Development and Use of Power Saws In Felling and Bucking on the Pacific Coast by Collier Buffington, Jr.

A Thesis
Presented to the Faculty of the School of Forestry Oregon State College

In Partial Fulfillment

 of the Requirements for the Degree Bachelor of ScienceMay 1943

Approved:

Professor of Logging Engineering $5 / 26 / 43$

TABLE OF CONTENTS
page1
The Dow Chain Saw 3
Development of Portable Chain Saws 4
Time Study --- Falling 6
Time Study --- Bucking 7
Gasoline Power Chain Saw Bucking 11
Chain Saws vs. Drag Saws 12
Drag Saws as used in the Redwoods 13
Electric Power Chain Saws 15
Production Costs and Comparisons 18

Introduction

For the past twenty-five years, a great number of b various devices for falling and bucking timer mechanically have been suggested and designed. Most of them have proven impractical for general forest conditions. There are four main classes of these mechanical fallers and buckers: the circular saw, the rope saw, the drag saw, and the chain saw. Other ideas which have been tried include a wire rope feller which was supposed to burn through a tree by heat of friction when a wire rope was drawn back and forth rapidly in contact with the wood; a series of augers to out through the stump below the level of the ground, thus leaving no stump to obstruct skiding; a mechanical chiseling apparatus to perform much the same as an axe; and a cutter mounted on the end of a horizontal shaft swinging rapidy in a horizontal arc. Felling trees by pulling them over with a donkey engine has been tried on a very small scale.

Various devices employing a circular saw have been designed but cannot be used in large timber because of the large saw needed.

The only rope saw to come on the market consisted of a steel cutting rope which was attached to cables from a double winch traction and was run rapidly from one winch to the other, cutting the tree in the operation.

Not much interest was shown for power falling in the Douglas-fir region until 1936 when the Pacific Logging Congress at Eureka, California, gave some
demonstrations with power machines, which resulted in a committee to assist in their further development. The Pacific North West Forest Experiment Station volunteered to collect all of the available data. Their findings in brief are as follows:

1. The saw speed must be high. If this is not true, a power saw's only justification is in the saving resulting from lower cutting, saving more of the bole of the tree.
2. The saw must be easily portable regardless of dense brush and steep slopes; this is governed chiefly by weight. If weight could be disregarded, it would not be difficult to design a saw; but as weight is decreased, many complications arise.
3. Setting up to cut must not take a great deal of time, although as the size of the timber increases, the allowable time for setting up may increase proportionally. Numerous set ups in small timber may render a saw impractical if it does not meet this requirement.
4. The outfit must be durable and rugged. If this is not so, the depreciation and repair costs may be such that they will offset any advantages gained from the saw.
5. The motor must be simple, poweriul, and reliable so that no time will be lost in starting, overheating, or other operating weaknesses resulting in mechanical delays.
6. Fuel must be readily obtainable and of low cost. This requirement is usually easy to satisfy; but when
aviation or similar fuel is required, this is sometimes not true.

Drag saws, which have been used in the redwoods several years prior to the above findings, do not meet with several of the listed requirements; but under the conditions they are used, they have proved a big saving in cost per M of falling and bucking. This, of course, is due to the large size of the timber, which in the case of the larger trees may take as long as eight hours to fell, and in some cases longer.

The Dow Chain Saw

The Dow Saw, built by the Dow Pump and Diesel Engine Company, of Alameda, California, has proved to be practical in the pine regions of the West but cannot be expected to be successful in the Douglas-fir belt, due to its extreme weight of 450 pounds.

This machine is mounted on pheumatic-tired wheels. In a demonstration of one of the early models in 1934 at a camp of the Diamond Match Company, of California, it bucked 118,712 board feet in 32 minutes! This company bucks its logs at a landing. On another occasion it felled 56,300 board feet on a steep hillside on a donkey "show" in five hours. A 50 percent saving was estimated over the hand system on a contract basis. These operations were under Ldeal conditions which are seldom found in the Pacific Northwest Douglas-fir region.

