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Abstract

Dual-axis accelerometer global positioning system collars can be used to remotely record the activity level and
behavior of free-ranging animals, but inter- and intraspecific variations in motion among behaviors necessitate
calibration for each species of interest. To date, little work has been done to determine the best duration for sampling
intervals when using activity monitors that incorporate dual-axis accelerometers. However, we expected that the
duration of behaviors relative to the duration of sampling intervals could affect the accuracy of calibration and
behavior classification models. Furthermore, we considered the potential effect of winter diet supplementation (hay)
on behavior classification. We used Lotek 4500 global positioning system collars featuring dual-axis accelerometer
activity monitors to collect data for calibration and classification trials on Rocky Mountain elk Cervus elaphus nelsoni.
We used discriminant function model structures to determine the number of accurately classifiable behaviors that
could be derived from data sampled over three sampling interval durations (5 min, 152 s, and 64 s) while also
considering the potential effect of hay supplementation on classification. Our results suggest that investigators should
ascertain whether their focal elk herd accesses or might access supplemental hay before deployment and analysis of
activity sensor data. Similarly, researchers must weigh priorities when choosing a sampling interval, because no
optimal solution emerged from our investigation. For example, of our acceptable models, only those constructed using
64-s intervals were able to distinguish short bouts of running. However, only models constructed with 5-min intervals
accurately classified browsing while also maximizing the number of behaviors identified.
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Introduction

Collar-mounted activity monitors are an important
tool for remotely collecting behavior data of free-ranging
animals. Most current models of activity monitors
incorporate one or more accelerometers, electronic
devices that record animal motion via changes in
acceleration along a body axis. Integration of acceler-
ometers into global positioning system (GPS) collars
offers a tool with potential to sample location-specific
behavior at fine geographic and temporal scales.

However, users must balance sampling frequency and
duration with the battery life of the collar. Longer
sampling intervals tend to allow a longer battery life, but
they are also likely to contain more behaviors than a
short interval. Intervals containing only one behavior (i.e.,
pure intervals) tend to have less variable activity monitor
values (AMVs) than intervals containing more than one
behavior (i.e., mixed intervals) and therefore classify
more accurately. It seems intuitive that shorter sampling
intervals could allow increased detection of behaviors of
shorter duration while also resulting in data sets with low
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variation in AMVs and higher classification accuracy.
However, these issues are largely unexplored.

Passive and active intervals were classified for brown
bear Ursus arctos with greater than 90% accuracy
(Gervasi et al. 2006), whereas feeding, mobile, and
stationary behaviors were classified for cheetah Acinonyx
jubatus with 83–94% accuracy (Grünewälder et al. 2012);
both studies used dual-axis GPS collars (Vectronic
Aerospace, Berlin, Germany). Resting, feeding plus slow
locomotion, and fast locomotion were classified for red
deer Cervus elaphus with greater than 75% accuracy and
for roe deer Capreolus capreolus with greater than 89%
accuracy by using the same collars (Löttker et al. 2009;
Heurich et al. 2012). For all species, comfort movements
(e.g., adjusting position) and grooming while resting
resulted in underrepresentation of passive behaviors,
whereas activities with similar amounts of head move-
ment (e.g., standing vs. lying down or walking vs.
feeding) required investigators to group behaviors into
broader categories to obtain accurate classification
(Coulombe et al. 2006; Löttker et al. 2009). However,
none of these studies compared sampling interval when
conducting their calibrations.

A few investigators have experimented with sampling
interval and have found clear differences in species-
specific patterns. Passive behaviors of red deer were
classified most accurately using 5-min intervals, rather
than 10- and 15-min intervals, when investigators used
collars that incorporated two tip-switches (Adrados et al.
2003). In contrast, the active behavior category was
classified most accurately over 10-min intervals, which
also maximized classification accuracy. Recognition of
resting and walking decreased with a stepwise increase
of sampling interval from 1 to 20 s for goat Capra
aegagrus, whereas feeding remained relatively un-
changed (Moreau et al. 2009). Besides species-specific
issues, we noted that a source of population-scale
intraspecific variability might be introduced via particular
management activities, such as supplemental feeding.
Hay supplementation is a common tool in winter
management of elk herds to increase overwinter survival
or to alleviate pressure on privately owned hay yards.
Field observations of elk eating hay seemed to indicate
different head motions than those observed for grazing
animals. We wondered whether this different motion
might leave a distinguishable signature in remotely
collected activity sensor data. Furthermore, we thought
it prudent to explore whether such a signature would be
significant in choosing sampling interval durations.

