{o}+D_{i})}$$
(2-12)

$$C_7 = (\Sigma_{a1} + \Sigma_r)_0 + \sum_{i=1}^{6} C_i$$
 (2-13)

2.1.2 Boundary Conditions

Boundary conditions are treated by specifying the flux at a node's boundary interface as a fraction of the flux at the mesh point of that node. Consider a node with mesh point ℓ whose interface lies on the problem boundary. An imaginary node with mesh point ℓ +1, and with consistant mesh spacing is assumed to lie beyond the boundary as shown in figure 2.3. The nuclear properties of node ℓ +1 are assumed identical to those of node ℓ . From equation 2-7, the flux at the boundary is simply

Figure 2.3 Boundary Condition Representation.

$$\phi_{\ell+\frac{1}{2}} = \frac{1}{2}(\phi_{\ell} + \phi_{\ell+1}) \quad . \tag{2-14}$$

Specifying the boundary flux as

$$\phi_{l+l_2} = ALB \cdot \phi_l \tag{2-15}$$

gives

$$\phi_{g+1} = (2ALB - 1)\phi_g \qquad (2-16)$$

With prior knowledge of ϕ_{l+1} in the form of equation 2-16, an extra term, $(2/d_1^2)D_1(1 - ALB)$, can be added to the denominator of equation 2-10. One such term is added for each node interface that lies on the problem boundary. The summations in equations 2-10 and 2-13 then correspond to the remaining node interfaces which do not lie on a boundary.

From equation 2-15 it is obvious that ALB = 1.0 corresponds to a zero current, or reflecting, boundary condition and ALB = 0.0 corresponds to a zero flux boundary condition. Thus, as ALB implies, it can be convieniently thought of as an albedo (although it is not in a strict sense of the word).

Boundary conditions are required for the core bottom and top and each of the radial faces of the core periphery. A problem represented by NX nodes in the radial direction requires NX separate boundary conditions to represent the complex geometry of the periphery. The NX boundaries are indexed as shown in figure 2.4.

In order to account for the increased leakage caused by voiding, boundary conditions are input as a function of void fraction.

$$ALB = A + B \cdot VOID(\ell)$$
 (2-17)

A and B are input constants for each boundary. VOID(L) is the void fraction of the appropriate boundary node. Separate boundary conditions

14

.. . . .

Number of radial nodes, NX = 9.

Figure 2.4 Boundary Node Indexing Convention.

are input for the fast and thermal fluxes.

2.1.3 Solution

Equation 2-4 is solved using the inner-outer iteration technique illustrated in figure 2.5. Using an initial flux distribution guess, a fission source distribution is calculated. Holding the source distribution fixed, MAXI inner iterations are carried out using equation 2-10. (MAXI is an input constant.) The eigenvalue for the next outer (source) iteration is calculated from

$$k_{eff}^{N} = k_{eff}^{N-1} \frac{TF^{N}}{TF^{N-1}}$$

$$TF^{N} = \text{total fission source for iteration N}$$

$$N = \text{outer iteration counter}$$
(2-17)

A new source distribution is then calculated as in equation 2-11 and the inner iteration is repeated. The outer iteration is terminated when the source distribution is converged or when the number of outer iterations is equal to an input limit, MAXO. The outer iteration is considered converged when the maximum relative change in nodal fission sources is less than or equal to an input convergence criterion, EPSO.

Convergence of the source iteration is accelerated by successive over-relaxation (SOR). The accelerated source distribution is calculated from

$$S_{\ell}^{N*} = S_{\ell}^{N-1} + \alpha (S_{\ell}^{N} - S_{\ell}^{N-1}) \qquad (2-18)$$

 S^{N*} = accelerated source for outer iteration N α = over-relaxation factor

Figure 2.5 Flow Diagram of Inner and Outer Iterations.

17

The over-relaxation factor is input. A value of 1.65 is close to optimum for most cases and is the default value.

2.2 Node Averaging

A coarse mesh diffusion theory model tends to under-predict current densities at node interfaces. This is particularly true if there is a large difference between the diffusion coefficients of the two adjacent nodes or if the node is on the core periphery. This can lead to a fairly large error in the predicted power distribution. In order to reduce this error, a node averaging scheme proposed by Børresen⁴ is employed.

The node averaged flux, $\overline{\phi}$, is calculated as a weighted average of the midpoint flux and the fluxes at the node interfaces.

$$\overline{\phi}_{0} = b \cdot \phi_{0} + c \left(\sum_{i=1}^{\infty} \psi_{i} + R \cdot \sum_{k=1}^{\infty} \psi_{k} \right)$$

$$(2-19)$$

$$b = \frac{3a}{3a + (1-a)(R+2)}$$
(2-20)

$$c = \frac{1 - a}{6a + 2(1-a)(R+2)}$$
(2-21)

$$R = \frac{DX^2}{DZ^2}$$
(2-22)

φo	= flux at node midpoint	
ψ	= flux at node interface	
a	= input weighting factor	
DX	= horizontal mesh width	
DZ	= vertical mesh width	

The first summation in equation 2-19 corresponds to interfaces with the

four horizontally adjacent nodes. The second corresponds to interfaces with the two vertically adjacent nodes.

For interfaces not on the problem boundary, interface fluxes are calculated as in equation 2-7. For the interface between node o and node i

$$\psi_{i} = \frac{D_{0}\phi_{0} + D_{i}\phi_{i}}{D_{0} + D_{i}}$$
 (2-23)

For interfaces lying on the problem boundary, the interface flux is calculated as in equation 2-15.

$$\psi_{i} = ALB_{i} \cdot \phi_{o} \qquad (2-24)$$

ALB, is the appropriate boundary condition for that face.

Two different values of the weighting factor, a, are used to calculate the node averaged fast and thermal fluxes. Børresen recommends 0.3 and 0.7 for the fast and thermal groups respectively.

The procedure used in calculating node averaged fluxes is to first calculate node averaged fast fluxes from the fast flux distribution produced by the diffusion theory model. An asymptotic thermal flux distribution is calculated from the node averaged fast flux distribution. Then a node averaged thermal flux distribution is calculated from these assymptotic thermal fluxes.

2.3 Power Distribution and Burnup Calculations

A relative power distribution is calculated from the node averaged fast and thermal fluxes. The relative power at node o is given by

$$P_{o} = \frac{(\kappa \Sigma_{f1} \phi_{1} + \kappa \Sigma_{f2} \phi_{2})_{0}}{\frac{1}{N} \sum_{\ell=1}^{\Sigma (\kappa \Sigma_{f1} \phi_{1} + \kappa \Sigma_{f2} \phi_{2})_{\ell}}$$

$$(2-24)$$

N = number of nodes represented in the problem

The cross sections used to calculate a flux and power distribution are themselves functions of power due to the feedback effects of void fraction and xenon concentration. The power distribution is solved iteratively. After a power distribution has been calculated, new cross sections consistant with this distribution are calculated. Another power distribution is calculated with the new cross sections, and so on, until convergence is achieved.

In a burnup step calculation, a power distribution is calculated consistant with an initial exposure distribution. Assuming the power distribution remains constant during the input exposure interval, the exposure distribution at the end of the step can be calculated. The exposure at each node is calculated from

$$E_{\ell} = E_{\ell}^{i} + P_{\ell} \cdot \Delta E \qquad (2-25)$$

 E_{l} = fuel exposure at end of step (MWD/MTU) E_{l}^{i} = exposure at beginning of step P_{l} = relative power of node l

 ΔE = length of core burnup step (MWD/MTU)

The entire power distribution and burnup time-step solution procedure is illustrated in figure 2.6. Starting with the initial fuel exposure distribution and guesses of the power and void distributions, the code calculates nodal cross sections and then the corresponding flux and power distributions. A new void distribution is calculated

I = power iteration counter

Figure 2.6 Flow Diagram of Power Iteration and Exposure Step Calculation

and the iteration continues until the maximum relative change in nodal power is less than an input convergence criterion, EPSP. The results are printed and if another burnup time-step is requested, the exposure array is updated before repeating the process.

The void-power iteration is sensitive to large perturbations in successive power distribution iterants. Requiring tight convergence on the source iteration when the power distribution is not yet close to being converged can cause an instability and divergence in the power iteration. The instability can be avoided by setting a low limit on the maximum number of source iterations per power iteration (MAXO). This minimizes perturbations between early iterants. If the code detects divergence in the power iteration, it will automatically decrease the limit on the maximum number of source iterations until convergence resumes.

22

3.0 CROSS SECTIONS

This chapter discusses the generation of two-group cross section input and the manner in which the code evaluates appropriate cross sections for each node.

3.1 Generation of Two-Group Input

The two-group constants required as input must be able to yield the appropriate node averaged reaction rates when multiplied by node averaged fast and thermal fluxes. This requires that the flux spectrum within each energy group be accounted for as well as the detailed flux variation due to heterogeneities within the node volume. This is done by flux averaging.

The node averaged flux for energy group i is defined as

$$\overline{\phi}_{i} = \left(\oint \partial^{3} r \int_{u_{i-1}}^{u_{i}} \partial u \phi(r, u) \right) \div \left(\oint \partial^{3} r \right)$$
(3-1)

 $\phi(\mathbf{r},\mathbf{u})$ is the lethargy dependent flux at point r. The volume integral is carried out over the node volume and the lethargy integral from the lower to the upper lethargy bounds defining group i. In a two-group model, the fast group commonly corresponds to the energy range from 10 Mev to 0.625 ev while the thermal group represents energies below 0.625 ev.

A cross section consistant with equation 3-1 would be evaluated as

$$\Sigma_{i} = \frac{\oint \partial^{3}r \int_{u_{i-1}}^{u_{i}} \Sigma(r, u) \phi(r, u) \partial u}{\oint \partial^{3}r \int_{u_{i-1}}^{u_{i}} \phi(r, u) \partial u}$$
(3-2)

One method for calculating these cross sections will be briefly described here. It uses the LEOPARD⁷ and PDQ/HARMONY^{8,9} codes. For a more detailed discussion of multigroup constant generation see Duderstadt and Hamilton¹⁰.

LEOPARD generates exposure dependent few group cross sections for a homogenized pin cell. A pin cell is a two-dimensional representation of a single fuel rod and the surrounding moderator region as it appears in the array of a fuel assembly. While the LEOPARD calculation is zerodimensional and primarily spectral, the flux depression in the fuel rod is accounted for by means of disadvantage factors.

PDQ is a few-group diffusion theory code which uses the HARMONY depletion system. Using the few group output from LEOPARD, it can be used to model a fuel assembly in two dimensions. The spatial flux variation in the assembly can be accounted for by using PDQ to flux weight cross sections over this two-dimensional model. Using its depletion capabilities to account for the changes in isotopic concentrations, it can generate exposure dependent two-group cross sections suitable for a node representing the modeled assembly.

A node volume containing a highly absorbing region, such as a burnable poison curtain, may require special treatment. This is due to the limitations of diffusion theory for such regions. A transport theory calculation can be used in such a case.

3.2 Table Assignment

Two-group constants are input as table sets at various void fractions and exposures. One table set is required for each unique node

24

type represented. Several table sets may be required to model one assembly. This is due to the axial burnable poison distributions used in most BWR's.

The following definitions will be used in this thesis. Each unique fuel assembly type is referred to as a fuel type. Fuel types are assigned to various locations in the core model using a two-dimensional array called a fuel type overlay. Cross section table sets are assigned to each axial node in a given fuel type using a table set to fuel type overlay.

Using the table sets assigned to each node, the code is able to calculate the appropriate two-group constants as a function of void fraction, fuel exposure, and equilibrium xenon concentration. These calculations will be described in detail in the following sections.

3.3 Evaluation of Nodal Two-Group Constants

Cross sections for a particular node are calculated as follows. Cross sections as a function of void fraction and exposure are calculated from the appropriate table set. This accounts for changes in the neutron energy spectrum and in isotopic concentrations caused by coolant voiding and fuel depletion. Corrections are then made to these cross sections to account for the presence of a control rod, if the node is rodded, and to correct for the amount of equilibrium xenon present.

3.3.1 Void and Exposure Dependency

Cross sections as a function of average node void fraction and exposure are calculated from the input table sets by linear interpolation or extrapolation. The set of exposure points used in the table sets is refered to as an exposure mask. This must be chosen such that linear interpolation between any two consecutive exposure points will yield acceptably accurate results over the range of fuel exposures likely to be encountered in a problem. Relatively fine exposure steps must be used at low exposures due to the fairly rapid changes in isotopic concentrations occurring in this range.

At each exposure point, cross sections are input at a number of void fractions refered to as a void mask. An acceptable void mask requires a minimum of three (preferably four or five) void fractions equally spaced over the void fraction range likely to be encountered.

3.3.2 Control Rod Model

BWR control rods are cruciform shaped, with blades situated between four adjacent fuel assemblies (see figure 3.1). Rods are inserted from the bottom of the core. In order to model the effect of a control rod inserted a distance of N axial mesh spaces from the core bottom, the two-group constants of the first N axial nodes of the four adjacent fuel assemblies must be modified to reflect the change in nuclear properties.

The effect of a control rod on the nuclear properties of a node can be expressed in terms of control rod worth. This is defined as

$$\Delta \rho = \frac{k_{\infty}^{UR} - k_{\infty}^{R}}{k_{\infty}^{UR}} \qquad (3-3)$$

$$\Delta \rho = \text{control rod worth}$$

$$k_{\infty}^{UR} = \text{infinite multiplication factor for unrodded node}$$

$$k_{\infty}^{R}$$
 = infinite multiplication factor for rodded node

 \boldsymbol{k}_{ϖ} can be expressed in terms of two-group constants as

$$k_{\infty} = \frac{\sum_{a1}^{\nu \Sigma} \frac{r^{\nu \Sigma} f2}{\Sigma_{a2}}}{\sum_{a1}^{\Sigma} + \Sigma_{r}} \qquad (3-4)$$

Control rod worth will increase as the void fraction of a node increases and will also vary as a function of exposure.

The major effect of a control rod is a large increase in the thermal absorbtion of a node. Other neutronic properties are effected to a much lesser extent. The technique employed for modeling a rodded node is to absorb the control rod worth entirely into the thermal absorbtion cross section. All other two-group constants remain the same as for the unrodded case. Thus, from equations 3-3 and 3-4,

$$\Sigma_{a2}^{R} = \frac{\Sigma_{r} \nabla \Sigma_{f2}}{(1 - \Delta \rho) \left[\nabla \Sigma_{f1} + \frac{\Sigma_{r} \nabla \Sigma_{f2}}{\Sigma_{a2}} \right] - \nabla \Sigma_{f1}}$$
(3-5)

 Σ_{a2}^{R} = thermal absorbtion cross section of rodded node All constants on the right hand side of equation 3-5, except $\Delta \rho$, are those of the unrodded node.

Control rod worths are input for each cross section table set as a table of rod worth versus void and exposure using the same exposure and void points used in the table sets. The worth at a given exposure and void fraction is calculated by linear interpolation. The rod position for each fuel assembly location is input as an integer, greater than or equal to zero, indicating the rod position in terms of the number of nodes from the core bottom.

3.3.3 Equilibrium Xenon Correction

A correction is made to account for the equilibrium Xe-135 concentration in a node for two reasons. First of all, Xe-135 has an extremely large thermal absorbtion cross section, typically about 1.6 million barns. Secondly, the equilibrium xenon concentration in a node is a function of the neutron flux in that node. Variations in reactor power as well as variations in power density from node to node require that the Xe-135 contribution to the thermal absorbtion cross sections, inherent in the table sets, be corrected. The effect on all other cross sections is negligibly small.

The Xe-135 corrected thermal absorbtion cross section is calculated at each node from

$$\Sigma_{a2} = \Sigma_{a2}^{No} Xe + N^{Xe}\sigma_{a2}^{Xe} .$$
(3-6)

$$\Sigma_{a2}^{No Xe} = \text{thermal absorbtion cross section with the Xe-135} \\ \text{contribution removed}$$

$$N^{Xe} = \text{number density of Xe-135 (cm-3)} \\ \sigma_{a2}^{Xe} = \text{Xe-135 microscopic thermal absorbtion cross section} \\ (cm2)$$

Xe-135 number densities and microscopic thermal absorbtion cross sections are included in the input interpolating table sets. $\Sigma_{a2}^{No} \stackrel{Xe}{}$ is calculated at each of the interpolating exposure and void fraction state points by subtracting $N_{a2}^{Xe} \stackrel{Xe}{}$ from the corresponding macroscopic thermal absorbtion cross section.
In terms of two-group constants, the number density of Xe-135 is governed by the following pair of differential equations.

$$\frac{dN^{I}}{dt} = \gamma_{I} (\phi_{1} \Sigma_{f1} + \phi_{2} \Sigma_{f2}) - N^{I} \lambda_{I}$$

$$\frac{dN^{Xe}}{dt} = \gamma_{Xe} (\phi_{1} \Sigma_{f1} + \phi_{2} \Sigma_{f2}) + N^{I} \lambda_{I}$$

$$- N^{Xe} (\phi_{1} \sigma_{a1}^{Xe} + \phi_{2} \sigma_{a2}^{Xe}) - N^{Xe} \lambda_{Xe}$$

$$N^{Xe}, N^{I} = Xe-135 \text{ and } I-135 \text{ number densities}$$

$$\gamma_{Xe}, \gamma_{I} = Xe-135 \text{ and } I-135 \text{ fission yields}$$

$$\lambda_{Xe}, \lambda_{I} = Xe-135 \text{ and } I-135 \text{ decay constants}$$

$$\sigma_{a1}^{Xe}, \sigma_{a2}^{Xe} = \text{fast and thermal microscopic absorbtion cross sec-tions for Xe-135}$$

$$(3-7)$$

The equilibrium Xe-135 number density equation used by the code is obtained by setting the time derivatives in equations 3-7 and 3-8 to zero. The Xe-135 fast absorbtion cross section is neglected since it is relatively small(8 barns). The xenon transients which follow a change in power density are ignored in this model. These transients are on the order of eight hours and are not important in most burnup calculations. For each node, the Xe-135 number density is calculated from

$$N^{Xe} = \frac{\gamma_{1+Xe}(\phi_{1}\Sigma_{f1} + \phi_{2}\Sigma_{f2})}{\lambda_{Xe} + \phi_{2}\sigma_{a2}} .$$

$$\lambda_{Xe} = 2.0997 \times 10^{-5} \text{ sec}^{-1}$$
(3-9)

The I-135 + Xe-135 fission yield is input as a table versus exposure for each table set. The appropriate yield is calculated by interpolation. Σ_{f1} , Σ_{f2} , and σ_{a2}^{Xe} are calculated by interpolation versus void fraction and exposure.

The fast and thermal fluxes from the diffusion theory calculation are only relative values and must be converted to absolute fluxes before they can be used in equation 3-9. The absolute fluxes, ϕ_1^a and ϕ_2^a , are calculated from

$$\phi_1^a = CF \cdot \phi_1 \qquad , \qquad (3-10)$$

$$\phi_2^a = CF \cdot \phi_2 \qquad (3-11)$$

The conversion factor, CF, is calculated from

$$CF = \frac{Pth \cdot 6.24146 \times 10^{18} \frac{Mev/sec}{Mw}}{N} \qquad (3-12)$$

$$Vol \cdot \sum_{l=1}^{N} (\phi_{1} \kappa \Sigma_{f1} + \phi_{2} \kappa \Sigma_{f2})_{l}$$

$$Pth = power generated by the portion of the core being modeled$$

$$(Mw_{th})$$

$$Vol = node volume (cm3)$$

$$\kappa \Sigma_{f} = \kappa - fission cross section (Mev/cm)$$

The summation in the denominator of equation 3-12 is over all nodes in the problem.

4.0 THERMAL-HYDRAULIC TREATMENT

A typical BWR coolant flow diagram is shown in figure 4.1. Subcooled water enters the core from the bottom. Inlet orifices direct the flow to the fuel channels and serve to restrict the flow in low power assemblies, primarily those on the core periphery. The "active" coolant flows up through the fuel channels. The small amount of coolant that flows between the fuel channels is termed bypass flow.

As coolant flows up a fuel channel, it is heated to saturation and becomes a two-phase mixture. The flow quality, X, at a given point in the channel is defined as the mass flow rate of the vapor phase divided by the mass flow rate of the mixture.

The void fraction is defined as the ratio of the local vapor volume to the total local volume. At a given point in a flow channel it can be expressed as

$$\alpha = \frac{A_v}{A_v + A_{\ell}} \qquad (4-1)$$

 α = void fraction

A₁ = cross sectional area occupied by vapor phase

 A_{l} = cross sectional area occupied by liquid phase The density of a two-phase mixture can be related to the void fraction by

$$R = 1. + \alpha(\rho_v / \rho_l - 1.) \qquad (4-2)$$

$$\rho_v = \text{density of saturated vapor}$$

$$\rho_l = \text{density of saturated liquid}$$

Figure 4.1 BWR Coolant Flow Diagram.

R = density of two-phase mixture relative to ρ_{ρ}

As mentioned previously, a thermal-hydraulic feedback calculation is linked to the neutronics model. This is an iterative process by which new nodal nuclear properties are calculated as a function of the void fraction of the active coolant flow for each power distribution iterant. A minimum critical heat flux ratio (MCHFR) calculation has also been included in the thermal-hydraulics model. The calculational techniques used in the thermal-hydraulics model will be discussed in this chapter.

4.1 Coolant Flow Distribution

In order to calculate the quality of the coolant at a particular node, the coolant mass flow rate within the flow channel must be known. The flow rate varies considerably from channel to channel. This is primarily due to inlet orificing and variations in void content. The void content is, of course, coupled to the power generated in the assembly. In order to account for these effects, a polynomial fit of flow versus average assembly power is used.

$$F_{r}(I,J) = A + B\overline{P}(I,J) + C\overline{P}(I,J)^{2}$$
(4-3)

Fr(I,J) = relative coolant mass flow rate in channel (I,J)
at hot full power conditions

P(I,J) = assembly averaged power, relative to an "average"
 assembly at hot full power

A,B,C = input constants

A, B, and C are input for each hydraulicly unique flow channel type. These constants can be evaluated using a separate thermal-hydraulic code

capable of treating, in detail, effects such as inlet orifices, fuel rod array geometry, flow mixers, and the axial power distribution. This may require iteration between assembly power distributions and the flow polynomials. A channel type overlay is used to assign a set of flow constants to each channel location.

The assembly averaged power used in equation 4-3 is calculated from

$$\overline{P}(I,J) = \frac{PCTPWR}{100} \frac{1}{NZ} \sum_{k=1}^{NZ} P(I,J,k) . \qquad (4-4)$$

PCTPWR = reactor power in percent of rated power

NZ = number of axial nodes represented

P(I,J,K) = relative power of node (I,J,K)

After calculating flow rates from equation 4-3, the values are normalized to a mean of 1.0. The actual flow rate is then calculated from

$$F(I,J) = \frac{TFLOW}{Na} F_r(I,J) . \qquad (4-5)$$

$$F(I,J) = actual \ coolant \ mass \ flow \ rate \ in \ lbm/hr$$

$$TFLOW = total \ incore \ coolant \ flow \ rate \ (corrected \ for \ bypass \ flow) \ in \ lbm/hr$$

$$Na = number \ of \ assemblies \ in \ the \ core$$

4.2 Quality Calculation

The quality of the active coolant in a flow channel is calculated from

$$X = \frac{h - h_{sat}}{h_{fg}}$$
(4-6)
$$h = coolant enthalpy (Btu/lbm)$$

The increase in coolant enthalpy for a given node, $\Delta h(I,J,K)$, can be calculated from

$$\Delta h(I,J,K) = \left[\frac{PCTPWR \cdot MWTH \cdot CF}{100. \cdot NZ} \right] \left[\frac{P(I,J,K)}{F(I,J)} \right] . \qquad (4-7)$$

$$PCTPWR = reactor power in percent of rated power$$

$$MWTH = rated reactor power (Mw_{th})$$

$$CF = 3.4127 \times 10^{6} \frac{Btu/hr}{Mw}$$

$$NZ = number of axial nodes in problem$$

$$P(I,J,K) = relative power of node (I,J,K)$$

$$F(I,J) = coolant flow rate through node (lbm/hr)$$

The coolant enthalpy at the exit of a node is given by

$$h_{exit}^{(I,J,K)} = h_{in} + \sum_{k=1}^{K} \Delta h(I,J,k) , \qquad (4-8)$$

where h_{in} is the core inlet enthalpy. The average enthalpy of a node, $\overline{h}(I,J,K)$, is used to calculate the quality of that node.

$$\overline{h}(I,J,K) = \frac{1}{2} \left[h_{\text{exit}}(I,J,K-1) + h_{\text{exit}}(I,J,K) \right]$$
(4-9)

The numerical expression of equation 4-6 is then

$$X(I,J,K) = \frac{1}{h_{fg}} h_{in} + \frac{PCTPWR \cdot MWTH \cdot CF}{100 \cdot NZ} \frac{1}{F(I,J)}$$
$$x \begin{bmatrix} K-1 \\ \Sigma P(I,J,k) + \frac{1}{2} P(I,J,K) \end{bmatrix} - h_{sat}$$
(4-10)

4.3 Void Fraction

The void fraction of a node is calculated from the average node quality using the modified Armand correlation 11.

$$\alpha = 0. \qquad \text{for } X \leq 0.$$

$$\alpha = \frac{C_1 \cdot X + C_2 \cdot X^2}{\frac{v_f}{v_g} + x \cdot \left[1. - \frac{v_f}{v_g}\right]} \qquad \text{for } X > 0. \qquad (4-11)$$

$$v_f = \text{specific volume of saturated liquid}$$

 υ_g specific volume of saturated steam C_1 and C_2 are empirical constants. The default values are C_1 = 0.833 , C_2 = 0.167 .

A graph of void fraction versus quality using the above values for C_1 and C_2 and specific volumes for saturated steam and water at 1035 psia and 548.8° Fahrenheit is shown in figure 4.2.

4.4 MCHFR Calculation

The local critical heat flux is calculated using the Janssen-Levy¹² correlation. At 1000 psia,

$$q_{crit}^{"} = 7.05 \times 10^{5} + 0.237 \cdot G \qquad \text{for } X < x_{1} \quad (4-12)$$

$$q_{crit}^{"} = 1.635 \times 10^{6} - 0.270 \cdot G - 4.710 \times 10^{6} \cdot X \qquad \text{for } x_{1} < X < x_{2}$$

$$q_{crit}^{"} = 6.05 \times 10^{5} - 0.164 \cdot G - 6.53 \times 10^{5} \cdot X \qquad \text{for } x_{2} < X$$

$$q_{crit}^{"} = \text{critical heat flux (Btu/hr ft}^{2})$$

Figure 4.2 Void Fraction vs. Quality Calculated from Modified Armand Correlation at 1035 psia and 548.8° F.

$$X = quality$$

$$x_{1} = 0.197 - 1.08 \times 10^{-7} \cdot G$$

$$x_{2} = 0.254 - 2.6 \times 10^{-8} \cdot G$$

$$G = coolant mass flux (1bm/hr ft2)$$
At pressures other than 1000 psia,
$$q''_{crit} = q''_{crit} (at 1000 psia) + 4.4 \times 10^{5} - 4.4 \times 10^{2} \cdot PSIA \quad (4-12b)$$

The applicable range of the parameters used above are

PSIA = 600 to 1450 psia,
G = 4.0 x
$$10^5$$
 to 6.0 x 10^6 lbm/hr ft²,
X = negative to 0.45,
D_e = 0.125 to 0.6 in. (equivalent diameter of channel),
L = 29. to 108. in (channel length).

The local quality is calculated using equation 4-10. The coolant mass flux in each channel is calculated from the active coolant mass flow rate and the active channel flow area.

$$G(I,J) = \frac{F(I,J) \cdot (144 \text{ in}^2/\text{ft}^2)}{\text{AREA}}$$
(4-13)

F(I,J) = mass flow rate calculated from equation 4-5AREA = active flow area per channel (in²)

The minimum critical heat flux ratio at each node is calculated from

$$MCHFR(I,J,K) = \frac{q''_{crit}(I,J,K)}{q''(I,J,K)} .$$
(4-14)

q"(I,J,K) = local heat flux (Btu/hr ft²)

The heat flux used above is evaluated from the relative power of the

node and three input quantities.

$$q''(\mathbf{I},\mathbf{J},\mathbf{K}) = q_{av}'' \cdot \underbrace{PEAKF \cdot \underline{PCTPWR} \cdot P(\mathbf{I},\mathbf{J},\mathbf{K})}_{100.}$$
(4-15)

q" = core average heat flux at rated power (Btu/hr ft²) (input)

PCTPWR = reactor power in percent of rated power (input)
P(I,J,K) = relative power of node (I,J,K)

The peak heat flux in a node will be slightly higher than the node average heat flux. Among other reasons, this may be due to fuel rods of varying enrichments within an assembly. PEAKF is intended primarily as a correction factor to account for this. Safety margins may also be included in PEAKF.

If the MCHFR calculation is requested, the calculation will be done at the beginning and end of each exposure step. The MCHFR and the indices of the node where it occurs will be printed. An edit of the MCHFR in each channel may also be requested.

5.0 HALING SOLUTION

The Haling solution option calculates the optimal power distribution for an operating cycle. This is determined from the beginning of cycle fuel loading description and the cycle length. The optimal power distribution is here defined as that which minimizes power peaking throughout the cycle.

The underlying principle of the Haling solution is that power peaking is minimized by a power distribution that does not change during the cycle.⁶ It is assumed that fuel reactivity is a decreasing function of exposure near the end of the cycle. This may not be true at low exposures in fuel characterized by a high breeding ratio or containing burnable poisons. It is a generally good assumption in LWR's for the burnups encountered at the end of an operating cycle.

The Haling logic can be easily understood with the aid of figure 5.1. Curve A is postulated as the optimal reactor power distribution. Curve B has a lower power peaking ratio. This can occur only as the result of reduced reactivity, implying greater exposure, in the area of the peak. The higher exposure, however, is inconsistant with the lower peak. It implies that another power distribution, with a higher power peak, was used earlier in the cycle. Thus, power peaking can only be minimized if the power distribution and end of cycle exposure distribution are self consistant.

The Haling solution is of use in fuel reload design as well as operations. It provides a means of comparing fuel loading patterns on the basis of the minimum power peaking attainable with each. With a given

Z

Figure 5.1 Illustration of Haling Solution Logic.

loading pattern, it can be used to determine the optimal control poison (i.e. burnable poison and control rods) distribution.

BWR control rods are very strong absorbers, producing large flux depressions in their vicinity. This makes it impractical to actually operate at the optimal power distribution. The Haling solution can, however, be used as an exposure averaged target distribution when planning rod withdrawal strategy.

The Haling solution is arrived at iteratively. Starting with an assumed power distribution, the void and end of cycle exposure distributions can be calculated. These can be used to calculate another power distribution. Due to the extremely unstable nature of the Haling iteration, an underrelaxation scheme is used.

$$P_{l}^{H} = P_{l}^{H-1} + \alpha_{H} \cdot \left(P_{l}(E^{H-1}, V^{H-1}) - P_{l}^{H-1}\right)$$
(5-1)

$$P_{l}^{H} = \text{power at node } l \text{ for iterant } H$$

$$P_{l}(E^{H-1}, V^{H-1}) = \text{power at node } l \text{ calculated using the exposure}$$

and void distributions consistant with the pre-
vious power iterant

$$H = \text{Haling iteration counter}$$

$$\alpha_{H} = \text{relaxation factor (=0.1)}$$

The exposure for each Haling iterant is calculated from

$$E_{\ell}^{H} = E_{\ell o} + P_{\ell}^{H} \cdot BU \qquad . \tag{5-2}$$

$$E_{\ell}^{H} = \text{exposure at node } \ell \text{ for iterant H}$$

$$E_{\ell o} = \text{beginning of cycle exposure at node } \ell$$

$$BU = \text{cycle length (MWD/MTU)}$$

6.0 RESULTS

In this chapter, the results of test calculations used to demonstrate the model are presented. These include benchmarking tests used to check the neutronics model, and power and void distribution tests which demonstrate feedback effects, control rod effects, and the Haling solution option. Input for the cases described in sections 6.3 and 6.4 is basically the same as that given at the end of Appendix A.

6.1 Benchmarking of the Neutronics Model

A 9x9x9 node test case was used to benchmark the neutronics model. Fifteen centimeter mesh widths were used and all nodes were assigned the cross sections given in table 6.1. Various sets of boundary conditions were applied to the six boundary faces of the cubical model. The calculated flux distributions could then be compared to analytical solutions in order to verify the results.

Table 6.1 Cross Sections Used in Benchmarking Cases.

	D (cm)	Σ_{a} (cm ⁻¹)	$v\Sigma_{f}$ (cm ⁻¹)	κΣ _f (Mev/cm)	$\Sigma_r (cm^{-1})$
Fast	1.418	0.7104×10^{-2}	0.4074×10^{-2}	0.3231	0.1038x10 ⁻¹
Thermal	0.5492	0.7522×10^{-1}	0.1069	9.020	

The eleven cases which were run are summarized in table 6.2. Case 1 represented a reactor of infinite dimensions. A flat flux distribution was calculated as expected. The k-effective for this case was calculated as 1.1938 - the same as k-infinity calculated directly from the two-group cross sections.

Table 6.2 Neutronics Model Benchmarking Cases.

<u>Case #</u>	Description	Boundary Conditions	Analytical Solution
1	Infinite reactor	zero current on all 6 faces	$\phi(\mathbf{x},\mathbf{y},\mathbf{z}) = \mathbf{C}$
2	Cubical reactor 135x135x135 cm	zero flux on all 6 faces	$\phi(x,y,z) = C \cdot \sin(x\pi/a)$ $\cdot \sin(y\pi/a) \cdot \sin(z\pi/a)$
3	Semi-infinite slab, 135 cm thick	zero flux faces l & 2, zero current faces 3,4,5, &6	$\phi(x,y,z) = C \cdot \sin(x\pi/a)$
4	Same as #3	zero flux faces 3 &4, zero current faces 1,2,5, &6	$\phi(\mathbf{x},\mathbf{y},\mathbf{z}) = C \cdot \sin(y\pi/a)$
5	Same as #3	zero flux faces 5 &6, zero current faces 1,2,3, &4	$\phi(x,y,z) = C \cdot \sin(z\pi/a)$
6	Semi-infinite slab, 270 cm thick	zero flux face 1, zero current faces 2,3,4,5, &6	$\phi(x,y,z) = C \cdot \sin(x\pi/2a)$
7	Same as #6	zero flux face 2, zero current faces 1,3,4,5, &6	$\phi(\mathbf{x},\mathbf{y},\mathbf{z}) = C \cdot \cos(\mathbf{x}\pi/2\mathbf{z})$
8	Same as #6	zero flux face 3, zero current faces 1,2,4,5, &6	$\phi(x,y,z) = C \cdot \sin(y\pi/2a)$
9	Same as #6	zero flux face 4, zero current faces 1,2,3,5, &6	$\phi(x,y,z) = C \cdot \cos(y\pi/2a)$
10	Same as ∦6	zero flux face 5, zero current faces 1,2,3,4, &6	$\phi(x,y,z) = C \cdot \sin(2\pi/2a)$
11	Same as #6	zero flux face 6, zero current faces 1,2,3,4, &5	$\phi(x,y,z) = C \cdot \cos(z\pi/2a)$

a = 135.

Case number 2 represented a cubical reactor. The x-y flux distribution calculated at the center plane is shown in figure 6.1. Figure 6.2 shows a graph of the flux distribution through the center of this plane. Calculated values are shown as small circles and the analytic solution is represented by a line.

Cases 3 through 5 represented a 135 centimeter thick semi-infinite slab reactor. A 270 centimeter semi-infinite slab reactor was represented in cases 6 through 11. The case descriptions and results were essentially identical except for orientation and slab thickness. The resulting transverse flux distributions are shown in figures 6.3 and 6.4. Again, calculated values are shown as circles and the analytic solutions are represented by lines.

					1					
	0.03	0.09	0.13	0.16	0.17	0.16	0.13	0.09	0.03	
	0.030	0.087	0.133	0.163	0.174	0.163	0.133	0.087	0.030	
	0.09	0.25	0.38	0.47	0.50	0.47	0.38	0.25	0.09	
	0.087	0.250	0.383	0.470	0.500	0.470	0.383	0.250	0.087	
	0.13	0.38	0.59	0.72	0.77	0.72	0.59	0.38	0.13	
-	0.133	0.383	0.587	0.720	0.766	0.720	0.587	0.383	0.133	
	0.16	0.47	0.72	0.88	0.94	0.88	0.72	0.47	0.16	
	0.163	0.470	0.720	0.883	0.940	0.883	0.720	0.470	0.163	
	0.17	0.50	0.77	0.94	1.00	0.94	0.77	0.50	0.17	C
	0.174	0.500	0.766	0.940	1.000	0.940	0.766	0.500	0.174	Y
	0.16	0.47	0.72	0.88	0.94	0.88	0.72	0.47	0.16	
	0.163	0.470	0.720	0.883	0.940	0.883	0.720	0.470	0.163	
1	0.13	0.38	0.59	0.72	0.77	0.72	0.59	0.38	0.13	
	0.133	0.383	0.587	0.720	0.766	0.720	0.587	0.383	0.133	-
	0.09	0.25	0.38	0.47	0.50	0.47	0.38	0.25	0.09	-
	0.087	0.250	0.383	0.470	0.500	0.470	0.383	0.250	0.087	
	0.03	0.09	0.13	0.16	0.17	0.16	0.13	0.09	0.03	
	0.030	0.087	0.133	0.163	0.174	0.163	0.133	0.087	0.030	

£

calculated

analytic solution

Figure 6.1 Comparison of Calculated and Analytical Solutions of the Relative Flux Distribution for the Center Plane of a Cubical Reactor.

Figure 6.2 Comparison of Calculated and Analytical Solutions of the Relative Flux Profile through the Center of a Cubical Reactor.

Figure 6.3 Comparison of Calculated and Analytical Solutions of the Relative Flux Distribution in a 135 cm Semi-Infinite Slab Reactor.

Figure 6.4 Comparison of Calculated and Analytical Solutions of the Relative Flux Distribution in a 270 cm Semi-Infinite Slab Reactor.

6.2 Reference Reactor

The Edwin Hatch Unit #2 reactor was used as the reference reactor for the following calculations. This is a boiling water reactor of recent design with a thermal output of 2436 megawatts. The cycle 1 fuel loading pattern was used and is shown in figure 6.5. Other pertinent information can be found in table 6.3^{13} .

BWR fuel assemblies commonly use more than one fuel pin enrichment in a single assembly as well as axial burnable poison distributions. This is the case with the core which was modeled. Due to limited resources it was not feasible to properly generate two-group input for use in the test calculations. A two dimensional depletion calculation, used to generate exposure dependent assembly averaged cross sections, could not be done. The burnable poison (gadolinium) distributions used were not available due to their proprietary nature, nor were cross sections for gadolinium. The approach taken was to generate cross sections for each assembly type with LEOPARD, using assembly average enrichments and volume fractions. Gadolinium was ignored. These restrictions limit the validity of the results obtained.

The control rod worths used are shown in table 6.4. These are typical rod worths for a BWR. It was not possible to obtain more accurate values. The rod worths of table 6.4 were used for all three fuel types at all exposures.

1	1	1	1	1	1	1	1	1	2	2	2	3	
1	1	2	1	2	1	2	1	2	2	2	2	3	
1	2	1	2	1	2	1	2	1	2	2	2	3	
1	1	2	1	2	1	2	1	2	2	2	2	3	
1	2	1	2	1	2	1	2	2	2	2	2	3	
1	1	2	1	2	1	2	1	2	2	2	3		
1	2	1	2	1	2	1	2	2	2	3		-	
1	1	2	1	2	1	2	2	2	2	3			
1	2	1	2	2	2	2	2	2	2	3			
2	2	2	2	2	2	2	2	2	3		-		
2	2	2	2	2	2	3	3	3		•			
2	2	2	2	2	3				-				
3	3	3	3	3		-							
					•								

Region	Average Enrichment w/0 U-235
1	1.83
2	2.33
3	0.711

Figure 6.5 Edwin I. Hatch Nuclear Plant Unit #2 Fuel Loading Pattern.

Table 6.3 Design Data for Edwin I. Hatch Nuclear Plant Unit #2.

Nominal thermal output	2436	Mw
Incore coolant flow rate	7.70x10 ⁷	lbm/hr
Nominal system pressure	1035.	psia
Coolant saturation temperature	548.8	°F
Average heat flux	145,060.	Btu/hr ft 2
Core inlet enthalpy	526.9	Btu/1b
Active coolant flow area per assembly	15.82	in ²
Active fuel length	150.	in
Assembly lattice	8x8	
Assembly pitch	6.0	in

Table 6.4 Control Rod Worths.

Void Fraction	Rod Worth ($\Delta k/k$)	
0.00	0.24	
0.32	0.27	
0.64	0.32	

6.3 Power and Void Distributions

The effect of voiding on the axial power distribution is shown in figures 6.6 through 6.8. All three cases illustrated were run at beginning of life, nominal flow conditions with control rods completely withdrawn (ARO). At hot zero power (HZP), the distribution has a cosine shape as expected. At 50% power, coolant voiding decreases moderation in the upper core. This shifts the power distribution downward where the core is relatively more reactive. The increased voiding at hot full power (HFP) shifts the distribution even lower and results in a higher power peak. Control rods are used to offset this void induced tendency toward power peaking in the lower part of the core.

Control rod effects are illustrated in figure 6.9. These cases were run at beginning of life, hot full power conditions. Inserting all rods half way in the core shifts the power peak to the upper part of the core. The downward shift due to voiding is still evident, but the control rods have almost completely eliminated power production in the lower half of the core. Completely inserting all rods gives a very large peak at the bottom of the core. This case is unrealistic in that it is subcritical, but it does demonstrate the effect of increased control rod worths with increasing void fraction.

Three control rod pattern cases are described by figures 6.10 through 6.12. These were run at hot full power, beginning of life conditions. The resulting axial power distributions are shown in figure 6.13. The effects illustrated by the three previous cases are still evident, but have been complicated by varying rod positions. Deeply

•

Figure Power, 6.8 ARO. Figure 6.9 Il Distribution. Illustration of Control Rod Effects ĝ the Axial Power

24	0	24	0	24	0	12					
0	8	0	. 8	0	8	0					
24	0	24	0	24	0	0					
0	8	0	8	0	8						
24	0	24	0	24	0						
0	8	0	8	0							
12	0	0		k _{eff} =	1.0817						
	Peak = 3.242 Radial Peak = 1.455										

Nodes Inserted

Axial Peak = 2.088

Figure 6.10 Control Rod Positions for Control Rod Pattern Case #1.

