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maintaining an equivalent operation envelope. The potential of using genetic algorithms to 

produce optimum shapes for cold plate heat sinks is investigated in this thesis. A 50 × 10 mm 

area is established into grid space, with initial designs initiated by probability based on 
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indicate that the optimization methods reduced entropy generation rate by 26.4% and 21.7% for 
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Nomenclature 

A     Area (m2) 

E      Energy (J) 

F     Force (N) 

h    Specific Enthalpy (J/kg) 

k     Thermal Conductivity (W/m-K) 

𝑚̇     Mass flow rate (kg/s) 

P     Pressure (Pa) 

Q     Power (W) 

R     Thermal resistance (K/W) 

s    Specific Entropy (J/kg-K) 

Sgen    Entropy Generation Rate (W/K) 

T     Temperature (K)  

𝑣̅     Transported variable (viscosity-related) (kg/s-m) 

.

W     Work rate (W) 

 

 



Greek 

α     Thermal diffusivity (m2/s) 

µ    Dynamic viscosity (Pa-s) 

ρ     Density (kg/m3) 

Fluent Model Constants 

𝐶𝑏2 

𝐺𝑣 

𝑆ℎ 

𝜎𝑣 

𝑆𝑣̅ 

𝑌𝑣 

Subscripts 

b     Base 

D     Drag 

eff     Effective 

∞     Ambient 

q     Mass-averaged variable in energy model 



Acronyms 

AM – Additive Manufacturing 

CFD – Computational Fluid Dynamics 

CSV – Comma-Separated Values file type  

DM – Decision Maker 

EBM – Electron Beam Melting 

GA – Genetic Algorithm 

GCI – Grid Convergence Index 

IC – Integrated Circuit 

LENS – Laser Engineered Net Shaping 

MECS – Microtechnology-based Energy and Chemical Systems 

MOCO – Multi-Objective Combinatorial Optimization 

PBIL – Population-Based Incremental Learning 

PSO – Particle Swarm Optimization 

SLM – Selective Laser Melting 

SLS – Selective Laser Sintering 

SQP – Sequential Quadratic Programming 

STL – Standard Tessellation Language file type 
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1. Introduction 

1.1 Background 

Currently, the electronics industry is encountering growing challenges with thermal 

management. Heat densities are rapidly increasing, while at the same time the volume available 

for thermal management solutions are decreasing. The advancement of manufacturing techniques 

opens the opportunity to investigate different heat sink designs and design methodologies. The 

primary opportunity is that more of the 2D and 3D design space is available for modification 

with the use of additive manufacturing (AM), compared to traditional manufacturing 

technologies such as extrusion, stamping or forming.  Thus, the objective of this thesis is to 

explore the use of genetic algorithms for developing different geometries of liquid cooled heat 

sinks that could only be fabricated using additive manufacturing techniques and perform better 

than conventional technologies.  

1.2 Previous Investigations 

A few studies have begun to explore the potential for additive manufacturing in electronics 

cooling applications.  Notably, Bornoff and Parry (2015), have explored optimization by 

“growing” a heat sink based on an initial plate and uniform heat source  in the center of the area. 

The problem is initialized by running a simulation, and calculating the temperature profile across 

the base. The hottest part of the base material is determined, and additional material is added at 

that point, creating the basis of a new fin. Another simulation is run, the new hot point is 

determined and more material is added. This process is repeated until the design space is filled 

(with the material addition done symmetrically across the center). Additional growth periods 

from the base are performed until convergence is reached. The final device is shown in Figure 
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1.1. They found that the “grown” heat sink showed about a 20% reduction in thermal resistance 

compared with a standard extruded heat sink. It is worth noting that the standard heat sink has 

much larger fins than the minimum feature size of the “grown” device. To provide a better 

comparison, they also built an unconstrained finned heat sink to compare. This unconstrained 

design has no fixed aspect ratio and a minimal feature size the same as the “grown” heat sink. 

With this comparison, they found that the unconstrained design actually provided 5% lower 

thermal resistance than the “grown” heat sink.  

 

They then continued this research by studying the effects of removing material from a 

traditional finned heat sink, to see if they can reduce system mass with a minimal trade-off in 

thermal resistance. Utilizing the unconstrained optimized heat sink used in the previous study 

(Bornoff & Parry, 2015), Bornoff et al. (2016) analyzed the heat sink, and began removal of fin 

material from low temperature zones. They did this in both an unrestricted manner, and also by 

limiting removal to the top surfaces of the device. The tradeoff in mass reduction to the thermal 

Figure 1.1: Bornoff and Parry’s (2015) organically grown heat sink 
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resistance increase was measured and plotted, which always resulted in an exponential curve. In 

general, the unrestricted subtraction was consistently more effective, with a slower growing 

exponential curve then the top surface restriction. Interestingly, when they allowed unrestricted 

subtraction, framing in the fins began to occur. This is when rectangular shapes are removed 

from the center area of the fin, and is visible in Figure 1.2. 

 

  

 

 

 

 

 

Wu et al. (2016) performed research with genetic algorithms to provide optimization for 

a heat pipe design in a heat sink. They performed a thermal analysis of a commercially available 

heat sink, which consisted of copper heat pipes carrying coolant (water), embedded in an 

aluminum block. After analysis of the baseline commercial heat sink was completed, an 

optimization algorithm technique was applied to improve the design. An initial area was 

established with an inlet and outlet, as well as a heat source, and the algorithm was allowed to 

randomly generate paths between the inlet and outlet. Once completed, the designs are evaluated 

and ranked, and then utilizing genetic algorithms, new generations were created and the process 

repeated. After a certain amount of iterations were completed, a second stage occurred that 

performed perturbations on the existing designs, then repeated the genetic algorithm process. The 

Figure 1.2: Bornoff and Parry’s (2016) subtractive design heat sink, showing mass tradeoffs 

can be made without high impact on thermal resistance 
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findings showed that the first part of the optimization process resulted in a design that reduced 

peak temperature from 53.02 °C to 46.10 °C, in exchange for an increase of inlet force from 0.56 

N to 1.63 N. Similarly, the second part of the optimization process got a resulting peak 

temperature of 44.85 °C with an inlet force of 1.3 N. The results show the benefits of 

optimization processes, but also shows that the results achieved are not always free, in this case 

with increased internal pressure drop. Their solution is provided in Figure 1.3. 

 

While Bornoff and Parry’s (2016) initial study was interesting, it did show that the 

growth techniques used did not provide a significant benefit in comparison to the unconstrained 

optimized straight finned heat sink. Yet, Wu et al. found that utilizing genetic algorithm 

techniques on a water heat pipe heat sink yielded an 15.4% reduction in thermal resistance in 

exchange for an 132% increase of force, which may be an acceptable trade-off for some high 

flux applications.  This thesis aims to determine if other optimization methodologies will allow 

Figure 1.3: Wu et al.’s (2016) genetic algorithm heat sink 
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an additive manufactured heat sink to provide greater performance than the traditional finned 

heat sink.  

1.3 Utilized Technologies and Techniques 

One of the objectives of this study is to determine the potential benefits of combining new 

manufacturing technologies with genetic optimization techniques. Additive manufacturing 

technology and its rapid growth serves as a primary motivator, opening up a greater design space 

than is available with traditional manufacturing and also enabling new methods to develop 

product designs.   

1.3.1. Additive Manufacturing 

There are a variety of different additive manufacturing techniques available; most commonly 

using 3D printing. 3D printing techniques for metals are predominantly powder based 

technologies, including Selective Laser Sintering (SLS), Electron Beam Melting (EBM) and 

Prometal (Wong & Hernandez, 2012). Many of these technologies build parts similarly to plastic 

printing techniques, as presented in Figure 1.4. These technologies are all effective, but each can 

have some minor effect on the final material characteristics. In general, the final printed material 

is highly similar to the original material stock, but differences are observed due to final grain 

arrangement. Densities reach up to 99.8% of the parent material, but mechanical properties can 

vary significantly depending on build method. In many cases, the printed material meets or 

exceeds the cast or wrought part, generally trading strength for ductility. (Murr et al., 2012) 

Other options utilizing technologies such as inkjet are coming to market with the ability to print 

metal, but none are yet commercially available (“XJet 3D,” 2017). Since the majority of metal 

printing techniques rely on metal powders, their deployment is limited to specialized 

manufacturing facilities, due to the toxicity and hazards of the raw material powder.  
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 The usage of additive manufacturing has a number of economic advantages compared to 

traditional manufacturing techniques such as casting or injection molding. AM allows the 

localization of manufacturing closer to production, reduction of transportation cost, simplified 

material storage, and elimination of custom fixturing. In general AM does not significantly 

benefit from economies of scale, thus, each final product has a fixed unit cost. In comparison, 

traditional manufacturing typically benefits greatly from economies of scale, to a point of 

diminishing returns. This means, that with smaller production sizes, AM may be the more cost 

effective manufacturing technique (Thomas & Gilbert, 2014). This is particularly intriguing as 

electronic device becoming increasingly customized, suggesting that heat sinks could be 

manufactured in low volumes for a tailored application for a particular customer.  

After a certain number of units, the economies of scale dominate and traditional 

manufacturing techniques become the superior choice. The exact number of units in which 

traditional manufacturing overcomes AM is dependent on a number of factors. The technology 

Figure 1.4: Diagram of a Fused Deposition Modeling plastic printing process (Wong & 

Hernandez, 2012) 
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used, material, as well as size and complexity of the manufactured part among them. Thomas and 

Gilbert (2014) present results from Hopkinson and Dickens (2003) as well as Atzeni and Salmi 

(2012)  to compare costs of AM to traditional techniques. Hopkinson and Dickens perform a 

study using a lever and cover, finding it took approximately 13,000 parts for injection molding 

costs to overtake AM. The results of this study are presented in Figure 1.5. Atzeni and Salmi 

investigated manufacturing of a landing wheel assembly for a 1:5 scale model plane. They found 

after 42 assemblies, the high-pressure die cast parts were cheaper to manufacture than the 

selective laser sintered part. These studies are useful in showing that estimates need to be 

performed based on the part made and technology currently available. (Thomas & Gilbert, 2014) 

 

 

 

 

 

 

1.3.2 Optimization Techniques 

There are a number of different optimization techniques available for component design. Before 

deciding the best methodology, it is important to understand the building process in additive 

manufacturing. The machines lay material down layer by layer, and geometry can be defined by 

Figure 1.5: Example of the fixed costs of AM compared to the economies of scale of a 

traditional manufacturing technique. Analyzed by Hopkinson and Dickens (2003) 

and as reported by Thomas and Gilbert (2014)  
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a minimum feature size. These are often described by a cubic geometry, which is called a voxel 

in 3D space. If translated into 2D space, they create pixels, which are also referred to as bits. To 

represent a large area of 2D geometry, often a bit array can be used, which requires thought on 

the ideal methodology to use for optimization. One of the most promising techniques and the one 

used in this research is genetic algorithms (GA). Genetic algorithms are based on the idea of 

“survival of the fittest”, in that the best solutions are allowed to be “parents” and produce a new 

generation of solutions (from a number of operators), which repeat the process until some 

convergence criterion. These algorithms are used to drive a solution based on known best 

solutions. In the case of the heat sinks, this may prove difficult, however, as there are no explicit 

results based on individual bit placement. Another option available is particle swarm 

optimization, which is similar to GAs, but based on the idea of “particle” position and velocity. 

The idea being that the “particle” has a given velocity based on changing values and the total 

velocity is influenced by the “swarm” of other particles, which result in dictating a new position 

each generation. This is unfortunately, difficult and awkward to implement for a discrete 

problem. (Eberhart & Shi, 1998) 

 When utilizing genetic algorithms, most problems are based on optimizing multiple 

opposing objectives. Typically, the results are plotted onto an X-Y axis, and form Pareto fronts.  

With multiple generations, the front should start moving closer to the axis until the system has 

reached convergence. The Pareto front methods are presented in Figure 1.6. Ranking the 

solutions on the front can be done in a few different ways, the most common involve creating a 

curve across the points. Any solution on the lowest curve are considered the best candidates, and 

will be used to create the new solution. There are alternative methods, including solution 

weighting, which uses the weights to rank each point, in order to determine what will be used to 
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generate the new generation. In a way, this actually turns the multi-objective optimization into a 

single-objective problem. (Gen & Cheng, 1999) 

 

  

 

 

 

 

Typically, the population size of each generation ranges from around 25 to 100 

individuals, and can even be larger (Deb & Agrawal, 1999). This size is quite limiting for 

applications requiring intensive numerical analysis, as the computational time is significant. To 

get around this, some studies have used micro-genetic algorithms, which work with populations 

sizes of around 5 (Coello & Pulido, 2001). To allow an effective greater population variety, an 

external memory is used that is compared to solutions in the current generation. A few solutions 

in the current generation are selected (potentially based on ranking), and then a random solution 

in the memory is chosen. If the generational solution is superior to the one in the memory, that 

solution is kept in the generation and used to develop the next generation. Additionally, the 

generational solution replaces the solution in the memory, and is used in any future comparisons. 

On the other side, if the memory solution is the better solution, it replaces the generation solution 

Figure 1.6: Pareto front optimization (Pandey, Mourelatos, & Nikolaidis, 2013) 
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and is used to create the succeeding generation. The methodology used by Coello Coello and 

Pulido is presented in Figure 1.7. 

Finally, there are three typical operators that are used to create new generations; 

crossover, mutation and elitism. Crossover utilizes two parent solutions to create the child, by 

randomly taking information from the each of the parents and using it to set the child’s bit data. 

Mutation operators takes a parent, and randomly changes information in it by some percentage to 

create a child. Often, mutation is combined with crossover operations to achieve the new 

children. Crossover and mutation are presented in Figure 1.8.  Lastly, elitism brings the parent 

solution straight through to the new generation with no modification. (Chapman et al. , 1994) 

Figure 1.7: Micro-genetic algorithm overview of Coello Coello & Pulido (2001) 
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1.4. Electronics Cooling Design 

There are a number of design options available for cooling electronics, depending on a variety of 

factors. These factors include criteria such as power density, space available, design thermal 

limits and cost. The most common available systems are (1) passive, (2) single-phase fluid 

active, (3) two-phase fluid active and (4) microchannel systems. 

1.4.1. Heat Sink Design 

Traditional heat sink design is typically based on uniform 2D profiles extended through a 3D 

space. These heat sinks are manufactured in few different ways, which are well described by Lee 

(1995): Stamping, where sheet metal is formed into the desired shape for the heat sink. While 

cost effective, it is limited in capability and should be limited to designs with low thermal 

density. Extrusion is fairly common for use in a number of systems, and is formed by machining 

a material stock to create fins. In some cases, the stock is crosscut to produce pin geometry. It is 

commonly used in both passive and active applications. Bonded heat sinks are extremely 

common in modern computing applications, and are created by manufacturing a base with slots, 

allowing fins to be placed in and retained by thermally conductive epoxy. Because of the greater 

fin to height ratio, as well as potential for more fins and greater surface area than extruded and 

stamped, they can be highly effective. Cast fins are usually utilized when developing pin fin 

geometry arrays, which can allow greater efficiency for systems such as those using 

Figure 1.8: A) Crossover operation, B) Mutation operation (Chapman et al., 1994) 

A) B) 
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impingement flows. Finally, folded fins utilize sheet metal folding to create fin geometry which 

is then bonded to a base. These heat sinks allow efficiency in systems where bonded or extruded 

fins are not practical. While a few other designs are available, they are not as common as the 

manufacturing techniques and designs discussed. (Lee, 1995)  

1.4.1.1 Passively Cooled Systems 

Passively cooled systems are typically useful for systems with a low power density. The system 

relies on natural convection to manage device heat, either through designs such as an extruded 

finned base or through a heat spreader. Because of the limited heat transfer available through 

natural convection, it is not effective in dissipating higher powered system. Lee (1995) suggests 

these systems are effective from 5 to 50 watts, and suggests a batch of 10,000 will be priced at 

$0.50 each. While ineffective at thermal management, the heat sinks/spreaders are cost effective, 

allow reduction of electronic packaging height and eliminate the need for a noisy fan or pump 

(Lee, 1995). A bonded heat sink is shown in Figure 1.8. 

Figure 1.9: Bonded finned heat sink (“Bonded Fin Image,” 2017) 
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1.4.1.2 Single-Phase Actively Cooled Systems 

Single-phase actively cooled systems are among the most commonly used heat sink designs in 

electronic systems. The systems rely on pumps or fans to provide forced convection through the 

heat sink, which consists of a finned array or a fluid channel. Active systems work well for low 

to high heat flux designs. Tradeoffs are made with the passive system for the greater cooling, 

being both more costly and noisier than a passive system, an often more than acceptable 

exchange. For this system, it suggested that they can handle 10 to 160 watts, and cost from 

$10.00 to $20.00 each in a batch of 10,000.When compared to two-phase and microchannel 

systems, the standard active system benefits from significantly lower cost and engineering 

investment. (Lee, 1995) 

1.4.1.3 Two-Phase Actively Cooled Systems 

Two-phase systems are reliant on fluid to gas transitions to cool a system utilizing the large 

latent heat and high heat transfer coefficients available through boiling. However, these systems 

are highly complex, meaning that the cost can be significant. In addition to ensuring the system 

has enough heat flux to boil the fluid, it also needs to manage it to prevent burnout, as well as 

condensing the vapor to maintain the circulating flow. The benefit for managing this complexity 

is a high heat transfer rate capability (suggested to handle power from 100 to 150 W by Lee 

(1995), which is lower than some studies, which have tested to powers beyond 1000 W (Gillot et 

al., 2000). Two-phase systems have great theoretical performance for use in systems such as 

high-power servers. Before wider adoption, power density in commercial systems need to reach 

a point where the additional costs of the cooling devices necessitates the trade-off, estimated to 

be anywhere between $15.00 to $500 each. (Ghiaasiaan, 2008; Lee, 1995)  
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1.4.1.4 Microchannel Systems 

Microchannel heat exchangers can utilize either single-phase or two-phase cooling 

methodologies. While arguably they can be included with the other systems categories, it is 

important to recognize the distinction. With microchannel systems, the scale of the device allows 

it to take advantage of scaling laws, achieving high heat transfer rates in a smaller area than 

traditional devices. A study by Kandlikar (2005) suggests a single phase system capable of 

100,000 W/m2-K. Assuming a 2 cm square device and a 20 K temperature difference, this 

approximates 800 W of power dissipation. This allows them to be very effective cooling devices, 

but this of course comes with cost. Microchannel devices are manufactured in a number of ways, 

some include laser cutting and welding, others use micromachining (Paul & Peterson, 1999). 

Lajevardi et al. (2011) suggest costs of up to $5000 in batches of 200 per year, reducing to $500 

in batches of 10,000 per year. Additionally, if the designer wishes to implement two-phase 

cooling, the costs increase further.  

1.5. Project Objectives 

The overall objective of this research is to determine if heat sinks designed to take advantage of 

additive manufacturing techniques show advantages over heat sinks utilizing traditional 

manufacturing techniques. To compare effectiveness, the two objectives of interest are pressure 

drop and thermal resistance. To best rank the solutions, the entropy generation rate of the 

solution is utilized, which makes use of both the objectives, and essentially turns the system into 

a single-objective optimization problem. The solution system uses a volume of 52 mm × 50 mm 

× 12 mm of total volume, and 50 mm × 50 mm × 10 mm of fluid volume space. This size was 

specified based on a comparable cold plate analysis (Remsburg, 2007)  Water is used as the 

working fluid as requested by industry discussion. The entropy generation value is then 
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compared to a traditional finned heat sink design. This baseline heat sink is limited to 1 mm fin 

thickness to remain comparable to the generated designs. 