We investigated the effects of sampling interval
duration when classifying behaviors of Rocky Mountain
elk Cervus elaphus nelsoni with and without access to
hay. We calibrated GPS collars (model 4500; Lotek,
Newmarket, Ontario) for Rocky Mountain elk by using
5-min, 152-s, and 64-s sampling intervals. We compared
the number of behaviors that could be classified using
these sampling intervals and with what accuracy. Based
on our previous work (Gaylord 2013), we expected that
shorter sampling intervals would result in fewer mixed
intervals and thus would allow us to classify a greater
number of behaviors with higher accuracy. Specifically,

we expected shorter intervals to improve classification
for behaviors that tend to be closely interspersed, such
as walking and grazing, or of short duration, such as
running. In addition to considering the best sampling
interval for classification of natural behaviors, we felt it
important to include one behavior of anthropogenic
origin. Supplying Rocky Mountain elk with supplemental
feed (usually hay) to boost overwinter survival has been
a common management practice in western states for
nearly a century (e.g., Murie 1944; Daniels 1953). Our
preliminary observations of hay-supplemented Rocky
Mountain elk led us to expect that the data signal from
hay eating would differ from other head-down elk
behavior, such as grazing on grass. However, we found
no previous work considering potential detectability of
hay consumption when using tools such as activity
monitors. We expect our work will assist future
investigators in selecting sampling intervals to best meet
their study situation and research objectives.

Study Area

The Starkey Experimental Forest and Range (Starkey) is
located in the Blue Mountains 35 km southwest of La
Grande, Oregon (458120N, 118830W). The facility includes
a complex of pens, handling facilities, and small pastures
that allow safe and efficient animal handling in
conjunction with collection of direct observations of
tamed Rocky Mountain elk. For details, please see Long
et al. (2008).

Methods

Study animals and animal handling
Experienced personnel used all-terrain vehicles and

gated chutes to separate four female Rocky Mountain elk
from the rest of the herd. The captive herd at Starkey is
comprised of females aged 17–22 y at the time of our
work. Individual study animals were selected from this
herd based on good body condition. Study animal
sample size was restricted by the number of fit
individuals and the number of available collars. We
collared, recorded body weight, and visually monitored
each Rocky Mountain elk for signs of stress (e.g.,
hyperventilating) before releasing the animals into a
recovery pen. Animals used for our measurements
ranged in age from 18 to 21 y and weighed 215–307 kg.

We collared the Rocky Mountain elk with Lotek 4500
GPS collars (1 kg) equipped with three accelerometers
oriented perpendicular to one another to capture
motion along three body planes: a plane across the
animal’s shoulders (x axis), a plane parallel to the animal’s
spine (y axis), and a plane oriented vertically (z axis).
Accelerometers recorded the difference in acceleration
between two consecutive measurements 4 times/s.
These values were then averaged over a user-selected
sampling interval as an indexed value ranging from 0 to
255 and stored with the associated date, temperature,
and start time of the sampling interval. Collars stored
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AMVs averaged over the entire sampling interval, rather
than individual accelerometer measurements. Users of
the Lotek 4500 collars can choose among seven preset
modes that record different parameters of motion over
different preset sampling intervals. We set our collars to
collect data in modes 1, 2, and 3, thereby recording
acceleration along only the x and y axes by using preset
5-min, 152-s, and 64-s sampling intervals, respectively.
Other collar modes collect data incorporating head
angle. Accelerometer collar technical details are further
described in previous work (Gaylord 2013; Gaylord and
Sanchez 2014). We collected data during three 2- to 4-wk
periods. We collected data during 152-s intervals from
September 6 to September 22, 2011; during 64-s
intervals from September 22 to October 13, 2011; and
during 5-min intervals from April 23 to May 16, 2013.
Although some data were collected during rut season,
study animals were segregated from other animals,
including Rocky Mountain elk bulls. Therefore, it is
unlikely that the rut affected the data.