Development of Portable Chain Saw

Late in 1936, the British Columbia Loggers Association imported from Germany, a chain saw, similar to the type now seen in the Pacific Northwest. This was not the first saw of this type; however, it was supposed to be better than the inadequate saw which was coming on the market at the time. This saw was designed and developed for the German Army, for use, particularly, in cases of retreat through wooded country where trees could be felled to retard the advance of the enemy. This particular machine showed a big advantage over American machines in its simple construction and light weight (120 pounds). It was powered by a high speed, singlecylinder, two-cycle motor and cost $\$ 300$.

Bloedel, Stewart, and Welch, Ltd., of British Columbia obtained this saw from the Loggers Association to make a study and trial of it. This company has been one of the main exponents in developing the chain saw to what it is today. By working it under their woods conditions, they gave it the most exacting tests, correcting weaknesses as they appeared.

They put this saw to work under the worst possible weather conditions, in frozen timber, with from one to three feet of snow on the ground. The ground was broken and brushy. The timber consisted of a mixture of fir, cedar, and hemlock averaging about three feet in diameter on the stump. The machine was operated from January 7 until February 4, when the camp was shut down because of
snow. Six hundred M feet of timber was felled and bucked with the saw. The crew varied between two and four men; the average cut per man per day was 7,685 FBM. Costs were:

These figures include time lost through break-downs. Handsets on the same "show" would have had a higher average cut per man at a lower cost per \mathbb{M}.

During this trial period a good many defects were noted and corrected. A new chain was designed similar to the Dow chain. This first new chain was not satisfactory, so another was made immediately. This chain had the desired cutting speed but could not be controlled in the cut. Further changes were necessary. In the meantime, word was received from Germany that new improved saw chains had been developed and were being sent. Rather than spend more time and money, the company awaited the arrival of these. They proved to be a vast improvement over the originals, provided they could stand up long enough.

In May of 1937 the compeny took a time study on the saw to aid in stepping up its efficiency. These later proved to be a decided value. The form they used is as follows:

REED PRENTICE SAW CHAIN

By March, 1938, Bloedel, Stewart, and Welch, Ltd., were using five power saws manufactured by the Stihl Company of Hamburg, Germany. These saws, however, were principally the same as the original one purchased by the British Columbia Loggers Association in 1936; but many new improvements had been incorporated into these machines, both by Bloedel, Stewart, and Welch, Ltd., and by the German company to make them adapted to the Douglas-fir region. The improved model was known as the "Vancouver," and cost \$865.00. The new faster-cutting chain had an expected life of four million feet. Other
improvements were: a more portable clutch, a removable hande to facilitate bucking, and many small improvements. A smaller machine of 65 pounds with a forty-inch blade was developed in Germany to fell smaller timber with a DBH of 18 to 20 inches.

At this time, Bloedel, Stewart, and Welch were getting five more saws ready to start on a different operation on Franklin River.

When the war broke out in 1939, it was necessary for the Company to find a different source from which to obtain its machines. It was then it turned to the Reed Prentice Company of British Columbia. This compahy, along with the D. J. Smith Equipment Company and Spear and Jackson, Itd. of British Columbia, had been helping Bloedel, Stewart, and Welch make improveThechalleager scurt ments. This machine was principally the same as the German make.

REED PRENTICE CHAIN SAW

By Fall of 1940 this company was falling 80 percent of their timber with power paws. Onehundred million feet had been felled up to September, 1940. By Fall of 1942, after five years of power sawing, Bloedel, Stewart, and Welch were 90 percent mechanized in their felling operation. Their cut over the period of years is as follows:

$$
\begin{aligned}
& \text { 1937........... 6,000,000 feet } \\
& \text { 1938........... 28,000,000 " } \\
& \text { 1939.............109,000,000 " } \\
& \text { 1940............277,000,000 " } \\
& \text { 1941.............242,000,000 " }
\end{aligned}
$$

$$
\begin{aligned}
& \text { - First six months of } 1942
\end{aligned}
$$

Many of their machines are three to four years -1d, but by systematic overhaul and worn parts replacement these machines are kept in near-new condition. By this method, loss of cew time through repairs is kept at a minimum. The machines were all standardized on one basic pattern to make parts interchangeable. Up until 1938, the most expensive single replacement item was connecting-rod bearings failures, which was one to every million feet felled. This has since been cut to one for every three and a half million feet.