The specific objectives of this thesis are: 

• Develop a method to generate and analyze heat sink designs that are not restricted by 

manufacturing techniques. 

• Develop an optimization technique to converge on an ideal design utilizing the 

unrestricted techniques. 

• Analyze and compare the results against traditional finned heat sinks, utilizing two 

different power bases for confirmation. 

1.6 Outline of Remainder of Thesis 

The rest of the thesis is organized in the following manner: 

• Chapter 2: Literature review covering the design of heat sinks (both typical and 

advanced designs), the various types of additive manufacturing techniques and 

material effects and the optimization techniques to find an optimum solution. 

• Chapter 3: Methodology and design approach 

• Chapter 4: Results and discussion of the analysis 

• Chapter 5: Conclusions and recommendations for further work 
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2. Literature Review 

This chapter reviews relevant literature in areas of heat sink design and optimization 

manufactured using traditional techniques, additive manufacturing technologies that can enable 

advanced heat sink designs, and the use of genetic algorithms for optimization in general.  

2.1. Heat Sink Design and Traditional Optimization 

Traditional heat sinks are typically classified as passive or single-phase active systems, with 

many examples of commercialized systems.  More recently, research efforts have focused on 

more advanced heat sink designs, specifically systems such as two-phase active and 

microchannel systems. These advanced thermal solutions are known for being highly effective, 

but a trade-off is made for complexity and cost, which may limit their usage. (Lajevardi et al., 

2011). To enable comparison with the additive manufactured design techniques proposed here, it 

is important to understand how these heat sink technologies are currently manufactured and 

designed. 

2.1.1. Traditional Heat Sinks 

Lee (1995) conducted a detailed review on both heat sink design and manufacturing. This was 

discussed previously in Chapter 1, but will be reiterated to provide context. For passive and 

active air-cooled heat sinks, stamping is a method that forms sheet metal into the fin shape. 

Typically, heat sinks produced via this method are utilized in low power situations. Another 

common method is extrusion, which in which fin profiles are continuously formed from a base 

stock, yielding a heat sink as a single piece. These fins can be effectively utilized in passive or 

active systems, but may be limited dimensionally by the form factors of the devices they are in. 

The next method is bonded heat sinks, which have a base manufactured with slots, and then have 
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fins bonded into the base via thermally conductive epoxy. These heat sinks can be quite effective 

given their potential for more fins as well as a greater fin to height ratio then that offered from 

other methods. Cast fins utilize molds and metal injection to create the part. This manufacturing 

method has typically been utilized for pin fin geometries which would be difficult to form via 

extrusion or stamping. Finally, folded fins are manufactured by folding sheet metal, and then 

bonding it to a base. This method is best utilized in situations where bonded or extruded fins may 

not be practical. Examples of these heat sinks are provided in Figure 2.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

A) 

B) 

D) 

C) 

E) 

Figure 2.1: Variety of manufactured heat sinks. A) Stamped B) Extruded C) Bonded D) Cast 

E) Folded (Source Cooling, 2017) 
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 Lee (1995) also discusses the effectiveness of various heat sink designs. In low power 

applications (on the order of 5 to 50 watts), passive, air-cooled heat sinks may be utilized for 

dissipation. Passive heat sinks are typically either a heat spreader or an extruded fin base. 

Assuming the power is manageable, passive systems have the benefit of being both quiet and low 

cost (Lee states costs of $0.50 in large batches at the publishing time). If more power needs to be 

rejected, an active system is the next step, with the Lee (1995) suggesting a range of power from 

10 to 160 watts for traditional air cooled systems to handle. Active systems utilize a heat sink in 

addition to a fan or pump to force convective cooling, utilizing either air or a liquid. For air 

cooled systems, Lee (1995) suggests that the total system will cost approximately $10 to $20 

each in a large volume batch. The liquid cooled alternatives can manage far greater power, but at 

higher cost, with predictions the range of $10 to $100. The costs of various methods compared to 

their respective performance is shown in Figure 2.2.  

 

  

 

 

 

 

 

 

Figure 2.2: A comparison of heat sink technology cost and respective thermal performance 

by Lee (1995) 
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Different design and optimization approaches have been undertaken to balance cost, 

performance, size, and other parameters. Heat sink design and optimization remains an active 

area of research due to its commercial importance. A few relevant studies are reviewed here to 

provide an overview of different design techniques.  

Ritzer and Lau (1994) focused on a comparison of different systems with a fixed power 

input, with the goal of minimizing unit cost. Three different designs are examined: a large, low 

fin density natural convection heat sink, a low fin density forced convection heat sink and a high 

fin density forced convection heat sink. The fin density of the low density forced convection heat 

sink was limited to that of the low density natural convection system. Because of the consistent 

power input and cooling requirements, the size of the heat sinks vary greatly, which factor into 

the total system costs. It was noted the heat sinks of the low-density passive and active systems 

utilize the same manufacturing process (extrusion), while the high-density heat sink utilizes 

bonding. The active system, of course, can utilize a smaller heat sink, exchanging costs with 

addition of the fan. Based on the final analysis, they find the high-density passive system to be 

the cheapest per unit, closely followed by the low-density passive and then the active. While it is 

an interesting result, and demonstrates the effects of fixing system variables, the applicability of 

this test may be limited in electronics and high-power systems. This is simply because of the 

restrictive volumes of these systems, and the great power inputs in these small spaces limits the 

use of large passive heat sinks. 

In an effort to see what simple manufacturing additions could be done to improve 

traditional heat sink performance, Small et al. (2006)  investigated fin modifications meant to 

provide greater surface area. A few different designs were collated in the beginning of the 

analysis, with a mixture and parallel and staggered fin designs. The highest performing design 
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utilized dimples in the surface of the fins to maximize available surface area. This system was 

analyzed numerically and experimentally, and compared to a few additional designs. Namely, 

one that uses a combination of dimples and bumps in the surface. Since it is difficult to describe 

these shapes, an example of them are displayed in Figure 2.3. In numerical simulation, it was 

found that the addition of dimples simply resulted in more uniform heat transfer across the 

channel compared to straight. In staggered fins, dimples actually provided greater heat transfer, 

but in exchange for a higher pressure drop. Studies were then conducted on the combination 

dimple and bump system. Results proved even more promising, with this design offering the 

greatest thermal performance (a 22% reduction over the plain fin) in exchange for a 34% 

increase in pressure drop with parallel fins. These results were greater than any of the staggered 

fin alternatives, which did not see any improvement in thermal performance, and maintained a 

higher pressure drop. Results from the study were quite promising, demonstrating that significant 

gains may be seen in traditional heat sinks with improvements in the manufacturing process. 

  

 

 

 

 

Luo et al. (2009) investigated optimization of passive, plate-fin heat sink design. Of 

particular interest was the methodology for determining the optimum cooling design. A 

numerical model was developed to determine the capabilities of the heat sink design. This is 

Figure 2.3: Example of the fin geometries investigated by Small et al. (2006) 
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done through determination of the total dissipation of the heat sink, including the base and the 

fins. This requires calculation of heat transfer coefficients of both components, requiring a 

combination of Grashof, Rayleigh and Nusselt equations based on the individual geometries. 

With the equation sets established, variables were chosen to create matrices with corresponding 

solution values.  Goals were then set to optimize the result between minimizing total material 

utilized or by minimizing the heat sink volume, and the solver ran the equation sets and iterated 

for the heat sink geometry. They were able to achieve effective results, maintaining the 

temperature of the 112 W lamp below 46 °C. However, it is difficult to say if other optimization 

techniques may prove more effective over the basic iterative methods, such as entropy 

minimization techniques.  

Stafford et al. (2010) studied low profile, active air-coupled heat sink design with interest 

in small scale powered devices. Images of the heat sinks are shown in Figure 2.4. Their main 

interest was in comparing the effectiveness of finned and finless heat sink designs with varying 

height, to determine the point at which a finless design is more effective. The heat sinks were 

varied in height from 1 mm to 4 mm. As height decreases, the heat sink grows in length. The 

findings indicate at low fan speeds and the shortest heights, a finless design can provide less 

thermal resistance than its finned counterpart. While removing fins can decrease cost, pressure 

drop at small heat sink channel heights can be large. This tradeoff between high heat transfer and 

pressure drop is continuously encountered in the heat sink industry. This is an important to note 

for general application, as small channels may cause excessive parasitic power consumption that 

will not benefit the overall system. 
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2.1.2. Heat Sink Design Using Entropy Generation Minimization Methods 

In the above studies, the primary tradeoff in heat sink design was between improved heat transfer 

and pressure loss, suggesting a multi-objective optimization. In fact, these two parameters can be 

collapsed into one, using the concept of entropy generation rate. The general entropy 

minimization method was pioneered by Bejan (1982). An expression for entropy generation rate 

(2.1) was derived by Bejan (1982), and has been used in several other studies for optimizing heat 

exchangers (Culham & Muzychka, 2001; Luo et al., 2009).   
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Here, Q  is the power input (W), m= fluid mass flow rate (kg/s), ΔP= pressure drop (Pa), 

T∞ = Volume average temperature of the working fluid (K), Tb = Max temperature of the base 

(K), and ρ = fluid density (kg/m3). Starting with the energy balance for an open system (2.2), a 

few assumptions are made. First, it is assumed the system is steady, meaning time variables can 

be eliminated. There is no change in velocity or height in the system (i.e., negligible change in 

Figure 2.4: Finned and finless test examples from Stafford et al. (2010) 
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potential or kinetic energy of the system), and the assumption is made that the temperature 

difference between the inlet and outlet of the fluid is small enough that the enthalpy difference is 

negligible. This was confirmed by checking the enthalpy and entropy rates over a 5 K increase in 

a water flow, which resulted in less a 2% change in value for each. Expanding the heat input and 

work terms provides the power values in equations 2.3 and 2.4. Note that 
.

Q  represents power 

input from the fluid. 
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Similar assumptions are made about the entropy balance (2.5). Steady state and minimal 

temperature delta between the inlet and outlet of the fluid flow. The heat input and temperature 

term is expanded to the inputs provided in equation 2.6. 
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The simplification of terms results in the initial equations presented by Bejan (1982) in 

equations 2.7 and 2.8. 
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Eq, (2.7) can be substituted into Eq. (2.8), yielding:  multiply out the equation by 𝑇∞𝑇𝑏 

(2.12) and divide it out afterward (2.13). Combine terms (2.14). 
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Then, Eq. (2.9) can be multiplied by the product 𝑇∞𝑇𝑏, and simplified, as shown in Eqs. (2.10) - 

(2.12).  
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 Now the thermal resistance of the system is introduced (2.13). It is rewritten as shown in 

Eq. (2.14) and substituted into the Eq. (2.12), yielding Eq. (2.15). 
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 Now one term of the equation is complete, the other term needs to be rewritten into a 

form utilizing pressure drop. The drag force is related to the pressure drop multiplied by the 

frontal area (2.16). The term is rewritten (2.17), and multiplied by the density over the density 

(2.18). Now relate the mass flow rate (2.19), and substitute it into the equation. The final 

expression for entropy generation rate is then derived (2.1). 
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 Culham and Muzychka (2001) used the Bejan (1982) entropy generation minimization 

technique to optimize straight finned heat sinks. Equations are based around the thermal 

resistance of the heat sink fins and base, as well as the associated friction effects for determining 

force. Parametric optimization was performed to determine the parameters, which include the fin 

thickness, fin spacing, base thickness, number of fins, device width, device height and device 

length. To optimize, the device is constrained by a number of variables, and then solved for 

another variable based off minimizing the entropy generation rate. In the majority of these tests, 

an ideal solution is determined after 6 iterations, seeing only minor improvements with 
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additional iterations. Results show the methods are effective, but they caution that restrictions 

will need to be recognized to maintain feasibility and manufacturability of the device. 

One application of the entropy generation rate minimization technique is applied to pin 

fin heat sinks by Khan et al. (2008) The entropy generation rate term used is again similar to that 

developed by Bejan (1982), with substitutions made for the system thermal resistance and 

pressure drop. The thermal resistance of the pin fin structure is established through an equation 

set, and a similar pressure drop model is devised. Analysis is completed through an iterative 

method, and results were varied based on system variables. These variables included the number 

of pins, pin diameter, pin height and the fluid velocity. The heat sink was limited in area and 

height, with a set base thickness and a uniform power applied. Two different materials were 

compared as well, using a plastic composite alongside aluminum. The results show distinct 

minimum values in entropy generation rate for each of the dependent variables, meaning there is 

also a distinct optimum for each of the independent variables. However, it is important to 

recognize that interaction between variables must be taken into account. In the end they were 

able to converge on an optimum result between different arrangements and materials, through 

repeated iteration to minimize entropy.  

           Finally, Yu et al. (2011) investigated passive cooling solutions with radial finned heat 

sinks. A model was utilized which couple velocity and pressure in the system (verified with 

experimental data), based off the entropy minimization method. Their model considered three 

different fin layouts: long fins only, long and medium fins, and a combination of long, medium 

and short fins.  The long fins varied from 3.5 to 5.5 cm, medium fins from 0.5 cm to 0.45 cm, 

while the sizing of the small fins are unfortunately not discussed. From figures provided, it 

appears the small fins may be approximately 1/3 the size of the medium fins. Findings suggested 
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that with an increasing number of fins, the highest temperature region of the heat sink shifts from 

the center toward the outer edges. This results in less effective heat transfer, potentially 

counteracting the gains from increasing surface area with additional fins. Analysis showed that 

the most effective heat sink design was a combination of the long and medium fin lengths, 

indicating an appropriate balance of surface area and proper material location is important to the 

system effectiveness. Due to dissimilarities in the problem and reported results, it is 

unfortunately difficult to compare directly with Luo et al. (2009) 

2.1.3. Advanced Heat Sinks 

The need to remove more power over a smaller area has spurred interest in active phase (two-

phase) change and microchannel heat sinks. Phase change heat sinks have significant additional 

complexity due to the more complicated boiling physics, the need to design the system to prevent 

burnout (which causes significant damage), and requires additional equipment (such as 

condenser) to turn the gas back into a fluid, and extract heat. (Ghiaasiaan, 2008) This all comes 

at a cost, with Lee (1995) estimating the systems to ranging anywhere from $15 to $500. 

However, heat removal by phase change systems may be on the order of kilowatts, as suggested 

by Gillot et al. (2000). Despite capability, the costs of these system remain significant, indicating 

usage should be limited to high heat flux systems. 

 Microchannel heat sinks remain an intriguing technology, which can also be applied in 

two-phase systems, but are commonly used in single-phase configuration. These microchannel 

systems take advantage of a reduction in length scales, which allows utilization of significant 

surface area in a small volume (Paul & Peterson, 1999). This scaling also means that 

microchannel systems can effectively be utilized to manage high heat flux systems. Research by 

Kandlikar (2005) suggests a single-phase system that is capable of managing 800 W of power 
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dissipation, similar to that expected of full scale two-phase flow systems. Again, this capability 

comes at a price. Lajevardi et al. (2011) suggests that in large batches of 10,000 units per year, 

costs of microchannel design could be minimized $500 per unit. Note, that smaller batches will 

increase costs significantly, with the suggestion that a batch of 200 heat exchangers per year 

would cost $5000 each.  

Microchannel systems also may be more difficult to manufacture with the conventional 

processes discussed above. As an alternative, Paul and Peterson (1999) discuss the process of 

micro-lamination for the manufacturing of microchannel systems, specifically referred to as 

Microtechnology-based Energy and Chemical Systems (MECS). They suggest that utilizing 

manufacturing methods seen in the development of silicon integrated circuits is not adequate for 

application to these microchannel heat sink devices. This is based on limitations such as limited 

material choices, being unable to handle high aspect ratios and the associated cost. Instead, they 

suggest the use of micro-lamination and micromachining with a laser, which is able to manage 

the issues presented with the silicon manufacturing methods. Channels are machined into 

material stock using an Nd:YAG laser, adjusting power, pulse frequency and beam diameter to 

manage cut depth and width. An example of the machined material and a comparison size are 

provided in Figure 2.5. With the laminae stock cut, it has to be bonded to create the final 

device.  A few different options are presented to accomplish this, including Polyimide sheet 

adhesive, diffusion soldering and brazing, diffusion bonding and micro projection welding. 

Polyimide sheets can be placed between surfaces, and bonds are formed when the material is 

heated and compressed. Diffusion soldering and brazing requires the stock to be plated in the 

diffusion material, and heat is applied to flow the solder and bond the stock. Diffusion bonding is 

accomplished by stacking the stock, and applying high temperatures and pressure to the stack. 
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When done correctly, the material should form strong bonds at the interface, essentially fusing 

the parts into one. Micro projection welding relies on etching of the material stock. Then, when 

the laminae are stacked, an electric discharge is applied to the area, welding the material. Interest 

is placed into diffusion soldering and brazing, because of the low temperatures needed for 

bonding, and performance once bonded. They tested the procedure on a few microchannel 

devices, one being a microchannel array. This device was tested for pressure drop across a 

number of flow rates and compared to a theoretical. They found that laminar flow was well 

approximated in the device versus initial analysis, but some effects caused the flow rate to be 

less than predicted in turbulent of flow. A lot of information on the process of manufacturing 

microchannel devices is provided by the study, and helps to reinforce the estimated cost with the 

devices. 

 

 

 

 

 

 

The manufacturing and development costs of mass-produced microchannel heat sinks are  

further investigated by Lajevardi et al. (2011) They discuss their manufacturing process, which 

includes the initial patterning of the shims, shim bonding, de-paneling/ singulating and 

Figure 2.5: Example of laser machined microchannels provided by Paul and Peterson (1999) 
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interconnect. The devices are designed as 6”x6” sections, and are cut from 24”x24” panels, 

meaning 16 devices can be created from each panel stack. A final device took 150 shims at 250 

µm thick and had a total bonding area of 400 cm2 per shim. The cost of goods sold shows that 

each microchannel device cost $5000 for a demand of 200 devices/year, and reduced to $500 

each when demand increased to 10,000-20,000 devices/year. Beyond the point of 10,000 

units/year, the cost benefits drop significantly. The reason for this, investment for production 

equipment increases drastically as the number of units rise because of the need to repurchase 

tools. Capital equipment costs typically remain around $2,000,000 for lower unit costs, and 

increases to approximately $2,700,000 around 10,000 units. Beyond 10,000 units, it increases to 

approximately $4,700,000. While not directly advocating the usage of microchannel devices, this 

study does effectively display the costs associated with their manufacture. 

An interesting approach to coupling microchannel heat sinks with integrated circuits (IC) 

are discussed by Tuckerman and Pease (1981), who integrated microchannel heat sinks directly 

into the silicon substrate of the IC. Analysis was conducted analytically and experimentally, with 

three different experimental designs. They found their best design was capable of dissipating up 

to 790 W/cm2, a combination of the use of microchannels and high flow rate water. It is argued 

that this is a significant improvement over traditional heat sink designs, however, at the expense 

of high pumping power. Furthermore, it is presently limited in commercial applicability due to 

the costs and complexities of integrating a thermal solution into the IC manufacturing process. 

Other advanced options are available outside of the two-phase and microchannel systems, 

including the previously discussed (Chapter 1) "grown" heat sink developed by Bornoff and 

Parry (2015).  Certainly, the field of heat sink design and optimization has been extremely active 

over the past 20-30 years. As required heat removal rates increase, the advantage of utilizing 
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more advanced additive manufacturing techniques to improve heat transfer is of interest. 

Potential techniques that can be exploited for heat sink manufacture are discussed below.  

