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Non-destructive testing methods and applications have become of increasing interest due to the 

worldwide aging and deteriorating infrastructure network. In the field of Civil Engineering, 

bridges and bridge components as well as non-structural elements such as roadway pavements for 

example, are affected. In particular, the Acoustic Emission (AE) technique offers the unique 

opportunity to monitor infrastructure components in real-time and detect sudden changes in the 

integrity of the monitored element. The principle is that dynamic input sources cause a stress 

wave to form, travel through the body, and create a transient surface displacement that can be 

recorded by piezo-electric sensors located on the surface. Commonly, analysis methods of purely 

qualitative nature are used to estimate the current condition or make predictions on the future 

state of a monitored component. Using quantitative analysis methods, source locations and 

characteristics can be deduced, similarly to the case for earthquake sources. If properly 

configured, crack formation and propagation can hence be quantified with this technique. The 

research work presented in this dissertation, however, goes past commonly found AE 

applications. Three novel applications have been developed: (1) a new prospective detection tool 

was discovered in the field of Transportation Engineering where AE sensors were employed to 

identify vehicles equipped with studded tires passing over bridges. Such vehicles cause costly 

damage each year to the roadway infrastructure network and this tool would enable gathering 

statistical data or enforcing legal dates for the use of studded tires. Load conditions of two full-

scale laboratory bridge girders were estimated analyzing AE data collected from applied service-

level loads using an earthquake prediction method called b-value analysis (2). It was found that 

this analysis method may assist in estimating the operating load conditions of in-service bridges. 

Finally (3), a novel framework for the development of a probabilistic stress wave source location 



algorithm based on Bayesian analysis methods is proposed. Markov Chain Monte Carlo 

simulation was employed to estimate model parameters and predict source locations in full 

probabilistic form. Because variability in the materials and errors in the model can be included, a 

more accurate solution is available. 
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1 General Introduction 

1.1 Background and Introduction 

Non-destructive testing methods and applications have become of increasing interest due to the 

worldwide aging and deteriorating infrastructure network (Colombo et al. 2003a; Glaser 2004; 

Grosse et al. 2006; Lovejoy 2006; Ohtsu 1996; Uomoto 1987). In the field of Civil Engineering, 

bridges and bridge components as well as non-structural elements such as roadway pavements for 

example, are affected. In particular, the Acoustic Emission (AE) technique offers the unique 

opportunity to monitor infrastructure components in real-time and detect sudden changes in the 

integrity of the monitored element (Grosse and Ohtsu 2008). Networks of piezo-electric sensors 

are used that respond to surface displacements caused by propagating stress waves (Miller et al. 

2005). Fig. 1.1 shows a typical sensor network, including eight sensors, for experimental testing 

of a full-scale reinforced concrete (RC) bridge girder (Schumacher 2008). There are also sensors 

mounted to the back face of this test specimen that are not visible in the image. 

 

 
Fig. 1.1–AE sensor network used for experimental testing, one sensor with fixture shown 

enlarged 
 

Acoustic Emission (AE) is the term used for transient elastic waves generated by the release of 

energy within a material or by a process (EN 2000). A stress wave is generated, traveling from 

the source origin away to the surface of the body where it can be recorded by sensors. This 

process is irreversible and therefore not repeatable. Other terms include stress wave emission or 
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nano-seismic activity. Within the family of non-destructive testing methods, AE has its own 

special place because it is a passive technique. AE are stress waves produced by a spontaneous 

internal dynamic process such as crack initiation or formation or internal material fracture. The 

source location and mechanism is therefore unknown and subject to investigation. In this 

dissertation, the terms Acoustic Emission (or AE) and stress wave are used interchangeably. 

 

The principle of the AE method is that dynamic input sources cause a stress wave to form, travel 

through the body, and create a transient surface displacement are recorded by the sensors, 

provided the signal is strong enough to be detected. AE sensors typically consist of a piezo-

electric crystal that creates a voltage output that is proportional to the imposed strain caused by a 

transient surface displacement. This signal is then intensified by a pre-amplifier. Usually not only 

one but several sensors are deployed to record data in parallel. In order to store data on the hard 

disk, the analog sensor signals must first be digitized by an A/D-converter. Typically, data are not 

acquired continuously since that would generate enormous data files which would be hard to 

interpret. Instead, pre-selected criteria are used to trigger the recording system for individual AE 

burst signals from which descriptive parameters and wave form traces are then extracted. All this 

is done in real-time and requires a powerful data acquisition system. For a three-dimensional 

array like the one shown in Fig. 1.1, it is possible to estimate the location of the source based on 

arrival time differences, very similar to the case of earthquakes (Ge 2003a; Ge 2003b; Geiger 

1910; Grosse et al. 1997). If properly configured, crack formation and propagation can hence be 

tracked with this technique. Many analysis methods were actually adapted from seismic 

applications due to the similar natures of the problems. Fig. 1.2 shows a typical AE wave form an 

experiment on a full-scale RC beam. Frequencies range from approximately 10 to 500 kHz. 

 

 
Fig. 1.2–Typical AE wave form from RC applications 
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The fact that material under plastic deformation or when cracking emits audible sounds has been 

known for centuries (Miller et al. 2005). Early investigations were qualitative in nature and 

restricted to the frequency range of the human ear. The necessary tools to measure and record 

such sounds were finally developed in the early 20th century.  

 

Joseph Kaiser from the University in Munich, Germany is considered the pioneer in modern AE 

research. In 1950, he published his findings of AE measurements during tension tests on metals 

(Kaiser 1950). The Kaiser Effect states that sounds are emitted from a material only when a 

previously experienced stress level is exceeded. Fowler et al. discovered in the 1960s that this is 

not always true for composite materials (Fowler et al. 1989). This phenomenon was named 

Felicity Ratio. One of the first documented AE tests on reinforced concrete was conducted at the 

University of Washington to investigate debonding of embedded reinforcing steel from cyclic 

loading of a beam-column connection (Kobayashi et al. 1980). After that, AE monitoring has 

increasingly been utilized to investigate fracture processes and to characterize damage of RC 

elements (Colombo et al. 2003b; Köppel and Vogel 2000; Lovejoy 2008; Ohtsu et al. 2002; 

Schechinger 2006; Shiotani et al. 2000; Uomoto 1987). 

 

AE research can generally be divided in two major categories: Qualitative vs. quantitative AE 

analysis methods (Grosse 1996; Köppel 2002). Qualitative methods appear to work for defined 

problems where the boundary conditions (size, geometry, material properties, crack pattern, 

sensor array, etc.) do not significantly change over time. Only a few key parameters, which are 

assumed to characteristically describe an AE signal wave form, are extracted and stored for later 

interpretation. For large structures with a number of different potential sources such as full-scale 

RC members, they can only give a rough qualitative and relative overview of the internal 

processes. Quantitative methods try to describe the nature of a source by using for example 

moment tensor inversion (MTI) techniques (Grosse et al. 2003; Köppel 2002; Ohtsu et al. 1998). 

However, a MTI is not always easy to perform, especially for large structures and when using a 

small number of sensors. Just recently, the first full-scale experiments on RC beams were 

successfully conducted using MTI methods (Katsaga et al. 2007). Quantitative methods are 

probably the most accurate and physically meaningful means to describe fracture processes 

within a structural element, but much work is still needed before this method is ready for the 

field. 
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One notable challenge in AE testing is the discrimination of spurious sources that are not of 

interest to the problem but can skew or interfere with data analysis. This is especially difficult for 

complex materials such as RC which is a composite material consisting of fine and coarse 

aggregates, cement, and reinforcing steel. All of these components have different dynamic 

material properties and damping characteristics. Additionally, RC components usually crack 

under service conditions, causing changing boundary conditions for the stress waves. 
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1.2 Scope and Layout of this Dissertation 

This PhD dissertation follows the manuscript option as described in the OSU Graduate School 

Thesis Guide 2009-2010 and covers a series of innovative AE applications in Civil Engineering. 

Three technical papers with original content were developed and are introduced below. They will 

undoubtedly help address urgent problems in monitoring and maintaining crucial parts of the 

infrastructure transportation network. The first two represent novel real-world application tools 

that can be used for monitoring; the third embodies a new methodology for a common problem in 

AE. This dissertation is structured as follows: 

 

Chapter 1: General Introduction. 

 

Chapter 2: Manuscript 1. The title of this first technical paper is “Detection of Vehicles with 

Studded Tires Using Acoustic Emission Sensors Mounted to Highway Bridges.” Studded tires 

have caused hundreds of millions of dollars worth of damage to highway pavements alone in the 

Pacific Northwest. Studded tire use causes increased pavement wear and creates rutting which 

can lead to other safety problems such as hydroplaning, for example. AE offers a potential tool to 

detect passing vehicles that are equipped with studded tires. Past studies on the use of studded 

tires have highlighted the need for a tool to better estimate the number of vehicles with studded 

tires that travel a road network. Currently, there is no such tool available. This manuscript 

presents a detection methodology using AE techniques to identify vehicles operating with studded 

tires. Data from an in-service test on a highway bridge were utilized for developing and 

evaluating two proposed detection schemes. It was found that using relatively simple detection 

algorithms, vehicles with studded tires could reliably be discriminated. A practicable integrated 

system is proposed as that could be implemented for detection and monitoring of studded snow 

tire use on highway systems. This manuscript was submitted to the ASCE Journal of 

Transportation Engineering and accepted for publication on April 4, 2009.  

 

Chapter 3: Manuscript 2. This second technical paper is titled “Estimating Operating Load 

Conditions on Reinforced Concrete Highway Bridges with b-Value Analysis from Acoustic 

Emission Monitoring.” Transportation agencies commonly have conventionally steel reinforced 

concrete deck girder (RCDG) bridges in their inventory that were built in the mid-twentieth 

century. These bridges have been in-service beyond their intended design lives and tools are 



6 

needed to permit freight mobility and maintain operational safety. The practical applicability of 

AE monitoring techniques were investigated to help estimate the operating condition of 

diagonally cracked RCDG bridges. Experiments on two full-scale girder specimens representative 

of Oregon’s RCDG bridges were built and tested under realistic service conditions. Overloading 

conditions were imposed to increase the level of deterioration. It was found that characterizing 

the current health condition of a monitored bridge component or element based on short term in-

service loading is difficult and the proximity of a potential bridge failure not easily predictable 

until it is impending. However, it was observed that the current operating load level of a bridge 

component can be estimated using a newly proposed method called Minimum b-Value Analysis. 

By performing such an analysis, it can be estimated whether the applied truck load is comparable 

to loads that the bridge has been experiencing, or whether they are higher or lower. The influence 

of factors that can affect b-value estimations such as stage of deterioration or external sources 

was studied and is presented. The experiment as well as data from the two laboratory specimens 

are evaluated. This manuscript was submitted to the journal of Structural Health Monitoring and 

accepted for publication on October 5, 2009. 

 

Chapter 4: Manuscript 3. The title of this third and last technical paper is “Estimation of Acoustic 

Emission Source Locations: A Bayesian Approach.” Acoustic Emissions (AE) are stress waves 

initiated by sudden strain releases within a solid body. These can be caused by internal 

mechanisms such as crack opening or propagation, crushing, or rubbing of crack surfaces. One 

application for the AE technique in the field of Structural Engineering is Structural Health 

Monitoring (SHM). With piezo-electric sensors mounted to the surface of the structure, stress 

waves can be detected, recorded, and stored for later analysis. An important step in quantitative 

AE analysis is the estimation of the stress wave source location. Commonly, source location 

results are presented in a purely deterministic manner as spatial and temporal points, excluding 

information about uncertainties and errors. Due to variability in the material properties and 

uncertainty in the mathematical model, measures of uncertainty are needed beyond best-fit point 

solutions for source locations. This paper introduces a framework for the development of a 

probabilistic source location algorithm using Bayesian analysis methods with Markov Chain 

Monte Carlo (MCMC) simulation where all source location parameters are described with a 

posterior probability density function (PDF). The proposed methodology is applied to an example 

employing data collected from a realistic section of a reinforced concrete bridge column. The 
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selected approach is general and has the advantage that it can be extended and refined efficiently. 

Results are discussed and future steps to improve the algorithm suggested. This manuscript will 

be submitted to the Journal of Sound and Vibration. 

 

Chapter 5: General Conclusion. 
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2 First Manuscript 

Detection of Vehicles with Studded Tires Using Acoustic 
Emission Sensors Mounted to Highway Bridges 

 

Thomas Schumacher1, Christopher C. Higgins2, and Steven C. Lovejoy3 

 

Abstract: Transportation agencies expend large amounts of money annually to maintain highway 

wearing surfaces. Wear depends mainly on axle weight, vehicle speed, temperature, surface type, 

and the type of tires mounted on vehicles. When studded tires are used, wear is increased 

significantly. Past studies on the use of studded tires have highlighted the need for a tool to better 

estimate the number of vehicles with studded tires that travel a road network. Currently, there is 

no such tool available. This paper presents a detection methodology using Acoustic Emission 

techniques to identify vehicles operating with studded tires. Data from an in-service test on a 

highway bridge were utilized for developing and evaluating two proposed detection schemes. It 

was found that using relatively simple detection algorithms, vehicles with studded tires could be 

discriminated reliably. Finally, a practicable integrated system is proposed that could be 

implemented for detection and monitoring of studded snow tire use on highway systems. 