Over a period of five years, the saw chain costs have been cut to one-third the original cost. There is still room for improvement of saw chains; but as mass production of saws is increased, many of the faults will be worked out and chain costs likewise will be lower.

Gasoline Power Chain Saw Bucking

For power bucking a much lighter machine is needed than those used for falling. Bloedel, Stewart, and Welch, Ltd. set out to find or bring out a lighter machine. After two years of work and research by one firm, a machine of 97 pounds was developed, which was about 40 pounds overweight and entirely unsuitable. They searched elsewhere; and after four months, a machine weighing 64 pounds total weight was produced. This was built around a villiers motor. revolutionary English motor developing between four and six horsepower and at a weight of only 25 pounds for the complete motor unit.

This unit was subjected to two months of experi1 mentation and some general rough treatment to develop the best methods of handing it. The motor came through the period without any mechanical defects appearing. The rest of the machine showed need for a few minor changes, although the machine, as a whole, was quite satisfactory. Chains, however, offered a considerable problem until the correct combination of tooth shapes, set, and clearances was obtained. This saw offered a rather radical departure from the conventional type of bucking in that undercutting is done by mortising the saw chain through the log. After the saw has mortised its way through the \log, sawing action is done either up or down as
the operator desires or the lay and bind of the log requires. The average cut by hand buckers for this company is slightly under 18 M feet per day. Indications are with this new machine that 7 M feet per hour is possible, giving 56 M per man day, under average ground and timber conditions. This same machine is being developed to fell timber of a DBH up to 48 inches.

Chain Saws versus Drag Saws

Chain saws have been made much lighter and more complex than drag saws. They cut more rapidly than drag saws because the chain saw does not require a reversal of direction as does the drag saw. Therefore, more feet per minute of travel are obtained by the chain saw. These two points have tended in the past to make the chain saw more successful than the drag saw. However, the drag saw has several factors which should not be overlooked:

1. Drag saws are more simple and more rugged in operation.
2. Drag saws have a small initial investment, hence a lower charge against total production in machine life.
3. When a small log or tree is encountered while cutting in large timber with a drag saw, a shorted blade may be substituted while in chain saws it is necessary to use an outfit which will cut the largest tree or \log encountered.
4. Once a drag saw is started in a cut, it can be operated by one man, leaving the other one to do other duties; but in the case of the chain. saw, both men are needed at all times.
5. Engine vibrations do not bother draw saw operators, whereas in the case of the chain saw, it tires them rather rapidly.
6. Electric power will eliminate this factor, but here again many complications arise.

Drag Saws As Used in the Redwoods
The drag saw, as used for fielling today, requires very little change over from the conventional type used for bucking. One change is to exchange the place of the water tank and gas tank on the drag saw rigging. When the saw is working in vertical position, alongside of a tree, this arrangement prevents the engine from heating when the water gets low in the tank. Another chance is placing a small eye made of $3 / 8$-inch round iron in and near the rear end of the frame. From this is fastened an extension arm to fasten to the side of the tree. The extension arm is aahalf inch pipe, five feet long, in which a 3/8-inch rod will slide. This rod has a dog welded to the outer end for driving into a tree. Throughthe rod and pipe are drilled quarter-inch holes, through which a bolt may be fastened to hold the extension rod to the proper length.

In setting up the saw after direction of fall
is determined, the next step is to place a spring board to hold the outer end of the saw frame. This, of course, is done after proper staging and spring boards are placed for the operators. The saw frame is then placed across the springboard and turned to a vertical position against the tree. With the saw held against the trees in this position, the side gear is swung toward the center of the tree where, if the saw was fastened to it, the points on the tree to which the operators have previously decided will be the maximum cut. When the side gear is in this position, a sight across the saw bolt parallel to its long axis should fall upon a line which is parallel to and within a foot or two of the predetermined layout for the tree. During this operation, the springboard supporting the pointed end of the saw frame may be adjusted until the lineup is correct and the saw frame is in the proper position to give the correct depth of cut on each side of the tree. This operation usually takes about five minutes and is important because as well as regilating the depth of the cut, it also influences the direction of fall.