2.2. Additive Manufacturing 

Additive manufacturing has seen a significant surge in interest in recent years. As a result, 

research interest in how to exploit this improvement for heat transfer devices has increased, as 

seen with Bornoff and Parry (2015). However, to become viable for usage in commercial design, 

metal printing has to be utilized. Therefore, it is important to examine the current status of metal 

printing technology, as well as any impact the processes have on materials properties. 

Wong and Hernandez (2012) provide an overview of the state of additive manufacturing 

via 3D printing of metal. Powder based methods are the most common techniques used in 

printing, and are utilized in technologies including Selective Laser Sintering (SLS), Electron 

Beam Melting (EBM), Laser Engineered Net Shaping (LENS) and Prometal. With the exception 

of LENS, all the systems rely on a base powder bed for fabrication. SLS requires a chamber 

filled with inert gas to be heated near the melting temperature of the powder. With metals, a 

binder may be needed, and a laser provides the additional energy input needed to melt the 

material. The binder is removed post process, often with heating. EBM is similar to SLS, but 

relies upon a more powerful electron beam to simply melt the material. Prometal also relies upon 

the powder bed technique, but purely relies on a liquid binder for processing. The machine 

applies the binder for each layer, and repeats until the final part is complete. Then the part is 

finished with cleanup of residual powder, and heat treated to harden the material and binder. 

Finally, LENS is predominantly used for injection of metal into specific locations. The process 

uses a laser to melt the material, the material is injected and cools down to form the component. 

In addition, inkjet based systems are expanding to incorporate metal (“XJet 3D,” 2017). In an 
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inkjet system, a jet applies a photopolymer ink to a surface. A UV light is then used to harden the 

layer. The process repeats until the part is completed. All of these techniques would be viable for 

production of a heat sink. 

To examine potential differences in material properties from additive manufacturing, 

Bauer et al. (2015) characterize SLM (Selective Laser Melting) produced Haynes® 230. It 

should be noted that SLM is another common acronym for SLS. A Concept Laser M2 is utilized, 

which uses a 200 W Nd:YAG laser. The Haynes 230 powder contained particles varying in size 

from 15 to 45 µm. For processing, they claim to have maintained the machine at the maximum 

output of 200 W, and varied the hatch distance as well as scan speed. The volume energy density 

was calculated based on the laser power, scan speed, layer thickness and hatch distance. Density 

was compared to manufacturer claims utilizing displacement and mass. They found low volume 

energy density and larger hatch size resulted in a low relative density at approximately 96.8%. 

With increasing volume energy density and decreasing hatch size, relative density increases to 

99.8%. The granular structures can be viewed in Figure 2.6. This result indicates that printed 

materials are near identical to manufactured material in density for the right combination of 

fabrication parameters. Tests were also performed for yield strength, Young’s modulus, ultimate 

tensile strength and percent elongation. They built the device in both a horizontal and vertical 

layering configuration (relative to the device shape), and compared them to wrought and cast 

devices. The device built in a horizontal configuration generally showed higher strength than the 

vertical. Printed devices saw much higher yield strength, slightly higher tensile strength and 

about equal Young’s Modulus to the wrought and cast devices. This is with a tradeoff in showing 

less elongation before breaking. Overall, it seems that printed parts can match cast and wrought 

pieces in density, while gaining strength and losing ductility. The density of the printed parts is 
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important to note, as properties of the device would likely be effected if the density was lower 

and the printed parts had greater porosity. This would probably limit conductivity of the metal as 

a result of the decrease in conduction boundaries from the additional voids. Unfortunately, a 

study has not been located where the thermal conductivity of a printed part has been determined.  

Murr et al. (2012) performed a similar study to Bauer et al. (2013) , but did not perform 

any density studies. Instead, they investigated the micro-indentation and Rockwell hardness tests 

for a variety of different materials produced from Electron Beam Melting (EBM) and Selective 

Laser Melting (SLM). The samples were also examined under 3D light optical metallographic 

and electron microscopy to determine the material structure. Hardness of the printed materials 

were determined to be generally greater with the SLM produced samples. Similarly, samples 

built in a horizontal orientation showed greater hardness than vertical built samples for Ti-Al and 

EBM Inconel 625. Otherwise, the vertically built structures showed higher or equal hardness for 

Copper, Cobalt-Chromium, SLM Inconel 625, 17-4 Stainless and SLM Inconel 718. With the 

exception of EBM Inconel 625, the materials roughly matched or exceeded the hardness of their 

wrought or cast counterparts. The entire list of results is provided in Table 2.1. Between the two 

papers, the results indicate that material properties of printed materials are close enough to the 

Figure 2.6: Granular microstructure of Haynes® 230 with varying energy inputs. a) 116 

J/mm3, b) 77 J/mm3 and c) 66 J/mm3. (Bauer, Dawson, Spierings, & Wegener, 

2013) 
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cast and wrought parts, that their material properties could be reasonably applied to the additive 

part. 

As discussed in Chapter 1 by Thomas and Gilbert (2014), the costs of additively 

manufactured parts do not experience a significant change with increasing quantity. This is in 

contrast to traditional manufacturing techniques, which have economies of scale effects. 

Meaning that with greater quantities of units, the cost of each decreases. Therefore, it is 

important to understand the variabilities in manufacturing based on the part produced.  

2.3. Genetic and Other Optimization Algorithms 

Genetic algorithms were identified as a viable optimization technique to investigate the potential 

of additivity manufactured heat sinks in the present research. In this section, the genetic 

algorithm process and techniques are reviewed as well as case studies for their usage.  

Table 2.1: Table of material hardness from additive manufacturing processes compared to 

traditionally manufactured materials. (Murr et al., 2012) 
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2.3.1. Genetic Algorithm Techniques and Alternative Methods 

A basic overview of genetic algorithm techniques was provided in Chapter 1. A more detailed 

review was conducted by Gen and Cheng (1999). The first important discussion from their 

review is on the predominant genetic operators: crossover, mutation and elitism. Crossover 

utilizes two parents, then randomly takes data from each parent and combines them to create the 

child. Crossover has the greatest effect at the beginning of generation, as solutions are still 

stochastic. Near the end of generation, when solutions have started to converge, it will have less 

effect because of how similar the solutions are. Next is mutation, which randomly changes data 

in the parent. Behavior is opposite that of crossover, in that mutation has little effect in the 

beginning, but has greater impact at the end when the solutions have begun to converge. Elitism 

is simply the best parent solution being carried over unchanged into the new generation. 

Approaches to multi-objective problems are the main discussion point. Five different approaches 

on how to assign fitness to a solution are investigated. The first is vector evaluation, in which 

parent solutions are randomly shuffled before genetic operators are used to create the new 

generation. It does not explicitly contain fitness evaluations like other approaches. The weighted-

sum approach is next, in which the solution’s objectives are assigned a fitness weight to 

determine how optimal the solution is. Essentially, this changes the system to a single-objective 

optimization problem. Third is the Pareto-based approaches, which offers two different 

methodologies. The first of these is a ranking based method where different Pareto lines define 

rankings (i.e. the closer toward the system asymptote the better the ranking), and the second is 

the tournament method. The tournament method compares candidates to determine if one is 

dominated by the other, and if not, a sharing method determines a winner based on a niche count 

(also discussed by Horn et al. (1994)). The non-dominated solutions are used to develop the new 
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generation. Fourth approach is the compromise, which identifies solutions that are closest to an 

ideal solution as a measure of distance, rather than relying upon a Pareto front. Finally, the goal 

programming approach sets a target value, then takes a weight sum of deviation of objective 

functions in each solution for ranking. A number of different approaches can be taken to drive 

the algorithms, the best choice has to be determined for the specific problem. 

Another detailed review on genetic algorithms is provided by Baluja and Caruana (1995). 

Rather than focusing on the mathematical formulae of the algorithms, the focus is on practical 

application and study of the effects of various parameters. The discussion starts with the typical 

parameters utilized and adjusted: population size, crossover type, crossover rate, mutation rate 

and elitist selection. Population size is self-explanatory, the number of different solutions per 

generation. Three different crossover types were utilized in the research. One-point crossover 

chooses a single point in a solution, and randomly chooses a crossover value between two 

parents. Two-point repeats this with two crossover points. Uniform crossovers compare the 

parents for each solution point, and randomly picks between point values from the parents. 

Crossover rate is percentage of time that a crossover occurs, and if it does not occur, the parents 

pass-through unchanged. Mutation rate is the probability that a solution point will be randomly 

changed. Finally, elitist selection ensures that the best solution from each generation is carried to 

the next generation. This helps ensure that each generation increases in fitness, and does not lose 

the best possible solution to errors. A four-peak optimization problem was selected to provide 

the test bed for genetic algorithms. It is an important note that this problem was designed to favor 

one-point selection. Results from the test showed a few tendencies. Among them, elitist selection 

algorithms performed better than algorithms without the selection, larger population sizes 

performed better than smaller ones and finally, the single point crossover performed the best, as 
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was expected. Interestingly, performance did not see significant impact from variations in 

crossover and mutation rate. The results from this study are shown in Figure 2.7. Moving on, a 

comparison is provided against an alternative methodology, referred to as Population-Based 

Incremental Learning (PBIL). PBIL strives to create real value probability vectors, which reveal 

effective solutions with high probability. They start at a midpoint solution value, and then move 

away as further sampling occurs. The biggest advantage of PBIL is that it can maintain dissimilar 

points in the generation, whereas a genetic algorithm will cause the points to converge. Results 

indicates that for the four-peak problem, the PBIL provided better overall evaluations. In some 

ways, the usage of an external vector for maintaining information throughout results is similar to 

the methodology used in micro-genetic algorithms, which is discussed by other in other studies. 

    

 

 

 

 

 

 

Figure 2.7: Comparison of effects of genetic operator variables on solution results. 

Note that the X-axis is the test number, and the Y-axis is a performance 

measure (higher is better). (Baluja & Caruana, 1995) 
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A good coding guide is provided by Houck et al. (2008), who investigated the 

development of MATLAB code for genetic algorithms. A basic introduction of genetic 

algorithms is provided, which include six fundamental requirements needed to develop a genetic 

algorithm code. These six requirements are chromosome representation, a selection function, 

genetic operators for reproduction functions, creation of an initial population, termination criteria 

and an evaluation function. Basic parameters for their optimization functions are discussed. 

Among mutation operators, there are binary, uniform, non-uniform, multi-non-uniform, and 

boundary operators. Binary, flips each bit in the individual based on probability. Uniform 

mutation randomly selects a variable, and sets it to a uniform random number, while non-

uniform mutation sets a variable to a non-uniform (i.e. varying depending on the probability) 

number. A boundary mutation selects a variable and sets it to either an upper or lower bound. 

Finally, the multi-non-uniform crossover applies a non-uniform operator to all of the variables. 

Crossover operations mentioned are listed as simple, arithmetic, heuristic, and normalized 

geometric operators. Simple is suggested as a crossover that generates a random number 

dependent on the parent. Arithmetic creates two linear combinations of the parents that are 

complimentary. Heuristic is a simple linear extrapolation of the individuals, dependent upon 

fitness information. An example of this methodology is provided by testing on functions 

generated by Corana et al. (1989). Optimization evaluations were done through two different 

methods, one determined from returning a value at a point determined by a genetic string and the 

other through the Sequential Quadratic Programming (SQP) operator in MATLAB. The methods 

are used with both floating and binary genetic algorithms, finding that sequential quadratic 

programming greatly increased speed of optimization. The paper is rounded out with a 

discussion of the MATLAB code that was developed. Unfortunately, they do not discuss the 
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effects of utilizing the different mutation and crossover functions, despite providing an otherwise 

useful guide on coding algorithms. 

Deb and Deb (2014) discuss a number of different mutation operators for use in genetic 

algorithms. Among these mutation operators are polynomial and Gaussian methods. Polynomial 

relies on polynomial functions that relate the initial parent to the mutated through functions 

dependent on the value of the randomly generated number used to determine mutation. Gaussian 

mutation changes a variable value to a neighboring one given a probability function. A few 

different functions are utilized to determine the final value of the mutated result. The operators 

are tested utilizing a few different schemes. The first being standard mutation, with a predefined 

probability. Second is a mutation clock, which allows mutation to occur in a set number of 

variables. The third limits mutation to one per solution with a random variable. Fourth is a fixed 

strategy mutation, with every variable being given an equal chance, and a set mutation order in 

the population. Finally, the fifth is a diversity-based mutation, which varies the mutation 

probability based on the number of variables in the system. It was found the polynomial and 

Gaussian operators perform similarly, and that the mutation clock operator was quite effective, 

proving to be both the fastest executing and offering better performance. This paper does provide 

a variety of potential tools to use in genetic algorithms, but is difficult to implement in a bit-array 

solution set.  

   Coello Coello and Pulido (2001) discuss the design of micro-genetic algorithms and 

compare them to traditional genetic algorithms with the hopes of improving efficiency. To start, 

two memories are created; a population memory which provides a diversity source, and an 

external memory to archive the solution set. The population memory is also split into a 

replaceable and non-replaceable set. An initial population is generated, and used to create the 
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external memory. Each micro population utilizes crossover, mutation and elitism to generate a 

new population. The replaceable part of the micro-population is compared to a randomly selected 

member of the external memory. If the replaceable member dominates the match, they replace 

the solution in the external memory. If the member of the external memory dominates, it replaces 

the solution in the replaceable memory. The algorithm flow is displayed in Figure 2.8. An 

adaptive grid is also utilized to maintain population diversity across the Pareto front, which is not 

necessary when performing a single objective optimization problem. The algorithm is tested 

through a few different functions, and compared to typical algorithms. They found they were 

able to achieve the same results with the micro genetic algorithm as the other algorithms, but 

with lower computational cost. The techniques provided serve as good basis for the design of a 

micro genetic algorithm. 

 

 

 

 

 

 

 

 

Figure 2.8: Design of a micro-genetic algorithm as defined by Coello Coello and Pulido 

(2001)  
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Traditional multi-objective algorithms will usually make use of Pareto fronts to guide 

optimization. Horn et al. (1994) demonstrate the usage of Pareto dominant solutions as a 

methodology to solving multi-objective genetic algorithms and the technique around it. The basis 

of these techniques is selection. One of the most widely adopted methods is that of tournament 

selection, in which the best solution in a set of individuals is moved into the next population. 

Control can be exerted on convergence speed by managing the size of the tournament, but this 

method is more ideal for single-objective problems. For multi-objective problems, the Pareto 

domination tournament is suggested, in which two individuals are compared against a larger 

individual set. If one of the individuals is dominated by the set, the other is selected for 

reproduction. If neither or both dominate the set, a winner has to be chosen by shared fitness. In 

shared fitness, the individual’s objective fitness is divided by a niche count to determine the 

shared fitness value. The niche count is determined by the number of other individuals around it. 

The resulting method is tested with three different problems, in which are found promising 

results. However, they are quick to note the importance of an appropriately large population size, 

as well as having an appropriate comparison set size. If unable to simplify a problem away from 

a single-objective problem, the Pareto tournament selection described would be the ideal choice. 

Bit-array algorithms allow the discretization of geometry into pixels that can be readily 

manipulated, making them ideal for problems involving a range of potential shapes, as in this 

research. One of the earlier papers exploring bit-array genetic algorithms is by Kane and 

Schoenauer (1996).  They investigate using a discretized (2x1 aspect ratio) bit-array space to 

solve a structural loading optimization problem. As with most genetic algorithm problems, the 

solutions are evaluated and selected before being operated upon by crossovers and mutation. 

Most useful, a discussion is provided on methods of manipulating bit array systems. With 
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crossover, variety of techniques are mentioned, including 1-point standard, 2-point standard, 

diagonal and 2-block. 1-point and 2-point standards can only exchange data between parents 

across horizontal bands (a result of originating from one dimensional solutions), which leads to 

geometrical biasing. An alternative is the diagonal exchange, which can exchange information 

across any straight line in the array. The block crossover splits the domain with two horizontal 

and two vertical lines, to exchange data across these blocks. An experimental comparison was 

performed with these operators and compared with a uniform crossover. They find that one 

dimensional operators are readily outperformed by the uniform and two-dimensional operators. 

The uniform operator struggles in the early operations as a result of disrupting emerging schema, 

but converges to the result in later generations. Little comment was made about the two-

dimensional operators. Mutation operators have less variability than the crossover methods. A 

traditional bit-flip mutation is presented, as well as population based and boundary based 

operators. The population based operator flips a bit based on how many times a certain value 

appears in that position within the population. If one bit is prevalent, the probability is higher. 

Boundary based mutation places mutation probability higher at the boundary edges of bits in the 

array. From trials, population based mutation showed only slightly better performance from the 

traditional bit-flip method. They reserved boundary mutation as an end of run technique for fine 

tuning. The structural analysis algorithm was performed and compared against an adaptive 

scheme. It was found that the algorithm produced results that were similar to the other schema, 

but with some variation in the shape topology, as shown in Figure 2.9. The algorithm was also 

expanded to multi-load scenarios on a bicycle, which found similar results. This paper provides a 

significant amount of guidance that is useful for the development of a bit-array genetic 

algorithm.  
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 An interesting approach to the bit-array generation problem was presented by Pham et al. 

(2014) Rather than treating the bits as either existing or not, the bits are treated as weighted 

results, ranging from 0 to 1 and modifying the respective material density. To test this process, 3 

different scenarios are analyzed with varying loads and fixed location points. The algorithm 

optimizes the systems for strength, performing structural analysis by combining equations and 

algorithm operations into a single MATLAB code. A consistent truss design throughout the 

analysis is reported, with some of edge material being of a varied density. While an interesting 

technique, it is difficult to apply to variable material properties in most software packages, 

limiting usage. 

One of the alternatives available to genetic algorithms is particle swarm optimization 

(PSO). A comparison is provided by Eberhart and Shi (1998), starting with the operation of PSO. 

PSO starts with a population member represented by a particle, which is treated as a point in 

dimensional space. The particle knows its previous location with the best fitness value, and has a 

rate of positional change (or a velocity). Weight is added to the system to add inertia, which is 

taken into account by velocity and position equations. While the PSO does not explicitly contain 

crossovers and mutations, the effects of the swarm create a similar behavior seen in the particles. 

Unlike a GA, PSO does not depend on the concept of selection, and has no “survival of the 

Figure 2.9: Solution of a loading problem solved by (a) the GA-based method, (b) 

homogenization method. (Kane & Schoenauer, 1996)  
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fittest” operators. While an interesting alternative to a genetic algorithm, PSO does not have the 

research or optimization strategies that allow it to be effective for utilization with CFD. 

Two different optimization studies are performed by Zielinski and Luar (2006; 2006) 

across two different papers, both offering perspectives on different techniques of evolutionary 

algorithms. The first paper investigates differential evolution, which utilizes vector based 

differential equations and compares to a target vector, with special operations if the equation 

encounters a constraint. Generational changes are managed by mutations and weight crossovers. 

The variable with the smallest objective function (the best result) is used in the next generation 

and repeated until optimized. This approach was utilized on 24 different optimization problems, 

and found it was able to converge on the best solution in two-thirds of all the operation runs. The 

second paper investigates the usage of particle swarm optimization (PSO), which is based on the 

idea of social group behavior for optimization. In PSO, each solution has a known position, 

velocity and personal best position (the settings with the best functional values for the solution). 

The velocity is constantly changing between each iteration based on the previous velocity, the 

known results of the group and interaction within the group. Unlike the differential evolution, 

convergence only failed in three of the test problems. However, a trade-off is made in 

computation effort, with particle swarm taking more than twice the time to compute of the 

differential evolution solution. While these methods offer effective tools for different 

evolutionary optimization problems, it was decided to be a poor choice to apply to a bit-array 

optimization problem. 