Field observations and data processing
We simultaneously collected accelerometer data via

collars and direct observations of behavior. We observed
the collared Rocky Mountain elk within the fenced
pasture in which the animals were kept during the
duration of the study. We observed Rocky Mountain elk
at distances ranging from 10 to 30 m by using binoculars
when necessary. The captive Rocky Mountain elk at
Starkey are regularly fed by U.S. Forest Service staff and
are relatively habituated to human presence. Except
during handling or when prompting behaviors, observer
presence did not seem to influence Rocky Mountain elk
behavior. Because collars record physical motions of the
animals, the source of stimulation should not influence
collar data. For example, the physical motions of a Rocky
Mountain elk running, whether in reaction to sighting a
predator or to avoid a human on an all-terrain vehicle,
should be equivalent in their data signatures.

We used handheld personal digital assistants (Tung-
sten E2; Palm, Sunnyvale, CA) equipped with personal
digital assistant–based software (EVENT-Palm; J. C. Ha,
University of Washington, Seattle) to record the start
time and duration of each observed behavior. We
recorded continuous observations daily during two
(morning and evening), 4-h sessions. A single observer
was paired to an individual animal and recorded its
behaviors into eight classes: bedded, standing, grazing,
eating hay, browsing, walking, trotting, and galloping
(Tables S1–S3, Supplemental Material). Other behaviors,
such as grooming and conspecific interaction, were
recorded according to the dominant posture or move-
ment of the animal. For example, a Rocky Mountain elk
that was grooming while lying down was recorded as
bedded. We soon created a ninth category, unknown, to
note occasions when we briefly lost sight of an animal.
We rotated observers to a different individual animal
each observation period to control for potential bias.

Most behaviors occurred spontaneously and frequently
enough that we were able to obtain adequate samples
of those motions. Other behaviors were relatively rare
among our study animals for a variety of reasons. Due to
prior use of the study pasture, shrub growth and height
were limited. Therefore, we induced browsing by
attaching locally gathered stems of woody species to
fence posts and a wooden tripod. We scattered hay on
the ground to induce hay-eating behavior. Finally,
trotting and galloping behaviors were prompted when
trained, all-terrain vehicle–mounted Forest Service per-
sonnel chased individual animals for short periods during
sampling for the 64- and 152-s intervals. Due to the age
and condition of our study animals, we determined that
prompting trotting and galloping for full 5-min sampling
intervals was not possible. We postprocessed all collar-
collected data to address timing mismatches (as detailed
in Gaylord 2013 and Gaylord and Sanchez 2014).

We conducted direct observations of captive female
Rocky Mountain elk behavior following review and
approval by the Starkey Institutional Animal Care and
Use Committee (IACUC), as required by the Animal
Welfare Act of 1985 and its regulations. We specifically
followed protocols established by the Starkey IACUC for
conducting elk research at Starkey Experimental Forest
and Range (92-F-0004, Wisdom et al. 1993).

Model building
Activity monitor collars require calibration for each

species of interest to determine what behaviors corre-
spond to what AMVs. We paired observed animal
behaviors to AMVs recorded by the collars for each
sampling interval. We used these pairings to build a
predictive model used to classify the activity level or
behavior of novel animals based on remotely collected
collar data.

We initially categorized all intervals of observed
behavior based on the predominant behavior (greatest
duration) within an interval. After examining the data, we
created a rule for intervals containing greater than or
equal to 40 s of running behaviors (trotting or galloping)
and recategorized those intervals as run. We also noticed
that running often occurred in short bouts of 16–39 s,
which temporally dominated mixed 64-s intervals
without meeting the 40-s rule. To explore whether our
models could detect these potentially important bursts
of activity we created a new category, short runs, and
then included it in our initial calibration modeling for all
three interval durations.