Nodes Inserted

2	24	16	24	2	24	12
24	16	24	2	24	16	0
16	24	2	24	16	24	0
24	2	24	16	24	2	
2	24	16	24	2	0	
24	16	24	2	0		
12	0	0		k _{eff}	= 0.9764	
			-	Peak Radia	= 5.528 1 Peak =	1.888

Axial Peak = 1.753

Figure 6.11 Control Rod Positions for Control Rod Pattern Case #2.

Nodes Inserted

23	0	23	0	23	0	12				
0	16	0	16	0	16	0				
23	0	23	0	23	0	0				
0	16	0	16	0	16					
23	0	23	0	23	0					
0	16	0	16	0		,				
12	0	0		k	= 1.0598					
•	$\frac{1}{1.0598}$ $\frac{1}{1.0598}$ $\frac{1}{1.0598}$ $\frac{1}{1.0598}$ $\frac{1}{1.0598}$ $\frac{1}{1.0598}$									

Radial Peak = 1.496 Axial Peak = 2.081

Figure 6.12 Control Rod Positions for Control Rod Pattern Case #3.

inserted rods coupled with coolant voiding tend to produce a peak near the bottom of the core. Another power peak occurs just above the tip of partially inserted rods. These effects make it difficult to achieve a relatively flat power distribution. The axially integrated two-dimensional power distributions are given in figure 6.14.

A beginning of life axial power distribution given in the Hatch Unit #2 Final Safety Analysis Report is shown in figure 6.15¹³. Control rod positions and axial burnable poison distributions for this case are not specified. This is a much flatter distribution than those obtained in the previously described cases. Several attempts to produce a comparable distribution were unsuccessful. Presumably the difficulty was due to improper input, particularly due to the fact that burnable poison distributions were not represented.

.706	1.168	1.193	.747	.757	1.239	1.253	.784	.812	1.455	1.407	.906	.243
1.075	.675	.659	.887	.948	.862	.943	1.441	1.405	.918	.839	1.021	.317
.736	1.166	1.194	.782	.794	1.242	1.259	.829	.865	1.496	1.472	1.082	.304
	1.207	1.330	1.255	1.366	1.275	1.383	1.306	1.431	1.424	1.333	1.070	.294
	.877	.971	.743	.905	1.434	1.583	.937	.938	1.136	1.141	1.222	.373
	1.099	1.212	1.261	1.372	1.161	1.260	1.320	1.452	1.307	1.232	1.122	.321
		1.266	1.377	1.290	1.393	1.302	1.411	1.319	1.394	1.303	1.071	.296
		.958	.909	.937	1.589	1.454	.939	.809	1.101	1.118	1.223	.374
		1.157	1.387	1.298	1.269	1.187	1.428	1.338	1.273	1.190	1.098	.313
			.788	.849	1.300	1.397	.791	.843	1.363	1.315	1.009	.276
			1.439	1.592	.950	.943	1.014	1.068	.829	.806	1.097	.333
			.832	.899	1.312	1.413	.839	.899	<u>1.390</u>	1.342	1.055	.288
			-	.791	1.386	1.275	.819	.793	1.247	1.154	.829	.196
				1.457	.943	.805	1.069	1.074	.862	.772	.923	.244
				.837	1.402	1.296	.872	.850	1.283	1.188	.871	.216
					1.262	1.324	1.192	1.205	1.054	.824	.265	
					1.008	1.069	.827	.942	1.402	1.124	.352	
·	-				1.151	1.205	1.211	1.237	.972	.755	.268	
Case	1					1.190	1.226	1.101	.862	.292		
Case	2					1.037	1.024	1.087	1.512	.522		
Case	3					1.082	1.245	1.129	.791	.262		
							.692	.573	.669	.195		
							1.804	1.886	1.665	.518		
							.732	.610	.688	.197		
								.428	.468	.113		
								1.883	1.496	.401		
								.463	.503	.121	l	
									.140			
									.552			
									.153	l		
										\mathbf{N}		
											,	
										Ч	í.	

Figure 6.14 Radial Power Distributions Calculated from Control Rod Pattern Cases.

63

i.

-----Ę

6.4 Haling Solution

A Haling solution calculation was run using an end of cycle average core exposure of 12000 MWD/MTU. The resulting x-y power distribution is shown in figure 6.16. Figure 6.17 shows the axial power and void distributions obtained. Judging from the control rod cases, it would be impossible to achieve this power distribution at beginning of life conditions without an axial distribution of burnable poison. As expected, a very flat power distribution was calculated with a very low peak to average power ratio. The peak to average ratio was 1.396 for this case.

Figure 6.18 shows a Haling axial power distribution for a typical BWR. The calculated power distribution in figure 6.17 compares very favorably with this.

													. —
1.057	1.069	1.084	1.090	1.097	1.098	1.103	1.106	1.119	1.203	1.125	0.923	0.338	Ľ
	1.088	1.192	1.116	1.208	1.124	1.214	1.129	1.221	1.208	1.122	0.917	0.334	
	L	1.127	1.223	1.142	1.231	1.145	1.231	1.142	1.203	1.108	0.897	0.322	
		L	1.147	1.240	1.154	1.241	1.152	1.231	1.189	1.075	0.851	0.295	
			L	1.156	1.244	1.154	1.238	1.220	1.151	0.999	0.741	0.223	
				F	1.154	1.234	1.135	1.184	1.076	0.853	0.308		-
					L	1.136	1.199	1.134	0.972	0.411		-	
						L	1.158	1.064	0.869	0.322			
							L	0.943	0.721	0.226			
								F	0.276		j.		
									L	⁺_\&_			

Figure 6.16 Radial Power Distribution from Haling Solution Case.

Figure 6.18 Typical Haling Axial Power Distribution.

7.0 CONCLUSIONS

Test results indicate that the computer code which has been developed is capable of modeling the burnup dependent static behavior of a boiling water reactor with reasonable accuracy. Benchmarking tests of the neutronics model yielded results that agreed very well with analytical solutions. Control rod pattern tests did not give axial power distributions as flat as had been expected. This was presumably due to the absence of axial burnable poison distributions. It is also likely that better rod patterns would have improved these results. The determination of optimal rod patterns, however, was beyond the scope of this thesis. The end of cycle power distribution calculated by the Haling solution test showed close agreement with the expected distribution. Problems with control rods and burnable poisons are depleted and control rods are fully withdrawn at the end of an ideal operating cycle.

Unfortunately, a more rigorous test of the integrated model was not possible. A complete description of the nuclear design of the reference reactor's core was not obtainable due to the proprietary nature of part of the information. Cross section input could not be properly generated due to the unavailability of a PDQ type code. Cross sections suitable for test calculations were generated using the zero-dimensional LEOPARD code.

Control rods and burnable poisons can be used to shape the power distribution in order to improve core performance. The optimal power distribution is generally defined as that which minimizes power peaking

throughout an operating cycle and is given by the Haling solution. The control rod effects which have been demonstrated indicate that the Haling power distribution cannot be attained with control rods. As the rods are withdrawn to counteract fuel depletion, the fuel exposure distribution becomes the dominant influence on the power distribution. The problem that remains is how to select rod withdrawal patterns which, while minimizing power peaking and maintaining the core reactivity within flow control bounds, will yield an end of cycle exposure distribution consistant with the Haling power distribution.

With the proper input, the code which has been developed should provide a reasonable model of a boiling water reactor core. Such a model can be used to develop control rod withdrawal and fuel loading strategies which can be applied to improve reactor performance. A list of possible future modifications which can improve the accuracy and extend the applicability of the model are given below.

List of Future Improvements

1. Extension of the xenon model to include time dependency would enable the model to predict the effects of xenon transients.

2. The Doppler reactivity effect has not been included in the model. Increasing fuel temperature causes Doppler broadening of U-238 and Pu-240 resonance absorbtion peaks. This results in increased resonance absorbtion. The effect is worth about one-half of a percent in reactivity. Inclusion of this feedback effect should produce a slight improvement in results.

3. One of the largest reactivity effects is due to coolant voiding.

An improvement in the void fraction model could improve the accuracy of the predicted power distribution.

4. The model is limited to reactor cores with quadrant symetry. This is sufficient for most cases of interest since control rod patterns and most fuel loading patterns have octant or quadrant symetry. Extension to a half or full core model would require a great deal of modification to the program, but would extend its applicability.

5. The control rod model used assumes only the thermal absorbtion cross section changes when a node is rodded. Inclusion of separate table sets for rodded nodes may improve the predicted effects of control rods by correcting for the changes in other two-group constants.

6. The determination of optimal control rod withdrawal patterns is one of the biggest problems in BWR operation. A possible future project using this program is the development of a logic for an automated search for optimal control rod withdrawal patterns.

BIBLIOGRAPHY

 D. L. Delp, D. L. Fischer, J. M. Harriman, and M. J. Stedwell, "FLARE, A Three-Dimensional Boiling Water Simulator," General Electric Company, USAEC Report GEAP-4598, (July 1964).

2. R. B. Stout, "Optimization of In-Core Nuclear Fuel Management in a Pressurized Water Reactor," Ph. D. Thesis, Oregon State University (1972).

3. R. W. Hardie, W. W. Little, Jr., "3DB, A Three-Dimensional Diffusion Theory Burnup Code," BNWL-1264, (March 1970).

4. S. Børresen, "A Simplified, Coarse-Mesh, Three-Dimensional Diffusion Scheme for Calculating The Gross Power Distribution in a Boiling Water Reactor," Nuclear Science and Engineering: 44, 37-43 (1971).

5. G. M. Roy, "Getting More Out of BWR's," Nucleonics: 24(11), 41-43 (1966).

6. R. K. Haling, "Operating Strategy for Maintaining an Optimum Power Distribution Throughout Life," USAEC Report TID-7072 (1964).

7. R. F. Barry, "The Revised LEOPARD Code, A Spectrum Dependent Non-Spatial Depletion Program," WCAP-2759, Westinghouse Electric Corp. (1965).

8. W. R. Cadwell, "PDQ-7 Reference Manual," WAPD-TM-678, Westinghouse Electric Corp. (1967).

9. R. J. Breen, O. J. Marlowe, and C. J. Pfeifer, "HARMONY: System for Nuclear Reactor Depletion Computation," WAPD-TM-478, Westinghouse Electric Corp., (1965).

10. J. J. Duderstadt and L. J. Hamilton, <u>Nuclear Reactor Analysis</u>, Ch. 8-10, John Wiley and Sons, Inc., New York, 1976.

11. A. A. Armand, "The Resistance During The Movement of a Two-Phase System in Horizontal Pipes," AERE-Trans., vol. 828 (1959), Izv. V. T. I. no. 1, 1946, p. 16. 12. E. Janssen and S. Levy, "Burnout Limit Curves for Boiling Water Reactors," General Electric Company Report APED 3892 (1962).

13. "Edwin I. Hatch Nuclear Plant Unit Number 2, Final Safety Analysis Report," Section 4, Georgia Power Company. APPENDICES

APPENDIX A

Input Instructions

Unless otherwise noted, all input is in NAMELIST or free format. NAMELIST input is initiated with \$INPUT (&INPUT on IBM computers). The dollar sign (or &) must begin in column 2 of an 80 column record. \$INPUT is followed by a list of variable assignments in the form of

variable=value

These are separated by commas. NAMELIST input is terminated by a dollar sign (&END on IBM) following the last variable assignment. NAMELIST variables not referenced retain their previous, or default, values.

Free format input consists of a list of values separated by blanks and/or commas. These are assigned, in order, to the variables in the input list. Free format input may continue on more than one record if needed. If desired, the input scan can be terminated by a slash (/). The remaining variables will retain their previous values.

The following variables and definitions are used in the input instructions:

NODES = total number of nodes represented
NP = number of nodes in each axial plane
NZ = number of axial nodes represented
NX = maximum number of nodes per row

2-D array format: In 2-D array format, NP values are input in free format. These values are assigned to planar locations in the order illustrated in figure A.1.

3-D array format: NODES values are input in free format and are assign-

J						
1	2	3	4	5	6	NCOL(1) = 6
7	8	9	10	11		NCOL(2) = 5
12	13	14	15	16		NCOL(3) = 5
17	18	19	20		•	NCOL(4) = 4
21	22	23		-		NCOL(5) = 3
24			e .			NCOL(6) = 1
	J- 1 7 12 17 21 24	J 2 1 2 7 8 12 13 17 18 21 22 24	J 2 3 1 2 3 7 8 9 12 13 14 17 18 19 21 22 23 24	J 2 3 4 7 8 9 10 12 13 14 15 17 18 19 20 21 22 23 24	J 2 3 4 5 1 2 3 4 5 7 8 9 10 11 12 13 14 15 16 17 18 19 20 20 21 22 23 24 24	J 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 21 22 23 4 5

NP = 24NX = 6

Figure A.1 Quarter Core Plane Indexing Conventions.

ed to each node in the problem, plane by plane, as in 2-D array format. The first axial plane is at the bottom of the core, and the last is at the top.

Input records are cards or 80 column card images.

Detailed Input Description

(Listed in order of occurance)

1. Title card. FORMAT (20A4)

Problem description in NAMELIST format. NAMELIST name = INPUT.
 Recommended values are marked by asterisks (*).

NAMELIST

<u>Variable</u>	Description		Default
IPTYPE	IPTYPE = 1 for burnup step problem.	IPTYPE = 2 for	1
	Haling solution.		

- IGEOM = 1 for quarter core geometry. IGEOM = 2 for 1
 square plane geometry.
- NCOL(NX) NCOL(I), I=1,NX are the number of nodes in each horizontal row of a planar cross section. (see fig. A.1)
- DX Node width in centimeters. (assembly pitch)

DZ Node height in centimeters.

- ICNTRL ICNTRL = 0 if no control rods are used. ICNTRL = N 0
 if control rods are used. Control rod worths corresponding to N table sets will be read.
- NBANKS If NBANKS = 0, control rod positions will be input as a two-dimensional array giving rod positions at each planar coordinate. If NBANKS = N, rod positions will be set by banks. A rod bank is a defined set of coor-

dinates corresponding to a group of rods that are moved as a unit.

- IPDRD IPDRD = 1 if a guess at the converged power distribu- 0
 tion is to be input. This may speed convergence in
 some cases. If IPDRD = 0, a flat power distribution
 is used as the first guess.
- IEXRD = 0 sets the fuel exposure at each node to 0.0 0
 MWD/MTU. IEXRD = 1 if fuel exposures are to be input
 in 3-D array format. IEXRD = -1 if fuel exposures
 are to be input axially at selected planar coordinates. (IEXRD = -1 must be used if the exposure
 punch from a previous case is to be read.)
- IEDIT(1) IEDIT(1) = -1 if 3-D and integrated power distribu- -1
 tions are to be edited. IEDIT(1) = 0 if only integrated (2-D) power distributions are to be edited.
 IEDIT(1) = 1 if only 3-D power distributions are to
 be edited.
- IEDIT(2) IEDIT(2) = -1 if 3-D and assembly average exposure 0
 distributions are to be edited. IEDIT(2) = 0 if
 only assembly average exposure distributions are to
 be edited. IEDIT(2) = 1 if only 3-D exposure distributions are to be edited.
- IEDIT(3) IEDIT(3) = -1 to punch the exposure distribution at the end of each burnup step. IEDIT(3) = 0 for no exposure punch. IEDIT(3) = 1 to punch the exposure

Description

distribution at the end of the case.

- IEDIT(4) IEDIT(4) = -1 to edit void fractions for the top 1
 plane only. IEDIT(4) = 0 for no void fraction edit.
 IEDIT(4) = 1 to edit 3-D void fraction distributions.
- IEDIT(5) IEDIT(5) = -1 to edit the location and value of the 1
 MCHFR. IEDIT(5) = 0 for no MCHFR edit. IEDIT(5) = 1
 edits the location and value of the MCHFR plus the
 MCHFR for each channel.
- IEDIT(6) IEDIT(6) = -1 to punch the power distribution at the 0
 end of each burnup step. IEDIT(6) = 0 for no power
 distribution punch. IEDIT(6) = 1 to punch the power
 distribution at the end of the last burnup step only.
- A1Nodal weighting factor for fast fluxes.0.31A2Nodal weighting factor for thermal fluxes.0.73MAXINumber of inner iterations per outer iteration.3*MAXOMaximum number of outer (source) iterations per6*
- power iteration.
- EPSO Source iteration convergence criterion. The source 1.0E-6 iteration is considered converged when the relative change in the fission source for each node is less than or equal to EPSO:

$$\max_{\substack{\ell \\ \ell \\ s_{\ell}^{\mathsf{I}}}} \left(\frac{|s_{\ell}^{\mathsf{I}} - s_{\ell}^{\mathsf{I}-1}|}{s_{\ell}^{\mathsf{I}}} \right) \stackrel{<}{=} \text{EPSO}$$

NAMELIST Variable	Description	Default
	verged when the relative change in power at each	
	node is less than or equal to EPSP.	
ISOR	If ISOR = 1, successive overrelaxation will be used	0*
	on the inner iterations. (Not recommended.)	
ALPHA	Overrelaxation factor used for outer iterations.	1.65*
IXE	If IXE = 0 no equilibrium xenon correction will be	1
	made.	
ITSETS	Number of cross section table sets to be read.	1
IEXPTS	Number of exposure interpolating points used in the	1
	table sets.	
IVDPTS	Number of void fraction interpolating points used in	1
	the table sets.	
BUMASK	Exposure mask used by the table sets. BUMASK is an	0.
	array of IEXPTS elements. Exposures must be in in-	
	creasing order. (MWD/MTU)	
VMASK	Void fraction mask used by the table sets. VMASK is	0.
	an array of IVDPTS elements. Void fractions must be	
	in increasing order.	
ITSAS	Table set assignment format. If ITSAS = 1, table set	: 2
	#1 is assigned to all nodes. If ITSAS = 2, a one to	
	one correspondence is used between fuel types and	
	table sets (no axial variation). If ITSAS = 3, table	2
	set to fuel type overlays will be used.	
IFTYPS	Number of fuel types used. (Required only if ITSAS	1

= 3.)

NAMELIST Variable	Description	Default
TONNES	Core loading in Tonnes U. (Required only if burnup	
	steps are input as hours.)	
PCTPWR	Core power in percent of rated power.	100.
MWTH	Rated reactor power (Mw-thermal).	
AVHFLX	Average heat flux at the clad surface at the rated	
	reactor power. (Btu/hr ft ²)	
PEAKF	Heat flux peaking factor. (Used in MCHFR calculation)) 1.05
AREA	Active flow area per node. (ft ²)	
HIN	Coolant inlet enthalpy. (Btu/lbm)	
HSAT	Saturation enthalpy at core average temperature and	
	pressure. (Btu/1bm)	
HFG	Heat of vaporization. (Btu/lbm)	
VG	Specific volume of saturated steam. (ft ³ /lbm)	
VF	Specific volume of saturated water. (ft ³ /lbm)	
PSIA	Core average pressure. (psia)	
TFLOW	Total active incore coolant flow. (lbm/hr)	
AC1	Coefficients used in modified Armand correlation.	0.833
AC2	(See equation 4-11.)	0.167
IFLOW	If IFLOW = 0, the coolant flow in each channel will	0
	be assumed equal. If IFLOW = N, coefficients for a	
	polynomial relating channel flow to the relative	
	power of the channel will be read for N channel types	•

Variables not used in a particular case need not be input. If IVDPTS = 1, no thermal-hydraulic calculations will be done. A list of variables required for fuel exposure, void fraction, MCHFR, and equilibrium xenon calculations is given below.

Fuel exposure: BUMASK, TONNES

Void fraction: VMASK, PCPTWR, MWTH, HIN, HSAT, HFG, VG, VF, TFLOW, AC1, AC2.

MCHFR: Same as for void fraction plus AVHFLX, PEAKF, AREA, PSIA.

Eq. Xenon: PCTPWR, MWTH.

3. Boundary Conditions.

See section 2.1.2 for a detailed description of boundary condition treatment.

 $ALB = A + B \cdot VOID(\ell)$

ALB = 0.0 for zero flux,

= 1.0 for zero current,

= x.x for leakage specified by A and B.

If IGEOM = 1: Enter six pairs of constants, A and B, for the fast group and then six pairs for the thermal group. Boundary conditions must be entered, in order, for boundary faces one through six using the directional indexing convention depicted in figure 2.2.

If IGEOM = 2 (quarter core geometry): Enter two pairs of constants, A and B, for the bottom and then top of the core: first for the fast group, then for the thermal group. Next enter NX pairs of constants for boundary faces 1 through NX as shown in figure 2.4: first for the fast group, then for the thermal group.

4. Xe-135 + I-135 fission yields. (Ignore if IXE = 0)

IEXPTS yields are required for each table set corresponding to the exposures in the exposure mask. Begin a new record for each table set. For each table set enter the table set number followed by IEXPTS yield values.

5. Table set input.

The following sequence is repeated for each of ITSETS table sets. Each table set begins with the following two cards:

- a) table set number.
- b) table set descriptor. FORMAT(20A4)

Cross section input is in the following order:

a) D₁, Σ_{a1}, νΣ_{f1}, κΣ_{f1}, Σ_r,
 D₂, Σ_{a2}, νΣ_{f2}, κΣ_{f2}
 b) N^{Xe}, σ^{Xe}_{a2}, Σ_{f1}, Σ_{f2}

Input in b above is included only if IXE = 1 and must begin on a seperate record from list a.

The cross sections are input at the first void interpolating point at exposure points 1 through IEXPTS, then at the second void interpolating point at these exposures, and so on. For each table set, cross sections must be input at (IEXPTS) x (IVDPTS) state points.

Units for D are cm.; Σ_a , $\nu \Sigma_f$, Σ_r , Σ_f are cm⁻¹; $\kappa \Sigma_f$ is in Mev/cm; N^{Xe} is atoms/barn-cm; σ_{a2}^{Xe} is in barns. N^{Xe} and σ_{a2}^{Xe} must be consistant with Σ_{a2} .

6. Fuel type overlay. (Ignore if ITSAS = 1)

Enter NP integer fuel types corresponding to each planar coordinate in 2-D array format. 7. Table set to fuel type overlays. (Ignore if ITSAS \neq 3)

IFTYPS overlays are required. Each overlay description begins on a new record. An overlay description consists of an integer fuel type number followed by NZ integer table set numbers corresponding to axial nodes 1 through NZ for that fuel type.

8. Control rod positions. (Ignore if ICNTRL = 0)

Rod positions are indicated as an integer, from 0 to NZ, giving the number of axial nodes that are rodded for each planar coordinate.

If NBANKS = 0: Enter NP control rod positions for each planar coordinate in 2-D array format.

If NBANKS \neq 0: First define NBANKS control rod banks. Each bank definition must begin on a new record. A bank definition is input as a bank ID number, the number of planar coordinates assigned to the bank, and the I,J coordinates of each location. The last two coordinates must be followed by a slash(/). For example

4, 3, 7,1, 2,3, 8,11/

assigns coordinates (7,1), (2,3), and (8,11) to rod bank number 4.

After all banks are defined, each bank position is input. For each rod bank one record is required containing the bank ID followed by the axial position of the bank.

9. Control rod worths. (Ignore if ICNTRL = 0)

ICNTRL tables of control rod worths are required. For each table, the first record contains the number of the corresponding table set. This is followed by IVDPTS sets of rod worths. The first set contains IEXPTS worths for each successive exposure point in the exposure mask, corresponding to the first point in the void fraction mask. The next set begins on a new record and contains the IEXPTS worths for the second void fraction, and so on.

10. Fuel exposures. (Ignore if IEXRD = 0)

If IEXRD = 1, enter the fuel exposure distribution in 3-D array format. Exposure units are MWD/MTU.

If IEXRD = -1, axial exposure distributions are input at seclected planar coordinates by repeating the following sequence for each desired coordinate.

a) I,J planar coordinate indices.

b) Fuel exposures for axial nodes 1 through NZ in MWD/MTU.

If less than NP axial distributions are to be input, follow the last exposure distribution by one record containing -99/ . All nodes which are not assigned exposures are set at 0.0 MWD/MTU.

11. Power distribution guess. (Ignore if IPDRD \neq 1)

Enter the zero'th power distribution iterant in 3-D array format. (Code will normalize)

12. Flow channel type overlay. (Ignore if IFLOW = 0)
Enter the flow channel type indices for each planar coordinate in
2-D array format. NP integers are required.

13. Channel flow versus power polynomials. (Ignore if IFLOW = 0) Enter the coefficients of the flow versus power polynomials on one record for each of IFLOW channel types. Each record contains the channel type index followed by A, B, and C for that channel type. (See equation 4-3.) 14. Burnup step input.

If IPTYPE = 2 (Haling solution) enter the exposure increment (cycle length) for which the solution is to be calculated in MWD/MTU. This completes the input for a Haling solution problem.

If IPTYPE = 1, and no burnup step calculations are desired, no further input is required. Only the power distribuiton at the initial input conditions will be calculated.

If IPTYPE = 1, and burnup step calculations are desired, the following input is needed.

Burnup step #1:

Enter the first burnup step increment in MWD/MTU or in hours. If burnup steps are input as hours, the values must be preceded by a negative sign and TONNES must have been included in the NAMELIST input.

For each additional step, the following input is required.

a) Burnup increment and update indicators:

BURN, NEWTH, NEWF, NEWCR

BURN = step length (MWD/MTU, or -hours)

NEWTH = 1 if thermal-hydraulic parameters are to be changed for this step. Otherwise set NEWTH = 0.

NEWF = N if the fuel loading is to be changed at N planar coordinates. This allows the fuel type overlay, channel type overlay, and fuel exposure array to be changed. Otherwise NEWF = 0.

NEWCR = 0 if control rod positions are to remain unchanged.
= N if NBANKS ≠ 0 and the positions of N rod banks are to be changed.

NEWCR = -1 if NBANKS = 0 and a new rod position array is to be read.

= N if NBANKS = 0 and the rod positions at N planar coordinates are to be changed.

b) Updated thermal-hydraulic data. (Ignore if NEWTH = 0)

PCTPWR, VG, VF, HIN, HSAT, HFG, PSIA, AC1, AC2, TFLOW, and PEAKF can be changed by repeating the NAMELIST input as described in #1. All variables listed above retain their previous values if unreferenced. Coefficients in the flow versus power polynomials can be changed by setting IFLOW to the number of polynomials to be changed. If IFLOW is reset to N, follow the NAMELIST input with N records containing new coefficients as in item 13.

c) Updated fuel loading. (Ignore if NEWF = 0)

The following sequence must be repeated NEWF times.

1) IFT, ICTYP, I, J

IFT = fuel type number

ICTYP = channel type number

I, J = planar coordinates

2) Exposures for nodes 1 through NZ (MWD/MTU)

d) Updated control rod positions. (Ignore if NEWCR = 0)

If NBANKS \neq 0, NEWCR records must be input. Each record contains the rod bank ID number followed by the bank position.

If NBANKS = 0:

If NEWCR = -1, enter a new rod position array in 2-D array format.

If NEWCR = N, (N \neq 0), NEWCR records must be input. Each re-

cord contains I, J coordinates followed by the rod position at those coordinates. The rod positions at all other coordinates remain unchanged.

Sample Input

```
EDWIN HATCH UNIT #2
                                           100% POWER
                                                                                    7-11-77
  & INPUT
               ICNTRL=3, IEDIT=0.0.0.-1.1.
               MK1-=2436.
               0x=15.240+ DZ=15.875+ NC01=5*13+12+3*11+10+9+6+5+
               IEXPTS=12, IVPPTS=3, IFTYPS=3, ITSETS=3, ITSAS=2,
               EPSP=.1E-2.
               BUMASK=0.+100.+500.+2000.+4000.+6000.+4000.+10000.+15000.+
               20000.,25000.,30000.,
               VMASK=0...32..64.
               AVHFLX=145060., VG=.4297, VF=.0217.HSAT=547.8.
               HFG=642.8. PSIA=1035.. IFLOW=2. IFLOW=77.66. AREA=.1098611.
               H1N=526.9
 SEND
   .568 0. .568 0. .208 0. .208 0.
   .568 0. .568 0. .568 0. .568 0. .568 0. .568 0. .568 0. .568 0. .568 0. .568 0. .568 0. .568 0. .568 0. .568 0. .568 0. .568 0. .568 0. .568 0. .568 0. .568 0. .568 0. .568 0. .568 0. .568 0. .568 0. .568 0. .568 0. .568 0. .568 0. .568 0. .568 0. .568 0. .568 0. .568 0. .568 0. .568 0. .568 0. .568 0. .568 0. .568 0. .568 0. .568 0. .568 0. .568 0. .568 0. .568 0. .568 0. .568 0. .568 0. .568 0. .568 0. .568 0. .568 0. .568 0. .568 0. .568 0. .568 0. .568 0. .568 0. .568 0. .568 0. .568 0. .568 0. .568 0. .568 0. .568 0. .568 0. .568 0. .568 0. .568 0. .568 0. .568 0. .568 0. .568 0. .568 0. .568 0. .568 0. .568 0. .568 0. .568 0. .568 0. .568 0. .568 0. .568 0. .568 0. .568 0. .568 0. .568 0. .568 0. .568 0. .568 0. .568 0. .568 0. .568 0. .568 0. .568 0. .568 0. .568 0. .568 0. .568 0. .568 0. .568 0. .568 0. .568 0. .568 0. .568 0. .568 0. .568 0. .568 0. .558 0. .558 0. .558 0. .558 0. .558 0. .558 0. .558 0. .558 0. .558 0. .558 0. .558 0. .558 0. .558 0. .558 0. .558 0. .558 0. .558 0. .558 0. .558 0. .558 0. .558 0. .558 0. .558 0. .558 0. .558 0. .558 0. .558 0. .558 0. .558 0. .558 0. .558 0. .558 0. .558 0. .558 0. .558 0. .558 0. .558 0. .558 0. .558 0. .558 0. .558 0. .558 0. .558 0. .558 0. .558 0. .558 0. .558 0. .558 0. .558 0. .558 0. .558 0. .558 0. .558 0. .558 0. .558 0. .558 0. .558 0. .558 0. .558 0. .558 0. .558 0. .558 0. .558 0. .558 0. .558 0. .558 0. .558 0. .558 0. .558 0. .558 0. .558 0. .558 0. .558 0. .558 0. .558 0. .558 0. .558 0. .558 0. .558 0. .558 0. .558 0. .558 0. .558 0. .558 0. .558 0. .558 0. .558 0. .558 0. .558 0. .558 0. .558 0. .558 0. .558 0. .558 0. .558 0. .558 0. .558 0. .558 0. .558 0. .558 0. .558 0. .558 0. .558 0. .558 0. .558 0. .558 0. .558 0. .558 0. .558 0. .558 0. .558 0. .558 0. .558 0. .558 0. .558 0. .558 0. .558 0. .558 0. .558 0. .558 0. .558 0. .558 0. .558 0. .558 0. .558 0. .558 0. .558 0. .558 0. .558 0. .558 0. .558 0. .558 0. .558 0. .558 0. .558 0. .558 0. .558 0. .558 0. .558 0. .558 0. .558 0. .558 0. .558 0. .558 0. .558 0. .558 0. .558 0
    .208 0. .208 0. .208 0. .208 0. .208 0. .208 0. .208 0. .208 0.
   .208 0. .208 0. .208 0. .208 0. .208 0. .208 0. .208 0.
3 .0661 .0666 .0683 .0696 .0706 .0713 .0717 .0723 .0727 .073 .0731 .0732
   .066 .0col .0666 .0674 .0681 .0686 .0691 .0698 .0706 .0712 .0718 .0722
1
2 .066 .0651 .0665 .067 .0579 .068 .0684 .0691 .0698 .0705 .0711 .0716
                                    .711 W/0
BXE BWR UNIT CELL
         .142369+01
                                    .600560-02
                                                                                          ·202780+00
                                                                                                                    .233110-01
                                                               .25781D-02
         .3785.30+00
                                    .253460-01
                                                              ·23376D-01
                                                                                         .2016cD+01
                                    ·186950+07
                                                               .961820-03
                                                                                          .96197D-02
         • 0
         +1421+0+01
                                    .601600-02
                                                              .25810D-02
                                                                                         ·505610+00
                                                                                                                    .233610-01
                                    .261250-01
         .379020+00
                                                               .237730-01
                                                                                          .20463D+01
         .271850-09
                                    ·186330+07
                                                               .962030-03
                                                                                         .97288D-02
         -142430+01
                                    .602080-02
                                                               ·25878D-02
                                                                                          ·505900+00
                                                                                                                    ·23284D-01
                                    ·273130-01
         .379400+00
                                                               ·253660-01
                                                                                         .21509D+01
                                    ·185600+07
         .344410-09
                                                               -96118D-03
                                                                                          101890-01
                                    .60442D-02
         ·142950+01
                                                              .258520-02
                                                                                          .20094D+00
                                                                                                                    .231410-01
         ·379630+00
                                    .300000-01
                                                               -28829D-01
                                                                                          .23663D+01
         .374970-09
                                    .184240+07
                                                              ·950310-03
                                                                                         111140-01
                                    ·60929D-02
          .142890+01
                                                               .256920-02
                                                                                          ·198460+00
                                                                                                                    231320-01
         ·379600+00
                                    .321540-01
                                                               .30802D-01
                                                                                          .247680+01
                                    -183250+07
         .406290-09
                                                               .93517D-03
                                                                                          .11535D-01
         ·142670+01
                                    .615030-02
                                                              .25541D-02
                                                                                         19652D+00
                                                                                                                    .231590-01
         .379560+00
                                    .335440-01
                                                               .31685D-01
                                                                                          .251720+01
                                                                                         ·116450-01
         .421560-09
                                    .192640+07
                                                               .92270D-03
         .142420+01
                                    .621310-02
                                                               -25411D-02
                                                                                          195040+00
                                                                                                                    ·231900-01
         .379540+00
                                    .345270-01
                                                               .320780-01
                                                                                         .25277D+01
          ·42740D-09
                                    .182200+07
                                                               .912570-03
                                                                                          .116300-01
         .142200+01
                                    .627920-02
                                                               .253060-02
                                                                                          ·193920+00
                                                                                                                    -232130-01
                                    .352790-01
         .379560+00
                                                               .32236D-01
                                                                                          ·25255D+01
         .429130-09
                                    ·181860+07
                                                               .90445D-03
                                                                                         .115660-01
         .135680+01
                                    .645450-02
                                                               -24618D-02
                                                                                          18872D+00
                                                                                                                    .23405D-01
         .379760+00
                                    .366210-01
                                                               .322800-01
                                                                                          .25073D+01
         -4276JD-09
                                    .181170+07
                                                               .87356D-03
                                                                                          .113830-01
         .135340+01
                                    .662809-02
                                                               .244650-02
                                                                                          .187720+00
                                                                                                                    .234370-01
                                    .376749-01
                                                                                          .24950D+01
         .380090+00
                                                               .32238D-01
                                    .180560+07
          .425050-09
                                                               .86403D-03
                                                                                          .112600-01
                                                                                                                    .236790-01
         .126940+01
                                    .681590-02
                                                               .239560-02
                                                                                          .18465D+00
         .380530+00
                                    .386360-01
                                                               .323130-01
                                                                                          -24974D+01
                                    .17994D+07
         424900-09
                                                               ·84549D-03
                                                                                          ·11228D-01
         .120850+01
                                    .697420-02
                                                               .238950-02
                                                                                          .184640+00
                                                                                                                    .236770-01
```

.3 21000+00	.39494 0-01	.324310-01	•250640+01	
.425500-09	.179350+07	. ⊬4204Ŭ=03	112360-01	
.1578a0+01	.580170-02	250190-02	.1972uD+00	.157200-01
434810+00	240390-01	-230470-01	-198560+01	
0	193310+07	.035340-03	-948430-02	
1576	*103310+07	350550-03	197390-00	197650-01
•13/040+UI	-371300-02	.250550-02	•197390+00	•10/050-01
+440510+00	•24H32→01	.234800-01	.201790+01	
•277430-09	182550+07	•93580D-03	•96053D-02	
.157990+01	. 581860-02	.251600-02	•197530+00	•19689D-01
•441120+00	261050-01	.252270-01	.213390+01	
.352970-09	.181610+07	.936200-03	-10120D-01	
.156600+01	-584660-02	252400-02	-196430+00	18550D-01
.441660+00	290650-01	291260=01	-238250+01	
388743-06	170700+07	924070-03	112000-01	
+JC0/+U=U7	-117770+07 Euclob 03	• 72 90 70 -03	10000-01	195330 01
-120010+01	.590100-02	.252030-02	•194650+00	·195220=01
•4418o0+00	•315150=01	.315620-01	-253020+01	
.42774 <u>0</u> −09	•178400+07	•91634D-03	•11797D-01	
.158450+01	.596290-02	•25160D-02	•17370D+00	185230-01
 442000+00 	.331560-01	.328920-01	•26034D+01	
.450010-09	177480+07	.909750-03	120620-01	
158250+01	.602920-02	.251220-02	.192890+00	185290-01
442140+00	.343520=01	-336550-01	-26424D+01	
.461660-09	176810+07	902930-03	.121820-01	
155050+01	-110010+01	250950-02	192320+00	185330-01
•138030401 (4.35-0-0)	-00703:7-02 -050840 01	241270-01	-172330+00 266430+01	•192320-01
•442200+00	.352649-01	• 341270-01	•200430+01	
+468260-09	•1/6285+0/	·89/5/0-03	·122320-01	
157620+01	•62744D-02	·25070D-02	•19178D+00	18525D-01
.442719+00	.36916 0-01	.346770-01	•26843D+01	
.472279-09	175270+07	.889100-03	122280-01	
155740+01	.644330-02	.249030-02	19059D+00	.185300-01
.4432oD+00	.381850-01	-34993D-01	·26985D+01	
476850-09	.174400+07	878670-03	122300-01	
150000+01	460780-02	245950-02	188780+00	185890-01
+130990+01 	-000700-01	252010 61	271820+00	•183878-01
•443400+00	• 372700-01	-353010=01 844 030 03	122750 01	
.480840-09	.173360+07	.000000-03	•122750=01	105500 01
.150850+01	.675930-02	.246140-92	-189290+00	.185530-01
.44456()+00	•40266 ^h =01	.356110-01	•27410D+01	
•48499D-69	•17281/i+07	.86516D-03	·1234oD-01	
176780+01	.547630-02	23972D-02	. 18961D+00	.142250-01
•25400D+00	.225620−01	.224910-01	193550+01	
• 0	177840+07	.898910-03	.92553D-02	
.176525+01	.548830-02	.240170-02	.18987D+00	.142620-01
·525710+00	233690-01	229640-01	-19707D+01	
284660=09	.176860+07	.899690-03	9389bD=02	
176435+31	549560-02	241690-02	190340400	.141900-01
6170930+01 E34755400	-347665-01	249970-01	-1903-0+00	•141900-01
+320/4UTUU	.24/449701	-245770-01	-210000+01	
.304920-09	.1/55/0+0/	.901730-03	.990980-02	
177650+01	•55306D-0Z	-243890-02	·190250+00	■14058D=01
•2228AD+00	280420-01	•29324D-01	.23896D+01	
.408010-09	173030+07	. 89946D-03	112400-01	
177740+01	•55930D-02	.24517D-02	·189880+00	.140129-01
•528610+00	.308629-01	.323830-01	.25839D+01	
.458110-09	.170990+07	.894650-03	·12056D-01	
1776/D+01	566110-02	.246230-02	189820+00	.139890-01
.529170±00	126230-01	342380-01	269920101	
+267110+00	140570-07	• J = 2 3 0 - 0 1	125210-01	
17765344	•107010701	071370-03 347140 03	•163610-01	139700 01
+1//550+01	·21253/-05	.24/100-02	·107750+00	+134100-01
	a/ 300a A1			

- -

t

· , ·

E11 (1)(1)					
·511030-09	·268500+07	88922D-03	12819D-01		
•177430+01	•580480-02	·246020-02	-190210+00	120500 01	
•2300aD+00	.354750-01	.363910-01	263050+01	•139500=01	
•52511D-09	.16763D+07	887890-03	130350 01		
•1771J0+01	598540-02	249766-02	•150250=01		
·531020+00	375240-01	376800 01	•191080+00	·13901D-01	
-538079-09	166040+07	• 37680D=01	•29056D+01		
·1708×0+01	615610-02	• • • • • • • • • • • • • • • • • • • •	•13286D-01		
531640400	301040 01	•25115D-02	•19210D+00	13849D-01	
5529+0-06	•391040-01	.385340-01	•29611D+01		
17-7-0-01	•164/30+0/	•88652D-03	■134740=01		
•1/0/5(/+UI	•031320=02	·25257D-02	•19334D+00	.137930-01	
+533010+00	•4043 5 0=01	.392360-01	+30098D+01		
.000110-09	16355D+07	•88859D-03	136530-01		
+1/0690+01	•645950+02	.253980-02	-194660+00	137300 01	
•53402D+00	.416020-01	·398620-01	-305570+01	•13/300=01	
•57632D-09	162480+07	891620-03	139310-01		
1		001020-01	•136310±01		
BX# EWR UNIT CELL	1.83 W/G				
·144240+01	.652220-02	378430 43			
.389860+00	.397180-01	-378020-02	•299430+00	•21119D-01	
.0	174050407	• 34/0/D=01	•461960+01		
-144510+01	•17473DFU7	•145290-02	•22513D-01		
390550+00	•034020-02	.377960-02	·299460+00	.212350-01	
	•407040-01	•54474Ŭ−01	+46060D+01		
	•174120+07	•14523D-02	•22389D-01		
• 144009+01	·654840-02	·37627D-02	+24784D+00	-212900-01	
•390770+00	•413960 <u>-01</u>	•546730-01	+46096D+01	0012/00-01	
•/31900-09	■173690+07	•14435D-02	-223620-01		
•144650+01	•655500-02	·36891D-02	.290920+00	212540 01	
.390310+00	.423990-01	-55290D-01	460990+01	+213340-01	•
•736490-09	173470+07	-140690-02	222670-01		
+145170+01	.656640-02	.358790-02	281740.00		
•38945D+00	·433015-01	-551620-01	+201780+01)	•214610-01	
.736320-09	·173460+07	135860-02	•+3+860+01		
145530+01	-058170-02	348900-02	•210500-01		
.388560+00	438420-01	• 546900-02 • 544150-01	•2/30/0+00	·21579D-01	
.728240-09	173640+07	• 34413D=V1	•44487D+01		
-145910+01	-66008D-02 "	•131230-02	-212730-01		
-387730+00	441120-01	.339420-02	•26486D+00	•21700D-01	
-714550-06	······································	•532920-01	•4325bD+01		
-14-3-30-07	•1/3920+07	•12686D-02	•20589D-01		
+14030()+U1	.002241)-02	•330410-02	+25715D+00	•21815D=01	
+333+0 +00	•441820-01	•51931D-01	•41893D+01		
.07/30/-09	•174260+07	122730-02	-19850D-01		
+145050+01	•669075-02	.311160-02	·24093D+00	.220800-01	
+385460+00	•439210-01	.48310D-01	.384860+01	*22000D-01	
•66302D-09	·175140+07 ····	-11398D-02	.180420-01		
•14449D+01	.677540-02	-29475D-02	-227480+00	222240-01	
-384260+00	•43333 <u>0-01</u>	•44604D=01	-351980+01	•223240=01	
•6142ov-09	17600p+07	106680-02	163330-01		
+143410+01	.687650-02	-281510-02	216910.00		
•38344D+0U	.42764D-01	413030-01	-2236/0-01	•225480=01	
.568140-09	.176680+07	100890-02	+363040+01		
·140970+01	-698970-02	-264665-02	• 1 40 / JU-01		
+382930+00	423690-01	384430 01	•20119D+00	•22756 <u>0</u> -01	
-529230-09	177130+07	• Jeng2D=01	• J0146D+01		
	• X + + X 34/ 407	• 757010-03	137350-01		
-454860+01	+03140H=02	-3/0/00-02	•29412D+00	•16819D-01	
	•2/211/je01	•534530-01	•45118D+01		
• V . 160340203	•107290+07	.14271D+02	.21997D-01		
*1003#0+01	•n33370-02	•37071D-02	·274210+00	.169190-01	

.

