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INEQUIVALENT CANTOR SETS IN R3 WHOSE

COMPLEMENTS HAVE THE SAME FUNDAMENTAL GROUP

DENNIS J. GARITY AND DUŠAN REPOVŠ

(Communicated by Alexander N. Dranishnikov)

Abstract. For each Cantor set C in R3, all points of which have bounded
local genus, we show that there are infinitely many inequivalent Cantor sets in
R3 with the complement having the same fundamental group as the comple-
ment of C. This answers a question from Open Problems in Topology and has
as an application a simple construction of nonhomeomorphic open 3-manifolds
with the same fundamental group. The main techniques used are analysis of
local genus of points of Cantor sets, a construction for producing rigid Can-
tor sets with simply connected complement, and manifold decomposition the-
ory. The results presented give an argument that for certain groups G, there
are uncountably many nonhomeomorphic open 3-manifolds with fundamental
group G.

1. Introduction

The following question was asked in Open Problems in Topology II (see Ques-
tion 14 in [GR07]):

Question 1.1. Can two different (rigid) Cantor sets have complements with the
same fundamental group?

There are two parts to the question. First, are there any Cantor sets satisfying
the condition? Second, are there rigid such Cantor sets? Answering for rigid Cantor
sets seems more difficult. We focus our attention on answering these questions in
R3. The same techniques apply to embeddings in S3. Here, different Cantor sets
means Cantor sets that are inequivalently embedded in the ambient space. The
following theorem from [GRŽ06], together with results on local genus, gx(X), of
points x in a Cantor set X (see Section 3) give a positive answer to the above
question when the fundamental group of the complement is trivial.

Theorem 1.2 ([GRŽ06]). For each increasing sequence S = (n1, n2, . . .) of integers
such that n1 > 2, there exists a wild Cantor set, X = C(S), in R3 and a countable
dense subset A = {a1, a2, . . .} ⊂ X such that the following conditions hold:

(1) gx(X) ≤ 2 for every x ∈ X \A,
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2902 DENNIS J. GARITY AND DUŠAN REPOVŠ

(2) gai
(X) = ni for every ai ∈ A, and

(3) R3 \X is simply connected.

Remark 1.3. For later reference, we note that the construction in [GRŽ06] actually
works for any sequence S = (n1, n2, . . .) of integers where each ni ≥ 3. The condi-
tion that the sequence is increasing was used in this earlier paper to prove rigidity
of the Cantor sets.

Since local genus is preserved by equivalence, any Cantor sets X1 = C(S1) and
X2 = C(S2) corresponding to distinct increasing sequences S1 and S2 as above are
inequivalent. Since there are uncountably many such sequences, there are uncount-
ably many inequivalent Cantor sets with simply connected complement. Since all
of these Cantor sets are rigid, this answers both of the above questions in the case
when the complement is simply connected.

The more interesting case is when a Cantor set C in R3 has nonsimply connected
complement. Question 1.1 asks whether there is an inequivalent Cantor set D with
complement having the same fundamental group. We answer this question affirma-
tively for Cantor sets of bounded local genus and for a large class of other Cantor
sets. The essential ingredient is the class of Cantor sets provided by Theorem 1.2
with genus of points taking values in carefully chosen sequences of positive integers
and with simply connected complement.

Theorem 1.4 (Main Theorem). Let C be a Cantor set in R3. Suppose there is
some integer N ≥ 3 such that there are only finitely many points in C of local
genus N . Then there are uncountably many inequivalent Cantor sets Cα in R3

with complement having the same fundamental group as the complement of C.

Corollary 1.5 (Bounded genus). Let C be a Cantor set in R3 of bounded local
genus, or more generally, a Cantor set where the local genus of points never takes
on a specific integer value N ≥ 3. Then there are uncountably many inequivalent
Cantor sets Cα in R3 with complement having the same fundamental group as the
complement of C.

Proof. If C is a Cantor set as described in the corollary, then there is an integer
N ≥ 3 as in the statement of Theorem 1.4. �

By considering the open 3-manifolds that are the complements of the Cantor sets
in the above results, we are able to show in Section 7 that these open 3-manifolds
have uncountably many associated nonhomeomorphic open 3-manifolds with the
same fundamental group. In particular, we show:

Theorem 1.6. Let M be an open 3-manifold with end point (Freudenthal) com-
pactification M∗ such that M∗ ∼= S3 and such that M∗ \ M is a Cantor set C.
If the Cantor set C has an associated integer N ≥ 3 such that only finitely many
points of C have local genus N , then there are uncountably many open 3-manifolds
not homeomorphic to M that have the same fundamental group as M .