We then constructed classification models for each
interval duration. To explore the influence of hay
availability, we constructed a parallel set of models that
included and excluded observations made while animals
had access to hay (Tables S4–S9, Supplemental Material).
We selected our best models based on the percentage of
observed behaviors they classified correctly (i.e., the
correct classification rate [CCR]). Each model included
AMVs for the x axis, y axis, and the product of those
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AMVs as predictors. For each interval type, we compared
the performance of four model structures: linear
discriminant function and quadratic discriminant func-
tion by using both untransformed and log-transformed
AMVs. See Gaylord (2013) for detailed formal model
structure. We estimated CCRs that would be expected if
classification models were applied to novel data sets by
using leave-one-out cross validation. We identified
acceptable models based on a best-predictions strategy,
as evaluated by CCR, and only considered models
acceptable if the CCR for every behavior was greater
than or equal to 70%. We grouped behaviorally or
mechanically similar behaviors (e.g., standing and
bedded, not bedded and running) with CCRs less than
70%. From the acceptable models, we then determined
the final model based on the highest total classification
rate for all intervals, the highest average behavior
classification rate, and highest minimum classification
rate for individual behaviors.

Based on previous work (Gaylord and Sanchez 2014),
we knew that if behaviors were not correctly classified
using models constructed with only pure intervals, then
they would not be classified using models constructed
with all intervals (both pure and mixed). Therefore, we
first constructed models using only pure interval data
sets to further combine behaviors. Bedded and standing
would not classify greater than or equal to 70% accuracy,
so they were grouped into passive for 64- and 152-s
intervals and grazing and browsing into feeding for 64-s

intervals (Tables S1–S3, Supplemental Material). All eight
recorded behaviors classified at greater than or equal to
70% accuracy by using pure intervals for 5-min intervals.
Using these behavior groupings, we then used full data
sets (including both pure and mixed intervals) to
construct classification models for each interval duration.

We used leave-one-out cross validation to evaluate
model performance for novel animals. We excluded one
animal from the calibration of the final model structure,
and then used the fitted model to predict behaviors for
the excluded animal. We repeated this process for each
animal in turn and compared the average CCRs for the
four calibration groups of three Rocky Mountain elk vs.
the average CCRs for the four excluded individual Rocky
Mountain elk. We also compared the standard deviation
of CCRs for the group vs. the individual for each behavior
to compare classification variability.

Results

Our direct observations of Rocky Mountain elk
behavior yielded 30,851, 13,492, and 5,788 samples for
64-s, 152-s, and 5-min sampling intervals, respectively.
The number of behaviors classifiable for Rocky Mountain
elk differed among the three interval durations for both
data sets (Tables 1 and 2). The 152-s intervals distin-
guished the fewest behavior categories regardless of the
presence of hay, but they minimized CCR variability
(Figures 1 and 2). Of our acceptable model structures,

Table 1. Correct classification rates (CCRs, %) of Rocky Mountain elk Cervus elaphus nelsoni behaviors sampled with three different
interval durations and without access to supplemental feed (no hay). We estimated CCRs using leave-one-out cross validation for
our final model structure. We selected the final model from one of four options: linear (LDA) or quadratic (QDA) discriminant
functions on untransformed (untr) or log-transformed (log) activity monitor values. Data were collected using dual-accelerometer
Lotek 4500 global positioning system collars worn by captive female animals. To allow standardized comparisons, we collected data
from only the x and y axes during 64-s, 152-s, and 5-min intervals (n¼13,359, n¼6,210, and n¼2,795, respectively) by programming
collars to use modes 1, 2, and 3, respectively. Observations were made at Starkey Experimental Forest and Range, La Grande,
Oregon, during summer and fall 2011 (64 and 152 s) and spring 2013 (5 min).

Sampling

interval

Final model

structure

Behavior category

Total AverageBedded Passive Graze, walk, stand Feed/, walk Browse Short run Run

64 s LDAuntr 89.5 88.4 84.9 71.4 89.2 83.6

152 s QDAlog 87.0 96.7 100.0 90.4 94.6

5 min QDAuntr 93.9 83.2 81.0 81.0 87.7 84.9

Table 2. Correct classification rates (CCRs, %) of Rocky Mountain elk Cervus elaphus nelsoni behaviors sampled with three different
interval durations and with access to supplemental feed (hay). We estimated CCRs using leave-one-out cross validation for our final
model structure. We selected the final model from one of four options: linear (LDA) or quadratic (QDA) discriminant functions on
untransformed (untr) or log-transformed (log) activity monitor values. Data were collected using Lotek 4500 global positioning system
collars worn by captive female animals. To allow standardized comparisons, we collected data from only the x and y axes during 64-
s, 152-s, and 5-min intervals (n¼ 17,359, n¼ 7,127, and n¼ 2,993, respectively) by programming collars to use modes 1, 2, and 3,
respectively. Observations were made at Starkey Experimental Forest and Range, La Grande, Oregon, during summer and fall 2011
(64 and 152 s) and spring 2013 (5 min).