After this has been accomplished, the wide end of the frame is raised or lowered to a point where it will make the saw cut level or sloping, which ever is needed for the particular tree. The dogs
on the wide end of the frame are then driven securely into the tree. The shortest saw which will cut the tree is then selected and fastened to the side gear by means of a saw bolt. Then a pair of double blocks is fastened. Into these blocks a quarterinch rope is ariven to which weights are hung. Usually two wedges are used for weights. The loose end of the rope is fastened to the side gear at the point where the saw bolt holds the saw. This forms the feed works for sawing and completes the setup.

The sawing is started by one man holding the saw at the proper level while the other man starts the engine and engages the clutch. While the motor is driving the saw through the tree, the operators prepare the tree for the backcut. When the first cut is finished, the saw is moved to the backcut. After the saw has started on the back, the operators chop out the undercut. Often, however, two parallel cuts are made on the undercut side of the tree, varying from six to eight inches apart and then are chiseled out with an axe.

Electric Power Chain Saws

Until recently, electric power chain saws have taken a back seat to gasoline power chain saws. The reason for this is twofold: electric power chain saws take a considerably high initial investment; electric power chain saws require a generator as well as a power unit as a source of power to drive the cutting chain.

THE UNDERCUT

Recently some of the companies manufacturing electric power chain saws conceived the idea of mounting a generator on a small tractor, supplying power from a power take-off on the tractor for the generator. This proved to be quite successful and was readily adopted by loggers in the "Pine" country; but due to topographic conditions, it was not considered, by most loggers, a feasible unit to use in the Douglas-fir region.

A comparison of merits between electric and gasoline power chain saws will show the electric power unit to be more desirable. A complete unit of a gasoline saw with an 84-inch cutter bar weighs 135 pounds; a saw unit on an electric outfit with an 84 -inch cutter bar weighs but 85 pounds, which is an enviable point from the side of the operator. Vibrations on an electric power saw are considerably less
than on the gasoline unit--a big factor when fatigue of operators is taken into consideration. Noise and fumes are at a minimum on the electric saw--another fatigue and a bigger safety factor. Production on electric saws averages around 100 M per day against 75 M per day on gaso-ine units. Starting time on electric saws is a negligible item; while on gasoline saws, it is often a time consuming element. Fire hazard on an electric saw practically does not exist, while quite serious fires have been started from backfiring and sparks from gasoline engines. Depreciation on electric units which have an initial investment of $\$ 10,500$ (including three saws) is to some extent less than a gasoline power saw that costs $\$ 865$.

Against these merits there are two main faults with electric power saws. A heavy rubber-covered electric conduit is required to transmit power from the generator to the saw unit. These are often fouled by trees falling on them and breakage from innumerable sources. These conduits are long enough to allow the fallers to work in a thousand-foot radius around the tractor and generator. The other fault is the close proximity of the workers around each generator unit. Each generator unit has threessaw units working from it. Another fault, if it may be considered a fault, is the danger of.falling a tree on the tractor and generator. This is a rare accident among experienced personnel, but is a possibility.

Since the priority on gasoline power chain saws has been granted to the Armed Forces, and since there is a shortage of manpower in the woods, many logging operators have turned, or will turn, to electric power saws. It is believed that after this war emergency, many operators will continue to use this type of unit.
(Note: It is interesting to note the physical size of the men wanted for power saw operation. Requirements for future power saw operators are: he must be young, fairly husky, over $5{ }^{\prime}$ 10" tall, weigh over 175 pounds, have the average young man's gas engine knowledge, and have previously done a little hard work. These young men are to be worked for a period of a week or ten days helping and working with an experienced crew. At the end of this period, if he has proved satisfactory, he is turned out with a head faller.)