•

-

90

• •

.455810+00	<u>.38887n-01</u>	.532260-01	•44983D+01	
.005600-09	.168290+07	.142680-02	•218730−01	
.160470+01	.634360-02	-36930D-02	•29279D+00	.169630-01
.450100+00	.396459-01	.535520-01	. 451110+01	
.751900-09	.167740+07	.141890-02	.21890D-01	
160660+01	635540-02	.362890-02	.286550+00	170100-01
455690+00	409180-01	.546210-01	.4545où+01	
764620-09	167300+07	-138570-02	-21957D-01	
160020-07	637380-02	353990-02	-27831D+00	.170930-01
-100970401	421520-01	-550220-01	452530+01	••••••
-434730+00 76-820-00	167080407	134180-02	.217400-01	
·/00320=07	+20550-02	3/5320-02	270500+00	.171830-01
.161300+01	.039551-02	• 343320-02 547730-01	**************************************	•1/1000 01
-453/30+00	•429980-01	120000-02	213400-01	
.764310-09	.10/090+07	-130000-02	-213400-01	172730-01
161660+01	.642040-02	-33/030-02	•203170+00	•1/2/30-01
.4528cU+00	•435480-01	.541290-01	+3/85U+U1	
.755900-09	·167230+07	.126060-02	.205350-01	170570 01
.162000+01	.644730-02	.329160-02	.256310+00	·1/35/0-01
.451960+00	-438790-01	.532270-01	•42780D+01	
.743590-09	16746D+07	12236D-02	•20269D-01	
.161630+01	.652550-02	.312210-02	.241800+00	175430-01
.450320+00	.441410-01	.50559D-01	•4012úD+01	
.716440-09	.168120+07	.11445D-02	.188190−01	
.160570+01	.661560-02	.297600-02	22967D+00	.177090-01
449020+00	.43982n-01	.476370-01	•37446D+01	
.676290-09	-168830+07	.107820-02	174050-01	
159600+01	.671690-02	.28557D-02	·21997D+00	.178570-01
446090+00	437280-01	•44911D-01	.350610+01	
636840=09	169420+07	102460-02	·16159D-01	
158780+01	682830-02	.276140-02	.212590+00	.179720-01
447500+00	.435350-01	426300-01	.331190+01	
402530-00	144620+07	.983320-03	.151510-01	
1796-0401	599010-02	~ 36057D-02 ~	.286860+00	.126210-01
+1/7000+01 E4=200+00	355480-01	514100-01	.433640+01	
•3432V0+UV	161100+07	139130-02	211570-01	
-0	•101109+07	-137130-02	287030+00	127050-01
·1/9899+01	•DUIU37=02	• JOV000-02	432440+00	•121030-01
.540540+00	• JG3770=01	+311040-01		
.625470-09	•13988U+U/	•137140-02	•210300-01	127390-61
.120010+01	.602200-02	.359620-02	•2000/0+00 (3(9)0+01	•12/340-01
•5471∠0+00	.374370-01	.516630-01	•434840+01 333888	
.779700-09	·159120+07	.138490-02	.211000-01	
.1801 √ 0+01	.604027-02	.394430-02	.280500+00	.12/6/0-01
.54675 0+00	. 390490-01	.532880-01	.442510+01	
.794420-09	158320+07	•13560D-02	•21366D-01	
.180430+01	.60677 D-02	.347120-02	•27342D+00	128260-01
.545730+00	.407000-01	.543420-01	•445550+01	
. 80924D-09	157740+07	.131780-02	.21390D-01	
.180800+01	.609830-02	.340070-02	.26682D+00	128900-01
-544710+00	-419270-01	. 54719D-01	•44431D+01	
.015640-09	.157450+07	·12819D-02	.212230-01	
.181100+01	.61299D-02	.33335D-02	.26065D+00	12946D-01
-5437du+00	428310-01	.546820-01	•44052D+01	
A14940-09	157340+07	-12483D-02	.20946D-01	
191410+01	616400-02	.327020-02	.25494D+00	129990-01
542950+01	434950-01	-543700-01	•43512D+01	
9046290700	.157330+07	121690-02	206020-01	
-009000-09	-10,00,000	113250-02	242770+00	.131090-01
**CTAJO*01	•023337-02 44442n=01	.526560-02	418390+01	
*241310+00	**************************************	• J2 9 J 0 U - V I	***CJ20*V1	

.

.

	.793290-09	157550+07	114940-02	196260-01		
	.180150+01	.635340-02	.301280-02	.232590+00	13201D-01	
	540030+00	448770-01	511280-01	.400230+01		
	766240-09	157890+07	109270-02	.186230-01		
	174250401	645690-02	291270-02	.224330+00	.132790-01	
	6301 10+00	451010-01	492850-01	-383250+01		
	.337130+00	156200+07	104640=02	177060-01		
	.13/8/:)=07	•135200+07	283220-02	217610+00	-133360-01	
	-178080+UI	•050000-02 (E0410 01)	.203220-02	368620+01	•••••••	
	-538560+00	.452519-01	• • • • • • • • • • • • • • • • • • • •	149350-01		
	./12030-09	•136403+07	•100950-02	•109550-01		
2		0 00 1 1				
8X4	HWH UNIT CELL	2.33 W/U	494970-03	344340+00	204010-01	
	.136160+01	.6//980-02	+34370-02	• 344230+00 564345+01	•204010-01	
	.393960+00	.453849-01	.0/0200-01	-375030		
	•0	.170400+07	-16/BIU-02	-2/3830-01	206360-01	
	142100+01	-680170-02	.430600-02	.341960+00	•200300-01	
	. 35+710+00	•464490-01	·666150-01	•56162D+01		
	.7058/0-09	169500+07	16665D-02	.273890-01		
	.14407 5+01	•080820-02	·42692D-02	•33893D+00	-207360-01	
	.394940+00	. 47105∩-01	. 66580D-01	•56032D+01		
	.875610-09	•16908D+07	.16508D-02	.27280D-01		
	.144260+01	•680960-02	418460-02	.33124D+00	•208049-01	
	·39442D+00	.478340-01	.667190-01	•556930+01		
	.87-100-09	.16902D+07	.16105D-02	.270260-01		
	.144540+01	681350-02	.40693D-02	•32104D+00	20912D-01	
	393490+00	484790-01	.662030-01	•54790D+01		
	871450-09	.169170+07	.155690-02	.264790-01		
	144860+01	681990-02	.395490-02	.311100+00	.21029D-01	
	.392510+00	486460-01	.651710-01	.53559D+01		
•	P0-01 (0-09	169480+07	15046D-02	.257830-01		
	1/5130+01	682890-02	364320-02	.301530+00	.211500-01	
	-143170+01	499840±01	.637990=01	-52116D+01		
	•391300+00	140870+07	145410-02	24994D=01		
	•044130-07	+1090/0+07	373486-02	292320+00	-212630-01	
	-145550+01	.003999-02	621900-01	-50533D+01		
	.390650+00	+407307-01	140540-02	241450-01		
	.824900-09	.1/034.407	-140340-02	271970+00	215460-01	
	•146410+01	•00/JOD=02	• J#7200-02 579360-01	454590+00	•215466 01	
	.368770+00	•48350L-VI	-370300-01	320040-01		
	.785850-09	.171530+07	·129740-02	-220040-01	218140-01	
	.146180+01	.09244()-02	-32/510-02	• 237040700 • 23740+01	•2101-0-01	
	.387160+00	.473639-01	.531670-01	1044 30 01		
	.728560-09	.172790+07	.120190-02	•17802D=01	220710-01	
	-14501D+01	.698750-02	.308520-02	•230000+00	•220710-01	
	•38284D+00	•462460=01	.486400-01	.384280+01		
	.67014D-09	173960+07	.111980-02	.178670-01	222122 61	
	•143900+01	·706980-02	.292650-02	.226090+00	•223120-01	
	.384820+00	.45214∩-01	.446020-01	.350220+01		
	•615520-09	174940+07	10520D-02	•161350=01		
	.15776D+01	•65708n-02	.422820-02	. 33619D+00	.162960-01	
	.46U210+00	. 43324^-01	.652770-01	•54936D+01		
	•••••	.164060+07	.16390D-02	.26863D-01		
	15987D+01	.658980-02	.42128D-02	.33520D+00	■164270-01	
	401210+00	.443670-01	.64862D-01	•54666D+01		
	72520D-09	·16300F+07	.163340-02	.266660-01		
	160010+01	65998D-02	.41961D-02	.333630+00	164790-01	
	.461560+00	450810-01	.64942D=01	•5462uD+01		
	-01036D-00	162460+07	.162470-02	265960-01		
	++++++++++++++++++++++++++++++++++++++	.660660-02	412100-02	326630+00	.16532D-01	
	•100%00+01	• 0000000 VE				

· · ·

4

.

92

•

461010+00	-460730-01	.655240-01	. 54614D+01	
905110-09	-162220+07	-15878D-02	.26499D-01	
160480+01	.661770-02	40180D-02	.317320+00	.166180-01
454430+00	470490-01	655340-01	•54116D+01	
-457750.00 005760-00	162200+07	153870-02	-26144D-01	
160790+01	663150-02	.391610-02	.308310+00	.167120-01
+160790+01 /5=790+00	477250=01	.650040-01	•53275D+01	
	162370+07	.149100-02	·256340-01	
161100-07	-102510-07	.381650-02	-29963D+00	.168020-01
+10110/)+01 +57700+00	-004010-02 481510-01	.641180-01	-522120+01	
+4377V0+VV	142650+07	144490=02	-2502pD=01	
.0000000-07	• 102030+01 666360-02	.372010-02	.291320+00	.168910-01
+101420+01	493770-01	.629830-01	.51000D+01	••••
+30070+00 +777+0-09	143020+07	140070-02	-243550-01	
•0/3/00=09	+71100-03	350360-02	-272900+00	·170940-01
.102220+01	+071100-02 /07910-01	-59670D-01	47755D+01	
+454500+00 0:)7+0-00	+403010-01	130220-02	.226080-01	
.841/00-09	+164030707	330820-02	256620+00	.172850-01
.102230+01	+0/0040=UZ	-330020-02 556340-01	.44344D+01	112030 01
+452750+00	+4/CC2/J=U1	121/00-02	208210-01	
./93320-09	•100100+07	-121470-02	-207210-01	174650-01
.161170+01	-083571-UZ	·313370-02	• 2 4 2 3 4 0 4 0 0 (1 0 6 6 D + 0 1	••••••••
•451201+00	+4/1839=01	• 371070-01	101220-01	
.742510-09	·100220+07	•113930=02 20660D=02	+171230-01 3307HD+00	176280-01
160170+01	.691770-02	.298890-02	+230790400	•1/0280-01
.450080+00	•46466⊕=01	-48/350-01	• 301210+01 174120 01	
.654100-09	+16/160+07	.10/580-02	-170120-01	122000-01
.179390+01	+62409h=02	.410570-02	· 32/300+00	•122000-01
•225250+00	-406/50-01	.024090-V1		
•0	155040+07	.159540-02	.257070-01	122820 01
.179510+01	·626170-02	·41077D-02	•32/050+00	•12202U=U1
•5536 40+00	. 416780-01	·02042D-01	•522810+01	
.750330-09	153750+07	.159600-02	.255030-01	10000 01
. 179740+01	.627370-02	•40946D=02	.326350+00	•123220-01
•224510+00	. 424610-01	.622610-01	•52335D+01	
.935220-09	153030+07	15886D-02	.254810-01	100500 01
.17992D+01	.628780-02	.403170-02	+320230+00	•1532AD-01
•553700+00	.43780D-01	.633850-01	•52741D+01	
.945460-09	152500+07	.155610-02	.255/80-01	12/2/0 41
.18u210+01	.630880-02	.39446D-02	•31211D+00	•12426D=01
•552490+00	.451700-01	•64043D-01	•52745D+01	
.954030-09	152180+07	.15128D-02	•25460D-01	
.18v509+01	•63303D-02	.385850-02	.304260+00	124900-01
•551230+00	.462300-01	•64134D-01	•2389D+01	
.955720-09	152090+07	147080-02	•251810-01	
.180780+01	.635310-02	.37750D-02	•29678D+00	125530-01
.550050+00	.470180-01	.638580-01	•21807D+01	
. 95156ຍ−09	152150+07	.14306D-02	.24804D-01	
.181070+01	.637710-02	.369450-02	289650+00	•12613D-01
.54897U+00	.475870-01	•63324D-01	•51068D+01	
.943430-09	.15231P+07	.13922D-02	.2436uD-01	
.181780+01	.644130-02	.35126D-02	.27380D+00	127440-01
.54674D+00	.483260-01	.613550-01	•48884D+01	
.921700-09	.152920+07	.130640-02	·23123D-01	
.181730+01	.651050-02	.334800-02	•25981D+00	.12862U-01
544870+00	.485000-01	.58869D-01	•46466D+01	
.886370-09	.153690+07	.123050-02	.215120-01	
.180840+01	.658500-02	.32015D-02	.24764D+00	.12968D-01
.543320+00	483910-01	•56229D-01	•44056D+01	
	• - (, , , , <u>, , , , , , , , , , , , , , ,</u>		· · · · · · · · · · · · · · · · · · ·	•

.

,

93

.

NODE_WIDTH15.240_ NODE_HEIGHT =15.875	CH						
NODAL WEIGHTING FACTORSI	A1 =	0.3100		· · · · · · · · · · · · · · · · · · ·			
	BOUNDARY_	CONDITIONS	************	£\$577			
ALB = A + B#YOID	(1.)						
ALA = 1. EOR Z	FRA CURRENT						
0. FOR Z <u>xx. FOR L</u>	FRO PLUX Eakage_spec	IFIED BY A	AND 8				
	EA	\$1_===		MAL	· · · · · · · · · · · · · · · · ·		
	A		4	<u> </u>			
	*****	****					
POTTON TOP	0.57	0.0	0.21 0.21	0.0 			
DIR. CORF EDGE							
	A_67	0.0	0.21	0.0			
2		0.0	0.21				
3	0.57	<u> </u>	0.21	<u> </u>			
5	0.57	0.0	0.21	0.0			
1	0.57	0.0	0.21	0.0			
	0.57	Q.y 0.0	9.21	0.0			
10	<u> </u>		0.21	<u>0.0</u>			
12	A.57	0.0	0.21				
13	0.57	0.0	. 0.21	U . II		·	
	ERGENCE PAR	AMETERS ==	<u></u>				
OUTER ITERATION & POWER ITERATION &	ILL BE CON	ERGED TO	0.10E-05				
MAXIMUM NUMBER OF MAXIMUM NUMBER OF MAXIMUM NUMBER OF	INNER ITER OUTER ITER POWER ITER	RATIONS = RATIONS = RATIONS =	3 <u>6</u> 30				

95

.

OSS_SECTION_IN	ITERPOLATING_TABL	ES WILL BE READ AT		<u>D</u>	20LATING_POINTS_		
* EXPOSURE	HASK +						
TABLE							
	(78)/711/ (88288888						
			•				
1	A.						
	100						
J							
5	4900.						
	8000.		-				
<u>8</u>							
	20000						
11	25000.						
12							
TABLE	koto						
	****					·	
<u> </u>	A A						
ź	0.350	<u> </u>					
3	0.640						
						· · · · · · · · · · · · · · · · · · ·	
		<u>_</u>					

-13-

ť

		<u>백호별명호박</u> 조승규는 운호	<u>, , , , , , , , , , , , , , , , , , , </u>	<u> </u>					
ErPOSURE			NU-	KAPPA-	DOWN			NU-	KAPPA-
(MWDZMT)	Q	AHSORBTION.	EISSION	FISSION	SCATTERING_	Q.	.ABSORBTION.	EISSION	EISSION
	*********	*********	********		********	*********	********	*********	
YU ([]	0 14245.01	0 60065-02	0 25785-02	0. 20245.00	A 33315 AL	A 33455.44			
	0.14215401	0.6016F-02	0.25818-02	A 2020E +00	0.23365-01	V.J/85C+00	0.25356-01	0.2338E~01	0.201/E+01
500.	0.1424E+01	0.6021E-02	0.2588E-02	0.202HE .00	0.23285-01	A 37945.00	A 27315-AL	A 25375 AL	0.20002101
2000	0+1429E+01.		_0.2585E=02_		0.23148-01	0.3796F+88	0.3000E-01	0 28836-01	0.2151C+VI
4800.	0.1429E+01	0.6093E-02	0.2569E-02	0.1985E+00	0.2313E-01	0.3796E+00	0.3215E-01	0. 30A0F-01	A. 2477F+01
6000.	_0.1427E+01_	Q.6150E=02.	0.2554E+02.	_0.1965E+00	.0.2316E=01		.0.3354E-01.	_Q_3166E+01	A. 2517E+01
8000.	0.1424E+01	0.6213E-02	0.2541E-02	0.1950E+00	0.2319E-01	0.3795E+00	0.3453E-01	0.3208E-01	0.2528E+01
<u> </u>	0.1422E+01	A.6219E+02	0.25316-02	A. 1939F+00	0.2121E=01	0.3796E+00	A. 3528E=01	0.3226F-01	0.2526E+01
15000.	0.1357E+01	0.6455E-02	0.2462E-02	0.1887E+00	0.2341E-01	0.3798E+00	0.3662E-01	0.3228E-01	0.2507E+01
20000	0+1353E±QL		_0.2446E=02.	_0+1877E±00_	0.2344E=01	0.3801E+00_		_0.3224E=01_	_ A • 2495E + 4 Ì
25900.	0.12096.01	0.0016t-02	0.23905-02	0.1847E+00	0.2368E-01	A.3805E+00	0.3864E-01	0.3231E-01	0.2497E+01
/010 = 0.32			B. 2184F=05		_0,2368E±01	0+3810E+00_	0.3949E=01_	_0.3263E=01_	
010 - 0132	A 15705.41		A 35035 A3						
100.	A. 15766401	A \$8175.82	A 25465 A2	<u> 10765-00</u>		<u>0.63982+00</u>	0.2404E-01	0.2305F=01	0.19862:01
500.	A.1580E.01	0.5013E-02	0.25165-02	0.1974C+UU A 1976E+AA	0.10/02-01	0.44056+00	8.2483E-0]	0.2348E-01	0.2018E.01
2000.	0.1586E+01	0.5847E-02	0.2524F=02	A. 1964F+AA	A. 1855F		A 29475-41		
	A.1586E+01	0.5901F-02	0.2520E+02	0.1949E+00	0.18526-01	A. 4419E.0A	0.270/0-01	0.27136+01	0.23826.01
6000.	0.1585E+01	0.5963E-02	0.2516E-02	0.1937E+00	0.1852F+01	A. 4420F.00	0.3316F=01	-9+JI20C201	.V+23JUC1UI
6000	0.1583E+01	0.6029F-02	0.2512E-02	0.1929E±00	0.1853E-01	0.4421E+00	0.3435E-01	0.3365F+01	0.2642F+01
10000.	0.1580E+01	0.6098E-02	0.2509E-02	0.1923E+00	0.10538-01	0.4423E+00	0.3528E-01	0.34135-01	0.2664F+01
15000	A_1576E±01_	_0.6274E=02_	Q.2507E=02.	.0.1918E+00_	0.1853E=01	0.4427E:00	0.3692E-01	0.3468E-01	0.2684F+01
20000.	0.1557E+01	0.6443E-02	0.2490E-02	0.1906E+00	0.18532-01	0.4433E.00	0.3819E-01	0.3499E-01	0.2698E+01
	Q+1510E±01	0.6608E=02	0.24596-02		_0.1859E=01		0.3929E-01	Q.3530E-01	0.2718E+01
30000.	0.1209E+01	0.6759E-02	0.2461E-02	0.1893E+00	0.1855E-01	0.4446E+00	0.4027E-01	0.3561E-01	0.2741E+01
	A 17686 . A1	A E474E A2	A 23035 A2		-				
100	0.17655.01	0.34/0C-U2	0.24425 43	0.18965.00	0.1422t-01	0.5247E+00	0.2256E-01	0.2249E-01	0.1936E+01
500.	0.1769F+01		_0.2417F_A2		_H+1920t=01	Q.525/t100 _	0.23372=01	Q.2296E=01.	.0.1971E+01
2000.	0.1776F+01	0.5531F-02	0.24395-02	6 1062E.46	A 14065-01	*.J20/E+UU	U.24/4E-UI	0.2490E-01	0.21016+01
4000.	0.1777E+01	0.5593F-02	A.2452F-02	A. 1894F.AA	A.150002201	W+327.7C.FUV	.U+CQU9C=9	8+CAJSE=01	9.2390tt01
6000.	0.1277E+01	0.5661E+02	0.2462F-02	A.1898F+00	0.1399F-01	A 52025+00	4. 3282F A1	0.36365-01	0.25040+01
8000.	0.1776E+01	0.5732E-02	0.24728-02	0.1899E+00	0.1397F-01	0.5296E+00	0.3430E-01	0.35405-01	0 27765.01
10000	_0.1774E:01_	0.5405E-02	Q.2480E-02	0.19926:00	0.1395E-01	0.5301E+00	0.3548E-01	0.3639F-01	0.2830E+01
15000.	0.1771E+01	0.59A5E-02	0.249AE-02	0.1911E+00	0.1390E-01	0.5310E+00	0.3752E-01	0.3768E-01	0.2907E+01
20000	_A.1769E+01	0.6156E-02	0.2511E=02_	0.1921E±00_	0.1385E=01	0.5320E:00	4.3910E=01	0.3853E=01	0.2961E+01
25000.	0.1767E+01	0.6313E-02	0.2526E-02	0.1933E+00	0.1379E-01	0.5330E+00	0.4844E-01	0.3924E-01	0.3010E+01
	0.17675+01	8.6408E-02	0.2540E-02	0.1947E+00	0.1373E-01	0.5340E+00	8.4160E-01	0.3986E-01	0.3056E+01
			····						
				·····					
And a state of the second		and the second second second second second							

14E_STEP_41	<u> </u>	ATCH UNIT #2	100%_P01	(ER	7-11-77		PAGE4
	********	******	CROSS_SEC	LION_INTERPOLATING	<u> </u>	<u>当天政部第二条的法法共同</u> 是平民学家》	
ABLE SET 3 BXB H	WR_UNIT_CELL_						
	THEONAL			XF-135			
E - PASHOE	ARCOURTION	FAST	THERMAL	MICRO			
(MWD/MI).	XEREMOVED_	EISSION_	E1SSION	ABSORUTION			
28228288		*********	*********	********			
010 = 0.0							
0.	0.2535E-01	0.9618E-03	20-30296.0	1869500.			
		<u>0,96202=01</u>	0.10105-01	1055000			
500. 2000	0.2931F-01	0.9012C-0J	0.1111E=01	1842400			
4008.	0.3141E-01	0.93522-03	0.11548-01	1832500.			
6000	_0.3277E-01_	0.9227E-03	A.1165E=01	1826404			
8000.	0.3375E-01	0.9126E-03	0.1163E-01	1822000.			
	<u>0.3450E-01</u>	0.9045E-03	0.1157E-01				
15009.	0.3585E-01	0.8736E-03	0.11386-01	1611/00.			
	0.JOY1E=01		A. 11235-01	1799400.			
20044	0.3873F-01	0.84392-03	0.1124E+01	1793500			
VOID # 8.32							
O	0.2404E=01	0-9353F-03	0.9484E-02	1833100			
100.	0.2433E-01	0.9358E-03	0.9605E-02	1825500.			
	Q_2546E=01	0.9362E=03	0.1012E-01				
2000.	0.2037E-01	0.92911-03	0.11202-01	1784000.			
	Q_JUIDE=UI		0.1206F=01	1774800.			
8008.	0.33546-01	8.90296-03	0.1218E-01	1768100.			
10000.	0.3446E-01	0.8976E-03	0.12236-01	1762800.			
	0.3609E-01	_0.8891E-03_	0-35251-01	1152700		····· ,	
20000.	0.3735E-01	0.87A7E-03	0.1223F-01	1744000.			
25000	Q.3846E-01_	0.8001E-03	0.1228E-01	<u>1 (13900</u>			
J0009.	0.34435-01	A*40055-A7	4+16336-41	treatwo.			
<u>YUIU # 0+0*</u>	0.2256E-01	0.8989F-83	0.92558-02	1778400.			
108.	0.2287E-01	_0.8997E-03	S0-3096.0	1768600			
500.	0.2410F-01	0.9017E-03	0.9970F-02	1755700.			
2000	0_2734E=01	0.8995E-03.	_0.1124E-01	1730300			
4000.	0.30086-01	P.8946E-03	0.1206F-01	1709900.			
6000	0_3199E-01	<u>. 0.89145-03</u>	A 12025 A1	2685000.			
8000.	9.JC9JL-01 A 34595.AI	4,007CL-VJ	0.1303F-01	1676300			
IVPER		0.8863E-03	9.1329E-01	1660400.			
2000	0.38196-01_	_0.8865E-03.	0.1347E-01	1647300			
25000.	0.3951E-01	0.8896E-03	n.1365F-01	1635500.			
	<u> </u>	0.8916F-03	0.1.3836-01	1624800			

<u></u>		********	CPOSS SECI	ION_INTERPOL	ATING TABLE				₽ ∓ \$2\$\$222232	
E + BASUDE			<u></u>	KAPPA-	DOWN			NU-	KAPPA-	
(MWD/NT)	D AB	5088110N	EISSION.	EISSION	SCATIEBING_	D	_AUSORBIIDN_	EISSION_	EISSION	
			********	*********	*********			********	********	
10 = 0.0						A 30005.AA	A 30725-A1	A 54715-01	A. 4620F+01	
0.	0.1442E+01 0.0	522t -02	0.3/50t-02	0.29740+00	0.21245-01	0.3976.00	0.4070F-01_	0.5447E=01	0.4606F+01	
	<u>0,14655401 0.</u>	15495-83	0.17636-02	0.297#F+00	0.2129E-01	0.3908E+00	0.4140E-01	0.5467E-01	0.4610E+01	
2006.	0.1447E+01 0.1	6555E+02.	0.3689E=02					_#.5529E-01.		
4000.	0.1452E+01 0.	6566E-02	0.3588E-02	0.2818E+00	0.2146E-01	4.3895E+00	0.4330E-01	0.5516E-01	0.4549E+01	
6000-		6582E=02-	0.3489E=02-	_0.2731E+00-		0.3886E+00-	_0.4384E=01-	0,5441E=01-		
5000.	0.1459E+01 0.	6601E-02	0.1394F-02	0.2649F+00	0.2170E-01	0,J0//E+00	W.77][L-0] 0.44105_01	4.3JEYE-01 8.51975-A%	0.4189F.A1	
	<u>0.1463E+01</u>	ADIE -02	<u>B. 3104E +02</u>	A 24095400	A.2200F+A1	A. 3855F+AA	0.4392E+01	0.4831E-01	0.38496+01	
15000.	0.14572.01 0.0	6775F-02	0.24476-02	8.2275E+00	0.2232E=01	0.3843E+00_	_0.4333E=01-		_0,3520E+01	
25000.	0.1434F+01 0.	6876E-02	0.2815E-02	0.2169E.00	0.22558-01	0,3834E+00	0.4276E-01	0.4130E-01	0.3236E+01	
30000		6990E=02	0.2697E=02	_0.2078E+00_		0,3829E+00_	_0.4237E=01-	Q., 3866E=01	_0.3015E±01	
10 = 0.32		_						A 57655-01	4 451 25 . 81	
Q	A.1601E+01 0.	6315E+02	0.3707E-02	<u>0.2941E+00</u>	B_1682F+01_	<u>0.93975400</u>	A 38895-A1	0.5323F-01	0.4498F+81	
100.	0.1603E+01 0.	6334E-02	0.3/0/L-02	0.29427 +UU	0.16965-01	0.4562F+00	0.3965E-01	0.5355E=01	0.4511E+01	
	B.IDV7E1010+	0J996-86	A. 3629E+02	a.2865E+00	0.1701E-01	0.4557E+00	0.4092E-01	0.5462E-01	0.4546E+01	
4000-	0.1610E±010.	6374E-02	0.3540E-02	0.278JE+90_	_0.1709E=01_	0.4547E±00_	.4215E-01_	_Q.5502E=01_	_0.4525E±01	
6000.	0.16138.01 0.	6396E-02	0.3453E-02	0,2705E+00	0.1718E-01	0.4537E+00	Q.4300E-01	0.5477E-01	0.4464E+01	
8999-		6420F-02	0.3370F-02	0.2632E+00	0.1727E-01	0.4528E+00	0.4355E-01	<u>_0.54]3t-0]</u>	0.93/0E-VI	
10000.	0.1620E+01 0.	6447E-02	0.32926-02	0,2563E+00	0.17362-01	0.45202.00	0.43002401	0.5056F-01	8.4012F+01	
15000		0520L±02_	A 20745-02-	A 22975.00	W_J1295=VL A.1771F=A1		0.4398E-01	0.4764E-01	0.3745E+01	
20000.	0.1596F+01 0.	5717F+02	0.24565-02	0.2200E+00	0.1786E=01		. 0.4373E=01-	.0.4491E=01_	.9.3506E±01	
39000.	Q.1588F+01 0.	6828E-02	0,2761E-02	0.2126E+00	0.1797E-01	0.4475E+00	0.4354E-01	0.4263E-01	0.3312E+01	
10 = 0.66									A 43305 441	
0.	0.1797E+01 0.	5990E-02	0.3606F-02	0.2864E+00	0.1262E-01	0.5452E+00	0.35651-01	0.3141E-01	0.4324F+01	
100		6018t=02		0.20/UL:00		U+34936108_ 0.5471F+00	0.3744E-01	0.5166E-01	0.4348E+01	
500.	0.1000C+01 0.	50222 - 02 6040F - 03	0.3544F-02	0.2805F+00	0.1277E-01	0.5468E+08	0.3905E=01.	_9.5329E=91_	0.4425E±01	
4000.	0.1805E+81 0.0	6068E + 02	0.3471E-02	0.2734E+00	0.1283E-01	9.5457E+00	0.4070E-01	0,5434E-01	0,4455E+01	
6000	0.1808E+01 0.	6098E=02	0.3401E-02	0.2668E+00	0.1289E-01	0.5447E+00_	0.4193E-01	0.5472E-01	0.4443E.01	
8000.	0.18116+01 0.	6130E-02	0.3333E-02	0.26068+00	0.1295E-01	0.5438E+00	0.4283E-01	0.546Ht-01	0.44052.01	
	0_1014E+010_1	6164E-92.	_9.3270E-02_	<u></u>		U.23676198_			0.4184E+01	
15000.	0.14032.01 0.	6235L = 02	0.JIJ2E+02	0.2326F+AA	0.13205-01	0.5400E+00	0.4488E-01	0.5113E-01	9.4002E+01	
25000	Q_10V2E1W1WA	n J 7 JC = 92 6457F + 02	A.2913F+02	0.2243F+00	0.1328E-01	0.5391E+00	0.4510E-01	0,4928E-01	0.38336+01	
30000	0.17872+01_0.0	6566E-02	0.2832E=02	0.2179E+00	0.1334E-01	0.5386E+00	0.4526E-01	0.4765E-01	_0.3688E+01	
<u> </u>										
**										
TINE STEP # 1 _____ XX EDWIN HAICH UNIT #2 100% POWER ______ 7-11-77 _____ >> ____ PAGE __6

NHLE_SET] BXA.B	INK_ONTI_CELL-	_1+H3_W/Q			 	
_	THERMAL			XE - 135	 	
E XPOSURE	ASSORBTION	FAST	THERMAL	MICRO	 	
	XEREMOVED	EISSION_	ELSSION.	ABSORUTION	 	
*8#8882288		*********	*********	*********		
	A 30735 AL	0 14535 .03	A 33517 AL	1140500	 	
U. 100	0 39495-01	0.145JL-02 0 14525-02	0.22206-01	1743200.		
500	0.40125-01	0.1444F=02	0.22365-01	1736906		
2000	0_4112E=01_	_0_1407E+02_	0.2227E-01	1736700		
4000.	0.4202E-01	0.1359E-02	0.71A6E-01	1734600.		
		0.1312E-02	0.2127E-01_			· · · · · · · · · · · · · · · · · · ·
8000.	0.4287E-01	0.1269F-02	0.2059E-01	1739200.		
	0.4297F-01	0.1227E-02	0.1985E+01	1762600	 	
15000.	0.42768-01	0.1140E-02	9.1804E-01	1751400.		
	U+9223E#Q1 A 41768_41				 	
23000.	0.41436-01	0.1009C-02	0.13765_01	1771300		
010 = 0.32						
	0.179)F-01	0.1427F+82	0.2200F+01	1692900.	 	
100.	0.3787E-01	0.1477E-02	0.2187E-01	1682900.		
520	D. JE 38E-01	0.1419E-02	2189E=0I	1677400	 	
2000.	n.3965E-01	0.1396E-02	0.5196E-01	1673000.		
	0.4087E=01	_0.1342E=02_	_0.2174E=01_		 	
6000.	0.41/28-01	0.1300E-02	8.2134F-01	1670900.		
	0 42635-AL	A 12245-02	A 20275-01	1672200.		
10000.	6.4294F-A1	0.11456-02	0.1882F-01	1681208.		
20000	8.4294F-01	8.1078E-02	0.1741E-01	1688300.		
25000.	0.4265E-01	0.1025E-02	Q.1616E-01	1699200.	 	
30000.	0.4251E-01	0.9833E-03	0.1515E-01	1698200.	 	
010 = 0.64						
0.	0.3565E-01	0.13916-02	0.21165-01	1611000.		
100	Q.3560E=01	_0_1391E=02_			 	
700.	4 1120E A	V.13755-02	9.711001 A 31375-A1	1341690.		
CVUV			0.21396-01	IJQJCV8	 	
6000-	0.4064F-01	0.1282F-02	0.2122F-01	1574500		
8000	0.41558-01	0.1248F-02	0.20951-01	1573400.		
	0.4222E-01	Q.1217E-02	0.20605-01	1573300.	 	
15000.	0.4319E-01	0.11498-02	0.1963F-01	1575500.	 	
20000	_0.4367E-01_	0.1093E-02	0.1862E-01	1578900.	 	
25000.	0.4393F-01	0.10468-02	0.1771E-01	1582000.		
30000	4413E-01	0.1010E-02	0_1694F-01	1584000.		

THE STEP # 1_______ SS EDWIN HATCH UNIT #2 100% POWER_______ 7-11-77_______ 22 _____ PAGE 2______

1

ć

(

			_ C _ S ##"		*****				
POSURE			NU-	KAPPA-	DOWN			NU-	KAPPA-
OZMT)	<u> </u>	ABSORBTION.	E15SION_	EISSION_			ABSORBTION.	E15STON	F15510N
				*********	*********	*********	885985389g	*********	*********
0.	0.13628+01	0.6780E-02	0.4344E-02	0.3442E.00	0.2040E-01	0.3940E+00	0.4538E-01	0.6703E-01	0.5642E+01
100.	0.1421E.01		0.4306E-02	0.36202+00	0.2064E-01	0. 1947E+00.	_0.4645E=01	_0.6661E=01	0,5616E+01
500.	0.1441E+01	0.6808E-02	0.4269E-02	0.3389E+00	0.2074E-01	A. 3949E+00	0.4710E-01	0.6658E-01	0.5603E+01
2000	_0.1443E+01		_0.4185E=02.	0.3312E+00-			_0.4783E=01-	-0.6672E=01	. 0.5569E+01
4000.	0.1445E+01	0.6814E-02	0.4069E-02	0.3210E+00	0.2091E-01	A.3935E+00	9.4848E-01	0.6620E-01	0.5479E+01
.6000	_0.1449E+01	0.6820E=02	-0.3955E-02-	0.3111E+00	0.2103E=01_		0.4885E=01_		
A000.	0.1452E+01	0.6829E-02	0.3843E-02	0.3015E+00	0.2115E-01	0.3916E+00	0.4898E-01	0.6380E-01	0.5212E+01
0000	A. 1455E+01	0.6839F-02	0. 1715F+02	0.2923E+00	0.2127E-01	0_3907E+00_	0.4894E-01	0.6219E-01	0.5053E+01_
5000.	0.1464F+01	0.6876E-02	0.34936-02	0.2720E+00	0.2155E-01	0.3888E+00	0.4837E-01	0.5784E-01	0.4647E+01
0000.	0.1462E+01	0.6924E-02	0.3275E-02	0.2550E±00	0.2181E=01.	0. 3872E+00	0.4736E=01	_0.5317E=01_	0.42338+01
5000.	0.14506+01	0.6988E-02	0.3085E-02	0.2387E+00	0.2207E-01	0.3858E+00	0.4625E-01	0.4864E-01	0.3843E+01
0000	0.1439E+01_	0.7070E-02	0.2927E=02	0.22616+00	u.2231E=01	0.3848E+00	_0.4521E-01_	0.4460E=01	0.3502E+01
									-
0.	0.15786+01	0.6571£=02	0.4228F-02	0.3362F±00	0.1630E-01	8.4602E+00	0.4332E-01	0.6528E-01	0.5494E+01
100.	0.1599E+01	0.6590E-02	0-42135-02	0.13526+00	0.1643E-01	0.4612E+00	0.44378-01	0.6486E-01	0.5467E+01
500.	0.16005+01	0.6600F-02	8.4196F-02	0.3336F+00	0.1648F-01	0.4616F+00	0.4508E-01	0.6494E-01	0.5462E+01
2000	0.1602F+01	0.6607E-02	0.4121F-02	0.3266E+80	0.16536-01	0.4610E+00	0.4607E-01	0.6552E-01	0.5461E.01
A000.	0.16056+01	0.6618F-02	0.4018F-02	0.3173E+00	0.1662F-01	0.4599E+00	0.4705E-01	0.6553E-01	0.5412E+01
6000.	0.1608F+01	0.6632F-02	A. 3916F-02	0.3083F+00	0.1671F-01	0.4588F+00	0.4772E-01	0.6580F-01	0.5328E+01
8086.	0 16115-01	0.6646E-02	0.3817F-02	A. 2996F + 00	0.1680E-01	0.45776+00	0.4815E-01	0.6412E-01	0.5221E+01
0000	A. 16145.01	A. 6663E-02	A 17205-02	0.29135+00	0.1689F-01	8.4567F+00	0.4838F-01	0.629AF-01	0.5100F+01
5000	A. 16226.01	0.67115-02	0.35045-02	6.2724F+80	0.1709F-01	0.45465+00	0.4838F-01	0.5967F-01	0.4776F+01
	A. 14226401	A . 6768F -02	0.330AF-02	0.2566F+00	0.1729F-01	0.452AF+00	0.4788F-01	0.5593E-01	0.4435F+01
5000	0.16125+01	0.68365-02	0.11365-02	A. 2425E+00	0.1746E-01	0.45136+00	0.4718F-01	0.5219F-01	0.4107F+01
0000	0.1682F+01	0.6918E-02	0.2489F-02	8.230#F+00	0.1763F-01	0.4501E+00	0.4647F-01	0.4874F-01	0.3812E+01
0.	0.1794E+01	0.6241E-02	0.4106E-02	0.3274E+00	0.12208-01	0.5523E+00	0.4067E-01	0.6247E-01	0.5257E+01
100.	0.1796E+01	0.6262F-02	0.4108F-02	0.3277F+00	0.1228E-01	0.5536F+00	0.4168E-01	0.6204E-01	0.5228E+01
500.	0.1747E+01	0.6274E-02	0.4095E-02	0.3263E+00	0.1232E-01	0.5542E+00	0.4246E-01	0.6226E-01	0.5233E.01
2000.	A.1799E+01	0.6288F-02	0.40325-02	0.3202F+00	0.1236F-01	0.5537F+00	0.4378F-01	0.6119F-01	0.5274F+01
A000.	A. 1802E+01	0.6309F-02	0.1945F-02	0.31216+00	0.1243F-01	0.5525F+00	0.4517E-01	0.6404E-01	0.5274E+01
6000.	0.1805F+01	0.6330E-02	0. 1858F-02	0.3043F+00	8.1249E-01	0.5512E+00	0.4623E-01	0.6413E-01	0.5239E+01
8000.	0.180AF+01	0.6353E-02	0.1775F-02	0.296HF+00	0.1255E-01	0.5501F+00	0.4702E-01	0.6386E-01	0.5181E+01
0000.	0.18115+01	0.6377E-02	0.36956-02	0.2897E+00	0.1261E-01	0.54902+00	0.4759E-01	0.6332E-01	0.5107E+01
5000.	0.1818F+01	A. 6441F-02	0.3513F-02	0.273#F+00	0.1274F-01	0.5467F+00	0.48136-01	0.6135E-01	0.4888E+01
0000	0.18176.01	0.6510F-02	0.13486+02	0.2598F+00	0.12866-01	0.54496+00	0.4850F-01	0.5887E-01	0.4647F+01
5000.	0.1808F+01	0.6585E-02	A. 3202F-02	0.2476F+00	0.1297F-01	0.5433E+00	0.48396-01	0.5623E-01	0.4406E+01
6666	0.1800F+01	A 6669E-A2	A. 3075E-02	0.2374E+80	0.1386F-01	0.54218+00	0.4816F-01	0.53696-01	0.41828+01
	MAANWALINE		UAJWIJE TVL	<u> </u>	BAILJUNE_DI	<u> </u>	MEININE MA		
	0. 104. 500. 2000. 4000. 6000. 0000.	$\begin{array}{c} 0 & 0 & 1] 362E \cdot 01 \\ 140 & 0 & 144]E \cdot 01 \\ 2000 & 0 & 144]E \cdot 01 \\ 2000 & 0 & 1443E \cdot 01 \\ 3000 & 0 & 1452E \cdot 01 \\ 3000 & 0 & 1632E \cdot 01 \\ 5000 & 0 & 1602E \cdot 01 \\ 5000 & 0 & 1612E \cdot 01 \\ 5000 & 0 & 1612E \cdot 01 \\ 5000 & 0 & 1612E \cdot 01 \\ 5000 & 0 & 1632E \cdot 01 \\ 5000 & 0 & 1608E \cdot 01 \\ 5000 & 0 & 1008E \cdot 01 \\ 5000 & 0 & 1011E \cdot 01 \\ 5000 & 0 & 1011E \cdot 01 \\ 5000 & 0 & 1011E \cdot 01 \\ 5000 & 0 & 1008E \cdot 01 \\ 0000 & 0 & 1008E \cdot 01 \\ 0 & 0 & 1008E \cdot 01 \\ 0 & 0 & 0 & 1008E \cdot 01 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0. 0.1362E + 01 0.6780E - 02 0.4344E - 02 100. 0.1421E + 01 4.6002E + 02 0.436E - 02 2000. 0.1441F + 01 0.6008E - 02 0.436E - 02 2000. 0.1441F + 01 0.6008E - 02 0.4165E - 02 2000. 0.1443E + 01 0.6008E - 02 0.4165E - 02 4000. 0.1445E + 01 0.6012E - 02 0.3365E - 02 6000. 0.1445E + 01 0.6012E - 02 0.3365E - 02 6000. 0.1452E + 01 0.6012E - 02 0.3365E - 02 6000. 0.1452E + 01 0.6012E - 02 0.3375E - 02 6000. 0.1452E + 01 0.6012E - 02 0.3275E - 02 6000. 0.1452E + 01 0.6078E - 02 0.3275E - 02 6000. 0.1452E + 01 0.6078E - 02 0.3275E - 02 6000. 0.1452E + 01 0.6078E - 02 0.3275E - 02 6000. 0.1452E + 01 0.6578E - 02 0.3275E - 02 6000. 0.16599F + 01 0.6578E - 02 0.4218E - 02 6000. 0.1602E + 01	0. 0.1362E + 01 0.6780E - 02 0.4344E - 02 0.3442E + 00 10. 0.1421E + 01 0.6800E - 02 0.4344E - 02 0.3442E + 00 2000. 0.1441F + 01 0.6800E - 02 0.4406E - 02 0.3369E + 00 2000. 0.1445F + 01 0.6810E = 02 0.4605E - 02 0.3312E + 00 4000. 0.1445F + 01 0.6810E = 02 0.315E + 02 0.3111E + 00 0.00. 0.1445E + 01 0.6820E - 02 0.355E + 02 0.3111E + 00 0.000. 0.1452E + 01 0.6829E - 02 0.3493E - 02 0.3015E + 00 0.000. 0.1462E + 01 0.6876E - 02 0.3493E - 02 0.2540E + 00 0.0000. 0.1462E + 01 0.6988E - 02 0.3055E + 02 0.2540E + 00 0.0000. 0.1452E + 01 0.6988E - 02 0.3055E + 02 0.2540E + 00 0.0000. 0.1452E + 01 0.6988E - 02 0.3065E + 02 0.2540E + 00 00000. 0.1452E + 01 0.6570E - 02 0.4213E - 02 0.3352F + 00 00000. 0.1602E + 01 0.6607E - 02	0. 0.1362E+01 0.6780E-02 0.4344E-02 0.3442E+00 0.2040E-01 100. 0.1421E+01 0.600E-02 0.430E-02 0.3369E+00 0.2074E-01 200. 0.1441F+01 0.600E-02 0.430E-02 0.3312E+00 0.2074E-01 200. 0.1445E+01 0.600E-02 0.3369E+00 0.2074E-01 4000. 0.1445E+01 0.6012E-02 0.3369E+02 0.3111E+00 0.2091E-01 6000. 0.1445E+01 0.6012E-02 0.3363E+02 0.3111E+00 0.2113E-01 6000. 0.1452E+01 0.6012E-02 0.3363E+02 0.3111E+00 0.2113E-01 0.000. 0.1462E+01 0.6012E-02 0.3375E+02 0.3111E+00 0.2115E-01 0.000. 0.1462E+01 0.6076E-02 0.3473E+02 0.2127E+01 0.2115E-01 0.000. 0.1462E+01 0.6076E-02 0.3473E+02 0.2137E+01 0.2152E-01 0.0000. 0.1452F+01 0.6076E-02 0.3362F+00 0.1632E-01 0.0000. 0.1632E-01 0.6076E-02 0.	0. 0.1362F 01 0.6700E-02 0.4364E-02 0.3442F 00 0.2040E-01 0.3940F 00 10. 0.1421E+01 0.6800E-02 0.4306E-02 0.3426F 00 0.2046E-01 0.3940F 00 2000. 0.1441F 01 0.6800E-02 0.4105F 02 0.3312F 00 0.2046E-01 0.3944E 00 2000. 0.1443F 01 0.6800E-02 0.4105F 02 0.3312F 00 0.200E-01 0.3935F 00 6000. 0.1445F 01 0.6829F 02 0.3935F 02 0.2115F 01 0.39325F 00 6000. 0.1455F 10 0.6829F 02 0.3935F 02 0.2115F 00 0.2127F 01 0.39325F 00 6000. 0.1455F 10 0.6872F 02 0.3937F 02 0.2727F 00 0.2127F 01 0.3907F 100 5000. 0.1456F 01 0.6872E 02 0.3237F 02 0.2727F 00 0.2127F 01 0.3802F 00 5000. 0.1456F 01 0.6872E 02 0.2387F 00 0.2237F 01 0.3856F 00 5000. 0.1456F 01 0.6872E 02 0.3356F 00 0.2237F 01 0.3856F 00 5000.	0. 0.<	0. 0.<