Sampling

interval

Final model

structure

Behavior category

Total AverageBedded Passive Hay Graze, walk, stand Feed, walk Browse Short run Run

64 s LDAuntr 86.4 87.1 84.9 71.4 86.7 82.5

152 s QDAuntr 89.9 86.1 100.0 88.4 92.0

5 min LDAlog 91.3 75.0 83.2 83.1 81.0 86.1 82.7
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only those constructed using 64-s intervals were able to
distinguish short bouts of running (short run), whereas
only those constructed using 5-min intervals were able
to distinguish browsing and eating hay. Models con-
structed with 5-min interval data (both with and without
hay) classified the greatest number of feeding-related
behaviors (three and two, respectively). Models con-
structed using observations that included eating hay
increased classification variability for all intervals (Figures
1 and 2), whereas running had the greatest classification
variability among behaviors.

Discussion

Both sampling interval duration and the availability of
hay affected classification of Rocky Mountain elk
behaviors as sampled on two axes by accelerometer-
equipped behavior sensors. Classification models con-
structed for the three sampling interval durations varied
in the number of behaviors they classified, classification
accuracy, and classification variability. Similarly, compar-
ison of classification rates for hay and no-hay data sets
revealed that addition of hay has a discernible influence
on classification variability. We concluded that choice of
sampling interval distills to a decision between maximiz-
ing the number of distinct behaviors vs. maximizing
classification accuracy for a smaller number of behaviors.

Our models were able to distinguish among different
feeding behaviors and between different durations of
fast locomotion, both firsts for ungulates. Better differ-

entiation of these behaviors could help researchers to
generate more informed resource selection or energy
budget models. However, like previous work for red deer
and roe deer (Löttker et al. 2009; Heurich et al. 2012), we
were unable to distinguish grazing from walking at any
interval duration. Grazing and walking are closely related
for elk and deer, animals rarely do one behavior for long
periods without doing the other. Classification of passive
behaviors (bedded and stand combined) did not differ
appreciably as sampling interval duration increased,
thereby differing from findings by Adrados et al. (2003)
and Moreau et al. (2009).

Our findings illustrate that choice of sampling intervals
should be informed by specific research or management
questions. For example, investigators who are most
interested in distinguishing among different feeding
behaviors (e.g., graze, browse, hay) should set collars to
collect data on 5-min intervals. Also, of those we
evaluated, only models built with 5-min interval data
were able to distinguish the hay-eating behavior. In
contrast, if short bursts of fast movement, such as our
short runs category, are important to a researcher, then
the 64-s interval would be best because it was the only
sampling interval able to accurately detect and classify
that behavior. We hasten to add a caveat from our prior
work that users must consider the microprocessor
activation interval of their collar model because of the
potential for creating timing offset errors. For the Lotek
4500 collars (8-s microprocessor activation interval), a

Figure 1. Individual vs. group variability in behavior classification modeled for data collected of 64-s, 152-s, and 5-min sampling
intervals by using data sets that excluded supplemental feeding. Data are mean and standard deviation (SD) of correct classification
rates (CCRs, %) for behaviors classified using a model calibrated with three animals (Group) and applied to the remaining novel
animal (Individual). We calibrated classification models by combining directly observed behaviors of Rocky Mountain elk Cervus
elaphus nelsoni with simultaneously collected data from activity monitors housed in Lotek 4500 global positioning system collars
worn by captive female animals. To allow standardized comparisons, we collected data from only the x and y axes during 64-s, 152-s,
and 5-min intervals (n¼13,359, n¼6,210, and n¼2,795, respectively) by programming collars to use modes 1, 2, and 3, respectively.
Observations were made at Starkey Experimental Forest and Range, La Grande, Oregon, during summer and fall 2011 and spring,
2013.
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user should set the 5-min sampling interval to last 304 s
rather than 300 s (Gaylord and Sanchez 2014).