 

Keywords: Studded tires, Acoustic Emission Monitoring, Real-time detection, Highway bridges. 
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2.1 Introduction 

Transportation agencies expend large amounts of money annually to repair and replace highway 

wearing surfaces. A study by Brunette and Lundy (1996) estimated that total damage for 1994 

due to studded tires in the State of Oregon’s road network was about $70 million. A more recent 

study by Malik (2000) estimated expenditures for repairing studded tire damage from 1994 to 

2005 to total of about $103 million for the Oregon highway system alone. This estimate assumes 

average pavement design life and wear rate. The total number of vehicles with studded tires was 

estimated based on parking lot counting and telephone surveys. A more recent study was 

published by Zubeck et al. (2004) and covers the socio-economic impact of studded tire use in 

Alaska. It was concluded that the use of studded tires in Alaska may actually have a positive 

impact on the Alaskan economy. The savings from avoided accidents were the most substantial 

benefit. However, relation between rutted pavements and summer hydroplaning accidents was not 

taken into account. Here as well, visual inspection and vehicle counting on parking lots was used 

to determine the stud usage rate. The most recent data published by the Washington State 

Department of Transportation (WSDOT 2006) has revealed that damage from the use of studded 

tires on Portland cement concrete highways alone resulted approximately $18 million of 

additional cost within the state of Washington, with damage for asphalt concrete much higher. 

 

Currently, no automated tools are available to accurately identify the number of vehicles with 

studded tires traveling on a highway network. It would be of great interest to estimate the number 

of vehicles with studded tires that operate after the legal dates. Enforcing these dates could be a 

first start to reduce damage on the infrastructure. Presented in this paper is the development and 

evaluation of detection methods based on the Acoustic Emission (AE) technique. An integrated 

system that enables automated real-time detection of vehicles with studded tires is proposed. This 

tool could be employed to establish statistics about the use of studded tires and could further be 

used as an enforcement tool to identify studded tire use past the allowable use date. 
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2.2 Background 

2.2.1 Problems Associated with the Use of Studded Tires 

Studded tires are winter tires that are equipped with studs made of metal or plastic materials 

designed to improve traction for winter driving. The studs protrude from the tire surface and are 

usually made of Tungsten Carbide, a very high strength metal. They are held in place by metal 

jackets inserted in the tire. Detailed information about studded tires, damage mechanisms to 

wearing surfaces, and state regulations can be found in a study published by the Washington State 

Transportation Center (Angerinos et al. 1999). For the State of Oregon, Brunette and Lundy 

(1996) estimated the wear rate on asphalt concrete and Portland cement concrete to be about 0.86 

and 0.20 mm (0.034 and 0.008 in.) per 100,000 studded tires passes, respectively. 

 

While benefits have been identified for users, problems have arisen with the use of studded tires 

including: 

1. Ruts are produced in rigid (Portland cement concrete) as well as flexible (asphalt 

concrete) pavements that fill with water and ice and can cause hydroplaning and slipping 

2. May polish aggregates and reduce friction 

3. May make driving more difficult during dry conditions 

4. Loosened wearing surface particles become airborne dust and contribute to air pollution 

5. Increased noise level 

6. On dry and wet surfaces (no ice), regular winter tires have better traction than studded 

tires 

 

In most states where studded tires are allowed, there are date restrictions on when it is legal to 

drive with studded tires. Wyoming, Colorado, and New Mexico allow the use of studded tires 

without restrictions. Unfortunately, there are no data available on the damage caused by studded 

tires in these states. In Oregon, tires equipped with lightweight studs are legal between November 

30 and April 3. In the State of Washington, it is November 1 to March 31. Motorists are 

encouraged to use studded tires only when necessary because of the increased damage they cause 

to roadways; however few dismount and remount studded tires during the permissible season. 
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2.2.2 Acoustic Emission Monitoring 

Acoustic Emissions (AE) are the result of a sudden, spontaneous strain release within a solid 

body, i.e. the formation of a crack. A stress wave is generated, traveling from the source origin 

away to the surface of the body where it can be detected by sensors. Other names for AE include 

stress wave emission or micro-seismic activity (Miller et al. 2005). Formally defined, AE is the 

term used for transient elastic waves generated by the release of energy within a material or by a 

process (EN 2000). The AE technique has been established as a means to monitor structural 

deterioration, e.g. material fracture, and has hence found applications in material science and 

structural health monitoring, e.g. of bridges. 

 

The general principle of AE data acquisition is that emitted stress waves are recorded, stored, and 

then analyzed. Piezo-electric based sensors mounted to the surface of the test object are typically 

used for AE monitoring, which produce a voltage-versus-time signal from the dynamic surface 

motion (Miller et al. 2005). A thin layer of high vacuum grease is typically used as a couplant 

between sensor and concrete surface. The generated voltage signal output is proportional to the 

surface pressure and dependent on the size and damping characteristics of the sensor. Ideally, a 

sensor should have a very flat response over the whole frequency range. This is necessary for 

wave form analyses, but sensors of this kind tend to be not very sensitive which makes it difficult 

to detect AE signals in reinforced concrete (RC) at a distance of more than a few meters. 

Resonant sensors are sensitive at their resonant frequency and have proven to work well for AE 

signal detection in RC (Lovejoy 2006; Schumacher 2008). This signal is then intensified by a pre-

amplifier. Usually not only one but several sensors are deployed and record data in parallel. In 

order to store data on the hard disk, the analog sensor signals must first be digitalized. Typically, 

AE data is not acquired continuously, since that would yield enormous data files which would be 

hard to interpret. Pre-selected criteria are used to trigger the system for individual AE burst 

signals from which descriptive parameters and wave forms are then extracted. For this study, the 

most important parameter was AE hit amplitude, which is the maximum voltage measured during 

a discriminated AE burst signal and represented on a decibel scale. All this is done in real-time 

and requires a powerful data acquisition system. 

 

Fig. 2.1 schematically illustrates the elements of a typical AE data acquisition system. In this 

case, the stress wave is released from within the body. For the case of studded tires, the source is 
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introduced on one side of the body, then travels through it and is eventually detected by the 

sensor on the opposite side of the body. 

 

In structural health monitoring, a source such as the discussed one caused by studded tires would 

be considered as noise as it is generated from an external artificial source which should be filtered 

out as it can significantly bias damage detection algorithms. For this study, however, it becomes 

the source of main interest. As will be shown in this paper, it is fairly uncomplicated to detect 

vehicles with studded tires with high reliability. 

 

 
Fig. 2.1–Example of a typical AE system setup (only one AE sensor shown for clarity) 
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2.3 Field Experiment 

2.3.1 Test Site and Procedure 

The data used in this paper were collected from an in-service bridge under ambient traffic and 

controlled loads. The bridge is Bridge No. 7863 on Interstate 5 in Cottage Grove, OR and the 

tests were conducted on March 26/27, 2006. A series of ten test runs with a 22.7 t (50,000 lb) 

total weight three-axle dump truck were conducted with three different speeds and the response of 

varies sensors recorded. The bridge was closed for other traffic each time. In between the test 

runs, the data acquisition system was recording as well, collecting data from ambient traffic. 

 

 
Fig. 2.2–Photo of the tested bridge 

 

Fig. 2.2 shows a photo taken from the north-west corner of the bridge. The bridge is a 

conventionally reinforced deck girder type bridge commonly found in Oregon and was built in 

the 1950s. It consists of three spans plus a short cantilever span on the south side. The center span 

length is 25.30 m (83 ft), the adjacent spans are 19.81 m (65 ft) long, and the cantilever span 

length measures 3.96 m (13 ft). The wearing surface consists of a hot-mix asphalt overlay with a 

thickness of approximately 76 mm (3 in.). 

 

2.3.2 Data Acquisition System and Instrumentation 

The test was conducted to determine service-level strains on reinforcing bars and diagonal crack 

motion, as well as Acoustic Emission (AE) activity on an interior girder on the bridge. Strain was 

monitored on a vertical reinforcement bar (stirrup) crossing a diagonal crack with a 3.2 mm 
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(0.125 in.) strain gage as well crack motion perpendicular to that same crack with a 12.7 mm (0.5 

in.) linear displacement sensor. A sampling rate of 10 Hz was used. The instrumentation plan is 

presented schematically in Fig. 2.3. AE sensors are numbered 1 through 8. 

 

 
Fig. 2.3–Elevation view of monitored interior girder with sensor locations 

 

For AE data acquisition, an eight-channel Vallen AMSY-5 system was utilized. All channels 

have built-in analog band-pass filters with frequency limits of 20 KHz (low) to 850 kHz (high) 

for channels one, seven, and eight, and 40 kHz (low) to 850 kHz (high) for channels two to six. 

The dynamic range of the system is 16 bit and the maximum sampling frequency 10 MHz. For 

this field test, wave forms were stored for all AE burst signals that crossed a threshold of 40 dB. 

The sampling rate was set to 2 MHz. Full AE wave forms were stored over a total length of 1024 

μs with 400 μs before the threshold crossing. The AE sensors used for this test were KRNi060. 

They show resonant behavior with peak responses at around 60 kHz and 200 kHz. These sensors 

were chosen because of their high sensitivity found in laboratory experiments (Lovejoy 2006; 

Schumacher 2008). AE sensor location coordinates are provided in Table 2.1. 
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Table 2.1–AE sensor location coordinates 

Sensor # Location Metric U.S. Customary 
 on face x y z x y z 
  [m] [m] [m] [in.] [in.] [in.] 

1 west 3.274 1.295 0.211 128.9 51.0 8.3
2 west 3.371 0.876 0.208 132.7 34.5 8.2
3 west 2.883 0.775 0.221 113.5 30.5 8.7
4 bottom 3.607 0.368 0.076 142.0 14.5 3.0
5 bottom 2.753 0.284 -0.104 108.4 11.2 -4.1
6 east 3.526 1.252 -0.206 138.8 49.3 -8.1
7 east 3.244 0.610 -0.213 127.7 24.0 -8.4
8 east 3.035 1.080 -0.218 119.5 42.5 -8.6
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2.4 Data Analysis Methods 

An AE system using low-frequency sensors is desirable because wearing surface and concrete 

have large damping characteristics. It is assumed that each individual stud impact causes a stress 

wave to initiate and propagate through the structure. This occurs at a frequency of about 1.3 kHz 

or every 0.77 ms considering a mid-sized car traveling with a speed of about 90 km/h (55 miles/h) 

which is in the audible range of the human ear. During the load test, audible sounds were 

produced by vehicles with studded tires operating on the bare surface of the bridge deck that were 

easily identified and distinguished by the research team. This audible signature is well known to 

experienced bridge and transportation engineers in regions where studded tires are used. 

Coincident with identification of the audible signature of the studded tires, the AE responses from 

this source were observed to be unique and different from other sources of AE. Subsequently, 

several studded-tire vehicle occurrences were identified and correlated to coincident AE patterns 

for further analysis. 

 

The present AE sensor array employing eight transducers was more extensive than is actually 

required to identify vehicles with studded tires but commonly used for structural health 

monitoring. To investigate the feasibility of an automated one-channel detection system, only one 

sensor was considered (channel eight). Channel eight was located on the web, approximately 0.45 

m (17.5 in.) below the deck. It is equipped with an analog band-pass filter that rejects frequencies 

below 20 kHz and above 850 kHz. Comparing the different channels, those with lower cut-off 

frequencies (20 kHz rather than 40 kHz) like channel eight, seemed to pick up AE from studded 

tires much better underlying the importance of having low frequency AE sensors. 

 

Fig. 2.4 shows an example of recorded data from the passing of a 22.7 t (50,000 lb) three-axle test 

truck (a), for a passenger car equipped with studded tires (b1) and a similar passenger car without 

studded tires (b2). The top row graphs illustrate measured rebar strains (green line) and AE hit 

amplitudes as purple dots. The bottom row graphs show the number of detected AE hits, where 

the red bars represent AE hits and the green line cumulative AE hits. The bin size was set to 0.2 s. 

The truck’s speed was about 85 km/h (52 miles/h), the cars’ speeds were assumed to be in the 

same range. As can easily be seen in Fig. 2.4, the test truck (a) produces a large strain response 

with relatively low-amplitude AE hits over a time frame of approximately 2 s. On the other hand, 

the passenger car with studded tires (b1) causes a small strain response accompanied by a cluster 
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of very high-amplitude AE with virtually no low-amplitude events over a very short time frame. 

The passenger car with regular tires produced a small strain response without any AE. 

 

 
Fig. 2.4–Example data: test truck (a) and passenger car with (b1), and without studded tires (b2) 

 

To summarize, vehicles equipped with studded tires were found to produce a unique response on 

the AE sensing system with the following characteristics: 

1. Localized clusters of high-amplitude AE hits (some signals clipped due to saturation) 

2. AE events occur within a very short time window 

3. Small rebar strain readings 

 

Due to the use of resonant AE sensors, there was no significant difference in the frequency 

response between AE signals caused from vehicles with and without studded tires. The response 

of such sensors is usually governed by the characteristics of the sensor and not the source. 

In the following three sections, methods for data analysis are presented. Two different schemes to 

detect vehicles with studded tires according to the previously stated characteristics are presented 

and then compared. 
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2.4.1 Computation of AE Hit Amplitudes 

AE hit amplitudes are defined as [ ] 20 log( [ ]) 60A dB A mV= ⋅ + , where A[mV] is the maximum 

voltage reading from one discriminated AE burst signal. An example of a typical AE wave form is 

illustrated in Fig. 2.5. This output voltage is produced by the sensor’s piezo-ceramic element and 

proportional to the surface particle motion. One issue that may arise is that the AE signals can become 

clipped due to channel saturation for the studded tire case. Clipped wave forms may lead to some 

skewing of the data for the case of the vehicles with studded tires where saturation is achieved. In this 

study, this was not further considered because the methods appear to be robust enough as 

proposed. 

 

 
Fig. 2.5–Typical AE signal waveform 

 

2.4.2 Detection Scheme 1: Mean AE hit amplitudes 

For this scheme, mean AE hit amplitude values are computed for each discrete vehicle crossing. 

In addition to mean amplitude values μ, standard deviations σ were computed as well. A 

significant difference was found between a truck and a passenger car with studded tires in terms 

of average the AE hit amplitude. Fig. 2.6 shows the statistics for the AE hit amplitudes for a truck 

(a) and a passenger car with studded tires (b1) computed for the same data set presented in Fig. 