2. Terminology

A subset A ⊂ Rn is said to be rigid if whenever f : Rn → Rn is a homeomorphism
with f(A) = A, it follows that f |A = idA. There are many examples in R3 of wild
Cantor sets that are either rigid or have simply connected complement. In [GRŽ06],
examples were constructed having both properties.
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CANTOR SETS WITH COMPLEMENT HAVING THE SAME π1 2903

See the bibliography for more results on embeddings of Cantor sets. In particular,
see Kirkor [Ki58], DeGryse and Osborne [DO86], Ancel and Starbird [AS89], and
Wright [Wr89] for further discussion of wild Cantor sets with simply connected
complement.

Two Cantor sets X and Y in R3 are said to be topologically distinct or inequiv-
alent if there is no homeomorphism of R3 to itself taking X to Y . Sher proved
in [Sh68] that there exist uncountably many inequivalent Cantor sets in R3. He
showed that varying the number of components in the Antoine construction leads
to these inequivalent Cantor sets.

A simple way of producing new Cantor sets in R3 is to take the union of two
disjoint Cantor sets in R3. This leads to the following definition. A Cantor set in
R3 is said to be splittable into Cantor sets C1 and C2 if

• C = C1 ∪ C2, C1 ∩ C2 = ∅ and
• there are disjoint tame closed 3-cells D1 and D2 in R3 with C1 ⊂ D1 and
C2 ⊂ D2.

Given a Cantor set X in R3, we denote the fundamental group of its complement
by π1(X

c). As in the following remark, Theorem 1.2 could be used to produce
splittable examples of Cantor sets X∪C as the union of disjoint sets with π1(X

c) �
π1((X∪C)c). The examples we produce in the present paper require a more careful
construction and are not splittable in this fashion.

Remark 2.1. Note that if C is splittable into C1 and C2, then a Seifert-Van Kampen
argument shows that π1(C

c) � π1(C
c
1)∗π1(C

c
2), where ∗ represents the free product.

Thus if π1(C
c
1) is trivial, then π1(C

c) � π1(C
c
2).

3. Defining sequences and local genus

The following definitions about genus are from [Že05].
A defining sequence for a Cantor set X ⊂ R3 is a sequence (Mi) of compact

3-manifolds with boundary such that

(a) each Mi consists of pairwise disjoint cubes with handles,
(b) Mi+1 ⊂ IntMi for each i, and
(c) X =

⋂
i Mi.

Let D(X) be the set of all defining sequences for X. It is known (see [Ar66]) that
every Cantor set in R3 has a defining sequence, but the sequence is not uniquely
determined. In fact, every Cantor set has many inequivalent (see [Sh68] for the
definition) defining sequences.

Let M be a handlebody. We denote the genus of M by g(M). For a disjoint
union of handlebodies M =

⊔
λ∈Λ Mλ, we define g(M) = sup{g(Mλ); λ ∈ Λ}.

Let (Mi) ∈ D(X) be a defining sequence for a Cantor setX ⊂ R3. For any subset
A ⊂ X we denote by MA

i the union of those components of Mi which intersect A.
Define

gA(X; (Mi)) = sup{g(MA
i ); i ≥ 0} and

gA(X) = inf{gA(X; (Mi)); (Mi) ∈ D(X)}.

The number gA(X) is either a nonnegative integer or ∞ and is called the genus of
the Cantor set X with respect to the subset A. For A = {x} we call the number
g{x}(X) the local genus of the Cantor set X at the point x and denote it by gx(X).
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2904 DENNIS J. GARITY AND DUŠAN REPOVŠ

For A = X we call the number gX(X) the genus of the Cantor set X and denote it
by g(X).

Let x be an arbitrary point of a Cantor setX and h : R3 → R3 a homeomorphism.
Then any defining sequence forX is mapped by h onto a defining sequence for h(X).
Hence the local genus gx(X) is the same as the local genus gh(x)(h(X)). Therefore
local genus is an embedding invariant.

Determining the (local) genus of a given Cantor set using the definition is not
easy. If a Cantor set is given by a defining sequence one can determine an upper
bound.

A direct consequence of the definitions is the following result.