The following charts and tables show a comparison of cost of production for different methods of falling and bucking timber on the Pacific Coast. Daily production ranges of each under average conditions are:

Gasol Falling Chain Saw
Electric Chain Saw Dow Chain Saw
Drag Saw
Hand Set
Falling and Bucking
Dow Chain Saw
$50-80 \mathrm{M}$

Bucking	
Electric Power Chain Saw Drag Saw	$120-150 \mathrm{M}$
Hand	$50-70 \mathrm{M}$
	$20-30 \mathrm{M}$

Note: Limbing on this operation is done on hourly basis under either power or hand falling and bucking method.

Cost as it would be under hand method on contract:
Contract for falling and bucking would be .830 per M
Plus $10 \% \mathrm{a} / \mathrm{c}$ loss of scale between full
scale in woods and net landing scale $\frac{.083}{.913}$
Tools
Bull-buck wages
.025

Present hand limbing cost
Total Cost, hand method
Machine Falling and Bucking, with hand limbing: Cost of Operating one Power Unit: (No Labor):

D2 Tractor \& Saw Unit Repair \& Operating Supplies Per Day

Fuel and Grease
1.00

Saw Chain \& Blade Repairs
.75
Chain \& Blade Replacements
.85
Miscl. Cable, fittings, tools
Cost per Unit per Day
.75

Daily Cost--2 Falling and
I Bucking Unit
x 3
Labor: 4 Men Falling @ 8.20
2 Men Bucking @ 8.20
12.00

1 Helper " @ 7.40
.80

1 Hole Digger @ 7.00
Supervision Charge
Total Cost, Labor \& Supplies: 3 Units: $\overline{82.70}$
Cost per \mathbb{M} on average of 160 N per Day: . 517
Plus Limbing Cost (hand work) . 450
Plus Topping Cost " " . 100
Total Cost, Machine Falling \& Bucking,
with Hand Limbing \& Topping
Difference of Contract Hand Work \& Mach. Work
On basis of annual in-put of 37 Million Feet margin for depreciation and profit will be: \$13,912.00
Investment in three units
Net Profits on one year's operation
Note: Other savings, such as labor taxes, greater utilization of timber, etc., can be added to above figures as desired.

COST OF FALIING WITH GASOLINE POWER CHATN SAW
Includes Extra Blade and Chain
Total Investment $\$ 865.00$ Assumed at $2 \frac{1}{2}$ Years One Year @ \$250.00 8-hr. Days
A. Fixed Charges

Charge

1. Interest
(e) 6%
per
2. Taxes
(a) $2 \% 10 \%$ of Average

Day
3. Insurance @ 1% Annual Invest.
4. Miscl. @ 1%
\#. 24
B. Depreciation
1.38
C. Operating Charges
I. Repair parts and replacement including Labor
Power Saw mechanic © $\$ 1.70 / \mathrm{hr}$. 3.00
2. Supplies
à. Gas
b. Lube. oil
c. Grease
(a) . 18/ga1.
©
3. Filing chain (a) $1.70 / \mathrm{hr}$. 70
4. Labor
a. Head Faller © $1.20 / \mathrm{hr}$.
B. 2nd Faller
(a $1.19 \frac{1}{2} / \mathrm{hr}$.
c. Helper
(a) $1.10 / \mathrm{hr}$.
27.80
5. Overhead--Bull Back \& Scaler 4.60
6. Industrial \& Social Insurance 14% of labor

DEVELOPMENT AND USE OF POWER SAWS
IN FELLING AND BUCKING ON PACIFIC COAST

```
    "Felling Timber with Power Saws," Timberman, (July,
        1934).
    "Power Saw Felling and Bucking," Timberman, (March, 1937).
"Power Operated Saws," Timberman, (May, 1937).
"Power Saw Experiment in British Columbia," Timberman, (June, 1937).
"Power Saws," Timberman, (August, 1937).
"Power Saws Wanted," Timberman, (October, 1937).
"Power Saw Development in Rocky Mountain Region," Timberman (January, 1938).
"Power Saw Development," Timberman (March, 1938).
"Success in Mechanical Felling," Timberman (July, 1938).
"Bucking on the Landing," Timberman (August, 1938).
"Power Sawing Developments," Timberman (November, 1939).
"Five Years of Power Sawing," Timberman (November, 1942).
"Power Saw Versus Hand Falling," Timberman (February, 1943).
```