2.4 where n represents the number of AE hits included in the computation. Because there are no 

low-amplitude events for case (b1), the mean value is very high and the coefficient of variation ρ 
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expected to be small. The coefficient of variation is defined as CV σ μ= . Even if the maximum 

AE hit amplitudes are the same for both cases, the mean for case (a) will always be lower and the 

spread much larger than for case (b1) because it contains low-amplitude events. Therefore, this 

simple computation should be robust and work very well to detect vehicles with studded tires. 

However, a more complex, complementary analysis procedure for this data set is presented in the 

following section. 

 

 
Fig. 2.6–Mean AE hit amplitudes for the test truck (a) and the car with studded tires (b1) 

 

2.4.3 Detection Scheme 2: b-Value Analysis 

The observations from Fig. 2.6 indicate that the so-called b-value analysis or amplitude-frequency 

distribution analysis may provide an additional means to characterize vehicles with studded tires. 

The original relationship was established by Gutenberg and Richter (1949) to relate the annual 

number (mean frequency) of earthquakes with corresponding earthquake magnitudes. More 

recently it has been adapted to analyze slope-stability in geotechnical and material science 

applications (Rao and Prasanna Lakshmi 2005; Shiotani and Ohtsu 1998). 
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The magnitude-frequency distribution relationship is defined as: 

 

 10log ( ) LN a bM= −  (2.1) 

 

where ML is the magnitude of an event on the Richter scale, N is the number of events that lie 

within ML±ΔML, and a and b are empirical constants. The constant b represents the slope of the 

magnitude-frequency diagram. The basic concept is that this b-value (the slope) decreases when 

damage becomes more localized. For reinforced concrete, b-value analysis has been used by 

several researchers to characterize structural deterioration of reinforced concrete (Colombo et al. 

2003; Kurz et al. 2006; Schumacher 2008; Shiotani and Ohtsu 2000). From these studies, it was 

found that the b-value drops well below a value of about 1 when the system becomes unstable, 

i.e. during formation of a macro-crack. In AE, commonly the maximum hit amplitude in [dB] is 

multiplied by a factor of 1/20 and replaces the earthquake magnitude ML. This yields b-values in 

the same range as those seen in seismic applications. It appears that this b-value could be used to 

discriminate AE event clusters caused by passenger cars with studded tires since the amplitude 

distribution is very distinct and different from AE clusters created by vehicles without studded 

tires, hence the slope or b-value should be different as well. 

 

 
Fig. 2.7–Amplitude-frequency distributions for test truck (a) and passenger car with studded tires (b1) 
 

Fig. 2.7 illustrates AE amplitude-frequency distribution plots for the test truck (a) and the vehicle 

with studded tires (b1). The estimated b-values of each amplitude-frequency distribution plot were 

estimated with Matlab employing a first order polynomial curve fit over the mean ± one standard 
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deviation of the AE amplitudes as suggested by Rao and Prasanna Lakshmi (2005). Standard 

errors are given as ES b n=  where n is the number of samples used to estimate the b-values. 

Notice the significant difference between estimated b-values of the test truck (a) and the vehicle 

with studded tires (b1). It can also be observed that the distribution line is highly non-linear for 

the vehicle with studded tires (b1). This will be explored more deeply in the future as it may be 

used as an additional indicator to detect studded tires. 

 

In Table 2.2, key results from the previous analyses are summarized. The differences in the 

sensor responses are easily recognizable. Both detection schemes, mean AE amplitudes as well as 

b-value analysis appear to be appropriate means to characterize vehicles with studded tires. 

Complementary, strain measurements can further confirm the weight magnitude and type of 

vehicle that is passing by the detection system. 

 

Table 2.2–Summary of results 

Parameter  
 (a) (b1) (b2) 
Max. AE amplitude, Amax [dB] 59.0 89.8 0
Average AE amplitude per event, μ [dB] 44.1 82.1 0
Total hits during event, n [-] 34 12 0
Approx. time frame [s] 2 0.2 -
Estimated b-value, b [-] 1.90 0.61 -
Standard error of estimated b-value, SE [-] 0.33 0.17 
Maximum strain, εmax [με] 82 7 8
Minimum strain, εmin [με] -16 -1 -2

 

Analyzing clusters of AE events produced by isolated vehicle crossing is one possible way to 

identify vehicles with studded tires. The only problem here is that these events have to be 

discriminated and that can be difficult especially with dense traffic. Another alternative method is 

continuous evaluation of real-time AE data. The implementation of this approach is presented in 

the next chapter. 

 

2.4.4 Continuous Evaluation or Real-Time Monitoring 

The two previously presented analysis procedures were then implemented in Matlab and applied 

to the entire in-service test data. Mean AE hit amplitudes and standard deviations were computed 

over five values back in time. For the critical threshold, an AE amplitude value of 75 dB was 
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found to work well for detection of vehicles with studded tires. b-values were estimated over a 

total of 50 AE hit amplitude values back in time. A threshold was set to a critical b-value of 0.5 as 

trigger criteria for the detection of vehicles with studded tires. Once this critical b-value is 

crossed, it has to increase first above that same value before it is ready to trigger again. 

Verification with strain readings is then performed and has to be within a certain range that is 

characteristic for passenger cars with studded tires. For this study, the maximum strain reading 

had to be between 1 and 20 με. Because every structure is unique and has different material 

properties, threshold values will have to be selected on a case by case basis. 

 

Results from the continuous evaluation are illustrated in Fig. 2.8 where (a) shows AE hit 

amplitudes recorded by the AE data acquisition system, (b) computed mean AE hit amplitudes 

(scheme 1), and (c) estimated b-values (scheme 2). Strain measured on the stirrup is illustrated in 

(d). Note that strain data is missing between approximately 6200 and 7100 s due to a small 

technical issue. Table 2.2 summarizes the detection results and compares them with the ones 

determined by manually searching through the AE hit amplitudes and strain readings for vehicles 

with studded tires. 

 



26 

 
Fig. 2.8–Results for continuous evaluation 
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As can be seen in Table 2.3, 12 events were found manually to qualify as ‘passing vehicle with 

studded tires’. Detection scheme 1 (mean AE amplitudes) did an excellent job in identifying all 

manually determined events. Problems arise for detection scheme 2, based on b-values when 

detections have to take place closely spaced in time. This is because b-values need some ‘recover 

time’ after triggering, i.e. they have to return to a higher value of 0.5 first, before it is ready to 

trigger again. This problem does not exist for the mean AE hit amplitude approach (scheme 1) 

since the averaging is only over five AE hit amplitudes. Also, for two instances, the b-value 

scheme falsely detected vehicles with studded tires. However, the method may still be used as a 

complementary tool, although more fine-tuning is needed. The fact that b-values are sensitive to 

vehicles with studded tires is important by itself because this could interfere with a structural 

health monitoring system that monitors the structural integrity of a bridge. 

 

Table 2.3–Summary and comparison of detection methods 

Event Manually Min. strain Max. strain Scheme 1 Scheme 2 
# Time εmin εmax Time Time 
[-] [s] [με] [με] [s] [s] 
1 1290 -1 7 1291 1290
2 1726 -1 7 1726 1726
3 1955 -1 8 1955 -
4 2059 -2 11 2059 2059
5 2264 -2 9 2264 2264
6 3023 -1 5 3023 3023
7 - -2 6 - 3524
8 5190 -1 7 5190 5190
9 5217 -1 10 5216 -
10 5457 -1 10 5457 5457
11 6579 n/a n/a 6579 6579
12 7069 n/a n/a 7069 7069
13 - -1 8 – 7338
14 7836 -3 16 7836 7836
Detections, total 12 - - 12 12
Correct detections - - - 12 10
Not detected, missed - - - 0 2
False detections - - - 0 2
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2.4.5 Recommendations for an Integrated Detection System 

A practicable implementation of a detection system for vehicles with studded tires is described 

here. As shown earlier, a conventional one-channel AE detection system would be sufficiently 

robust to detect passing vehicles with studded tires. An AE sensor would be mounted to the deck 

soffit to maximize detection. This sensor would be connected via coax-cable to the single-channel 

AE system located in an accessible and secured enclosure. Hand-held one-channel AE systems 

are commercially available that would work for this kind of application. Additionally, a strain 

gage could be used as a supplemental parametric input for verification of the vehicle load effect. 

However, the authors suggest the use of a wireless sensor network employing so-called motes 

would be especially energy efficient and low maintenance for this application. A mote is a 

complete measurement and communication unit that connects to the sensor via a short cable and 

communicates with a base station via radio transmission (Grosse et al. 2006). The base station 

would be located at the site and be triggered by pre-defined threshold values of the mean AE hit 

amplitudes. From here, the data would be either stored locally at the site to be manually collected 

or streamed to a central server (via cable, radio transmission, or cell phone) for continuous 

observation or analysis. Alternatively, messages could be sent regularly to the bridge owner as to 

cumulative counts and times of occurrences. Further, a camera positioned over the roadway could 

be triggered to capture images of the identified vehicles for reference. At the present time, the 

technologies exist and are practically obtained for such systems and at reasonable cost. 
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2.5 Conclusions 

The use of studded tires has become of increasing concern to transportation agencies due to the 

damage caused to pavements, and limited funds available for repair and replacement. Large 

annual expenditures are made in jurisdictions which permit studded tires to maintain pavements. 

Currently no tools are available to automatically detect and report vehicles with studded tires. An 

integrated system to detect vehicles with studded tires passing over a highway bridge is proposed. 

Piezo-electric sensors attached to the bridge members can detect and record stress waves that are 

emitted when vehicles with studded tires pass over the bridge. Discrimination of these stress 

waves is possible because they were found to significantly differ from trucks and vehicles that 

have no studded tires. It was found that simple mean AE hit amplitude schemes work very well 

and are sufficient to detect vehicles with studded tires that pass over a bridge. Nevertheless, 

physical measurements as rebar or surface strain readings are recommended as complimentary 

measurement of load magnitude. Additional analysis methods, such as b-value analysis are 

sensitive to vehicles with studded tires as well, but need some further fine tuning. 

 

A simplified single-channel system could be practicably deployed for detection and reporting and 

would allow for collection of statistical data to better estimate pavement life and wear ratio. AE 

systems offer the opportunity for more reliable data on the number of studded tires in operation 

and the time periods of use on a particular highway. That can be utilized primarily to improve 

design and maintenance of road surfaces. The system could further be extended for use as an 

enforcement tool of legal studded tire operating dates. 
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Abstract: Transportation agencies commonly have conventionally steel reinforced concrete deck 

girder (RCDG) bridges in their inventory that were built in the mid-twentieth century. These 

bridges have been in-service beyond their intended design lives and tools are needed to permit 

freight mobility and maintain operational safety. The practical applicability of AE monitoring 

techniques were investigated to help estimate the condition of diagonally cracked RCDG bridges. 

Experiments on two full-scale girder specimens representative of Oregon’s RCDG bridges were 

built and tested under realistic service conditions. Overloading conditions were imposed to 

increase the level of deterioration. It was found that characterizing the current health condition of 

a monitored bridge component or element based on short term in-service loading is difficult and 

the proximity of a potential bridge failure not easily predictable until it is impending. However, it 

was observed that the current operating load level of a bridge component can be estimated using a 

newly proposed method called Minimum b-Value Analysis. The influence of factors that can 

affect b-value estimations such as stage of deterioration or external sources was studied and is 

introduced. The experiment as well as data from the two laboratory specimens are presented and 

interpreted. 
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3.1 Introduction and Background 

Many transportation agencies have conventionally reinforced concrete deck girder (RCDG) 

bridges in their inventory that were built during the highway expansion in the 1950s. The 

anticipated design life was 50 years and many of them have reached their intended service-life 

limit. These bridges commonly exhibit diagonal tension cracking in the high shear regions of the 

girders that can mostly be attributed to the increasing volume of heavy truck traffic and 

environmental factors. Conventional load rating methods often identify many of these structures 

to be deficient for current loading conditions. As an example, in Oregon a very large bridge 

replacement program was initiated in 2003, with a total cost exceeding 1.6 billion US dollars. 

However, these resources are insufficient to replace all the cracked bridges and large numbers of 

these will be required to remain in-service (Kuennen 2006). A need exists to better predict the 

capacity and remaining life for RCDG bridges that will stay in service to prioritize future 

replacements and impose load restrictions when required. A research project was launched to 

evaluate and estimate the remaining life of RCDG bridges (Higgins et al. 2004a; Higgins et al. 

2004b). Acoustic Emission (AE) testing was chosen as a non-destructive testing method to further 

assist with addressing the problem (Lovejoy 2006; Schumacher 2008). 

 

Reinforced concrete (RC) bridges generally operate at service-level loads except during discrete 

overload events that can reduce the integrity of the structure by initiating concrete cracks, 

widening or extending existing concrete cracks, as well as producing reinforcing steel slip or 

yielding. Identification of previous damage and predicting the possible impact on future 

performance has increasingly become of interest to load rating engineers. One of the goals of the 

recently completed research by Schumacher (2008) was to determine if AE techniques can assist 

in (1) assessing and identifying previous damage, (2) monitoring existing bridges for real-time 

detection of damage occurrence, and (3) predicting critical conditions or failure of bridge 

members. The term damage in this context shall be defined as a change in the current state or 

condition of a structural element that reduces its capacity. Damage is not a well-defined term for 

reinforced concrete since cracking alone does not necessarily reduce the ultimate capacity of a 

member. However, crack formation and crack width growth are of importance since they may 

lead to bond fatigue or expose steel reinforcement to the environment which can lead to rebar 

corrosion, etc. that may reduce capacity. In the present study, the term deterioration is therefore 

used rather than damage. 
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3.2 Overview of Full-Scale Laboratory Experiments 

3.2.1 Test Specimens 

Two full-scale test beams representative of in-service bridges were fabricated and subsequently 

tested under realistic loading conditions as discussed subsequently in the structural laboratory. 