There are a few methods available for multi-objective, combinatorial problems. Pareto 

simulated annealing is discussed by Czyzak and Jaszkiewicz (1998), and start by discussing the 

difficulty of the method. Two factors are listed as defining the difficulty. First, Multi-Objective 
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Combinatorial Optimization (MOCO) problems require strong cooperation with the decision 

maker (DM), meaning high requirements for tools to be effective. The second factor is not well 

described, simply stating that multi-objective problems were more difficult than single-objective 

problems. To provide background, the available tools of the MOCO into are classified into the 

categories of: exact, specialized heuristic and metaheuristic procedures. A satisfactory 

explanation of each methodology is not provided, only limitations of each are discussed. It is 

assumed that exact algorithms have some perfect mathematical relationship to the problem, and 

it is argued that these have high computational complexity and are limited in use. Specialized 

heuristic algorithms search the solution spaces of specific problems, and are again described as 

being of limited use. The metaheuristic algorithms are then discussed, and are reported as being 

more efficient than the other procedures. This is because they allow finding a near optimal 

solution in a wide space with a comparatively short amount of time. In contrast to the other 

methods, the limitations of the methodologies are not discussed. It was decided to use Pareto 

simulated annealing (PSA) for the solution method. Pareto simulated annealing borrows some 

basic ideas from simulated annealing, such as; neighborhood solutions, acceptance of new 

solutions with some set probability, dependence of probability on some parameter and schema of 

these parameter changes. The largest difference with PSA is that it utilizes the population of 

solutions each iteration along with objective weights, similar to genetic algorithms. Based on the 

paper’s description, it seems reasonable to consider PSA to be a cross of simulated annealing and 

genetic algorithms. Evaluation determined the methodology to be effective at finding a solution 

near the most efficient solution set. It is mentioned the number of iterations needed depends upon 

the population size, as it was established around a set number of solutions. While an interesting 
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approach, it is not clear how effectively the methodology could be applied to a bit array problem 

rather than a mathematical one. 

2.3.2. Genetic Algorithms for Optimization of Thermal Fluid Devices 

The optimization techniques described above can be broadly applied to any problem. 

Optimization of thermal and fluid systems have particular characteristics that are of interest to 

the present study. Hilbert et al. (2006) investigate the possibility of optimizing a heat exchanger 

by combining CFD and genetic algorithms. The main parameters of interest are the average 

temperature difference between the fins and the fluid, and the pressure drop across the array. A 

multi-objective genetic algorithm is utilized for optimization, using a combination of elitism, 

crossover, averaging and mutation. Non-dominated Pareto front techniques guide the 

solutions.  The optimization code is developed in OPAL, an optimization package. Geometry and 

meshing is handled through Gambit, and then CFD performed through Fluent. Changes were 

made to the spline of the pin/blade geometry, with a set degree of curves based on a polynomial 

function. When a new generation is created, they are solved analytically in parallel, by 

distributing the workloads to various workstations. With population sizes of 30 and 20 

generations, the combined computing makes the generation significantly faster than if managed 

by one workstation. Testing showed the system able to generate an effective, converged, Pareto 

front, with six individual blade profiles presented as an optimum. Many of the methodologies 

used are similar to the techniques applied in the present study. The addition of bit-array analysis, 

however, has a significant impact on the analysis methods and speed. 

Another application of genetic algorithms and CFD is applied to microchannel heat 

exchangers by Foli et al. (2006) The microchannel is of finned design, with alternating passages 

of hot and cold fluids. Variables are set as the channel height, channel length, width of the hot 
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channel, width of the fin and width of the cold channel. The mathematical model used by the 

CFD software was discussed, utilizing steady state momentum and energy equations. Before 

delving into the advanced method with genetic algorithms, two different initial studies are 

conducted based upon design constraints. The first scenario fixes the system volume, and seeks 

to determine the optimum aspect ratio between the channel height and width. A quick numerical 

study is done to determine pressure drop, heat flux and heat transfer. The ideal aspect ratio is 

found to range from 8 to 20, giving a balance between all variables. The second analysis allows 

the system volume to vary, but restricts the dimensions of the microchannel to a defined range. 

Using this method, the optimal aspect ratio was determined to be 28, providing a balance of heat 

transfer and pressure drop. Based on these results, optimization steps are established based how 

the system is defined and the resulting optimum aspect ratios. With this established, the genetic 

algorithms are discussed, in which a traditional algorithm is applied for optimization. Crossover 

and mutation is used, with no mention of an elitism. For the purposes of the algorithm, the height 

and length of the channels are fixed, as well as the flow cross-sectional area. Results show a 

large number of data points (shown in Figure 2.10), the best of which form an effective Pareto 

front, which proved to yield greater heat fluxes than that achieved with the simpler methods. 

Methods used in the paper are fairly conventional, but the greater distribution of data points 

compared that seen with Hilbert et al. (2006) is a more likely result to achieve. 
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The viability and performance of stacking microchannel heat exchangers are discussed by 

Wei and Joshi (2002), and optimized through the use of algorithms. The basic design is simple, 

utilizing standard finned microchannels, and stacking them vertically. Modeling is done by 

treating the system as a thermal resistance network, and utilizing an algorithm akin to the Pareto 

swarm optimization methods. The algorithm starts with a feasible point that meets problem 

criterion, and generates additional points based on explicit constraints. If a geometric or implicit 

constraint is violated, the point is moved toward the centroid. After this, if the point now breaks 

an explicit constraint, it is removed. If all points meet all constraints, it can be evaluated and then 

checked to see if the functions have seen improvement over the past five moves. If no 

improvement, function is considered converged, if not the points are moved toward the best 

solution and recalculated. The process repeats using a different random “seed”. An optimal 

solution was achieved within 100 steps, and determined the lowest thermal resistances were 

achieved with layer stacks of 3. Similarly, the optimum aspect ratios (of height to width) and 

Figure 2.10: Distribution of results from microchannel optimizations by Foli et al. (2006) 
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channel length were determined. Assuming the optimum number of layers, the ideal aspect ratio 

is approximately 5, and an ideal channel length of 5 mm. This meshes well with the 

recommendation that stacking short channels is the optimum technique for reduction of thermal 

resistance. 

Szollos et al. (2008) also perform CFD analysis, but on airfoils with the usage of micro-

genetic algorithms. They explore eta-dominance micro-genetic algorithms and compared to 

commonly a used genetic algorithm. A few sample functions were used to compare the Pareto 

fronts (before starting the CFD), and found that for each case, the micro-genetic algorithm 

matched or outperformed the traditional algorithm. The micro-genetic algorithm was than 

applied to an airfoil optimization problem, trying to minimize the drag coefficient for a variety of 

lift and drag conditions. The algorithm was set with a population size of 4, full crossover 

probability, no mutation, and some range adaptation. Again, they were able to achieve an 

optimum Pareto solution with the micro-genetic algorithm, while failing to achieve the solution 

while using traditional algorithm. While trying to show the benefits of the micro-genetic 

algorithm, it does require consideration if the problems were chosen explicitly to demonstrate 

superiority of the eta-dominance algorithm. The study was also not explicit in the decision to 

exclude mutation. It is mentioned they were unsure of its effects on the micro-population, but 

they also found some problems where mutation helped the convergence. Regardless, the results 

did show that micro-genetic algorithms can be used effectively with CFD based problems. 

One of the examples of a micro-genetic algorithm being applied to a CFD problem is 

presented by Park (2010), who attempt to optimize the geometry of combustion chambers. The 

goal of the research was to minimize the fuel consumption while maintaining stoichiometry by 

altering only the chamber geometry. Geometry is defined by four points, and completed by using 
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two Bezier curves. Combustion, soot formation and fuel spray models are integrated into the 

CFD analysis. The algorithm uses a population of 9, uses an elite solution and performs 

tournament selection to determine the solutions that are utilized for crossover. It does not seem to 

utilize the external memory typically seen with the micro-genetic algorithms, rather it just 

maintains knowledge of the best solution through the generation (which is simple elitism). 

Despite the differences, the results were positive. The system was near optimized within 6 

generations, with small gains seen through the remaining 74 generations, as shown in Figure 

2.11. Use of elitism meant that the minimum value obtained always remained the same or 

decreased over generation time. This effectively shows that micro-genetic algorithms can 

effectively be used to optimize CFD models, with good results. 

 

 

Finally, Safikhani et al. (2011) investigate the use of CFD with in combination with 

genetic algorithms for optimization of a centrifugal pump blade geometry. The geometry was 

Figure 2.11: Effects of optimization algorithm on shape over generations of designs. Y-axis is 

gross indicated fuel consumption. (Park, 2010) 
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controlled by adjusting angles in the camber curve, with select options for each angle. First, 

efficiency was calculated for a variety of different flow rates and inter-blade geometry. Second, 

the geometry was manipulated to try and determine the Pareto front of efficiency and Net 

Positive Suction Head required (NPSHr). CFD was used until results reached the optimum 

achieved through case study. An interesting note, is that the CFD solutions show a wide range of 

results before achieving the final Pareto function, indicating that a large number of analyses need 

to be run to converge on the solutions. 

2.4 Summary and Justification for Current Study 

While there is an abundance of research available on heat sink optimization, additive 

manufacturing and genetic algorithms, there is limited research on applying all three into a 

singular problem. The closest research has been performed by Bornoff and Parry (2015) and Wu 

et al. (2016), who investigated a grown heat sink intended for production from AM, and 

examined the use of genetic algorithms to optimize flow paths in a heat sink block. Compared to 

Bornoff and Parry (2015), the research in this thesis takes an alternative approach to solve a 

similar problem. While Bornoff and Parry designed a heat sink by organically growing the 

geometry based on heat flux and iterative analysis, the present study aims to optimize heat sink 

geometry through the use heat flux and bit-array genetic algorithm optimization. This 

investigation to explore the feasibility of optimizing the frontal geometry of heat sinks fabricated 

with additive manufacturing technology using genetic algorithms has not been previously 

reported in the open literature.  
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3. Heat Sink Flow Cross Section Optimization 

As shown in Figure 3.1, there are a few potential heat sink planes that could be used for 

optimization. One is the X-Y plane, which is the frontal cross section flow area of the heat sink. 

The other option would be modifying in the X-Z plane, creating unique flow channels. 

Simultaneous 3D optimization in the X-Y and X-Z plane is the ultimate goal. However, this 

creates a significant challenge in a few different manners. First, the generation algorithms 

become significantly more complex, having to account for both the X-Y and X-Z planes. But 

more importantly, the number of cells or “voxels” in a 3D space creates a large number of 

variables in the system. This, combined with the variety of surfaces that have to meshed and 

analyzed, means that the computational effort is intense, and unrealistic to perform with the 

computational resources available for the work in this thesis. Thus, modifications only in the X-

Y plane were considered in this first step in exploring heat sink optimization techniques. 

Optimizing the X-Y plane is consistent with traditional finned heat sinks, which do not have 

feature variation within the X-Z plane. 

 

Figure 3.1: On the left, the frontal view representing the X-Y plane. The right shows the top 

view representing the X-Z plane. (Haskell & Quesnel, 2017) 
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3.1. Baseline System Assumptions 

 The base device dimensions are set at 52 mm × 50 mm × 12 mm, with an internal fluid volume 

of 50 mm × 50 mm × 10 mm. These dimensions were chosen to match with a commercial heat 

sink (Remsburg, 2007). At each end of the device, a 1 mm thick shroud is extended around the 

edge, leaving a flow channel the size of the frontal flow area. The shroud extends 5 mm from 

each end, creating a total device dimension of 52 mm × 60 mm × 12 mm in the simulation. This 

is shown in Figure 3.2. Grid spacing is 1 mm, with a similar fin width when generated.  The grid 

utilized is shown in Figure 3.3.  

 

 

 

 

 

 

 

 

 

Figure 3.2: The base of the heat sink before the generated geometry is removed. 

Figure 3.3: Example of the discretized domain used for geometry generation. 
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The initial fluid temperature is set at 300 K. The fluid used is water, with a low velocity 

flow of 0.1 m/s at inlet of the frontal cross section. The flow rate is low to minimize pressure 

drop and pumping power, while also maintain the fluid below the boiling point. It was also 

intended keep the Reynolds number low to simplify simulations. However, during geometry 

optimization some of the larger internal flow paths resulted in Reynolds numbers that were 

partially into the transition regime for circular flow in a duct, with Reynolds numbers around 

2000. Finally, the heat sink material used is aluminum. Coding for generation of solutions and 

power maps were performed in MATLAB (2015). 

3.2. Initial Geometry Generation 

 A power map is required to initialize the problem. The first analysis utilizes a simple 

symmetrical power map, with a total area of 50 mm × 50 mm. The center 10 mm2 is set as the 

hottest area, with a power of 60 W. The second area is 30 mm2 (minus the center), and has a 

power of 40 W. The remaining area is 20 W. The second analysis utilizes a power map that is 

based on a power distribution from a representative non-symmetrical power map, with a 

maximum power set at 20 W, and a minimum of 0 W. The total power was 700.1 W for the 

symmetric and 218.7 W for the non-symmetric power maps. Both power profiles are shown in 

the Figure 3.4 (symmetric) and Figure 3.5 (non-symmetric). 
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Figure 3.4: Symmetric power map used in the first analysis, units are in W 

20

60

Figure 3.5: Non-symmetric power map utilized in the second analysis, units are in W 

0

20
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Both flux profiles are converted into a CSV file that can be imported into ANSYS Fluent 

(2016). This file contains coordinate information for individual points in across the heat flux 

area, as well as information on the power in W. These points represent a discretized location 

across the base of the device, with associated information. The CFD software has a hard limit of 

1412 points for input, which means this processing is necessary to successfully convert the data. 

The point limit is mostly arbitrary, likely just providing a maximum memory limit in the system. 

Post processing has to be done to ensure an appropriate array size. This can either be done by 

strategically selecting points to delete around the area, or choosing to interpolate to a grid size of 

37 × 37. Each point in the system is assigned a Y-dimensional value of -0.0011 mm, which is 

important to accurately place the location of the power map in the 3D space of the solver.   

 Since optimization in a single X-Y plane is considered, the X-Z location with the highest 

power output for each power profile was used as a worst-case condition. This is determined by 

summing the power output in each row and determining the largest value. Once created, the 

initial 2D geometry generation can begin. The solution space is initialized for the defined 

geometry space, creating a 49 × 9 grid of points. This mesh size was chosen to balance 

computational time and convergence reliability. A 50 x 10 grid (what would be expected) was 

tested, but was found to be highly unreliable in generating solutions that would readily mesh and 

analyze, failing with over half the generated solutions. The 49 x 9 grid would fail approximately 

once every ten solutions, and thus was selected for use with some normalizing factors. 

The power vector described above is normalized from a range of 0 to 1 based on the 

maximum power value in the vector, as shown in Figure 3.6. After this, the geometry array is 

modified to have solid material around the edges, and creates a 51 × 11 grid. After this is 

completed, the normalized power is used to generate the first layer of material. The code goes 
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through the first row bit by bit, and reads the corresponding normalized power value. A 

probability is applied to the bit location to determine if a solid bit is generated. This probability 

ranged from 15-80% based on the normalized value of the power. In other words, a location with 

a normalized power value of 0 has a 15% chance of generating a solid bit, while a location with a 

normalized value of 1 has an 80% chance of generation. Any value in between uses a linearized 

relationship between the percentage and normalized power value. Percentage values utilized 

were set through trial and error testing, the values chosen are intended to bias the solid bits 

toward the regions of highest power. The percentages chosen gave the most effective result in 

solid bit generation. 

 Once the first layer is generated, the rest of the geometry can be created. Unlike the first 

layer, the remaining layers chance of generation is not reliant on the power map, but based on 

surrounding material and a 50/50 probability of generation. Power is not directly utilized as it 

assumed the first layer provides the necessary bias in the structure. At the start of this flow, the 

code goes to the new layer directly above the first layer, and runs from the left edge to the right 

in the row. At each point, it is determined if there is any solid material around the point 

(including the walls on the side). If there is any material in one of the 8 surrounding cells, the 

current location is given a 50% chance of generating a solid bit. After this, the next bit location 

experiences the same operation, and this repeats until the vector is completed. The process 

repeats with the next layer, starting back on the left edge. After one pass-through in each row is 

Figure 3.6: Example of a normalized power from the first analysis. 
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completed, the geometry is finalized. An example of this geometry is shown in Figure 3.7. While 

creating the generation code, a test was done to compare the generated geometry with one 

generation pass through versus many. The single pass through was chosen in the end, as the 

multiple pass through (even with reduced generation chance) created large solid structures in the 

center of high power zones, essentially creating flow obstructions. 

3.3. Solid Model Creation 

Once the bit array representation of the geometry has been created, it needs to be converted into 

a form that can be read by the ANSYS software package, DesignModeler (2016a). The package 

requires a formatted text file, containing positional data of points, which are used to create closed 

curve structures. To create this file in MATLAB, it was determined the best way to accomplish 

this was to start with a contour plot function of the array. The contour plot is easily created with 

a single function (and the information stored in variables), but it is important to note that two 

contour levels need to be used for the plot. Two contour levels are needed to ensure generated 

curves have realistic geometry. The first initial contour level often leaves bits floating in space, 

or completely misses material connections. This is overcome by utilizing the second level, in 

exchange for some dimensional accuracy (approximately a 0.125 mm increase in material 

thickness, max). An example of the contour and corresponding bit array are presented in Figure 

3.8. With the contour plot and information created, the program utilizes the script C2xyz, 

Figure 3.7: Generated design bit array 
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available on the Mathworks site by author Chad Greene (2014). This script organizes the 

information from the contour variable into x and y coordinates of the readily extractable 

groupings. The program then takes this information, and separates the curve groups and 

coordinates into a text file that can be read by ANSYS software. Before finishing operations, the 

program prints out the curvature file discussed above, a picture of the bit array, a picture of the 

contour plot and a CSV containing the bit array information of the geometry. 

 

 

 

 

 

 

 

 

3.4. ANSYS Package and Computational Fluid Dynamics 

With a curve file available and design information saved, work to solve the problem in the CFD 

solver can begin. ANSYS Workbench (2016) is the main program that is used, with the 

subprograms of DesignModeler (2016a), Meshing (2016) and Fluent (2016) handling the 

operations. The operational flow laid out in Workbench goes from Geometry to Mesh and lastly 

to Fluent (see Figure 3.9). DesignModeler is used rather than SpaceClaim (also part of the 

Figure 3.8: The generated bit image and corresponding contour plot. Note that the black in the 

contour plot represents the results of the first contour line, while the grey 

represents the second contour line. 
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ANSYS package), purely because of its curve functionality which allows custom shapes to be 

imported quickly. 

 

 

  Starting with DesignModeler in Geometry, the screen that greets the operator is shown in 

Figure 3.10. Now the system geometry is created. This is the 52 × 12 mm external area of the 

heat sink device, though the corner is offset from the origin by 1 mm in each direction. This is to 

ensure that the internal flow area is oriented at 0, 0 so that the grown geometry can be accurately 

placed. After this is created, the geometry is extruded 50 mm in the -Z direction. Then, the flow 

channels are created. This is started by placing a 1 mm thick wall around the edge of the part 

(leaving the internal area completely open), and extruding this wall by 5 mm on each end. This 

wall, and the chosen extrusion size was to give the flow some space to develop around the 

entrance, allow for fluid connections in a real device, and to minimize effects as a result of mass 

added to the device. Now the generated geometry from before is imported. This is done by 

creating a curve operator on the interior surface of the heat sink, then designating the operator to 

get information from a coordinate file. The coordinate file generated in the previous steps is 

selected, and the geometry generated. An extrusion operation is created, and the curves from the 

previous operation selected. The extrusion command is then used to cut the geometry out of the 

stock material. A fill operation is performed by selecting all of the internal surfaces of the device. 