TIME STEP # _] << EDWIN HATCH UNIT #2 100% POWER	1-11-11	>>	PAGE	_ 8

. REBAUGAARRANDERALEAARBAGEEAREBAG

TABLE SET 2 AXH BWR UNIT CELL 2.33 W/O

æ.

		THERMAL			IF +1 35
	EXPOSURE	ABSORBTION	FAST	THERMAL	MICPO
	(MND/HT)	XE REMOVED	F15510N	FISSION	ARSORHTION
E1	32823888	********			
V010 = 0.0					
U = 14U = U = U = U =	•	A 45 385 - AL	0 16785-02	A 37585-41	1704000
	100	0 16365.41	A 14475-43	V. 2730E-01	1406000.
	500.	U.4702E-01	W.1051E-02	U.27255-01	1940400
			0.1011t=02		1070500+
	4000.	0.4700E-01	9.1557E-02	0.7648E-01	1691700.
	6000 •	D.#739E-01	_Q.1505E.02_	_0.2578E-01_	
	8000.	0.47558-01	0.1454E-02	0.2499E-01	1698700.
	10000	0.#753E=01	0.1405E-02	A.2415E-01	1703400
	15000.	0.4702E-01	0.1297E-02	0.22008-01	1715300.
References in the Revealed in the second	20000	0.4610E-01	0-1202E-02	8+1986E-01	1727900
	25000.	0.4508F-01	0.1120F-02	0.17875-01	1739600
	30000	0.44145-01	0.1052F-02	0.16135-01	1749404
VOID # 0.32				V.1.1.1.1	
1010 - 0.36	•	A 43325-01	A 16706 A3	A 34445-41	1440400
	100			A 36675 AL	1430000
	100.	V.73102-VI	20-3CC01.V	0.70075-01	1030000.
		103022-01_	_u+1625E=92_		
	2000.	7.4460E-01	0.1588E-92	0.7650E-01	1622200.
	4000	0.4558E-01	_D.1539E-02_	_Q_2614E=01	
	6009.	0.4626E-01	1.1491F-02	0.25636-01	1623700.
	8000-	<u>0.4671E-01</u>	0.1445E-02	0.2503E-01	1626500
	10000.	0.4695E-01	0.1401E-02	10-3664.0	1630200.
	15000.	0.4700F-01	0.1302E-02	0.2261E-01	1640300.
	20000.	0.4657F-01	A.1215F-02	0.2082F-01	1651500.
	25000	0.45955-01	A 11395-82	0 19125-01	1442200
	30600	A 45316_AL		A 1761E_A1	
NOTE - 0 /4	30000.	4*43366 - 01	V+ I V / OF VZ	0.1.01L-01	10/1000.
	^	A 40675-01	A 15055-43	A 25715-AL	1550400
	100	0.4007C-V1	V.13736-02	V+C2/12-VI	1537644
		UASUDCE=01	-WAIDYDL-02-		123/200
	509.	v.4103t-01	0.1599E-02	1.C3486-01	1230300.
	2000	0.9234E-01			
	4000.	0.4372E-01	0.1513E-02	0.2546E-01	1521800.
	6000	0.4478E-01	0.1471E-02	0.2518E-01	1520900.
	8000.	9.4557E-0l	0.1431E-02	A.2480F-01	1521500.
	10000.	0.4615E-01	0.1392E-02	9.2436E-01_	1523100.
	15000.	0.4692E-01	0.1306F-02	0.23128-01	1524200.
	20000.	0.4714F-01	0.12318-02	0.2191F-01	1536900
	25000.	0.4708F-01	0.1165F-02	0.20535-01	1544800
	30000.	0.4690F=01	0.11086_A2	0.19375_A1	1551000
		HARMANI -NI	MATINUE - 0Z	MALI I LET WILL	TODI TUUA.
	· · ·				

 102

TIME STEP		7=11=71		
	I=135_EISSION_YIELUS######			rane of the delay
EXPOSURE				
(HNOZHT) TABLE	SE7 = 1 2 3			
0	0.06600.06600.0661		<u> </u>	
100.	0.0661 0.0661 0.0666			
500				
2000.				
6000.	0.4686 0.0680 0.0713			
10000.	0.0706 0.0698 0.0727			
20000.	0.0712 0.0705 0.0730			
25000	<u> </u>			
30000.	0.0722 0.0716 0.0732			
	,			

/

103

	-	F. 1. 7													
	L HEL	E.U.I 8	177												
FTX	PE_([+J)													 	
- <u> </u>	=)	_2		^	<u> </u>									 	
•				•		•									
	I	1						i	•	- C .	-6	 -		 	
2	1	1	2	1	2	1	2	1	2	2	2.	2	3	 	
	1	2	_1		1	2		2_		2	2	2_		 	
						_									
•	1	1	2	1	2	1	_ 2	1	2	2	2	2	3	 	
5		_ 2	_1	2	-1	2	_1_	2	_ 2	2	2	2		 	
			2		2		2	_,		2	2	3		 	
	•						_							 	
1		2	I	2		2	1	2	2	2	3				
	1	1	2	1	2	1	2	2	2	2	3		•	 	
9			L			2	<i>C</i>				d'				
10	2	2	Ş	ž	2	2	2	2	2	3					
	2	2	2	2	2	2	3	1							
12	2	2	2	2	2	3								 	
11	3	3		3	<u>ı</u>									 	
														 	<u> </u>

•

IHE_SI	EP#	1		EDWJ	N. HATC	H. UNIT	. 12		20VER				7=11=77	 PAGE	
**	NTROL R	<u>00.205</u>	111085									<u></u>		 	
тон 1 1	ETT 11 • 1	2	_1_	•	_5_	6	7	<u>A</u>	9		_11_	12	_13	 	
I	23_	0	0	23	21	Q		23	23		0	12		 	
2	0	16	16	0	0	16	16	0	9	16	16	0	•		
	0			0	<u>u</u>		16	0	0	16	16	0	0	 	
4	23	0	A	23	23	0	0	53	23	0	0	0	0	 	
5	23			23	23	0	0	23	23	0	Q			 	
6	0	16	16	8	0	16	16	0	0	16	16	9			
1		16	16	0		16			Q	16	16			 	
ß	23	0	0	23	23		0	23	53	Û	0			 	
9	23	0		23	23	Q		23	23	Q	Q			 	
10	0	16	16	0	0	16	16	0	0	0				 	
	<u>0</u>	16		0	Q	16	1t_	0	Q			<u> </u>		 	
12	12	0	0	0	0	0								 	
13	12	Q		Q	0									 	
											•			 	

105

I

STEP. #	NIN.HATCH_UNIT_#2	7-11-77	>>PAGE	. 12
CONTROL ROD WORTH FOR TAB				
E XPOSURE				i
(MV:)/MT)	WORTH			
10 = 0.0				
0.05.01	0.24			
	0.24			
0.20E+04 0.40E+04	0.24			
0.605+04	0.24			!
0.10F+05	0.24			
<u></u>				
0.258+05	0.24			
10 * 0.32	W & C 7			
0.0 0.10F+03	0.27			
0.50F+03	0.27			·
0+40F+04	9.27			
0.60 <u>F+04</u> 0.80F+04	0.27			
<u>0.10F+05</u>				
0.20E+05	9.21			
0.25E+05 0.30E+05	0.27			
010 = 0.64 0.0	0.32			
0.10-+03	0.32			
0.20F+04	0.32			
0.405.109				
0.805+04	<u>n.32</u>			
0.19F+05 0.15E+05	0.32			,
0.20F+05	0.32			······ ,
0.30F+05	0.32			
		-		
				h
			· · · · · · · · · · · · · · · · · · ·	

E STEP . J	\$\$E	DWIN HAICH UNIT #2 LOOS POWER	7=11=77	PAGE13
CONTROL_BOD_NO	RIH EOR. TA			
	EXPOSURE	VODTH		
	222222222			
V010 = 0.0				
	0.10F+03			
	A.50E+01			
	0.20E+04 0.40E±04	0.24		
	0.60E+04	0.24		
	0.10E+05	0.24		
	0.15E+05_	<u> </u>		
	0.25E±05	0.24		
	0.J0E+05	0.24		
.¥u1u	0.0	0.21		
	0.505+03			
	0.20E+04			
	0.40F+04	0.27	· · · · · · · · · · · · · · · · · · ·	
	0.80E+04	0.27		
	0.15E+05	0.27		
	0.20E+05			
	0.250.05	0.27		
VOID = 0.64	• •	0. 12	·	
···	0.10F+03	0.32		
	0.50E±03_	0.32		
	0.40E104_	0.32		
	0.60E+04			
	0.102+05	0.32		
	_0.15E±05	0,32		
	0.25E+05			
	0+30E+05	0.32		<u> </u>
			_	

IE_STEP_#1		EDWIN_HATCH_UNIT_#2_	100% POWER		 PAGE14
		ADIE CET 3 44-			
	3-90619-206-17				
	EXPOSURE	NORTH			
		<u><u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u></u>			
V010 = 0.0			<u> </u>		
	0.10F+03 0.50F+03	0.24			
	0.20E+04	0.24		•	
	0.007.+04 0.80F+04	0.24			
	0.10E+05	0.24			
		0.24			
	0.25E+05	0.24			
	0.305+05	0.24			
VQ10_=0_3	32				
	0.105+03	0.27			
	0.50E+03	0,27		- ,	
	0.208:04				
	0.402+04	0.27			
	0.80E+04	0.27			
	0.10F+05				
	0.20E+05		· · · · · · · · · · · · · · · · · · ·		
	0.256+05	0.27			
010 - 0.6	0+30E+05	0.21			
1010 - 110		<u>0.32</u>			
	0.10-+03	0.32			
	Q_SOE+QJ	Q.J2			
	0.40E±01				
	0.50E+04	0.32			
· · · · · · · · · · · · · · · · · · ·	0.80F+04 0.10F+05	0.12			
	0.15E.05	0.32			
	0.20F+05	0.32			
	0.305+05	0.32		······································	
			<u> </u>		

: e#)	1	PAGE
	9THERMAL=HYDRAULIC_DATA_EOR_THIS_TIME_STER9	
	CORE POWER 2436.0 MW-THERNAL	
	AV. HEAT FIUX 145060. RTU/HR/FT++2	
·	PEAKING FACTOR 1.05	
	SAT. VAP. SPEC. VOL. U.4297 FT**3/LHM	
	SAT. LIG. SPEC. VOL. 0.02176 FT##3/LBM	
	INLET ENTHALPY 526.90 RTU/LBH	
	HEAT OF VAPORIZATION 642.80 BTU/LBM	
_	ENTHALPY OF SAT. LIG. 547.80 ATU/LBH	
	CORE PRESSURE 1035.0 PSIA	
	INCORE FLOW 7.700E+07 1.8H/HR	
	FLOW AREA PER CHANNEL 0.1099 FT++2	
	ACl = 0.433	
	COOLANT FLOW VARIATION WITH POWER	
	P = RELATIVE POWER IN CHANNEL FLOW = RELATIVE COOLANT FLOW IN CHANNEL (UNNORMALIZED)	
	CHANNEL IYPE	

	<u>1FLOW # 0,100F+01 + 0,09P + 0,09P+07</u>	
	2 Flow = 0,500t+00 + 0.0 + 0.0 + 0.0 + 0.0	
	·	

-

	INFL IY	PEED1	1												 	 	
CTYPE	E_[[.J]			`											 	 	
<u>Ja</u>		_2			<u> </u>		_1_	A	_9_	<u> </u>	11	12	_11			 	
						1	1	1			1		2			 	
1	B	·····													 	 	
2	1	1	1	1	1	1	1						£		 	 	
_	1			1		I	1	_1_	_+-	l	}	}	2		 	 	
4		1	1		1	1	1	1	1	1	1	1	2		 	 	
5	1									l		l			 	 	
					1	<u>1</u> -		1		1	1	2			 	 	
¢.								 i			2				 	 	
1	1	B	l	I	I										 		
8	1	1	I	1	1	1	1		1	1	2				 	 	
<u> </u>			1	_1_	-	1	1	1		I	2				 	 	
10	ī		1	- <u>ı</u>	ı		1	1	1	2					 	 	
11	1							1	2					<u> </u>	 	 	
						2									 		
12															 	 	
	2	2	2	2	2										 	 	

 \mathbf{N}

Iffer:110H_PONITO UDES Date 20 UDES Date 20 Iffer:110H_UTER:110H_IFER:110H_K-FFFF TESTO TESTO I 1 1.6520 6.1977-61 2 1.0570 6.1977-61 2.000 4 3 1.0760 6.182-61 4 3 1.0760 6.182-61 4 3 1.0760 6.182-61 4 3 1.0760 6.182-61 4 3 1.0760 6.182-61 4 3 1.0760 6.182-62 5 3 1.0655 0.377-61 2 2 3 3.0422 6.0227-62 2 3 3 1.0642 6.0276-62 2 4 3 1.0642 6.0276-62 2 3 1.0642 6.0276-63 0.306-60 4 1.0645 6.278-62 2 1.0646 4 3 1.0646 6.278-62 2	<u>e #1</u> _	SSE[WIN_HATCH_UN	11 12	100%. POWER		7=11=77		PAGE
APPLIA DILE DIME W 11ERATION ITERATION ITERATION ITERATION 1 1 1,0322 0.312.01 2 1 1030 0.107.01 3 1.0100 1105.01 1105.01 4 3 1.0212 0.312.01 4 3 1.0212 0.312.01 4 3 1.0217 0.312.01 4 3 1.0217 0.312.01 4 3 1.0326 0.212.01 5 3 1.0452 0.316.02 2 1 1.0455 0.316.02 3 1.0452 0.3216.02 4 3 1.0452 0.3216.02 5 3 1.0450 0.3216.02 4 3 1.0450 0.3206.00 4 3 1.0450 0.3206.00 2 3 1.0450 0.3206.00 4 3 1.0450 0.3206.00 <	ITERATION	HEREEXE.					M		
VAIA DutEB LMME H 1 1.6322 0.1127.001 2 1.6330 0.1976-01 3 1.6320 0.1976-01 4 3 1.6700 5 3 1.6631 4 3 1.6700 5 3 1.6632 6 3 1.6750 7 1 1.6455 8 3 1.6700 9 1.6452 0.370-01 2 1.6452 0.370-01 3 3 1.6452 0.370-01 3 1.6452 0.370-01 3 1.6452 0.370-01 3 1.6452 0.370-01 3 1.6452 0.370-01 3 1.6452 0.370-01 3 1.6452 0.370-01 4 3 1.6424 0.270-02 3 1.6452 0.370-01 4 3 1.6451 0.3106-00 <tr< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></tr<>									
Itextition Itextition Itextition Itextition 1 1 1.6332 0.31201 2 3 1.6530 0.1977-01 1 1.6530 0.1977-01 1.6332 2 3 1.6550 0.1977-01 3 1.6655 0.3767-02 1.6453 6 3 1.6655 0.3767-02 1 3 1.6452 0.2027-02 3 1.6452 0.2027-02 2 3 1.6452 0.2027-02 3 1.6452 0.3517-02 4 1.6452 0.2027-02 5 1.6452 0.2027-02 4 1.6452 0.2027-02 3 1.6452 0.2027-02 2 1.6453 0.3527-63 4 3 1.6459 0.2145-03 5 1.6459 0.2145-03 0.3067-00 4 3 1.6459 0.2165-02 5 1.6459 0.2167-03	¥010	DUITER	INNER		Intio	15 6 1 0			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	TIERATION		TIERATION	K-EFF 22222222	12310				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1	_ 1_	1.0322	0.312.=01				
$\begin{array}{c} 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 &$		2	3	1.0530	9.197E-01				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				1.0706					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		4	3	1.0817	4.357E+02				
1 3 1.0455 0.370-01 2 3 1.0452 0.8185-03 3 3 1.0452 0.8185-03 3 3 1.0452 0.8185-03 4 3 1.0452 0.4815-03 3 1.0452 0.4815-03 0.5615+00 3 1.0450 0.351+03 4 3 1.0456 0.351+03 3 1.0456 0.351+03 4 3 1.0456 4 3 1.0456 5 3 1.0456 4 3 1.0456 4 3 1.0456 5 3 1.0456 6 3 1.0456 6 3 1.0456 7 1 1.0456 6 3 1.0457 7 1 1.0457 8 1.0456 0.278-03 9 1.0456 0.278-03 10 1.0457 0.1465+00 11 1.0456 0.278-03 12 1.0457 0.1465+01 13 1.0456 0.278-03 14 1.0520 0.2685-03 1 1.0520 0	s	6	3	1.0852	0.1365-02				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	×	1	3	1.0455	0.379-01				
$\begin{array}{c} 3 & 3 & 1.0642 & 0.2027-02 \\ & 4 & 1.0632 & 0.9375ra3 \\ & 5 & 3 & 1.0632 & 0.1437-04 \\ & 6 & 1.0631 & 0.4611ra3 & 0.5615ra0 \\ \hline & & & & & & & & & & & & & & & & & &$		2		1.0463					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		3	3	1.6442	0.202F-02				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		_	<u>1</u>	1.0432	0.147F-04				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Ă	i	1.0436	0.4411-03	<u>561E+00</u>			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1		•	1.0450	0.132+-02				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		2	3	1.0454	0.3511-03				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		3	1		0.521E=03				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		<u>*</u>	3	1.0463	0.39203				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		6	3	1.0469	* 0.214E-03	0.309E+00			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	<u> </u>			1.0698	0.278 -02				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		2	i		Q.443==03_				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		3	3	1.0492	0.8876-04				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			<u> </u>	1.0492	4.304E-04				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		5 6		1.0493	9.5/4t-04 9.117E=03_	0+144E+00		······································	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5			1 4533	A 3686				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				1.0519	0.3256-03				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			ž	1.0519	0.114E-04				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		4	3	1.0520	0.544E-04				
6 1 3 1.0546 0.2328-02 2 3 1.0543 0.2328-03 3 3 1.0543 0.2738-03 3 3 1.0543 0.2738-03 4 1.0543 0.2766-04 5 3 1.0544 6 3 1.0544 7 1 3.0563 2 3 1.0545 3 1.0563 0.1918-02 7 1 3 2 3 1.0561 3 3 1.0561 4 3 1.0561 9 1.0561 0.1245-02		<u>ş</u> .	<u>j </u>	1.0521	Q.709E=04_	0.1275.00			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		•	J	1.0361	V.001C-04	4.1C/C VU			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1	3	1.0546	0.2326-02				
J J 1.0543 0.1917-04 4 J 1.0543 0.276f-04 5 J 1.0543 0.276f-04 6 J 1.0543 0.276f-04 7 J J 1.0563 2 J 1.0563 0.192f-02 2 J 1.0561 0.192f-03 3 J 0.561 0.1245-04 4 J 1.0561 0.272f-04		2	i	1.0543	0.273E=03				
5 3 1.0543 0.2767-04 6 3 1.0544 0.641E=04 0.135E:00 7 1 3 1.0563 0.182E=02 2 3 1.0561 0.1967-03 3 3 1.0561 0.1245=04 4 3 1.0561 0.272E=04		L A	L r	1.0543	0.1712-04 0.333E-04				
6 3 1.0564 0.641E=04 0.135E±00 7 1 3 1.0563 0.182E=02 2 3 1.0561 0.196F=03 3 3 1.0561 0.1245=04 4 3 1.0561 0.272E=04			3	1.0543	0.2765-04	······································			
7 1 3 1.0563 0.182E-02 2 3 1.0561 0.196F-03 3 3 1.0561 0.1245-04 4 3 1.0561 0.272E-04		6_	1	1.0544_	.641E=04	U+135E±00			
2 3 1.0561 0.1967-03 3 1.0561 0.1245-04 4 3 1.0561 0.272E-04	7		ъ	1.0563	6.1025-02				
<u> </u>		2		1.0561	0.196E-03		· · · · · ·		
4 3 1.0561 0.272E-04		3.		1.0561	9.1245-04				
		4	3	1.0561	0.272E-04				

	L	
-	5	
	<u> </u>	3 1.0583 0.7566-83
		1 0582 0.515:=0
• · · · · · · · · · · · · · · · · · · ·		3 1.0582 0.1145-04
		3
		3 1.0582 0.668F-05 0.936E-01
	10	
		3 1.0588 0.525-03
		23_1.05870.296E=04
•		3 3 1.0588 0.3281-05
		<u> </u>
-		5 3 1.0588 0.9542-06 0.0242-01
	1	
e		
· ·····		1.0591 0.572F-05 0.701E-01
•	••	
	12	3 1.0594 0.255%-03
•		2 3 1.0594 0.763E=05
•		3 3 1.0594 0.757E-05
		1.0594_0.381E=05
4		5 3 1.0594 0.6682-05 0.5792-01
• 	13	
L		
' -		
	16	1 3 1.0597 0.105 -03
		2 3 1.0597 0.471E-05
•		3 3 1.0597 0.0 0.213E-01
	15	
		1 3 1.0597 0.346F-04
		3 3 1.0597 0.6687-03
·		<u>431.057/0.0N.29VEEU</u>
	16	1 1 6507 6 2805-64
		3 1.0597 0.572E-05
		5 3 1.0597 0.417E-06 U.271E-01
<i>•</i>	17	
	••	1
		2 3 1.0598 0.829F-05
	18	A 504 AE
		ني
1. A.	19	3 1.0590 0.668F-05
		1 1.0590 0.0
•	20	
	EU	1
	21	
•	~ •	1 3 1.0598 0.286E-05

•		2	Э	1.0598	0.417E-A6	0.286E-02
, ~	22	1	3	1.0598	0.954+-06	u.217E-0?
•	21		3	1.0598	0.507+-05	
		<u>ż</u>	ī	1.0598	0.5721-05	
h[**:		3	3	1.0598	0.4356-05	4.6715.07
	24					
·		<u> </u>			0.9541=05.	
				1.0598	0.3106-05	
~	-r	4	3	1.0598	0.0	Q.66AE-02
·	2	1	3	1.0598	0.9541-05	
-	<u></u>	2		1.0598_		
		3	L L	1.0598	0.703E+05 0.381E+05	0.50FF = 02
•	26					
	<u></u>		<u>]</u>	1.0598		A. 103F-02
	21	-				······································
		1	3	1.0598	0.1318-05	
		3	3	1.0598	0.5078-05	
	- 0	4	3	_1.0598_	0+858F-05	0.293E-02
	24		3	1.0598	0.2865-05	
•		2	3	1.0598	0.775F-06	0.123E-02
	29			1.0598		0.5255-03
•						
-						
						·
-						
-						
				-		
-						
•						
·						
•						
-						· · · · · · · · · · · · · · · · · · ·
						
-						
_						
			<u>+</u>			· · · · · · · · · · · · · · · · · · ·

,

EXPO	SURE =	0. HWD/	'HT					-							
***	INTEGRAT	FD POWER	EDIT	•											
ſ	• (1,J)														
1.	[= [,	2	3	•	5	6	1	8	9	10	11	12	13		
1	0.736	1.166	1.194	0.782	n.794	1.242	1.259	0.829	0.865	1.496	1.472	1.082	9.304		
2	1.166	1.099	1.212-	1+261	1.372_	1.161	1.260_	1.320_	1.452		1.232-	-1.122			
3	1.194	1.212	1.157	1.387	1.298	1.269	1.187	1.428	1,338	1.273	1.190	1.098	0.313		-
				0.832										allande fall out - forer desid	<u></u>
5	0.794	1.372	1.298	0.899	0.837	1.402	1.290	0.872	0.850	1.283	1.188	0.871	.210		
			1.269	1,312		1.151_	1.205		1.237_		a.755				
7	1.259	1.260	1.144	1.413	1.290	1.206	1.082	1.245	1.129	0.791	0.262				
	0.830	1.320	_1.428	0.840	0.072	1.211	1.245	0.732			_0.197				
9	0.865	1.452	1.338	0.900	0.850	1.237	1.130	0.610	0.463	0.503	0.121				
10_	1.496	1.307_		1.390	1.284_	0.973	_0.793_	0_688	_0.503	0.153	· ·				
11	1.473	1.232	1.190	1.342	1.189	n.757	0.276	0.201	0.120						
12	1.085		1.098	1.055											
13	U. JO4	0.321	0.313	0.248	0.210				_						
											,				
<u></u>															

E_STEP_#	1	CEDWIN_HATCH.I	UNIT #2	WER		
A X	IAL AVENAGES					
<u>×-</u>	_pumen_wotu					
I	_6.215_0.A_					
2	1.383 0.0					
4	0.626 0.0					
5	<u>0.699 0.0</u>					
ï_						
8	0.708 0.05	_				
10	0.658 0.11					
11	0.657 0.15					
ii	0.770 0.22	·				
14	0.889 0.26					
16	1.346 0.35					
17	2.081 0.45					
	_2.074_0.50				·	
20	1.926 0.53					
22	1.360 0.58					
2124	<u>0.994 0.59</u> 0.621 0.60					
BEA	K POWER	3. 307 AT LOCATI	ION (10. 2.18)			
PEA	K ASSEMBLY 1	NTEGRATED I-OWER I	= 1.496 AT LOCA	TION (10+ 1)		
			· · · · · · · · · · · · · · · · · · ·			

POSURE =	0. H	wD/MT		IATCH. UN			(ER			/=] =				FAUL	
AVERAGE	EXPOSU	RE EDIT		·											
EX (1.J))				_										
	t	2	3	4	5	6	7	8	9	16	11	12	13		
													- <u> </u>		
1 0.0	0.0	0.0	0.0	9.0		0.9	0.0	0.0	0.0	n.0	0.0	0.0			
2 0.0	0.0	0.0						0.0							
3 0.0	0.0	0.0	0.0	0.0	9.0	0.9	0.0	0.0	0.0	9.0	0.0	0.9			
4_0.0										A.D					
															_
5 0.0	0.0	9.0	0.0	0.0	 		e.o	0.0			0.0	9.0			
6.0.0	0.0		0.9	0.0						Q.Q.		_	··· ·		
					0.0	0.0	0.0	0.0	0.0	8.0					
/ 0.0															
BQ.Q				0.0	0.0					0.0					
9 0.0	0.0	0.0	0.0	0.0	6.9	0.0	0.0	0.0	0.0	8.0					
			. <u> </u>												
L							0.0								
11 0.0	0.0	0.0	0.0	0.0	0.9	0.0	0.0	0.0	·				_,,		
														_	
12. <u>.</u> 9+9		¥AU		WAW							/				
3 0.0	0.0	0.0	0.0	0.0				•							
									. 						

-

•

116

•

								<u>.</u>
	< EDVIN HATCH IP	11 #21005_P	OVER		7-11-77	>>	PAGE 21	r
								P
	TOTAL	FLOW 0. 170E+0	B LUM/HR					•
ELOY_(1.0.1)2		_ 5 _ 6	78	<u> </u>	<u>1</u>	1211		
1	1.06 1.06	1.06 1.06		1.061.00	1.06	1.06 0.53		•
<u>11.061.06</u>			1.06 1.06	1.06 1.09	1.06	1.06 0.53		•
2 1.06 1.06	1.06 1.06	1.06 1.06	1.06 1.00			1.06 0.51		
		1.061.06	1.06 1.06					•
4 1.06 1.06	1.06 1.06	1.06 1.06	1.06 1.06	1.06 1.0	5 1.06	1.06 0.53		•
51.061.06_		1.061.06	1.96 1.96	1.06 1.0	51.06	1.06 0.53		•
6 1.06 1.06	1.06 1.06	1.06 1.06	1.06 1.06	1.06 1.0	5 1.06	0.53		•
7 1.06 1.06	1.06 1.06	1.06 1.06	1.06 1.06		9.53			•
	1.06 1.06	1.06 1.06	1.06 1.96	1.06 1.0	6 0.53			•
	1.06 1.06	1.06 1.06	_1.061.06	1.061.0	60.53			•
<u> </u>		<u> </u>	1.06 1.06	1.06 0.5	3			•
10 1.06 1.06	1.06 1.06	1.06 1.08	1.00					- -
111.061.86	0606	1.061.06						-
12 1.05 1.06	1.06 1.06	1.06 0.53						. •
	0.530.53	0.53						- •
					· · ·			-
				· · · · · · · · · · · · · · · · · · ·				-

1_

1HES	TEP_#1			IN_HATCH		100%	POVER				11=17		>	PAGE22
VV	010_ERACT 10_11+J+2	10N ED11						·						
	ا هل.	2		<u>. </u>	5_	6_	1_	8	9	10	11	12	13	
		0.67_				68				0.72				
2	0.67	0.65	0.67	0.68	8.70	0.66	9.68	0.69	0.72	0.69	9.68	0.66	0.50	
3	0.67			0.71		0.69	0.67		0.70			0.65	0.49	
	0.56	0.68	0.71	0.58	0.60	0.69	9.71	0+58	0.60	0.71	8.70	0.64	0.46	
5	0.56	0.70	0.69		0.58	0.71		0.59_		0.69	0.67	0.59		
6	0.68	0.66	0.69	0.69	0.71	0.66	0.67	0.68	0.68	0.62	0.55	0.43		
1_		0.68		0.71_	1.69		9.65		0.66		0.42			
8	0.5A	0.69	0.71	0.58	0.59	0.68	0.68	0.54	0.48	0.52	0.31			
9	0.59	<u>0.12</u>	_0.70	0.60	0.58	0.68		.48	0.38		0.08			
10	0.72	0.69	0.69	0.71	¥.69	0.62	0.56	0.52	0.41	0.20				
	0.72	0.68				0.55_	0.14							
12	0.65	8.66	0.65	0.64	0.59	n.43								
	9.48	Q.59		0.46	9.34							· · · · · · · · · · · · · · · · · · ·		

·														
<u></u>	INIMUM.C		HEAT_FLU	L. RAT 10_1	DII	ŧ				····				
MC	HER_LLI)												
١,			1		<u>></u> _	<u> </u>			¥.	La_	1	12		
1	4.32			A.22					3.90	1.30_		2.39		
5	2.12	2.03	1.73	1.88	1.58	1.89	1.64	1.75	1.41	1.54	1.72	2.37	7.90	
	2.04	1.73	1.89	1.55	1.79	1.62				1.64	1.85			
4	4.22	1.88	1.55	4.07	3.69	1.78	1.52	4.17	3.86	1.64	1.78	2.96	9.96	
5			1.79							2.01	2.37			
6	1.93	1.89	1.62	1.78	1.55	1.97	1.83	2.18	2.16	2.12	3.51	10.00		
1_	1.89	1.64		1.52	1.87_			2.09						
8	4.08	1.75	1.47	4.17	4.03	2.18	2.19	5.16	6.16	5.04	12.89			
9_	3.90		1.73	_3.86_	4.30			6.16			22.59			
10	1.29	1.54	1.64	1.64	2.01	2.71	3.34	5.04	7.20	18.61				
11		1.72	1.85	1.78	2.31_	3.51		14.94	22.94					
12	2.39	2.37	2.56	2.96	4.07	9.99								_
	7.45	7.89		9.95	13.73									
MINIMU	H CRITICA	I HEAT F	UX RATI	0 *	1.295	AT 1.0CA	10N 4	10. 1. 2	21 +					
	NU. OF .CAS													

. .

APPENDIX B

Source Listing

.