The overall length of the T-girders was 7.92 m (26 ft), the total height 1.22 m (4 ft), the flange 

width 914 mm (36 in.), and the web thickness 356 mm (14 in.). Illustrated in Fig. 3.1 is a cross-

section at the center line of the beam specimens used in this project. They were tested in IT-

configuration, imposing flexural tension in the deck to reflect the high-shear, high-negative 

moment region common in these structurally continuous bridges. No skin steel was added to the 

reinforcing cage to reflect 1950s detailing practices. The stirrups were manufactured from Grade 

40 (fy = 276 MPa), all other of Grade 60 (fy = 414 MPa) reinforcing steel. The specimens were 

named AE Specimen #1 and #2. For AE Specimen #1, all 6 ø 35 mm (#11) longitudinal tension 

rebars were well anchored past the supports on both sides, whereas for AE Specimen #2, the two 

outer rebars were cut-off at 2.13 m (7 ft) from the center line of the specimen. These cut-offs 

were common practice to optimize the steel needed to provide for the flexural demand on the 

member. The ø 13 mm (#4) transverse reinforcing bars (stirrups) were uniformly spaced at 305 

mm (12 in.) in the high shear region of interest. 

 

 
Fig. 3.1–Specimen cross-section shown in inverted T (IT) configuration 
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3.2.2 Experimental Setup 

The tests were performed with a four-point loading configuration. Force was applied at mid-span 

through a spreader beam to load points on the specimen spaced 610 mm (24 in.) apart. The 

spacing between the supports (span length) was 6.60 m (21 ft 8 in.). Applied force was measured 

with a 2200 kN (500 kips) capacity load cell mounted to the hydraulic actuator. The experiments 

were conducted with a closed-loop servo-hydraulic system in the force-controlled mode. The 

setup used for all tests is illustrated in Fig. 3.2. To minimize noise from the test frame interfering 

with the AE measurements, neoprene strips were installed between all bearing surfaces (see inset 

‘Detail A’). 

 

 
Fig. 3.2–Test setup configuration for both AE Specimens 

 

Eight 60 kHz resonant AE sensors were deployed in two different arrays (A and B) to record 

stress waves generated during testing. The array used for the present study employed for AE 

Specimen #1 and #2 was array A and is schematically shown in Fig. 3.3. The sensors were 

arranged in an anti-symmetric manner around the high shear region of interest. For AE data 

acquisition, a commercially available eight-channel system was used. For AE Specimen #2, AE 
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transducers were only placed at or above the center height of the girder (y ≥ 0). This was done so 

that crack interference may be prevented for as long as possible. 

 

 
Fig. 3.3–AE sensor locations for sensor array A (schematically) for the two AE Specimens 

 

Additionally, data from over 30 conventional sensors were collected. These included load cells, 

strain gages, concrete clip gages to measure crack motion (CMOD), and displacement sensors. 

Strain gages were bonded to selected stirrups (vertical shear reinforcement) at mid-height in the 

high shear region of interest (as highlighted in Fig. 3.2) and installed prior to casting of concrete. 

Flexural reinforcing bars were instrumented with strain gages at mid-span and at rebar cut-off 

locations. 

 

3.2.3 Loading Protocol 

Most of the AE research in laboratories has used loading protocols of loading and unloading 

cycles with each subsequent increment applied at higher load magnitude, e.g. (Colombo et al. 

2003). Repeated cyclic loading at service level or fatigue loading have rarely been considered. 

However, such loading history may change the AE response significantly as it helps redistribute 

residual stresses after an overload event, for example. One goal of this research was to develop 

and employ a loading protocol that is representative of realistic service-level load conditions and 
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can therefore be directly compared with in-service load tests. In that sense, the present work 

should serve as a reference for future field work. 

 

Another distinguishing feature that was considered was the unloading effect (live load strain 

reversal) that was found in the rebar strain readings during typical in-service load tests before the 

main maximum strain reading (tensile) occurred. This was observed for instrumented stirrups 

close to supports (high shear region) when the truck approached that section just before crossing 

it. In addition, the cracks close when the load was located directly above the section. This stirrup 

unloading effect was taken into account and applied to the lab specimens using a rounded value 

of 20% of the subsequently applied peak load. 

 

The applied force for the simulated test trucks was based on the structural analysis of a typical 

continuous 15 m (50 ft) 3-span continuous bridge. Distribution factors were taken from Potisuk 

and Higgins (2007). The shear force effect due to dead load was estimated at 178 kN (40 kips) 

which corresponds to a total applied force of 356 kN (80 kips). Fig. 3.4 illustrates the first load 

phase and the beginning of the second load phase that were applied to both, AE Specimen #1 and 

#2. Notice the small unloading portion discussed previously that appears before every load cycle. 

 

 
Fig. 3.4–Generalized loading protocol (‘A’ stands for ‘sensor array A’ as presented in Fig. 3.3) 
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The following general loading procedure was applied to both specimens as illustrated in Fig. 3.4: 

1. Apply equivalent dead load (DL) to specimen representative of service-level conditions. 

2. Impose new deterioration by applying a monotonic overload (OL) force followed by 

unloading to DL. 

3. Apply load cycles at service-level to reach steady-state strain response. 

4. Load specimen with simulated test trucks (TT) to replicate in-service load-testing of 

actual bridges. 

5. Go back to step 2, applying a higher load level to impose new deterioration into the 

specimen. 

 

The simulated test trucks ranged from total applied forces of 623 to 1068 kN (140 to 240 kips) 

which corresponds to shear effects on the section of 312 to 534 kN (70 to 120 kips). The 

simulated test truck magnitude (623 kN (140 kips)) was selected based on produced load effects 

on the section that are within the range of those available to almost all transportation agencies. 

Higher ones were introduced in later load phases in increments of 89 kN (20 kips) because the 

basic TT caused less and less AE activity with increasing deterioration (at higher overload 

phases). Commonly, loaded maintenance trucks are used for structural in-service load tests with 

total weights of approximately 18 to 25 tons. This procedure was continued until the specimens 

were failed. The capacity and failure mode of AE Specimen #1 could not be determined 

experimentally since the spreader beam slipped off the specimen when reaching an applied force 

of 1605 kN (361 kips) corresponding to a shear force of 803 kN (180 kips). The capacity 

(ultimate shear force) was estimated to be approximately 1780 kN (400 kips) using Response 

2000 which has been shown to provide excellent prediction for these specimens (Higgins et al. 

2004a). The capacity of AE Specimen #2 was found experimentally at a total applied force of 

1658 kN (373 kips) which corresponds to a shear capacity of 829 kN (186 kips). Failure occurred 

in shear-compression mode. Response 2000’s predicted strength for AE Specimen #2 was 1664 

kN (374 kips) and corresponds very well with the experimental value. The different load phases 

of the experiment with maximum applied overloads (OL), corresponding shear, and applied 

simulated service-level test trucks (TT) on the section are summarized for both test specimens in 

Table 3.1. 
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The following load ratios are used subsequently in this paper to normalize forces: 

 

 1 Applied forceLR
Ultimate capacity

=  (3.1) 

 

 2 Applied forceLR
Previous applied overload

=  (3.2) 

 

 3 Previous applied overloadLR
Ultimate capacity

=  (3.3) 

 

Table 3.1–Summary of applied OLs and TTs for both specimens 
(AE Specimen #1 and #2) 

Load Force Shear AE #1 AE #2 Number of same magnitude TTs AE #1/AE #2 
phase OL Vcorr LR3 LR3 623 712 801 890 979 

[-] [kN] [kN] [-] [-] [kN] [kN] [kN] [kN] [kN] 
1 623 312 0.35 0.38 3/3 -/- -/- -/- -/- 
2 890 445 0.50 0.54 3/3 -/3 -/3 -/- -/- 
3 1156 578 0.65 0.70 3/5 3/3 3/3 -/3 -/3 
4 (#1) 1423 712 0.80 - 4/- 3/- 3/- 3/- 3/- 
4 (#2) 1468 734 - 0.88 -/3 -/3 -/3 -/- -/3 
5 (#1) 1605 803 0.901 - -/- -/- -/- -/- -/- 
5 (#2) 1658 829 - 1.003 -/- -/- -/- -/- -/- 
5 (#1) 1780 890 1.002 - -/- -/- -/- -/- -/- 

1 Spreader beam slips off specimen, termination of test 
2 Ultimate capacity estimated using Response 2000 (never reached) 

3 Ultimate capacity (experimentally determined) 
 

3.2.4 Specimen Response 

Figs. 3.5 and 3.6 show cracks that were mapped at the beginning of each load phase. Generally, 

vertically oriented flexural cracks formed at a total applied force of approximately 320 kN (72 

kips), i.e. below the total applied force due to dead load of 356 kN (80 kips). While imposing the 

first overload cycle, the first inclined shear cracks formed. This occurred at an applied force of 

approximately 420 kN (94 kips) for both specimens. After that, with every new overload, existing 

cracks propagated further towards the compression zone and branched. One difference in the 

crack formation between the two specimens was that during load phase 3 for AE Specimen #2, a 

completely new crack (marked with an arrow in Fig. 3.6, bottom left) formed in a previously 
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uncracked region in the middle of the high shear region. Interestingly, this later forming crack 

was not part of the eventual failure crack. 

 

 
Fig. 3.5–Mapped cracks at the beginning of each load phase for AE Specimen #1 

Top left: load phase 1, LR3 = 0.35 
Top right: load phase 2, LR3 = 0.50 

Bottom left:  load phase 3, LR3 = 0.65 
Bottom right: load phase 4, LR3 = 0.80 
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Fig. 3.6–Mapped cracks at the beginning of each load phase for AE Specimen #2 

Top left: load phase 1, LR3 = 0.38 
Top right: load phase 2, LR3 = 0.54 

Bottom left: load phase 3, LR3 = 0.70 
Bottom right: load phase 4, LR3 = 0.88 

 

In Fig. 3.7, load phase 2 for AE Specimen #2 is shown as a typical example for the measure AE 

response. It can be observed that the AE hit rate is very large, i.e. approximately 1100 AE hits per 

second for the applied overload (left Fig.). The subsequent cyclic loading employed to simulate 

ambient traffic (in this case 2 x 1000 cycles) shows a relatively steady AE hit rate. The following 

simulated test trucks (right Fig.) produced much lower AE hit rates due to the low demand on the 

section relative to the initial overload. It shall also be pointed out that the AE hit rate is actually 

decreasing for subsequent TTs of the same magnitude, e.g. for the 801 kN (180 kips) TT in the 

right Fig.. This is due to the uniqueness of AE events. 
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Fig. 3.7–Example of applied OL and subsequent cycles (left Fig.) and TT (right Fig.), both 

also showing AE hit rates (forces are applied total forces) 

 

The ranges of physical measurements such as rebar strains, diagonal displacements, and crack 

motions remained fairly constant (difference < 2%) over a series of equally heavy applied 

simulated test trucks. Maximum stirrup strains ranged between approximately 300 and 900 με 

(which corresponds to a stress range of approximately 60 to 180 MPa (8.7 to 26 psi), depending 

on the applied force and the stage of deterioration (or phase). The b-value response on the other 

hand varied up to 25% for some test truck groups. It is therefore very important to provide 

experimental results that can show some measure for data uncertainty (e.g. variance) and not just 

the mean result or prediction line alone. 
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3.3 Acoustic Emission Testing Using Minimum b-Values 

3.3.1 Background and Introduction 

The general principle of AE testing is that emitted stress waves caused by sudden internal strain 

release processes due to loading of the structure are recorded, stored, and then analyzed (Grosse 

and Ohtsu 2008; Miller et al. 2005). Piezo-electric sensors mounted to the surface convert 

transient surface displacements produced by arriving stress waves into an electrical signal. 

Usually not only one but several sensors are deployed as an array and data are recorded in 

parallel. Typically, pre-selected minimum amplitude threshold values are used to trigger the 

system for individual AE burst signals from which descriptive AE parameters such as maximum 

signal amplitude, energy of the signal, signal duration, or rise time (time between threshold 

crossing and maximum signal amplitude) are extracted for qualitative analyses. For quantitative 

analysis procedures, full AE signal wave forms are recorded and stored with sampling 

frequencies up to 10 MHz. All this is done in real-time and requires a powerful data acquisition 

system. The most important point to keep in mind is that stored AE data are influenced by many 

factors in the measurement process chain, e.g. sensor and material characteristics, cracks and 

crack development over time, and the data acquisition settings. It was thus very important for this 

project to establish crucial boundary conditions (sensor array geometry, selection of sensors) and 

data acquisition settings (AE amplitude threshold values) that are consistent for both the 

laboratory experiment and that which could be used for in-service field tests of bridge girders in 

order to provide linkages between results. 

 

For the present study, a commercially available eight channel Vallen AMSY-5 AE data 

acquisition system was employed. All eight channels were equipped with analog band-pass 

frequency filters that reject frequencies below 20/40 kHz and above 850 kHz. The piezo-electric 

AE transducers used for all experiments were 60 kHz resonant type (model KRNi060), 

manufactured by KRN Services. These have shown good sensitivity for applications in RC 

(Lovejoy 2006; Schumacher 2008). Amplitude threshold values during data acquisition were 

selected depending on the expected background noise level and AE intensity. For final data 

analysis, a post-processing high-pass filter was set to a fixed value of 40 and 44 dB to achieve 

consistency across the different experimental phases for AE Specimen #1 and #2, respectively. 

AE signal wave forms were recorded with a sampling frequency of 2.0 MHz and stored for 

reference. 
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3.3.2 Introduction to b-Value Analysis 

A statistical method used to look at parametric AE data is the so-called b-value analysis. The 

relationship was first established by Gutenberg and Richter (1949) and has been used to 

characterize distributions of earthquake magnitudes (Stein and Wysession 2003) as well as to 

analyze slope-stability in geotechnical (Miller et al. 2005; Rao and Prasanna Lakshmi 2005; 

Shiotani and Ohtsu 1998) and material science applications for a variety of materials (Carpinteri 

et al. 2009; Cox and Meredith 1993; Hardy 1971; Kurz et al. 2006; Pollock 1981; Shiotani et al. 