Exploration of classification variability revealed addi-
tional insights. Models that classified a greater number of
categories not only distinguished among more behaviors
but also offered the ability to increase classification
accuracy and decrease variability by further combining
behavior categories. For example, 64-s models accurately
classified (i.e., CCR . 70%) up to four behaviors (passive,
feed plus walk, short run, and run), whereas 152-s models
classified only three behaviors (passive, feed plus walk,
and run), but with higher accuracy and less variability.
When we experimented with further combination of
behavior categories for 64-s models (i.e., three behaviors:
passive, feed plus walk, run), classification accuracy and
variability were comparable to those for 152-s models.
This difference suggests that investigators should initially
collect finer scale (shorter interval) data and screen for
short-duration behaviors (e.g., short runs). They can then
experimentally decrease the resolution (i.e., reduce
number of behaviors identified) to boost accuracy in a
second stage of modeling.

Some of the classification variability we observed was
likely due to sampling constraints. We had four animals
available during each trial, resulting in small sample sizes
when calculating classification for novel animals. This
constraint was especially apparent when working with
behaviors for which we were able to collect few samples,
such as run. For example, during sampling for the 64-s
intervals, we observed only two intervals of running for
one individual, both of which were misclassified into the

short-run category (0% CCR for run for that animal).
Similarly, during 5-min sampling, we only obtained
running intervals for three of the four Rocky Mountain
elk, which undoubtedly contributed to the increased
variability we observed. We expect future investigators
able to collect larger sample sizes to be able to improve
(i.e., lower) on our estimates of behavior-specific
interanimal variability.

It is also likely that animals of different age and sex
have slightly different motions for the same behavior. For
example, increased neck circumference during rut or the
weight of antlers might affect head-and-neck movement
of males when walking or feeding. Or perhaps younger
animals generally exhibit more movement for the same
behavior. Furthermore, it is possible that terrain that the
animal inhabits, such as steep slopes vs. level plains, may
affect head-and-neck movement when walking or
running. Further study is necessary to determine to
what extent these factors play a role in classifying
behavior by using accelerometer collars.

Our work indicates that investigators have several
important factors to consider when choosing sampling
intervals for their collar-mounted activity sensors. We
acknowledge that most users must first balance battery
and project duration considerations with other factors.
Beyond that basic calculation, however, we urge
investigators to consider which behaviors or suites of
behaviors are of highest interest for their research
questions. We learned that there is no single best option
for choosing sampling intervals for every situation. We
also learned that feeding the animals hay influenced

Figure 2. Individual vs. group variability in behavior classification modeled for data collected of 64-s, 152-s, and 5-min sampling
intervals by using data sets that included supplemental feeding. Data are mean and standard deviation (SD) of correct classification
rates (CCRs, %) for behaviors classified using a model calibrated with three animals (Group) and applied to the remaining novel animal
(Individual). We calibrated classification models by combining directly observed behaviors of Rocky Mountain elk Cervus elaphus nelsoni
with simultaneously collected data from activity monitors housed in Lotek 4500 global positioning system collars worn by captive
female animals. To allow standardized comparisons, we collected data from only the x and y axes during 64-s, 152-s, and 5-min
intervals (n¼17,359, n¼7,127, and n¼2,993, respectively) by programming collars to use modes 1, 2, and 3, respectively. Observations
were made at Starkey Experimental Forest and Range, La Grande, Oregon, during summer and fall 2011 and spring 2013.
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classification accuracy. Thus, those working on herds
known or likely to have access to hay should consider
this factor when initially programming collars and again
when building initial classification models. We also
caution researchers to not use hay as a proxy for grazing
when calibrating accelerometer collars because motions
associated with these two food sources are distinct. Our
models for analysis of 5-min, 152-s, and 64-s sampling
intervals collected in either hay or nonhay data sets can
be found in the Supplemental Material (Model Package
S1, Supplemental Material).

Supplemental Material

Please note: The Journal of Fish and Wildlife Management
is not responsible for the content or functionality of any
supplemental material. Queries should be directed to the
corresponding author for the article.

