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face are not prescribed in the formulation of the prob-

lem. Therefore, the method of solution is applicable

to nonuniform rates of propagation of a crack under an
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ELASTODYNAMIC ANALYSIS OF A PROPAGATING

FINITE CRACK IN A MICROPOLAR ELASTIC SOLID

CHAPTER 1

INTRODUCTION

1.1 General Remarks

The classical theory of elasticity is based on the

fundamental assumptions that all material bodies pos-

sess continuous mass densities, all balance laws are

valid for every part of the body no matter how small it

may be, and the state of the body at any material point

is influenced only by the infinitesimal neighborhood

about that point. These assumptions lead to a descrip-

tion of the deformation of the body in terms of the

symmetric strain and stress tensors. In fact, the

first of the assumptions means the atomic, pore and

grain structure of real materials is to be disregarded.

It is also proved to be an untenable assumption by the

fact that molecular theories and atomistic models of

the materials have shown that mass density can be mark-

edly different from the assumed continuous mass density

when the size of the volume element is below a certain
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limit value. The second of the assumptions eliminates

the long-range effect of loads on the motion and the

evolution of the state of the body. The third assump-

tion ignores the effect of long-range interatomic inte-

ractions.

The results, derived on the basis of classical

elasticity, are in good agreement with experiments per-

formed on numerous structural materials below the elas-

ticity limit of the material. However, in many cases

essential differences have been observed between theory

and experiment; this fact refers first of all to the

states of stress in which there occur large stress gra-

dients. As an example of such a state one may mention

the stress concentration in the vicinity of holes, or

near notches and cracks. The discrepancy between clas-

sical elasticity and experiment becomes particularly

important in problems of dynamics, namely in the case

of elastic vibrations characterized by large frequen-

cies and small wavelengths; that is, for example, in

the case of ultrasonic waves. The discrepancy is due

partly to the fact that in the case of large frequen-

cies and small wavelengths, the microstructure of the

body becomes important. Classical elasticity fails to

produce good results in the case of vibrations of gran-

ular bodies with large molecules, such as polymers. A

possible explanation is that the constitutive equation

of classical theory may not be sufficiently general.
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In order to eliminate these shortcomings of clas-

sical elasticity, several generalized continuum theo-

ries have been introduced which have additional degrees

of freedom. The most widely accepted of these are the

couple stress theory (indeterminate couple stress the-

ory) introduced by Mindlin and Tiersten [1] and others,

and the micropolar continuum theory introduced and de-

veloped by Eringen and Suhubi [2]. The couple stress

theory arises as a special case of the micropolar elas-

ticity under certain restrictions.

A microcontinuum is a continuous medium to each

point of which is assigned another sub-continuum, this

latter being able to translate, rotate and deform. The

micropolar medium is a special case of the microcontin-

uum with the property that the sub-continuum defined

above can only translate and rotate without deforming

even though the medium as a whole can translate, rotate

and deform. The state of strain in a micropolar medium

is described by two vectors, namely the displacement

vector and the microrotation vector, and these vectors

are connected with the stress tensor and the couple

stress tensor. Central to the microcontinuum theories

is the concept of couple stress. Materials wherein

couple stresses and body couples are recognized to be

acting are known as polar materials or oriented media.

The existence and basis of couple stress in elasticity
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was noted by Voigt [3] in connection with polar mole-

cules in his work on crystallography. Duhem [4] postu-

lated a theory that a body should be considered as an

assemblage of not only points but also of directions

associated with points.

E. and F. Cosserat [5] presented a unified theory

for deformable bodies. A Cosserat continuum is defined

as a three-dimensional continuum, each point of which

is supplied with a triad of vectors called "directors"

and which is amenable to a simple but elegant interpre-

tation of the motion. The important monograph of the

Cosserats [5] was buried in the literature nearly half

a century until the topic was reopened and reconsidered

in the 1950's. The idea of a Cosserat continuum was

revived in various special forms by Gunther [6], Grioli

[7], Truesdell and Toupin [8], Aero and Kuvshinski [9],

Schaefer [10], Mindlin and Tiersten [1], Toupin [11]

and Eringen [12]. These early theories are mostly

known as the "constrained theories" or the "indetermi-

nate couple stress theory". Eringen and Suhubi [2] and

Eringen [13] introduced a general theory of a nonlinear

microelastic continuum in which the balance laws of

classical continuum are supplemented with additional

ones, and the intrinsic motions of microelements con-

tained in a macrovolume element are taken into account.

This theory, in special cases, contains the Cosserat

continuum and the indeterminate couple stress theory.
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In micropolar theory of elasticity, the strain and

stress tensors are no longer symmetric. Thus, micro-

polar continuum theory has a mechanism which is capable

of incorporating the internal long-range cohesive

forces and yet remain within the basic continuum frame-

work. A consequence of this feature is that the medium

can support couple stress, spin and microinertia. The

constitutive theory for micropolar media consists of a

stress constitutive equation involving microrotation

and a couple stress constitutive equation involving the

gradients of microrotation. The field equations are

augmented by a conservation law for microinertia.

Since the axiom of locality is still used in micropolar

continuum theory, it will not involve the effects of

all the remaining material points of the body, which

only the nonlocal continuum theory takes into account.

However, the microcontinuum theory is also a nonlocal

theory in the following sense. Eringen [14] has shown

that the microcontinuum theory can be derived by defin-

ing suitable integral operators using certain test

functions based on moment expansion techniques. These

higher order moments incorporate to a certain extent

the nonlocal interactions of microconstituents of the

material. But, these moments have to be taken to in-

definitely higher orders. The nonlocal theory, origin-

ated by Eringen [15], eliminates the need for taking

such higher order moments and is designed to incorpor-
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ate the interatomic interactions. New concepts of

microinertia, spin momentum (intrinsic moment of mo-

mentum), body couple density and couple stress, which

have no counterpart in classical theory of elasticity

are brought out. The local balance laws of classical

continuum theory are simply obtained by dropping the

terms related to microvolume elements. Therefore, the

micropolar continuum theory is a sophisticated contin-

uum theory in which the local balance laws are supple-

mented with additional ones, and the important intrin-

sic motions of constituents (microvolume elements) con-

tained in a macrovolume element are taken into account.

The micropolar theory of elasticity is relatively

simple to use, and is versatile enough to find numerous

important applications explaining many real physical

phenomena. Materials with dumbbell molecules, liquid

crystals, materials with elongated grains and compos-

ites which cannot be properly treated by classical

elasticity, can be elegantly treated with the micro-

polar elasticity. The micropolar theory of elasticity

is a powerful continuum theory to treat complex prob-

lems, including wave propagation and dispersion in

solids, stress concentration around holes in bodies,

and stress distribution at the crack tip of advancing

line cracks in materials subject to external loads as

well as boundary layers, turbulence, instabilities in
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fluid flows, rotating fluids, and surface tension phe-

nomena in fluids. Although there are several hundred

papers in this and related fields, it still affords

further exploration. Nevertheless, it seems that the

logical foundation of the theory is solid and promising

for the understanding of physical phenomena.

1.2 Scope of the Study

In dynamic crack propagation, conventional methods

of solution are not easily applicable to finite crack

problems for various reasons. For example, the Wiener-

Hopf technique becomes very complicated as a result of

the dynamic interaction of the crack tips in the case

of a finite crack. Most of the works in dynamic crack

propagation have dealt with semi-infinite crack prob-

lems which are tractable. As a result of lack of ade-

quate tools of analysis, very little work has been done

on dynamic finite crack problems even in classical the-

ory of elasticity. To the best of our knowledge, there

have been no investigations of dynamic crack propaga-

tion in micropolar elastic media.

The object of this study is to obtain the dynamic

stress and the dynamic couple stress intensity factors

for a finite crack whose tips may propagate nonuni-

formly in time under an arbitrary time dependent normal

load on the crack surface. By using an integral trans-
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form method, a pair of two-dimensional singular inte-

gral equations gverning dynamic stress and dynamic

couple stress is formulated. The analysis determines

that both the macrorotation and the gradient of the mi-

crorotation of the crack surface can be determined by

solving these singular integral equations. In addi-

tion, it is shown in this work that both the dynamic

stress and the couple stress intensity factors can be

obtained by utilizing the values of the strengths of

the square root singularities in microrotation and the

gradient of the microrotation at the crack tips. From

this analysis, we have investigated the behavior of the

microrotation field and the dynamic couple stress in-

tensity factor, influenced by microinertia, which have

not been considered in the classical theories of elas-

ticity. The classical elasticity solution for the cor-

responding problem presents a special case when the mi-

cropolar moduli are dropped from the present solution.

1.3 Background of the Dynamic Fracture Investigations

During the past three decades, significant studies

have been made in understanding fracture mechanics.

These advances have encompassed both the fracture pro-

cess itself and improved design criteria for engineer-

ing structures.

The majority of the past work on fractures has

been devoted to the events which lead up to the onset
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of crack propagation. However, it is equally important

to be concerned with those process that govern the

time-dependent motion or growth of cracks. In recent

years, a substantial amount of work has been done in

the area of dynamic fracture mechanics. Much of the

work has been summarized in the review articles by Er-

dogan [16], Achenbach [17,18], Freund [19,20], Goel

[21] and Williams and Knauss [22]. The literature in

this area can be divided into three categories: steady-

state problems, transient problems, and fully dynamic

problems.

The first proper analysis of a moving crack is be-

lieved to have been done by Yoffe [23], who attempted

to explain the branching of cracks by analyzing a dy-

namic steady-state problem in which a crack of fixed

length travels at constant velocity under the influence

of uniaxial tension. A similar steady-state problem

was solved by Craggs [24] for a semi-infinite crack

propagating at constant rate under the action of dis-

tributed loads on the crack surface which are fixed

with respect to the crack tip. From the stress solu-

tions in [23] and [24], it was found that the maximum

stress ao0 moves out of the plane of crack propagation

and acts at an angle of 60° to the direction of crack

propagation when the crack velocity exceeds 0.6 times

the shear wave velocity. Unfortunately, the crack

branching angle and crack tip velocity at branching are
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consistently lower than the above value (for a survey

of the brittle fracture velocities, see Table 1 in

[25]). It may be concluded, therefore, that the ten-

dency of the maximum tangential stress coo to move out

of the plane of crack propagation at higher velocities

is at best a contributory factor to the branching

event. In addition, it may be worthwhile to note that

dynamic stress intensity factors (KID) are independent

of the crack speed and the energy release rates go to

infinity as the crack speed approaches the Rayleigh

wave speed. This physical inconsistency was discussed

by Rice [26]. Steady-state problems were also studied

by Jahanshahi [27], Chen and Sih [28], and Sih and Loe-

ber [29].

Broberg [30] and Baker [31] studied, first of all,

the transient dynamic problems. Broberg [30] investi-

gated a problem in which a crack initiates at a point

and propagates symmetrically with constant velocity un-

der constant pressure on the crack surface. It was

found that the velocity of such a crack is equal to the

Rayleigh wave velocity under the assumption of zero

surface energy. Baker [31] investigated a semi-

infinite crack which suddenly appears in a uniformly

stretched elastic medium and then propagates with con-

stant velocity by employing the Wiener-Hopf technique.

The dynamic stress intensity factor KID is evaluated

from the Baker's solution, presented in Appendix B for
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comparison with the results of this investigation.