2000). The empirical magnitude-frequency distribution relationship is defined in logarithmic 

form as: 

 

 ( )10log LN a bM= −  (3.4) 

 

where ML is the magnitude of an event on the Richter scale, N is the number of events that lie 

within ML±ΔML, and a and b are empirical constants, where b describes the slope of a fitted 

straight line of the magnitude-frequency diagram or ratio of small and large earthquake 

magnitudes (Stein and Wysession 2003). The basic concept relies on the change of the b-value 

(the slope) to indicate changes in the indulging material. The b-value shows these changes as a 

decrease in slope below a value of approximately 1.0 when stresses are redistributed and damage 

becomes more localized. In the field of reinforced concrete, b-value analysis has been studied by 

several researchers to monitor structural deterioration using AE monitoring (Colombo et al. 2003; 

Kurz et al. 2006; Miller et al. 2005; Shiotani et al. 2000). Commonly in AE applications, the 

maximum hit amplitude in dB is multiplied by a factor of 1/20 and replaces the earthquake 

magnitude ML (Colombo et al. 2003; Weiss 1997). This yields b-values in the same range as seen 

in seismic applications. The b-value for each set of AE amplitude-frequency distributions was 

estimated employing a linear least squares curve-fit over the mean ± one standard deviation as 

employed by Colombo et al. (2003) and also suggested by Rao and Prasanna Lakshmi (2005). 

Standard errors, SE are given as b n  where n is the number of samples used (consecutive AE 

hit amplitudes used for the estimation). Suggested values for n found in the literature range from 

50 to 100 (Colombo et al. 2003; Kurz et al. 2006; Rao and Prasanna Lakshmi 2005). Fig. 3.8 

visualizes what b-values represent: the slope of the cumulative amplitude-frequency distribution 

of a set of AE hit amplitudes. The b-value changes when the ratio of the number of strong to 
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weak AE events changes. High and low b-values have been associated with micro-crack 

formation (distributed deterioration) and macro-crack formation and propagation (localized 

deterioration), respectively, as proposed in  (Carpinteri et al. 2006; Cox and Meredith 1993; Kurz 

et al. 2006; Pollock 1981; Rao and Prasanna Lakshmi 2005; Rundle et al. 2003). For this 

example, two sets of 50 consecutive AE hit amplitudes at different instances were selected from 

AE Specimen #2 during load phase 2. 

 

 
Fig. 3.8–Examples of two estimated b-values with 50 consecutive AE hit amplitudes: 

Left Fig.: likely no on-going deterioration or micro-cracking (b-value = 2.12, SE = 0.30) 
Right Fig.: likely on-going deterioration or macro-cracking (b-value = 0.52, SE = 0.07) 

 

Two main sources of AE in concrete are present that are of interest. When the material is loaded 

for the first time, micro-cracks form in highly stressed regions. They are distributed, small and 

generate a large number of low amplitude AE events which should produce a b-value well above 

1.0. Once concrete reaches its tension cracking stress, a localized macro-crack is initiated that 

produces a relatively small number of high amplitude AE events which should produce a b-value 

well below 1.0. These two types of AE sources cause AE with different amplitudes and frequency 

distributions. Also, in reinforced concrete, the reinforcing steel is designated to carry the released 

tension concrete stress once a macro-crack forms. Once that has occurred, a third source of AE 

may be present due to the relative crack motion of the two crack surfaces during repeated in-

service loading. This is possible when loosened cementitious material parts from the crack 

surface or even entire aggregates get in between the crack surfaces and are crushed or cause 

crushing of neighboring material. This third source can occur at any point during the life-time of 

a structure and may be accelerated by environmental effects further increasing the number of low 
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amplitude AE events. For service-level load effects, these are most likely the main sources of AE 

since the material is usually not stressed enough to produce either micro- or macro-cracks. 

 

 
Fig. 3.9–Example of continuous b-value estimation for one sensor (from AE Specimen #2) 

 

b-Value analysis appears especially well suited for implementation in a real-time Structural 

Health Monitoring (SHM) system because it is computationally inexpensive and, theoretically, 

only one sensor is needed to obtain a result. An example of such a continuous estimation of b-

values is illustrated in Fig. 3.9 for the beginning of phase 2 for AE Specimen #2. The top figure 

shows the total applied force. The procedure starts with application of the dead load (356 kN (80 

kips)), then cyclic loading (between 302 and 623 kN (68 and 140 kips)), followed by the overload 

(890 kN (200 kips)). The middle figure shows the resulting AE hit amplitudes over time. In the 

bottom figure, estimated b-values for sensor 4 are shown which was located on top of the web 

about 1.10 m away from the edge of the left bearing plate (see Fig. 3.3). The locations of the two 

individual b-values presented in Fig. 3.8 are indicated as well by vertical dotted lines in Fig. 3.9. 
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It can be observed that the obvious drop in the estimated b-value, which also represented the 

lowest value over the whole loading sequence, corresponds with the maximum applied force 

which caused propagation of existing cracks on the section. However, it was observed that b-

value time histories differed from sensor to sensor. They appear to be a function of the sensor 

location with respect to the damage source location. It is therefore probably not meaningful to 

define an absolute critical b-value. Such critical values would have to be established during long 

term monitoring and parallel observation of structural performance. 

 

One difference between AE in RC compared to seismic applications is that for the latter, 

attenuation of waves along the travel path is accounted for (Weiss 1997). As quantified by several 

authors (Landis and Shah 1995; Lovejoy 2006; Schumacher 2008; Uomoto 1987), attenuation in 

RC is quite significant and taking it into account could be used to improve b-value analysis. 

Future work may investigate this feature. 

 

3.3.3 Proposed Minimum b-Value Analysis 

For routine inspections of in-service bridges, a method called Minimum b-Value Analysis to 

quantify the effect of a passing vehicle on the monitored bridge component or section is 

proposed. As explained earlier, reductions in the b-value may indicate the localization of damage, 

i.e. macro-crack formation and propagation. This information may be used in conjunction with 

knowledge about the applied loading, i.e. passing vehicles (ambient or test trucks) to help 

estimate the current operating load level of a bridge component along with some information 

about the past lifetime loading history. The Minimum b-Value is determined by the following 

steps: 

1. Determine lowest b-values from one complete load event for each of the AE sensors (defined 

by the test truck load effect) 

2. Compute sensor network mean and standard deviation for all values obtained from step 1 

 

For repeated load events of the same magnitude, Minimum b-Values are determined over all 

cycles, e.g. if there are three load cycles and eight sensors, the mean and standard deviation are 

taken over 24 estimated b-values. 
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Fig. 3.10 illustrates two examples of applied loads in the laboratory. The left and right figure 

show an applied overload (load that exceeds all maximum previous experienced loads) and a 

service-level load (load to be expected under everyday conditions), respectively. b-Values are 

shown as dashed lines and the total applied force as solid line with diamonds. For the examples in 

Fig. 3.10, the Minimum b-Values (and standard deviation) were 0.55 (0.06) and 1.33 (0.31) for the 

overload (OL) and the simulated test truck (TT), respectively. The approach presented in this 

paper intends to give an averaged representation of ongoing deterioration from within a region or 

section of interest, e.g. an existing crack or a cracked region. 

 

 
Fig. 3.10–Examples of continuous b-values for an overload (left Fig.) and a simulated test truck 

(right Fig.) over the course of one complete load cycle 
 

3.3.4 Minimum b-Values from Laboratory Experiment 

Presented and evaluated in this section are results from the proposed Minimum b-Value Analysis 

for the entire laboratory experiment including both AE Specimens. Minimum b-Values were 

estimated as introduced in section 3.3 with 50 consecutive AE hit amplitudes included in the 

computation. The AE data of both AE Specimens was then combined in all subsequent plots. 

 

Fig. 3.11 shows two interesting aspects of the influence by the stage of deterioration on estimated 

Minimum b-Values. Linear curve-fits were computed over the Minimum b-Values of both 

specimens. Error bars represent one standard deviation for a set of estimated b-values. The left 

Fig. shows all applied overloads (OL), i.e. with force ratios LR2 > 1.0. It can be observed that 
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those produce Minimum b-Values well below a value of 1.0, even below 0.5, which was 

suggested earlier by other researchers (Colombo et al. 2003; Kurz et al. 2006; Shiotani et al. 

2000). Also, there is a visible overall trend for Minimum b-Values to decrease as ultimate 

capacity, i.e. LR1 = 1.0, is approached. In the right figure, Minimum b-Values for the simulated 

623 kN (140 kips) test trucks (TT) are plotted against the stage of deterioration (load phase), i.e. 

LR3. A trend for the Minimum b-Value to increase as the specimen has experienced higher loads 

in the past can be observed for that truck type, which is the most realistic one in terms of weight. 

This already implies that no absolute threshold for Minimum b-Values should be selected for 

interpretation of load effects. For some of the heavier test trucks (712 to 979 kN (160 to 220 

kips)), there were too few data points generated to draw conclusions. 

 

 
Fig. 3.11–Minimum b-Values for all overloads, i.e. LR2 > 1.0 (left Fig.), and applied simulated 

623 kN (140 kips) test trucks (right Fig.) for both AE specimens 
 

Figs. 3.12 and 3.13 show estimated Minimum b-Values for both specimens for all simulated test 

trucks and overloads within the same load phase. Exponential curve-fits best represented the 

relationship and were computed over the Minimum b-Values of both specimens. Error bars 

represent one standard deviation for a set of same magnitude applied forces as listed in Table 3.1. 
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Fig. 3.12–Estimated Minimum b-Values for each load phase vs. load ratio LR1 

 

Fig. 3.12 shows Minimum b-Values plotted against the force ratio LR1 as presented in Eqn. 3.1 

for each load phase. The ultimate capacity is shown as a vertical dotted line at LR1 = 1.0. A clear 

trend can be observed for the Minimum b-Value which decreases with increasing force ratio LR1. 

Exponential least squares curve-fits over the Minimum b-Values produced squared correlation 

coefficients ranging between 91 and 97%. It can also be observed that the data variation (or 

scatter) decreases as the force ratio LR1 increases, i.e. the 95% prediction limit bands become 

narrower which may be interpreted as damage becoming more localized also macro-cracking is 

occurring. The same trend was present for the error bars that represent the data variation of the 

individually applied loads. 
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Fig. 3.13–Estimated Minimum b-Values for each load phase vs. load ratio LR2 

 

In Fig. 3.13, Minimum b-Values are plotted against the force ratio LR2 as defined in Eqn. 3.2. 

Each of the figures are divided into two parts by a vertical dotted line at LR2 = 1.0 which is where 

the applied force is equal to the maximum previous applied force. Minimum b-Values with a force 

ratio LR2 ≤ 1.0 and LR2 > 1.0 represent applied TTs and OLs, respectively. An obvious trend is 

seen as the Minimum b-Value decreased with increasing applied loads during all load phases. 

Exponential least squares curve-fits produced squared correlation coefficients ranging between 89 

and 99%. For load phase 1, there were only two data points available. The same exponential 

relationship found in the subsequent load phases was applied for that case. It can also be observed 

that the data variation (or scatter) decreases as the force ratio LR2 increases, i.e. the 95% 

prediction limit bands become narrower, again, suggesting that damage was becoming more 

localized with macro-cracking occurring as an experienced previous maximum OL was reached 

or exceeded, i.e. LR2 ≥ 1.0. 
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Fig. 3.14–Predicted Minimum b-Values for constant LR1 (left Fig.), 

and constant LR2 (right Fig.) for both AE specimens 
1 Extrapolated values 

 
In Fig. 3.14, predicted Minimum b-Values for a few selected values of force ratios LR1 (left 

figure) and LR2 (right figure) are plotted against the force ratio LR3 as introduced in 3.3. Both 

figures were constructed using predicted curve-fit mean data extracted from Figs. 3.12 and 3.13; 

error bands represent 95% confidence limits of those. The left figure shows the relationship that 

was found between estimated Minimum b-Values from simulated service level test trucks and 

their proximity to ultimate capacity. Three different values for the force ratio LR1 were assumed 

over all load phases, i.e. simply the mean values were computed for each pre-selected LR1 over 

the whole range of LR3. For the present full-scale laboratory specimens, a Minimum b-Value 

below 0.5 suggests the applied load was approximately equal to 80% (LR1 = 0.80) of ultimate 

capacity of the specimen. Minimum b-Values between 0.5 and 1.0, and above 1.0 imply those 

were approximately equal to 50% and 35% of ultimate capacity, respectively. The right figure 

visualizes the relationship between current and previous applied forces and could hence be used 

to develop a tool to help estimate the operating load conditions of in-service bridges. It can be 

observed that this relationship is dependent on the stage of deterioration (or load phase). As an 

example on how to use this figure, consider the following. Assume an imposed force of 600 kN 

(135 kips) is applied using controlled test trucks. After applying that force, a Minimum b-Value of 

2.0 is determined, based on AE monitoring (assumption). From the figure we can observe that 

that corresponds to a force ratio LR2 of approximately 0.75. This means that the highest previous 
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force the element has experienced is approximately 600 kN/0.75 = 800 kN (135 kips/0.75 = 180 

kips). For real bridges, the difficult part will be to determine the stage of deterioration, i.e. to 

estimate the force ratio LR3. 
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3.4 Conclusions 

A new quantitative method to analyze AE data for estimation of the operating load level of a 

cracked RC bridge girder has been introduced. Two full-scale laboratory specimens with realistic 

geometry, material properties, and reinforcement detailing were tested. A sophisticated 

experimental test setup and loading protocol accounted for realistic loading conditions including 

simulation of ambient traffic. Simulated test truck weights were selected according to earlier in-

service load tests and strain measurements (Potisuk and Higgins 2007). It was found that the 

proposed method called Minimum b-Value Analysis has the potential to estimate the load levels 

on operating RC bridge girders. The AE characterizing loading can be applied using heavily 

loaded maintenance trucks as was done for the in-service load test presented in Lovejoy (2006). It 

is important to recognize that structural sufficiency should never be drawn solely based on the 

evaluation of AE data but in conjunction with other physical measurements such as rebar strain or 

crack motion and detailed structural analyses and evaluations. AE sources from RC components 

can be many fold and the development and redistribution of stresses experienced during the life 

of a bridge are very complex. Additionally, external sources have to be expected that can produce 

high amplitude AE signals which can interfere with b-value computations (Schumacher et al. 