C=====================================	Α	10
	Α	20
Č [*]	Α	30
PROGRAM STORM (INPUT,OUTPUT,TAPE5=INPUT,TAPE6=OUTPUT,TAPE7=OUTPUT)	Α	40
C	Α -	50
C A THREE DIMENSIONAL BWR SIMULATION PROGRAM USING SIMULATED TWO-GROUP	Α	60
C DIFFUSION THEORY WITH THERMAL-HYDRAULIC FEEDBACK.	Α	70
	Α	80
~ (~~~*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Α	90
č	Α	100
C VERSION 77222	Α	110
C	Α	120
C DIMENSIONING INSTRUCTIONS	Α	130
	Α	140
Č	A	150
C REPLACE ALL OCCURENCES OF NO1 THROUGH N11 WITH THE VALUE INDICATED	Α	160
C HELOW. GEOMETRIC DIMENSIONS MUST BE EXACTLY THOSE OF THE PROBLEM	Α	170
C TO BE SOLVED. TABLE SET DIMENSIONS (NO7-N11) MAY BE EQUAL TO OR	Α	180
C GREATER THAN THE ACTUAL DIMENSIONS OF THE TABLES USED.	Α	190
C	Α	200
C NO1 = NUMBER OF NODES IN ENTIRE PROBLEM	Α	210
C NO2 = NUMBER OF NODES PER PLANE	Α	220
C = N03 = N01 - N02	Α	230
C NO4 = MAXIMUM NUMBER OF NODES PER ROW	Α	240
C = N05 = N04 - 1	Α	250
C NO6 = NUMBER OF AXIAL NODES	Α	260
C NO7 = NUMBER OF EXPOSURE POINTS USED IN TABLE SETS	Α	270
C NO8 = NUMBER OF VOID PUINTS USED IN TABLE SETS	Α	280
C N09 = NUMBER OF TABLE SETS	Α	290
C = N10 = N07*N08*N09	Α	300
C N11 = NUMBER OF FUEL TYPES	Α	310
C	Α	320
C FOR CONVERSION TO IBM COMPUTERS CHANGE END OF FILE (EOF) CHECKS AND	Α	330
C CHANGE PROGRAM CARD TO COMMENT CARD.	Α	340
C	Α	350
	Α	360

C			Α	370
С	DATA SET	USE	Α	380
С			Α	390
С	5	INPUT (CARD READER)	Α	400
С	6	OUTPUT (PRINTER)	Α	410
С	7	PUNCH	Α	420
С			Α	430
с -			A	440
C			Α	450
	COMMON	/HEADR / NTITLE(20), AVEXP, NTSTEP	Α	460
	COMMON	/CSINP / BUMASK(N07), VMASK(N08), DFI(N10), DTI(N10)	A (0	470
	\$	SAFI(N10), SATI(N10), NSFFI(N10), NSFTI(N10)	• A	480
	\$	SDSI(N10), IEXPTS , IVDPTS , ITSETS ,	A	490
	\$	KSFTI(N10), KSFFI(N10),	Α	500
	\$	DIMTS , DIMEX , DIMVD , NOTCH(NO2),	Α	510
	\$	TABSET(N01), WORTH(N09,N07,N08)	Α	520
	INTEGER	R DIMTS, DIMEX, DIMVD, TABSET	Α	530
	REAL	NSFFI,NSFTI,KSFFI,KSFTI	A	540
	COMMON	/FUEL / FTYPE(NO2), BU(NO1), VOID(NO1)	Α	550
	INTEGER	R FTYPE	Α	560
	COMMUN	/NODAL / DF (NO1), DT (NO1), KSFF (NO1)	Α	570
	\$,	KSFT (NO1), TFR (NO1), NSF1G (NO1)	Α	580
	5 ,	C2 (NO1), C4 (NO1), C6 (NO3)	Α	590
	5,	C7 (NO1)	Α	600
	REAL KS	SFF, KSFT, NSF1G	Α	610
	COMMON	/GEOM / NODES , NP , NDSMNP , NX	Α	620
	\$,	NZ , NXM1 , GX , GZ	Α	630
	5,	NCOL (NO4)	Α	640
	COMMON	/BC / AF1, AF3, AF5, AF6, AFQ(N04),	Α	650
	5	BF1, BF3, BF5, BF6, BFQ(N04),	Α	660
	\$	AT1, AT3, AT5, AT6, ATQ(N04),	Α	670
	5	BT1, BT3, BT5, BT6, BTQ(N04)	A	680
	EQUIVAL	ENCE (AFQ(1), AF2), (AFQ(2), AF4),	A	690
	\$	(BFQ(1), BF2), (BFQ(2), BF4),	A	700
	5	(ATQ(1), AT2), (ATQ(2), AT4),	Α	710
	:5	(BTQ(1), BT2), (BTQ(2), BT4)	Α	720

•

.

```
COMMON /CONVRG/ MAXI, MAXO, MAXP, EPSO, EPSP, ALPHA, SOR A 730
     LOGICAL SOR
                                                                A 740
     COMMON /FLUX / POWER(NO1), FASTA(NO1), THERMA(NO1), F(NO1)
                                                                A 750
     COMMON /PROB / INTTYP, QTRKOR, NOHAL, NOCROD, NOVOID, IEDIT(6)
                                                                A 760
                     NOXE, FIRST
                                                                    770
                                                                Δ
    S •
     LOGICAL QTRKOR, NOHAL, NOCROD, NOVOID, NOXE, FIRST
                                                                Α
                                                                    780
     COMMUN /WEIGHT/ R. CF. CT. RCF, RCT, B1N, B2N
                                                                A 790
     COMMON /THERMO/ HFG, XIN, AC1, AC2, AC3, AREA, AVFLUX, AVPWR, PSIA A
                                                                    800
                   B](4), B2(4), B3(4), CTYPE(NO2), FLOW(NO2), TFLOW
                                                                    810
    5.
                                                                    820
                   PCTPWR
    $.
                                                                Α
                                                                    830
     INTEGER CTYPE
     COMMON /XENON / PD, PRSA1(N10), PRSA2(N10), SAXE(N10)
                                                                    840
                                                                Α
                                                                    850
     NAMELIST /INPUT/ IPTYPE, ICNTRL, IEDIT, IPDRD, IEXRD, TONNES,
                                                                Δ
                                                                    860
                    PCTPWR.
                             MWTH. IGEOM. DX.
                                                   DZ, Al,
                                                                Α
                                                                    870
                             NCOL, IEXPTS, IVDPTS, ITSETS, BUMASK,
                                                                    880
                        A2,
                                                                Α
                             MAXI, MAXO, MAXP, ALPHA, ISOR,
    $
                                                                    890
                     VMASK .
                                                                Α
    $
                     EPSO.
                             EPSP. AVHFLX. VG. VF. HIN.
                                                                Α
                                                                    900
                    HSAT, HFG, PSIA, AC1, AC2, IFLOW,
    $
                                                                Α
                                                                    910
                             AREA, PEAKF, NBANKS, IXE, ITSAS,
    s
                    TFLOW,
                                                                    920
                                                                Α
                    IFTYPS
                                                                 Α
                                                                    930
                                                                    940
     REAL MWTH
     COMMON /CROD / NRODS(6,2), RODIND(NO2)
                                                                    950
                                                                Α
     INTEGER RODIND
                                                                    960
     DIMENSION ASMEX(N06), WORD(20), YIX(N09,N07)
                                                                A 970
    'INTEGER TSOVLY(N11,N06)
                                                                    980
     DATA A1/ .31/, A2/ .73/, PEAKF/ 1.05/, MWTH/0./, IFTYPS/1/,
                                                                A 990
         TONNES/0./, IGEOM/1/, ICNTRL/0/, IPDRD/0/, IEXRD/0/
    $
                                                                A 1000
    $, NBANKS/0/, IFLUW/0/, ISOR/0/, IXE/1/, IPTYPE/1/, ITSAS/2/
                                                                A 1010
                                                                A 1020
                         1030
C-
                                                                A 1040
     READ (5,1000) NTITLE
                                                                A 1050
                              .
     CALL HEADER (1)
                                                                A 1060
                                                                A 1070
C READ PROBLEM DESCRIPTION
                                                                A 1080
```

С

С

С

С

12 L)

	READ (5, INPUT)	Α	1090
	IF ($IPTYPE \cdot EQ \cdot 2$) NOHAL = $\cdot FALSE \cdot$	Α	1100
	IF (ICNTRL .NE. 0) NOCROD = .FALSE.	Α	1110
	IF (IGEOM .EQ. 2) QTRKOR = \cdot FALSE.	Α	1120
	IF (ISOR \bullet EQ \bullet 1) SOR = \bullet TRUE \bullet	Α	1130
	IF (IXE \bullet EQ \bullet 1) NOXE = \bullet FALSE \bullet	Α	1140
С		Α	1150
CHECI	K FOR INPUT GEOMETRY ERRORS	Α	1160
	IF (NCOL(1) .NE. NX) CALL ERROR (2)	A	1170
	ISUM = 0	A	1180
	DO 222 I=1+NX	A	1190
222	ISUM = ISUM+NCOL(I)	A	1200
	IF (ISUM .NE. NP) CALL ERROR (3)	A	1210
	IF (NZ*NP .NE. NODES) CALL ERROR (4)	A	1220
С		A	1230
Č RE	AD B.C. DATA	A	1240
	IF (QTRKOR) GO TO 111	A	1250
	READ (5,*) AF1, BF1, AF2, BF2, AF3, BF3, AF4, BF4, AF5, BF5, AF6, BF6	Α	1260
	\$,AT1,BT1,AT2,BT2,AT3,BT3,AT4,BT4,AT5,BT5,AT6,BT6	Α	1270
	WRITE (6,4010) DX,DZ,A1,A2	Α	1280
	WRITE (6,4020) AF1, BF1, AT1, BT1, AF2, BF2, AT2, BT2, AF3, BF3, AT3, BT3,	Α	1290
	\$ AF4, BF4, AT4, BT4, AF5, BF5, AT5, BT5, AF6, BF6, AT6, BT6	Α	1300
	GO TU 112	Α	1310
111	AF1 = 1.	Α	1320
	BF1 = 0.	Α	1330
	AF3 = 1.	Α	1340
	BF3 = 0.	Α	1350
	ATI = 1.	Α	1360
	BTI = 0.	Α	1370
	AT3 = 1.	Α	1380
	BT3 = 0.	Α	1390
	READ (5,*) AF5,BF5,AF6,BF6	Α	1400
	\$ • • • • • • • • • • • • • • • • • • •	Α	1410
	<pre>\$,(AFQ(I),BFQ(I), I=1,NX)</pre>	Α	1420
	<pre>\$,(ATQ(I),BTQ(I), I=1,NX)</pre>	A	1430
	WRITE (6,4010) DX, DZ, A1, A2	Α	1440

Ć,

	WRITE (6,4022) AF5,BF5,AT5,BT5,AF6,BF6,AT6,BT6,	Α	1450
	<pre>\$ (I, AFQ(I), BFQ(I), ATQ(I), BTQ(I), I=1,NX)</pre>	Α	1460
С		Α	1470
112	WRITE (6,4000) EPSO,EPSP,MAXI,MAXO,MAXP	Α	1480
С		Α	1490
CHECK	INTERPOLATING TABLE DESCRIPTION	Α	1500
	INTTYP = 1	Α	1510
	IF (IVDPTS \bullet GT \bullet 1) INTTYP = 3	Α.	1520
	IF (IEXPTS .GT. 1) INTTYP = INTTYP+1	Α	1530
	IF (INTTYP .GT. 2) NOVOID = .FALSE.	Α	1540
	IF (IPTYPE .EQ. 2 .AND. IEXPTS .EQ. 1) CALL ERROR (5)	Α	1550
	IF (ITSETS .GT. DIMTS) CALL ERROR (6)	Α	1560
	IF (IEXPTS .GT. DIMEX) CALL ERROR (7)	Α	1570
	IF (IVDPTS .GT. DIMVD) CALL ERROR (8)	Α	1580
С		A	1590
CHECK	FOR ERRORS IN MASKS	A	1600
	IF (IEXPTS .LE. 1) GO TO 114	Α	1610
	DO 113 I=2,IEXPTS	Α	1620
	IF (BUMASK(I-1) .GT. BUMASK(I)) CALL ERROR (9)	Α	1630
113	CONTINUE	Α	1640
114	IF (IVDPTS .LE. 1) GO TO 116	Α	1650
	DO 115 I=2,IVDPTS	Α	1660
	IF (VMASK(I-1) .GT. VMASK(I)) CALL ERROR (10)	Α	1670
115	CONTINUE	A	1680
С		Α	1690
C EDI	T VUID AND EXPOSURE MASKS	Α	1700
116	CALL HEADER (1)	Α	1710
	WRITE (6,7000) ITSETS, IEXPTS, IVDPTS	Α	1720
	WRITE (6,7002) (IEX, BUMASK(IEX), IEX=1,IEXPTS)	Α	1730
	IF (.NOT. NOVOID) WRITE (6,7004) (IVD, VMASK(IVD), IVD=1, IVDPTS)	Α	1740
С		Α	1750
	IF (NOXE) GO TO 3	Α	1760
C REA	D XE + I FISSION YIELDS	Α	1770
	DO 5 NTS=1,ITSETS	A	1780
5	READ (5,*) (ITS,(YIX(ITS,IEX),IEX=1,IEXPTS))	Α	1790
С		Α	1800

125

.

С	READ CROSS SECTION INTERPOLATING TABLES	Α	1810
3	DO 10 NTS=1,ITSETS	Α	1820
	CALL HEADER (1)	Α	1830
	READ (5,+) ITS	A	1840
	READ (5,8000) WORD	Α	1850
	WRITE (6,120) ITS, WORD	A	1860
	IF (NOVOID) GO TO 6	A	1870
	DO 4 IVD=1,IVDPTS	A	1880
	WRITE (6,122) VMASK(IVD)	Α	1890
	DO 4 IEX=1,IEXPTS	A	1900
	N = ITS+DIMTS*(DIMEX*(IVD-1)+IEX-1)	Α	1910
	READ (5,*) DFI(N),SAFI(N),NSFFI(N),KSFFI(N),SDSI(N),	Α	1920
	\$ DTI(N),SATI(N),NSFTI(N),KSFTI(N)	Α	1930
	WRITE (6,124) BUMASK(IEX), DFI(N), SAFI(N), NSFFI(N), KSFFI(N), SDSI(N)	Α	1940
	\$, DTI(N),SATI(N),NSFTI(N),KSFTI(N)	Α	1950
	IF (NOXE) GO TO 4	Α	1960
	READ (5,+) XEND, SAXE(N), SFF, SFT	Α	1970
	SATI(N) = SATI(N) - XEND*SAXE(N)	Α	1980
	PRSA1(N) = YIX(ITS,IEX)*SFF*SAXE(N)*1.E-24	Α	1990
	PRSA2(N) = YIX(ITS,IEX)*SFT*SAXE(N)*1.E-24	A	2000
4	CONTINUE	Α	2010
	GO TO 9	Α	2020
6	WRITE (6,126)	Α	2030
	DO 8 IEX=1,IEXPTS	Α	2040
	N = ITS+(IEX-1)*DIMTS	Α	2050
	READ (5,*) DFI(N),SAFI(N),NSFFI(N),KSFFI(N),SDSI(N),	Α	2060
	<pre>\$ DTI(N),SATI(N),NSFTI(N),KSFTI(N)</pre>	Α	2070
	WRITE (6,124) BUMASK(IEX), DFI(N), SAFI(N), NSFFI(N), KSFFI(N), SDSI(N)	Α	2080
	\$, DTI(N),SATI(N),NSFTI(N),KSFTI(N)	Α	2090
	IF (NOXE) GO TO 8	Α	2100
	READ (5,*) XEND, SAXE(N), SFF, SFT	A	2110
	SATI(N) = SATI(N) - XEND*SAXE(N)	Α	2120
	$PRSAL(N) = YIX(ITS,IEX) * SFF*SAXE(N) * 1 \cdot E - 24$	Α	2130
	PRSA2(N) = YIX(ITS,IEX) + SFT + SAXE(N) + 1 - E - 24	Α	2140
8	CONTINUE	Α	2150
9	IF (NOXE) GO TO 10	Α	2160

	CALL HEADER (1)	Α	2170
	WRITE (6,121) ITS, WORD	Α	2180
	DO 7 IVD=1,IVDPTS	A	2190
	IF (.NOT. NOVOID) WRITE (6,122) VMASK(IVD)	Α	2200
	IF (NOVOID) WRITE (6,126)	Α	2210
	DO 7 IEX=1.IEXPTS	Α	2220
	N = ITS + DIMTS*(DIMEX*(IVD-1)+IEX-1)	Α	2230
	SFF = $PRSA1(N)/(YIX(ITS, IEX) * SAXE(N)) * 1 \cdot E24$	A	2240
	SFT = $PRSA2(N)/(YIX(ITS, IEX) * SAXE(N)) * 1 \cdot E24$	Α	2250
	WRITE (6.129) BUMASK(IEX), SATI(N), SFF, SFT, SAXE(N)	Α	2260
7	SAXE(N) = SAXE(N)*1.E-24	Α	2270
10	CONTINUE	Α	2280
Ċ		A	2290
č		Α	2300
•	IF (NOXE) GO TO 13	Α	2310
C EDI1	XE + I FISSION YIELDS	A	2320
• ••••	CALL HEADER (1)	Α	2330
	WRITE (6,123) (I,I=1,ITSETS)	Α	2340
	WRITE (6,126)	A	2350
	DO 19 IEX=1,IEXPTS	Α	2360
19	WRITE (6,125) BUMASK(IEX), (YIX(ITS, IEX), ITS=1, ITSETS)	Α	2370
CALCU	ATE FACTOR USED IN ABSOLUTE FLUX CALCULATION	Α	2380
	PD = MWTH*PCTPWR*6.2418E16/(DZ*DX*UX)	Α	2390
	IF (QTRKOR) PD = PD*.25	Α	2400
С		Α	2410
C REAL	D TABLE SET ASSIGNMENTS	Α	2420
13	IF (ITSAS .EQ. 1) GO TO 650	Α	2430
	READ (5,*) FTYPE	Α	2440
	IF (ITSAS .EQ. 3) GO TO 652	Α	2450
	D0 654 LB=1,NP	Α	2460
	LT = LB + NDSMNP	Α	2470
	DO 654 L=LB,LT,NP	Α	2480
654	TABSET(L) = FTYPE(LB)	Α	2490
	GO TU 650	Α	2500
C		Α	2510
652	CALL HEADER (1)	A	2520

	WRITE (6,670) (K,K=1,NZ)	Α	2530
	DO 658 NTS = 1, IFTYPS	Α	2540
	READ (5,*) IFT, (TSOVLY(IFT,K),K=1,N06)	Α	2550
658	WRITE (6,662) IFT, (TSOVLY(IFT,K),K=1,N06)	Α	2560
	D0 660 LB=1,NP	Α	2570
	LT = LB + NDSMNP	Α	2580
	K = 0	Α	2590
	IFT = FTYPE(LB)	Α	2600
	DO 660 L=LB+LT+NP	Α	2610
	K = K + 1	Α	2620
660	$TABSET(L) = TSOVLY(IFT_{K})$	Α	2630
650	CALL EDIT (7)	Α	2640
С		Α	2650
C REA	D CONTROL ROD POSITIONS	Α	2660
	IF (NOCROD) GO TO 11	Α	2670
	IF (NBANKS .GT. 0) GO TO 623	Α	2680
	READ (5,*) NOTCH	Α	2690
	GO TU 621	Α	2700
C DEF	INE ROD BANKS	Α	2710
623	CALL HEADER (1)	Α	2720
	WRITE (6,4034)	Α	2730
	IND = 0	2 A	2740
	DO 608 NB=1+NBANKS	Α	2750
	READ (5,*) ID, NR, NOTCH	Α	2760
	M = 2*NR	Α	2770
	WRITE (6,4036) ID, (NOTCH(N),N=1,M)	Α	2780
	NRODS(ID,1) = NR	Α	2790
	NRODS(ID,2) = IND+1	Α	2800
	D0 608 N=1+NR	Α	2810
	IND = IND+1	Α	2820
	M = 2*N	Α	2830
608	RODIND(IND) = LOC (NOTCH(M-1), NOTCH(M), 1)	Α	2840
C SET	ROU BANKS	Α	2850
	D0 612 L=1,NP	Α	2860
612	NOTCH(L) = 0	Α	2870
	DO 610 NB=1,NBANKS	Α	2880

•

.

A	2900 2910
A	2910
•	
A	2920
Α	2930
Α	2940
Α	2950
Α	2960
Α	2970
Α	2980
Α	299 0
Α	3000
Α	3010
(=1,IEXPTS) A	3020
Α	3030
Α	3040
(=1,IEXPTS) A	3050
Α	3060
Α	3070
Α	3080
Α	3090
Α	3100
Α	3110
Α	3120
Α	3130
Δ	3140
Α	3150
Α	3160
Δ	3170
Α	3180
Α	3190
Δ	3200
۵	3210
Α	3220
Δ	3230
۵	3240
	A A A A A A A A A A A A A A A A A A A

.

	READ (5.+) POWER	Α	3250
	CALL NORM (POWER, NODES)	Α	3260
21	IF (NOVOID) GO TO 24	Α	3270
C		Α	3280
CALCUL	ATE THERMAL-HYDRAULIC CONSTANTS FOR VOID AND MCHFR CALCULATIONS	Α	3290
	CALL HEADER (1)	Α	3300
	PMWTH = PCTPWR*.01*MWTH	Α	3310
	AVFLUX = AVHFLX*PEAKF*PCTPWR*.01	Α	3320
	XIN = (HIN-HSAT)/HFG	Α	3330
	AVPWR = PCTPWR*MWTH*3.4127E4/FLOAT(NODES)	Α	3340
	IF (QTRKOR) AVPWR = AVPWR*.25	Α	3350
	AC3 = VF/VG	A	3360
	WRITE (6,4012) PMWTH,AVHFLX,PEAKF,VG,VF,HIN,HFG,HSAT,PSIA,TFLOW,	A	3370
\$	AREA, AC1, AC2	Α	3380
С		Α	3390
C READ	FLOW CHANNEL CHARACTERISTICS	Α	3400
	IF (IFLOW .EQ. 0) GO TO 23	Α	3410
	READ (5,+) CTYPE	Α	3420
	WRITE (6,4030)	A	3430
	DO 20 N=1,IFLOW	Α	3440
	READ (5,*) M, B1(M), B2(M), B3(M)	Α	3450
20	WRITE (6,4032) M, B1(M), B2(M), B3(M)	Α	3460
	CALL EDIT (9)	Α	3470
23	CALL VOIDFR	Α	3480
С		Α	3490
CALCUL	ATE NODAL WEIGHTING FACTORS	Α	3500
24	R = DX * DX / DZ / DZ	Α	3510
	Bln = 3.*Al/(3.*Al+(1Al)*(R+2.))	Α	3520
	$B2N = 3 \cdot 4A2/(3 \cdot 4A2+(1 \cdot -A2) \cdot (R+2 \cdot))$	Α	3530
	$CF = B1N/6 \cdot / A1 * (1 \cdot - A1)$	Α	3540
	$CT = B2N/6 \cdot A2*(1 \cdot A2)$	Α	3550
	RCF = R*CF	Α	3560
	RCT = R*CT	Α	3570
C		Α	3580
CALCUL	ATE GEOMETRIC CONSTANTS USED IN INNER ITERATION	Α	3590
	$GX = 2 \cdot / DX / DX$	Α	3600

(

$G7 = 2 \cdot / DZ / DZ$	Α	3610
	Α	3620
TE (NOT. NOHAL) GU TO 300	Α	3630
	Α	3640
	Α	3650
	Α	3660
	Α	3670
	A	3680
CALCHLATE CORE AVERAGE EXPOSURE	Α	3690
$\Delta V F X P = 0.$	Α	3700
	Α	3710
202 AVEXP = AVEXP+BIL(1)	Α	372 0
AVEXP = AVEXP/FLOAT(NODES)	Α	3730
C PEAD BURNUP TIME STEP	Α	3740
DEAD (5.4) BURN	Α	3750
TE (EOE(5)) 208-800	Α	3760
= -BURN/2400 + PCTPWR*MWTH/TONNES	A	3770
CALCULATE INITIAL POWED DISTRIBUTION	A	3780
CALLULATE INITIAL FOWER DISTRIBUTION	A	3790
CALL STO CALL FOIT (5)	A	3800
CALL EDIT (3)	A	3810
IE (IEDIT(6) = E(1 = 1) CALL EDIT (10)	A	3820
$\frac{1}{10000000} = \frac{1}{10000000000000000000000000000000000$	A	3830
$C_{A+1} = F_{D+1} + (1)$	A	3840
CALL EDIT (1)	A	3850
CALL EDIT (4)	A	3860
	A	3870
DALCULATE NEW EXPOSORE ANNAT	Δ	3880
	A	3890
AVEYD = AVEYDADIDN	Δ	3900
AVEAR - AVEAR TOURIN	Δ	3910
CALCULATE NEW FUNER DISTRIBUTION	Δ	3920
CALL STO CALL FOIT (F)	Δ	3930
UALL EUTI VD/ Only EDIT (3)	Δ	3940
UALL EUTI (J) 15 (15011(4) 50 -1) CALL 5011 (10)	2	3920
IF (IEDIT(3) EQ _]) CALL LUIT (10) IF (IEDIT(3) EQ _]) CALL LUIT (10)	2	3960
IF (ICUII(3) +EQ+ -I / CALL EDIT (6)	~	0700

•

	IF (NOVOID) GO TO 210	Α	3970
	CALL EDIT (1)	Α	3980
	CALL EDIT (4)	Α	3990
	CALL EDIT (2)	Α	4000
с		Α	4010
Rea	D DATA FOR NEXT TIME STEP	Α	4020
210	NEWTH = 0	Α	4030
	NEWF = 0	Α	4040
	NEWCR = 0	Α	4050
	NTSTEP = NTSTEP + 1	Α	4060
	READ (5,*) BURN, NEWTH, NEWF, NEWCR	Α	4070
	IF (E0F(5)) 234,802	Α	4080
302	IF (BURN .LT. 0.) BURN = -BURN/2400.*PCTPWR*MWTH/TONNES	Α	4090
	IF (NEWTH .EQ. 0) GO TO 220	Α	4100
	D NEW THERMAL-HYDRAULIC DATA	Α	4110
	IFLOW = 0	Α	4120
	OLDFLO = TFLOW	Α	4130
	READ (5. INPUT)	Α	4140
	PMWTH = PCTPWR*.01*MWTH	Α	4150
	AVFLUX = AVHFLX*PEAKF*PCTPWR*.01	Α	4160
	XIN = (HIN-HSAT)/HFG	Α	4170
	AVPWR = PCTPWR*MWTH*3.4127E4/FLOAT (NODES)	Α	4180
	IF (QTRKOR) AVPWR = AVPWR*.25	A	4190
	AC3 = VF/VG	Α	4200
	CALL HEADER (1)	Α	4210
	WRITE (6,4012) PMWTH, AVHFLX, PEAKF, VG, VF, HIN, HFG, HSAT, PSIA, TFLOW,	· A	4220
	\$ AREA, AC1, AC2	Α	4230
	IF (IFLOW .EQ. 0) GO TO 220	Α	4240
	WRITE (6,4030)	Α	4250
	DO 212 N=1,IFLOW	Α	4260
	READ (5+*) M. B1(M), B2(M), B3(M)	Α	4270
212	WRITE (6,4032) M, B1(M), B2(M), B3(M)	Α	4280
	CALL EDIT (9)	Α	4290
57 0	IF (NEWF .EQ. 0) GO TO 226	Α	4300
2 2 U		٨	4310
ZZU C REA	ID NEW FUEL IYPE ARRAY	~	4310

2222	BU(L) = BU(L) + POWER(L) + BURN	Α	4330
	CALL HEADER (1)	Α	4340
	WRITE (6,2002) NEWF	Α	4350
	DO 224 NN=1.NEWF	Α	4360
	READ (5.*) IFT. ICTYP. I. J	Α	4370
	WRITE (6.2004) I.J	Α	4380
	1B = 10C (1.1.1)	Α	4390
	READ (5.*) ASMEX	Α	4400
	FTYPE(I,B) = IFT	Α	4410
	IT = IB + NOSMNP	Α	4420
	TE (TTSAS (EQ, 3)) = 60 TO (696)	Α	4430
	$DO 690 I = IB \bullet I T \bullet NP$	Α	4440
690	TAHSET(I) = IET	Α	4450
070	60 TO 699	Α	4460
696	$\mathbf{K} = 0$	Α	4470
070	DO_{698} = B+ T+NP	Α	4480
	K = K + 1	Α	4490
698	$TABSET(L) = TSOVLY(TET \cdot K)$	Α	4500
699	CTYPE(1 B) = ICTYP	Α	4510
0	K = 0	Α	4520
	LT = LB+NDSMNP	Α	4530
	DO 224 I = IB I T I NP	Α	4540
	K = K+1	Α	4550
224	BU(L) = ASMEX(K)	Α	4560
<u> </u>		Α	4570
	TE (NEWCR .EQ. 0) GO TO 206	A .	4580
	IF (NBANKS $_{\rm FQ}$ 0) GO TO 226	Α	4590
C MOV	F NEWCR ROD BANKS TO NEW POSITIONS	Α	4600
0 1101		Α	4610
	READ (5.+) ID. NTCH	Α	4620
280	CALL BANK (TD. NTCH)	Α	4630
200	60 TO 206	Α	4640
226	TE (NEWCR) 228+206+230	Α	4650
C REA	D NEW CONTROL ROD POSITION ARRAY	A	4660
C IF	NEWCR = -] READ NEW NOTCH ARRAY	A	4670
č	U NO CHANGE IN NOTCH ARRAY	Α	4680

С	N ••• READ N NEW NOTCH POSITIONS	Α	4690
228	READ (5,*) NOTCH	A	4700
	CALL EDIT (6)	Α	4710
	D0 2229 L=1,NODES	Α	4720
2229	F(L) = 1.	A	4730
	GO TO 204	Α	4740
230	DO 232 N=1,NEWCR	Α	4750
	READ (5,+) I, J, NTCH	A	4760
	$L = LOC (I \cdot J \cdot I)$	Α	4770
232	NOTCH(L) = NTCH	Α	478 0
	CALL EDIT (6)	Α	479 0
	GO TO 204	Α	4800
С		A	4810
CALCU	LATE POWER DISTRIBUTION FOR CASE WITH NO TIME STEP	Α	4820
208	CALL STG	Α	4830
	CALL EDIT (5)	Α	4840
	CALL EDIT (3)	A	4850
	IF (NOVOID) GO TO 234	Α	4860
	CALL EDIT (1)	Α	4870
	CALL EDIT (4)	Α	4880
	CALL EDIT (2)	Α	4890
234	IF (IEDIT(3) .EQ. 1) CALL EDIT (8)	Α	4900
	IF (IEDIT(6) •NE• 0) CALL EDIT (10)	Α	4910
	WRITE (6,2000)	Α	4920
	STOP	Α	4930
C	***************************************	Α	4940
С		A	4950
C HAL	ING SULUTION	A	4960
С	·	Α	4970
30 0	READ (5,*) BURN	Α	4980
	IF (BURN .LT. 0.) BURN = -BURN/2400.*PCTPWR*MWTH/TONNES	Α	4990
	AVEXP = 0.	A	5000
	DO 301 L=1,NODES	Α	5010
301	AVEXP = AVEXP + BU(L)	A	5020
	AVEXP = AVEXP/FLOAT(NODES)	A	5030
	CALL EDIT (3)	Α	5040

.

•

	CALL HEADER (1)	A	5050
	CALL HALING (BURN)	Α	5060
	AVEXP = AVEXP + BURN	Α	5070
	CALL EDIT (3)	Α	5080
	CALL EDIT (5)	Α	5090
	IF (IEDIT(3) .EQ. 1) CALL EDIT (8)	Α	5100
	IF (IEDIT(6) .NE. 0) CALL EDIT (10)	Α	5110
	IF (NOVOID) GO TO 316	Α	5120
	CALL EDIT (4)	Α	5130
	CALL EDIT (2)	Α	5140
	CALL EDIT (1)	Α	5150
316	WRITE (6,2000)	Α	5160
	STOP	Α	5170
С		Α	5180
(Α	5190
C		Α	5200
7004	FORMAT (//lox, + VOID MASK *+//lox, +TABLE+/	Α	5210
	\$10X, INDEX VOID // 10X, !==== =====!/10(/115,F11.3))	Α	5220
6004	FORMAT (1X, **** CONTROL ROD WORTH FOR TABLE SET * 15, *****///	Α	5230
	\$20X, EXPOSURE / 20X, (MWD/MT) WORTH / 20X, ======= === == //)	Α	5240
6000	FORMAT (4X, VOID = , F8.2)	Α	5250
6002	FORMAT (18X,E10.2,F8.2)	Α	5260
7000	FORMAT (1X, I3, CROSS SECTION INTERPOLATING TABLES WILL BE READ AT	Α	5270
	\$1 ,I3,1 EXPOSURE AND 1,I3, 1 VOID INTE	Α	5280
	\$RPOLATING POINTS ///10X, ** EXPOSURE MASK **///10X, *TABLE EXPOS	Α	5290
	\$URE!/10X,!INDEX (MWD/MT)!/10X,!==== #=====!//)	Α	5300
7002	FORMAT (10X, 15, F13.0)	Α	5310
2000	FORMAT (//lx, **** END OF CASE ****)	Α	5320
2002	FORMAT (1X,15, NEW ASSEMBLIES LOADED AT THESE LOCATIONS ///21X,	Α	5330
	\$ I J!/21X, !==== =!//)	Α	5340
2004	FORMAT (20X,216)	Α	5350
1000	FORMAT (20A4)	Α	5360
4010	FORMAT (3X, NODE WIDTH = +, F10.3, CM. +/3X, NODE HEIGHT = +, F10.3,	Α	5370
	<pre>\$ CM.!//3X, NODAL WEIGHTING FACTORS: A1 =',F10.4/30X, A2 =',</pre>	Α	5380
	\$F10.4)	Α	5390
4000	FORMAT (/9X, ====================================	Α	5400

•

•
	\$//10X.	Α	5410
	\$ OUTER ITERATION WILL BE CONVERGED TO + E10.2/10X.	Α	5420
-	\$ POWER ITERATION WILL BE CONVERGED TO + E10.2//10X	Α	5430
	\$ MAXIMUM NUMBER OF INNER ITERATIONS = 1 15/10X,	A	5440
	\$ MAXIMUM NUMBER OF OUTER ITERATIONS = 1,15/10X,	A	5450
	\$ MAXIMUM NUMBER OF POWER ITERATIONS = 1 15//)	Α	5460
8000	FORMAT (20A4)	A	5470
120	FORMAT (1X, !====================================	A	5480
	\$S SECTION INTERPOLATING TABLE ====================================	Α	.5490
	\$=========!//1X, 'TABLE SET', I3, 5X, 20A4//27X, '	Α	5500
	\$ F A S T T H E R M	Α	5510
	\$ A L 1/13X, 'EXPOSURE', 35X, 'NU-', 6X, 'KAPPA-', 8X, 'DOWN	Α	5520
	\$+,35X, 'NU-+,6X, 'KAPPA-+/13X, '(MWD/MT)+,13X, 'D ABSORBTION FISS	Α	5530
	\$10N FISSION SCATTERING 13X, U ABSORBTION FISSION FI	Α	5540
	\$SSION+/11X, '======+,2X,5(' =======+),2X,4(' ======+))	Α	5550
125	FORMAT (1X, VOID = , F5.2)	Α	5560
124	FORMAT (11X,F10.0,2X,5E12.4,2X,4E12.4)	Α	5570
126	FORMAT (/)	Α	5580
121	FORMAT (1X, !====================================	Α	5590
	\$S SECTION INTERPOLATING TABLE ====================================	Α	5600
•	\$=========!//1X, 'TABLE SET', I3, 5X, 20A4//28X, 'THERMAL', 30X, 'XE-1	Α	5610
	\$351/13X1 EXPOSURE ABSORBTION FAST THERMAL MICR	Α	5620
	\$01/13X, (MWD/MT) XE REMOVED FISSION FISSION ABSORBTION	Α	5630
	\$+/11X, +=======+,2X,4(+ =======+))	Α	5640
123	FORMAT (1X, ===== XE-135 + I-135 FISSION YIELDS =====!//3X, EX	Α	5650
	<pre>\$POSURE!/3X,!(MWD/MT) TABLE SET =!,15I8)</pre>	Α	5660
125	FORMAT (1X+F10+0+13X+15F8+4)	Α	5670
129	FORMAT (11X+F10+0+2X+3E12+4+F12+0)	Α	5680
4012	FORMAT (15X, ** THERMAL-HYDRAULIC DATA FOR THIS TIME STEP **///	Α	5690
	\$15X, CORE POWER, T37, F12, 1, T52, MW-THERMAL ///	Α	5700
	\$15x, AV. HEAT FLUX + T37, F12.0, T52, BTU/HR/FT++2+//	Α	5710
	\$15X, PEAKING FACTOR, T37, F12.2//	Α	5720
	\$15X, ISAT. VAP. SPEC. VOL. I, T37, F12.4, T52, IFT##3/LBMI//	Α	5730
	\$15X, 'SAT. LIQ. SPEC. VOL. ', T37, F12.5, T52, 'FT**3/LBM!//	Α	5740
	\$15X, INLET ENTHALPY, 137, F12.2, T52, BTU/LBM///	Α	5750
	\$15X; HEAT OF VAPORIZATION; T37; F12,2; T52; BTU/LBM;//	Α	5760

•

	\$15X, ENTHALPY OF SAT. LIQ. , T37, F12.2, T52, BTU/LBM //	Α	5770
	\$15x, CORE PRESSURE +, T37, F12, 1, T52, PSIA //	Α	5780
	\$15X, INCORE FLOW, T37, 1PE12.3, T52, LBM/HR!//	Α	5790
	\$15X, FLOW AREA PER CHANNEL , T37, OPF 12.4, T52, FT**21///	Α	5800
	\$15x, ARMAND CORRELATION COEFICIENTS 1/25x, AC1 = 1, F8.3/25x, AC2 = 1,	Α	5810
	\$F8.3)	Α	5820
4020	FORMAT(/9X, !====================================	Α	583 0
	s = = = = = //11X, $ALB = A + B*VOID(L) //11X$, $ALB = 1$. FOR ZERO CURREN	Α	5840
	ST 1/18X. 10. FOR ZERO FLUX 1/17X, 1XX. FOR LEAKAGE SPECIFIED BY A	Α	5850
	SAND B!	Α	5860
	\$//32X FAST +, 12X THERMAL - +//33X, +A+, 8X, +B+, 14X,	Α	5870
	\$+A++BX++B+/21X+2(+ ======+)//16X+FACE #1++4X+2F9	Α	5880
	\$.2.6X.2F9.2/16X. FACE #21.4X.2F9.2.6X.2F9.2/16X. FACE #31.4X.2F9	Α	5890
	\$.2.6X.2F9.2/16X. FACE #41.4X,2F9.2.6X,2F9.2/17X, BOTTOM ,4X,2F9.	Α	5900
	\$2.6X.2F9.2/20X.10P1.4X.2F9.2.6X.2F9.2)	Α	5910
4022	FORMAT(/9X, !====================================	Α	5920
	\$=====+//11X.+ALB = A + B*VOID(L)+//11X,+ALB = 1. FOR ZERO CURREN	Α	593 0
	STILLAX. 10. FOR ZERO FLUX 1/17X. XX. FOR LEAKAGE SPECIFIED BY A	A	5940
	SAND BI	Α	5950
	\$//32X FAST!. 12X THERMAL -!//33X, A', B', 14X,	Α	5960
	\$141.8X.1B1/21X.2(1 ======1)	Α	5970
	\$//17x.+BOTTOM!+4X+2F9	Α	5980
	\$-2-6X-2F9-2/20X. ITOPI-4X-2F9-2-6X-2F9-2//9X-10TR. CORE EDGE 1/13X	Α	5990
	\$.1ROW_NUMBER1//20(123.4X.2F9.2.6X.2F9.2/))	Α	6000
4030	FORMAT (//15X. (COOLANT FLOW VARIATION WITH POWER //20X.)P = RELATI	Α	6010
4030	SVE POWER IN CHANNEL 1/20X. FLOW = RELATIVE COOLANT FLOW IN CHANNEL	Α	6020
	\$ (UNNORMALIZED) 1//20X • (CHANNEL TYPE 1/20X • ==========!//)	Α	6030
4032	FORMAT (2X+130+5X+1FLOW = ++F10+3+1 +++F10+3+1 *P +++E10+3+1 *P**2	Α	6040
TUJE		Α	6050
4034	FORMAT (10X-1### ROD BANK ASSIGNMENT ###!//)	Α	6060
4034	FORMAT (20X + BANK NUMBER + 15/20X + LOCATION OF NODES WHICH ARE RODD	Α	6070
4030	SED BY THIS BANK: $(1 \cdot 1) ! / (25 \times 8 (! (! \cdot 13 \cdot ! \cdot ! \cdot 13 \cdot !) ! \cdot 4 \times) /) /)$	Α	6080
670	FORMAT (1X+TABLE SET TO FUEL TYPE ASSIGNMENT //1X+FUEL TABLE	A	6090
010	\$SET!/1X.ITYPE K=!.N0614./1X.! !.N06()/)	A	6100
662	$FOPMAT (1) X \bullet I \Delta \bullet \Delta X \bullet NO6I \Delta)$	A	6110
002		A	6120
U U			

A 6130

END

.