Broberg's problem was reconsidered by Craggs [32],

based on the self-similarity of the solutions. At-

tempts to remove the restriction of constant velocity

of propagation were made by Kostrov [33] and Eshelby

[34]. Kostrov [33] investigated unsteady propagation

of a crack subjected to arbitrary time-dependent longi-

tudinal shear loads on the crack surface using the

method of Volterra. Eshelby [34] studied an analogous

problem for quasi-static loads on the crack surface us-

ing Bateman's result on the electromagnetic radiation

from a nonuniformly moving line charges. Eshelby's so-

lution, however, can be obtained from Kostrov's solu-

tion, as mentioned in [19]. In [34], it was pointed

out that if a propagating crack stops, a static field

radiates out from the crack tip.

Achenbach [35] studied transient diffraction of

horizontally polarized shear waves.by a stationary

semi-infinite crack by using the method of analysis in

[33]. By introducing a fracture criterion based on the

balance of energy, Achenbach showed that instantaneous

crack propagation can occur only if the shear stress

shows a square root singularity at the wave front.

Achenbach and Nuismer [36] investigated diffraction of

a time-dependent but spatially uniform dilatational

wave by a semi-infinite crack propagating at constant

speed and found similar results as in [35]. Freund
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[37] considered a semi-infinite crack moving at con-

stant speed under a unit concentrated load on the crack

surface. Using this solution as a Green's function and

adopting an inverse method, Freund derived KID for gen-

eral static loads on the crack surface. He extended

his work [38] to the case of nonuniform propagation of

the crack and showed that KID is given by a function of

instantaneous velocity times the corresponding static

stress intensity factor (Kis). For a suddenly stopping

crack he found a result similar to Eshelby's [34].

Freund [39] also studied the case of stress wave load-

ing and summarized his work in a review article [19].

In this article a suddenly stopping Broberg crack [30]

was also considered.

Kostrov [40] extended his previous work [33] to

any mode of loading conditions by means of the Wiener-

Hopf technique. He verified Freund's [39] equation for

KID. The case of a finite crack was also treated in

[40], but no specific problem was considered. Glennie

and Willis [41] studied an accelerating semi-infinite

crack under a longitudinal shear load and presented an

explicit expression for the elastodynamic field. They

also discussed Griffith-Irwin fracture criterion and

Dugdale-Barenblatt model in connection with accelera-

tion of the crack.

The transient diffraction of dilatational waves by

a stationary finite crack was investigated by Thau and
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Lu [42]. They showed that the maximum value of KID is

about 30 percent greater than the analogous Kis, and

the maximum value is attained at the instant of arrival

of the first scattered Rayleigh wave from the opposite

tip. The same problem was also considered by Sih, Emb-

ly and Ravera [43] in which they found that as time

progresses, KID approaches KIs, oscillating about it

with decreasing amplitude, by using the Fredholm inte-

gral equation. Self-similar elastodynamic solutions

associated with crack problems were reviewed by Chere-

panov and Afanas'ev [44] with some applications, in-

cluding Broberg's problem [30] and Baker's problem

[31]. Kim [45] investigated the dynamic propagation of

a finite crack in general terms for a stationary crack,

a crack propagating at constant speed, and a crack

which suddenly stops after propagation at constant

speed. The method of solution is applicable to nonuni-

form rates of propagation of a crack under an arbitrary

time-dependent load on the crack surface.

The fracture criterion for moving cracks similar

to Griffith criterion under static equilibrium has been

discussed by Erdogan [16], Atkinson and Eshelby [46],

Achenbach [17] and Freund [19]. It has been shown in

their work that the motion of a crack tip is determined

by solving a complicated nonlinear ordinary differen-

tial equation for a given crack and loading condition.

Ma and Burgers [47] studied the dynamic stress inten-
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sity factor of an initially stationary semi-infinite

crack in an unbounded linear elastic solid by using a

perturbation method. The results indicated that if a

maximum energy release rate is accepted as a crack

propagation criterion, then for both the incident

stress wave parallel to the original crack faces and

uniform dynamic loading applied to the original crack

faces, the crack will propagate straight ahead of the

original crack for any delay time. Chattopadhyay and

Bandyopadhyay [48] investigated the propagation of a

crack due to shear waves in a medium having monoclinic

symmetry. By using the Wiener-Hopf technique, it was

shown that the stress intensity factor decreases as the

length of the crack increases.

Numerical methods in dynamic fracture mechanics

were critically appraised by Kanninen [49]. At that

time, a comparison of the finite element and finite

difference methods led to the following conclusions:

The finite element method was more suitable for the

analysis of stationary cracks under dynamic loadings

due to the fact that the relevant singularities can be

modeled in the crack tip elements. On the other hand,

the finite element method was thought to be unsuited

for the analysis of dynamic crack propagation, due to

the numerical difficulties involved in advancing the

crack in a discrete manner. However, the state of the

technique of finite element methods in dynamic fracture
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mechanics has greatly advanced in the intervening

years. In order to simulate the crack propagation, two

different concepts of computational modeling may be

considered, namely, stationary mesh procedures [50,51,

52] and moving (distorting) mesh procedures [53,54,55].

The details were discussed in a review article by At-

lury and Nishioka [56]. Also, Kishimoto, Aoki and Sak-

ata [57,58] have derived a path-independent integral J

for spatially fixed paths, which is equivalent to the

energy release rate only for a stationary crack in a

solid under dynamic loading. Recently, Banks-Sills

[59] studied the quarter-point singular elements again

and found that the quarter-point singular element

should be rectangular rather than quadrilateral. Next,

we briefly review some of the investigations concerning

stress concentration around holes and also static frac-

ture problems in micropolar elasticity.

Stress concentration around a circular hole in a

plate was investigated by Kaloni and Ariman [60], who

adopted the solution of the same problem for the inde-

terminate couple stress theory [61]. They showed that

the solution given by Mindlin [61] can be obtained from

the solution the obtained. Cowin [62] corrected the

thermodynamic restrictions of Eringen's theory [13] and

showed the results of the same problem for various val-

ues of coupling factors. The classical solutions of



16

the same problem coincides with the solutions [60,61,

62] when the coupling factor is zero.

The effect of couple stresses on the stress con-

centration at the crack tip of a crack was first con-

sidered by Muki and Sternberg [63], who treated the

problem of a finite length crack in an infinite medium

under conditions of plane strain with a uniform tension

acting at infinity. Atkinson and Leppington [64] in-

vestigated the effect of couple stresses on the tip of

a crack for a semi-infinite crack by using the Wiener-

Hopf technique. Sladek and Sladek [65] and Paul and

Sridharan [66] studied the effect of couple stresses on

the stress field around a penny-shaped crack by solving

a Fredholm integral equation of the second kind. An

axisymmetric Boussinesq problem for a semi-space in mi-

cropolar media by means of Hankel transforms was stud-

ied by Dhaliwal and Khan [67]. Paul and Sridharan [68]

investigated the problem of a Griffith crack in a

transverse field of constant uniaxial tension by solv-

ing Fredholm integral equations of the second kind.

From the above work, it was found that the stress in-

tensity factor of the micropolar media is a little

higher than that of classical media, and the energy re-

lease rate of the micropolar media is a little lower

than that of classical media, as the coupling factor

becomes higher.
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Carbonaro and Russo [69] derived some classical

theorems of micropolar elastodynamics in unbounded do-

mains, namely, the work and energy theorem, the unique-

ness and stability of regular solutions and a suffi-

cient condition for the finiteness of the speed of

propagation of signals (domain of influence theorem).

Dai [70] extended the J-integral introduced by Rice

[71] for micropolar media and Jaric and Suhubi [72] de-

rived the Griffith criterion for brittle fracture

within nonlinear micropolar thermoelasticity. Rao [73]

investigated the problem of longitudinal wave propaga-

tion in a micropolar wave guide. It was seen that a

new wave exists and the pattern of changes of this ve-

locity is similar to those of SH-type of wave propagat-

ing in a wave guide. In addition, the micropolar coun-

terpart of the Rayleigh-Lamb frequency equation was ob-

tained, which can be reduced to the Rayleigh-Lamb equa-

tion of classical elasticity by neglecting the terms

involving micropolar moduli.

Very little experimental work on micropolar mate-

rials has been done until now due to the lack of meth-

ods of measurement. Some work has been completed by

Gauthier and Jahsman [74] for determination of micropo-

lar moduli and by Yang and Lakes [75] on the stress in-

tensity factor of bone. Numerical methods, such as fi-

nite element methods, have been developed by Malcolm
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[76] for isotropic materials as well as orthotropic ma-

terials for the problem of determining the stress con-

centration around a hole. In static fracture mechanics

of the micropolar theory of elasticity, many papers

have been published, employing numerical techniques due

to the complexity of the analysis involved. However,

to the best of our knowledge, the problems of dynamic

propagation of a finite crack in micropolar elastic me-

dia have not been investigated so far, either analyti-

cally or numerically.
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CHAPTER 2

BASIC EQUATIONS IN MICROPOLAR ELASTICITY

In this chapter, the fundamental equations of mi-

cropolar elasticity are presented in a general curvi-

linear coordinate system and then are specialized to a

rectangular coordinate system. The notations used are

identical to those used by Eringen [77].

2.1 Field Equations

The field equations are obtained by combining the

constitutive equations with the balance laws. There

are two field equations, resulting in six partial dif-

ferential equations for six unknowns (three displace-

ments and three orientations) for problems with three-

dimensional geometry. The field equations for micropo-

lar, isotropic, homogeneous, linear elastic solids in

an isothermal environment are

(A+A)V(V.u) + (A+x)V2u + is VX0 pf

and
(2.1.1)

(a+P)V(V.0) + 7V2# + sc Vxdo - 24 + p.e

= Pi* , (2.1.2)
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where u is the displacement field, 4 is the orientation

field, and the superposed two dots on a vector denotes

D2/Dt2. The quantities A, A, ic, a, 13, and ry are the

micropolar moduli; p and j are, respectively, the mass

density and the microinertia density of the medium,

which are treated as constants; and f and .Q, respec-

tively, are body force and the body couple per unit

mass.

In a rectangular coordinate system, the field

equations (2.1.1) and (2.1.2) become:

au a2ux a2ux
(A+A) + + + (A+K)(--w- +

zax ax ay az ax z ay

a2ux
(2.1.3)

a2ux 80z 807 + r-X = P572-+ ay az
nf

57- IC

a au u, a2uyfx Buy auz
o

) (A+K)(L +
ax-

(A+053k5T +
ay az

a0z) nf = p --w
9K r Y atz

a2uy

az

a2uz a2uz
(A+A)

I- az

auy

az ax ay ax ay

az ax
(2.1.4)

a2uz
K

80y 80X)
a2uz

57-) (537- 53-] P z 577-
fa2ox 820x

a ta0x aOy ackz\

(a+fl)5AaT 5-37- 57-) (A+KT5-7- 57-
820x, (aoz any _ 214z
57-) Kkay az

820x
+ p.Rx = pj ,

(2.1.5)

(2.1.6)



and

u u24,90x aOy a0z a 2O
(a+P) + + ---) + (A+x)(--w.L +

a 2
OyL

ay ax ay az 83E4

4920y\

5;7-)

+ ply =

4ackx a0z)

5T 57c-j

4920y

Pi 5-t-2-

- 2,c0y

2-(a°x any "z(a+#) ---) + (p+x) --v-
az ax ay az ax&

a
2
Oz)

57-J

Pi2z =

ja0y a0x)
kaz ax

a
2
Oz

P ate.