2009). However, useful information can be gained by taking advantage of the proposed method. 

Based on the present work, the following observations and conclusions are made: 

1. The main advantage of AE monitoring lies in real-time monitoring (example see Fig. 3.9) 

as overloads that occur are significantly bigger than experienced previous loads will be 

easily distinguishable. Such overloads will produce b-values well below 1.0, most likely 

even below 0.5 as shown in Fig. 3.11 (left). 

2. Loads of the same magnitude, i.e. the 623 kN (140 kips) simulated test truck, produced 

higher b-values in later experimental phases where elevated visual distress (number of 

cracks and crack widths) was present as shown in Fig. 3.11 (right). 

3. Minimum b-values decreased with higher applied forces (Figs. 3.12 and 3.13) even when 

the residual stresses have previously been removed by imposing cyclic loading until 

strains and displacements reach steady state. This has not been investigated previously in 

literature. 

4. Scatter is higher for AE data compared to physical measurements. This is due to the 

irreversibility of AE, i.e. subsequent applied forces with the same magnitude tend to 

produce slightly lower b-values. It is recommended to perform several loadings of the 
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same magnitude to compute an average value. The variability of the computed b-values 

should always be reported as well. 

5. Other physical measurements are crucial for comparison and verification of high 

amplitude AE signals that could otherwise be caused by other external sources, e.g. the 

noise caused by vehicles that are equipped with studded snow tires (Schumacher et al. 

2009). 

6. Events prior to the loading cycles of interest can still have an influence on the estimation 

of b-values because a certain number, e.g. 50 AE hit amplitudes back in time are required 

for the computation. It is thus, again, highly recommended that the imposed load be 

repeated several times to provide characteristic results rather than mixing with variable 

unknown traffic loading. 

7. It is unreasonable to estimate the ultimate capacity of a bridge or component based solely 

on Minimum b-values. However, the technique could potentially provide insight into the 

operational load levels on the bridge by assuming a level of deterioration. This is 

visualized in Fig. 3.14 (right). 

 

In a next step, AE data collected during an in-service load test (Lovejoy 2006) will be evaluated 

with the proposed Minimum b-Value Analysis and compared to the experimental results found in 

the present paper. Sensor type, sensor array geometry, and data acquisition settings were retained 

to facilitate comparison of results. 
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Abstract: Acoustic Emissions (AE) are stress waves initiated by sudden strain releases within a 

solid body. These can be caused by internal mechanisms such as crack opening or propagation, 

crushing, or rubbing of crack surfaces. One application for the AE technique in the field of 

Structural Engineering is Structural Health Monitoring (SHM). With piezo-electric sensors 

mounted to the surface of the structure, stress waves can be detected, recorded, and stored for 

later analysis. An important step in quantitative AE analysis is the estimation of the stress wave 

source location. Commonly, source location results are presented in a purely deterministic 

manner as spatial and temporal points, excluding information about uncertainties and errors. Due 

to variability in the material properties and uncertainty in the mathematical model, measures of 

uncertainty are needed beyond best-fit point solutions for source locations. This paper introduces 

a framework for the development of a probabilistic source location algorithm using Bayesian 

analysis methods with Markov Chain Monte Carlo (MCMC) simulation where all source location 

parameters are described with a posterior probability density function (PDF). The proposed 

methodology is applied to an example employing data collected from a realistic section of a 

reinforced concrete bridge column. The selected approach is general and has the advantage that it 

can be extended and refined efficiently. Results are discussed and future steps to improve the 

algorithm suggested. 
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4.1 Introduction 

4.1.1 Background on Acoustic Emission 

Acoustic Emission (AE) is the term used for transient elastic waves generated by the release of 

energy within a material or by a process (EN 2000). A stress wave is generated, traveling from 

the source origin away to the surface of the body where it can be recorded by sensors. This 

process is irreversible and therefore not repeatable. Other terms include stress wave emission or 

nano-seismic activity. Within the family of non-destructive testing methods, AE has its own 

special place because it is a passive technique. AE are stress waves produced by a spontaneous 

internal dynamic process such as e.g. crack initiation or formation or internal material fracture. 

The source location and mechanism is therefore unknown and subject of our investigation. An 

introduction to the many applications in AE monitoring can be found in Grosse and Ohtsu (2008). 

Subsequently, the terms Acoustic Emission (or AE) and stress wave are used interchangeably. 

 

In infinite elastic solids, two types of waves, sometimes referred to as modes, exist. The first is 

called compression, or primary (p-), wave where the particles move in the direction of the wave. 

The second is called shear, or secondary (s-), wave with particle motion perpendicular to the 

direction of the propagating wave. With the introduction of boundaries, a third wave type, the 

surface, or Rayleigh (R-) wave exists. Between the three wave mode velocities, cp, cs, and cR, the 

following relationship is true (Graff 1991): 

 

  (4.1) p sc c c> > R

 

For locating sources, typically only the p-waves are of interest because they represent the first, 

undisturbed arrival of a stress wave. The p-wave velocity in an isotropic, homogeneous and 

elastic body can be determined as 

 

 
( )( )

1
1 1 2p

Ec ν
ρ ν ν

−
=

+ −
 (4.2) 

 

where E is the dynamic Modulus of Elasticity in N/m2, ρ the material density in kg/m3, and ν 

Poisson’s Ratio (Graff 1991). Typical average values for the p-wave velocity and Poisson’s Ratio 
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in reinforced concrete range from approximately 3.5 4.5pc≤ <  m/ms (140  in./ms ) 

and 

180pc≤ <

0.25 0.30υ≤ < , respectively (Schumacher 2008). 

 

Stress waves emitted from AE sources are usually recorded by a network of piezo-electric sensors 

mounted to the surface of the specimen. These sensors are typically sensitive for frequencies 

ranging from approximately 10 to 500 kHz to capture the transient stress waves. The analog 

signal is intensified by an amplifier and digitized to enable hard disk storage. AE data is normally 

not acquired continuously, since that would produce enormous data files which would be difficult 

to analyze and interpret. Instead, pre-selected criteria are used to trigger the system for individual 

burst signals from which p-wave arrival times as well as qualitative wave form parameters are 

then extracted (Grosse and Ohtsu 2008). 

 

The first important step in quantitative AE analysis is the estimation of spatial and temporal 

parameters of the stress wave source. If at least four sensors detect a discrete stress wave signal it 

can be identified as an event and the location and time of the source can be estimated. An AE 

event is defined as the physical phenomenon giving rise to acoustic emission (EN 2000). Fig. 4.1 

illustrates a typical recorded transient stress wave signal recorded at sensor k. The first arrival of 

the stress wave, or p-wave arrival time, is enlarged and stretched in time for better clarity. The 

source occurrence time is unknown and denoted as t0. For the arrival time of the p-wave, two 

values are shown: ta[k],man denotes the arrival time picked manually, and ta[k],auto by some 

automated picking method. A denotes the maximum signal amplitude. Depending on the method 

employed, an error Δt will be inherent in the detected arrival times and is often unavoidable. 

 

The first crucial step in reliable AE source location estimation is the accurate determination of the 

p-wave arrival times from each sensor in the network. A picker based on the Akaike Information 

Criterion (AIC) was employed as presented in Kurz et al. (2005). This method has proven reliable 

and accurate in picking arrival times from stress waves (Schechinger 2006). 
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Fig. 4.1–AE burst signal example with enlarged p-wave arrival at sensor k 

 

4.1.2 Source Location Algorithms 

Traditional Deterministic Methods 

Traditional methods shall be defined as deterministic methods that do not take into account 

variability of parameters, i.e. location of sensors, p-wave velocity, arrival times, etc. are assumed 

as constants. If the source hypocenter and sensors are modeled as dimensionless points and the 

travel path of the stress wave is assumed as a straight line between source and sensor, and the p-

wave velocity cp assumed as constant and known for all travel paths, the following general 

relationship, sometimes referred to as arrival time function, for one event can be derived: 

 

 [ ]
0 0 0 0 [ ] 0( , , , ) = = + k

a k
p

d
f x y z t t t

c
 (4.3) 

 

where t0 is the event source time and x0, y0, and z0 are the event source coordinates. The signal 

travel distance d[k] between source and sensor locations is calculated as 

 

 2 2
[ ] [ ] 0 [ ] 0 [ ] 0( ) ( ) (k k k kd x x y y z z= − + − + − 2)  (4.4) 
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The Cartesian coordinates of sensor k are denoted with x[k], y[k], and z[k]. To solve for the four 

unknowns x0, y0, z0, and t0, time arrivals ta[k] from at least four sensors must be detected. Most 

commonly, this non-linear inverse problem is solved by employing iterative algorithms based on 

Geiger’s method (Geiger 1910). A summary of existing deterministic schemes can be found for 

example in Ge (2003a; Ge 2003b). These algorithms provide a covariance matrix of source 

coordinates as an estimate of uncertainty if arrival times from at least five sensors are available. 

Fig. 4.2 shows an example of three estimated locations (from the same calibration experiment 

used for this study presented in section 4.1.3) employing a traditional deterministic source 

location scheme implemented by the author (Schumacher 2008). Mean solutions are shown at the 

center of the red pentagrams; red, blue, and green lines represent first, second, and third principal 

standard deviations σ1, σ2, and σ2, respectively, that were computed from the covariance matrix. 

The grey cross marks the actual location of the initiated stress wave source and yellow circles 

represent the sensors (with numbers in parentheses). 

 

 

σ1 

σ2 
 17 σ3 

(3) 

(3) 

(4) 

(5) 

(7) 

(1) 
(2) 

(8) (6) 

Sensor 

Fig. 4.2–Example of three estimated locations from a known source using a traditional scheme 
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It can be observed that bias (off-set of the mean estimated solution to the known source location) 

and variance are both present in the estimated source locations. It appears that the standard 

deviations indicating the location uncertainty do not properly reflect these errors. This deterministic 

approach does not account for all intrinsic uncertainties and errors in the model and systematic 

errors can only be detected when the true source location is known, which is usually not the case for 

AE applications. 

 

Probabilistic Approaches 

A paper that is useful in the context of this study was written by Tarantola and Valette (1982). It 

describes how inverse problems like hypocenter locations of earthquakes can be stated using 

random variables and distribution parameters to describe uncertainties in the arrival time picking 

using a Bayesian approach. An example is given, assuming sensor locations as well as wave 

velocity are deterministic. The authors suggested using PDFs to describe parameters rather than 

simple central point estimators. This worked well for their relatively simple example where all 

parameters were assumed with a normal distribution so an analytical solution could be computed. 

All uncertainties are basically lumped into one. At the time of development, powerful 

optimization algorithms were not readily available. 

 

In earthquake source location, probabilistic methods have been employed for a number of years 

(Lomax et al. 2000; Tarantola and Valette 1982). Based on these methods, a first approach to 

account for the probabilistic nature of AE source parameters was undertaken by Schechinger 

(2006). In their work, an adapted version of a computer program called NonLinLoc was used. 

This program was originally developed by Lomax (2008) for the estimation of earthquake 

epicenter locations and computes a posterior probability density function (PDF) by Monte Carlo 

(MC) simulation using importance sampling taking into account model and parameter 

uncertainties (Lomax et al. 2000). The maximum likelihood point of the posterior distribution is 

used as optimal source location. Non-homogeneous material models that allow the existence of a 

non-linear velocity field can be implemented as well. A comparison of four different AE events 

located with NonLinLoc and a traditional scheme that was extracted from Schechinger (2006) is 

illustrated in Fig. 4.3. Shown is part of a concrete specimen section containing an air void that 

represents a prestressing duct. 
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Concrete Air 

Probability 

 
 

Fig. 4.3–Comparison of different source location schemes, graph (modified) from 
Schechinger (2006) 

 

It can be observed that for events ev0023 and ev0167, the maximum likelihood point of the 

posterior distribution (white pentagram) differs from the point-estimate (black filled circle). Also, 

the posterior PDF (colored areas) is different from the uncertainty estimate provided by the 

traditional algorithm (ellipsoids). This is explainable by the fact that these two events are 

relatively close to the void (air) and their estimation is therefore more affected by the slow 

velocity in that region. On the other hand, there is only a relatively minor difference between the 

two solutions for events ev0126 and ev0147. 

 

Wéber (2006) used the same program as Schechinger, NonLinLoc (Lomax 2008), to retrieve 

hypocenter location and source time function data from weak seismic events. The a priori PDF is 

estimated by the arrival times of the sensor network with the covariance matrix. The final 

hypocentral location is described as the mode of the a posteriori PDF. Obviously, here as well 

parameter uncertainties are estimated theoretically based on the wave forms only and assume a 

Gaussian distribution. 

 

Tarantola and Valette (1982) suggested the use of Bayes’ theorem to obtain posterior PDFs for 

the spatial source location parameters. This is realized in the program NonLinLoc (Lomax 2008). 
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The approach chosen for the present work was that posterior distributions for all model 

parameters are first estimated using a large data set of observed arrival times. These estimated 

parameters are then used in conjunction with a predictive algorithm to create complete spatial as 

well as temporal posterior PDFs for the source location parameters. 