The fill serves to create the geometry of the fluid path, and is necessary to perform any CFD 

operations. Finally, a plane is located at the bottom of the device. A small 50 mm × 50 mm 

Figure 3.9: Workbench block flow 
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surface is created on this plane, directly below the internal area of the device (i.e. 1 mm from the 

sides and 5mm from the ends). This surface is extruded 0.1 mm from the geometry, and serves as 

a physical location for the heat transfer map to be applied. The device is now created, an 

example of which is seen in Figure 3.11. DesignModeler is now closed. 

  

 

 

 

 With the geometry created, the system needs to be meshed before the CFD solver can be 

used. The built in ANSYS Meshing software is used rather than the Fluent meshing software for 

simplicity and speed in updating the mesh. Meshing is opened, presenting the screen shown in 

Figure 3.12, and the mesh is defined. A separate sizing is created for the solid, allowing control 

Figure 3.10: View of the DesignModeler software, with a generated solution 

Figure 3.11: Final device created in DesignModeler 
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over both the fluid and solid mesh densities. Mesh settings are mostly left at the default values, 

with the exception of the relevance center and smoothing set at medium, and the minimum grid 

size for both solid and fluid geometries set at 0.5 mm, a representative mesh is shown Figure 

3.13.  

Figure 3.12: View of the meshing software 

Figure 3.13: View of the meshed device, as well as the meshed cross-sectional view. 
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The mesh size was selected after performing a Grid Convergence Index (GCI) study to 

determine the best balance between the fineness of the grid and analysis speed. Tests were done 

with both the fluid and solid geometry, with three different grid sizes for each. For the solid, tests 

were done with a minimum grid size of 0.25, 0.50 and 1.0 mm and analyzed the difference in 

system temperature to determine convergence. The fluid is analyzed with slightly smaller grid 

sizes at 0.125, 0.25 and 0.50 mm and total pressure drop is used as a convergence criteria. 

Analysis is provided in the table below, and showed that the largest GCI difference was within 

1.5%. This means that the difference in the grid sizing will not have a significant impact on the 

system result. In addition, the finest grid refinement takes more than 24 hours to run a single 

simulation, which is not practical for running the large number of analyses required for genetic 

algorithm optimization. However, the largest grid refinements can sometimes result in a failure 

for the mesh to generate, as a result of the grid being larger than feature sizes. It was decided that 

a minimum size of 0.5 mm for both the solid and fluid would be used, as it provides good 

accuracy and reasonable analysis times, while also providing a low instance of meshing failure. 

 

 

Step Size (Solid) 0.25 0.50 1.0 

dT (K) 18.39 18.23 19.28 

Step Size (Fluid) 0.125 0.25 0.50 

dP (Pa) 121.8 121.4 119.9 

Table 3.1: The step size and results for both the solid and fluid grid refinements. 
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Back in Workbench, CFD analysis can now be started from the Fluent -Setup tab. The 

Fluent screen is shown in Figure 3.14. The power profile is imported by going through “File”, 

“Read”, “Profile” and navigating to find the text file generated at the beginning of this section. 

Next, the viscous model was set from laminar to Spalart-Allmaras (1-Eqn), and the energy model 

enabled. 

 

GCI (Solid) 0.25/0.5 (%) 0.2067 

GCI (Solid) 0.5/1.0 (%) 1.335 

GCI (Fluid) 0.125/0.25 (%) 0.1340 

GCI (Fluid) 0.25/0.5 (%) 0.5266 

Table 3.2: The results of the GCI analysis 

Figure 3.14: View of Fluent utilized for CFD analysis 
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The Spalart-Allmaras transport equation is shown below (3.1). 
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 Here the transported variable, 𝑣̅, is identical to the turbulent kinematic viscosity except in 

the near-wall region. 𝐺𝑣 is the production of turbulent viscosity, while 𝑌𝑣 is the destruction of 

turbulent viscosity near the wall. 𝜎𝑣 and 𝐶𝑏2 are constants, while 𝑆𝑣̅ is a user defined constant. µ 

is the dynamic viscosity of the fluid and ρ is the density (ANSYS, 2006). 

 Next the energy model is provided below (3.2). Energy (E) and Temperature (T) are 

treated as mass-averaged variables, in (3.3). 
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Again, ρ is the fluid density, while 𝑝 is the local pressure. The effective thermal 

conductivity is represented by 𝑘𝑒𝑓𝑓. 𝑆ℎ is as a source term, with contributions from radiation and 

other volumetric heat sources. In the mass-averaged energy equation, each variable is based on 

the specific heat of the phase and a shared temperature. The thermal diffusivity is represented by 

𝛼𝑞, while 𝜌𝑞 again represents the density. (ANSYS, 2006) 

 The Spalart-Allmaras model is used rather than the laminar model to account for the 

potential for turbulent flows in some portions of the heat sink, while still minimizing solving 

time over other turbulent models. Unfortunately, this will make the laminar sections less accurate 
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in order to account for potential turbulent sections, as most turbulent models aren’t tuned to 

laminar solutions. The results between the laminar and turbulent models typically see about a 3-

4% difference in predicted pressure drop (see Table 3.3). It was determined that for the purposes 

of this optimization investigation, the Spalart-Allmaras model handles laminar problems 

reasonably, while also allowing calculation of turbulent regimes. The default constants and 

Prandtl values remain for the Spalart-Allmaras model. 

  

 

 

 

 

 

Now materials for the solid and fluid are chosen, which are aluminum and water (liquid) 

respectively. Boundary conditions are set, with the inlet being a set as a velocity inlet (with an 

absolute velocity set uniformly across the entrance area, the profile is affected in the model), the 

outlet as a pressure outlet and the bottom surface as a power boundary. Leave the outlet settings 

as defaults, but adjust the inlet velocity to 0.1 m/s. Adjust the bottom surface to make use of the 

power profile imported earlier. Now, a mapped interface needs to be created to make the energy 

model work. A mapped solution method is created using the default SIMPLE method. The solver 

is set to run 400 iterations, which achieves convergence in the system.  

dP (laminar) (Pa) dP (turbulent) (Pa) % Difference 

73.71 76.39 3.635 

55.06 56.49 2.601 

127.1 133.9 5.316 

43.41 44.13 1.659 

108.6 113.2 4.453 

58.77 60.28 2.571 

79.08 81.59 3.168 

129.4 135.5 4.694 

75.91 78.09 2.878 

  Average 3.442 

Table 3.3: Comparison of the pressure drop result in a laminar vs Spalart-Allmaras model in a 

few solutions. 
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The typical solver results are shown in Figure 3.15, below. After 400 iterations, the 

solution residuals of velocity, energy and the turbulent kinetic viscosity are on the order of 10-6 

and 10-5. Continuity, however, is larger, on the order of 10-3. The ANSYS Fluent user guide 

(ANSYS, 2006) suggests having results on the order of 10-6 is a standard target for residuals, 

meaning the former are in the expected range. It also suggests that in some pressure based solver, 

residuals may only approach 10-3, which seems to be what is occurring with the continuity 

equations. Based on the ANSYS documentation, these residuals were determined to be 

reasonable. 

After the solver has ran, the results are collected into a spreadsheet, an example is 

provided in Figure 3.16. The data collected from the system starts with the power input into it. 

The actual value of power is 700.1 W in the first analysis (symmetric map), and 218.7 W in the 

second (non-symmetric map). The energy balance of the system should be determined for each 

solution, as a measure of how accurate the solution should be. The result should be within 1% of 

the actual value, otherwise the solution should be reinitialized. Next, the volume integral 

temperature of the fluid is recorded, which provides the average volume temperature of the fluid. 

This is effectively the mixed cup temperature of the fluid. Pressure drop is recorded between the 

inlet and outlet, and at the bottom surface, the maximum temperature. 
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With the results collected, they need to be organized and used to determine the entropy 

generation rate of the solution, and the thermal resistance based on maximum heat sink 

temperature. This was also discussed in Chapter 2 (2.15).  

 
.

b
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Also discussed in Chapter 2, an expression for entropy generation rate (reproduced in Eq. 3.4, 

below) was derived by Bejan (1982), and is used in the analyze the data present study. 

Figure 3.15: Solution residual values after 400 iterations 

Figure 3.16: Example of the table used to record results 
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The baseline values utilized in the calculations are shown in Table 3.4, for both analyses.  

 

Property Analysis 1 Analysis 2 Units 

Power Input 700.1 218.7 W 

Average Heat Flux 28.00 8.746 W/cm2 

Ambient Pressure 101300 101300 Pa 

Ambient Temperature 300.0 300.0 kg/m3 

Fluid Density 996.6 996.6 kg/m3 

Mass Flow Rate 0.04991 0.04991 kg/s 

Heat Capacity Ratio 4183 4183 -- 

 

 With the current generation analyzed, the results need to be updated in a few files before 

the new generation can be created. A CSV file needs to be updated with information from the 

analysis, and is displayed in Figure 3.17.  Additionally, a generational results file is updated, by 

replacing the file and array information in the generational data folder with the new data. 

Similarly, the memory needs to be checked to determine if a solution was replaced, and the 

appropriate array information and memory file updated. Once completed, MATLAB can be 

opened to create a new generation. 

 

 

 

Table 3.4: System values in calculations 

Figure 3.17: CSV file that is imported into MATLAB. 
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3.5. Optimization Code 

With the results from the previous generation compiled, and the folders populated with the 

correct information, a new generation can be created. In MATLAB, the active folder is directed 

to where all the files and CSV data are stored. The script first starts by setting the generational 

number (example: the next generation should be #18) and the memory size. It is important to 

update the generational number with each successive generation, otherwise this will create 

problems with the external memory. The memory size should only have to be set once. In this 

test, the first analysis memory array was set to 25 samples, meaning that the first generation will 

require 25 designs and analysis. The second analysis was set at 20 samples, to determine if there 

were any benefits to changing the size. With those set, the script starts looking for the generation 

and memory files and imports them with the corresponding array data. The system also collects 

performance information from the current generation memory, as well as the external memory 

from the “GenData.csv” and “ExtMem.csv” files respectively. Once the information is initialized 

into the system, the systems modifies the collected array information by adding surrounding 

walls, which are necessary for geometry modification. 

 Now the algorithm work can start. The system checks the generational data (or memory if 

this is the first run), and ranks each solution from best to worst based on entropy generation. The 

generation solutions can now be compared to the memory (skipped on the first run). Two 

numbers between 1 and 25 are randomly generated to serve as access numbers to the memory. A 

check loop ensures that the numbers are not the same. The associated memory locations are 

compared to the #2 and #4 ranked solutions via the entropy generation rate. As discussed 

previously, if the generational solution has a lower entropy generation rate than the memory 

solution, it will be recorded as replacing it in the final memory output. If the memory solution 
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has the lower value, it remains in the memory and the solution array replaces the solution in the 

current generation. Once the final generation state has been created, the new generation can be 

created. This process is illustrated in Figure 3.18. 

 

 

  

 

 

 

 

 

 

 

 

  

The first ranked solution is treated as the elite individual, and thus is not modified in the 

new generation. For the rest of the solutions, a crossover occurs first, and creates crossovers 

between 1-2, 2-3, 3-4 and 4-5. When the operator initializes, it copies both parent arrays to its 

own memory, and initializes the new child using the first parent as a base. Similar to the 

Figure 3.18: Diagram of the genetic algorithm flow 
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generation technique, the script runs through row by row until it reaches the bottom. At each 

point, a random number is generated and this determines if the second parent provides the data 

for that point. There is a 50% chance that the second parent will be used. If a solid pixel will be 

added to the space, it follows the same rules as point generation. The pixel must have another 

solid pixel around it, or it will not generate. Deleting a solid pixel is a much more difficult issue, 

as it is very easy to create geometry that cannot physically exist. For example, if three pixels 

extend from the edge of a solid part, and you delete the first pixel that starts the extension, the 

two end pixels will just remain in space. To get around this issue, a few filters are used in the 

system. In this instance, rules are set to determine what can be deleted, similar to the 

requirements on what can be added. If there are two solid pixels around the current pixel, then 

the system is not allowed to delete the current position, as shown in Figure 3.19. This is done to 

prevent the system from deleting bridges between shapes. While there is some loss of accuracy, 

it is a necessary tradeoff to produce realistic designs. 

 

 

  

With the crossover operation completed, mutation can be performed. The system goes 

through each pixel in the array, and will check the mutation percentage against a randomly 

generated value. If the value is less than the percentage chance, the pixel bit in the current 

position will be flipped. That is, if it is a solid pixel, it will be changed to empty space, and if it’s 

empty space, it will become a solid pixel. At the same time, the pixel change still must follow the 

Figure 3.19: On the left, an example of a solid bit which cannot be deleted, with two 

surrounding bits. The right, a bit location that a solid bit may be added to. 
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rules laid out previously for both creating a solid pixel, and deleting a pixel. With mutation done, 

all the algorithms are complete. The final population solution operators are shown in Table 3.4. 

A filter is now utilized to hopefully clear any remaining outliers in the array. The filter is very 

simple in design and execution; it goes through each locational point and looks at the 

surrounding pixel count of every solid pixel. If there are 2 or less solid pixels surrounding, the 

selected solid pixel is deleted. A balance had to be chosen for this filter, as just deleting shapes 

with only one surrounding pixel will leave a lot of the extraneous shapes in the final array. Any 

more, and a large amount of valuable information will be lost. In the end, two was selected as it 

offered a good balance of deleting bad bits, while not sacrificing a large amount of functional 

data.  

 

Solution # Operators 

1 Elitism 

2 Crossover 1-2, Mutation, Filtered 

3 Crossover 2-3, Mutation, Filtered 

4 Crossover 3-4, Mutation, Filtered 

5 Crossover 4-5, Mutation, Filtered 

 

With the final arrays created, the new generation information can be exported. The script 

follows the same techniques in previous codes, but uses loops to export all the information at 

once. It creates a binary image of the array, an image of the contour plot, exports the contour 

curve file, creates a base CSV file with the generation and solution number to copy results into, a 

copy of the randomized numbers used for memory comparison and, finally, copies the final 

memory array into a CSV file. With all of this printed out, the information can be copied into the 

appropriate generation file. The process repeats with importing the information into ANSYS. 

Table 3.4: Table showing the operations performed on each solution 
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The solid model and subsequently the mesh is updated for the new solutions, and another Fluent 

analysis is run.  

3.6. Genetic Algorithm Settings 

The algorithm used in the problem utilizes a combination of elitism, mutation and crossover. As 

discussed by Deb and Agrawal (1999), analysis convergence occurs fastest when utilizing a 

combination of all 3 functions. Population size is similar in size to other micro-genetic 

algorithms (Coello & Pulido, 2001), with 5 total solutions and 1 providing solution elitism. The 

other 4 solutions are acted upon by both mutation and crossover operators. Crossover operates 

fairly simply, with each parent having a 50% chance to contribute to the child, at least if 

contributing a solid bit. Because of the reduction of occurrence from filtering, the chance for a 

solid bit to be deleted is set higher at 65%. This is done to try and provide a balance to the 

crossover that is disturbed as a result of the filtering methods. On a similar note, the mutation 

rate uses different mutation percentages based on if a bit will be added or deleted. If a solid bit 

will be added, the percentage chance for mutation is set at 30%. If a solid bit will be deleted, the 

percent chance of mutation is set at 40%. Again, the deletion chance is set higher to balance the 

limitations set by the filtering system. Of note, the mutation values were set similarly to those 

utilized by Tai et al. (2005), who found mutation rates of 30-40% produced the lowest relative 

error with bit-array problems. Unfortunately, it is difficult to ascertain the ideal values for 

genetic operators, which typically requires a parametric study to determine (Deb & Deb, 2014), 

which was beyond the scope of this study.  
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4. Results and Discussion 

The performance of every generated profile is compared against a standard finned heat sink. The 

straight finned geometry is placed into the same space as the generated designs (see Figure 4.1, 

below). The finned heat sink has 19 interior fins, 1 mm thick, with a spacing of 1.55 mm 

between each fin. Again, this is based on the design from Remsburg (2007) and their water 

impingement design. The pressure drop of the system at a flow rate of 0.1 m/s is calculated as 

59.34 Pa. Utilizing the first (symmetric) power map, it is found that the entropy generation rate is 

0.2649 W/K. The second, non-symmetric, power map results in the generation rate being 

0.02445 W/K, as less heat is transferred. The mass of the device was determined to be 46.76 

grams assuming a material density of 2720 kg/m3. These values serve as the baseline that all 

generated designs are compared to.  

 

Figure 4.1: Image of the finned heat sink used for comparison purposes 
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4.1. Symmetric Power Map Results 

Before the results are discussed, it should be noted that an error was encountered during the 

initial generation attempt. This error was from the algorithm not correctly implementing the 

elitist solution. As a result, the elite solutions were all based off of the first best result. It was 

discovered after 38 generations were completed, so it was decided to leverage the results to 

regenerate and solve the corrected solution set. This was done to determine the effects of a strong 

initial population on the algorithm process. To better determine how quickly the ideal solution 

may emerge from a typical scenario (i.e., with no strong initial population), the analysis with the 

non-symmetric power (discussed in Section 4.2) was started with no initial seeding.  

The symmetric power map was reinitialized after 38 generations. Each of these 

generations contained 4 unique solutions (from crossover and mutation operators), and 1 elite 

solution carried over from previous generations. The exception was the first generation, which 

contained 20 unique solutions. To reinitialize the problem, 25 of the best solutions from the first 

solution set were carried over as the first generation of the new generation set. From here, 

generations remained as 4 unique solutions and 1 elite solution. One hundred generations were 

ran before analysis was stopped. This number was chosen based off the result of the best 

solution, which saw little change after approximately 75 iterations. Going to 100 helps ensure 

that the solution values have were optimal. With this done, the data is analyzed. 

The five lowest entropy generation rates were determined to be 0.1992, 0.2033, 0.2078, 

0.2082 and 0.2085 W/K. Compared to the finned heat sink at 0.2649 W/K, this is a reduction in 

entropy generation rate between 21 and 25%. Similarly, these five designs had a reduction in 

thermal resistance from 24 to 27% compared to the baseline. This also corresponds to a drop in 

maximum surface temperature of up to 11.27 K. The reduction in thermal resistance is 
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accompanied by an increase in device mass (the finned device weighing 46.76 g), as well as an 

increased pressure drop compared to the fin design (59.43 Pa). The solution masses were 69.37, 

65.38, 64.79, 66.78 and 64.63 grams. This means the mass increases anywhere from 38.22 to 

48.37%. It is important to note that the mass was not an optimization target in this research, so it 

is expected that it would be impacted. However, it is still of interest in regards to other variables 

such as production cost, and remains a potential goal in future optimization efforts. In regards to 

the pressure drop, the top five generated designs have a pressure drop of 349.0, 261.4, 226.7, 

290.4 and 216.0 Pa respectively. This is a respective increase of 487, 340, 281, 389 and 264%. 

This is a noticeable increase over the finned system, and is best explained by the relative 

irreversibility due to pressure loss of the working fluid compared to heat transfer over a finite 

temperature difference. Because the pressure drop is on the scale of Pa, a significant change on 

the order of 100 Pa will not have the same effect as a change of a few Kelvin on the maximum 

temperature for a fixed heat input. Thus, from a thermodynamic perspective, the overall heat 

removal process is more reversible in the generated heat sinks, despite the increased pressure 

drop. However, practically, the thermodynamic improvement would need to be balanced with 

potentially higher pump operating costs.  