2.2 Equilibrium Equations

2/cOx
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(2.1.7)

4920z

(2.1.8)

The equilibrium equations used in micropolar elas-

ticity are the equation of momentum and the equation of

moment of momentum. The equation of momentum is iden-

tical to that of classical elasticity and is written as

V.t + p(f-4) = 0 , (2.2.1)

where v is the velocity vector, t is the stress tensor

and a dot superposed on a vector denotes its material

time rate. The equation of moment of momentum in mic-

ropolar elasticity is different from that of classical

elasticity and is written as

7.m + (t-tT) + p(i4r) = 0 , (2.2.2)
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where m is the couple stress tensor, a. is the spin ten-

sor and the superposed T over a tensor denotes its

transpose.

Equations (2.2.1) and (2.2.2) can be written in a

rectangular coordinate system as

atxx Otyx atzx
ax

+ +
ay az

atxy
+

atyy atzy

ax ay az

atxz
+

atyz

+

at zz

ax ay az

and

amxx amyx amzx
ax ay az

P(fx-1.1x) = 0

+ p(fy-4y) = 0

P(fz-1.1z)

+ tyz - tzy + p(..exax)

amxy amyy amzy

ax ay az

tzx txz P( ey-77y)

and

amxz
+

am yz
+

amzz
ax ay az

+ t t 4. )txy tyx + P(.ez z

2.3 Constitutive Equations

= 0 ,

=

=

=

0

0

0

(2.2.3)

(2.2.4)

(2.2.5)

, (2.2.6)

, (2.2.7)

. (2.2.8)

The constitutive equations for micropolar elastic-

ity consist of a stress constitutive equation involving

microrotation, and a couple stress constitutive equa-

tion involving the gradients of microrotation.
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2.3.1 The Stress Constitutive Equation

The stress constitutive equation may be written in

two alternate forms:

or

tks = Aemmgks + (A+x)eks + Aesk (2.3.1)

tks = Aemmgks + (2A+x)eks + xeksm(rm -0m) ,(2.3.2)

where

ok _(1 12)ek.km0.011

eks = (1/2)(uk02 + usod ,

eks = + usoc = eks + eksm(rm -0m) ,

rk (1/2)ek.ftrms (1/2)ek/mum,..e

and where emm is obtained by raising the index in eks

with the fundamental matrix tensor and then contracting

it; gm is the coefficient of the fundamental matrix,

rk is the classical rotation vector, eks and eks are,

respectively, the classical strain tensor and Cosserat

strain tensor, eksm is the alternating tensor and ";"

denotes the covariant partial derivative.

Equations (2.3.1) or (2.3.2) lead to nine stress

constitutive equations using equations in rectangular

coordinate systems:

txx = (A+2A+x)
aux auv
--= + A(ay" +

azax

au v aux
-txy = (A+x)

ax
"

ay



and

txz =

tyx =

tyy =

au- aux
KOyax az

aux auv
(A+0 7-- +A

ax
+ KOz ,

au,
(A+44.10 j Arx

ay ax az

aux auy
t = (A+K) +A--- KOXyz ay az

tzx = (µ +,c)
auxaux

+A
aux

ax
- KOy

tzy = (A+K
auy

) +Aauz--- + KOx
az ay
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(2.3.5)

(2.3.6)

(2.3.7)

(2.3.8)

(2.3.9)

(2.3.10)

au,
tzz (A+2A+K)__= A

auv

az ax ay
(2.3.11)

2.3.2 The Couple Stress Constitutive Equation

as

The couple stress constitutive equation is written

mk/ = 00r:rgkA 00k;12 + 1012;k (2.3.12)

In a rectangular coordinate system, the nine couple

stress constitutive equations are:

(
mxx = (a+0+1)(95,

0x
*N

any7
80x aOymxy p___
ay ax

80x a0z
mxz P--- 7aZ ax

aoz)
4- az

(2.3.13)

(2.3.14)

(2.3.15)



and

aoy aox
m 7. = P

ax
+

ay

,aoy aoz\
myy = (a4-#+/)--- + a

ay 537 5T)

a490Y a0Z
myz = P /

ay
,

az

a0z a0x
Qmzx = 1az

al9OZ (90Ym = 1zy
ay az

a0z
a

(a0x any
mzz = (a041)---az kax ay

2.4 Compatibility Equations
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(2.3.16)

(2.3.17)

(2.3.18)

(2.3.19)

(2.3.20)

(2.3.21)

The compatibility equations are used to insure the

compatibility of displacements and orientations of spe-

cific solutions in micropolar elasticity. The micropo-

lar strain tensors involve gradients of displacements

and micro-orientations and the compatibility equations

insure their existence as well as consistency. In gen-

eral, a set of displacements and micro- orientations

will not exist unless the strains satisfy certain con-

ditions. Mathematically, the compatibility equations

are necessary and sufficient conditions for the contin-

uity and single-valuedness of displacements and micro-

orientations.



The compatibility equation is given by

6ik;j ejk ;i /ikj /jki = 0

where

ik.em = emnOnm
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Using the definition of /klm, one can express equation

(2.4.2) in the form

- eikm0111;i = 0 . (2.4.3)6ik;j 6jk;i eiknOn;j

In a rectangular coordinate system, equation

(2.4.3) results in 27 equations, of which 9 prove triv-

ial and 9 out of the remaining 18 equations are repeti-

tious. The remaining independent three-dimensional

compatibility equations in the rectangular coordinate

system are:

aExx 496yx 80z
. 0 ,

ay ax ax

aexy
ay

afyy aoz

ax ay
= 0 ,

afxz 496 yz 80y 80x
= 0 ,

ay ax ay ax

a6x a6zx 490y o ,
az ax ax

ofxy afzy .90z a0x
- + + . 0 ,

az ax az ax

a6xz - a6zz
az ax

aOy

az
= 0 ,

a6yx aezx .90z 80y
- o ,

az ay az ay

(2.4.4)

(2.4.5)

(2.4.6)

(2.4.7)

(2.4.8)

(2.4.9)

(2.4.10)



and

acyy ae (90zy x = o ,

az ay ay

a_ aczz a0x = 0 .

az ay az

where

aux

auy
exy =

ax

auz
yz = ay

aux
CZX az

CUIT =40 ay
auy

Oy

ZZ

aux
cyx = ay

Oz

au
EZy = + 0xaz

auz
E= 0xz ax

auz
az

(2.4.13)

Additional compatibility equations result from ex-

amining the couple stress constitutive equations as

they arise in plane problems. Since # = (0,0,0z) for

the x-y plane, equations (2.3.15) and (2.3.18) become

and

mxz ='r a0z
ax

80z
myz = 1

ay

(2.4.14)

(2.4.15)

Cross differentiation of equations (2.4.14) and

(2.4.15), followed by subtraction of (2.4.15) from

(2.4.14), results in

amxz amyz
0 u . (2.4.16)

ay ax
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Likewise, for the y-z plane, we get

amyx Omzx = 0 (2.4.17)
az ay

and for the x-z plane, we get

amXy amZy
az ax

= 0 . (2.4.18)

Another compatibility condition which assures the

single valuedness as well as continuity of microrota-

tion is expressed in the rectangular coordinate system

as

ekRz(7k_em,n /k/n,m) = 0 ,

where

/k_em,n = eklepOp,mn

(2.4.19)

(2.4.20)
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CHAPTER 3

DESCRIPTION AND ANALYSIS OF THE PROBLEM

3.1 Statement of Problem

A plane finite crack is contained in an unbounded

medium as shown in Figure 1. The body is micropolar,

linearly elastic, isotropic and homogeneous, and the

body force and the body couple are assumed to be negli-

gible. A Cartesian coordinate system which has been

normalized by the half crack length is introduced in

such a way that the crack surface is initially defined

by -1 < x < 1, y = 0±, -co < z < co. The time variable

used in this study has also been normalized by the time

for the micropolar dilatational wave to travel half of

the crack length. As a result of this normalization,

the micropolar dilatational wave speed is equal to

unity. The propagation distances of the right and left

crack tips are denoted by a...FM and a_(t), respec-

tively. Thus, the positions of the crack tips at time,

t, are given by x = ±1±a±(t), y = 0±.

The crack tip velocities c±(t) are such that

c±(t) = 0 for t < 0 and 0 < c±(t) < CR for t > 0, where
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Figure 1. Geometry of the Problem.
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CR is the micropolar Rayleigh wave speed. The field

equations of micropolar linear elasticity are

(CD2 +C32)u,xx (cD2_cs2)v,xy (cs24.c32)uyy

C320,y = u,tt (3.1.1)

(cD24.c32)v,xx (CD2-Cs2)u,xy + (Cs2+C 2) ,yy

C320'X = v,tt (3.1.2)

and

C32 2 ,

C42(0,xx+0,yy) (v,x-u,y) C340

4,,tt (3.1.3)

where u and v are the x- and y- components of the dis-

placement vector and 0 is the z-component of the micro-

rotation vector, and

A4-2A
2 2 A 1

CD = cs c32 c42

Pi

The quantities A, A, ,c and / are the micropolar moduli,

and p and j are the mass density and the microinertia

density, respectively, of the medium, and are treated

as constants.

The general solution of this problem is the super-

position of the solutions to the following: (1) the

problem of the crack-free region subjected to uniaxial

tension, a(x,t), and (2) the problem of the crack

opened out by normal pressure, a(x,t), with no loading

at infinity. Since we are interested in the dynamic

stress and couple stress intensity factors, only prob-

lem (2) is considered since both of the stress inten-
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sity factors may be derived from it. By symmetry, this

problem is equivalent to the problem of determination

of stress distribution in the half plane y > 0, when

its boundary is subjected to the following conditions:

tyy(x,0,t) = -a(x,t) (3.1.4)
-1-a_(t) < x < 1+a+(t) ,

Myz(x,0,t) = 0 (3.1.5)

v(x,0,t) = (3.1.6)
x > 1 + a+(t) or x < -1-a_(t) ,

0(x,0,t)

and

tyx(x 0 t)

=

=

0

0 0 < lx1 < 9

(3.1.7)

(3.1.8)

where t
YY' tYx' a and Myz represent, respectively, the

normal stress component, the shear stress component,

the uniaxial tension, and pertinent couple stress com-

ponent, normalized with respect to the shear modulus of

the material. The initial conditions are

u(x,y,0) = 0 ,

v(x,y,0) = 0 ,

q$(x,y,0) = 0 ,

u,t(x,y,0) = 0 ,

v,t(x,y,0) = 0 ,

0,t(x,y,0) = 0 (3.1.9)

for all x and y.

The components of stress, displacement and micro-

rotation must vanish as (x2+y2) 00. Moreover, the

symmetry with respect to the y-axis provides the addi-

tional conditions,



v(x,0,t) = v(-x,0,t) ,
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-m< x <m , (3.1.10)
q5(x,0,t) = -0(-x,0,t) .