 

4.1.3 Experiment Used for this Study 

A calibration experiment was performed on this specimen prior to the load test using pencil lead 

breaks (PLB) applied to the surface of the specimen (Schumacher 2006). Five individual PLB to 

initiate stress waves were performed on 76 x 76 mm (3 x 3 in.) grids on the front x-y and top x-z 

face, and the bottom of the pull-out rebar, and are shown as grey crosses in Fig. 4.4. PLB 

represent a common means to produce highly repeatable stress wave sources in AE (EN 2000). 

Eight AE sensors were deployed non-symmetrically on four faces of the specimen and are shown 

as yellow cylinders. Sensor location coordinates are listed in Table 4.1. 

 

 
Fig. 4.4–View of reinforced concrete test specimen with all PLB locations 

(specimen is semi-transparent to visualize embedded reinforcing bars) 

 

The test specimen was a full-scale reinforced concrete section of a bridge bent cap column with 

dimensions lz x ly x lx = 610 mm x 610 mm x 1.83 m (24 in. x 24 in. x 6 ft). This specimen was 

originally designed to determine the ultimate anchorage force of the embedded ø 35 mm (#11) 

reinforcing bar aligned with the y-axis (Koester 2007). The embedment length of this bar was 406 
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mm (16 in.). Other steel reinforcing bars are shown for reference. All reinforcing bars were Grade 

60 (fy = 414 MPa) and the average concrete compressive strength was found to be 28.0 MPa 

(4060 psi). 

 

Table 4.1–Sensor locations 

Sensor x y z Location SE150-M 
[-] [mm] [in.] [mm] [in.] [mm] [in.] [-] Serial # 
1 -216 -8.5 457 18.0 302 11.9 front x-y 930 
2 178 7.0 432 17.0 302 11.9 front x-y 940 
3 -229 -9.0 0 0.0 25 1.0 bottom x-z 1221 
4 229 9.0 0 0.0 25 1.0 bottom x-z 1250 
5 -254 -10.0 394 15.5 -311 -12.3 back x-y 1254 
6 216 8.5 178 7.0 -311 -12.3 back x-y 1259 
7 394 15.5 613 24.1 -254 -10.0 top x-z 4202 
8 -356 -14.0 613 24.1 178 7.0 top x-z 4203 

 

 
Fig. 4.5–PLB locations on specimen surface included in parameter estimation 
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To keep the amount of data to a reasonable limit, only 40 selected locations were included in the 

regression analysis and are shown in Fig. 4.5. The total number of observed arrival times included 

is: 40 locations x 5 PLB per location x 8 sensors = 1600 arrival times. The locations that lie on 

the front x-y face are numbered 15 to 75, the ones on the top x-z face 101 to 164. The sensors are 

shown as yellow circles. 
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4.2 Statistical Modeling Using Bayesian Analysis Methods 

4.2.1 Concepts of Bayesian Analysis 

Bayesian statistics, specifically the Bayesian updating formula, represent the main framework for 

incorporating uncertainties and errors in the present problem. The formula is based on the original 

Bayesian updating rule which states that for two events A and B, 

 

 ( ) ( )
( ) ( )|

|
P B A

P A B P A
P B

=  (4.5) 

 

where  is the (updated) posterior probability of event A incorporating the knowledge that 

event B has occurred;  is the likelihood or probability of event B if A were to occur; 

( |P A B)

)( |P B A

( )P A  is the probability of the event A before knowledge  about occurrence of B, also called prior 

probability; ( )P B  represents a normalizing scalar. This rule can now be extended and applied for 

a random variable X having the PDF ( )|Xf x θ  with distribution parameters θ . In order to 

account for uncertainties in θ , it is considered a random variable Θ. Once events are observed 

that provide information about the random variable X, this new knowledge can then be used to 

update the distribution of Θ by using Eqn. 4.5 as follows: 

 

 ( ) ( ) ( )|
|

L x
f x f

c
θ

θ θΘ = Θ

)

 (4.6) 

 

where ( |f xθΘ  represents the posterior distribution conditioned on observation of outcomes of 

the random variable X, ( ) ( )| XL x f x |θ θ=  is the likelihood function of parameters θ  for 

observed realizations of x, c a normalizing constant defined as the m-fold integral 

( )|L x p ( ) 1d mdθ θ θ
∞ ∞

−∞ −
∫ ∫ θKΘ

∞

K  where m is the number of parameters, and ( )f θΘ  the prior 

distribution for Θ before additional knowledge is gained.  
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Once the posterior distribution ( )|f xθΘ  for the parameters is obtained, it can be incorporated in 

a general predictive joint distribution of the form 

 

 ( ) ( ) ( ) 1| , , |Y Y mf y x f y f x d dθ θ θ θ θ
∞ ∞

Θ
−∞ −∞

= ∫ ∫K K  (4.7) 

 

to predict future events Y based on knowledge from past observed realizations x and estimated 

parameters θ . The difficulty lies in computing the integrals in Eqns. 4.6 and 4.7, for which 

analytical solutions exist only in special cases. Numerical methods using Monte Carlo (MC) 

simulation techniques represent a powerful means to address this problem and are introduced in 

the following section. 

 

4.2.2 The Numerical Approach 

The computer program utilized for the present work is called WinBUGS and available free for 

download (Imperial College and Medical Research Council 2007). This program enables 

Bayesian inference and numerical analysis of complex data using Markov Chain Monte Carlo 

(MCMC) simulation techniques. An introduction to this field can be found in Gilks et al. (1996) 

as presented in section 4.2.1. That problem is greatly simplified and generalized by using MCMC. 

For instance, integrations become simple summations and expectations simple averages of a 

collection of random samples drawn from specified distributions in the correct proportions. This 

is of course an approximation process as the population mean μ for example is estimated by a 

sample mean x . Large numbers of samples, however, will ensure desired accuracy. A Markov 

Chain is a sequence of computations where the next step only depends on the current step, but not 

on any earlier steps in time, i.e. ( )1t tX f X+ = . The intent is that, eventually, the chain will 

become independent of its initial (or prior) state, and gradually converge to a unique stationary 

(posterior) state that does neither depend on the time step t nor the initial state X0. The sampling 

of Xt+1 conditioned on Xt is based on the Gibbs sampling technique, a special form of the 

Metropolis-Hastings algorithm (Gilks et al. 1996). 
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4.2.3 Model and Parameter Uncertainties 

Any mathematical model of a physical phenomenon includes uncertainties and comes with 

inherent errors as the true nature of a problem and its parameters are known only to a certain 

degree. The same is true for the present problem. For example, the specimen is assumed to be 

isotropic and homogeneous, but reinforced concrete is a composite material consisting of cement, 

aggregates, and embedded reinforcing steel, each constituent having significantly different wave 

propagation properties. And even if a non-uniform velocity model were considered, there would 

still be variability in each material property and corresponding uncertainty. However, numerical 

simulation of wave propagation has shown that typical reinforcing bar diameters do not change 

the stress wave propagation significantly (Schechinger 2006). 

 

Fig. 4.6 shows a generic test specimen and visualizes the most important parameters involved in 

estimating stress wave source locations. Indices are assigned as follows and impose a distinct 

hierarchy in the model: 

 

• i for pencil break locations (1 to 40) 

• j for the event at each location (1 to 5) 

• k for the sensors (1 to 8) 

 

 

Event source: 
Sensor: 

Fig. 4.6–Generic test specimen with parameters (only one sensor shown for clarity) 

to data acquisition 

0[ , ] 0[ , ],i j i jx t  

ϕ[ , , ]i j ky  x 

z 

Solid: cp[i,k] (E, ρ, ν) 

[ , , ]i j kd
[ ] [ , , ] [ , , ], ,k a i j k i j kx t A  



72 

 

In Table 4.2, the most important parameters and an attempt to classify their variability into 

epistemic (epi) or aleatory (ale) uncertainty was undertaken (DerKiureghian 2001). Epistemic 

uncertainties are those associated with limited knowledge of the problem. They can be decreased 

by for example refining the mathematical model or gathering more information about a process. 

Aleatory uncertainties arise because of the inherent randomness in a system and are irreducible. 

These include for instance material properties that were determined through sample tests. The 

parameters in Table 4.2 were ranked subjectively, according to their importance based on 

experience and observation. 

 

From a Bayesian point of view, there is no fundamental difference between these variable types, 

i.e. they are all regarded and treated as random quantities. However, it is still important to know 

which model parameters are present and irreducible and which can be influenced by improving 

the mathematical model or including more observations. 
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Table 4.2–Most important parameters present in source location estimations 

Parameter Type Description 
p-Wave arrivals, ta[i,j,k] epi Accuracy of determination dependant on: 
  - Signal-to-noise ratio of recorded signal 
  - Wave travel path and attenuation characteristics 
  Arrival time picking errors Δt may be a function of: 
  - Wave travel path length, d[i,j,k] 
  - Wave incident angle, ϕ[i,j,k] 
  - Maximum signal amplitude, A[i,j,k] (observed) 
p-Wave velocity, cp[i,k] ale Function of material properties, micro-cracks: 
  - Modulus of Elasticity, E 
  - Material density, ρ 
  - Poisson’s Ratio, ν 
Wave travel path, d[i,j,k] ale/ 

epi 
Can deviate from straight line due to macro-cracks, 
voids, specimen geometry, etc. 

Sensor locations, x[k] epi Measurement errors, inexact placement 
Source characteristics ale Type, spatial and temporal dimensions 
Location scheme epi - Sensitivity of location with respect to sensors 
  - Errors in the source location scheme 
Sensor characteristics epi Sensitivity, resonant behavior 
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4.3 Model Formulation and Implementation 

The development of a probabilistic stress wave source location algorithm to predict source 

location parameters in full probabilistic form based on Bayesian analysis concepts consists of the 

following steps: 

 

1. Formulation of inference model 

2. Estimation of model parameters using Bayesian inference 

3. Implementation of predictive model 

4. Model validation 

 

In the succeeding four sections, these steps are described in detail. 

 

4.3.1 Formulation of Inference Model 

Based on the uncertainties described in section 4.2.3, a basic probabilistic model for the 

estimation of stress wave source locations was developed. The general relationship between 

source parameters and sensors is the arrival time function as stated in Eqn. 4.3 and visualized in 

Fig. 4.6. This function now restated taking into account uncertainties in the model parameters and 

errors. The slowness sp was used as the descriptor for the motion of the p-wave rather than 

velocity cp and is defined as: 

 

 1
p ps c −=  (4.8) 

 

This was done in order to facilitate linear behavior of the probabilistic model during the inference 

process, so that the central model equation took the general form: 

 

 0 1y xβ β δ= + +  (4.9) 

 

In the present study, y represented the observed arrival times ta, β0 the event time t0, β1 the wave 

slowness sp, and x the signal travel distance d. δ is a correction term that can be included to 

account for measurement uncertainty. Given the structure of the used data, the probabilistic 

model was assumed a multi-hierarchical, random effects type. 
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Variability in the model was assumed to be associated with the basic source location parameters 

which are the p-wave slowness sp, the observed arrival times ta, and the event time t0. Note that 

not all parameters vary with each index i, j, k. There is only one event time t0 per event, i.e. for a 

group of eight sensors, and thus it does not vary with k. The wave propagation characteristics 

were assumed to be the same for each PLB at a specific location and sp therefore not updated with 

j. The travel distance d was assumed as deterministic and calculated from the ‘known’ source and 

sensor locations using Eqn. 4.4. The model equation is based on Eqn. 4.3 and can be stated as 

follows: 

 

 [ , , ] 0[ , ] [ , ] [ , , ]a i j k i j p i k i j kt t s d= +  (4.10) 

 

The corresponding probabilistic model can be written as: 

 

 ( )[ , , ] 0[ , ] [ , ] [ , , ] [ ] ~ N ,
aa i j k i j p i k i j k t kT t s d τ+  (4.11) 

 

The parameters that were estimated and used to predict future events are the following: 

 

• Mean p-wave slowness, 
psμ   

• Precision of the p-wave slowness, 
psτ  

• Precision of the observed arrival times, [ ]at kτ  

 

The first two parameters are global parameters, i.e. not varying with any of the indices i, j, or k. 

Because uncertainty in the observed arrival times ta was assumed to be associated to some degree 

with each sensor location, the precisions τ for the observed time arrivals were updated with k. The 

precision τ is defined as the inverse of the variance σ 2, where σ is the standard deviation: 

 

 2τ σ −=  (4.12) 

 

All elements (in WinBUGS called nodes) used to describe a probabilistic model can be classified 

as stochastic, constant, or logical. WinBUGS allows for graphical representation of probabilistic 
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models which is illustrated in Fig. 4.7. Stochastic nodes require specification of prior distributions 

as described in section 4.2.1 and are listed in Table 4.3. Generally, Normal (N) distributions were 

assigned as priors to nodes that represented means and Uniform (U) distributions as priors to 

nodes that represented standard deviations.  

 

A correction term δ was not included in the model at this point. This is planned for future work 

and may be used to employ additional information such as the signal strength or the angle at 

which the stress wave arrives at the sensor to enhance the probabilistic model. 