,

^*	B	10
	В	20
	B	30
	8	40
SUBROUTINE INTERP	В	50
C	В	60
	B	70
C THIS ROUTINE INTERPOLATES USING THE INPUT CROSS SECTION	8	80
C INTERPOLATING TABLES TO DETERMINE NODAL CONSTANTS	B	90
(8	100
C	B	110
COMMON /HEADR / NTITLE(20), AVEXP, NTSTEP	B	120
COMMUN /CSINP / BUMASK(N07), VMASK(N08), DFI(N10), DTI(N10)	B	130
\$ SAFI(N10), SATI(N10), NSFFI(N10), NSFTI(N10),	B	140
SDSI(N10), IEXPTS , IVDPTS , ITSETS ,	B	150
\$ KSFTI(N10), KSFFI(N10),	8	160
S DIMES O DIMES O DIMES O DIMES	D D	170
S TABSET(NUT), WORTHINTUT		100
INTEGER DIMIS, DIMEX, DIMVD, TABSET	B	200
REAL NOFFIGNOFFIGNOFFIGNOFIG	B	210
TNITEGED ETVDE	Ř	220
COMMON (NODA) (DF) (NO1) OT (NO1) OF (NO1)	ē	230
\$. KSET (NO1). TER (NO1). NSE1G (NO1)	B	240
(0,1) + (0,1	8	250
5. C7 (NO1)	B	260
REAL KSFF. KSFT. NSF1G	В	270
COMMON / GEOM / NODES , NP , NDSMNP , NX	в	280
\$, NZ , NXM1 , GX , GZ	B	290
S , NCOL (NO4)	8	300
COMMON /BC / AF1, AF3, AF5, AF6, AFQ(N04),	B	310
\$ BF1, BF3, BF5, BF6, BFQ(N04),	в	320
\$ AT1, AT3, AŤ5, AT6, ATQ(N04),	В	330
\$ BT1, BT3, BT5, BT6, BTQ(N04)	В	340
EQUIVALENCE (AFQ(1), AF2), (AFQ(2), AF4),	B	350
\$ (BFQ(1), BF2), (BFQ(2), BF4),	в	360

•

	ď		(ATO(1)) = AT2) = (ATO(2) = AT4) =	B	370
	- 77 - 42		(PTO(1), PT2), (PTO(2), PT4)	B	380
	Ф СОмь		(PPOR / INTTYP, OTRKOR, NOHAL, NOCROD, NOVOID, IEDIT(6)	B	390
	S of the second		NOXE. FIRST	B	400
		CAL	ATRKOR, NOHAL, NOCROD, NOVOID, NOXE, FIRST	B	410
	COM		$/FI IX / POWER(NO1) \cdot FASTA(NO1) \cdot THERMA(NO1) \cdot F(NO1)$	B	420
	DEAL		SEE NSET	B	430
		. N.	$/xFNON / PD \cdot PRSA1(N10) \cdot PRSA2(N10) \cdot SAXE(N10)$	В	440
			NOXFN	8	450
C	2003			8	460
č-		. – – .		B	470
č				В	480
č	INTTYP	=	1 FOR NO EXPOSURE OR VOID INTERPOLATION	В	490
Č			2 FOR EXPOSURE INTERPOLATION ONLY	B	500
Ċ			3 FOR VOID INTERPOLATION ONLY	8	510
С			4 FOR EXPOSURE AND VOID INTERPOLATION	B	520
С				8	530
С	DF	=	FAST DIFFUSION COEFFICIENT	B	540
С	SAF	=	FAST ABSORBTION CROSS SECTION	B	550
С	NSFF	a	FAST NU-FISSION CROSS SECTION	8	560
С	KSFF	=	FAST KAPPA-FISSION CROSS SECTION	8	570
С	SDS	=	FAST TO THERMAL DOWN SCATTERING CROSS SECTION	8	580
С	DT	Ξ	THERMAL DIFFUSION COEFFICIENT	8	590
С	SAT	=	THERMAL ABSORBTION CROSS SECTION	8	600
С	NSFT	Ξ	THERMAL NU-FISSION CROSS SECTION	8	610
С	KSFT	Ξ	THERMAL KAPPA-FISSION CROSS SECTION	B	620
С	SAX	=	XENON THERMAL MICRO-ABSORBTION CROSS SECTION	B	630
С	PR1	#	(FAST FISSION C.S.) * (I-135 + XE-135 FISSION YIELD) *	B	640
С		•	(XENON MICRO-ABS. C.S.)	B	650
С	PR2	H	SAME AS ABOVE FOR THERMAL GROUP	В	660
С	SA	=	THERMAL ABSORBTION CROSS SECTION WITH XE-135 REMOVED	ц Ц	670
С	TFR	=	ASSYMPTOTIC THERMAL TO FAST FLUX RATIO	R	680
С	NSF1G	=	ONE GROUP (FAST) NU-FISSION CROSS SECTION	R	690
С	RHO	=	CONTROL ROD WORTH	B	/00
С				8	/10
C		-		R	120

C	В	730
NOXEN = NOXE	B	740
IF (FIRST) NOXEN = .TRUE.	В	750
IF (NOXEN) GO TO 3	В	760
CALCULATE ABSOLUTE FLUXES	В	770
SUM = 0.	В	780
DO 1 L=1,NODES	B	790
<pre>SUM = SUM + FASTA(L)*KSFF(L) + THERMA(L)*KSFT(L)</pre>	В	800
FACTOR = PD/SUM	8	810
DO 2 L=1,NODES	В	820
FASTA(L) = FACTOR*FASTA(L)	B	830
2 THERMA(L) = FACTOR*THERMA(L)	8	840
C	8	850
3 GO TU (10, 20, 30, 40), INTTYP	B	860
C=====================================	= B	870
C ,	B	880
	B	890
C NU VUID UR EXPUSURE INTERPULATION	В	900
	B	910
LI = LB + ND SMNP	8	920
DU IE LELDULIUNM NTE - TAREET())	8	930
$N_{1} = ADSLI(L)$	8	940
Dr (L) = DrI (N15)		950
D = (L) - D = (N = S) $S = S = S = (N = S)$	B	900
SUS - SUSI (NIS/ NSEE - NSEEI(NIC)	0	970
NSFT = NSFTI(NTS)		700
KSFF (L) = KSFFI(NTS)	D	1000
KSFT (L) = KSFTT(NTS)		1000
IF (NOXEN) GO TO 11	8	1010
C XENON CORRECTION	B	1020
PS1 = PRSA1(NTS)	R	10.50
PS2 = PRSA2(NTS)	8	1050
SAX = SAXE (NTS)	2	1050
	8	1060
SA = SATI(NTS)	8 8	1060

	\$ THERMA(L)*SAX)	В	1090
ų	GO TO 15	R	1100
11	SAT = SATI (NTS)	В	1110
15	SAF = SAFI (NTS)	В	1120
	C7 (L) = SAF+SDS	8	1130
	TFR (L) = SDS/SAT	В	1140
	NSF1G(L) = NSFF+TFR(L)*NSFT	B	1150
CHECK	TO SEE IF NODE IS RODDED	В	1160
	IF (NOCROD) GO TO 12	8	1170
	K = (L-1)/NP+1	B	1180
	IF (NOTCH(LB) .LT. K) GO TO 12	B	1190
CHANG	E THERMAL ABSORBTION CROSS SECTION TO ACCOUNT FOR CONTROL ROD	B	1200
	RHO = WORTH(NTS)	B	1210
	SAT = NSFT*SDS*SAT/(NSFT*SDS-RHO*NSF1G(L)*SAT)	В	1220
	TFR(L) = SDS/SAT	B	1230
	NSF1G(L) = NSFF+TFR(L)*NSFT	B	1240
12	CONTINUE	B	1250
• -	G0 TU 60	В	1260
C====		B	1270
č		В	1280
Č		8	1290
Č EXP	OSURE INTERPOLATION ONLY	B	1300
20	D0 26 L8=1,NP	B	1310
	LT = LB+NDSMNP	В	1320
	DO 26 L=LB,LT,NP	B	1330
C LOC	ATE EXPOSURE INTERPOLATING POINTS	В	1340
	E = BU(L)	B	1350
	DO 22 NE = 2, IEXPTS	8	1360
	IF (E .LT. BUMASK(NE)) GO TO 24	8	1370
22	CONTINUE	B	1380
	NF = IEXPTS	В	1390
CALCU	LATE INTERPOLATING WEIGHTS AND INDICES	В	1400
24	$W_2 = (E-BUMASK(NE-1))/(BUMASK(NE)-BUMASK(NE-1))$	В	1410
Bage 1		B	1420
	$W_1 = 1 \bullet - WC$		
	$WI = I_0 - WZ$ M2 = TABSET(L)+(NE-1)+DIMTS	В	1430
	WI = IW2 M2 = TABSET(L)+(NE-1)*DIMTS M1 = M2-DIMTS	8 8	1430 1440

с												B	1450
	DF	(L)	=	N1#	DFI		(M1)	+	W2+DFI	(M2)		B	1460
	ÐT	(L)	= 1	w1#	DTI		(M1)	+	W2*DTI	(M2)		B	1470
	SDS		=	N]#	SDS	I	(M1)	+	W2*SDSI	(M2)		В	1480
	NSFF		=	N]#	NSF	FΙ	(M1)	+	W2*NSFFI	(M2)		B	1490
	NSFT		= 1	w1#	NSF	ΤI	(M1)	+	W2#NSFTI	(M2)		8	1500
	KSFF	(L)	= 1	w1#	KSF	FΙ	(M1)	+	W2*KSFFI	(M2)		8	1510
	KSFT	(L)	= 1	w]#	KSF	ΤI	(M1)	+	W2*KSFTI	(M2)		B	1520
	IF (NOXE	EN 🛛) G	0 Т	0	21			,		B	1530
C XENO	DN COR	REC1	101	1								В	1540
	PS1		=	N]#	PRS	A1	(M1)	+	W2*PRSA1	(M2)		8	1550
	PS2		= 1	w]#	PRS	SA	(M1)	+	W2*PRSA2	(M2)		8	1560
	SAX		=	W]#	SAX	E	(M1)	+	W2#SAXE	(M2)		8	1570
	SA		=	N]#	SAT	I	(M1)	+	W2*SATI	(M2)		В	1580
	SAT	=	SA	+	(PS	1#	FAST	A (I	_) + PS2*	THERMA(L))/	(2.0997E-5 +	B	1590
9	5		TH	IRM	A(L)#	SAX)					8	1600
	GO TO	25										8	1610
21	SAT		= 1	w1#	SAT	Ι	(M1)	+	W2#SATI	(M2)		В	1620
25	SAF		= 1	w1#	SAF	Ι	(M1)	+	W2#SAFI	(M2)		8	1630
	C7	(L)	= ;	5AF	+SD	S						В	1640
	TFR	(L)	= (5DS	/SA	T						В	1650
	NSF1G	(L)	= 1	٩SF	F+T	FR	(L)#	NSI	FT			B	1660
CHECK	TO SE	E IF	F NO)DE	IS	R	ODDE	D				В	1670
	IF (NOCH	ROD)	GO	T0	26					В	1680
	K = (L-1)) ZNÍ	2+1								В	1690
	IF (NOT	CH (1	-8)	• L	T.	K)	G O	TO 26			В	1700
CHANGE	E THER	MAL	ABS	50R	BTI	ON	CRO	SS	SECTION	TO ACCOUNT F	FOR CONTROL ROD	в	1710
	RHO =	W1*	+WOI	₹ТН	(M1)	+ W2	4W(DRTH(M2)			8	1720
	SAT =	NSF	FT#9	SDS	# SA	T/	(NSF	T#5	SDS-RHO#N	SF1G(L) *SAT)	8	1730
	TFR(L) =	SD:	5/S	AT							В	1740
	NSF1G	(L)	= 1	١SF	F+T	FR	(L)*	NSI	FT -			B	1750
26	CONTI	NUE										8	1760
	GO TO	60										8	1770
C====:	*=====	====	===:	= = =	===	==	====	==:	==========	=======================	=======================	8	1780
С												В	1790
С												B	1800

•

C VOID INTERPOLATION ONLY	B	1810
30 D0 36 LB=1,NP	D	1020
LT = LB + NDSMNP	D	1020
DO 36 L=LB,LT,NP	В	1040
C LOCATE VOID INTERPOLATING POINTS	8	1000
V = VOID(L)	B	1000
DO 32 NV=2, IVDPTS	B	10/0
IF ($V \bullet LT \bullet VMASK(NV)$) GO 10 34	D	1000
32 CONTINUE	в	1990
NV = IVDPTS	, B	1900
CALCULATE INTERPOLATING WEIGHTS AND INDICES	B	1910
$34 \qquad W2 = (V - VMASK(NV - 1)) / (VMASK(NV) - VMASK(NV - 1))$	8	1920
W1 = 1W2	В	1930
M2 = TABSET(L) + (NV-1) * DIMTS* DIMEX	B	1940
M1 = M2 - DIMTS * DIMEX	8	1950
C	В	1960
DF (L) = W1 * DFI (M1) + W2 * DFI (M2)	B	1970
DT (L) = W1*DTI (M1) + W2*DTI (M2)	В	1980
SDS = W1*SDSI (M1) + W2*SDSI (M2)	В	1990
NSFF = W1*NSFFI(M1) + W2*NSFFI(M2)	В	2000
NSFT = W1*NSFTI(M1) + W2*NSFTI(M2)	В	2010
KSFF(L) = W1*KSFFI(M1) + W2*KSFFI(M2)	B	2020
KSFT (L) = W1*KSFTI(M1) + W2*KSFTI(M2)	В	2030
IF (NOXEN) GO TO 31	В	2040
C XENON CORRECTION	В	2050
PS1 = W1*PRSA1(M1) + W2*PRSA1(M2)	8	2060
PS2 = W1 + PRSA2(M1) + W2 + PRSA2(M2)	В	2070
SAX = W1 + SAXE (M1) + W2 + SAXE (M2)	В	2080
SA = W1*SATI (M1) + W2*SATI (M2)	В	2090
SAT = SA + (PS1*FASTA(L) + PS2*THERMA(L))/(2.0997E-5 +	В	2100
\$ THERMA(L)*SAX)	B	2110
GO TU 35	В	2120
31 SAT = W1*SATI (M1) + W2*SATI (M2)	В	2130
$35 \qquad SAF \qquad = W1*SAFI (M1) + W2*SAFI (M2)$	B	2140
C7 (L) = SAF+SDS	B	2150
TFR (L) = SDS/SAT	В	2160

	NSF1G(L) = NSFF+TFR(L)*NSFT	8	2170
CHECK	TO SEE IF NODE IS RODDED	8	2180
	IF (NOCROD) GO TO 36	В	2190
	K = (L-1)/NP+1	В	2200
	IF (NOTCH(LB) .LT. K) GO TO 36	B	2210
CHANGE	THERMAL ABSORBTION CROSS SECTION TO ACCOUNT FOR CONTROL ROD	B	2220
	RHO = W1 * WORTH(M1) + W2 * WORTH(M2)	B	2230
	SAT = NSFT*SDS*SAT/(NSFT*SDS-RHO*NSF1G(L)*SAT)	8	2240
	TFR(L) = SDS/SAT	B	2250
	NSF1G(L) = NSFF+TFR(L)*NSFT	B	2260
36	CONTINUE	B	2270
	GO TO 60	B	2280
C====		В	2290
Ċ		В	2300
С		B	2310
C EXPO	SURE AND VOID INTERPOLATION	В	2320
40	DO 50 LB=1,NP	B	2330
	LT = LB + NDSMNP	B	2340
	DO 50 L=LB,LT,NP	8	2350
C LOCA	ATE EXPOSURE INTERPOLATING POINTS	В	2360
	E = BU(L)	B	2370
	DO 42 NE = $2, IEXPTS$	В	2380
	IF (E .LT. BUMASK(NE)) GO TO 44	B	2390
42	CONTINUE	В	2400
	NE = IEXPTS	B	2410
C LOCA	ATE VOID INTERPOLATING POINTS	B	2420
44	V = VOID(L)	B	2430
	DO 46 NV=2,IVDPTS	B	2440
	IF (V .LT. VMASK(NV)) GO TO 48	8	2450
46	CONTINUE	8	2460
	NV = IVOPTS	В	2470
CALCUL	ATE INTERPOLATING WEIGHTS AND INDICES	B	2480
48	WE = (E-BUMASK (NE-1))/(BUMASK (NE)-BUMASK (NE-1))	8	2490
	WV = (V-VMASK(NV-1))/(VMASK(NV)-VMASK(NV-1))	8	2500
	W4 = WE * WV	8	2510
	W3 = WE - W4	B	2520

	W2 = WV -	- ₩4	В	2530
	W1 = 1	-W2-WE	8	2540
	M4 = TAB	BSET(L)+DIMTS*((NE-1)+DIMEX*(NV-1))	В	2550
	M3 = M4 -	-DIMTS*DIMEX	8	2560
	M2 = M4 -	-DIMTS	B	2570
	M1 = M3-	-DIMTS	B	2580
С			8	2590
-	DF (L)) = W1 * DFI (M1) + W2 * DFI (M2) +	8	2600
	S	W3*DFI (M3) + W4*DFI (M4)	8	2610
	DT (L)) = W1*DTI (M1) + W2*DTI (M2) +	B	2620
	S	W3*DTI (M3) + W4*DTI (M4)	В	2630
	SDS	= W1*SDSI (M1) + W2*SDSI (M2) +	8	2640
	5	W3*SDSI (M3) + W4*SDSI (M4)	В	2650
	NSFF	= W1*NSFFI(M1) + W2*NSFFI(M2) +	8	2660
	\$	W3*NSFFI(M3) + W4*NSFFI(M4)	В	2670
	NSFT	= W1*NSFTI(M1) + W2*NSFTI(M2) +	В	2680
	5	W3*NSFTI(M3) + W4*NSFTI(M4)	В	2690
	KSFF (L)) = W1*KSFFI(M1) + W2*KSFFI(M2) +	В	2700
	5	W3*KSFFI(M3) + W4*KSFFI(M4)	B	2710
	KSFT (L)) = W1*KSFTI(M1) + W2*KSFTI(M2) +	В	2720
	5	W3*KSFTI(M3) + W4*KSFTI(M4)	B	2730
	IF (NOX	XEN) GO TO 41	B	2740
C X	ENON CORREC	CTION	В	2750
	PS1	= W1*PRSA1(M1) + W2*PRSA1(M2) +	B	2760
	\$	W3*PRSA1(M3) + W4*PRSA1(M4)	В	2770
	PS2	= W1*PRSA2(M1) + W2*PRSA2(M2) +	B	2780
	5	W3*PRSA2(M3) + W4*PRSA2(M4)	8	2790
	SAX	= W1*SAXE (M1) + W2*SAXE (M2) +	В	2800
	5	W3*SAXE (M3) + W4*SAXE (M4)	B	2810
	SA	= W1*SATI (M1) + W2*SATI (M2) +	B	2820
	5	W3*SATI (M3) + W4*SATI (M4)	B	2830
	SAT =	= SA + (PS1*FASTA(L) + PS2*THERMA(L))/(2.0997E-5 +	B	2840
	\$	THERMA(L) *SAX)	В	2850
	GO TU 45	5	В	2860
41	SAT	= W1*SATI (M1) + W2*SATI (M2) +	В	2870
	\$	W3*SATI (M3) + W4*SATI (M4)	B	2880

45 SAF = W1*SAFI (M1) + W2*SAFI (M2) +	8	2890	
\$ W3*SAFI (M3) + W4*SAFI (M4)	8	2900	
C7 (L) = SAF+SDS	8	2910	
TFR (L) = SDS/SAT	B	2920	
NSFIG(L) = NSFF+TFR(L)*NSFT	В	2930	
CHECK TO SEE IF NODE IS RODDED	В	2940	
IF (NOCROD) GO TO 50	B	2950	
K = (L-1)/NP+1	В	2960	
IF (NOTCH(LB) .LT. K) GO TO 50	8	2970	
CHANGE THERMAL ABSORBTION CROSS SECTION TO ACCOUNT FOR CONTROL ROD	В	2980	
RHO = W1*WORTH(M1) + W2*WORTH(M2) +	В	2990	
\$ W3*WORTH(M3) + W4*WORTH(M4)	8	3000	
SAT = NSFT*SDS*SAT/(NSFT*SDS-RHO*NSF1G(L)*SAT)	В	3010	
TFR(L) = SDS/SAT	В	3020	
NSF1G(L) = NSFF+TFR(L)*NSFT	В	3030	
50 CONTINUE	8	3040	
C	B	3050	
C=====================================	B	3060	
C	B	3070	
C	В	3080	
C ADD B.C. CONTRIBUTIONS TO C7	8	3090	
C FACES 5 & 6	B	3100	
60 D0 62 L=1,NP	в	3110	
C7(L) = C7(L) - GZ*DF(L)*(AF5+BF5*V0ID(L)-1.)	В	3120	
LL = L+NDSMNP	8	3130	
62 C7(LL) = C7(LL)-GZ*DF(LL)*(AF6+BF6*V0ID(LL)-1.)	B	3140	
C FACE 1	В	3150	
D0 64 LB=1+NX	8	3160	
LT = L8+NDSMNP	В	3170	
D0 64 L=LB,LT,NP	В	3180	
64 C7(L) = C7(L)-GX*DF(L)*(AF1+BF1*VOID(L)-1.)	В	3190	
C FACE 3	8	3200	
LB = 1	B	3210	
D0 68 I=1+NX	8	3220	
LT = LB+NDSMNP	В	3230	н Н
DO 66 L=LB,LT,NP	8	3240	7

•

66	C7(L) = C7(L)-GX*DF(L)*(AF3+BF3*VOID(L)-1.)	8	3250
68	LB = LB+NCOL(I)	B	3260
С		8	3270
	IF (QTRKOR) GO TO 76	B	3280
С		В	3290
C		В	3300
C RECT	TANGULAR PLANE GEOMETRY	B	3310
C		8	3320
С		в	3330
C FACE	E 2	B	3340
	LB1 = NP-NXM1	В	3350
	D0 72 LB=LB1+NP	В	3360
	LT = LB+NDSMNP	В	3370
	DO 72 L=LB+LT+NP	В	3380
72	C7(L) = C7(L)-GX*DF(L)*(AF2+BF2*VOID(L)-1.)	B	3390
C		В	3400
С		В	3410
C FACE	Ε 4	В	3420
	DO 74 LB=NX,NP,NX	В	3430
	LT = LB+NDSMNP	B	3440
	DO 74 L=LB,LT,NP	В	3450
74	C7(L) = C7(L)-GX*DF(L)*(AF4+8F4*VOID(L)-1.)	8	3460
	GO TO 131	В	3470
С		B	3480
C		в	3490
С		В	3500
C QUAR	RTER CORE PLANE GEOMETRY	В	3510
C		θ	3520
С		B	3530
C FACE	E 2	В	3540
76	$\mathbf{J} = 0$	8	3550
	L1 = NP-NCOL(NX)+1	В	3560
	L2 = NP	B	3570
	DO 78 LB=L1,NP	В	3580
	LT = LB+NDSMNP	В	3590
	J = J+]	В	3600

•

	AF = AFQ(J) - 1.	В	3610
	BF = BFQ(J)	В	3620
	DO 78 L=LB+LT+NP	8	3630
78	C7(L) = C7(L)-GX*DF(L)*(AF+BF*VOID(L))	B	3640
	I = NX	В	3650
	NCL = NCOL(NX)	B	3660
	D0 82 IC=2+NX	В	3670
	I = I - I	В	3680
	NCI = NCOL(I)	В	3690
	L2 = L2-NCL	8	3700
	L1 = L2 - NCI + NCL + 1	B	3710
	IF (NCI .EQ. NCL) GO TO 82	в	3720
	D0 80 LB=L1.L2	8	3730
	LT = LB + NDSMNP	B	3740
	J = J + 1	В	3750
	AF = AFQ(J) - 1.	В	3760
	BF = BFQ(J)	В	3770
	DO BU L=LB+LT+NP	B	3780
80	C7(L) = C7(L) - GX*DF(L)*(AF+BF*VOID(L))	В	3790
82	NCL = NCI	8	3800
C		В	3810
C FACI	E 4	8	3820
	$L\theta = 0$	В	3830
	DO 84 I=1,NX	В	3840
	LB = LB+NCOL(I)	В	3850
	LT = LB+NDSMNP	В	3860
	AF = AFQ(I) - 1.	8	3870
	BF = BFQ(I)	8	3880
	DO 84 L=LB,LT,NP	В	3890
84	C7(L) = C7(L) - GX + DF(L) + (AF + BF + VOID(L))	8	3900
C		8	3910
C		В	3920
CALCU	LATE C5 & C6	В	3930
131	DO 132 L=1,NDSMNP	В	3940
	LT = L+NP	B	3950
	C6(L) = GZ*DF(L)*DF(LT)/(DF(L)+DF(LT))	B	396 0

	C7(L) = C7(L) + C6(L)	B	397 0
132	C7(LT) = C7(LT) + C6(L)	в	3980
C		8	3990
C		8	4000
CALCU	LATE C3 & C4	В	4010
	LR = -1	8	4020
	DO 138 I=1,NX	в	4030
	LL = LR+2	B	4040
	LR = LR + NCOL(I)	B	4050
	IF (1-NCOL(I)) 134,138,138	B	4060
134	DO 136 LB=LL+LR	B	4070
	LT = LB+NDSMNP	B	4080
	DO 136 L=LB+LT+NP	B	4090
	LP = L+1	В	4100
	C4(L) = GX*DF(L)*DF(LP)/(DF(L)+DF(LP))	B	4110
	C7(L) = C7(L) + C4(L)	8	4120
136	C7(LP) = C7(LP) + C4(L)	В	4130
138	CONTINUE	B	4140
C		В	4150
С		В	4160
CALCU	LATE C1 & C2	8	4170
	LL = 1	B	4180
	NCOLI = 0	В	4190
	DO 140 I=1,NXM1	в	4200
	LL = LL+NCOLI	8	4210
	NCOLI = NCOL(I)	В	4220
	LR = LL + NCOL(I+1) - 1	В	4230
	DO 140 LB=LL,LR	8	4240
	LT = LB+NDSMNP	В	4250
	DO 140 L=LB+LT+NP	В	4260
	LP = L + NCOLI	B	4270
	$C_2(L) = G_X * D_F(L) * D_F(L_P) / (D_F(L) + D_F(L_P))$	8	4280
	C7(L) = C7(L) + C2(L)	B	4290
140		R	4300
	U(UP) = U(UP) + U(U)	U	7300
Č	C(LP) = C(LP) + CZ(L)	B	4310

B 4330

END

151

)*====================================	С	10
	С	20
	С	30
	С	40
SUBROUTINE STG	С	50
	С	60
`	С	70
C ROUTINE TO CALCULATE POWER DISTRIBUTION USING SIMULATED TWO-GROUP	C	80
C DIFFUSION THEORY MODEL	С	90
	C	100
	С	110
COMMON /HEADR / NTITLE(20) AVEXP, NTSTEP	С	120
COMMON /FUEL / FTYPE(NO2), BU(NO1), VOID(NO1)	С	130
INTEGER FTYPE	С	140
COMMON /NODAL / DF (NO1), DT (NO1), KSFF (NO1)	С	150
\$. KSFT (N01), TFR (N01), NSF1G (N01)	С	160
\$• C2 (N01)• C4 (N01)• C6 (N03)	С	170
\$• C7 (N01)	С	180
REAL KSEE. KSET. NSEIG	С	190
COMMON /GEOM / NODES • NP • NDSMNP • NX	Ċ	200
\$• NZ • NXM1 • GX • GZ	С	210
\$• NCOL (N04)	С	220
COMMUN /BC / AF1, AF3, AF5, AF6, AFQ(N04),	С	230
\$ BF1. BF3. BF5. BF6, BFQ(N04),	С	240
\$ AT1. AT3. AT5. AT6. ATQ(N04).	С	250
\$ BT1. BT3. BT5. BT6. BTQ(N04)	Ċ	260
FOUTVALENCE $(AFQ(1), AF2), (AFQ(2), AF4),$	С	270
\$ (BFQ(1), BF2), (BFQ(2), BF4),	Ċ	280
(ATQ(1), AT2), (ATQ(2), AT4),	Ċ	290
\$ (BTQ(1), BT2), (BTQ(2), BT4)	C	300
COMMON /CONVRG/ MAXI. MAXO. MAXP. EPSO. EPSP. ALPHA. SOR	Ċ	310
LOGICAL SOR	Ċ	320
COMMON /FLUX / POWER(NO1) + FASTA(NO1) + THERMA(NO1) + F(NO1)	Ċ	330
COMMON /PROB / INTTYP. QTRKOR. NOHAL. NOCROD. NOVOID. IEDIT(6)	Ĉ	340
\$• NOXE• FIRST	č	350
LOGICAL UTRKOR. NOHAL. NOCROD. NOVUID. NOXE. FIRST	Č	360

(COMMON /WEIGHT/ R, CF, CT, RCF, RCT, B1N, B2N	С	370
1	DIMENSION T(NO1), S(NO1)	С	380
1	REAL KEFF, LAMDA	С	390
1	DIMENSION FLX(NO1), FO(NO1), SAVE(NO1), PO(NO1)	С	400
	EQUIVALENCE (FO(1), PO(1), T(1)), (FASTA(1), SAVE(1))	С	410
	IGGICAL CONVSR. FLAGI. FLAG2	С	420
C		С	430
Č		С	440
č		С	450
Č C2.	C4. C6. &C7 ARE FAST FLUX COUPLING COEFFICENTS	С	460
C F	= POINTWISE FAST FLUX	С	470
Č T	= POINTWISE THERMAL FLUX	С	480
C FAST	A = NODE AVERAGED FAST FLUX	С	490
C THER	MA = NODE AVERAGED THERMAL FLUX	С	500
C POWE	R = RELATIVE POWER OF NODE	С	510
C		С	520
C⇒====		С	530
c		С	540
	MAXOUT = MAXO	С	550
	FLAG1 = .FALSE.	С	560
		С	570
	FIRST = FALSE.	С	580
	ITPOWR = 1	С	590
	KFFF = 1.	С	600
	SR = 0	С	610
	TIFIS = 0.	С	620
	DO 603 L=1+NODES	С	630
	S(L) = F(L) * NSF1G(L)	С	640
603	TLFIS = TLFIS + S(L)	С	650
	IF (.NOT. NOHAL) GO TO 602	С	660
I	CALL HEADER (1)	С	670
	WRITE (6.1000)	С	680
C BEGI	NNING OF POWER ITERATION	С	690
602	TTOUT = 0	С	700
~~-	CONVSR = FALSE.	С	710
I	RSQ = 1.	С	720

```
730
                                                                 740
                                                                 750
                                                              С
C
                                                                 760
C BEGINING OF OUTER ITERATION
                                                              С
                                                              С
                                                                 770
500
     ITIN = 0
780
                                                                 790
                                                              С
С
                                                              С
                                                                 800
С
                                                              С
C BEGINING OF INNER ITERATION
                                                                 810
                                                              С
   F(1) = (S(1))
                                + C2(1) #F(NX+1)
                                                                 820
502
                                                              С
                                + C4(1) *F(2)
                                                                 830
    $
                                                              С
    $
                                + C6(1) *F(1+NP) )/C7(1)
                                                                 840
                                                              С
                                                                 850
     DO 2 L=2.NXM1
                                                              С
                        + C2(L) +F(L+NX)
                                                                 860
     F(L) = (S(L))
2
                                                              С
                                                                 870
                + C4(L-1) *F(L-1) + C4(L) *F(L+1)
    $
                                                              С
                                                                 880
                                + C6(L)*F(L+NP) )/C7(L)
    S
                                                              С
                                                                 890
                                + C2(NX) *F(NX+NX)
     F(NX) = (S(NX))
                                                              С
                                                                 900
    $
                + C4(NXM1)*F(NXM1)
                                                              С
                                                                 910
                                + C6(NX)*F(NX+NP) )/C7(NX)
    $
                                                              С
                                                                 920
     I2 = NX
                                                              С
                                                                 930
     LR = NX
                                                              С
                                                                 940
     D0 6 I=2,NXM1
                                                              С
                                                                 950
     I1 = I2
                                                              С
                                                                 960
     I2 = NCOL(I)
                                                                 970
                                                              С
     LL = LR+1
                                                              C · 980
     LR = LR+I2
                                                                 990
                                                              С
     LRM1 = LR-1
                                                              C 1000
     LLP1 = LL+1
                                                              C 1010
     F(LL) = (S(LL) + C2(LL-I1) * F(LL-I1) + C2(LL) * F(LL+I2)
                                                              C 1020
                                + C4(LL)*F(LLP1)
    $
                                + C6(LL)*F(LL+NP) )/C7(LL)
                                                              C 1030
    S
     IF ( LLP1 .EQ. LR) GO TO 6
                                                              C 1040
                                                             C 1050
     D0 4 L=LLP1,LRM1
                                                            C 1060
    F(L) = (S(L) + C2(L-I1)*F(L-I1) + C2(L)*F(L+I2)
4
                + C4(L-1)*F(L-1) + C4(L)*F(L+1)
                                                            C 1070
    $
                                + C6(L)*F(L+NP) )/C7(L)
                                                            С
                                                                1080
    5
```

```
154
```

```
F(LR) = (S(LR) + C2(LR-I1) *F(LR-I1) + C2(LR) *F(LR+I2) C 1090

$ + C4(LRM1) *F(LRM1) C 1100

$ + C6(LR) *F(LR+NP))/C7(LR) C 1110

I1 = I2 C 1120
6

      3
      + COLERTFUERTNPT //CTUER
      C 1110

      I1 = I2
      C 1120

      LL = LR+1
      C 1130

      LR = NP
      C 1140

      LRM1 = LR-1
      C 1150

      LLP1 = LL+1
      C 1160

      IF (LRM1-LL) 10,12,14
      C 1170

      F(LL) = (S(LL) + C2(LL-I1)*F(LL-I1)
      C 1180

      $
      + C6(LL)*F(LL+NP) )/C7(LL)
      C 1190

      G0 T0 20
      C 1200

10
                                                                                                                                                     C 1200
C 1210
           F(LL) = (S(LL) + C2(LL-I1)*F(LL-I1)
12

      F(LL) = (S(LL) + CZ(LL=11)*F(LL=11)

      $
      + C4(LL)*F(LLP1)
      C 1220

      $
      + C6(LL)*F(LL+NP))/C7(LL)
      C 1230

      $
      - C6(LL)*F(LL+NP))/C7(LL)
      C 1240

      G0 TO 18
      C 1240

      F(LL) = (S(LL) + C2(LL-I1)*F(LL-I1)
      C 1250

      $ + C4(LL)*F(LLP1)
      C 1260

      $ + C6(LL)*F(LL+NP))/C7(LL)
      C 1270

      C 1240
      C 1250

      $ + C6(LL)*F(LLP1)
      C 1260

      $ + C6(LL)*F(LL+NP))/C7(LL)
      C 1270

      C 1280
      C 1280

14
         D0 16 L=LLP1,LRM1
F(L) = (S(L) + C2(L-I1)*F(L-I1)
          16
         + C6(L)*F(L+NP) )/C7(L
F(LR) = (S(LR) + C2(LR-I1)*F(LR-I1)
$ + C4(LRM1)*F(LRM1)
$
18
                                                                               11 ) C 1330
+ C6(LR)*F(LR+NP) )/C7(LR) C 1340
20 DO 40 K=3.NZ
                                                                                                                                                               C 1350
           I2 = NX .
                                                                                                                                                                 C 1360
           LL = LR+1
                                                                                                                                                               C 1370
            LR = LR+I2
                                                                                                                                                               C 1380
                                                                                                                                                              C 1390
            LRM1 = LR-1

      LLP1 = LL+1
      C
      1400

      F(LL) = (S(LL)
      + C2(LL)*F(LL+I2)
      C
      1410

      $
      + C4(LL)*F(LLP1)
      C
      1420

      $
      + C6(LL-NP)*F(LL-NP)
      + C6(LL)*F(LL+NP)
      /C7(LL)
      C

                                                                                                                                                              C 1440
          00 22 L=LLP1,LRM1
```

S

22	F(L) = (S(L) + C2(L) + F(L+I2)	С	1450	
	\$ + C4(L-1)*F(L-1) + C4(L)*F(L+1)	С	1460	
	\$ + C6(L-NP)*F(L-NP) + C6(L)*F(L+NP))/C7(L)	С	1470	
	F(LR) = (S(LR)) + C2(LR) + F(LR+I2)	С	1480	
	\$ + C4(LRM1) *F(LRM1)	С	1490	
	\$ + C6(LR-NP)*F(LR-NP) + C6(LR)*F(LR+NP))/C7(LR)	С	1500	
	DO 26 I=2.NXM1	С	1510	
	II = I2	С	1520	
	$I_2 = NCOL(I)$	С	1530	
	11 = 18+1	С	1540	
	LR = LR + I2	С	1550	
	(RM) = (R-)	С	1560	
	$\frac{1}{1} = \frac{1}{1} + \frac{1}{1}$	С	1570	
\$	E(1) = (S(1)) + (C2(1) = T)) * E(1) = T) + (C2(1)) * E(1) + T2)	Č	1580	
	s + C4(11)*F(11P1)	Ċ	1590	
	$ = \frac{1}{2} + \frac$	č	1600	
	T = (1) D = C + D =	č	1610	
	IF (LLFI + LW+ LK/ 00 10 20	č	1620	
24	DU 24 L=LLFI9LKMI F(L) = (C(L) + C2(L-1))#F(L-1)) + C2(L)#F(L+12)	č	1630	
24	F(L) = (S(L) + C(L-1)) + C(L-1) + C(L) + C(L+1)	č	1640	
	$= \frac{1}{2} + $	Č	1650	
24	$= \frac{1}{2} + $	Č	1660	
26	F(LR) = (S(LR) + CZ(LR-11) + CR-11) + CZ(LR) + CZ(LR) + CZ(LR) + CZ(LR-11) + CZ(LR) + CZ(LR		1670	
			1670	
	S + CO(LR-NP) + CO(LR) + CO(1600	
	II = I2		1090	
	LL = LR + 1		1700	
	LR = LR + NCOL(NX)		1710	
	LRM1 = LR-1	L C	1720	
	LLP1 = LL+1	C	17.30	
	IF (LRM1-LL) 30,32,34	C	1740	
30	F(LL) = (S(LL) + C2(LL-I1) * F(LL-I1)	C	1750	
	\$ + C6(LL-NP)*F(LL-NP) + C6(LL)*F(LL+NP))/C7(LL)	C	1760	
	GO TO 40	С	1770	
32	F(LL) = (S(LL) + C2(LL-I1) * F(LL-I1)	С	1780	
	\$ + C4(LL)*F(LLP1)	С	1790	1
	\$ + C6(LL-NP)*F(LL-NP) + C6(LL)*F(LL+NP))/C7(LL)	С	1800	6

			~	1010
	GO TO 38	— • • • • • • • • • • • • • • • • • • •	L A	1910
34	F(LL) = (S(LL))	+ C2(LL-I1)*F(LL-I1)	C	1820
	S	+ C4(LL)*F(LLP1)	C	1830
	\$ +	C6(LL-NP)*F(LL-NP) + C6(LL)*F(LL+NP))/C7(LL)	С	1840
	D0 36 L=LLP1,L	RM1	C	1850
36	F(L) = (S(L) +	C2(L-I1)*F(L-I))	С	1860
	\$ +	C4(L-1)*F(L-1) + C4(L)*F(L+1)	С	1870
	\$ +	C6(L-NP)*F(L-NP) + C6(L)*F(L+NP))/C7(L)	С	1880
38	F(LR) = (S(LR))	+ C2(LR-I1)*F(LR-I1)	С	1890
	\$ +	C4(LRM1) *F(LRM1)	С	1900
	\$ +	C6(LR-NP)*F(LR-NP) + C6(LR)*F(LR+NP))/C7(LR)	С	1910
40	CONTINUE		С	1920
	= R+		С	1930
	IR = IR + NX		С	1940
	11P1 = 11+1		C	1950
	LRM = $LR-1$		С	1960
	F(11) = (S(11))	+ C2(LL)*F(LL+NX)	С	1970
	t (EE) = (3(EE)	+ C4(11) *F(LLP1)	С	1980
		C6(11-NP) *F(11-NP))/C7(LL)	С	1990
	00 42 L=LP1		Ċ	2000
42	E(1) = (S(1))	+ C2(L)*E(L+NX)	Č	2010
		$C_4(1-1) \neq E(1+1) + C_4(1) \neq E(1+1)$	Č	2020
	D C	$C_{4}(1 - NP) + C_{1}(1 - NP)$ (1)	Č	2030
		+ C2(1R) #F(1R+NX)	Ċ	2040
	$\mathbf{r} = \mathbf{r} = \mathbf{r} = \mathbf{r} = \mathbf{r}$	C4/10M1) #F(10M1)	Č	2050
	- D		Č	2060
	ар — муу Тар — муу		Č	2070
	12 - NA		č	2080
	DU 34 1=29NAM1		č	2000
	11 = 12		C C	2100
	12 = NCUL(I)		C C	2110
	LL = LR + I		C C	2120
	LK = LK + IZ		C C	2120
	LLPI = LL+I			2140
	LKWI = LK-I			2140
	F(LL) = (S(LL))			2140
	5	+ 64(LL)**(LLP1)	L	210 0

	\$ + C6(LL-NP)*F(LL-NP))/C7(LL)	С	2170	
	IF (LRM1 .EQ. LL) GO TO 48		С	2180	
	DO 46 L=LLP1,LRM1		С	2190	
	IF (L+I2-NODES) 942,942,44		С	2200	
942	F(L) = (S(L) + C2(L-II) * F(L-II) + C2(L) * F(L)	+12)	С	2210	
	\$ + C4(L-1)*F(L-1) + C4(L)*F(L*	+1)	С	2220	
	\$ + C6(L-NP)*F(L-NP))/C7(L)	С	2230	
	GO TO 46	·	C	2240	
44	F(L) = (S(L) + C2(L-I1)*F(L-I1)		С	2250	
•	<pre>\$ + C4(L-1)*F(L-1) + C4(L)*F(L*</pre>	+1)	С	2260	
	\$ + C6(L-NP)*F(L-NP))/C7(L)	С	2270	
46	CONTINUE		С	2280	
48	IF (LR+12-NODES) 50,50,52		С	2290	
50	F(LR) = (S(LR) + C2(LR-I1)*F(LR-I1) + C2(LR))) #F (LR+12)	' C	2300	
•••	\$ + C4(LRM1) *F(LRM1)		С	2310	•
	\$ + C6(LR-NP)*F(LR-NP))/C7(LR)	С	2320	
	GO TO 54		С	2330	
52	F(LR) = (S(LR) + C2(LR-I1)*F(LR-I1)		С	2340	
	\$ + C4(LRM1) *F(LRM1)		С	2350	
	\$ + C6(LR-NP)*F(LR-NP))/C7(LR)	С	2360	
54	CONTINUE		С	2370	
	11 = 12		С	2380	
	IF (2-NCOL(NX)) 60,58,56		С	2390	
56	F(NODES) = (S(NODES) + C2(NODES-I1)*F(NODES-	-I1)	С	2400	
-	<pre>\$ + C6(NDSMNP)*F(NDSMNP)</pre>)/C7(NODES)	С	2410	
	GO TO 138		С	2420	
58	LL = NODES-1		С	2430	
	F(LL) = (S(LL) + C2(LL-I1)*F(LL-I1)		С	2440	
	\$ + C4(LL)*F()	NODES)	С	2450	
	\$ + C6(LL-NP)*F(LL-NP))/C7(LL)	С	2460	
	GO TO 64		С	2470	
60	LL = LR+1		С	2480	
	LLP1 = LL+1	,	С	2490	
	LRM1 = NODES-1		С	2500	
	F(LL) = (S(LL) + C2(LL-I1)*F(LL-I1)	·	С	2510	
	\$ + C4(LL)*F(I	LP1)	С	2520	58

,

	\$ + C6(LL-NP)*F(LL-NP))/C7(LL)	С	2530	
	DO 62 L=LLP1+LRM1		С	2540	
62	F(L) = (S(L) + C2(L-II)*F(L-II)		С	2550	
	<pre>\$ + C4(L-1)*F(L-1) + C4(L)*F(L+1)</pre>		С	2560	
	\$ + C6(L-NP)*F(L-NP))/C7(L)	С	2570	
64	F(NODES) = (S(NODES) + C2(NODES-II) *F(NODES-II))		С	2580	
	<pre>\$ + C4(NODES-1)*F(NODES-1)</pre>		С	2590	
	\$ + C6(NDSMNP) *F(NDSMNP))/C7(NODES)	С	2600	
C====			С	2610	
ċ			С	2620	
Č			С	2630	
138	ITIN = ITIN + 1		С	2640	
			С	2650	
ĉ			С	2660	
C SUC	CCESSIVE OVER-RELAXATION ROUTINE		С	2670	
	IF (•NOT• SOR) GO TO 1396		С	2680	
С			С	2690	
*	IF (CONVSR) GO TO 804		С	2700	
С			С	2710	
CALCU	JLATE SPECTRAL RADIUS		С	2720	
	RSQO = RSQ		С	2730	
	RSQ = 0.		С	2740	
	DO 800 L=1,NODES		С	2750	
	RSQ = RSQ + (F(L) - FO(L))**2		С	2760	
8 0 0	FO(L) = F(L)		С	2770	
	SRU = SR		С	2780	
	SR = SQRT (RSQ/RSQ0)		С	2790	
С			С	2800	
	IF (ABS (1SRO/SR) .LE001) GO TO 803		С	2810	
	IF (ITIN .GE. 20) GO TO 803		С	2820	
	GO TU 502		С	2830	
С			С	2840	
803	CONVSR = .TRUE.		С	2850	
	IF ($SR \cdot GE \cdot 1 \cdot$) $SOR = \cdot FALSE \cdot$		С	2860	
	IF (.NOT. SOR) GO TO 1396		С	2870	
	WRITE (6,1005) SR		С	2880	.59

	IF (SR +LT+ 1+) GO TO 806	С	2890
	$ALP = 2 \cdot / (1 \cdot + SQRT (1 \cdot - SR))$	С	2900
	GO TO 1396	С	2910
806	ALP = 1.	С	2920
	GO TO 1396	С	2930
804	DO 805 L=1,NODES	С	2940
	F(L) = FO(L) + ALP* (F(L) - FO(L))	С	2950
805	FO(L) = F(L)	С	2960
C		С	2970
1396	IF (ITIN.LT.MAXI) GO TO 502	С	2980
C		С	2990
Č		С	3000
CALCUL	ATE K-EFF	С	3010
	TLFISO = TLFIS	С	3020
	TLFIS = 0.	С	3030
	DO 550 L=1,NODES	С	3040
550	TLFIS = TLFIS+F(L)+NSF1G(L)	С	3050
	LAMDA = TLFIS/TLFISO	С	3060
	KEFF = KEFF*LAMDA	С	3070
	TESTO = ABS (1 TLFISO/TLFIS)	С	3080
	ITOUT = ITOUT+1	С	3090
	IF (ITOUT .EQ. 1) GO TO 554	С	3100
C====		С	3110
Ċ		С	3120
C		С	3130
C ACCE	ELERATE SOURCE BY SUCCESSIVE OVER-RELAXATION	С	3140
	TFISOR = 0.	С	3150
	D0 552 L=1,NODES	С	3160
	SAVE(L) = SAVE(L) + ALPHA*(F(L) - SAVE(L))	С	3170
552	TFISOR = TFISOR+SAVE(L)*NSF1G(L)	С	3180
	GO TO 558	С	3190
554	TFISOR = TLFIS	С	3200
	D0 556 L=1,NODES	С	3210
556	SAVE(L) = F(L)	С	3220
558	TEMP = TLFIS/TFISOR/KEFF	С	3230
	DO 560 L=1,NODES	С	3240