Lemma 3.1. The local genus of x in C is a nonnegative integer k if and only if:

(1) for each defining sequence (Mi) for C, there exists a natural number N

such that if n ≥ N , then g(M
{x}
n ) ≥ k; and

(2) there exists a defining sequence (Ni) for C and a natural number M so that

if i ≥ M , then g(N
{x}
i ) = k.

The local genus of x in C is ∞ if and only if:

for each defining sequence (Mi) for C, and for every pair of natural numbers

(j, k), there exists an interger � ≥ j with g(M
{x}
� ) ≥ k.

4. Wedges of Cantor sets

Every Cantor set in R3 is contained in a closed round 3-cell. By shrinking the
radius of this cell, one can find a 3-cell that contains the Cantor set and which has
a point (or points) of the Cantor set in its boundary.

Definition 4.1. Let C be a Cantor set in R3, and B a tame 3-cell in R3 with
C ⊂ B. If C ∩ Bd(B) �= ∅, C is said to be supported by B.

The following result is a consequence of the definition of tameness.

Lemma 4.2 (See Figure 1). Suppose C is a Cantor set in R3 supported by B, and
x ∈ C ∩Bd(B). Then if (D, p) is a pair consisting of a tame ball of some radius in
R3 together with a point in the boundary of this ball, then there is a homeomorphism
from R3 to itself taking (B, x) to (D, p).

Figure 1. Image of B and C

Definition 4.3 (See Figure 2). Let Ci be a Cantor set in R3 supported by Bi with
xi ∈ Bd(Bi) ∩ Ci, i ∈ {1, 2}. The wedge of C1 and C2 at x1 and x2, (C1, x1) ∨
(C2, x2), is defined as follows. Choose orientation preserving self-homeomorphisms
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hi of R
3 taking (Bi, xi) to (Di,0), where Di is the ball of radius 1 about the point(

2 ∗ (i− 3
2 ), 0, 0

)
in R3. Then

(C1, x1) ∨ (C2, x2) ≡ h1(C1) ∪ h2(C2).

Figure 2. Wedge of Cantor sets

Remark 4.4. Note that (C1, x1) ∨ (C2, x2) is a Cantor set with sub-Cantor sets
hi(Ci) embedded in R3 in a manner equivalent to Ci.

To make the proof of the next theorem and a result in the next section easier, we
provide an alternate definition of the wedge of two Cantor sets that is equivalent
to the definition above.

Definition 4.5 (Alternate definition of wedge; see Figure 3). Let Ci be a Cantor
set in R3 supported by Bi with xi ∈ Bd(Bi) ∩ Ci, i ∈ {1, 2}. The wedge of C1

and C2 at x1 and x2, (C1, x1) ∨′ (C2, x2), is defined as follows. Choose orientation
preserving self-homeomorphisms ki of R

3 taking (Bi, xi) to (D′
i, (2 ∗ (i − 3

2 ), 0, 0),

where D′
i is the ball of radius 1 about the point (4∗(i− 3

2 ), 0, 0) in R3. Let A be the

straight arc from (−1, 0, 0) to (1, 0, 0) in R3. Let p : R3 → R3/A be the quotient
map. Then

(C1, x1) ∨′ (C2, x2) ≡ p
(
k1(C1) ∪ k2(C2)

)
≡ p

(
k1(C1) ∪A ∪ k2(C2)

)
.

Since R3/A ∼= R3 and since p|ki(Ci) is 1-1, it follows that (C1, x1) ∨′ (C2, x2)
is homeomorphic to (C1, x1) ∨ (C2, x2). It remains to check that the embeddings
of these homeomorphic spaces in R3 are equivalent. This follows from the next
lemma.

Lemma 4.6.
(
R3, D1, D2,0

)
is homeomorphic to

(
R3/A, p(D′

1), p(D
′
2), p((1, 0, 0))

)
.

Proof. There is a closed map h : (R3, D′
1, D

′
2, A) → (R3, D1, D2,0) with the only

nondegenerate point inverse being h−1(0) = A. By standard topological results
about quotient spaces, one can now establish the claim. �
Theorem 4.7. Suppose C1 and C2 are as in Definition 4.5 and that π1(C

c
2) is

trivial. Then π1

((
(C1, x1) ∨ (C2, x2)

)c)
is isomorphic to π1(C

c
1).