The highest power vector utilized for the solution is displayed in Figure 4.2, along with 

the contour figures of the best five solutions. From initial inspection, the largest mass of material 

is in the center of the cross section, with some extension toward the edge. Mass tends to start at 

the base center, and then branch out further, conducting heat away from the hottest portion of the 

chip. The far edge of the device sees less overall mass than the center areas. Most of the open 

area occurs around the far edge and the top of the device. To validate these initial observations, 

the solutions were subdivided into 5 sections, with the fill in the areas calculated and shown in 
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Figure 4.3. Sections 2, 3 and 4 represent the center of the device, and it can be noted that the fill 

densities are consistently within 50-55% for these areas. This is in contrast to the outer edges 

analyzed by sections 1 and 5, where the fill density is typically closer to 45-50%. This confirms 

that the system is biasing solid material toward the center of the devices. Total fill density of the 

devices was also determined, at 53.97, 50.11, 49.21, 52.15 and 49.21% for the respective 

solutions. This will provide an interesting point of comparison to the fill density of the non-

symmetric solutions. 

The temperature maps shown in Figure 4.3 help present some of the effects of the 

solutions. Results are as expected; the high-power area of the map causes a semi-elliptical 

temperature distribution across the surface base around the center. The additional material 

around this area helps to dissipate the energy, decreasing the maximum temperature of the 

device. An obvious problem results from the diagonal openings in the solution, as represented by 

the very small holes throughout the solution space. Notable in the temperature distributions, 

these areas maintain the temperatures of the surrounding material. This indicates the openings 

serve little purpose in terms of the flow, and would be better replaced by material. The added 

mass from the material would help further dissipate the energy, and because of the limited area 

for flow, would have negligible effect on the pressure drop of the system.  
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Figure 4.2: Contour figures of the top five solutions providing the lowest entropy 

generation rate utilizing the symmetric power profile. The power profile is 

provided below, measured in W 
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Figure 4.3: Fill densities of the subsections of the symmetric solutions. A) Solution 1, B) 

Solution 2, C) Solution 3, D) Solution 4, E) Solution 5 

A) B) 

C) D) 

E) 
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Figure 4.4: Temperature (K) profiles of the symmetric heatsink designs, located in the Z 

plane to find high temperature zones 
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4.2. Non-Symmetric (CPU) Power Map 

As before in the symmetric power map analysis, 100 generations were run before analysis was 

stopped and the data was analyzed. Again, generation sets consist of 4 unique solutions and 1 

elite solution. The first generation consists of 20 solutions, in the interest to see the effects of 

different initial sizes on the algorithm compared to the symmetric analysis. Unlike the symmetric 

power map analysis, this study utilizes a freshly generated solution set rather than a collection of 

strong solutions for the first generation. Therefore, the initial solution set fitness will be greater 

distributed than the first study. This is the default method of analysis for this algorithm, and is 

representative of the standard algorithm behavior.  

When utilizing the power map based on the CPU power map, it was found the top five 

entropy generation rates were 0.01920, 0.01966, 0.02001, 0.02005 and 0.02012 W/K. This is 

compared to the finned heat sink at 0.02445 W/K, a reduction between 18 and 21%.  The 

reduction in thermal resistance for the generated geometries is between 18 and 22%. Because the 

difference in overall power, the reduction in maximum temperature is not as significant as the 

symmetric map solutions, at 2.5 K. Again, this added performance comes at a cost of device 

mass and pressure drop compared to the finned design (at 46.76 g and 59.34 Pa). The solutions 

have a mass of  68.83, 70.10, 67.88, 66.95 and 67.87 grams. This is an increase in mass from 

45.16 to 49.93%. As mentioned earlier, the algorithm was not optimizing for mass, so the 

increases are an unfortunate side effect. The top five generated designs have a pressure drop of 

328.3, 395.2, 336.9, 289.1 and 302.6 Pa respectively. This is a respective increase of 453, 566, 

468, 387 and 410%. As discussed before, this is a noticeable increase compared to the traditional 

finned system, and thermodynamic improvement from an entropy generation perspective must be 

weighed against practical issues such as pumping power. 
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 The generated geometry of the top five results are displayed in Figure 4.5, along with the 

corresponding power map of the problem. Compared to the power map in the first analysis, the 

overall power levels are more uniform. As a result, we expect to see a more even distribution of 

mass throughout the heat sink. Again, the solutions were discretized into 5 subsections, and the 

average fill percentage determined from each as shown in Figure 4.6. Unlike the symmetric map, 

there is no obvious locational bias, with most solution sections being in the 50-55% range. 

Section 3 may be an exception, with most of the solutions remaining in the 55-60% range. An 

interesting note is the percentage fill compared to the symmetric solutions seems to be slightly 

higher. This can be confirmed by checking the total fill density of the devices, at 55.33, 56.24, 

54.42, 52.61 and 55.33% respective to the solutions. Compared to the symmetric solutions, this a 

consistent increase of approximately 3-5%. This may be an effect of more evenly distributed and 

consistent voids in the solutions versus those in the symmetric systems. 

More illustrative results can be drawn from reviewing the temperature distributions 

presented in Figure 4.7. Compared to the symmetric power map, temperature was distributed 

more evenly, with the exception of the left most edge. The voids resulting from diagonal bits 

continue to prove ineffective. As discussed previously, the temperature distribution indicates 

they offer little assistance in flow, resulting in minimal reduction in pressure drop and loss of 

material to dissipate energy from the surface. As mentioned when viewing the fill densities, there 

seems to be a more even distribution of voids in the non-symmetric solutions as a result of the 

relatively uniform power map. This can be confirmed by viewing the temperature distribution 

maps that more fluid flow occurs around the edge of the symmetric map solutions. Again, this is 

an effect of the power map distribution, with lower power areas enabling greater fluid flow given 

the lower necessary power dissipation. 
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Figure 4.5: Contour figures of the top five solutions providing the lowest entropy generation 

rate utilizing the non-symmetric power profile. The power profile is provided 

below, measured in W 
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Figure 4.6: Fill densities of the subsections of the non-symmetric solutions. A) 

Solution 1, B) Solution 2, C) Solution 3, D) Solution 4, E) Solution 5 
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Figure 4.7: Temperature (K) profiles of the non-symmetric heatsink designs, located to 

find high temperature zones 
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4.3. Effectiveness of Algorithm 

To see the effects of the generational advancement on the entropy generation rate of the 

solutions, the results for all generations are plotted in Figure 4.8 and 4.9 for the symmetric and 

non-symmetric power cases, respectively. To get a better indicator of the effects of the algorithm 

on solution generation, the elite solution of each generation set is excluded from this data. This is 

because the elite solutions will always provide the best available solution, and do not accurately 

represent the behavior of the algorithm. Among the first things to make note of, is that the initial 

population has limited effect on the generation, when comparing between the two analyses. The 

solution converges faster, but the best solution is not found any earlier in the analysis. The 

average and minimum value curve for generation using the symmetric power map is displayed in 

Figure 4.9, with the non-symmetric results being displayed in Figure 4.10. 

Interestingly, when the entropy generation for all geometries within a generation are 

averaged, a somewhat random oscillating signal occurs over the generations. Meaning the results 

shift between achieving lower entropy generation rate values before rising to a higher average, 

and repeats every few generations.  It is possible this is not purely an effect of the algorithm, but 

as a result of the bit-array and the lack of an immediate relation between a bit and the bit’s effect 

on the solution. In other words, in most algorithms, a change of a variable has direct and 

noticeable impact on the results of the solution. However, in a bit-array, the addition or removal 

of a bit does not have a defined impact result on their own. Rather, the final result is dependent 

on larger groups of bits and their location in the system, complicating the solution. In the end, the 

ideal best solutions tend to occur randomly during the generations. It is possible that better 

solutions may appear with further analysis, but the computational cost must be balanced with the 

available results, and strong solutions were already determined within the generational count. 
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Figure 4.9: Entropy generation results for the analysis using a non- symmetric power map 

 

Figure 4.8: Entropy generation results for the analysis using a symmetric power map 
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Figure 4.11: Entropy generation rate plot with averaging curve applied across the non-

symmetric solution set 

Figure 4.10: Entropy generation rate plot with averaging curve applied across the symmetric 

solution set 
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While results from the solution are similar to other results obtained from single-objective 

algorithms, it does not seem to have the effectiveness of the multi-objective algorithms found in 

literature. Most studies report the best possible solution in each generation, including the elite 

values. To provide a comparison, the best possible solution for each generation are also plotted 

in Figure 4.10 for the symmetric solution and Figure 4.11 for the non-symmetric. The most direct 

comparison available is provided by Gagne and Andersen (2010), shown in Figure 4.12, who 

provide both average and optimal results across their generations. When observing the average 

system results, a similar type of sinusoidal function occurs, indicating that the behavior 

encountered in this research is not uncommon. The behavior of the optimum solution across the 

generations is essentially logarithmic, and is clearly seen in both the second analysis research 

and other papers. Note that the logarithmic effect is not seen in the first analysis, as a result of 

the strong initial solutions. These other papers include Wu et al. (2016), Wang and Tai (2005) 

and Park (2010), who all see a logarithmic effect when observing the optimum functions. The 

vast majority of papers utilizing genetic algorithms tend to focus on the Pareto front results, 

which will be discussed later. 

 

 

 

 

 

 

 Figure 4.12: Generational results of a micro-genetic algorithm in Gagne and Andersen (2010) 
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While the results from the algorithm are consistent with literature, it seems further 

refinement could improve upon convergence and results. Ideally, another component should be 

added to the algorithm to direct the solution. This would be similar to Tai et al. (2005), who 

define a “skeleton” around which a bit-array controlled “flesh” is utilized for algorithm 

manipulation. However, it would be difficult to implement a defined skeletal structure around an 

unknown power in the system. A more logical method would be to define the ideal structures as 

they generate. There are a few possible methods that could be utilized to accomplish this, the 

basis of which is that the ideal structures need more influence on the generated solutions. One 

method would be structure identification, similar to the block crossovers discussed by Kane and 

Schoenauer (1996). In this case, the bit-array space would be subdivided into larger sections, 

which would allow more information from the solution set to be carried over to the new 

generation and potentially result in more consistent generational results. A second method would 

be to reintroduce the normalized values of the base power into the algorithm rather than just as 

part of the initialization. Modification to the crossover and mutation rates could be correlated to 

these normalized values close to the power surface. The hope would be this would add weighting 

toward the ideal solutions throughout the generations. A third, more complex methodology, 

would be creating evolving structural recognition and add weighting requirements to the 

algorithm to direct new generations to follow this structure. To provide an example, this would 

require another external memory source to store this base structure. This structure would be 

based on the best solution currently generated. When a superior solution is generated, it is 

compared to the current structure. A new structure is generated based only on the solid bits 

shared by the two solution arrays. This structure is then utilized to guide the generation toward 

following it, by requiring the new solutions to match the structure by a certain percentage. 



92 

 

Making a system such as this work effectively would require significant effort to tune, 

necessitating starting with a simple problem as the initial tuning media. While further testing 

would be needed, these methods may provide the extra steps needed to ensure the micro-genetic 

algorithm works more effectively with a bit-array CFD problem. 

  The thermal resistance and pressure drop of each solution is shown in Figures 4.13 and 

4.14. A very similar result occurs when plotting the pressure drop versus the entropy generation 

rate as shown in Figures 4.15 and 4.16. There is a noticeable Pareto front for both solutions, but 

note that the best solutions (lowest entropy generation rates) were at 261 and 328 Pa for the 

analysis of the symmetric and non-symmetric systems, respectively. This effectively means the 

Pareto front occurs at the bottom of the formed curve, indicating that the solution is most 

influenced by reduction in thermal resistance compared to reduction of pressure drop, as 

governed by the formulation of the entropy generation rate. This can be confirmed when looking 

at the scatter plot comparing the thermal resistance to the calculated entropy generation rate, as 

shown in Figure 4.17 and 4.18. Note that each analysis shows a very linear relationship between 

the two properties, again indicating the entropy generation rate term driving the analysis is 

almost purely influenced by the thermal resistance. This is further demonstrated when 

performing the uncertainty analysis. 
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 Figure 4.14: Plot of generated results across the pressure drop and thermal resistance, 

showing the effective Pareto front of the non-symmetric power map solutions 

 

Figure 4.13: Plot of generated results across the pressure drop and thermal resistance, 

showing the effective Pareto front of the symmetric power map solutions 
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Figure 4.15: Plot of generated results across the pressure drop and entropy generation rate, 

showing the effective Pareto front of the symmetric power map solutions 

 

Figure 4.16: Plot of generated results across the pressure drop and entropy generation rate, 

showing the effective Pareto front of the non-symmetric power map solutions 
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Figure 4.18: Comparison of the thermal resistance and entropy generation rate for the non-

symmetric power map analyses, showing a linear relation. 

 

Figure 4.17: Comparison of the thermal resistance and entropy generation rate for the 

symmetric power map analyses, showing a linear relation. 
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4.4. Uncertainty Analysis 

Uncertainty in computational fluid dynamics is comprised of four elements of acknowledged 

uncertainty: physical approximation, computer round off, iterative convergence and 

discretization (Slater, 2008). Physical approximation is an uncertainty in the choice of the system 

model and any simplification done for analysis. In this analysis, the largest model uncertainty 

comes from the choice of the Spalart-Allmaras turbulent flow model over the laminar model. 

The average difference between the two models is 3.44% for the pressure drop (in Table 3.3), 

with a maximum of 5.3%. However, based on testing results shown in Section 4.3, this 

uncertainty in pressured drop should have minimal effect on the entropy generation rate result. 

Additional model uncertainty is added when comparing the system power. A maximum of 1% 

difference from the actual power value was allowed, so an uncertainty of 1% is assumed. 

Uncertainty due to computer round off is simply a measure of the accuracy of reporting of the 

results. In this study, the maximum size of round off is to four decimal places. Iterative 

convergence uncertainty is from a solution not converging to a final value from residuals that are 

still reducing in value. This uncertainty should not be occurring in the solution, as all solutions 

are determined after the residuals have reached their minimum. Finally, discretization 

uncertainty is from the chosen grid, often covered by the grid convergence index. As discussed 

previously and shown in Table 3.2, grid convergence is within 0.53 % of a grid of half the scale 

in the fluid (pressure), and 1.33% of the solid material (temperature). It is an important note that 

the uncertainty on the temperature is based on the delta between the flow inlet temperature and 

the measured temperature. These uncertainty values will be utilized to determine the total 

uncertainty on the entropy generation rate values. 
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Total uncertainty for each variable was determined utilizing the root sum of squares 

(RSS) for the pressure drop, maximum surface temperature, average water temperature and 

system power input. Round off uncertainty has negligible effect, with the resulting relative 

uncertainty on the order of 10-7. The total relative uncertainty for pressure drop was determined 

utilizing the maximum model choice uncertainty, putting the total uncertainty at 5.33%. The 

temperature uncertainty is uniform at 1.33% for each variable. Uncertainty of the system power 

was based on the potential allowed uncertainty in the analysis, putting it at 1%. The variables of 

importance were the system pressure drop, the thermal resistance and the entropy generation 

rate. Six different solutions for each analysis were utilized to determine the uncertainty, with two 

being of optimum result, two of average result and two of the worst solutions.  

 Uncertainty propagation was conducted utilizing the Engineering Equation Solver (EES) 

(2017) program, which calculates overall uncertainty using the method described in NIST 

Technical Note 1297 (F-Chart Software, 2017b; Taylor & Kuyatt, 1994). Complete results of the 

variables of interest are shown in Table 4.1. Total uncertainty of the pressure drop is not affected 

by propagation, and as such remains at the 5.33% determined in the total uncertainty. For every 

solution analyzed and for both power boundary conditions, the uncertainty in calculated thermal 

resistance and entropy generation rate were approximately 1.60-1.75%. The consistency in 

results indicates it can apply nearly universally to every solution in providing the maximum 

uncertainty. It also validates the solution results, as the effects of the uncertainty do not change 

the comparison of the best solutions significantly enough that they can be matched by the finned 

solution. An important note is that the largest contributors of uncertainty to these equations were 

the maximum surface temperature and system power, providing approximately 67% and 33% of 

the uncertainty respectively. This breakdown is provided in Figure 4.19. These results indicate 
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the maximum surface temperature has the largest effect on the solution results, as well as 

demonstrating the importance of confirming the accuracy of the input power.  

 

Analysis 1 dP (Pa) 
R_th 

(K/W) 
S_gen 
(W/K) 

dP Uncertainty 
(%) 

R_th 
Uncertainty (%) 

S_gen 
Uncertainty 

(%) 

3.72 349.0 0.04060 0.1992 5.326 1.754 1.654 

5.76 261.4 0.04155 0.2033 5.326 1.754 1.653 

3.91 240.7 0.05258 0.2513 5.326 1.737 1.614 

4.94 212.2 0.05306 0.2532 5.326 1.738 1.614 

2.45 108.6 0.08228 0.3694 5.326 1.719 1.544 

5.37 151.3 0.08340 0.3740 5.326 1.715 1.538 

              

Analysis 2 dP (Pa) 
R_th 

(K/W) 
S_gen 
(W/K) 

dP Uncertainty 
(%) 

R_th 
Uncertainty (%) 

S_gen 
Uncertainty 

(%) 

2.57 328.3 0.03718 0.01937 5.326 1.759 1.708 

4.43 395.2 0.03807 0.01984 5.326 1.753 1.700 

2.68 220.7 0.05004 0.02592 5.326 1.748 1.678 

5.88 200.4 0.05008 0.02593 5.326 1.742 1.676 

4.17 112.8 0.07487 0.03838 5.326 1.723 1.626 

19.1 99.77 0.07510 0.03850 5.326 1.734 1.635 

 

 

 

 

 

 

 

 

 

Table 4.1: Results from propagation uncertainty analysis 

Figure 4.19: Results from an error propagation analysis utilizing EES 



99 

 

4.5. Comparison to Literature 

As this study is performed with water, it is difficult to make a direct comparison with other 

studies. The best avenue of comparison is to compare the individual performance of the created 

solutions to a traditional heat sink. The most immediate comparison would be to Bornoff and 

Parry (2015), with their organically grown heat sink. This comparison is interesting, as they 

achieved a 20% reduction in thermal resistance over the traditional finned heatsink. Results from 

this study showed somewhat higher thermal resistance reduction with the symmetric power map 

at 27%, but similar results with the non-symmetric power map at a 22% reduction. Bornoff and 

Parry also performed a comparison utilizing a traditional finned heatsink that did not have 

constraints on aspect ratio, and minimized the fin size to the same minimum feature size of the 

grown device. This heat sink actually performed better than their grown device. In this feature, 

the fins of the traditional heat sink are limited to 1 mm of thickness. The generated designs are 

similar. However, because of the contour effects, it is possible for the features to go to 0.875 

mm. This only occurs in a few locations, though, with the majority of fin thicknesses being 

above 1 mm. Because of this, the results should still be directly comparable to the traditional 

finned devices. 

 Few studies have been done on development of heatsinks utilizing genetic algorithms, but 

Wu et al. (2016) has investigated algorithm usage to develop water paths in a heatsink block. 

They were able to achieve a reduction of thermal resistance by 15.4%, with an exchange in flow 

force being increased by 132%. While the usage of flow force is unusual, it is a reasonable 

comparison for changes in pressure drop. Usage of a perfectly uniform power across four 

specific blocks makes it a difficult comparison, as well as comparing to a system with a very 
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different design. This research was able establish a more effective improvement in thermal 

reduction (in exchange for greater pressure drop), but is again a very different problem set.  