3.2 Solution in Transform Space

Since the problem is symmetric with respect to

y = 0, only the upper half space is considered and

y = 0 is used rather than y = 0+ for the y-coordinate

of the crack surface. Integral transforms are employed

to reduce the partial differential equations (3.1.1)-

(3.1.3) to ordinary differential equations. First, the

time, t, is eliminated by application of the Laplace

transform,

co

F(x,y,p) = f(x,y,t)e-ptdt ,

0

(3.2.1)

where p is a positive real number. It is assumed that

equation (3.2.1) exists for any point (x,y) in the ma-

terial. The initial conditions (3.1.9) are used in

this transform. Second, Fourier trigonometric trans-

forms are used to suppress y. They are defined by

and

00

f(x,s,p) = F(x,y,p) cos(sy) dy
0

co

Y(x,s,p) = F(x,y,p) sin(sy) dy .

0

(3.2.2)

The Fourier cosine transform is applied to the Laplace

transform of equation (3.1.1) and a Fourier sine trans-
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form is applied, respectively, to the Laplace transform

of equations (3.1.2) and (3.1.3). The resulting equa-

tions are

and

....

- (A2s2"2)t + B2s3,,x

. (B2+0_A2)17,,x

A21",xx
(s2i.p2)1, - B2sfi,x

+ sc2;

(3.2.3)

- C2;,x = -s7; , (3.2.4)

2e p2 e a ft

92;,xx (1/2s24--+ )0 + (su+v,x)
j C2 j

(3.2.5)

where

A2
C
s 0
2+C.2

B
2 Cr12-C

s
2 C32 C32

CM
-.-,

, =
CM

, C 2

CM
= , E = 7 ,

C 42 1
02 C22 =

c2
CM C +C= = . 2 s M = 22 . (3.2.6)"17,7 CD 2 +C32

Boundary condition (3.1.8) has been used to obtain the

right-hand sides of equations (3.2.3) and (3.3.4) in

terms of ;,-(x,O,p) and 17,x(x,O,p).

The general solutions of equation (3.2.3)-(3.2.5)

are given by

6(x,s,p) = Bi(s,p)e/lx+ B2(s,p)e1 ix+ B3(s,p)e/2x

+ B4(s,p)e-

+ T3

+ T 2

12x+ B5(s,p)e13 x.i. B6(s,p)e73x

V(77,0,p) cosh[73(n-x)] do
-00

V(n,O,p) cosh[72(n-x)] dry
-03



x
+ T1 Tan,O,p) cosh[ii(n-x)] do

-02

x
*(n,O,p) sinh[13(n-x)] do+ t3

-02

+ t2 cK T(n,O,p) sinh[q2(n-x)] do ,

-02

s 44.13.

q(X,S,P) -- Bl
11

(S,P)SIL +
......112(S,P)S11%11

-1 2%- 12
B3(s,p)e12%+

72
--B4(s,p)es s

-
2.1115(s,p)elSx+ 2.1B6(s,p)e-13xs

X

/(n,O,p) sinh[13(n-x)] do+ V3
-02

x
Inn,O,P) sinh[12(n-x)3 di+ V2

35

(3.2.7)

x
rai n,O,p) sinh[ii(n-x)] do+ Vi

-20

X

T(n,O,p) cosh[q3(n-x)] do+ VI3
-02

+ VI T(n,O,p) cosh[72(n-x)] do ,2
-02

and

(x,s,p) 2. F2B3(s,p)e12x+ F2B4(s,p)e
-12%

+

F3B5(s,p)e-13%
73x+

F3B6(s,p)e

/(n,O,p) cosh[13(n-x)] do+ w3
-m

(3.2.8)
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x

"1" W2 V(n,0,p) cosh[72(7-x)] do
-03

+ W1 1:(7,0,p) cosh[71(7-x)] di7

/12

2722

132

+ W/3

+ W/2 1

= s2 +

2s2

+

. s2 +

707, 0,p) sinh[73(,7-x)] dm
-0,

x
7(i ),0,p) sinh[12(t -x)] do , (3.2.9)

_0.

P2 '

p2
(A2/c22+02132_02A2)r Tipi

e (2A2-C2)
II%

j 292A2

2
(A2/c22402B2_02A2)

-21- 7127

E (2A2-C2)
4. -I- R ,1/2

j 202A2

R
= [p2(A2/c22_02)+E /j(2A2-C 2)]2 - 4602C2p2/j ,

1
T1 = - _7(-7121,24.s2)

P

1 1 T

T2 727 132_122 (R5122+R57124-R3+
/2

2
-71

2) '

T3 = L2 - T2 - T1 ,

02s2c2
1 1

72 73
2-72 2

7217
'

02s2c2
1 1

t3 = ,

73
2-72 2 717

t2 =



and

1 s2
V1 =

9

11

Vi = /iTi/S (I = 2,3)

Vii = /iti/S (i = 2,3)

Wi = _fli2T1_.(A2s24132)Ti_iiB2svi )/SC2 (1=1,2,3)

Wt1 = -{/i2ti-(A2S21-P2)ti-/iB2SVI i} /SC2 (1=2,3)

R5 = 02A2L2

L2 B2 + C2 - A2

A2R3 02s2(B2- L2 -A2L2) - p2L2
C22

261,

(2A's-Ca)

L2 -B2 L2
R1 . 92s4(L2_B2) p4+ s2p2 02L2+

77.1
+

es2 26
+ ---(2L2- L2 2P

j j
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F1 (_B2s2_A2,7124./12 )/sC2 (i=2,3) . (3.2.10)

The coefficients B1(i=1,2,..,6) are determined

from the following conditions:

= 0

v(x,s,p) = 0

qS(x,s,p) = 0

We get

Bi(s,p) = -

at x = ±00 . (3.2.11)

T
1

21
n ,

-1 ln
dn

-00
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T2
-/27/B3(s,p) = - v(n,O,p)e dn ,

2

+ W

22
= I (7,,O,P)e121700177 ,

-cc

W
B5(s,p) = - v(n,O,p)e-13ndn ,

2 -co

+
t3

(ri3O,p)e
13n

dn ,

2 -co

B2(s,p) = B4(s,p) = B6(s,p) = 0 . (3.2.12)
d. 6.

The stress components in the transform space, txx, tyy,

tyx, Axz, and Myz can then be obtained by transforming

the stress-displacement equations and substituting for

u, v, and ; from equations (3.2.7)-(3.2.9). However,

only tyy and Myz are considered since the main object

of this study is the determination of the dynamic

stress and couple stress intensity factors. The trans-

formed, normalized stress component tyy is given by
1

cry(x,s,p) = C-4(x,O,p)+0(x,s,p)]
24

L2
..2.r u,x .

c2z
(3.2.13)

Substituting u and v from equations (3.2.7) and (3.2.8)

into the equation (3.2.13) and integrating by parts, we

obtain

tYY (x '

s
'

p) =

coT

2

i

(1,2-s2/112) V,n(7,0,P)e
/
1

x

(1-x)
dn



x
-1(L2-e2//12) V f7(1, 0 n)ell

(n-x)
dn

2

T9 -^7 2

do-
2
(L2-1) ,n (n 0 p)e

+ -(L2-1) I V,77(7,0,P)e 2
(n-x)

dn
T2

2 -m

T _0)
- '(L2-1) V,n(n,O,p)e do

2

./ /0 1-x

X
T.1 n /o(n-x)

+ -(L4-1) -17,7707,0,p)e dn
2 -00

n 1907-30t2/2
(L4-1)

00

(?7,0,1))e do
2 x

X
212(L4-1) (7,10,1))e c1.77-
2

t /,(n-x)

-0O

c°
+

t3/
(L4-1) (77,0,p)e

/307-x)
dn

2

3 n

x

xt3/3(0_1)
(77,0,p)e13(17-x)dn

2
-00

P2 _
- v(x,O,P) .

11

3.3 Formulation of Integral Equations
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(3.2.14)

The complete inversion of equations (3.2.7)-

(3.2.9) and (3.2.14) is not necessary in this analysis,

since the main interest here is in the determinations

of the stress and the couple stress intensity factors.

Instead, we need to obtain tyy(x,0,t) by applying the

inverse transform to equation (3.2.14). The inverse
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Fourier cosine transform for any point in the space is

then taken and y is allowed to approach zero. Since

Tyy(x,y,p) is continuous in y at y = 0, we can inter-

change the order of the limit process and integration

in s. The inverse Fourier cosine transform which is

defined by

2

F(x,y,p) = f(x,y,p) cos(sy) ds , (3.3.1)
ir 0

is performed on equation (3.2.14) for y = 0. The in-

verse Laplace transform is then taken to obtain the ex-

pression for tyy. In view of the complexity of the

functions ii(s,p), i=1,2,3, it is not possible to per-

form the inversion of the Laplace transform without an

appropriate approximation. We find it necessary to

consider the case of large p, which corresponds to

small t, based on the Tauberian theorems. The inverse

Laplace transform is then taken by application of the

Cagniard-Dehoop method and a convolution integral, that

is, the expression for Tyy(x,y,p) obtained above, is

changed into a recognizable Laplace transform by set-

ting 7ik-X1 = pt (i = 1,2,3) in each double integral.

Then, using the identity

at
f*g(t) I = p f g , (3.3.2)

where * denotes the convolution integral, we obtain

tyy(x,0,t) =
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rico ftv,n(n,0,,)H(t_r_In_xl) fill(t,n_x)drdn
a

J_. 0

. t

+ ov,n(7,0,r)11(t_r_in_xl/A) M2(t-r07-x)drdn
i

co t

+ v,1707,0,r)H(t-r-In-x1/0C2) M3(t-r,n-x)drdn
I

co

LI
t

+ 007 0 r)H(t-r-In-xl/A) M4(t-r,n-x)drdn

co t

+ 1-001 0

0(7 0 r)H(t-r-In-xl/OC2) M5(t-roi-x)drcln ,

where

M1(,0 =

2 1 c

(1-112)

(L2-1)2 E3

71-C22 2 e 2 c'

(1,2-02
s'-2

1/2

1,42,0 17(0- _7_)
rc2-

(3.3 3)

re2_0]-%

Ate 2+C2 /B2 1

j (A2/C22-02) 12

1.2e(e20/A2)%
S
4

8A2
+

sqA

(L2 -1)2
A2c 2+0/B2 1

M3(e'C)
j (A2/C22-02)

e( 2-52/02c22)3/2 oe(e2_0/02c22)%
12 802C22

S
4

+ In
CieC2

(0 2-1) 00
(e2_ 2/A2)%M4( ,S) A2-02c22 77



M5(e,S)
(L2-1)

42

020 e
(2_0/02c22)1/2

A2 -92C22 s75 (3.3.4)

and H(t) is the Heaviside function. Equation (3.3.3)

is rearranged in such a way that the terms with the

Cauchy kernel (n-x)-1 are extracted out and the terms

with the kernel (n-x)-3 in Mi(i=1,2,..,5) are combined

so that the strong singularities across n=x are can-

celled. Noting that the v,n(n,O,r) is equal to the

macrorotation of the crack surface, w(n,O,r), the fol-

lowing equation is obtained:

2(1-L2) 8

J(x,t)
tyy(x,o,t)

wc2 at

where

(3.3.5)

(t-,02
J(x,t) =

(1-L2) f i

w(17,0,r) -----m drdn
2 j jA1-A2 (n-x)''

1
+ [1-(1-L2)/4] 1 1 w(n,O,r) drdn

Ai (n-x)

(1-L2) I 1
w(n,O,r) drdn

A2 (n x)

1 1-L2 2+c2/B2Ate

j (A2/C22 -02) A2-A31
+

12 2

(t-r)4
w(n,O,r) T777-371 drdn

1 1-L2 A2e 2+C2/B2

4 2 j (A2/C22 -92)

w(n,O,r) (t -021

(7-x)
drdn

I1A21
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1-L2) 1
K2(,5') =

(77 {1 +q11/2)-2

1 1-L2 A2e 2+C2/B2 e

12 2 j (A2/C22-02)
{1.5+q11/2}-1

- 0.25{1.5+c0}- 1{1+cli1/2} -2

1 1-L2 A2e

8

2+C2/B2
(1+q11/2)-1+ -

2 j (A2/c22_02)

+ In
e/A

K3(e,e) = -
1 1-L2 A2E 2+C2/B2

12 2 j (A2/c22-02) x
TE-27

[{1.5+q21/2}-1 - 0.25{1.5+q2%} 1{11.q21/2} -2

_
1 1-L2 A2e 2+C2/B2 S [

8 2 j (A2/C22-A21 T--Tu ) 0 C2 I.