	S(L) = SAVE(L)*NSF1G(L)*TEMP	С	3250
560	SAVE(L) = F(L)	С	3260
	TLFISO = TLFIS	С	3270
C====		С	3280
С		С	3290
CONVE	RGENCE CHECK	С	3300
	WRITE (6,1002) ITOUT,ITIN,KEFF,TESTO	С	3310
	IF (ITOUT .GE. MAXOUT) GO TO 200	С	3320
	IF (TESTO .GT. EPSO) GO TO 500	С	3330
C====		С	3340
С		С	3350
C NOD	AL WEIGHTING SECTION	С	3360
C	* * * - *	С	3370
С		С	3380
CALCU	LATE AVERAGED FAST FLUX	С	3390
200	D0 202 L=1,NODES	С	3400
	FASTA(L) = B1N*F(L)	С	3410
202	FLX(L) = CF*F(L)*DF(L)	С	3420
C FAC	E 5 BOUNDARY	С	3430
	D0 204 L=1,NP	С	3440
204	FASTA(L) = FASTA(L)+RCF*(AF5+BF5*VOID(L))*F(L)	С	3450
C FAC	E 6 BOUNDARY	С	3460
	L1 = NDSMNP+1	С	3470
	DO 206 L=L1,NODES	С	3480
206	FASTA(L) = FASTA(L)+RCF*(AF6+BF6*VOID(L))*F(L)	С	3490
C HOR	IZONTAL PLANES	С	3500
	DO 208 L=1,NDSMNP	С	3510
	LP = L+NP	С	3520
	FF = R*(FLX(L)+FLX(LP))/(DF(L)+DF(LP))	С	3530
	FASTA(L) = FASTA(L) + FF	С	3540
208	FASTA(LP) = FASTA(LP)+FF	С	3550
C FAC	E 1 BOUNDARY	С	3560
	DO 210 LB=1,NX	С	3570
	LT = L8+NDSMNP	С	3580
	DO 210 L=LB+LT+NP	С	3590
210	FASTA(L) = FASTA(L)+CF*(AF1+BF1*VOID(L))*F(L)	С	3600

ç

161

Ċ.		С	3610
	IF (QTRKOR) GO TO 218	С	3620
C REC	TANGULAR PLANE GEOMETRY	С	3630
C FACI	C FACE 2		3640
	L1 = NP-NXM1	С	3650
	DO 214 LB=L1,NP	С	3660
	LT = LB+NDSMNP	С	3670
	DO 214 L=LB,LT,NP	С	3680
214	FASTA(L) = FASTA(L)+CF*(AF2+BF2*VOID(L))*F(L)	С	3690
C FACI	E 4	С	3700
	DO 216 LB=NX,NP,NX	С	3710
	LT = LB+NDSMNP	С	3720
	DO 216 L=LB,LT,NP	С	3730
216	FASTA(L) = FASTA(L)+CF*(AF4+BF4*VOID(L))*F(L)	С	3740
	GO TO 272	С	3750
С		С	3760
C QUAI	RTER CORE PLANE GEOMETRY	С	3770
C FACI	E 2	С	3780
218	J = 0	С	3790
	L1 = NP-NCOL(NX)+1	Ċ	3800
	L2 = NP	Ċ	3810
	D0 220 LB=L1,L2	Ċ	3820
	LT = LB + NDSMNP	Č	3830
	J = J+1	č	3840
	AF = AFQ(J)	Č	3850
	BF = BFQ(J)	č	3860
	D0 220 L=LB,LT,NP	č	3870
220	FASTA(L) = FASTA(L) + CF + (AF + BF + VOID(L)) + F(L)	č	3880
	I = NX	č	3890
	NCL = NCOL(NX)	č	3900
	D0 224 IC=2.NX	õ	3910
	$\mathbf{I} = [-1]$	č	3920
	NCI = NCOL(I)	č	3930
	L2 = L2-NCL	č	3940
	L1 = L2 - NCI + NCL + 1	č	3950
	IF (NCL . EQ. NCL) GO TO 224	č	3960
			3700

	D0 222 H=1] •1 2	С	397 0	
	IT = IB + NDSMNP	С	3980	
	(1 = 1 + 1)	С	3990	
	$\Delta \mathbf{F} = \Delta \mathbf{F} (0 (1))$	С	4000	
	BF = BFO(1)	С	4010	
	$DO 222 I = IB \bullet I T \bullet NP$	С	4020	
222'	FASTA(1) = FASTA(1) + CF # (AF + BF # VOID(1)) # F(L)	С	4030	
224	NCI = NCI	С	4040	
C FAC	F 4	С	4050	
CIAC		С	4060	
	$DO 226 I = 1 \cdot NX$	Ċ	4070	
	$L B = L B + N C \Omega L (T)$, C	4080	
	LT = LA+NDSMNP	Ċ	4090	
	$\Delta F = \Delta F (1)$	C	4100	
	AF = AFO(T)	Ċ	4110	
	DO 226 I = I B A T A NP	Č	4120	
226	FASTA(1) = FASTA(1) + CF # (AF + BF # VOTD(1)) # F(1)	Č	4130	
2 20		C	4140	
C ENC		Č	4150	
0 FAU 272	L = 1	Č	4160	
212	$DO = 276 T = 1 \cdot NX$	Ċ	4170	
		Č	4180	
	DO = 274 + 1 = 1 B + 1 T + NP	Č	4190	
274	FASTA(1) = FASTA(1) + CF # (AF3 + BF3 # VOID(1)) # F(1)	Ċ	4200	
214	$PASTA(E) = PASTA(E) \cdot O(P(A) S \cdot D(S \cdot VOE)(E)) + (E)$	Č	4210	
C 1 F		Č	4220	
UJF	MUCS	Č	4230	
	DO 2RO T = 1 NY	Č	4240	
		Č	4250	
	$L_1 = L_2 + L_2 $	Č	4260	
	TE (12 - TE (1) - GO TO 200)	Č	4270	
		Č	4280	
		Č	4290	
	DO 279 I = I B A T A ND	Č	4300	
		ů C	4310	
	EF - LTI FF - (FLX(L)+FLX(LP))/(DF(L)+DF(LP))	ů C	4320	16:
		-		τ. Ο

	~	4220
FASIA(L) = FASIA(L) + FF	L C	4330
278 FASTA(LP) = FASTA(LP) + FF	C C	4340
280 CONTINUE	C C	4350
C I FACES	C	4360
LR = 0	C	4370
NCI = NX	C	4380
DO 264 I=1•NXM1	C	4390
NCIP = NCOL(I+1)	С	4400
L2 = LR+NCIP	С	4410
L1 = LR+1	С	4420
LR = LR+NCI	С	4430
D0 282 L8=L1,L2	С	4440
LT = LB+NDSMNP	С	4450
DO 282 L=LB,LT,NP	С	4460
LP = L + NCI	С	4470
FF = (FLX(L) + FLX(LP)) / (DF(L) + DF(LP))	С	4480
FASTA(L) = FASTA(L) + FF	С	4490
282 = FASTA(LP) = FASTA(LP) + FF	C	4500
284 NCI = NCIP	Ċ	4510
	Č	4520
С Г	č	4530
CALCULATE AVERAGED THERMAL FLUX	č	4540
$DO = 302 I = 1 \cdot NODES$	ċ	4550
T(1) = F(1) + TEP(1)	č	4560
$T_{HE} = T_{HE} + T$	õ	4570
$\frac{1}{2} \frac{1}{2} \frac{1}$	č	4580
C = F = C = C = C = C = C = C = C = C =	č	4500
	č	4600
	č	4000
JU4 INERMALLI - INERMALLITRUITIAISTDISTUUIULIITILLI		4010
		4020
LI = NUSMNP+I	C C	4030
	C C	4640
306 THERMA(L) = THERMA(L) + RCT*(A16+B16*V0ID(L))*I(L)	C	4650
C HORIZONTAL PLANES	C	4660
DO 308 L=I,NDSMNP	C	4670
LP = L + NP	С	4680

	FF = R*(FLX(L)+FLX(LP))/(DT(L)+DT(LP))	С	4690	
	THERMA(L) = THERMA(L)+FF	С	4700	
308	THERMA(LP) = THERMA(LP) + FF	С	4710	
CFA	CE 1 BOUNDARY	С	4720	
	DO 310 LB=1.NX	С	4730	
	LT = LB + NDSMNP	C	4740	
	DO 310 L=LB+LT+NP	С	4750	
310	THERMA(L) = THERMA(L)+CT*(AT1+BT1*VOID(L))*T(L)	С	4760	
C		С	4770	
•	IF (QTRKOR) GO TO 318	С	4780	
C RE	CTANGULAR PLANE GEOMETRY	С	4790	
CFA	CE 2 BOUNDARY	С	4800	
	L1 = NP - NXM1	С	4810	
	DO 314 LB=L1.NP	C	4820	
	LT = LB + NDSMNP	С	4830	
	DO 314 L=LB.LT.NP	С	4840	
314	THERMA(L) = THERMA(L)+CT*(AT2+BT2*VOID(L))*T(L)	С	4850	
CFA	CE 4 BUUNDARY	С	4860	
	DO 316 LB=NX,NP,NX	С	4870	
	LT = LB + NDSMNP	С	4880	
	DO 316 L=LB+LT+NP	С	4890	
316	THERMA(L) = THERMA(L)+CT*(AT4+BT4*VOID(L))*T(L)	С	4900	
	GO TO 372	C .	4910	
С		С	4920	
C QU	ARTER CORE PLANE GEOMETRY	С	4930	
CFA	CE 2 BUUNDARY	С	4940	
318	$\mathbf{J} = 0$	С	4950	
	L1 = NP - NCOL(NX) + 1	С	4960	
	$L_2 = NP$	С	4970	
	D0 320 LB=L1,L2	С	4980	
	LT = LB+NDSMNP	С	4990	
	J = J + 1	С	5000	
	AT = ATQ(J)	С	5010	
	BT = BTQ(J)	С	5020	
	DO 320 L=LB+LT+NP	С	5030	
320	THERMA(L) = THERMA(L)+CT*(AT+BT*VOID(L))*T(L)	C	5040	65

	T = NX	С	5050
	NCL = NCOL(NX)	С	5060
	00 324 IC=2•NX	С	5070
	I = I - I	С	5080
	NCI = NCOL(I)	C	5090
	12 = 12 - NCI	C	5100
	L1 = L2 - NCI + NCL + 1	С	5110
	$IF (NCI \cdot EQ \cdot NCL) GO TO 324$	С	5120
		С	5130
	IT = IB + NDSMNP	С	5140
	J = J+1	С	5150
	$\Delta T = \Delta T O(J)$	С	5160
	BT = BTQ(J)	С	5170
	00.322 I = LB • LT • NP	C	5180
322	THERMA(I) = THERMA(I)+CT*(AT+BT*VOID(L))*T(L)	С	5190
324	NCI = NCI	С	5200
CF	ACE 4 BOUNDARY	С	5210
•••	$\mathbf{IB} = 0$	С	5220
	DO 326 I=1+NX	С	5230
	IB = LB + NCOL(I)	С	5240
	IT = IB + NDSMNP	С	5250
	$\Delta T \simeq \Delta TQ(I)$	С	5260
	BT = BTQ(T)	C	5270
	DO 326 L=LB.LT.NP	С	5280
326	THERMA(I) = THERMA(I)+CT*(AT+BT*VOID(L))*T(L)	С	5290
c		С	5300
Č F	ACF 3 BUUNDARY	С	5310
372	1B = 1	С	5320
912	$D0 = 376 I = 1 \cdot NX$	С	5330
	IT = IB + NDSMNP	С	5340
	$DO_3/4$ = LB • LT • NP	С	5350
374	THERMA(L) = THERMA(L)+CT*(AT3+BT3*VOID(L))*T(L)	С	5360
376	IB = IB + NCOL(I)	C	5370
C J	FACES	С	5380
	12 = -1	С	5390
	DO 380 I=1,NX	С	5400

	L1 = L2+2	С	5410
	L2 = L2+NCOL(I)	С	5420
	IF (L2 .LT. L1) GO TO 380	С	5430
	D0 378 L8=L1,L2	С	5440
	LT = LB+NDSMNP	С	5450
	DO 378 L=LB,LT,NP	С	5460
	LP = L+1	С	5470
	FF = (FLX(L) + FLX(LP)) / (DT(L) + DT(LP))	С	5480
	THERMA(L) = THERMA(L)+FF	С	5490
378	THERMA(LP) = THERMA(LP)+FF	С	5500
380	CONTINUE	С	5510
CIF	ACES	С	5520
	LR = 0	С	5530
	NCI = NX	C	5540
	D0 384 I=1,NXM1	С	5550
	NCIP = NCOL(I+1)	С	5560
	L2 = LR+NCIP	С	5570
	L1 = LR+1	С	5580
	LR = LR+NCI	С	5590
	D0 382 LB=L1,L2	Ċ	5600
	LT = LB + NDSMNP	С	5610
	DO 382 L=LB+LT+NP	C	5620
	LP = L+NCI	Ċ	5630
	FF = (FLX(L) + FLX(LP)) / (DT(L) + DT(LP))	Č	5640
	THERMA(L) = THERMA(L)+FF	Ċ	5650
382	THERMA(LP) = THERMA(LP)+FF	č	5660
384	NCI = NCIP	č	5670
C====		Č	5680
č		č	5690
CALCU	LATE RELATIVE POWER	č	5700
	$D0 400 + =1 \cdot NODES$	° Č	5710
	PO(L) = POWER(L)	č	5720
40 0	POWER(L) = FASTA(L)*KSFF(L) + THERMA(L)*KSFT(L)	č	5730
	CALL NORM (POWER. NODES)	č	5740
	IF (NOT, NOHAL) RETURN	č	5750
CHECK	CONVERGENCE	č	5760
		-	

	FIAG2 = FIAG1	С	5770
	TESTPO = TESTP	С	5780
	TESTP = 0.	С	5790
	D0 402 1 =1 •NODES	С	5800
	TEST = ABS (1 - PO(1)/POWER(1))	С	5810
	$IE (TEST _GT _ TESTP) IESTP = IEST$	С	5820
402		С	5830
404	IE (ITPOWR = E0. 1) 60 TO 403	Ċ	5840
CIE	VOID ITERATION IS DIVERGING DECREASE NUMBER OF OUTERS PER VOID IT.	С	5850
C 11	FLAGL = TESTP .GT. TESTPO	С	5860
	TE (ELAGI AND, ELAG2) MAXOUT = MAXOUT = 1	Ċ	5870
	WPITE (6.1006) TESTP	Ċ	5880
	TE (TESTE JE, EPSP) RETURN	C	5890
	IF (ITPOWP GE, MAXP) GO TO 412	С	5900
403	TPOWP = TPOWR+1	C	5910
403	TH OWK - TH OWK I	C	5920
C.	TE (NOVOTO) GO TO 404	C	5930
	CALL VOIDER	С	5940
404	IE (NOXE) GO TO 602	C	5950
405	CALL INTERP	С	5960
403	60 TO 602	С	5970
412	WRITE (6,1004) ITPOWR	С	5980
~	RETURN	С	5990
C		С	6000
(`===		С	6010
ĉ		С	6020
1000	FORMAT (10X, ====================================	С	6030
1000	\$=====================================	С	6040
	\$ /1x+T11+3(+ITERATION +)+T47+K-EFF+ +T59+TEST0+,T71+TES	С	6050
	\$TP !/10X . 3 (! !) , ! !, 1X, 2 (! !) //)	С	6060
1002	FORMAT (1X+T20+2111+F10+4+T52+E12+3)	С	6070
1003	FORMAT (1X+T10+I9)	С	6080
1004	FORMAT (1X, WARNING: POWER ITERATION HAS NOT CONVERGED IN ', 15,	С	6090
	\$ ITERATIONS. FURTHER ITERATION HAS BEEN SUPPRESSED. 1)	С	6100
1005	FORMAT (1H+,T81, SPECTRAL RADIUS = +,F10.3)	С	6110
1006	FORMAT (1H+,T64,E12.3)	С	6120

С

.

END

C 6130 C 6140

.

,

1

.

-

C#==		D	10 20
()===		Ď	30
C C		D	40
C .	SUBPOLITINE HEADER (N)	D	50
c	SUBRUCTINE NERVER COV	D	60
с. С -		D	70
C RC	DUTINE TO PRINT PAGE HEADING	D	80
C		D	90
ĉ		D	100
C	COMMON /HEADR / NTITLE(20), AVEXP, NTSTEP	D	110
	DATA NPAGE/1/	D	120
С		D	130
Č		D	140
С		D	150
	GO TU (10,20), N	D	160
10	WRITE (6,2) NTSTEP, NTITLE, NPAGE	D	170
	GO TO 30	D	180
20	WRITE (6,4) NTSTEP, NTITLE, NPAGE, AVEXP	D	190
30	NPAGE = NPAGE+1	D	200
	RETURN	D	210
С		D	220
C		D	230
С		D	240
2	FORMAT (1H1, TIME STEP # , 14, 9X, < , 20A4, >> , 11X, PAGE, 15//	D	250
	\$/)	D	260
4	FORMAT (1H1, TIME STEP #", I4, 9X, "<< ", 20A4, " >> ", 11X, "PAGE", I5/	D	270
	\$1X, EXPOSURE = ,F7.0, MWD/MT ///)	D	280
C		D	290
	END	D	300

= = =		= F		
		E		
		Ε		
	SUBROUTINE ERROR (N)	Ε		
		Ε		
		- E		
(OU	TINE TO PRINT ERROR MESSAGE AND ABORT JOB	E		
		• E		
	GO TU (11,12,13,14,15,16,17,18,19,20), N	Е Е		
	WRITE (6,1)			
	STOP	С с		
,	WRITE (6,2)	F		
		F		
	WKIIE (0,3)	F		
		F		
	WRIL (094)	Ē		
	510P WRITE (6.5)	Ē		
		Ε		
	WDITE (6.6)	Ε		
	STOP	Ε		
	WRITE (6.7)	Ε		
	STUP	E		
	WRITE (6,8)	Ε		
	STOP	Ε		
	WRITE (6,9)	Ε		
	STUP	E		
	WRITE (6,10)	E		
	STOP	E		
		E		
		- E		
		Ē		
	FORMAT (//1X, ++++ FORMAT ERROR IN INPUT. JOB ABORTED. ++++)	L L		
	•			
----	--------------------	-----------------	----------------------------------	---------------
	5. ***!)		ŧ	E 370
3	FORMAT (//lX••+++	ERROR IN INPUT:	SUM(NCOL(I)) .NE. NP . JOB E	E 380
	\$ABORTED. ####)		E	E 39 0
4	FORMAT (//1X, ****	ERROR IN INPUT:	NZ*NP < OR > NODES. JOB ABORT E	E 400
	\$ED• ****)		ŧ	E 410
5	FORMAT (//1X, ****	ERROR IN INPUT:	IPTYPE=2 & IEXPTS=1. JOB ABOR E	E 420
	STED. ####)		E	E 430
6	FORMAT (//lx,!###	ERROR IN INPUT:	ITSETS > DIMTS. JOB ABORTED. E	E 440
	5 ###1)		ŧ	E 450
7	FORMAT (//lx, ****	ERROR IN INPUT:	IEXPTS > DIMEX. JOB ABORTED. E	E 460
	\$ ###!)		ť	E 470
8	FORMAT (//1X, ++++	ERROR IN INPUT:	IVDPTS > DIMVD. JOB ABORTED. E	E 480
	\$ ###!)		ŧ	E 490
9	FORMAT (//1X, ++++	ERROR IN INPUT:	EXPOSURE MASK NOT IN ASCENDING E	E 500
	\$ ORDER. JOB ABOR	TED. ***!)	ŧ	E 510
10	FORMAT (//lX,!###	ERROR IN INPUT:	VOID MASK NOT IN ASCENDING ORD E	E 520
	\$ER. JOB ABORTED.	*** *)	f	E 530
С			E	E 540
	END		E	E 550

.

1

.

C*====================================	: F	10
C=====================================	: F	20
C	F	30
С .	F	40
FUNCTION LOC(I,J,K)	F	50
C	F	60
C	F	70
C ROUTINE TO CONVERT (I,J,K) POSITION INDICES TO AN 'L' POSITION INDEX	F	80
(F	90
C	F	100
COMMUN /GEOM / NODES , NP , NDSMNP , NX	F	110
\$, NZ , NXM1 , GX , GZ	F	120
\$, NCOL (NO4)	F	130
C	F	140
C	F	150
C	F	160
LOC = (K-1)*NP+J	F	170
IF (I .EQ. 1) RETURN	F	180
IMI = I-I	F	190
$DO 10 II=1 \cdot IMI$	F	200
10 LOC = LOC+NCOL(II)	F	210
RETURN	F	220
END	F	230

;

```
10
C_______
                                                          20
                                                      G
                                                          30
\mathbf{C}
                                                      G
                                                          40
C
    SUBROUTINE HALING (BURN)
                                                      G
                                                          50
                                                      G
                                                          60
С
                      _____
                                                      G
                                                          70
<u>^-------</u>
C ROUTINE TO CALCULATE HALING SOLUTION FUR OPTIMUM POWER DISTRIBUTION
                                                      G 80
G
                                                          90
                                                      G
                                                         100
C
    COMMON /FUEL / FTYPE(NO2), BU(NO1), VOID(NO1)
                                                      G 110
                                                      G 120
    INTEGER FTYPE
    COMMUN / GEOM / NODES , NP , NDSMNP
                                                      G 130
                                          • NX
                       • NXM1 • GX
                                                      G 140
                NZ
                                          • GZ
   5.
                                                      G 150
                NCOI (N04)
   5.
    COMMUN /FLUX / POWER (NO1) + FASTA (NO1) + THERMA (NO1) + F(NO1)
                                                      G 160
    COMMON /CONVRG/ MAXI, MAXO, MAXP, EPSO, EPSP, ALPHA, SOR G 170
    LOGICAL SOR
                                                      G 180
    DIMENSION PO(NO1), EXS(NO1)
                                                      G
                                                         190
                                                         200
                                                      G
С
              _____
                                                      G
                                                         210
()----
                                                         220
    NOCONV = 0
                                                      G
                                                         230
    ITHAL = 1
                                                      G
    TESTH = 1.E6
                                                      G
                                                         240
    WRITE (6.1000)
                                                      G
                                                         250
                                                      G
                                                         260
С
                                                      G
                                                         270
    DO 10 L=1.NODES
                                                      G
                                                         280
    EXS(L) = BU(L)
    BU(L) = EXS(L) + POWER(L) * BURN
                                                      G
                                                         290
                                                         300
   PO(L) = POWER(L)
                                                      G
10
                                                         310
    GO TO 20
                                                      G
.
                                                      G
                                                         320
C
                                                      G
                                                         330
15
    CALL VOIDER
    WRITE (6,1003) ITHAL
                                                         340
20
                                                      G
    CALL STG
                                                      G
                                                         350
                                                      G
                                                         360
    TESTHO = TESTH
```

D0 30 L=1,NODES G 38 POWER(L) = .9*PO(L) + .1*POWER(L) G 39 TEST = ABS (1PO(L)/POWER(L)) G 40 IF (TEST .GT. TESTH) TESTH = TEST G 41 PO(L) = POWER(L) G 42 30 BU(L) = EXS(L) + POWER(L)*BURN G 42 C G 42 ITHAL = ITHAL + 1 G 42 WRITE (6,1006) TESTH G 42 IF (TESTH .LT. TESTHO) GO TO 50 G 42 NOCONV = NOCONV + 1 G 42	30 90 10 20 30 30 50 50
POWER(L) = .9*PO(L) + .1*POWER(L) G 30 TEST = ABS (1PO(L)/POWER(L)) G 40 IF (TEST .GT. TESTH) TESTH = TEST G 41 PO(L) = POWER(L) G 42 30 BU(L) = EXS(L) + POWER(L)*BURN G 42 C ITHAL = ITHAL + 1 G 42 WRITE (6,1006) TESTH G 42 IF (TESTH .LT. TESTHO) GO TO 50 G 44 NOCONV = NOCONV + 1 G 44	20 20 20 20 30 20 30 50 50
TEST = ABS (1PO(L)/POWER(L)) G 40 IF (TEST .GT. TESTH) TESTH = TEST G 41 PO(L) = POWER(L) G 42 30 BU(L) = EXS(L) + POWER(L)*BURN G 42 C ITHAL = ITHAL + 1 G 42 WRITE (6,1006) TESTH G 42 IF (TESTH .LT. TESTHO) GO TO 50 G 42 NOCONV = NOCONV + 1 G 42	00 10 20 30 +0 50 50
IF (TEST •GT• TESTH) TESTH = TEST G 41 PO(L) = POWER(L) G 42 30 BU(L) = EXS(L) + POWER(L)*BURN G 42 C ITHAL = ITHAL + 1 G 42 WRITE (6,1006) TESTH G 42 IF (TESTH •LT• TESTHO) GO TO 50 G 42 NOCONV = NOCONV + 1 G 48	10 20 30 70 50
PO(L) = POWER(L) G 42 30 BU(L) = EXS(L) + POWER(L)*BURN G 42 C G 42 ITHAL = ITHAL + 1 G 44 WRITE (6,1006) TESTH G 44 IF (TESTH .LT. TESTHO) GO TO 50 G 44 NOCONV = NOCONV + 1 G 44	20 30 40 50 50
30 BU(L) = EXS(L) + POWER(L)*BURN G 42 C G 44 ITHAL = ITHAL + 1 G 45 WRITE (6,1006) TESTH G 46 IF (TESTH .LT. TESTHO) GO TO 50 G 47 NOCONV = NOCONV + 1 G 48	30 +0 50 50
G 44 G 44 G 45 WRITE G IF (TESTH *LT* TESTHO) GO TO 50 NOCONV = NOCONV + 1 G	+0 50 50 70
ITHAL = ITHAL + 1 G 45 WRITE (6,1006) TESTH G 46 IF (TESTH .LT. TESTHO) GO TO 50 G 47 NOCONV = NOCONV + 1 G 48	50 50 70
WRITE (6,1006) TESTH G 46 IF (TESTH .LT. TESTHO) GO TO 50 G 47 NOCONV = NOCONV + 1 G 48	50 70
IF (TESTH .LT. TESTHO) GO TO 50 G 47 NOCONV = NOCONV + 1 G 48	70
NOCONV = NOCONV + 1 G 48	
	30
IF (NOCONV .GE. 3) GO TO 60 G 49	90
GO TO 51 G 50) ()
$50 \times NOCONV = 0$ G 51	10
51 CONTINUE G 52	20
IF (TESTH .GT. EPSP) GO TO 15 G 53	30
RETURN G 54	+0
60 WRITE (6,110) G 55	50
RETURN G 50	50
(70
G 58	30
1000 FORMAT (10X, +============+/10X, +ITERATION MONITOR +/10X, +===== G 59) 0
<pre>\$====================================</pre>) ()
\$ /1X,T11,3('ITERATION '),T47,'K-EFF' ,T59,'TESTO',T71,'TES G 6	0
\$TH+/10X,3(+ +), + +,1X,2(+ +)//) G 62	20
1003 FORMAT (1X,T10,I9) G 6:	30
1006 FORMAT (1H+,T64,E12.3) G 64	+0
110 FORMAT (1X, HALING ITERATION IS DIVERGING. FURTHER ITERATION HAS G 65	50
\$BEEN SUPRESSED) G 60	
END G 6	50

.

175

•

C*====================================			
C===`=u================================	= H	20	
C	н	30	
C	н	40	
SUBROUTINE NORM (A, N)	н	50	
· (- H	60	
C ROUTINE TO NORMALIZE AN ARRAY TO A MEAN OF 1.00	н	70	
(`~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	- H	80	
C	н	90	
DIMENSION A(N)	Н	100	
C	н	110	
(- H	120	
C	н	130	
SUM = 0.	н	140	
DO 10 L=1,N	н	150	
10 SUM = SUM + $A(L)$	н	160	
AVG = SUM/FLOAT (N)	н	170	
D0 12 L=1,N	н	180	
$12 \qquad A(L) = A(L)/AVG$	н	190	
RETURN	Н	200	
END	н	210	

```
10
20
                   30
С
                                                                40
                                                            I
С
                                                            T
                                                                50
     SUBROUTINE VOIDFR
                                                            Т
                                                                60
С
                   -------
                                                                70
C-
C ROUTINE TO CALCULATE CHANNEL FLOW AND MODERATOR VOID DISTRIBUTION
                                                                80
                                                                90
(`_____
                                                            T
                                                               100
С
     COMMON /FUEL / FTYPE(NO2), BU(NO1), VOID(NO1)
                                                              110
                                                            T
                                                              120
                                                            I
    INTEGER FTYPE
                                  , NDSMNP
                          • NP
                                                            Ι
                                                               130
    COMMUN /GEOM / NODES
                                              • NX
                          • NXM1 • GX
         NZ
                                              , GZ
                                                            I 140
    5.
                                                              150
                                                            T
                  NCOL (N04)
    £ .
    COMMON /FLUX / POWER(NO1), FASTA(NO1), THERMA(NO1), F(NO1)
                                                            I 160
    COMMON /PROB / INTTYP, QTRKOR, NOHAL, NOCROD, NOVOID, IEDIT(6)
                                                            I 170
                  NOXE, FIRST
                                                              180
                                                            T
    $.
    LOGICAL QTRKOR, NOHAL, NOCROD, NOVOID, NOXE, FIRST
                                                            I 190
    COMMON /THERMO/ HFG, XIN, AC1, AC2, AC3, AREA, AVFLUX, AVPWR, PSIA I 200
                B1(4), B2(4), B3(4), CTYPE(N02), FLOW(N02), TFLOW
                                                           I 210
    S.
                                                               220
                 PCTPWR
    £ .
                                                               230
    INTEGER CTYPE
                                                            T
                                                               240
С
                                                               250
C--
                                                               260
С
  FLOW = COOLANT FLOW IN CHANNEL (LBM/HR)
                                                               270
                                                            T
С
 CTYPE = FLOW CHANNEL TYPE ARRAY
PCTPWR = PER CENT OF RATED POWER
                                                               280
С
                                                            I
                                                            I
                                                               290
С
  TFLOW = TOTAL INCORE COOLANT FLOW (LBM/HR)
                                                            I
                                                               300
С
С
                                                               310
  PAV # RELATIVE CHANNEL POWER
С
  B1.B2.B3 = COEFFICIENTS USED TO CALCULATE RELATIVE CHANNEL FLOW
                                                            I 320
С
           AS A FUNCTION OF AVERAGE CHANNEL POWER:
                                                            Ι
                                                               330
         FLOW = B1 + B2*PAV + B3*PAV**2
                                                               340
С
                                                            T
C AVEWR = AVERAGE POWER PER NODE (BTU/HR)
                                                           Ι
                                                               350
СХ
                                                            T
         = COOLANT QUALITY
                                                               360
```

С	XIN	= INLET QUALITY	I	370
Ċ	HFG	= HEAT OF VAPORIZATION (BTU/LBM)	I	380
С	AC1,AC2	= ARMAND CORRELATION COEFFICIENTS	I	390
С	AC3	= VF/VG	I	400
С			I	410
C			I 4	420
С			I 4	430
	AC4 =	1AC3	I	440
CAL	CULATE CI	HANNEL FLOW	I	450
С			I	460
	DO 10	LB=1,NP	I	470
	LT = 1	_B+NDSMNP	I	480
CAL	CULATE A	VERAGE CHANNEL POWER	I	490
	PAV =	0.	I	500
	DO 12	L=LB,LT,NP	I	510
12	PAV =	PAV + POWER(L)	I	520
	PAV =	PAV*PCTPWR*.01/FLOAT(NZ)	I	530
CAI	LCULATE R	ELATIVE CHANNEL FLOW	I	540
	N = C	TYPE (LB)	I	550
10	FLOW	$_B) = (B3(N)*PAV + B2(N))*PAV + B1(N)$	I	560
C 1	NORMALIZE	RELATIVE FLOWS AND CALCULATE ACTUAL FLOW	I	570
	CALL	NORM (FLOW, NP)	I	580
	AVF =	TFLOW/FLOAT (NP)	I	590
	IF ($\mathbf{AVF} = \mathbf{AVF} + 25$	I	600
	DO 16	L=1,NP	I	610
16	FLOW (L) = FLOW(L)*AVF	Ι	620
C			I	630
C=•			I	640
C			I	650
CAI	LCULATE Q	JALITY	I	660
C			I	670
	C = A	VPWR/HFG*•5	I	680
	DO 18	LB=1,NP	I	690
	LT = (LB + NDSMNP	I	700
	DX =	C/FLOW(LB)	Ι	710
	X = X	IN	Ι	720

	DO 18 L=LB.LT.NP	I	730
	x = x + DX * POWFR(1)	I	740
C		· I	750
C	VOID(L) = 0.	I	760
	TF (X . F. 0.) GO TO 18	I	770
CAL CU	ATE VOID USING MODIFIED ARMAND CORRELATION	I	780
0.1200	VOID(I) = X*(X*AC2 + AC1)/(X*AC4 + AC3)	I	790
18	X = X + DX + POWER(L)	I	800
C		I	810
0	RETURN	I	820
	END	I	830

ι

.

,

```
10
C========
                  ______
                                                           20
                                                           30
С
                                                       J
                                                       J
                                                           40
С
    SUBROUTINE IJK (L. I. J. K)
                                                       J
                                                           50
                                                       .1
                                                           60
С
                      -----
                                                           70
^-----
C ROUTINE TO CONVERT AN 'L' POSITION INDEX TO (I,J,K) POSITION INDICES
                                                           80
                                                       J
90
                                                       J
                                                          100
С
                                                       J
    COMMON /GEOM / NODES
                        NP NDSMNP
                                          • NX
                                                       J
                                                          110
                NZ
                        • NXM1 • GX
                                          • GZ
                                                       J 120
   S •
                NCOL (N04)
   S •
                                                       J
                                                          130
                                                          140
С
                                                       J
                             _____
                                                          150
                                                       J
C--
                                                       J
С
                                                          160
    K = (L-1)/NP+1
                                                       J
                                                          170
    LL = L - (K - 1) * NP
                                                          180
                                                       J
    ISUM = 0
                                                       J
                                                          190
                                                          200
    \mathbf{I} = \mathbf{0}
                                                       J
    00 10 J=1,NX
                                                       J
                                                          210
    I = 1+1
                                                          220
                                                       J
    ISUM = ISUM+NCOL(I)
                                                       J
                                                          230
    IF ( ISUM .GE. LL) GO TO 20
                                                       .1
                                                          240
    CONTINUE
                                                          250
10
                                                       J
20
    IF ( I .EQ. 1) GO TO 30
                                                       J
                                                          260
    J = LL - ISUM + NCOL(I)
                                                          270
                                                       J
    RETURN
                                                       J
                                                          280
30
    J = LL
                                                          290
                                                       J
    RETURN
                                                          300
                                                       J
    END
                                                       .1
                                                          310
```

```
10
                  20
                          ĸ
                                                                      30
C
                                                                 ĸ
                                                                      40
С
     SUBROUTINE EDIT (N)
                                                                 ĸ
                                                                      50
                                                                  ĸ
                                                                      60
С
                                                                      70
(°-
C ROUTINE TO EDIT CHANNEL TYPES, COOLANT FLOW DISTRIBUTION, MINIMUM
                                                                  ĸ
                                                                      80
C CRITICAL HEAT FLUX RATIO, EXPOSURE DISTRIBUTION, VOID DISTRIBUTION.
                                                                  ĸ
                                                                      90
C RELATIVE POWER DISTRIBUTION, CONTROL ROD POSITIONS, AND FUEL TYPE
                                                                 κ
                                                                     100
                                                                  ĸ
                                                                     110
C DISTRIBUTION
                                                                     120
                                                                 K
C-----
                                                                     130
С
                                                                 ĸ
     COMMON /HEADR / NTITLE(20), AVEXP, NTSTEP
                                                                 K
                                                                     140
     COMMON /CSINP / BUMASK(N07), VMASK(N08), DFI(N10).
                                                                     150
                                                         DTI(N10) K
                     SAFI(N10), SATI(N10), NSFFI(N10), NSFTI(N10), K
                                                                     160
                                      • IVDPTS • ITSETS
                     SDSI(N10), IEXPTS
                                                             •
                                                                 ĸ
                                                                     170
                     KSFTI(N10), KSFFI(N10),
                                                                     180
    $
                                                                 ĸ
                             • DIMEX
                     DIMIS

    DIMVD

                                                   • NOTCH(N02) •
                                                                 K
                                                                     190
                     TABSET(NO1), WORTH(N10)
                                                                     200
    £
                                                                 ĸ
                                                                     210
     INTEGER DIMTS, DIMEX, DIMVD, TABSET
                                                                 ĸ
                                                                     220
     REAL
            NSFFI.NSFTI.KSFFI.KSFTI
                                                                 ĸ
                                                                     230
     COMMON /FUEL / FTYPE(NO2), BU(NO1), VOID(NO1)
                                                                 ĸ
     INTEGER FTYPE
                                                                 ĸ
                                                                     240
     COMMON /NODAL / DF
                         (N01), DT (N01), KSFF
                                                                     250
                                                (N01)
                                                                 ĸ
                   KSFT (NO1), TFR (NO1), NSF1G (NO1)
                                                                 ĸ
                                                                     260
    S.
                   C2
                                                                     270
                         (N01) • C4
                                     (N01), C6 (N03)
                                                                 ĸ
    $.
                   C7
                         (N01)
                                                                 ĸ
                                                                     280
    S •
     REAL KSFF. KSFT. NSF1G
                                                                     290
                                                                 ĸ
     COMMUN /GEOM / NODES
                            • NP
                                       • NDSMNP
                                                                     300
                                                                 ĸ
                                                  • NX
                   NZ
                             • NXM1
                                       • GX
                                                  • GZ
                                                                 ĸ
                                                                     310
    5.
                   NCOL (N04)
                                                                 ĸ
                                                                     320
    S •
                 / AF1. AF3. AF5. AF6. AFQ(N04).
                                                                     330
     COMMON /BC
                                                                 ĸ
                   BF1, BF3, BF5, BF6, BFQ(N04),
                                                                     340
                                                                 ĸ
    $
                   AT1. AT3. AT5. AT6. ATQ(N04).
    £
                                                                 ĸ
                                                                     350
    £
                   BT1, BT3, BT5, BT6, BTQ(N04)
                                                                 K
                                                                     360
```

òo

```
EQUIVALENCE (AFQ(1), AF2), (AFQ(2), AF4),
                                                                  ĸ
                                                                      370
    $
                (BFQ(1), BF2), (BFQ(2), BF4),
                                                                  ĸ
                                                                      380
    $
                (ATQ(1), AT2), (ATQ(2), AT4),
                                                                  κ
                                                                      390
                (BTQ(1), BT2), (BTQ(2), BT4)
                                                                   κ
                                                                      400
                                                              SOR K
     COMMON /CONVRG/ MAXI, MAXO, MAXP, EPSO, EPSP, ALPHA,
                                                                      410
     LOGICAL SOR
                                                                  κ
                                                                      420
     COMMON /FLUX / POWER(NO1) + FASTA(NO1) + THERMA(NO1) + F(NO1)
                                                                   K
                                                                     430
     COMMON /PROB / INTTYP. QTRKOR. NOHAL. NOCROD. NOVOID. IEDIT(6)
                                                                  K
                                                                      440
                     NOXE. FIRST
                                                                  K
                                                                      450
    S •
     LOGICAL QTRKOR, NOHAL, NOCROD, NOVOID, NOXE, FIRST
                                                                  K
                                                                      460
     COMMON /WEIGHT/ R, CF, CT, RCF, RCT, B1N, B2N
                                                                   κ
                                                                      470
     COMMON /THERMO/ HFG. XIN. AC1. AC2. AC3. AREA. AVFLUX. AVPWR. PSIA K
                                                                      480
                    B1(4), B2(4), B3(4), CTYPE(N02), FLOW(N02), TFLOW
    S •
                                                                  ĸ
                                                                      490
                    PCTPWR
                                                                   K
                                                                      500
    5.
                                                                      510
     INTEGER CTYPE
                                                                  K
                                                                  Κ
                                                                      520
     DIMENSION TEMP(N04)
                        ١
     LOGICAL OPT
                                                                  κ
                                                                      530
     REAL MCHER
                                                                      540
                                                                  K
С
                                                                  ĸ
                                                                      550
                  560
                                                                  κ
C-
C
                                                                  K
                                                                      570
                                                                      580
     L2 = 0
                                                                  ĸ
     GO TU (2,6,10,14,18,22,32,36,40,60), N
                                                                  Κ
                                                                      590
С
                                                                  K
                                                                      600
610
С
                                                                  K
                                                                      620
CHANNEL TYPE EDIT
                                                                  Κ
                                                                      630
C
                                                                  Κ
                                                                      640
40
     CALL HEADER (1)
                                                                  Κ
                                                                      650
     WRITE (6.142) (J.J=1.NX)
                                                                  κ
                                                                      660
     WRITE (6.134)
                                                                  κ
                                                                      670
     D0 42 I = 1 \cdot NX
                                                                  κ
                                                                      680
     L1 = L2+1
                                                                      690
                                                                  K
     L2 = L2+NCOL(I)
                                                                  κ
                                                                      700
     WRITE (6,132) I. (CTYPE(L).L=L1.L2)
42
                                                                  κ
                                                                      710
                                                                      720
     RETURN
                                                                  K
```

C .	Ś K	730
C=====================================	======= K	740
C	ĸ	750
COOLANT FLOW EDIT	ĸ	760
2 CALL HEADER (1)	ĸ	770
WRITE (6,100) TFLOW, (J,J=1,NX)	ĸ	780
WRITE (6,134)	ĸ	790
CALL NORM (FLOW, NP)	ĸ	800
DO 4 I=1, NX	к	810
L1 = L2+1	к	820
L2 = L2+NCOL(I)	ĸ	830
4 WRITE (6,102) I, (FLOW(L), L=L1, L2)	ĸ	840
RETURN	ĸ	850
C	ĸ	860
C=====================================	======= K	870
С	ĸ	880
C MCHFR EDIT	ĸ	890
C	ĸ	900
C AREA = COOLANT FLOW AREA PER CHANNEL (FT**2)	K	910
C G = COOLANT FLOW IN CHANNEL (LBM/HR/FT**2)	K	920
C AVPWR = AVERAGE POWER IN NODE (BTU/HR)	ĸ	930
C X = COOLANT QUALITY	K	< 940
C XIN = INLET QUALITY	ĸ	950
C HFG = HEAT OF VAPORIZATION (BTU/LBM)	ĸ	960
C AVFLUX = AVERAGE HEAT FLUX AT CLAD SURFACE (MULTIPLIED E	BY A PEAKING K	970
C FACTOR TO ACCOUNT FOR NON-UNIFORM HEATING OF NO	DDE) K	980
C (BTU/HR/FT**2)	K	990
C QCRIT = CRITICAL HEAT FLUX DETERMINED FROM JANSSEN-LEV	Y CORRELATION K	1000
C (BTU/HR/FT**2)	ĸ	1010
C PRCOR = PRESSURE CORRECTION TERM = 440*(1000-PSIA)	ĸ	1020
C MCHFR = MINIMUM CRITICAL HEAT FLUX RATIO	ĸ	1030
C	K	
	K	1050
	K	1060
C	K	
6 IF (IEDIT(5) .EQ. 0) RETURN	ĸ	1080