 

 
Fig. 4.7–Graphical representation of inference model (screenshot from WinBUGS) 
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Table 4.3–Description of nodes used in inference model 

Param. WinBUGS Unit Node type Specified priors/Description 

psμ  mu_sp [ms/m] Stochastic N(0.25, 1.0) 

psσ  sig_sp [ms/m] Stochastic U(0.0, 100) 

psτ  tau_sp [(ms/m)-2] Logical 2
p ps sτ σ −=  

[ ]at kσ  sig_ta[k] [ms] Stochastic U(0.0, 100) 

[ ]at kτ  tau_ta[k] [ms-2] Logical 2
[ ] [ ]a at k t kτ σ −=  

0[ , ]i jt  t0[i,j] [ms] Stochastic N(-0.05, 1.0) 

[ , ]p i ks  sp[i,k] [ms/m] Stochastic N(
psμ , 

psτ ) 

[ , , ]i j kd  d[i,j,k] [m] Constant Calculated from ‘known’ locations 

[ , , ]at i j kμ  mu_ta[i,j,k] [ms] Logical Eqn. 4.11 

[ , , ]a i j kt  ta[i,j,k] [ms] Stochastic N( [ , , ]at i j kμ , [ ]at kτ ), observed 

 

4.3.2 Estimation of Model Parameters Using Bayesian Inference 

The model was implemented in WinBUGS as described in section 4.3.1 and the analysis run to 

estimate the posterior distributions of all model parameters. A summary of the results is shown in 

Table 4.4. Listed are sample means x , standard deviations s, coefficients of variation 1CV sx −= , 

and Monte Carlo standard error of the mean. The average p-wave velocity cp (determined from 

node 
psμ  by Eqn. 4.7) was 3.89 m/ms (153 in./ms) which is physically meaningful and 

comparable to values found in earlier studies (Schumacher 2008). Another parameter that was 

observed during the simulation process was , the estimated event source times. Here as well, 

estimated posterior values were all feasible. Finally, R and P matrices were computed containing 

the correlation coefficients ρ and p-values, respectively, to test for correlation between sampled 

parameters. No significant correlation was found between any of the estimated parameters, i.e. all 

model parameters were essentially statistically independent. PDFs were fitted and assigned to 

each estimated parameter based on the highest log-likelihood value and are listed in Table 4.4. As 

can be seen, the mean p-wave slowness 

0[ , ]i jt

psμ  was found to be Normal (N), and the precisions 
psτ  

and [ ]at kτ  Gamma (Gam) distributed. These posterior PDFs were used in the predictive algorithm 

for validation of the model and is presented in the following section. 
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Table 4.4–Sample statistics of estimated model parameters and fitted PDFs 

Par.  Posterior sample statistics Fitted PDFs 
 Unit x  s CV MC error  

psμ  [m/ms] 0.2574 0.002271 0.009 5.451E-5 N(0.2574, 193800) 

psτ  [(m/ms) -2] 3747 371.0 0.099 2.831 Gam(102.3, 0.02729) 
[1]taτ  [ms-2] 556800 85110 0.153 500.5 Gam(43.34, 7.783E-5) 
[2]taτ  [ms-2] 257100 35560 0.138 229.7 Gam(52.52, 2.043E-4) 
[3]taτ  [ms-2] 1.068E6 200100 0.187 1207 Gam(29.39, 2.752E-5) 
[4]taτ  [ms-2] 586100 90470 0.154 558.5 Gam(45.52, 7.255E-5) 
[5]taτ  [ms-2] 512900 76490 0.149 458.3 Gam(45.48, 8.867E-5) 
[6]taτ  [ms-2] 584200 89790 0.154 595.9 Gam(42.8, 7.325E-5) 
[7]taτ  [ms-2] 79270 10520 0.133 73.53 Gam(56.82, 7.168E-4) 
[8]taτ  [ms-2] 40890 5286 0.129 31.23 Gam(59.87, 0.001464) 

 

The number of model simulation updates was selected based on convergence criteria presented in 

Congdon (2003): a total of 250000 were generated of which the first 50000 samples were 

discarded to account for the so-called burn-in time. Of the remaining 200000 samples, every 8th 

sample was used, producing a final sample size of 25000 samples. This process is called thinning 

and ensures minimal autocorrelation, i.e. interdependency of consecutive samples. 

 

4.3.3 Implementation of Predictive Model 

Based on Eqn. 4.7, a predictive model was implemented. It was based on the same probabilistic 

model as presented in section 4.3.1 and is visualized in Fig. 4.8. The estimated model parameters 

presented in Table 4.4 were utilized as priors to estimate the source locations parameters t0, x0, y0, 

and z0. The priors selected for the source location parameters should be based on reasonable 

assumptions, i.e. the following specifications are recommended based on the present study: 

 

• Arrival times t0: ( )0 0
N ,  t tμ τ , where 

0t
μ  and 

0t
τ can be taken similar to the values for t0[i,j] 

obtained from the parameter estimation (see section 4.3.2) 

• Spatial coordinates, x0, y0, and z0: ( )U ,  ba , where a and b are reasonable lower and 

upper spatial limits depending on sensor locations and specimen geometry 
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events) 

Fig. 4.8–Graphical representation of prediction model (screenshot from WinBUGS) 

 

Once new time arrivals ta are observed, the source location parameters t0, x0, y0, and z0 can be 

estimated using the presented predictive model. Numbers of updates were carried out following 

the same criteria as presented in section 4.3.2. An example of the results obtained for one event is 

illustrated in Fig. 4.9: all four source location parameters are available with their PDFs. 

 

 
Fig. 4.9–Source location parameter results 

 

In order to account for the three-dimensionality of the spatial part (x0, y0, and z0) of the solution, 

an algorithm was developed that searches for the highest density within all simulated spatial 

points which represents the mode of the solution and therefore the point of highest probability of 

occurrence. This was done by dividing the three-dimensional space containing the solution 

‘cloud’ into bins and counting the number of samples within each of those so created cubes.  
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The bin width h was determined based on Scott’s choice (Scott 1979) and is: 

 

 
3

8.5sh
n

=  (4.13) 

 

where s is the sample standard deviation and n the number of samples. A factor of 8.5 as opposed 

to 3.5 as suggested in the original equation was used in order to produce smoother contour plots. 

The mode was found as the cube with dimensions hx, hy, and hz, that contained the largest number 

of samples (or highest density), and was represented by a white pentagram centered in that cube. 

The procedure to determine the three-dimensional mode was as follows: 

 

1. Determine bin widths h for all spatial coordinates 

2. Count number of samples within each cube for locations covering entire spatial data 

3. Select cube containing largest number, i.e. having the highest density of samples 

4. Determine spatial coordinates of that cube = mode, i.e. optimal location 

 

The center of the cube can be highlighted if a pin-point solution for the source location is needed, 

e.g. when a comparison with a traditional source location algorithm is performed. In addition, 

two-dimensional contour plots can be generated in selected planes, e.g. the x-y plane, that pass 

through the mode. This was done for the same example as presented above and is shown in Fig. 

4.10. The left figure shows a scatter plot of all samples in an isometric view. Sample points that 

lie within the slice in the x-y plane containing the highest density are shown in red. The thickness 

of that slice is hz. The top-right figure represents a view on the x-y plane of the samples. The 

contour plot shown in the bottom-right figure was created from the points shown in red in the left 

and top-right figure. The center of the cube is marked with a white pentagram and represents the 

three-dimensional mode of the spatial coordinates x0, y0, and z0. 
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Fig. 4.10–Determination of mode of three-dimensional point ‘cloud’: 

Left figure: Isometric view, highest density slice in z-direction shown in red 
Top-right figure: View of x-y plane, highest density slice in z-direction shown in red 

Bottom-right figure: Contour plot of z-slice with mode of highest density (spatial solution) 

 

 

4.3.4 Model Validation 

In order to evaluate the probabilistic model, a set of 22 PLB events on the front x-y face of the 

specimen that were not previously used to estimate model parameters (see section 4.3.2) were 

employed. The priors specified for the predictive model were: , 

, , and 

( )0  ~ N 0.05,  1600t −

( )0  ~ U 1.0,  1.0x − ( )0  ~ U 0.3,  0.9y − ( )0 ~ U 0.0,  0.6z . The probabilistic solution is 

presented in Fig. 4.11. The lower-left six locations are enlarged. Scatter plots of spatial samples 

are shown with the contours as described in section 4.3.3 and superimposed. The coloring was 

removed to enhance readability. The true PLB locations are shown as blue ‘+’. It can be observed 

that the estimated mode of the solution is generally accurate for most of the PLBs. Deviations 

between predicted and true locations are assumed to be associated with local effects that depend 

on the individual signal travel path and therefore difficult to account for. Such local effects can be 

voids in the concrete matrix or nearby steel rebars that interfere with the propagating stress wave. 
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This issue could be addressed by being selective on which observed arrival times be included in 

the prediction, i.e. arrival times that appear to be outliers are omitted from the prediction. This 

could be for example done by trial and error. 

 

 

 
Fig. 4.11–Estimated source locations for 22 PLB events on the specimen front x-y face 
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4.4 Summary and Conclusions 

A novel framework for the development of a probabilistic algorithm to estimate stress wave (or 

AE) source locations is presented. Bayesian analysis methods in conjunction with Markov Chain 

Monte Carlo simulation were employed to first estimate model parameters using observed data 

from an experiment, and then to predict source location parameters of future observations in 

probabilistic form. The probabilistic model that was implemented accounts for variability in the 

wave propagation characteristics, the measured arrival times, and the event time. Bayesian 

inference was found to be a powerful and flexible method to estimate parameters based on a large 

amount of observed data. All distribution and other parameters are estimated with their full 

posterior probability distributions. It was shown that predictions based on estimated parameters 

employing newly observed arrival times can be performed and produce accurate results. 

Temporal and spatial source location parameters are available in full probabilistic form as PDFs 

and the mode can be used as optimal location result. Extension of the presented probabilistic 

model by including a correction term to account for measurement uncertainty is possible and may 

enhance the prediction. 

 

Future work may include the following: 

 

• Extension of the model by including a correction term to account for measurement 

uncertainty employing additional observable information such as signal strength or stress 

wave incident angle 

• Sensitivity study on model parameters, establish a ranking of the importance of each used 

parameter 

• Comparison with traditional deterministic algorithm 

• Normalization of posterior source location PDFs to obtain actual probabilities 

• Evaluation of algorithm employing field data from real structures 
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5 General Conclusion 

Non-destructive testing methods and applications have become of increasing interest due to the 

worldwide aging and deteriorating infrastructure network. Acoustic Emission (AE) monitoring in 

particular has its merits as it allows observing infrastructure components in real-time and 

detecting sudden changes in the integrity. Three manuscripts have been compiled and are 

included in this dissertation. The range of applications is manifold and through this dissertation, 

new territories have been explored that have traditionally not been part of AE research. Each one 

addresses pressing problems in infrastructure monitoring. The goal of the author was to cover 

practical as well as theoretical aspects and problems of AE monitoring in Civil Engineering and 

thereby push innovation.  

 

In the first manuscript, a practical tool was implemented that can reliably detect vehicles 

equipped with studded tires passing a bridge. The use of studded tires has become of increasing 

concern to transportation agencies due to the damage caused to pavements and limited funds 

available for repair and replacement. Currently, no tools are available to automatically detect and 

report vehicles with studded tires. An integrated system to detect vehicles equipped with studded 

tires passing over a highway bridge is proposed. Piezo-electric sensors attached to a bridge 

member can detect and record stress waves that are emitted when vehicles with studded tires pass 

over the bridge. Discrimination of these stress waves is possible because they were found to 

significantly differ from stress waves caused by trucks and vehicles that have no studded tires, 

and from structural response. A simplified single-channel system could be practicably deployed 

for detection and reporting and would allow for collection of statistical data to better estimate 

pavement life and wear ratio and could therefore be utilized to improve design and maintenance 

of road surfaces. The system could further be extended for use as an enforcement tool of legal 

studded tire operating dates. This manuscript titled “Detection of Vehicles with Studded Tires 

Using Acoustic Emission Sensors Mounted to Highway Bridges” was submitted to the ASCE 

Journal of Transportation Engineering and accepted for publication on April 4, 2009. 

 

The second manuscript titled “Estimating Operating Load Conditions on Reinforced Concrete 

Highway Bridges with b-Value Analysis from Acoustic Emission Monitoring” introduces 

methods to monitor and analyze bridge girders under in-service conditions. A well-known 

relationship between the frequency of occurrence of earthquakes and their magnitudes was 
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applied to AE data recorded during testing of two full-scale reinforced concrete (RC) bridge 

girders to evaluate load conditions of full-scale reinforced concrete bridge girders. A 

sophisticated experimental test setup and loading protocol accounted for realistic loading 

conditions including simulation of ambient traffic. It was found that the main advantage lies in 

real-time monitoring where for example loads that are significantly higher than experienced 

previous loads produce a considerable drop in the b-value. The proposed complementary method 

called Minimum b-Value Analysis has the potential to help estimating the operating load 

conditions of RC bridge girders as loads with different magnitudes produce distinguishably 

different b-value responses even under service-level loads. The AE characterizing loading can be 

applied using heavily loaded standard maintenance trucks that are available to most departments 

of transportation as was done for the presented in-service load test. The influence of factors that 

can affect the so-called b-value estimations such as stage of deterioration or external sources was 

studied and is introduced. This manuscript was submitted to the journal of Structural Health 

Monitoring and accepted for publication on October 5, 2009. 

 

A novel framework for the estimation of AE source locations is introduced in the third 

manuscript titled “Estimation of Acoustic Emission Source Locations: A Bayesian Approach” 

and will be submitted to the Journal of Sound and Vibration. Bayesian analysis methods in 

conjunction with Markov Chain Monte Carlo simulation were employed to first estimate model 

parameters using observed data from an experiment, and then to predict source location 

parameters of new observations in probabilistic form. The probabilistic model that was 

implemented accounts for variability in the wave propagation characteristics, the measured arrival 

times, and the event time. Bayesian inference was found to be a powerful and flexible method to 

estimate parameters based on a large amount of observed data. All distribution and other 

parameters are estimated with their full posterior probability distributions. It was proven that 

location predictions based on estimated parameters employing newly observed arrival times can 

be performed and produce accurate results. Temporal as well as spatial source location 

parameters are available in full probabilistic form as PDFs and the mode can be used as optimal 

location result. Extension of the presented probabilistic model by including a correction term to 

account for measurement uncertainty is possible and may enhance the prediction. This is planned 

for future work. 
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