+ In ,

e/OC2

02c220

(1+q21/2} -1

S
K4(e,e)

4A4(A2-0
{1 +c0}-2 ,

2C22) 7
1(5,0

02c220
} -2 2{1

4614c24(A2-02c22) i'Y +q2' ,

=

1 c2
Q1 [1 A2 e2I '

1 e2
q2 = 1 o2c22 e2

Al = {07,01 0<r<t-In-xl, -1-a_(r)07<1 +a+(r)}

A2 = {(r7,r)I 0<r<t-In-xl/A, -1-a_(7-)07<1+a.4.(r)) ,

44
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A3 = ((n,r)I 0<r<t-In-x1/0C2,

-1-a_(r)<n<1 +a+(r)) . (3.3.7)

Likewise, the transformed, normalized couple stress,

Myz(x,s,p) is given by

Ayz(x,s,p) = j82[-Ckx,O,p) + (3.3.8)

Substituting for ; from equation (3.2.9) into equation

(3.3.8), and integrating by parts, we obtain

sW3 -73(n-x)
M (x p) = -yz s" 7;(77,0,p)e do

2 Ix

3(n-x )
+ 212 11 jw 107,0,p)e

'7

do
x

s2 73(n-x)
+ --7 7,71(7,0,P)e do

A/3 x

S2 73(n-x)
74.--7 7,77(7,0,P)e do .

.613

By following a method similar to that used for

tyy(x,0,t), we obtain

j02 a
Myz(x,0,t) =

at
J1(x,t)

where

1

J1(x,t) = 0, (77,0,r)
A3 n (n-x)

drdn

1 A3
0,n(n,0,r) K6(t-r,n-x) drdn

2A E 1

(1-L2) (2+C2/B2) x
J CBOB

(t-r)2
[I

A3 (n
drdn

(3.3.9)

(3.3.10)



1 1
v(77,0,7)

--7--7 1 IA 320 C2 (nx)
drdn
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+ I
A

v07,0,0 K7(t- r,t -x) drdn] , (3.3.11)
3

and where

Ice.,$) 02cS22e2 [14-(121/2]-1 ,

K7Ce,0 = [1+q21/2]-2

(3.3.12)

The n-integration in equations (3.3.6) and (3.3.11),

which include the Cauchy kernels, is performed in the

sense of the Cauchy principal value, if they do not ex-

ist in the sense of Riemann. Recalling that tyy(x,0,t)

is given as a boundary condition on the crack surface,

equation (3.3.5) can be viewed as an integro-

differential equation for the unknown functions

w(?7,0,r) and 007,0,r). Likewise, Myz(x,0,t) is given

as a boundary condition on the crack surface and equa-

tion (3.3.10) can be viewed as another integro-

differential equation for the unknown functions

v(r7,0,r) and 0,7707,0,r). Moreover, v(t7,0,r) can be ob-

tained from w(i 7,0,r) and 007,0,0 from 0,7707,0,7).

However, the evaluation of w(r7,0,7) and 0,7707,0,r) can

only be carried out numerically since the equations are

not analytically tractable. In order to facilitate the

application of numerical techniques, equations (3.3.5)
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and (3.3.10) are changed into integral equation form by

integration with respect to time. Note that

2(1-L2)
tyy(x,O,r) dr = J(x,t)

reed0

(3.3.13)

For lx1 < 1 the left hand side of the above equation is

known, since tyy(x,O,r) is completely described on the

time interval (0,t). For lx1 >, 1 we split the time

interval into (0,to) and (to,t), where to is the time

for the propagating crack tip to arrive at x, such that

x = 1 +a +(tc) for x > 1 and x =-1-a_(to) for x < -1.

Noting that tyy is given for (to,t) and that

1-L2)2(
tyy(x,O,r) dr = J(x,tc) ,

0

we obtain

2(1-L2)
[J(x,t) - H(1x1-1)gx,tc)]

tyy(x,O,r) dr , lx1 < 1 ,

0

t77 '
(x,0 r) dr , lx1 > 1 .

Ito

and

(3.3.14)

[J'(x,t) - H(1x1-1)Ji(x,to)] = 0 . (3.3.15)

In equations (3.3.14) and (3.3.15), it is assumed that

to = 0, if lx1 < 1.

In order to evaluate w(n,0,0 and 0,7707,0,0, pre-

sent in equations (3.3.14) and (3.3.15), it is expedi-

ent to cast them in a form in which their singularities
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are explicit. In view of previous analyses in the lit-

erature, two types of singularities can be expected.

The first type is the square root singularity which

arises at the crack tip, the proof of which can be

found in Achenbach and Bazant [78] and Freund and Clif-

ton [79]. The second type is the traveling logarithmic

singularity located at the front of the Rayleigh wave,

confirmed by Baker [31] and Thau and Lu [42], each of

whom differentiated the normal displacement of the

crack surface with respect to the coordinates of the

crack propagation direction. Representation of this

type of singularity for w07,0,0, however, makes the

expression too cumbersome. Moreover, for a finite

crack no information is available on the behavior of

the traveling singularities after rediffraction of the

cylindrical waves at the crack tips. For these rea-

sons, the traveling singularities are neglected in the

structure of w. Also, it is known from the micropolar

theory of elasticity that although w and 0 have similar

properties, they are indeed independent of each other.

From the static analyses of crack problems given above,

the first type of singularity may be found; but no in-

formation is currently available for the second type of

singularity. Therefore, w and 0,71 are simply written

as

w(n,00-) -
11(7,r)

[ii-a..1.(0-17]1/2[1+a_(7)+17]1/2
(3.3.16)



and

(Xn,r)
0,n07,0,r) -

[1+8.4.(7)-77]1/2[1+a_(r)+77]1/2
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(3.3.17)

where 0 and t are assumed to be bounded and continuous

almost everywhere over the area, S, defined by S =

((n,r)Ir>0, -1-a_(r) < , < 1+8.4.(0). The functions n

and are zero if (n,r) is not in S. Therefore, there

is a jump discontinuity in 0 and O across the crack tip

trajectories. In order to derive formulas for the

stress and couple stress intensity factors, it is fur-

ther assumed that 0 and 4 are analytic in the region S

almost everywhere along the crack tip trajectories.

Moreover, in the numerical integration process, n and t

are treated as if they are bounded and continuous ev-

erywhere in S.

3.4 Stress and Couple Stress Intensity Factors

The dynamic stress intensity factor which repre-

sents the time-dependent strength of the square root

singularity in tyy, is defined in a manner analogous to

the static stress intensity factor, that is

KID(t)a= lim 15W7 tYY (±1±a±(t)±6,t) ,

-411-

(3.4.1)

where the upper and lower signs are, respectively, for

the right and left crack tips. Note that KID(t) is

dimensionless because S and tYY are dimensionless. If

the traction on the crack surface and the motion of the
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crack tips are symmetric with respect to the y-axis,

the stress intensity factors for the left and right

crack tips are identical. In this case the f sign will

be deleted from the definition (3.4.1).

As mentioned earlier, one of the specific problems

which is treated in this study prescribes uniform ex-

tension of the tips of the crack. The derivation of

the stress intensity factor will be carried out only

for this case. The formula obtained for this case will

be extended to nonuniform propagation of the crack

without a detailed proof. For uniform extension, equa-

tion (3.3.16) is written as

11(7,r)
w(n,O,r) -

[(1+cr)2-n2]
(3.4.2)

As stated in the previous section, 0(7,r) is assumed to

be analytic almost everywhere in S along n = ±1±cr.

Therefore, the expansion of 0(7,r) into a Taylor series

is possible in the neighborhood of almost all points on

the lines. Now we consider the derivation of KID(t).

Redefining J(x,t) by substitution of (3.4.2) into

(3.3.6) and using the definition (3.4.1), we get

1-L2)

KID(t)

2(
= ----7-- lim A/271-(x-1-ct) J(x,t) ,

C2 x-41+ct)-1- at
(3.4.3)

In order to evaluate the right-hand side of equation

(3.4.3), we take a particular point (x,t) in the n-r

plane such that x > 1 +ct [see Figure 2(a), 2(b), 2(c)]

and construct Al, A2 and A3 by drawing the characteris-
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tic lines. Then take a (N,T) coordinate system with

the origin at (x,t) and a polar coordinate system (r,O)

where r is the distance from (x,t) and 9 is measured

counterclockwise from the N-axis. Then divide Al into

All and Al2 as shown in Figure 2(a). All is the little

sector-like area generated by drawing a circle with its

center at (x,t) and radius rl. All includes the point

(ni,T1) which is the intersection of the two lines, t-T

= x-,7 and 77 = 1 +cr. Al2 is given by Al All. Simi-

larly, we divide A2 into A21 and A22 as shown in Figure

2(b). A21 and A22 are divided by r = r2 and A21 in-

cludes the point (n2,r2) which is the intersection of

t-T = (x-n)/A and n = 1 +cr. Likewise, we divide A3

into A31 and A32 as shown in Figure 2(c). A31 and A32

are divided by r = r3 and A31 includes the point

(n30-3) which is the intersection of t -r = (x-n)/0C2

and ,7 = 1 +cr. Now, we consider the contribution of

each term in J(x,t) to KID(t). Denote the contribution

of i-th term by Ji. For i = 1,

a r fr if 1

(1-1,2)2,im
v2w(x-1-ct)

at 14; )1A2.1
.11 = 77--x_.(1+ew

(t-r)2
drd,

V(1 +cr)2-n2 (, -x)3

(1_1,2)2
= lim V2r(x-1-ct) 2- if 1-

71-C2h x-(1+ct) at A11 Al2

n(t 7,7) (t-7)2

A21 A22., (1 +c,)2_,2 (n_x)3

drd7 .
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(a)

(b)

Figure 2. Division of the Area of
Integration for Evaluation KID
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(0)

Figure 2 (continued).
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It can be easily shown by direct differentiation of the

integral that the second and fourth terms in the above

equation are bounded and hence vanish after taking the

limit. The contribution of the first and the third

terms in J1 are denoted by J11 and J13, respectively.