	IF (PCTPWR .EQ. 0.) RETURN	к	1090
	$OPT = IEDIT(5) \cdot GT \cdot 0$	ĸ	1100
	CALL HEADER (1)	ĸ	1110
	IF (OPT) WRITE (6,104) (J,J=1,NX)	ĸ	1120
	IF (OPT) WRITE (6,134)	ĸ	1130
	C = AVPWR/HFG*.5	ĸ	1140
	PRCOR = 4.4E5-440.*PSIA	ĸ	1150
	MCHFR = 1.E10	ĸ	1160
CALCI	HATE CHANNEL FLOW RATES IN LBM/HR	ĸ	1170
	CALL NORM (FLOW, NP)	ĸ	1180
	AVF = TFLOW/FLOAT (NP)	ĸ	1190
	IF ($QTRKOR$) AVF = AVF*.25	K	1200
	$D0 6019 = 1 \cdot NP$	K	1210
6019	FLOW(L) = FLOW(L) * AVF	ĸ	1220
C		ĸ	1230
•	DO 6002 I=].NX	ĸ	1240
	J = 0	ĸ	1250
	L1 = 12+1	ĸ	1260
	$L_2 = L_2 + N_{COL}(T)$	ĸ	1270
	D0 6003 LB=L1.L2	ĸ	1280
	I = I + I	ĸ	1290
	LT = LB + NDSMNP	ĸ	1300
	G = FLOW(LB) / ARFA	ĸ	1310
	DX = C/FLOW(LB)	ĸ	1320
	X = XTN	ĸ	1330
	$TEMP(J) = 1 \cdot F 10$	ĸ	1340
	DO 6003 L=LB.LT.NP	ĸ	1350
	RELPWR = POWER(L)	ĸ	1360
	X = X + DX * RELPWR	ĸ	1370
	XCHK = .197108E - 6 * G	ĸ	1380
	IF (X-XCHK) 6020,6020,6040	ĸ	1390
6020	QCRIT = .705E6+.237*G+PRCOR	ĸ	1400
_	GO TU 6100	ĸ	1410
6040	XCHK = .254026E-6*G	ĸ	1420
	IF (X-XCHK) 6060+6060+6080	ĸ	1430
6060	QCRI(= 1.634E627*G471E7*X+PRCUR	ĸ	1440

6080 OCRIT = .605E6164*G653E6*X*PRCOR K 1460 6100 CHFR = GCRIT/AVFLUX/RELPWR K 1470 IF (CHFR * GE. TEMP(J)) GO TO 6003 K 1480 TEMP(J) = CHFR K 1490 IF (CHFR * GE. TEMP(J)) GO TO 6003 K 1510 MAX = L K 1520 6003 x = x + DX* RELPWR K 1530 IF (OPT) WRITE (6,102) I, (TEMP(JJ), JJ=1,J) K 1540 6002 CONTINUE K 1550 C K 1550 K C K 1550 K 1550 C K K 1570 K 1550 C K K 1570 K 1550 C C K 1560 K 1560 C C K 1560 K 1560 C C K 1670 K 1660 C CALL JK (LMAX, I, J, J, K) K 1570 K 1660 C CALL HEADER (2) K 1660 <th></th> <th>GO TU 6100</th> <th>κ</th> <th>1450</th>		GO TU 6100	κ	1450
6100 CHFR = QCRIT/AVFLUX/RELPWR K 1470 IF (CHFR *GE. TEMP(J)) GO TO 6003 K 1480 TEMP(J) = CHFR K 1490 IF (CHFR *GE. MCHFR) GO TO 6003 K 1500 MCHFR = CHFR K 1510 LMAX = L K 1520 6003 X = X + DX* RELPWR K 1520 G002 CONTINUE K 1550 C CALL IJK (LMAX, I, J, K) K 1550 C CALL IJK (LMAX, I, J, K) K 1550 C CALL IJK (LMAX, I, J, K) K 1550 C CALL IJK (LMAX, I, J, K) K 1550 C CALL IJK (LMAX, I, J, K) K 1570 WRITE (6,107) MCHFR, I, J, K K 1580 C CALL IJK (LMAX, I, J, K) K 1620 C CALL IJK (LMAX, I, J, K) K 1570 WRITE (6,107) MCHFR, I, J, K) K 1620 C CALL IS (G, IO) GO TO 12 K 1620 C CALL HEADER (2) K 1650 K	6080	QCRIT = .605E6164 + G653E6 + X + PRCOR	κ	1460
IF (CHFR .GE. TEMP(J)) GO TO 6003 K 1480 TEMP(J) = CHFR K 1490 IF (CHFR .GE. MCHFR) GO TO 6003 K 1500 MCHFR = CHFR K 1510 LMAX = L K 1530 6003 x = X + DX* RELPWR K 1520 IF (OPT) WRITE (6,102) I, (TEMP(JJ), JJ=1,J) K 1550 C K 1610 C K 1620 C K 1640 C K 1640 C K 1640 D I I K 1 NZ K 1640	6100	CHFR = QCRIT/AVFLUX/RELPWR	κ	1470
TEMP(J) = CHFR K 1490 IF (CHFR *GE. MCHFR) GO TO 6003 K 1510 MCHFR = CHFR K 1520 LMAX = L K 1520 6003 X = X + DX* RELPWR K 1520 IF (OPT) WRITE (6*102) I* (TEMP(JJ)*, JJ=1*J) K 1540 6002 CONTINUE K 1550 C K 1550 C K 1550 C K 1550 C K 1570 WRITE (6*107) MCHFR*I*J*K K 1550 C K 1550 C K 1600 C K 1610 C K 1610 C K 1620 C K 1660		IF (CHFR .GE. TEMP(J)) GO TO 6003	κ	1480
<pre>IF (CHFR .6E. MCHFR) GO TO 6003 MCHFR = CHFR K 1510 MCHFR = CHFR LMAX = L K 1520 6003 X = X + DX* RELPWR X 1530 IF (OPT) WRITE (6.102) I, (TEMP(JJ), JJ=1,J) K 1550 C CALL IJK (LMAX, I, J, K) K 1550 C CALL IJK (LMAX, I, J, K) K 1570 RETUWN K 1590 C C==================================</pre>		TFMP(J) = CHFR	κ	1490
MCHFR = CHFR K 1510 LMAX = L K 1520 6003 X = X + DX* RELPWR K 1530 IF (OPT) WRITE (6,102) I, (TEMP(JJ), JJ=1,J) K 1540 6002 CONTINUE K 1550 C K 1560 CALL IJK (LMAX, I, J, K) K 1560 WRITE (6,107) MCHFR, I, J, K K 1570 WRITE (6,107) MCHFR, I, J, K K 1580 C K 1600 K C K 1600 K 1620 C K 1610 K 1620 C K 1610 K 1620 C K 1610 K 1620 C K 1640 K 1620 C K 1640 K 1640 C K 1640 K 1640 C K 1660 K 1660 WRITE (6,108) K, (J, J=1, NX) K 1670 K WRITE (6,104) I, (BU(L)+L=L1+L2) K K 1710 </td <td></td> <td>TE (CHER .GE. MCHER) GO TO 6003</td> <td>κ</td> <td>1500</td>		TE (CHER .GE. MCHER) GO TO 6003	κ	1500
LMAX = L K 1520 6003 X = X + DX* RELPWR K 1530 IF (OPT) WRITE (6,102) I, (TEMP(JJ), JJ=1,J) K 1540 6002 CONTINUE K 1550 C K1540 K CALL IJK (LMAX, I, J, K) K 1550 C K1540 K C K1540 K C K1560 K C K1550 K C K1570 K C K1570 K C K 1550 C K 1550 C K 1550 C K 1550 C K 1610 C K 1620 C K 1620 C K 1620 C K 1620 C K 1660 C K 1640 D0 I K=1,NZ K WRITE (6,104) K, (J+J=1+NX) K 1660 U1 = L2+1 K 171		MCHER = CHER	κ	1510
		$I M \Delta X = I$	κ	1520
IF (OPT) WRITE (6,102) I, (TEMP(JJ), JJ=1,J) K 1540 6002 CONTINUE K 1550 C K 1560 CALL IJK (LMAX, I, J, K) K 1570 WRITE (6,107) MCHFR,I,J,K K 1580 RETURN K 1580 C K 1600 C K 1610 C K 1610 C K 1610 C K 1620 C K 1640 C K 1640 C K 1640 C K 1640 C K 1650 CALL HEADER (2) K 1640 WRITE (6,134) K 1660 U1 = L2+1 K 1710 L2 = L2+NCOL(I) K 1720 IF (IEDIT(2) *EQ* 1) RETURN K 1720 IF (IEDIT(2) *EQ* 1) RETURN K 1720 IF (IEDIT(2) *EQ* 1) RETURN K 1750 WRITE (6,109) (J*J=1*NX) K 1750 WRITE (6,13	6003	X = X + DX + RELPWR	κ	1530
6002 CONTINUE K 1550 C K 1560 CALL IJK (LMAX, I, J, K) K 1570 WRITE (6,107) MCHFR, I, J, K K 1580 RETURN K 1580 C K 1560 C K 1580 C K 1580 C K 1580 C K 1600 C K 1600 C K 1620 C K 1640 D0 IF (IEDIT(2) .EQ. 0) GO TO 12 K 1640 K 1660 WRITE K 170 K I = L2+1 K 1670 L = L2+1 <t< td=""><td>0000</td><td>TE (OPT) WRITE (6.102) I. (TEMP(JJ), JJ=1.J)</td><td>κ</td><td>1540</td></t<>	0000	TE (OPT) WRITE (6.102) I. (TEMP(JJ), JJ=1.J)	κ	1540
C K 1560 C CALL IJK (LMAX, I, J, K) K 1570 WRITE (6,107) MCHFR, I, J, K K 1580 RETURN K 1580 C K 1590 C K 1600 C K 1600 C K 1620 CALL HEADER (2) K 1640 WRITE (6,108) K, (J, J=1,NX) K 1660 L = L2+NCOL(I) K 1710 II WRITE (6,1034) K 1730 IZ L2 = 0 K K WRITE (6,1034	6002	CONTINUE	κ	1550
C ALL IJK (LMAX, I, J, K) K 1570 WRITE (6,107) MCHFR,I,J,K K 1580 RETURN K 1590 C K 1600 C K 1600 C K 1600 C K 1620 C EXPOSURE EDIT K 1610 C C EXPOSURE EDIT K 1630 10 IF (IEDIT(2) •EQ. 0) GO TO 12 K 1660 DO 11 K=1,NZ K 1650 C ALL HEADER (2) K 1660 WRITE (6,108) K,(J,J=1,NX) K 1670 WRITE (6,110) K,(J,J=1,NX) K 1670 L2 = L2+NCOL(I) K 1700 L2 = L2+NCOL(I) K 1700 11 WRITE (6,110) I, (BU(L),L=L1,L2) K 1720 IF (IEDIT(2) •EQ. 1) RETURN K 1730 12 L2 = 0 K 1740 CALL HEADER (2) K 1740 CALL HEADER (2) K 1740 CALL HEADER (2) K 1740 IF (6,109) (J,J=1,NX) K 1760 CALL HEADER (2) K 1770 D 13 I=1,NX K 1770 D 13 I=1,NX K 1770 L2 = L2+NCOL(I) K 1770 CALL HEADER (2) K 1770 CALL HEADER	C		κ	1560
WRITE (6.107) MCHFR, I, J, K K 1580 RETURN K 1590 C K 1600 C====================================	C	CALL TUK (LMAX+ T+ J+ K)	κ	1570
RETURN K 1590 C K 1600 C K 1600 C K 1610 C K 1620 C K 1620 C K 1630 C EXPOSURE EDIT K 10 IF (IEDIT(2) •EQ• 0) GO TO 12 K DO 11 K=1•NZ K 1650 CALL HEADER (2) K 1660 WRITE (6•108) K•(J•J=1•NX) K 1660 WRITE (6•134) K 1660 DO 11 I=1•NX K 1690 L1 = L2+1 K 1700 L2 = L2+NCOL(I) K 1710 IF (IEDIT(2) •EQ• 1) RETURN K 1730 12 L2 = 0 K 1740 CALL HEADER (2) K 1750 WRITE (6•109) (J•J=1•NX) K 1760 WRITE (6•109) (J•J=1•NX) K 1760 WRITE (6•134) K 1760 U1 = L2+1 K 1780 L1 = L2+1 K 1790		WRITE (6.107) MCHER.I.J.K	κ	1580
C C C C C C C C C C C C C C		RETURN	κ	1590
C========== K 1610 C K 1620 C K 1620 C EXPOSURE EDIT K 10 IF (IEDIT(2) *EQ* 0) GO TO 12 K DO 11 K=1*NZ K 1660 CALL HEADER (2) K 1660 WRITE (6*108) K* (J*J=1*NX) K 1670 WRITE (6*134) K 1660 DO 11 I=1*NX K 1690 L1 = L2*1 K 1700 L2 = L2*NCOL(I) K 1720 I1 WRITE (6*110) I* (BU(L)*L=L1*L2) K 1720 IF (IEDIT(2) *EQ* 1) RETURN K 1730 12 L2 = 0 K 1740 CALL HEADER (2) K 1750 WRITE (6*109) (J*J=1*NX) K 1760 WRITE (6*134) K 1770 DO 13 I=1*NX K 1780 L1 = L2*1 K 1790 L2 = L2*NCOL(I) K 1800	C		κ	1600
C K 1620 C EXPOSURE EDIT K 1630 10 IF (IEDIT(2) *EQ* 0) GO TO 12 K DO 11 K=1*NZ K 1650 CALL HEADER (2) K 1660 WRITE (6*108) K*(J*J=1*NX) K 1660 WRITE (6*134) K 1680 DO 11 I=1*NX K 1690 L1 = L2*1 K 1700 L2 = L2*NCOL(I) K 1710 11 WRITE (6*110) I* (BU(L)*L=L1*L2) K 1720 IF (IEDIT(2) *EQ* 1) RETURN K 1730 12 L2 = 0 K 1740 WRITE (6*109) (J*J=1*NX) K 1760 WRITE (6*134) K 1770 D0 13 I=1*NX K 1770 WRITE (6*134) K 1770 D0 13 I=1*NX K 1780 L1 = L2*1 K 1790 L2 = L2*NCOL(I) K 1800	C====		κ	1610
C EXPOSURE EDIT K 1630 10 IF (IEDIT(2) •EQ. 0) GO TO 12 K 1640 DO 11 K=1+NZ K 1650 CALL HEADER (2) K 1660 WRITE (6+108) K, (J+J=1+NX) K 1670 WRITE (6+134) K 1680 DO 11 I=1+NX K 1680 L1 = L2+1 K 1700 L2 = L2+NCOL(I) K 1710 11 WRITE (6+110) I, (BU(L)+L=L1+L2) K 1720 IF (IEDIT(2) •EQ. 1) RETURN K 1730 12 L2 = 0 K 1740 CALL HEADER (2) K 1750 WRITE (6+109) (J+J=1+NX) K 1760 WRITE (6+134) K 1770 DO 13 I=1+NX K 1780 L1 = L2+1 K 1780 L2 = 2.4NCOL(I) K 1780	C		κ	1620
10 IF (IEDIT(2) •EQ• 0) GO TO 12 K 1640 D0 11 K=1•NZ K 1650 CALL HEADER (2) K 1660 WRITE (6•108) K•(J•J=1•NX) K 1670 WRITE (6•134) K 1680 D0 11 I=1•NX K 1690 L1 = L2+1 K 1700 L2 = L2+NCOL(I) K 1710 11 WRITE (6•110) I• (BU(L)•L=L1•L2) K 1720 IF (IEDIT(2) •EQ• 1) RETURN K 1730 12 L2 = 0 K 1740 CALL HEADER (2) K 1760 WRITE (6•109) (J•J=1•NX) K 1760 WRITE (6•134) K 1770 D0 13 I=1•NX K 1780 L1 = L2+1 K 1790 L2 = L2+NCOL(I) K 1780	C EXP	OSURE EDIT	κ	1630
D0 11 K=1+NZ K 1650 CALL HEADER (2) K 1660 WRITE (6+108) K, (J+J=1+NX) K 1670 WRITE (6+134) K 1680 D0 11 I=1+NX K 1690 L1 = L2+1 K 1700 L2 = L2+NCOL(I) K 1710 11 WRITE (6+110) I, (BU(L)+L=L1+L2) K 1720 IF (IEDIT(2) *EQ*1) RETURN K 1730 12 L2 = 0 K 1740 CALL HEADER (2) K 1750 WRITE (6+134) K 1770 D0 13 I=1+NX K 1780 L1 = L2+1 K 1790 L2 = L2+NCOL(I) K 1770	10	IF (IEDIT(2) .EQ. 0) GO TO 12	κ	1640
CALL HEADER (2) K 1660 WRITE (6,108) K, (J,J=1,NX) K 1670 WRITE (6,134) K 1680 DO 11 I=1,NX K 1690 L1 = L2+1 K 1700 L2 = L2+NCOL(I) K 1710 11 WRITE (6,110) I, (BU(L),L=L1,L2) K 1720 IF (IEDIT(2) .EQ. 1) RETURN K 1730 12 L2 = 0 K 1740 CALL HEADER (2) K 1750 WRITE (6,109) (J,J=1,NX) K 1760 WRITE (6,134) K 1770 DO 13 I=1,NX K 1780 L1 = L2+1 K 1790 L2 = L2+NCOL(I) K 1780	•••	$DO 11 K=1 \cdot NZ$	κ	1650
WRITE (6,108) K, (J, J=1,NX) K 1670 WRITE (6,134) K 1680 D0 11 I=1,NX K 1690 L1 = L2+1 K 1700 L2 = L2+NCOL(I) K 1710 11 WRITE (6,110) I, (BU(L),L=L1,L2) K 1720 IF (IEDIT(2) .EQ. 1) RETURN K 1730 12 L2 = 0 K 1740 CALL HEADER (2) K 1750 WRITE (6,109) (J,J=1,NX) K 1760 WRITE (6,134) K 1770 D0 13 I=1,NX K 1780 L1 = L2+1 K 1790 L2 = L2+NCOL(I) K 1790		CALL HEADER (2)	κ	1660
WRITE (6,134) K 1680 D0 11 I=1,NX K 1690 L1 = L2+1 K 1700 L2 = L2+NCOL(I) K 1710 11 WRITE (6,110) I, (BU(L),L=L1,L2) K 1720 IF (IEDIT(2), EQ, 1) RETURN K 1730 12 L2 = 0 K 1740 CALL HEADER (2) K 1750 WRITE (6,109) (J,J=1,NX) K 1760 WRITE (6,134) K 1770 D0 13 I=1,NX K 1780 L1 = L2+1 K 1790 L2 = L2+NCOL(I) K 1800		WRITE $(6,108)$ K. $(J,J=1,NX)$	κ	1670
D0 11 I=1,NX K 1690 L1 = L2+1 K 1700 L2 = L2+NCOL(I) K 1710 11 WRITE (6,110) I, (BU(L),L=L1,L2) K 1720 IF (IEDIT(2), EQ, 1) RETURN K 1730 12 L2 = 0 K 1740 CALL HEADER (2) K 1750 WRITE (6,109) (J,J=1,NX) K 1760 WRITE (6,134) K 1770 D0 13 I=1,NX K 1780 L1 = L2+1 K 1790 L2 = L2+NCOL(I) K 1800		WRITE (6,134)	κ	1680
L1 = L2+1 L2 = L2+NCOL(I) 11 WRITE (6,110) I, (BU(L),L=L1,L2) IF (IEDIT(2),EQ,1) RETURN 12 L2 = 0 CALL HEADER (2) WRITE (6,109) (J,J=1,NX) WRITE (6,134) DO 13 I=1,NX L1 = L2+1 L2 = L2+NCOL(I) K 1700 K 1760 K 1770 K 1780 K 1790 K 1790 K 1790 K 1790		$DO 11 I=1 \cdot NX$	κ	1690
L2 = L2+NCOL(I) 11 WRITE (6,110) I, (BU(L),L=L1,L2) IF (IEDIT(2),EQ,1) RETURN 12 L2 = 0 CALL HEADER (2) WRITE (6,109) (J,J=1,NX) WRITE (6,134) DO 13 I=1,NX L1 = L2+1 L2 = L2+NCOL(I) K 1710 K 1720 K 1730 K 1740 K 1750 K 1760 K 1770 K 1780 K 1790 L2 = L2+NCOL(I) K 1800		L1 = L2 + 1	κ	1700
11 WRITE (6,110) I, (BU(L),L=L1,L2) K 1720 IF (IEDIT(2) .EQ. 1) RETURN K 1730 12 L2 = 0 K 1740 CALL HEADER (2) K 1750 WRITE (6,109) (J,J=1,NX) K 1760 WRITE (6,134) K 1770 D0 13 I=1,NX K 1780 L1 = L2+1 K 1790 K 1800		$L_2 = L_2 + NCOL(I)$	κ	1710
IF (IEDIT(2) • EQ• 1) RETURN K 1730 12 L2 = 0 K 1740 CALL HEADER (2) K 1750 WRITE (6,109) (J,J=1,NX) K 1760 WRITE (6,134) K 1770 D0 13 I=1,NX K 1780 L1 = L2+1 K 1790 L2 = L2+NCOL(I) K 1800	11	WRITE (6.110) I. (BU(L).L=L1.L2)	κ	1720
12 L2 = 0 K 1740 CALL HEADER (2) K 1750 WRITE (6,109) (J,J=1,NX) K 1760 WRITE (6,134) K 1770 D0 13 I=1,NX K 1780 L1 = L2+1 K 1790 K 1800	• •	IF (IEDIT(2) .EQ. 1) RETURN	κ	1730
CALL HEADER (2) K 1750 WRITE (6,109) (J,J=1,NX) K 1760 WRITE (6,134) K 1770 D0 13 I=1,NX K 1780 L1 = L2+1 K 1790 L2 = L2+NCOL(I) K 1800	12	1.2 = 0	κ	1740
WRITE (6,109) (J,J=1,NX) K 1760 WRITE (6,134) K 1770 D0 13 I=1,NX K 1780 L1 = L2+1 K 1790 L2 = L2+NCOL(I) K 1800		CALL HEADER (2)	κ	1750
WRITE (6,134) K 1770 D0 13 I=1,NX K 1780 L1 = L2+1 K 1790 L2 = L2+NCOL(I) K 1800		WRITE (6.109) (J.J=1.NX)	κ	1760
DO 13 I=1+NX K 1780 L1 = L2+1 K 1790 L2 = L2+NCOL(I) K 1800		WRITE (6,134)	к	1770
L1 = L2+1 K 1790 L2 = L2+NCOL(I) K 1800		DO 13 I=1.0NX	ĸ	1780
L2 = L2 + NCOL(I) K 1800		L1 = L2+1	κ	1790
		L2 = L2+NCOL(I)	κ	1800

•

	$\mathbf{J} = \mathbf{U}$	ĸ	1810
	D0 1300 LB=L1,L2	κ	1820
	J = J+1	κ	1830
	LT = LB+NDSMNP	κ	1840
	SUM = 0.	ĸ	1850
	DO 1302 L=LB,LT,NP	κ	1860
1302	SUM = SUM+BU(L)	κ	1870
1300	TEMP(J) = SUM/FLOAT(NZ)	κ	1880
13	WRITE (6,110) I,(TEMP(N),N=1,J)	κ	1890
	RETURN	κ	1900
С		Κ	1910
C====:	*======================================	κ	1920
С		Κ	1930
C VOI	DEDIT	Κ	1940
14	Kl = l	ĸ	1950
	IF (IEDIT(4)) 1401,1400,1402	Κ	1960
1400	RETURN	κ	1970
1401	K1 = NZ	κ	1980
	L2 = NDSMNP	ĸ	1990
1402	DO 16 K=K1.NZ	Κ	2000
	CALL HEADER (1)	Κ	2010
	WRITE (6,112) K, (J, J=1, NX)	κ	2020
	WRITE (6,134)	κ	2030
	DO 16 I=1,NX	Κ	2040
	L1 = L2+1	Κ	2050
	L2 = L2 + NCOL(I)	Κ	2060
16	WRITE (6,102) I,(VOID(L),L=L1,L2)	κ	2070
	RETURN	Κ	2080
С		Κ	2090
C====:		κ	2100
С		κ	2110
C REL	ATIVE POWER EDIT	κ	2120
18	IF (IEDIT(1) .EQ. 0) GO TO 20	κ	2130
	DO 19 K=1,NZ	κ	2140
	CALL HEADER (2)	ĸ	2150
	WRITE (6,116) K, $(J,J=1,NX)$	κ	2160

		WRITE (6,134)	ĸ	2170
		DO 19 I=1.NX	κ	2180
		L1 = L2+1	κ	2190
		L2 = L2 + NCOL(I)	κ	2200
	19	WRITE (6.118) I. (POWER(L). L=L1.L2)	κ	2210
	• -	$IF (IEDIT(1) \cdot EQ \cdot 1) GO TO 62$	κ	2220
	20	$L^2 = 0$	κ	2230
		CALL HEADER (2)	κ	2240
		WRITE (6,119) (J,J=1,NX)	κ	2250
		WRITE (6,134)	κ	2260
		$DO 21 I = 1 \cdot NX$	κ	2270
		L1 = L2+1	κ	2280
		$L_2 = L_2 + NCOL(I)$	κ	2290
		J = 0	κ	2300
		D0 2100 LB=L1,L2	κ	2310
		J = J+1	κ	2320
		LT = LB+NDSMNP	ĸ	2330
		SUM = 0.	κ	2340
		00 2102 L=LB,LT,NP	κ	2350
	2102	SUM = SUM+POWER(L)	κ	2360
	2100	TEMP(J) = SUM/FLOAT(NZ)	κ	2370
	21	WRITE (6,118) I,(TEMP(N),N=1,J)	ĸ	2380
	С		κ	2390
	. C		κ	2400
,	С		κ	2410
,	C EDI	T AVERAGE AXIAL POWER AND VOID	ĸ	2420
	62	OPT = .NOT. NOVOID	ĸ	2430
		CALL HEADER (2)	κ	2440
		WRITE (6,148)	κ	2450
		IF (OPT) WRITE (6,150)	κ	2460
		WRITE (6,152)	κ	2470
		IF (OPT) WRITE (6+154)	κ	2480
		L = 0	κ	2490
		DO 50 K=1.NZ	κ	2500
		V = 0.	κ	2510
		P = 0.	κ	2520

	DO 56 LL=1,NP	κ	2530
	L = L + 1	Κ	2540
	IF (NOVOID) GO TO 56	κ	2550
	V = V + VOID(L)	Κ	2560
5 6	P = P + POWER(L)	κ	2570
	P = P/FLOAT (NP)	κ	2580
	IF (OPT) V = V/FLOAT (NP)	κ	2590
	WRITE (6,156) K,P	Κ	2600
	IF (OPT) WRITE (6,158) V	κ	2610
50	CONTINUE	κ	2620
С		Κ	2630
C		κ	2640
С		Κ	2650
C EDIT	F PEAK NODE AND PEAK ASSEMBLY	Κ	2660
	PEAKN = 0.	ĸ	2670
	PEAKA = 0.	ĸ	2680
	DO 54 LB=1,NP	ĸ	2690
	LT = LB + NDSMNP	ĸ	2700
	PAV = 0.	Κ	2710
	DO 52 L=LB,LT,NP	K	2720
	IF (POWER(L) .LE. PEAKN) GO TO 52	K	2730
	PEAKN = POWER(L)	K	2740
	LPN = L	K	2750
52	PAV = PAV + POWER(L)	K	2760
	IF (PAV .LE. PEAKA) GO TO 54	K	2770
	PEAKA = PAV	ĸ	2780
	LPA = LB	K	2790
54	CONTINUE	K	2800
	PEAKA = PEAKA/FLOAT (NZ)	K	2810
	CALL IJK (LPN, I, J, K)	K	2820
	WRITE (6,160) PEAKN, I, J, K	K	2830
	CALL IJK (LPA, I, J, K)	K	2840
	WRITE (6,162) PEAKA, I, J	K	2850
	RETURN	K	2860
С		K	2870
C=====		ĸ	2880

С		ĸ	2890
CONTRO	DL ROD POSITION EDIT	ĸ	2900
С		ĸ	2910
22	CALL HEADER (1)	Κ	2920
	WRITE (6,120) (J,J=1,NX)	Κ	2930
	WRITE (6,134)	Κ	2940
	DO 24 I=1,NX	Κ	2950
	L1 = L2 + 1	ĸ	2960
	L2 = L2 + NCOL(I)	Κ	2970
24	WRITE (6,132) I, (NOTCH(L), L=L1, L2)	κ	2980
-	RETURN	κ	2990
С		κ	3000
C====:		κ	3010
č		κ	3020
C FUEL	L TYPE EDIT	κ	3030
		κ	3040
32	CALL HEADER (1)	κ	3050
	WRITE (6,130) (J,J=1,NX)	κ	3060
	WRITE (6.134)	κ	3070
	$DO_{34} I = 1 \cdot NX$	κ	3080
	1 = 2+	κ	3090
	12 = 12 + NCOL(T)	κ	3100
34	WRITE (6.132) I. (FTYPE(L), L=L1, L2)	κ	3110
0.	RETURN	κ	3120
C		κ	3130
C====		κ	3140
ć		К	3150
C FXP	OSURE ARRAY PUNCH	к	3160
36	WRITE (7.136) NTITLE. AVEXP	κ	3170
30	$DO_{38} I=1 \cdot NX$	κ	3180
	11 = 12 + 1	κ	3190
	12 = 12 + NCOL(1)	к	3200
		к	3210
	D0 38 LB=L1+L2	к	3220
	IT = IB + NDSMNP	к	3230
	J = J + 1	ĸ	3240
	-		

	WRITE (7.138) I.J	ĸ	3250
38	WRITE (7,140) (BU(L),L=LB,LT,NP)	κ	3260
	RETURN	Κ	3270
С		κ	3280
C===		κ	3290
č		κ	3300
Č PO	WER ARRAY PUNCH	κ	3310
60	WRITE (7.144) NTITLE, NTSTEP, AVEXP	κ	3320
	WRITE (7.146) POWER	κ	3330
	RFTURN	κ	3340
С		κ	3350
Č		κ	3360
ĉ		κ	3370
142	FORMAT (1X, **** CHANNEL TYPE EDIT ****///5X, *CTYPE (I, J) *//7X,	κ	3380
-	\$+J=+,I4,15I6)	κ	3390
10 0	FORMAT (1X, **** RELATIVE FLOW EDIT *** TOTAL FLOW = **	Κ	3400
	\$ E10.3, LBM/HR1//5X, FLOW (I, J) //9X, J=1, I3, 15I8)	κ	341 0
102	FORMAT (//I5,1X,14F8.2)	Κ	3420
107	FORMAT (//1x, MINIMUM CRITICAL HEAT FLUX RATIO = ",F10.3,2X, AT LO	κ	3430
	\$CATION (+,13,+,+,13,+,+,13,+)+)	κ	3440
104	FORMAT (1X, **** MINIMUM CRITICAL HEAT FLUX RATIO EDIT ****///5X,*	κ	3450
	\$MCHFR (I,J) //9X, /J=/, I3, 1518)	κ	3 460
108	FORMAT (1X, ++++ EXPOSURE EDIT ++++//5X, +EX (I, J, +, 12, +) //9X, +J=	κ	3470
	5,13,1518)	κ	3 480
110	FORMAT (//I5,1X,1P15E8.1)	κ	3490
112	FORMAT (1X, ++++ VOID FRACTION EDIT ++++//5X, +VOID (I, J, +, 12, +) +/	κ	3500
	\$/9X,'J=',I3,15I8)	κ	3510
116	FORMAT (1X, **** RELATIVE POWER EDIT ****///5X, *P (I, J, *, 12, *) *//9	κ	3520
	\$X, J=+, I3, 15I8)	κ	3530
118	FORMAT (//I5,1X,15F8.3)	κ	3540
120	FORMAT (1X, **** CONTROL ROD POSITIONS ****!//5X, *NOTCH (I, J) *//7	κ	3550
	\$X, •J= •, 14, 1416)	κ	3560
130	FORMAT (1X++** FUEL TYPE EDIT ***!//5X+FTYPE (I+J)!//7X+J=++	κ	3570
	\$14,1416)	κ	3580
132	FORMAT (//I5,2X,1516)	κ	3590
134	FORMAT (4X, II)	Κ	3600

•

.

190

,

109	FORMAT (1X, ++++ AVERAGE EXPOSURE EDIT ++++//5X, +EX (I, J) +//9X,	κ	3610
_	\$ J= 1, 13, 1518)	κ	3620
119	FORMAT (1X, ++++ INTEGRATED POWER EDIT ++++//5X, +P (I, J) //9X,	κ	3630
	\$+J=+,I3,15I8)	Κ	3640
136	FORMAT $(20A4/!AVEXP = !,E10.3)$	Κ	3650
138	FORMAT (215)	Κ	3660
140	FORMAT (6E13.3)	κ	3670
144	FORMAT (20A4/!TIME STEP #!!I4,4X,!AVERAGE CORE EXPOSURE =!	Κ	36 80
	\$,E12.3, MWD/MT)	ĸ	3690
146	FORMAT (13F6.2)	Κ	3700
148	FORMAT (11X, *AXIAL AVERAGES*/11X, *=========*//11X, *K POWER*)	κ	3710
150	FORMAT (1H+,20X, VOID)	Κ	3720
152	FORMAT (10X, !!)	Κ	3730
154	FORMAT (1H+,20X, !!)	κ	3740
156	FORMAT (112, F7.3)	κ	375 0
158	FORMAT (1H+,F24.2)	κ	3760
160	FORMAT (//10X, PEAK POWER = 1, F8.3, AT LOCATION (1, 12, 1, 1, 12, 1, 1, 1)	κ	3770
	\$12,*)*)	κ	3780
162	FORMAT (//10X, PEAK ASSEMBLY INTEGRATED POWER = ,F8.3, AT LOCATI	κ	3790
	\$ON (',12,',',12,')')	κ	3800
С		κ	3810
	END	κ	3820

•

191

C*====================================	L 1
C=====================================	L 2
C	L 3
C	L 4
SUBROUTINE BANK (BANKID, NTCH)	L 5
С	L 6
(,	L 7
C ROUTINE TO SET CONTROL ROD POSITIONS BY BANK	L 8
(L 9
C	L 10
COMMON /CSINP / BUMASK(N07), VMASK(N08), DFI(N10), DTI(N10)	L 11
\$ SAFI(N10), SATI(N10), NSFFI(N10), NSFTI(N10),	L 12
\$ SDSI(N10), IEXPTS , IVDPTS , ITSETS ,	L 13
\$ KSFTI(N10), KSFF1(N10),	L 14
<pre>\$ DIMTS , DIMEX , DIMVD , NOTCH(NO2),</pre>	L 15
\$ TABSET(NO1), WORTH(N10)	L 16
INTEGER DIMTS, DIMEX, DIMVD, TABSET	L 17
REAL NSFFI, NSFTI, KSFFI, KSFTI	L 18
COMMON /CROD / NRODS(6,2), RODIND(N02)	L 19
INTEGER BANKID, RODIND	L 20
	L 21
	L 22
	L 23
C RODIND = ARRAY CONTAINING 2-D INDICES INDICATING LOCATIONS OF	L 24
NODES WHICH CAN BE RODDED BY THE CONTROL BANKS	L 25
C NRODS(BANKID,1) = NUMBER OF NODES IN A PLANE WHICH CAN BE RODDED	L 26
BY ROD BANK "BANKID"	L 27
C NRODS(BANKID,2) = INDEX MARKING THE BEGINNING OF ELEMENTS OF THE	L 28
ELEMENTS OF THE RODIND ARRAY ASSIGNED TO	L 29
ROD BANK IBANKIDI	L 30
NTCH = AXIAL POSITION INDEX OF ROD BANK	L 31
C NOTCH = ARRAY CONTAINING AXIAL POSITION INDICES FOR ALL	L 32
C RODDED NODES	L 33
	L 34
	L 35
С	L 36

.

	I1 = NRODS(BANKID,2)	L	370
	I2 = I1 + NRODS (BANKID, 1) - 1	L	380
	DO 10 N=I1,I2	L	390
	L = RODIND(N)	L	400
10	NOTCH(L) = NTCH	L	410
	RETURN	L	420
	END	L	430

•

```
10
                                                                         20
                              ______
                                                                         30
C
                                                                         40
                                                                    M
C
                                                                    Μ
                                                                         50
     BLUCK DATA
                                                                         60
С
                       _____
                                                                         70
C•
                                                                         80
                                                                    M
C
     COMMON /HEADR / NTITLE(20). AVEXP. NTSTEP
                                                                         90
                                                                    Μ
     COMMUN /CSINP / BUMASK(N07) . VMASK(N08) .
                                                                        100
                                              DFI(N10).
                                                            DTI(N10) M
                      SAFI(N10), SATI(N10), NSFFI(N10), NSFTI(N10), M
                                                                        110
                                          • IVDPTS • ITSETS
                      SDSI(N10), IEXPTS
                                                                    M
                                                                        120
    $
                                                               •
                      KSFTI(N10) • KSFFI(N10) •
                                                                        130
    $
                                                                    M
                                          • DIMVD • NOTCH(N02)•
                                                                        140
                            DIMEX
                                                                    M
    $
                      DIMTS
                                                                        150
                                                                    M
                      TABSET(NO1) . WORTH(N10)
     INTEGER DIMTS, DIMEX, DIMVD, TABSET
                                                                    M
                                                                        160
            NSFFI, NSFTI, KSFFI, KSFTI
                                                                    M
                                                                        170
     REAL
     COMMON /FUEL / FTYPE(NO2), BU(NO1), VOID(NO1)
                                                                    M
                                                                        180
                                                                        190
     INTEGER FTYPE
                                                                    M
                          (N01), DT (N01), KSFF
                                                  (NO1)
                                                                    M
                                                                        200
     COMMON /NODAL / DF
                                                                    M
                                                                        210
                    KSFT (NO1), TFR (NO1), NSF1G (NO1)
    S •
                                      (NO1) • C6
                                                                        220
    5.
                    C2
                          (N01) \cdot C4
                                                  (N03)
                                                                    M
                                                                        230
                    C7
                          (NO1)
                                                                    M
    £ ,
     REAL KSFF. KSFT. NSF1G
                                                                        240
                                                                    M

    NP

                                                                        250
     COMMUN /GEOM / NODES
                                         NDSMNP
                                                    • NX
                                                                    M
                              • NXM1
                                         • GX
                                                    • GZ
                                                                    M
                                                                        260
    5.
                    NZ
                                                                    M
                                                                        270
                    NCOL (N04)
    S •
                                                                        280
               / AF1, AF3, AF5, AF6, AFQ(N04),
                                                                    M
     COMMON /BC
                    BF1, BF3, BF5, BF6, BFQ(N04),
                                                                    M
                                                                        290
                    AT1, AT3, AT5, AT6, ATQ(N04),
                                                                        300
    £
                                                                    M
                    BT1, BT3, BT5, BT6, BTQ(N04)
                                                                        310
    $
                                                                    M
     EQUIVALENCE (AFQ(1), AF2), (AFQ(2), AF4),
                                                                        320
                                                                    M
                (BFQ(1), BF2), (BFQ(2), BF4),
                                                                        330
    $
                                                                    M
    $
                (ATQ(1), AT2), (ATQ(2), AT4),
                                                                    M
                                                                        340
                (BTQ(1), BT2), (BTQ(2), BT4)
                                                                    M
                                                                        350
     COMMUN /CONVRG/ MAXI, MAXO, MAXP, EPSO, EPSP, ALPHA.
                                                               SOR M
                                                                        360
```

	LOGI	CAL SOR	Μ	370
	COMM	DN /FLUX / POWER(NO1), FASTA(NO1), THERMA(NO1), F(NO1)	Μ	380
	COMM	N /PROB / INTTYP, QTRKOR, NOHAL, NOCROD, NOVOID, IEDIT(6)	Μ	390
	\$,	NOXE, FIRST	M	400
	LOGI	CAL QTRKOR, NOHAL, NOCROD, NOVOID, NOXE, FIRST	M	410
	COMM	N /WEIGHT/ R, CF, CT, RCF, RCT, B1N, B2N	M	420
	COMM	N /THERMO/ HFG, XIN, AC1, AC2, AC3, AREA, AVFLUX, AVPWR, PSIA	M	430
	\$,	B1(4), B2(4), B3(4), CTYPE(NO2), FLOW(NO2), TFLOW	Μ	440
	\$,	PCTPWR	M	450
	INTE	BER CTYPE	Μ	460
	COMM	DN /XENON / PD, PRSAl(Nlo), PRSA2(Nlo), SAXE(Nlo)	M	470
С			Μ	480
C	*-*		Μ	490
С			Μ	500
	DATA	F/N01*1./, C2/N01*0./, C4/N01*0./, C6/N03*0./	Μ	510
	\$,	C7/N01*0./,BUMASK/N07*0./,VMASK/N08*0./	M	520
	5,	DIMVD/NO8/,DIMTS/NO9/,DIMEX/NU7/,VOID/NO1*0./,BU/NO1*0./	Μ	530
	\$,	NODES/NO1/,NP/NO2/,NDSMNP/NO3/,NX/NO4/	M	540
	\$,	NXM1/N05/,NZ/N06/,MAXI/3/,MAXU/6/	M	550
	\$,	MAXP/30/,EPS0/1.E-6/,EPSP/.5E-2/	Μ	560
	\$,	ALPHA/1.65/,FLOW/N02#1./	Μ	570
	\$,	AC1/.833/,AC2/.167/, AVEXP/0./	Μ	580
	5,	WORTH/N10*0./, 81/4*1./, 82/4*0./, 83/4*0./	Μ	590
	\$,	IEDIT/-1,0,0,1,1,0/, CTYPE/N02*1/	Μ	600
	\$,	QTRKOR/.TRUE./, NOCROD/.TRUE./, NOVOID/.TRUE./, PCTPWR/100./	M	610
	S ,	ITSETS/1/, IEXPTS/1/, IVDPTS/1/, POWER/N01*1./	Μ	620
	S ,	NTSTEP/1/, NOHAL/.TRUE./, SOR/.FALSE./	Μ	630
	\$,	NOXE/.TRUE./, FIRST/.TRUE./, TABSET/NO1*1/, FTYPE/NO2*1/	M	640
	\$,	FASTA/NO1*0./, THERMA/NO1*0./	M	650
С			Μ	660
	ENU		Μ	670

·