Proof.
(
(C1, x1) ∨ (C2, x2)

)c
is homeomorphic to

(
(C1, x1) ∨′ (C2, x2)

)c
by Lem-

ma 4.6. Also, p : R3 → R3/A takes W = R3 \
(
k1(C1) ∪ A ∪ k2(C2)

)
homeomor-

phically onto
(
(C1, x1) ∨′ (C2, x2)

)c
since p is a quotient map and p restricted to

W is 1-1. So it suffices to show that π1 (W ) is isomorphic to π1(C
c
1).
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2906 DENNIS J. GARITY AND DUŠAN REPOVŠ

Figure 3. Alternate construction for wedge

Let U = {(x, y, z) ∈ W |x < 1} and V = {(x, y, z) ∈ W |x > −1}. We will
apply the Seifert-Van Kampen Theorem to U, V, U ∩V and W = U ∪V . Note that
π1(V ) � π1(C

c
2), which is trivial. Next, π1(U) � π1(C

c
1). Also, π1(U ∩ V ) � Z.

Since the inclusion-induced homomorphism from U ∩ V to V is trivial, π1(W ) �
π1(C

c
1). �

5. Local genus of points in a wedge

The main result of this section, Theorem 5.4, states that local genus of points in
Cantor sets is preserved by taking wedges, except at the wedge point. This allows
us in the next section to distinguish between various wedges with complements
having the same fundamental group.

For the first two results below, we view the wedge of Cantor sets C1 and C2,
(C1, x1)∨ (C2, x2), as in Definition 4.3 and Figure 2, and for ease of notation, view
C1 and C2 as subspaces of the wedge.

Lemma 5.1. Let W = (C1, x1)∨(C2, x2) be as in Definition 4.3. Then g{x1=x2}(W )
= g{x1}(C1) + g{x2}(C2).

Proof. This follows directly from Theorem 13 in [Že05] since there is a 3-cell con-
taining x1 = x2 in its interior satisfying the conditions needed for that theorem. �

Lemma 5.2. Let W = (C1, x1) ∨ (C2, x2) be as in Definition 4.3 and let p be a
point in C1 \ {x1}. Then g{x}(C1) ≤ g{x}(W ).

Proof. The result is obvious if g{x}(W ) = ∞. Assume g{x}(W ) = k ∈ N. By

Lemma 3.1, there is a defining sequence (Mi) forW such that for every i, g(M
{x}
i ) =

k. Form a defining sequence (Ni) for C1 as follows. Ni consists of the components of

Mi that intersect C1. Then for every i, g(N
{x}
i ) = k, and thus again by Lemma 3.1,

g{x}(C1) ≤ k. �
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CANTOR SETS WITH COMPLEMENT HAVING THE SAME π1 2907

For the next result, we view the wedge of Cantor sets C1 and C2, (C1, x1)∨
(C2, x2), as in Definition 4.5 and Figure 3. For ease of notation, we identify Ci with
ki(Ci) so that

(C1, x1) ∨′ (C2, x2) ≡ p (C1 ∪ C2) ≡ p (C1 ∪ A ∪ C2) .

Lemma 5.3. Let W = (C1, x1) ∨′ (C2, x2) be as in Definition 4.5, let x be a point
in C1 \ {x1} and let x′ = p(x). Then g{x}(C1) ≥ g{x′}(W ).

Proof. Again, the result is obvious if g{x}(C1) = ∞. Assume g{x}(C1) = k ∈ N.
By Lemma 3.1, there is a defining sequence (Mi) for C1 such that for every i,

g(M
{x}
i ) = k. By starting the defining sequence at a late enough stage, we may

assume that each component of each stage of the defining sequence is in the half
space {(x, y, z)|x < − 1

2} in R3, and we may assume that the component of each
Mi that contains x is distinct from the component of Mi that contains x1. Choose
a defining sequence Ni for C2 so that each component of each stage of the defining
sequence is in the half space {(x, y, z)|x > 1

2} in R3.
We now adjust the defining sequence (Mi), replacing it by a defining sequence

(M ′
i) so that the only component of M ′

i that has nonempty intersection with A

is the component containing x1 and so that for every i, g(M ′{x}
i ) is still k. Let

M(1,1) be the component of M1 = Mn1
containing x1. Let C(1,2) be the Cantor set

C1 \M(1,1) and C(1,1) be the Cantor set C1 ∩M(1,1). Let d1 be the minimum of
{
d(C(1,2), A), d(C(1,2),M(1,1)), d(C(1,1),Bd(M(1,1)))

}
.

Choose a stage n2 such that all components of Mn2
have diameter less than

d1
2
.

Let M ′
1 consist of M(1,1) together with the components of Mn2

that do not intersect
M(1,1).