Using the polar coordinate system and expanding n into

a Taylor series about (710-1), J11 can be written as

J 11 =
(1-L2)2

lim /2r(x 1 ct) a [ n('71,r1)

wC22 x-(1+ct)+ atkil+cri+ni

101sin20d0 11'1 dr
+4)(x,t)I

4/4cos30 jr0/1+c(t-rsin0)-(x-rcos0)

(1-L2)2 n(l+ct,t)
= lim /2ir(x -1 -ct)

wC22 x-(1+ct)-1- 1/2(1+ct)

91 csin20d0

r/4cos30(cos0-csin0),/ri(cos0-csin0)-(x-1-ct)

where r0 = (x-1-ct)/(cos0-csin0) is the distance from

(x,t) to n = 1 +cr along any fixed 9, 0; is the angle at

the intersection of r = r1 and n = 1 +cr, and 4)(x,t) is

such that N/i71 ZFE (D,t -+ 0 as x (l+ct)+. Introducing

a new variable e defined by e = x-r1(cos0-csinO) and
* *

denoting el = x-ri(cos01-csin01) = l+ct, eo =

x - r1[cos(w/4) csin(ir /4)], we obtain

(1-L2)2c n(l+ct,t)
J11 lim A/2r(x 1 ct) x

71-C22 x-(1+ct)+ iftr-TFET

el tan20(1+tan20)de

eo (tan0+c)(e-x) qT27
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The integral in the above equation is in the form of

equation (29.3) in Muskhelishvili [80] (see Appendix

C). Utilizing equation (29.5) of this reference, the

above equation is reduced to

(1-L2)2c 0(1+ct,t)
Jll = lim i/2r(x 1 ct)

irC22 x-(1+ct)+ 1/2(1+ct)

tan20:(1+tan201)

(tanele.+0)
+ 41(x,t)I

where 1111(x,t)1 < D/(x-1-ct)a, D being a positive con-

stant and a < 1/2. Observing that

lim tanel = 1/c ,

x.-41+ct)+

we finally obtain

r1/2(L2-1)2 n(l+ct,t)
J 11 =

C2C22 l+ct

Similarly, we can show that

71.14(1,2_02 n(l+ct,t)
J13 = c2c22 1 +ct

Hence, J1 la J11 4' J13 22
0

The evaluations of J2, J3,..., J15 are analogous

and only the results are presented here:

2r1/2(1-L2) n(i+ct,t)
J2 = [1 (1 L2)/4]

C2C22

n(i+ct,t)
J3 =

2A2C22 l+ct

J4 = J5 = J6 = 0 ,



J7
2(1-L2)c2r% 1 1

(1-c2 )1/2C22 1+(1 -c2)1/2 2( 17727

(1-L2) 3+c2

8 [1+(1+0.502)(1-c2)1/2]]

(1,2_1)27r1/2 02
J 8 =

2A2C22
[1+V1_02/A2]2

and
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J9 = J10 = J11 = J12 = J13 = J14 = J15 = CI*

Jio vanishes since v(-1-ct) = 0 and v(x,t) = 0. Adding

all the J's, the dynamic stress intensity factor be-

comes

KID(t) = f(A,C2,c) 0(1+ct,t)/VITZT ,

where

(3.4.4)

2(1-L2)r% (L2-1)2r%
f(A,C2,c) - [1 0.25(1 L2)] +

C2 2A2C22

2(1-L2)c2r% f 1 1

(1-c2)%C22 11+(1 -c2)% 277,71

(1-L2) 3+c2

8 [1+(1+0.5c2)(1-02)1/2]]

(L2-1)2r% c2
+ 7 [1+v'1- c2/A2]

-2
, (3.4.5)

2A2C22 A-

for the right crack tip. In a similar manner, we ob-

tain

KID(t) = -f(A,C2,c) 0(-1-ct,t)/V1 TZT , (3.4.6)

for the left crack tip. In the derivation of (3.4.4)

and (3.4.6), c was assumed non-zero, but we can easily

show that these equations are also valid for c = 0.
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Recalling that KID(t) was determined by consider-

ing the neighborhood of the point, (1 +ct,t), in the n-r

plane, the applicability of equations (3.4.4) and

(3.4.6) can be extended to general nonuniform propaga-

tion of the crack by replacing c with the instantaneous

velocity c±(t) in f(A,C2,c) and replacing the argument

of 11 and radical appropriately. In general, the fol-

lowing equation is then obtained:

0[±1±a±(t),t]
KID(t) = ±f[A,C2,c±(t)] [(2+a_(t)+a+(t)}/2]1/2

(3.4.7)

Similarly, the dynamic couple stress intensity

factor Kim(t) is defined by

KID/ = il777T/b Myz(±1±a±(t)±5,t) , (3.4.8)

where the characteristic length b is given by

b2
2(2A+K)

and the upper and lower signs correspond, respectively,

to the right and left crack tips.

For uniform extension, equation (3.3.17) is writ-

ten as

t(n,r)
77(n,,7)

[(14.c.02-712]1/2

Then, according to the definition,

KIM(t) = g(0C2,c) t(1 +ct,t)/157-T ,

for the right crack tip and

(3.4.9)

(3.4.10)



g(0C2,c) = -j02/bir x

[,
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c2

92c 2
[14{1_c2/02c22)1/2]-11 (3.4.11)

2

In a similar manner, we obtain

Kim(t) = -g(0C2,c) 40(-1-ct,t)/1/1 -Ta ,

for the left crack tip and in general,

(3.4.12)

t[±1±a±(t),t]
KIM(t) = ±g[eC2,c±(t)]

[{2+a_(t)+3.4.(t))/2P4
(3.4.13)

In order to obtain KID(t) and Kim(t), 0[±1±a±(t)] and

t[±1±a±(t)] are first obtained by solving the simultan-

eous integral equations, (3.3.14) and (3.3.15), numeri

cally. Then KID(t) and KIM(t) are computed by using

equations (3.4.7) and (3.4.13).

3.5 Numerical Evaluation of the Integral Equation

3.5.1 Procedure for Numerical Scheme

As a numerical example, the diffraction of a uni-

form micropolar dilatational wave with a propagation

vector normal to the crack plane for the cases of a

stationary crack and a propagating crack with constant

speed are investigated. The total wave field for a

diffraction problem is determined by adding the inci-

dent wave field and the scattered wave field. For the

purpose of determining the dynamic stress and couple

stress intensity factors, only the scattered wave field

must be considered. The boundary conditions (3.1.4)
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and (3.1.5) for the scattered wave field are given,

respectively, by

tyy(x,0,t) = a H(t)

{

lx1 < 1 ,

lx
a H(t---

1-1
---) 1 < lx1 < 1 +ct
c

(3.5.1)

and

Myz(x,0,t) = 0 ,

where a is the uniform pressure on the crack surface,

and a(t) = a+(t) = a_(t).

The numerical procedure for the computation of in-

tegral equation (3.3.15) is outlined as follows: In-

troduce a new variable, defined by n* = n/[1+a(r)], and

as a consequence the regions Al, A2, and A3 are mapped,
* * *

respectively, on to Ai, A2, and A3 (see Fig. 2). Then,
* * *

we divide Ai, A2, and A3 into a set of horizontal

strips of equal spacing with interval Or. As previous-

ly noted, the logarithmic singularities are neglected

and n* and e ,n * are approximated in each strip by

2M-1
0*(n*,7) =

=1,3 "

Caki + bkj(r-rk)] Tj(n*) , (3.5.2)

and

2M
(1)*(e,r)

j.
E Eck.; + dkj(r-rk)] Tj(n*) , (3.5.3)

=2,4 "

where 0*(n*,r) = 0(n,r), e(n*,r) = 4$07,7), rk < r <

rk+1, and akj, bkj, ckj and dkj, are constants, and Tj

is the jth order Chebyshev polynomial of the first

kind. Note that only odd order polynomials are
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included in the terms related to macrorotation, w, and

microrotation, 0, due to the antisymmetry of both rota-

tions with respect to the y-axis for the problem under

consideration, and that only even order polynomials are

included in the terms related to displacement, v, in

the y-direction and the gradient of microrotation, 0,n.

Both ri = 0 and alj = clj = 0, are taken from the ini-

tial conditions. Then, from the continuity of 0* and

t* at r = rk, we have aki = aRj + b,RjAr and

ckj = cRj + dRjAr, where .2 = k-1, and Ar = rk - rk_i.

The problem is now reduced to the determination of bkj

and dkj for each strip. In order to compute bij and

dij(ri < r < ri+1=t), pick M values of x, which are the

zeros of T2M(x /[1 +a(t)]) in [0,1+a(t)], that is,

2m-1 r
xm = [1+a(t)] cos (

2M 2
(3.5.4)

where m = 1,2,...,M. Then, substituting equation

(3.5.2) into equation (3.3.14) and equation (3.5.3)

into equation (3.3.15), the following 2M x 2M simul-

taneous linear system of equations is obtained:

i 2M-1
j=1,3[akjFj1k(xm,t) + bkjFj2k(xm,t)]

i 2M
+ E
k=1 j=2,4

[ckjGjlk(xm,t) + dkjGj2k(xm,t)]

2M-1
-----m- [aki + bkj(t-ri)] I

x

2( =13 "
0 do

1-L4) j -1



and

- H(Ix1 -1)
ke 2M-1

i=1 =1,3
[akiFilk(xm,tc)

2M
bkjFj2k(xm'tc)]

=2,4

dkpj2k(xm,tc)4

ECkpilk(Xm,tc)

= -t , ixml < 1 ,

1 -(t-te) , lxml > 1 ,
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(3.5.5)

i

m1

2M-1

j13 [akiDilk(xm,t) + bkiDi2k(xm,t)]

i 2

+ Li i=M2,4EckJII,J1k(xm,t) dkilli2k(xm,t)]

k
- H(IxI -1)

i
=1 i=113[akjDjik(xm,to)

= 0

2M
bkiDi2k(xm,tc)]

i=2,4[cki Hilk(xm,tc)

1
+ dkjHj2k(xm,tc)]

where m = 1,2,...,M,

Ixml < 1 or Ixml > 1 , (3.5.6)

Flek(xm,t)

(1-L2) I I

*

Alk-A2k
*

A1k

Of

Of

(t-r)2

2

+ [1-(1-L2)/4]

[(1+07)n*-x11]3

1

[(1+or)e-xm]

drdn*

drdn*



62

(1-L2) I 1
Of drdn*-

[(1+0r)e-xm]
A2k

1-L2 A2E 2+C2/B2

24 j (A2/C22-02)

I I *
of

(t_04
drd

[(1+cr)-xm]3e n

A2k-A3k

1-1,2 A2E 2 +C2/B2

8 j (A2/C22-62)

1 *

A2k

1 -L2 A2E 2 +C2 /B2

Of (t-r)2

[(1 +07)71*-xm]

--_
8 j (A2/c22_02)

of (t-r)2

drdri*

* 777 [(1+or)e-xm]
A3k

O
Ki[t-r,(1+,yr°n*-xm3

*drd
J fia 1/(t.02[(1+07-)exm]2

nf

'lk

drdn*

+ Of K2[t-r,(1+0r)e-xm] drdn*

A2k

+ Of 1C3[t-r,(1+cr)e-xill] drdn* , (3.5.7)

A3k

Gjxk(xm,t)

oc2202 et-r)2
0* f/k(r) .4ardn*

2(A2-02C22) a a [(1+0r)e-xm]a
A2k-A3k



and

02c220
1

4- ' "
drde

4/. (A,,-02c22) II 0* fl2k(7) [(1+cr)e-xm]*

A2k

02c220
1

+
402022(A2-02022) f'°1(r)[(1+cr)e-xm]

drdn

3kA

+ 11 *
0* ff2k(r) Kjt-r, (l+cr)n*-xm] drdfl*

A2k

I+ 0* flk(r) K5[t-r,(1+cr)e-xm]drde

A3k

2

Dlek(Xm,t) = -(1-L2)
ic202 (24-C2/B2) X

(t-r)2
[1 v* fl2k(r) [(1+cr)e-xm]li

A3k

rdn*
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(3.5.8)

1 1
v* f drdn727 [(1+cr)77*-xm]

A3k

*

4-

1112k(xm,t)

+

A3k

=

Of

f_ek(r) 1c7[t-r,(1+cr)e-xm]

1 *
i Qf drd,7

]17* drde

(3.5.9)

(3.5.10)

,

[(1+cr)e-xm]
A3k

K6[t-r,(1+cr)e-xm] drd ,7* ,

0

A3k

T (e) T (e)
of = f.ek(r)

1/77-7-77 N/77?-772



and

I Tj(n*)

) A/777i

v* Tj(e)
dn

* I

A/77,77Y

(j=2,4,...,2M)
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(3.5.11)

(j=1,3,...,2M -1) ,

flk(r) = 1 ,
f2k(T) = r-rk

The areas Apt, A2k, and A3k of the kth strip (rk <

r < rk+1) are, respectively, associated with AI, 4,

and A3, and kc is the number of the strip in which

rice < rc < rke+1. Equations (3.5.5) and (3.5.6) can

be solved by use of a computer.