Model Package S1. A zipped file containing models
to classify Rocky Mountain elk Cervus elaphus nelsoni
behavior by using data collected from Lotek 4500 global
positioning system collars set at 64-s, 152-s, or 5-min
intervals. The contents of the zipped file include:
instructions for choosing the appropriate behavior
classification model (Choosing Classification Models.
docx), instructions on how to format collar data for use
in a classification model (Elk interval Classification Model
Read Me.docx), an R Workspace containing the classifi-
cation models (ElkIntervalClassificationModels.Rdata),
and the R code necessary to run a classification model
(Elk Interval Classification R Code.R).

Found at DOI: http://dx.doi.org/10.3996/042015-
JFWM-034S1 (43 KB ZIP ).

Table S1. Activity monitor data collected at 64-s
sampling intervals by using dual-axis global positioning
system collars paired with direct behavior observations
after shift of interval start times. Data were collected for
four captive female Rocky Mountain elk Cervus elaphus
nelsoni at Starkey Experimental Forest and Range, U.S.
Forest Service, Starkey, Oregon, during fall 2011.

Found at DOI: http://dx.doi.org/10.3996/042015-
JFWM-034S2 (6045 KB XLS).

Table S2. Activity monitor data collected at 152-s
sampling intervals using dual-axis global positioning
system collars paired with direct behavior observations
after shift of interval start times. Data were collected for
four captive female Rocky Mountain elk Cervus elaphus
nelsoni at Starkey Experimental Forest and Range, U.S.
Forest Service, Starkey, Oregon, during fall 2011.

Found at DOI: http://dx.doi.org/10.3996/042015-
JFWM-034S3 (3748 KB XLS).

Table S3. Activity monitor data collected at 5-min
sampling intervals using dual-axis global positioning
system collars paired with direct behavior observations
after shift of interval start times. Data were collected for
four captive female Rocky Mountain elk Cervus elaphus

nelsoni at Starkey Experimental Forest and Range, U.S.
Forest Service, Starkey, Oregon, during spring 2013.

Found at DOI: http://dx.doi.org/10.3996/042015-
JFWM-034S4 (2633 KB XLS).

Table S4. Correct classification rates (CCRs, %) of
Rocky Mountain elk Cervus elaphus nelsoni behaviors
sampled at 64-s intervals for animals without access to
supplemental feed (no hay). We estimated CCRs by using
leave-one-out cross validation for our final model
structure. We compared four model structures: linear
(LDA) and quadratic (QDA) discriminant functions on
untransformed (untr) or log-transformed (log) activity
monitor values. We grouped behaviors with CCRs less
than 70% (italics). Data were collected using dual-
accelerometer Lotek 4500 global positioning system
collars worn by captive female animals. To allow
standardized comparisons, we collected data from only
the x and y axes (n¼ 13,359) by programming collars to
use mode 1. Observations were made at Starkey
Experimental Forest and Range, La Grande, Oregon,
during fall 2011.

Found at DOI: http://dx.doi.org/10.3996/042015-
JFWM-034S5 (49 KB DOC ).

Table S5. Correct classification rates (CCRs, %) of
Rocky Mountain elk Cervus elaphus nelsoni behaviors
sampled at 152-s intervals for animals without access to
supplemental feed (no hay). We estimated CCRs using
leave-one-out cross validation for our final model
structure. We compared four model structures: linear
(LDA) and quadratic (QDA) discriminant functions on
untransformed (untr) or log-transformed (log) activity
monitor values. We grouped behaviors with CCRs less
than 70% (italics). Data were collected using dual-
accelerometer Lotek 4500 global positioning system
collars worn by captive female animals. To allow
standardized comparisons, we collected data from only
the x and y axes (n ¼ 6,210) by programming collars to
use mode 2. Observations were made at Starkey
Experimental Forest and Range, La Grande, Oregon,
during fall 2011.

Found at DOI: http://dx.doi.org/10.3996/042015-
JFWM-034S6 (50 KB DOC ).

Table S6. Correct classification rates (CCRs, %) of
Rocky Mountain elk Cervus elaphus nelsoni behaviors
sampled at 5-min intervals for animals without access to
supplemental feed (no hay). We estimated CCRs using
leave-one-out cross validation for our final model
structure. We compared four model structures: linear
(LDA) and quadratic (QDA) discriminant functions on
untransformed (untr) or log-transformed (log) activity
monitor values. We grouped behaviors with CCRs less
than 70% (italics). Data were collected using dual-
accelerometer Lotek 4500 global positioning system
collars worn by captive female animals. To allow
standardized comparisons, we collected data from only
the x and y axes (n ¼ 2,795) by programming collars to
use mode 3. Observations were made at Starkey
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Experimental Forest and Range, La Grande, Oregon,
during spring 2013.