For the second step, repeat the above procedure on Mn2
, letting M(2,1) be the

component of Mn2
containing x1, C(2,2) be the Cantor set C1 \M(2,1) and C(2,1) be

the Cantor set C1 ∩M(2,1). Let d2 be the minimum of
{
d(C(2,2), A), d(C(2,2),M(2,1)), d(C(2,1),Bd(M(2,1)))

}
.

Choose a stage n3 such that all components of Mn3
have diameter less than

d2
2
.

Let M ′
2 consist of M(2,1) together with the components of Mn2

that do not intersect
M(2,1).

Continuing inductively produces the desired defining sequence (M ′
i). Similarly,

construct a defining sequence (N ′
i) for C2 so that the only component of N ′

i inter-
secting A is the component containing x2. Finally, choose a sequence of regular
neighborhoods of A, (Pi), converging to A so that for each i, W(i,1) = M(i, 1) ∪
Pi ∪N(i,1) form a manifold neighborhood of A and converge to A.

The defining sequence for W is then produced as follows. Wi consists of p(W(i,1))
together with p(C) for all components C of M ′

i distinct from M(i,1) and all compo-
nents C of N ′

i distinct from N(i,1). This defining sequence for W has the property
that for each i, the component of Wi containing x′ has genus k. It follows that
k ≥ g{x′}(W ), as required. �

The previous three lemmas together yield a proof of the following main theorem
on genus of points in a wedge. Again, identify Ci with hi(Ci) for ease of notation.
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Theorem 5.4. Let W = (C1, x1) ∨ (C2, x2) be as in Definition 4.3. Then:

• if x ∈ Ci \ {xi}, then gx(Ci) = gx(W ); and
• gx1

(W ) = gx1
(C1) + gx2

(C2).

6. Main result

We are now ready to prove the main result, Theorem 1.4.

Proof of Theorem 1.4. Let C be a Cantor set, and suppose there is some integer
N ≥ 3 such that there are only finitely many points in C of local genus N .

By Theorem 1.2 and the remark following that theorem, for each sequence S =
(n1, n2, . . .) of integers in S1 such that ni > 2, there exists a wild Cantor set in
R3, XS = C(S), and a countable dense set A = {a1, a2, . . .} ⊂ X such that the
following conditions hold:

(1) gx(XS) ≤ 2 for every x ∈ X \A,
(2) gai

(XS) = ni for every ai ∈ A, and
(3) R3 \XS is simply connected.

The construction in [GRŽ06] yields the fact that the sets A1 = {ai|i is odd} and
A2 = {ai|i is even} are also dense in X(S). Choose an increasing sequence of
integers (m1,m2, . . .) such that m1 ≥ 3, and form a sequence of integers S =
(n1, n2, . . .} by specifying n2i = mi and n2i+1 = N for each i. The construction in
[GRŽ06] also yields the fact that X(S) is rigidly embedded.

Let YS = (C, x1) ∨ (XS, x2) for some points x1 ∈ C and x2 ∈ XS as in Defi-
nition 4.3. Condition (3) above together with Theorem 4.7 imply that π1(Y

c
S ) is

isomorphic to π1(C
c).

By Theorem 5.4, YS has countably many points of genus N and C has only
finitely many points of genus N . So C and YS are inequivalent Cantor sets.

Next suppose that S and S′ are formed from distinct increasing sequences of
integers as above. Suppose there is a homeomorphism h of R3 taking YS to YS′ .
By local genus considerations, a dense subset of the countable dense set of points
in the copy of XS in YS that have genus N must be taken by h into a dense subset
of points of XS′ in YS′ that have genus N . Also, a dense subset of the countable
dense set of points in the copy of XS′ in YS′ that have genus N must be taken by
h−1 into a dense subset of the points of XS in YS that have genus N . It follows
that h takes the copy of XS in YS onto the copy of XS′ in YS′ . But this contradicts
the fact that there is either a genus that occurs among points of X(S) that does
not occur among points of X(S′) or vice versa.

Thus every increasing sequence of integers ≥ 3 yields a different Cantor set YS .
Since there are uncountably many such sequences, there are uncountably many
such examples for each Cantor set C as in the theorem. The result now follows. �

Corollary 6.1. The Cantor sets constructed in the proof of Theorem 1.4, YS =
(C, x1) ∨′ (XS , x2), are not splittable as C ∪ A.