An interesting comparison can be made to Small et al. (2006), with their dimple/bump 

finned heatsink. Utilizing a uniform power across the base surface, their best design was capable 

of reducing thermal resistance by 22%, in exchange for an increase in pressure drop of only 34%. 

This is an impressive tradeoff, compared to results seen from the other studies and this research. 

Typically, it seems that small improvements in thermal resistance are met with a strong increase 

in pressure drop. As discussed previously, results are highly dependent on the system power as 

well as the problem assumptions. Still, the strong results provided by the study indicates the 

potential of modification to the fins within the flow path, in addition to avenues that may be 

explored with alternative manufacturing techniques. 
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5. Conclusion 

In this research, design optimization approaches for heat sinks that could be produced through 

additive manufacturing was investigated. The baseline heat sink was based around a shape 

defined by Remsburg (2007), with a 50 mm × 10 mm × 50 mm volume and 1 mm thick walls. 

Material was aluminum, and the working fluid used was water. The frontal area of the heat sink 

was divided into a 49 × 9 grid, which was utilized to generate bits that could be translated to 

geometry. This geometry could then be analyzed with CFD using the ANSYS Workbench 

(2016d) software suite. Two power maps were used to influence the heat sink geometry 

generation, a simpler symmetric map and an non-symmetric map based on a real processor. The 

optimization process was guided through the use of a micro-genetic algorithm utilizing elitism, 

crossover and mutation operators, which ranked solutions by their entropy generation rate. 

Analysis took place over 100 generations for each power map solution set. 

Results from analysis show good potential from the unrestricted heat sink design. The 

optimized heat sinks were able to decrease entropy generation rate by 25% and 21% for the 

symmetric and non-symmetric map respectively. Additionally, thermal resistance saw a 

respective decrease by 27% and 22%, but in exchange for greater system pressure drops at an 

increase of 487% and 453% each. This gain in pressure drop is a result of the use of the entropy 

generation rate as the guiding metric, which as a result of the small changes in the absolute 

pressure drop, biased the system toward solutions that greatly reduced the maximum temperature 

of the input surface.  

These results are similar to other studies performing related investigations. Bornoff and 

Parry (2015) achieved a similar 20% reduction in thermal resistance with their grown heat sink 
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technique, but make no mention of changes in pressure drop. Wu et al. (2016) performed a study 

utilizing genetic algorithms to guide flow through a water block heat sink, and were able to 

achieve a 15% reduction in thermal resistance for a 132% increase in flow force (analogous to 

pressure drop). The difference in heat sink types makes a direct comparison difficult, however. 

With more traditional heat sink manufacturing, Small et al. (2006) were able to achieve a 22% 

reduction of thermal resistance in exchange for a 34% increase of pressure drop. This was 

accomplished through the addition of bumps and dimples to the fins. It is hard to say how these 

results would translate to the problem solved in this research without simulation. However, it 

does indicate that there are potential benefits with modification to fin geometry along the flow 

path.  

5.1. Limitations 

One of the most significant limitations of the methodology is the time required to analyze 

solutions. Each analysis has over 400 solutions to analyze for 100 generations, and the CFD 

calculation in this required approximately 2 hours to complete 2 solutions, barring any solver 

failures. This means it takes at least 400 hours to complete one analysis, not including the 

additional time for meshing and the generation of new solution sets. A few options are available 

to reduce the time requirement. The first would be to change the flow simulation model from the 

turbulence based Spalart-Allmaras model, to the laminar model. Uncertainty analysis 

demonstrated that accuracy with regards to the pressure drop has no significant effect on the 

entropy generation rate in the test setup, and therefore, any uncertainty gained from utilizing a 

laminar model will be negligible. From testing, this could reduce simulation time to less than 30 

minutes per 2 solutions, less than a quarter of the time observed using the turbulent model. 

Computational time could be further reduced by utilizing better computational resources, as the 
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computer used was not ideal for CFD analysis. With better resources, all 4 analyses could be run 

simultaneously, in addition to reducing the time needed for each analysis. As well, the benefit of 

maintaining the process in ANSYS Workbench, is that there are scripting options available to 

automate procedures. This was not fully implemented during this study due to three limitations. 

First, the generation technique needs to be modified so that “floating” shapes are not generated. 

This would require a filter that can identify and modify or delete these shapes. Second, 

adjustments need to be made to the mesh sizing to prevent meshing uncertainties (typically 

needing a reduction in grid size). This will increase analysis time, but may be kept to a minimum 

with careful adjustment. Finally, uncertainties may occur during analysis, which is typically a 

result of exponential temperature increases in the small channels during iteration.  Much of these 

uncertainties can be removed by modifying the code to eliminate the small openings resulting 

from diagonals bits. Combining all of these changes will result in a significant reduction in time 

for analysis. A probable combined time of generation, meshing and analysis could easily be dealt 

with in 1 hour. Assuming no other issues, a full analysis could be completed with 100 hours, less 

than a week with the program running independently.  

 The next limitation is the current state of additive manufacturing technology. The 

solutions in the study see minimum feature size of 0.875 mm, while some channels can be down 

to 0.75mm. This is well within the capabilities of commercial printers, which will commonly 

manage features down to 150 µm (SLM Solutions, 2017).While it would be possible to 

manufacturer the resultant designs, problems will be encountered when trying to apply the design 

to a mass manufactured product. It is important to remember that parts created through AM are 

essentially produced at a fixed cost with no economies of scale. As discussed by Thomas and 

Gilbert (2014), there is a point in the number of manufactured parts where the economies of 
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scale seen in traditional manufacturing techniques overcomes the fixed costs utilized by AM. 

Because of the necessary usage of metal printing techniques, which are uncommon and utilize 

costly base materials, prices will be greater than typical plastic printing processes. Further, the 

number of heat sinks that will be manufactured will be on the order of thousands. Given the cost 

associated with the necessary additive manufacturing systems, economies of scale will quickly 

eliminate cost benefits of AM within a small number of units. For AM heat sinks to become 

commercially viable, the manufacturing technology needs additional time to advance, and allow 

the fixed costs to be reduced. 

 Finally, the end goal of heat sink design utilizing additive manufacturing would be the 

creation of full three-dimensional structures throughout the heat sink volume. There would be a 

significant number of design benefits, allowing controlled management of both fluid flow and 

temperature reduction based on 2D power maps. It is possible that an even greater reduction in 

thermal resistance could result from this generation method, while having a minimal impact on 

pressure drop. Computational requirements remain the hurdle to expanding the methodology to 

3D space. The number of data points to determine, as well as the significant increase in the 

number of complex surfaces, means that complete analysis cycles will take significant time. As a 

reference point, the finest mesh in the grid convergence study took approximately 2 hours to 

complete on the 2D generated geometry. With 3D generated geometry, it is possible this step 

could extend to a time period on the order of a days or weeks, even with better computational 

equipment. Similar results will occur with CFD analysis, which could easily extend to a 

magnitude of weeks or beyond. Combined with the number of analyses that must be run, the 

process is not currently reasonable for extension to 3D generated devices.  
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5.2. Future Research 

 With a promising baseline established, there are a few options available to expand the 

research. While this research was based on developing a heat sink by modifying the geometry in 

the frontal X-Y plane, there is also potential of modification along the flow path in the X-Z 

plane. Little change is needed to adapt the current technique to this analysis, and the results 

would provide a comparison to if there is benefit of modifying heat sinks in different planes. 

Another area that can be expanded upon is that of the optimization algorithm. In this analysis, a 

multi-objective problem was simplified to that of a single-objective problem by the use of 

entropy minimization. Expansion of the methods back toward a true multi-object algorithm 

would allow greater design flexibility, allowing designers to pick and choose what their optimum 

goals are. Finally, further optimization can be made to the methodology to enable it to become 

faster and easier to use. This includes steps such as automation of ANSYS Workbench through 

scripts, as well as the automation of the new solution generation process. Combined with small 

changes such as the elimination of small gaps resulting from diagonal bits, and modification of 

the analysis model to utilize laminar flow, uncertainties could be reduced and analysis time 

greatly improved. The combination of further research and technology advancement could allow 

the technique to become a viable option for use within industry.  
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Appendix A: Power Map Generation 

clear 

clc 

close all 

  

%Sets the scale and number of points in the system grid 

mult=1; 

base=50; 

n=base*mult; 

  

%Sets the limits for boundary regions (e.g. where each heat zone falls) 

val1s=n*0.4; 

val1e=n*0.6; 

val2s=n*0.2; 

val2e=n*0.8; 

  

%% Calculates the location point of each node, assigns a power value based on location (W) 

for i=1:n 

    for j=1:n 

        x(i,j)=(0.5*10^-3)/mult+(10^-3*(j-1))/mult; 

        y(i,j)=-0.0011; 

        z(i,j)=-((0.5*10^-3)/mult+(10^-3*(i-1))/mult); 

        if i>=val1s && j>=val1s && i<=val1e && j<=val1e 

            HF(i,j)=600000; 

        elseif i>=val2s && j>=val2s && i<=val2e && j<=val2e 

            HF(i,j)=400000; 

        else 

            HF(i,j)=200000; 

        end 

    end 

end 

  

%Finds the highest power area buy summing the total in a line of the 

%array, writes vector to file 

tot=sum(HF,2); 

[vmax, ind]=max(tot); 

vectl=HF(ind,:); 

vect=vectl'; 

csvwrite('HF_vector.csv',vectl) 

  

%% Converts results into vectors, sends to a csv file to plug into ANSYS profile 

  

x_ar=reshape(x, [n^2 1]); 

y_ar=reshape(y, [n^2 1]); 

z_ar=reshape(z, [n^2 1]); 
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HF_ar=reshape(HF, [n^2 1]); 

  

newdata=[x_ar,y_ar,z_ar,HF_ar]; 

  

csvwrite('HeatFluxProfile1.csv',newdata) 
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Appendix B: Generation Code 

clear 

clc 

close all 

  

%Establishes physical sizing, cell count and cell spacing 

W_in=50; 

H_in=10; 

mult=1; 

W_cell=W_in*mult; 

H_cell=H_in*mult; 

dW=W_in/W_cell; 

dH=H_in/H_cell; 

  

%Baseline for center of cells 

x_L=dW/2:dW:W_in-dW/2; 

y_L=dH/2:dH:H_in-dH/2; 

  

%Imports and normalizes power line (from highest overall power) 

HF=csvread('HF_vector.csv'); 

HF_adj=[0 HF 0]; 

HF_max=max(HF_adj); 

HF_min=min(HF); 

HF_n=(HF-HF_min)./(HF_max-HF_min); 

HF_norm=[0 HF_n 0]; 

  

for k=1:2 

  

%Sets the initial area to values of one and determines the total number of 

%interior cells 

A=ones([H_cell+1 W_cell+1]); 

total=W_cell*H_cell; 

  

%Probability settings for first layer generation 

p_max=0.8; 

p_min=0.15; 

  

  

%% Creates the first layer based off of probability and the normalized power vector 

  

for i=2 

    for j=2:W_cell 

        prob=p_min+(p_max-p_min)*HF_norm(j); 

        rand1=rand(1); 

        if rand1<=prob 
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            A(i,j)=0; 

        end 

    end 

end 

  

%% 

%Sets the boundary for viewing and generation purposes 

A(1,:)=0; 

A(H_cell+1,:)=0; 

A(:,1)=0; 

A(:,W_cell+1)=0; 

  

%Goes through and generates points. 50 percent chance of generation, relies 

%on other points around to exist 

flag=0; 

iter=0; 

int=0; 

while flag==0 

     

    iter=iter+1; 

    for i=3:H_cell 

        for j=2:W_cell 

            rand1=rand(1); 

            prob=0.5; 

            if rand1<=prob && (A(i-1,j-1)==0 || A(i-1,j)==0 || A(i-1,j+1)==0) 

                A(i,j)=0; 

            elseif rand1<=prob && (A(i,j-1)==0 || A(i,j+1)==0) 

                A(i,j)=0; 

            elseif rand1<=prob && (A(i+1,j-1)==0 || A(i+1,j)==0 || A(i+1,j+1)==0) 

                A(i,j)=0; 

            end 

        end 

    end 

    

    flag=1; 

     

end 

  

  

%% 

%Prints binary generation to csv file 

  

Array=A(2:H_cell,2:W_cell); 

csvwrite(['Shape_array',num2str(k),'.csv'],Array); 

  

%% 
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BW=['BWFigure',num2str(k)]; 

CF=['ContourFigure',num2str(k)]; 

  

%Plots the binary image of the points (note, image is mirrored from 

%physical representation) 

[r,c]=size(A); 

imagesc((1:c)+0.5,(1:r)+0.5,A) 

colormap(gray); 

axis off 

axis equal 

whitebg 

print(1,'-dpng',BW) 

  

%Plots the contours of the resulting system 

figure 

[Cont1,Cont2]=contourf(A,2); 

colormap(hot) 

axis on 

axis equal 

whitebg 

print(2,'-dpng',CF) 

  

close(1) 

close(2) 

  

%% 

%Utilizes exterior program to pull contour information  

[x,y,z]=C2xyz(Cont1); 

  

%Finds the length of the contour groups 

iter2=0; 

l1=length(x); 

for i=1:l1 

    if z(i)>0.5 

        iter2=iter2+1; 

        length_c(i)=length(x{1,i}); 

    end 

    length_cell(i)=length(x{1,i}); 

end 

  

%Finds the maximum length of the cells 

maxl=max(length_c); 

  

%Extracts the locations of the contours from the results 

iter3=0; 

x_loc=zeros(maxl,iter2); 
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y_loc=zeros(maxl,iter2); 

for i=1:l1 

    if z(i)>0.5 

        iter3=iter3+1; 

        group(iter3)=iter3; 

        length_t(iter3)=length(x{1,i}); 

        for j=1:length_cell(i) 

            x_loc(j,iter3)=(51/50)*((x{1,i}(1,j)*dW)-dW*1.5); 

            y_loc(j,iter3)=(11/10)*((y{1,i}(1,j)*dH)-dH*1.5); 

            point(j,iter3)=j; 

        end 

    end 

end 

z_loc=0; 

  

  

%% 

%Prints information into text file formatted for ANSYS 

  

header1='#Group'; 

header2='Point'; 

header3='X-cord'; 

header4='Y-cord'; 

header5='Z-cord'; 

  

fid2=fopen(['CurveFile',num2str(k),'.txt'],'w'); 

  

fprintf(fid2, [ header1 '\t' header2 '\t' header3 '\t' header4 '\t' header5 '\r\n']); 

fprintf(fid2,'#Group 1 \r\n'); 

  

for i=1:iter3 

    for j=1:length_t(i)-1 

        fprintf(fid2, '%1.0f \t%2.0f \t%2.2f \t%2.2f \t%1.f \r\n', group(i), point(j,i), x_loc(j,i), 

y_loc(j,i), z_loc); 

    end 

    fprintf(fid2, '%1.0f \t0 \r\n', group(i)); 

    if i<iter3 

        fprintf(fid2, '#Group %1.0f \r\n', group(i+1)); 

    end 

end 

  

fclose(fid2); 

  

end 
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Appendix C: First Generation Optimization 

clear 

clc 

close all 

  

%% Set the generation number for naming information 

genNum=2; 

memLen=25; 

  

%% Read the generational (to be memory) arrays 

for i=1:memLen 

    memA{i}=csvread(['Shape_array',num2str(i),'.csv']); 

end 

memA=memA'; 

  

%% Import memory data for generation, extract to variables 

memRes=csvread('ExtMem.csv',0); 

memLoc=memRes(:,1); 

dR=memRes(:,2); 

dP=memRes(:,3); 

dS=memRes(:,4); 

numM=1:length(memA); 

matrixs=size(memA{1}); 

  

%% Add borders to system arrays 

for i=1:memLen 

    memAM{i}=zeros([matrixs(1)+2 matrixs(2)+2]); 

    for j=2:matrixs(1)+1 

        for k=2:matrixs(2)+1 

            memAM{i}(j,k)=memA{i}(j-1,k-1); 

        end 

    end 

end 

  

%% Rank memory solutions 

for i=1:length(dR) 

   wSum(i)=dS(i); 

end 

cSum=[wSum;numM]'; 

sSum=sortrows(cSum); 

  

%% Crossover operations 

nxoKids=4;              %Sets the number of crossovers 

xoKids=cell(nxoKids,1); %Establishes the number of cells  

index1=1;               %Value used to guide crossover selections 
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%Crossover for 2 to 5 

for i=1:nxoKids                 %Lists for offspring 2-5 

    arr1=sSum(index1,2);        %Sets the value to be used for parent 1 

    arr2=sSum(index1+1,2);      %Sets the value to be used for parent 2 

    xoKids{i}=memAM{arr1};      %Sets the initial array to parent 1 

    for j=2:matrixs(1)+1        %Moves through grid array 

        for k=2:matrixs(2)+1 

            %Sum cells around current cell of parent 1 

            sumCell=memAM{arr1}(j-1,k-1)+memAM{arr1}(j,k-1)+memAM{arr1}(j+1,k-

1)+memAM{arr1}(j-1,k)... 

                +memAM{arr1}(j+1,k)+memAM{arr1}(j-

1,k+1)+memAM{arr1}(j,k+1)+memAM{arr1}(j+1,k+1); 

            %Sets probability values for adding or deleting cell 

            rand1=rand(1); 

            prob1=0.5; 

            prob1d=0.65; 

             

            %Checks if to take parent 2 value, checks to make sure a point 

            %can be generated or deleted in parent 1. Generate requires a 

            %cell around the current cell to exist. Delete is based on the 

            %sum of cells around the current 

            if rand1<=prob1 && memAM{arr2}(j,k)==0 

                if memAM{arr1}(j-1,k-1)==0 || memAM{arr1}(j-1,k)==0 || memAM{i}(j-1,k+1)==0 

                    xoKids{i}(j,k)=0; 

                elseif memAM{arr1}(j,k-1)==0 || memAM{arr1}(j,k+1)==0 

                    xoKids{i}(j,k)=0; 

                elseif memAM{arr1}(j+1,k-1)==0 || memAM{arr1}(j+1,k)==0 || 

memAM{arr1}(j+1,k+1)==0 

                    xoKids{i}(j,k)=0; 

                end 

            elseif rand<=prob1d && memAM{arr2}(j,k)==1 && (sumCell>=7 || sumCell<=5) 

                xoKids{i}(j,k)=1; 

            end 

        end 

    end 

    index1=index1+1; 

end 

  

%% Mutation operator 

  

nPop=length(xoKids);       %Sets population length same xo population 

fPopM=xoKids;              %Sets initial population array same as so population 

  

index2=1; 
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for i=1:nPop 

    for j=2:matrixs(1)+1 

        for k=2:matrixs(2)+1 

            %Sets probability values for adding or deleting cell 

            rand2=rand(1); 

            prob2=0.3; 

            prob2d=0.4; 

            %Sum cells around current cell 

            sumCell=fPopM{i}(j-1,k-1)+fPopM{i}(j,k-1)+fPopM{i}(j+1,k-1)+fPopM{i}(j-1,k)... 