3.5.2 Numerical Integration

The double integrals Flek, Dlek and Hilk,

(3.5.6)-(3.5.10), are evaluated approximately by means

of the Quadrature formulas of Gauss type [81]. For

one-dimensional integrals, we have

lb w(0 f(e) de N wi f(i)
a 1=1

(3.5.12)

where f(e) is a continuous function on [a,b], w(e) is a

weight function which is nonnegative on [a,b] and wi's

are the weights. Suppose that (1):} is a set of ortho-

gonal polynomials over [a,b] with respect to w(e) and

ei's are the roots of P;(e). The weights, wi, are ob-

tained by solving the following linear system:

L b
wi f(ei) = 0w(e) de

a
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where j = 0.1,2,...,n-1. Equation (3.5.12) is exact

for polynomials of degree less than 2n-1. The Gram-

Schmidt process is used for generating P:(C). First of

all, we define

b
(f,g) = I w(C) f(C) g(e) de

a

Ilfll = (f,f)1/2

b
In = I w(e) en de ,

a

(3.5.13)

(3.5.14)

(3.5.15)

where (f,g) is the inner product of f and g over [a,b]

with respect to w(C) , IIf II is the norm of f. Then we

find

Po(0 = 1 ,

HP0(e)11 - (1,01/2 = 10% ,

PO(0 = 1/10% ,

Pi(C) = e (4,P;) p; = i1 /I0

111)1(011 - I1 /I0, - Ii/10)%

= (12 - 112/10)1/2,

P1(e) (C - I1 /I0)/(I2 112/10)1/2 ,

P2(e) = e2 (e2,P;) P; (e2,P1) P1(e)

1013-1112 1113-122
=

17277- 1012-11
(3.5.16)

where (Pi} is the set of orthogonal polynomials from

which {P70 is obtained by normalization. In order to
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carry out the integration (3.5.6)-(3.5.10), we need to

consider the following two cases according to the type

of w(e):

(1) w(0 = 1, a=-1, b=1 :

In this case (Pi) is a set of Legendre polynom-

ials. The zeros, ei, can be found in Stroud and Se-

crest [81]. If [a,b] * [-1,1], we must transform the

interval to [-1,1] in order to use the tabulated val-

ues.

(ii) w(e) = (1-e2)-%

In this case the zeros, ei, can be found in Stroud

and Secrest [81] or we can evaluate the ei's and wi's

by using the following formula.

ei = cos ( (21-1)71.
k 2n

wi = (1 - ei2)-% (3.5.17)

where i = 1,2,...,n. Now, we go back to integration

(3.5.6)-(3.5.10) and first, consider an approximate

evaluation of each integral in the F.tak, (3.5.6).

(1) First term:

Typical shapes of the area of integration, Aik -

A2k, are shown in Figure 3(b). Aik A2k, may include

one or two areas located on both sides of 17 = xm, de-

pending upon the value of k and position of (xm,t). If

the area (right or left of 77 = xm) includes the point

where 1(1+cr)77*-xml = t-7- intersects 17/*1 = 1, the area
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Figure 3. Subdivision of the Area of Integration
for Numerical Integration:
(1) 1(1+cr)n* - xml = t - r;
(2) 1(1+cr)q. - xml = A (t - r);
(3) 1(1+cr)q* - xml = 8C2(t - r).
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Figure 3 (continued).
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is divided horizontally throughout that point. In or-

der to approximate the integral over each piece of the

area Apt - A2k, we first take two Gaussian points for

the r-integration, then for each value of r, the integ-

ral of the n*-integration is divided into subintervals.

Over each subintervals, twenty Gaussian points are tak-

en for the n*-integration by using the equation

(3.5.17). The approximate equation over each piece of

the area is given by

(t-r)2

(;)is [(1+cr)n*-xm]3

2
E

2 0
w

*
)

f/k(r p)(t -r p) 2

p=1 r=1 q=1
P ),prq -xm ]3

drdn*

where M is the number of subintervals for r = rp, w
P' P

and Vprq are weights for r and n*-integrations, respec-

tively.

(2) Second and third terms:

The area of integration for these terms are Apt

and A2k. Before performing integration the area of in-

tegration is divided horizontally, such that the right

and left side boundaries are smooth for each divided

area. An example of such a division of area is shown

in Figure 3(c). Over each divided area, n*-integration

is performed numerically and then the r-integration is

performed numerically by use of equation (3.5.12) with

n = 2. An outline of the integration process for these

terms is given below:
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Define:

1 N
Uj = Of drdn = E Bin ,

* [(1+cr)n*-xm] n=1
Aik

where

Bjn = ICn+1 ff2k(C)
d

Ifl(°
c

0
dq

*

Cn 1+cc a(c) [n*-xm/(1+00]

and rk = S1 < C2 < CN < CN+1 = rk+1 N is the num-
*

ber of subareas in Aik and Bjn is the interval over the

n-th subarea. We generate a recurrence formula for the

computation of Uj. First, we consider U0. Define:

[-1737 N/7-7;TTT-i + 1-a(ox0][go-x0]
g(0 = log

N17,7 N67-7TTT2 1-fl(c)xolix0 -a(0]

where x0 = xm/(1+cc). Then, we have

BOn =
ICn+1 isk(C)g(C)

,

Cn 1/(1+c02-xm2

2 0
E wnp

c.

p=1

where

0 f.ek(Cnp)g(Cnp)Snp =
1,/(1+cs'np)2-xm2

U0 is given by

N 2 Q0Un
n=1 p

E
=1

wflp
Snp

Second, we consider U1. Using the relation

xm xm
T1(e) = n* = ( n*

) (1 + c 1 + c s- )



we obtain

N 2 01
Ul = 2 1n z 2 2 np bripn=1 B n=1 p=1 w

where

S =
fl2k(Cnp)a1(Cnp) xm 0

Snpnp = 1 + c s'np l+ccrip

and

al(crip) = sin-10(cnp) - sin-la(cnp) .

Uj for j > 1 is obtained similarly by using the rela-

tion

Tj(q*) = 2,7* Ti_1(e) Tj_2(e)

The result is

N 2
U.; = 2 Bin 2 wnn _ snp

n=1 n=1 p=1

where

and

71

(3.5.19)

Sj 2f.ek(s" )a-(Snp)np j Sj -1 _ s
np

2 xm

1 + c crip l+ccrip

aj(np) = {sin[(j-1)cos-la(g-np)

- sin[(j-1)cos-113(crip)])/(j-1)

(3) Fourth term:

Division of the area of integration is analogous

to (1). For each subarea shown in Figure 3(b), the

following approximation formula is used:

(t-7)4
Of drclq

[(1+cr)77*-xm]a

*
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)4
f/k(rP)(t-TP' (3.5.20)

2 20
, *E wpvpciTiknpcp ]3p=1 q=1 m

(4) Fifth and sixth terms:

Division of the area of integration is similar to

(2). Since the integration procedure was explained in

detail in (2), only the results of the approximation

formula for each subarea shown in Figure 3(c) are

presented here:

N 2
Uj =

n=1 n
Bin Al 2

=1 p
2
=1

wnp SAP

where

2(t-r )2f (e 1a (e 1p .Rk ,np- J-np-
np

1 + c crip

2 xm j_1 J-2
Snp Snp

and

(3.5.21)

ai(Snp) = (sin[(j-1)cos-la(Snp)

- sin[(j-1)cos-lgs'np)])/(j-1) .

(5) Seventh term:

The area of integration is divided into subareas

as shown in Figure 3(d). For each subarea two Gaussian

points are taken for the r-integration. Then, for each

value of r, twenty Gaussian points are chosen for the

*
n -integration. The integral over a rectangular area

is approximated by

Ki[t-r,(1+cr)n*-xm]

I Of
drdn*

A/(t-r)2-[(1+cr)n*-xm]2
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2 20 * fzi(743)K1[t-rp,(1+crp)npq-xm]
21 2 2 WpVpqTj(npq)

p=1 q=1 N/(t-rp)2-[(1+crp)n;q-xm]2

(3.5.22)

where wP and Vpq are weights for the r- and n - integra-

tions, respectively. In order to perform the integra-

tion over a triangular or trapezoidal area at the right

or left end of Apt, the integrable singularity {(t -r)2

-[(1+crp)n* -xm]2}-4 is converted to the form (ii) by

introducing a new variable = 1(1+c7)77*-xml/(t-7). We

obtain the following result:

K1[t-r,(1+cr)n*-xm]
f drde
'(t-02-[(1+cr)e-xm]2

K1[t-r,(1+cr)e-xm] 1

e±cn*
1 - e2

ddn't

*
20 20 f.ek(rpq)Ki[t-rpq,(1+crpOnp-xm]

Al

p=1p=1 q=1r z".
"Pq ± en;) (3.5.23;

where

P4
pqt Inp XMI

1344 ± c Tip

and the ± signs are for the right and left triangular

or trapezoidal areas, respectively.

(7) Eighth and Ninth terms:

Division of the area of integration is similar to

(6). For each subarea shown in Figure 3(d), the fol-
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lowing approximation formulas are used for the eighth

term

1

1 Of K2[t-r,(1+cr)e-xm] drdn* ,

2 20
Al E

=1
E
=1

wpvpciTi(npcdf.ek(rp) K2[t-rp,(11-crp)17;c1-xm]
P =1

(3.5.24)

and for the ninth term

1

1 Of K3[t-r,(1+cr)n*-xm] drdn* ,

2 20
2.1 E E wpV T.(n )f.ek(r ) K3ft-r (l+cr )77 -x ]pq j pq p " ps p pq m

p=1 q=1
(3.5.25)

In order to obtain Gvk in equation (3.5.8), we

need the expression for 0*, which is obtained by the

use of equation (3.5.11), evaluating it from the second

order Chebyshev polynomial since 0* should be an odd

order polynomial due to anti-symmetry properties about

the x- and y-axes and zero at n* = 0 and 1. The result

is as follows:

0* - -n* V1 :772 (j = 2)

0* = -n* 1/7,75- (2n*2 -1) (J = 4)

0* = -n* 1/1 :7772 [(16/3)n*4-(16/3)n*2+1] (j = 6)

The integrations of (3.5.8) for the first three

integrals are similar to the integration in (2) above.