Proof. If these Cantor sets were splittable, C would be in a 3-cell D1 disjoint from
a 3-cell D2 containing YS \ C = XS \ x2. This would be a contradiction. �

Corollary 6.2. There are uncountably many rigid Cantor sets with complement
nonsimply connected that have the same fundamental group of the complement.
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CANTOR SETS WITH COMPLEMENT HAVING THE SAME π1 2909

Proof. It suffices to take for C in the proof of Theorem 1.4 any of the rigid Antoine
Cantor sets of local genus 1 everywhere. See [Wr86a] for a description of these
Cantor sets. One can also take for C any of the rigid Cantor sets constructed in
[GRŽ06] since they take on certain genera only once. �

Theorem 1.4 and Corollary 6.2 completely answer both parts of Question 1.1.

7. Application to 3-manifolds

If we work in S3 instead of R3, the following lemma is a consequence of results
about Freudenthal compactifications and the theory of ends (see [Fr42], [Di68], and
[Si65]). For completeness, we provide a proof based on defining sequences.

Lemma 7.1. Let C and D be Cantor sets (or more generally, any compact 0-
dimensional sets) in R

3. Suppose there is a homeomorphism h : R3 \ C → R
3 \D.

Then h extends to a homeomorphism h̄ : (R3, C) → (R3, D). In particular, C is
homeomorphic to D, and C and D are equivalently embedded.

Proof. Let (Mi) be a defining sequence for C. Suppose Mi = {M(i,1),M(i,2), . . .

M(i,n(i))}. Let N(i,j) be the bounded component of R
3 \ h(Bd(M(i,j))), and let

Ni = {N(i,1), N(i,2), . . . , N(i,n(i))}. The claim is that (Ni) is a defining sequence for
D so that the nested sequence in Mi associated with a point c ∈ C corresponds to
a nested sequence in Ni corresponding to a point d ∈ D. This forces h̄(c) to be
defined to be d. Now h̄ defined in this way is continuous and 1-1 because of the
definition of defining sequences. The fact that a similar construction can be done
using h−1 shows that h̄ takes C onto D.

It is clear that any nested sequence in (Ni) has intersection that is compact,
connected and in D, so it consists of a single point of D. This establishes the claim
at the beginning of the preceding paragraph and completes the proof. �

We now provide the proof of Theorem 1.6.

Proof. The 3-manifolds are the complements in R3 of the Cantor sets constructed
in the proof of Theorem 1.4 in Section 6. These are all nonhomeomorphic by
Lemma 7.1. �

See [KM] and [Mc62] for earlier results on nonhomeomorphic 3-manifolds with
the same fundamental group.

8. Related questions

The techniques in this paper lead to a number of open questions.

Question 8.1. Are there examples of inequivalent Cantor sets with the same fun-
damental group of the complement for which the genus of all Cantor sets involved is
bounded? The constructions described in this paper yield wedges that have points
or arbitrarily large genus.

Question 8.2. Given a Cantor set that does not meet the criteria of Theorem 1.4,
are there inequivalent Cantor sets with the same fundamental group of the comple-
ment? Note that a Cantor set not covered by these results would have an infinite
number of points of every genus greater than or equal to three.

Question 8.3. Do the results of Theorem 1.6 remain true if the restriction on a
local genus of points in the Cantor set is removed?
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Question 8.4. Does Theorem 1.4 remain true if the Cantor set C has only a finite
number of points of genus 1 or of genus 2, or only a finite number of points of genus
∞?

Question 8.5. Can the construction in [GRŽ06] be modified to produce specific
points in a countable dense subset that have infinite genus rather than certain
specified finite genera?

A Cantor set C is said to be strongly homogeneously embedded in R3 if every self-
homeomorphism of C extends to a self-homeomorphism of R3. Define the embedding
homogeneity group of the Cantor set to be the group of self homeomorphisms that
extend to homeomorphisms of R3. Rigid Cantor sets have a trivial embedding
homogeneity group.

Question 8.6. Given a finitely generated abelian group G, is there a Cantor set
C in R3 with embedding homogeneity group G?

Question 8.7. Given a finite abelian group G, is there a Cantor set C in R3 with
embedding homogeneity group G?

Question 8.8. What kinds of groups arise as embedding homogeneity groups of
Cantor sets?
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[Že00] M. Željko, On embeddings of Cantor sets into Euclidean spaces, Ph.D. thesis, University
of Ljubljana, Ljubljana, Slovenia, 2000.
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