Found at DOI: http://dx.doi.org/10.3996/042015-
JFWM-034S7 (52 KB DOC ).

Table S7. Correct classification rates (CCRs, %) of
Rocky Mountain elk (Cervus elaphus nelsoni) behaviors
sampled at 64-s intervals for animals with access to
supplemental feed (hay). We estimated CCRs using leave-
one-out cross validation for our final model structure. We
compared four model structures: linear (LDA) and
quadratic (QDA) discriminant functions on untrans-
formed (untr) or log-transformed (log) activity monitor
values. We grouped behaviors with CCRs less than 70%
(italics). Data were collected using Lotek 4500 global
positioning system collars worn by captive female
animals. To allow standardized comparisons, we collect-
ed data from only the x and y axes (n ¼ 17,359) by
programming collars to use mode 1. Observations were
made at Starkey Experimental Forest and Range, La
Grande, Oregon, during fall 2011.

Found at DOI: http://dx.doi.org/10.3996/042015-
JFWM-034S8 (50 KB DOC).

Table S8. Correct classification rates (CCRs, %) of
Rocky Mountain elk Cervus elaphus nelsoni behaviors
sampled at 152-s intervals for animals with access to
supplemental feed (hay). We estimated CCRs using leave-
one-out cross validation for our final model structure. We
compared four model structures: linear (LDA) and
quadratic (QDA) discriminant functions on untrans-
formed (untr) or log-transformed (log) activity monitor
values. We grouped behaviors with CCRs less than 70%
(italics). Data were collected using Lotek 4500 global
positioning system collars worn by captive female
animals. To allow standardized comparisons, we collect-
ed data from only the x and y axes (n ¼ 7,127) by
programming collars to use mode 2. Observations were
made at Starkey Experimental Forest and Range, La
Grande, Oregon, during fall 2011.

Found at DOI: http://dx.doi.org/10.3996/042015-
JFWM-034S9 (49 KB DOC).

Table S9. Correct classification rates (CCRs, %) of
Rocky Mountain elk Cervus elaphus nelsoni behaviors
sampled at 5-min intervals for animals with access to
supplemental feed (hay). We estimated CCRs using leave-
one-out cross validation for our final model structure. We
compared four model structures: linear (LDA) and
quadratic (QDA) discriminant functions on untrans-
formed (untr) or log-transformed (log) activity monitor
values. We grouped behaviors with CCRs less than 70%
(italics). Data were collected using Lotek 4500 global
positioning system collars worn by captive female
animals. To allow standardized comparisons, we collect-
ed data from only the x and y axes (n ¼ 2,993) by
programming collars to use mode 3. Observations were
made at Starkey Experimental Forest and Range, La
Grande, Oregon, during spring 2013.

Found at DOI: http://dx.doi.org/10.3996/042015-
JFWM-034S10 (60 KB DOC ).

Reference S1. Rowland MM, Bryant LD, Johnson JK,
Noyes JH, Wisdom MJ, Thomas JW. 1997. The Starkey
project: history, facilities, and data collection methods for
ungulate research. U.S. Department of Agriculture, Forest
Service Technical Report PNW-GTR 396:1–62.

Found at DOI: http://www.treesearch..fefsd.us/pubs/
4752. Also found at DOI: http://dx.doi.org/10.3996/
042015-JFWM-034S11 (8015 KB PDF).

Reference S2. Wisdom, MJ, Cook JG, Rowland MM,
Noyes JF. 1993. Protocols for care and handling of deer
and elk at the Starkey Experimental Forest and Range.
General Technical Report PNW-GTR-311. Portland, Ore-
gon: U.S. Department of Agriculture, Forest Service,
Pacific Northwest Research Station.

Found at DOI: http://www.treesearch.fs.fed.us/pubs/
4749. Also found at DOI: http://dx.doi.org/10.3996/
042015-JFWM-034S12 (3454 KB PDF).
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