                +fPopM{i}(j+1,k)+fPopM{i}(j-1,k+1)+fPopM{i}(j,k+1)+fPopM{i}(j+1,k+1); 

            %Checks if mutation can occur, then mutates. checks to make 

            %sure a point can be generated or deleted. Generate requires a 

            %cell around the current cell to exist. Delete is based on the 

            %sum of cells around the current 

            if rand2<=prob2 && fPopM{i}(j,k)==1 

                if fPopM{i}(j-1,k-1)==0 || fPopM{i}(j-1,k)==0 || fPopM{i}(j-1,k+1)==0 

                    fPopM{i}(j,k)=0; 

                elseif fPopM{i}(j,k-1)==0 || fPopM{i}(j,k+1)==0 

                    fPopM{i}(j,k)=0; 

                elseif fPopM{i}(j+1,k-1)==0 || fPopM{i}(j+1,k)==0 || fPopM{i}(j+1,k+1)==0 

                    fPopM{i}(j,k)=0; 

                end 

            elseif rand2<=prob2 && fPopM{i}(j,k)==0 && (sumCell>=7 || sumCell<=5) 

                fPopM{i}(j,k)=1; 

            end   

        end 

    end 

end 

  

%% Filter Results 

n=1; 

  

%Filter goes through results an checks for components that have low 

%surrounding cells. If a cell has only 1 or 0 cells around it, it is 

%deleted. While this does lose some pertinent information, it is in 

%exchange for eliminating most impossible results 

for i=1:nPop 

   for j=2:matrixs(1)+1 

       for k=2:matrixs(2)+1 

           sumCell=fPopM{i}(j-1,k-1)+fPopM{i}(j,k-1)+fPopM{i}(j+1,k-1)+fPopM{i}(j-1,k)... 

                +fPopM{i}(j+1,k)+fPopM{i}(j-1,k+1)+fPopM{i}(j,k+1)+fPopM{i}(j+1,k+1); 

           if fPopM{i}(j,k)==0 && sumCell>=7 

               fPopM{i}(j,k)=1; 

           end 

       end 

   end 



121 

 

end 

  

%% Create final population 

%Combines results for final population. 1 is passed through, 2-5 are the 

%results from the crossover, mutation and filter 

  

for i=1:5 

    if i==1 

        fPopF{i}=memAM{sSum(1,2)}; 

    else 

        fPopF{i}=fPopM{i-1}; 

    end 

end 

  

%% Create new generation memory 

%Creates baseline file for new generation information. Sets the array 

%location information. 

for i=1:5 

   if i==1 

       ngLocs{i}=num2str(memLoc(sSum(1,2))); 

       ngLoc(i)=str2num(ngLocs{i}); 

   else 

       ngLocs{i}=[num2str(i),'.',num2str(genNum)]; 

       ngLoc(i)=str2num(ngLocs{i}); 

   end 

end 

ngLoc=ngLoc'; 

  

%Writes csv for baseline information 

csvwrite(['GenDataG',num2str(genNum),'.csv'],ngLoc); 

  

%% Create BW and Contour Plots 

  

for i=1:5 

numstring=num2str(i); 

  

%Sets the names for the figures and curve file 

BW=['BWFigure',num2str(i)]; 

CF=['ContourFigure',num2str(i)]; 

CvFl=['CurveFile',num2str(i),'.txt']; 

  

%Cuts generation into just the array, ignoring the borders 

Array{i}=fPopF{i}(2:11,2:51); 

csvwrite(['ShapeArray',numstring,'.csv'],Array{i}); 

  

%Plots the binary image and saves 
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figure('visible','off') 

[r2,c2]=size(fPopF{i}); 

imagesc((1:c2)+0.5,(1:r2)+0.5,fPopF{i}) 

colormap(gray); 

axis off 

axis equal 

whitebg 

print(1,'-dpng', BW) 

  

%Plots the contour image and saves 

figure('visible','off') 

[Cont1,Cont2]=contourf(fPopF{i},2); 

colormap(hot) 

axis on 

axis equal 

whitebg 

print(2,'-dpng',CF) 

  

close(1) 

close(2) 

  

%% 

%Utilizes exterior program to pull contour information  

[x,y,z]=C2xyz(Cont1); 

dW=1; 

dH=1; 

  

%Finds the length of the contour groups 

iter2=0; 

l1=length(x); 

for i=1:l1 

    if z(i)>0.5 

        iter2=iter2+1; 

        length_c(i)=length(x{1,i}); 

    end 

    length_cell(i)=length(x{1,i}); 

end 

  

%Finds the maximum length of the cells 

maxl=max(length_c); 

  

%Extracts the locations of the contours from the results 

iter3=0; 

x_loc=zeros(maxl,iter2); 

y_loc=zeros(maxl,iter2); 

for i=1:l1 
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    if z(i)>0.5 

        iter3=iter3+1; 

        group(iter3)=iter3; 

        length_t(iter3)=length(x{1,i}); 

        for j=1:length_cell(i) 

            x_loc(j,iter3)=(50/50)*((x{1,i}(1,j)*dW)-dW*1.5); 

            y_loc(j,iter3)=(10/10)*((y{1,i}(1,j)*dH)-dH*1.5); 

            point(j,iter3)=j; 

        end 

    end 

end 

z_loc=0; 

%% 

%Prints information into text file formatted for ANSYS 

  

header1='#Group'; 

header2='Point'; 

header3='X-cord'; 

header4='Y-cord'; 

header5='Z-cord'; 

  

fid2=fopen(CvFl,'w'); 

  

fprintf(fid2, [ header1 '\t' header2 '\t' header3 '\t' header4 '\t' header5 '\r\n']); 

fprintf(fid2,'#Group 1 \r\n'); 

  

for i=1:iter3 

    for j=1:length_t(i)-1 

        fprintf(fid2, '%1.0f \t%2.0f \t%2.2f \t%2.2f \t%1.f \r\n', group(i), point(j,i), x_loc(j,i), 

y_loc(j,i), z_loc); 

    end 

    fprintf(fid2, '%1.0f \t0 \r\n', group(i)); 

    if i<iter3 

        fprintf(fid2, '#Group %1.0f \r\n', group(i+1)); 

    end 

end 

  

fclose(fid2); 

  

end 
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Appendix D: Generational Optimization 

clear 

clc 

close all 

  

%% Set the generation number for naming information 

genNum=100; 

memLen=25; 

%% Read the memory and generational arrays 

for i=1:memLen 

    memA{i}=csvread(['Shape_array',num2str(i),'.csv']); 

    if i<=5 

        genA{i}=csvread(['ShapeArray',num2str(i),'.csv']); 

    end 

end 

memA=memA'; 

genA=genA'; 

  

%% Import data for memory and generation, extract to variables 

memRes=csvread('ExtMem.csv',0); 

memLoc=memRes(:,1); 

dR=memRes(:,2); 

dP=memRes(:,3); 

dS=memRes(:,4); 

numM=1:length(memA); 

matrixs=size(memA{1}); 

  

genRes=csvread('GenData.csv',0); 

genLoc=genRes(:,1); 

dRG=genRes(:,2);           

dPG=genRes(:,3); 

dSG=genRes(:,4); 

numG=1:length(genA); 

  

%% Add borders to system (memory and generation) arrays 

for i=1:memLen 

    memAM{i}=zeros([matrixs(1)+2 matrixs(2)+2]); 

    for j=2:matrixs(1)+1 

        for k=2:matrixs(2)+1 

            memAM{i}(j,k)=memA{i}(j-1,k-1); 

        end 

    end 

end 

  

for i=1:5 
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    genAM{i}=zeros([matrixs(1)+2 matrixs(2)+2]); 

    for j=2:matrixs(1)+1 

        for k=2:matrixs(2)+1 

            genAM{i}(j,k)=genA{i}(j-1,k-1); 

        end 

    end 

end 

  

%% Rank memory solutions 

for i=1:length(dRG) 

   wSum(i)=dSG(i); 

end 

cSum=[wSum;numG]'; 

sSum=sortrows(cSum); 

  

%% Compare solution against memory 

randG1=randi([1 memLen]); %Random number for memory access 

randG2=randi([1 memLen]); %Random number for memory access 

%randG1=13;             %Can set rand values to set variables for rerunning  

%randG2=22; 

rcheck=1; 

%Loop to ensure two different random numbers are used 

while rcheck==1 

    if randG2==randG1 

       randG2=randi([1 20]); 

    else 

        rcheck=0; 

    end 

end 

  

%Compares ranked solution 2 against a random memory entropy value. If  

%entropy is lower than memory, replaces memory solution with generation 

%solution. If memory is lower, replaces the generation solution. Records 

%all information for export and use. 

if sSum(2,1)<=dS(randG1) 

    dS2=sSum(2,1); 

    dP2=dPG(sSum(2,2)); 

    dR2=dRG(sSum(2,2)); 

    loc2=genLoc(sSum(2,2)); 

    arv2=genAM{2}; 

elseif sSum(2,1)>dS(randG1) 

    dS2=dS(randG1); 

    dP2=dP(randG1); 

    dR2=dR(randG1); 

    loc2=memLoc(randG1); 

    arv2=memAM{randG1}; 
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end 

  

%Compares ranked solution 4 against a random memory entropy value. 

if sSum(4,1)<=dS(randG2) 

    dS4=sSum(4,1); 

    dP4=dPG(sSum(4,2)); 

    dR4=dRG(sSum(4,2)); 

    loc4=genLoc(sSum(4,2)); 

    arv4=genAM{4}; 

elseif sSum(4,1)>dS(randG2) 

    dS4=dS(randG2); 

    dP4=dP(randG2); 

    dR4=dR(randG2); 

    rp4=0; 

    loc4=memLoc(randG2); 

    arv4=memAM{randG2}; 

end 

  

%% Combine new population. 

%First solution is passed through. Solution 2 and 4 are pulled from the 

%comparison. 3, 5 are from generation. 

for i=1:5 

   if i==2 

       arrF{i}=arv2; 

   elseif i==4; 

       arrF{i}=arv4; 

   else 

       arrF{i}=genAM{sSum(i,2)}; 

   end 

end 

  

%% Crossover operations 

nxoKids=4;              %Sets the number of crossovers 

xoKids=cell(nxoKids,1); %Establishes the number of cells  

index1=1;               %Value used to guide crossover selections 

  

%Crossover for 2 to 5 

for i=1:nxoKids                 %Lists for offspring 2-5 

    arr1=sSum(index1,2);        %Sets the value to be used for parent 1 

    arr2=sSum(index1+1,2);      %Sets the value to be used for parent 2 

    xoKids{i}=arrF{arr1};       %Sets the initial array to parent 1 

    for j=2:matrixs(1)+1        %Moves through grid array 

        for k=2:matrixs(2)+1 

            %Sum cells around current cell of parent 1 

            sumCell=arrF{arr1}(j-1,k-1)+arrF{arr1}(j,k-1)+arrF{arr1}(j+1,k-1)+arrF{arr1}(j-1,k)... 

                +arrF{arr1}(j+1,k)+arrF{arr1}(j-1,k+1)+arrF{arr1}(j,k+1)+arrF{arr1}(j+1,k+1); 



127 

 

            %Sets probability values for adding or deleting cell 

            rand1=rand(1); 

            prob1=0.5; 

            prob1d=0.65; 

             

            %Checks if to take parent 2 value, checks to make sure a point 

            %can be generated or deleted in parent 1. Generate requires a 

            %cell around the current cell to exist. Delete is based on the 

            %sum of cells around the current 

            if rand1<=prob1 && arrF{arr2}(j,k)==0 

                if arrF{arr1}(j-1,k-1)==0 || arrF{arr1}(j-1,k)==0 || arrF{i}(j-1,k+1)==0 

                    xoKids{i}(j,k)=0; 

                elseif arrF{arr1}(j,k-1)==0 || arrF{arr1}(j,k+1)==0 

                    xoKids{i}(j,k)=0; 

                elseif arrF{arr1}(j+1,k-1)==0 || arrF{arr1}(j+1,k)==0 || arrF{arr1}(j+1,k+1)==0 

                    xoKids{i}(j,k)=0; 

                end 

            elseif rand<=prob1d && arrF{arr2}(j,k)==1 && (sumCell>=7 || sumCell<=5) 

                xoKids{i}(j,k)=1; 

            end 

        end 

    end 

    index1=index1+1; 

end 

  

%% Mutation operations 

  

nPop=length(xoKids);    %Sets population length same xo population 

fPopM=xoKids;           %Sets initial population array same as so population 

  

for i=1:nPop 

    for j=2:matrixs(1)+1 

        for k=2:matrixs(2)+1 

            %Sets probability values for adding or deleting cell 

            rand2=rand(1); 

            prob2=0.3; 

            prob2d=0.4; 

            %Sum cells around current cell 

            sumCell=fPopM{i}(j-1,k-1)+fPopM{i}(j,k-1)+fPopM{i}(j+1,k-1)+fPopM{i}(j-1,k)... 

                +fPopM{i}(j+1,k)+fPopM{i}(j-1,k+1)+fPopM{i}(j,k+1)+fPopM{i}(j+1,k+1); 

             

            %Checks if mutation can occur, then mutates. checks to make 

            %sure a point can be generated or deleted. Generate requires a 

            %cell around the current cell to exist. Delete is based on the 

            %sum of cells around the current 

            if rand2<=prob2 && fPopM{i}(j,k)==1 
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                if fPopM{i}(j-1,k-1)==0 || fPopM{i}(j-1,k)==0 || fPopM{i}(j-1,k+1)==0 

                    fPopM{i}(j,k)=0; 

                elseif fPopM{i}(j,k-1)==0 || fPopM{i}(j,k+1)==0 

                    fPopM{i}(j,k)=0; 

                elseif fPopM{i}(j+1,k-1)==0 || fPopM{i}(j+1,k)==0 || fPopM{i}(j+1,k+1)==0 

                    fPopM{i}(j,k)=0; 

                end 

            elseif rand2<=prob2 && fPopM{i}(j,k)==0 && (sumCell>=7 || sumCell<=5) 

                fPopM{i}(j,k)=1; 

            end   

        end 

    end 

end 

  

%% Filter Results 

n=1; 

  

%Filter goes through results an checks for components that have low 

%surrounding cells. If a cell has only 1 or 0 cells around it, it is 

%deleted. While this does lose some pertinent information, it is in 

%exchange for eliminating most impossible results 

for i=1:nPop 

   for j=2:matrixs(1)+1 

       for k=2:matrixs(2)+1 

           sumCell=fPopM{i}(j-1,k-1)+fPopM{i}(j,k-1)+fPopM{i}(j+1,k-1)+fPopM{i}(j-1,k)... 

                +fPopM{i}(j+1,k)+fPopM{i}(j-1,k+1)+fPopM{i}(j,k+1)+fPopM{i}(j+1,k+1); 

           if fPopM{i}(j,k)==0 && sumCell>=7 

               fPopM{i}(j,k)=1; 

           end 

       end 

   end 

end 

  

%% Create final population 

%Combines results for final population. 1 is passed through, 2-5 are the 

%results from the crossover, mutation and filter 

  

for i=1:5 

    if i==1 

        fPopF{i}=genAM{sSum(1,2)}; 

    else 

        fPopF{i}=fPopM{i-1}; 

    end 

end 

  

%% Create new memory file 
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%Coalesces data to create new memory information. Replaces or keeps any 

%data compared against the randomly selected solution. All else remains 

%constant 

for i=1:memLen 

    if i==randG1 

        dSEM(i)=dS2; 

        dPEM(i)=dP2; 

        dREM(i)=dR2; 

        locEM(i)=loc2; 

    elseif i==randG2 

        dSEM(i)=dS4; 

        dPEM(i)=dP4; 

        dREM(i)=dR4; 

        locEM(i)=loc4; 

    else 

        dSEM(i)=dS(i); 

        dPEM(i)=dP(i); 

        dREM(i)=dR(i); 

        locEM(i)=memLoc(i); 

    end 

end 

  

%Writes memory to csv file 

EMWrite=[locEM', dREM', dPEM', dSEM']; 

csvwrite(['ExtMemGen',num2str(genNum),'.csv'],EMWrite); 

  

%% Create new generation memory 

%Creates baseline file for new generation information. Sets the array 

%location information. 

for i=1:5 

   if i==1 

       ngLocs{i}=num2str(genLoc(sSum(1,2))); 

       ngLoc(i)=str2num(ngLocs{i}); 

   else 

       ngLocs{i}=[num2str(i),'.',num2str(genNum)]; 

       ngLoc(i)=str2num(ngLocs{i}); 

   end 

end 

ngLoc=ngLoc'; 

  

%Writes csv for baseline information 

csvwrite(['GenDataG',num2str(genNum),'.csv'],ngLoc); 

  

%Writes csv to provide values for memory comparison for this generation 

randNum=[randG1, randG2]; 

csvwrite(['RandNum.csv'],randNum); 
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%% Create BW and Contour Plots 

for i=1:5 

numstring=num2str(i); 

  

%Sets the names for the figures and curve file 

BW=['BWFigure',num2str(i)]; 

CF=['ContourFigure',num2str(i)]; 

CvFl=['CurveFile',num2str(i),'.txt']; 

  

%Cuts generation into just the array, ignoring the borders 

Array{i}=fPopF{i}(2:11,2:51); 

csvwrite(['ShapeArray',numstring,'.csv'],Array{i}); 

  

%Plots the binary image and saves 

figure('visible','off') 

[r2,c2]=size(fPopF{i}); 

imagesc((1:c2)+0.5,(1:r2)+0.5,fPopF{i}) 

colormap(gray); 

axis off 

axis equal 

whitebg 

print(1,'-dpng', BW) 

  

%Plots the contour image and saves 

figure('visible','off') 

[Cont1,Cont2]=contourf(fPopF{i},2); 

colormap(hot) 

axis on 

axis equal 

whitebg 

print(2,'-dpng',CF) 

  

close(1) 

close(2) 

  

%% 

%Utilizes exterior program to pull contour information  

[x,y,z]=C2xyz(Cont1); 

dW=1; 

dH=1; 

  

%Finds the length of the contour groups 

iter2=0; 

l1=length(x); 

for i=1:l1 
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    if z(i)>0.5 

        iter2=iter2+1; 

        length_c(i)=length(x{1,i}); 

    end 

    length_cell(i)=length(x{1,i}); 

end 

  

%Finds the maximum length of the cells 

maxl=max(length_c); 

  

%Extracts the locations of the contours from the results 

iter3=0; 

x_loc=zeros(maxl,iter2); 

y_loc=zeros(maxl,iter2); 

for i=1:l1 

    if z(i)>0.5 

        iter3=iter3+1; 

        group(iter3)=iter3; 

        length_t(iter3)=length(x{1,i}); 

        for j=1:length_cell(i) 

            x_loc(j,iter3)=(50/50)*((x{1,i}(1,j)*dW)-dW*1.5); 

            y_loc(j,iter3)=(10/10)*((y{1,i}(1,j)*dH)-dH*1.5); 

            point(j,iter3)=j; 

        end 

    end 

end 

z_loc=0; 

%% 

%Prints information into text file formatted for ANSYS 

  

header1='#Group'; 

header2='Point'; 

header3='X-cord'; 

header4='Y-cord'; 

header5='Z-cord'; 

  

fid2=fopen(CvFl,'w'); 

  

fprintf(fid2, [ header1 '\t' header2 '\t' header3 '\t' header4 '\t' header5 '\r\n']); 

fprintf(fid2,'#Group 1 \r\n'); 

  

for i=1:iter3 

    for j=1:length_t(i)-1 

        fprintf(fid2, '%1.0f \t%2.0f \t%2.2f \t%2.2f \t%1.f \r\n', group(i), point(j,i), x_loc(j,i), 

y_loc(j,i), z_loc); 

    end 
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    fprintf(fid2, '%1.0f \t0 \r\n', group(i)); 

    if i<iter3 

        fprintf(fid2, '#Group %1.0f \r\n', group(i+1)); 

    end 

end 

  

fclose(fid2); 

  

end 
 

 

 