According to the area of integration, the

*n -integration is performed analytically over each
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divided area and the r-integration is then performed

numerically. The last two integrals can be evaluated

by using a method similar to (7).

The integration of equation (3.5.10) requires an

expression for v*, which can be obtained by the use of

(3.5.11).

- 17772

- 16_72

- %/7.7W7

equation

v* =

v* =

v* =

The result is as follows:

(j = 1)

[(4/3)77*2-(1/3)] = 3)

[3.277*4-2.4e2+0.2] = 5)

The first and second integrations of (3.5.9) are

similar to (1) and (2), respectively. According to the

area of integration, the e-integration is performed

analytically over each divided area and then the

r-integration is performed numerically. The third in-

tegration can be evaluated by using a formula similar

to (7).

For the integration of (3.5.10), evaluations can

be obtained by the same methods used in (2) and (7).
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CHAPTER 4

RESULTS AND DISCUSSION

The dynamic stress and the couple stress intensity

factors given by equations (3.4.3) and (3.4.9) can be

rewritten as follows:

* 1/7c22
KID(t) =

2(1-L
...m.- f(A,C2,c) fe(1,t) ,

4)

* rb
Kim(t) = g(j02,0 e(1,t)

(4.1)

(4.2)

where equation (4.1) is obtained by dividing equation

(3.4.3) by vi and equation (4.2) is obtained by multi-

plying equation (3.4.9) by irb /j02 and utilizing the

boundary condition tyy(x,0,7) = -a = -2(1 _L2)/re22 (see

equation (3.3.13)).

The coefficients of the unknown functions,

0*(e,t) and (1)*(n*,t), were computed by solving the si-

multaneous two-dimensional singular integral equations

(3.5.5) and (3.5.6), from which the normalized dynamic

stress and couple stress intensity factors were obtain-

ed by use of equations (4.1) and (4.2). The micropolar

coupling factor, N, is a measure of the strength of in-

fluence of the micropolar effects and is defined by



N -
(2(:+x))1/2

77

(4.3)

As a consequence of thermodynamic restrictions of the

material moduli, A > 0, i > 0, we find that the range

of N to be 0 < N < 1/15. When N is equal to zero, the

micropolar effect is absent and we obtain the case of a

classical elastic solid. When N is equal to 1/15, the

micropolar effect becomes maximum.

The numerical results of the stress intensity fac-

tors for N = 0., 0.2, 0.4, and 0.6, when b = 0.95 and j

= 3 x 10-4 in2 [74], in the case of a stationary crack,

are shown in Figure 4, and are compared with the work

of Baker [31]. Equation (3.3.5) for stress involves w

and 0, and equation (3.3.10) for couple stress involves

both the displacement transverse to the crack surface

and the gradient of microrotation. The classical solu-

tion for the corresponding problem has also been ob-

tained as a special case of our micropolar solution by

dropping the micropolar moduli in equation (3.5.5) and

following the same numerical procedure. The corres-

ponding curve is depicted in Figure 4, along with the

asymptotic solution of Baker [31], for the purpose of

comparison. Our result is found to be within 5 percent

of that of Baker. The figure shows that the micropolar

stress intensity factors increase with the micropolar

coupling factor. The numerical results of the couple

stress intensity factors for N = 0.2, 0.4, and 0.6,
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when b = 0.95 and j = 3 x 10-4 in2 [74], in the case of

a stationary crack, are shown in Figure 5. It also

shows that the couple stress intensity factors increase

with the micropolar coupling factor. A preliminary

calculation of both the stress and the couple stress

intensity factors for 0 < t < 2, showed that the stress

intensity factor increases monotonically with time, but

the couple stress intensity factor begins to oscillate

at t = 1.4. Hence, the physically acceptable time

range of the solution is thought to be between t = 0.

and t = 1.2.

The characteristic length, b, is a material prop-

erty on which the influence of couple stresses are

strongly dependent. If the ratio of the smallest di-

mension of a body to b is large, the theory indicates

that the effect of couple stresses is negligible.

However, when there are large strain gradients and a

dimension of a body approaches b, couple stresses may

produce effects of appreciable magnitude. The numeri-

cal results of the stress intensity factors for b =

0.2, 0.5, and 0.95 when N = 0.2 and j = 3 x 10-4 in2,

in the case of a stationary crack, are shown in Figure

6. The numerical computations for b = 0.5 and 0.95 in

Figure 6, produced nearly coincident results. The num-

erical results of the couple stress intensity factors

for b = 0.2, 0.5, and 0.95 when N = 0.2 and j = 3 x
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10-4 in2, in the case of a stationary crack, are shown

in Figure 7. The results show that the couple stress

intensity factors decrease as the characteristic length

increases.

The numerical results of the stress intensity fac-

tors for N = 0, and 0.2, when b = 0.5 and c = 0.2A,

where A is given by (3.2.6) and j = 3 x 10-4 in2, are

shown in Figure 8, and are compared with the work of

Baker. It is found from Figure 8 that the micropolar

dynamic stress intensity factor is greater than the

classical dynamic stress intensity factor in the case

of c = 0.2A. It is also found that the micropolar

stress intensity factor of a propagating crack with c =

0.2A is smaller than that of a stationary crack. The

numerical results of the couple stress intensity fac-

tors for N = 0, and 0.2, when b = 0.5 and c = 0.2A and

j = 3 x 10-4 in2, are shown in Figure 9. It is found

from Figure 9 that the micropolar dynamic couple stress

intensity factor of the stationary crack is greater

than that of the propagating crack with c = 0.2A.

Since the numerical results for the range c greater

than 0.2A are found to oscillate rapidly, it is hard to

evaluate the precise value at the crack tips. Hence,

we calculated and showed only one case of a propagating

crack with a constant speed.

In summary, the micropolar stress intensity factor

is always greater than the classical stress intensity
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factor for both a stationary crack and a propagating

crack at constant speed. The characteristic length

does not significantly affect the micropolar stress in-

tensity factor, while it does affect the couple stress

intensity factor, as long as the characteristic length

for a finite crack is of the order of half of the crack

length. The Laplace transform inversion procedure,

based on the Tauberian theorems, that was used to make

the present problem tractable, restricted the analysis

to the normalized time of about t = 1.2, as mentioned

earlier. Although the solution for the times when the

stress and couple stress intensity factors reached

their maximum values was not obtained, useful informat-

ion about the dynamic crack propagation process has

been found to emerge from our solution concerning the

behavior of the micropolar stress and couple stress

distributions, the microrotation field and microiner-

tia.
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CHAPTER 5

CLOSURE

The method developed in this study provides impor-

tant information on the behaviors of the dynamic stress

intensity factor and the dynamic couple stress intensi-

ty factor of a propagating finite crack in a micropolar

elastic solid. In the formulation of the problem, the

velocities of the crack tips are not restricted except

that they are non-negative and bounded by the Rayleigh

wave speed. Also, the normal traction on the crack

surface may be an arbitrary function of time and space.

Therefore the method is applicable to a crack problem

in which the crack may accelerate and decelerate under

a static or dynamic loading condition. The method is

also applicable to non-symmetric propagation of a

crack. The results found in this study are summarized

as follows:

1) The stress intensity factors of a stationary

crack increase with the micropolar coupling

factor.
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2) The couple stress intensity factors of a sta-

tionary crack increase with the micropolar

coupling factor.

3) The stress intensity factors of a stationary

crack increase as the characteristic length

decreases, though not significantly.

4) The couple stress intensity factors of a sta-

tionary crack increase as the characteristic

length decreases.

5) The stress intensity factor of a propagating

crack with a constant speed is smaller than

that of a stationary crack.

6) The stress intensity factor of a propagating

crack with a constant speed in a micropolar

elastic solid is greater than that in a clas-

sical elastic solid.

7) The couple stress intensity factor of a propa-

gating crack with a constant speed is smaller

than that of a stationary crack.

The present work could be extended by developing

suitable techniques for both the Laplace and the Four-

ier inversions. Also, suitable experimental devices

for measuring the micropolar elastic moduli should be

designed.
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APPENDIX A

Baker's Solution: Part I

Baker [31] investigated a semi-infinite crack sud-

denly appearing in a uniformly stretched elastic medium

at t = 0 and propagating at constant speed. A fixed

coordinate system is introduced in such a way that the

crack is defined by the negative x-axis and the crack

propagates along the positive x-axis. The normal dis-

placement of the upper crack surface in terms of the

normalized variables defined in 2.1 is given by

a A t
v(x,0,t) = aAt + H ( + 1 )

471-F*(-co
x

x

At u2(1-u)1/2(1-A2u2)%
F* (u)

1 + ( :t u (15-u)312 x

A

(1- u2/2)3

(1_u2/2)4 - (1_u2)(1_A2u2) '

1

(1_u2/2)4 - (1_u2)1/2(1_A2u2)1/2

1
< u < -1

A

-1 < u <

where x < ct, a is the uniform tensile stress applied

to the medium, 8 = c/A, and

(1-6)(P-u) 1

F +(u) = exp 1
1

I tan-1
(P-5)(1-u)

71. A



where P =

(y2_1/2)2

[Y2(1-Y2)1/2(Y2-A2)54

CR/A.

dy

Y(1-6Y)+(1-45Y)2/(8-u)

Differentiation of (A.1) with respect to x yields

v,x(x,0,t) =

x
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a At u2(1_u)1/2(1_A2u2)%

47rF*(-co) I 1 + (6-u)3/2
F*(u) x

A

(1-u2/2)3
(1_u2/2)4 - (1 _u2)(1_A2u2)

1

(1_u2/2)2 - (1_u2)1/2(1_A2u2)% '

1
- < u < -1

A

-1 < u < 5

du .

(A.2)

If x > -CRt, the bottom term in the bracket must be

evaluated in the sense of the Cauchy principal value,

since

1

(1_u2/2)2 - (1_u2)1/2(1_A2u2)%

16 [(1- u2/2)2 - (1-u2)1/2(1_A2u2)1/2]

u2(u+P)(u-P)[u4+(- 814,2)u2.+ ( 24-16A2-8P2+P4)]

Clearly, if x goes to -CRt- or -CR-0', v,x(x,0,t) goes

to infinity logarithmically. We can also observe from

(A.2) that v,x(x,0,t) is continuous at the dilatational

and shear wave fronts, that is, at x = -t and x = -At,

respectively.
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APPENDIX B

Baker's Solution: Part II

Using the polar coordinate system shown in Figure

1, tyy for Baker's problem (see Appendix A) for large

values of t/r is given by the following asymptotic

form:

aC12% 1-0/2 CAT 1-0/2 El+cose/diP
tvv
"" rF4.(0) (777)7 r (1-02)% di%

where

=

(1-0)% ci+cos9 /d21
T717755- dp

(1-c2)1/2(1-62)%

(1_02)1/2(1_62)%_(1_82/2)2

di = (1-c2sin20)% ,

d2 = (1-52sin20)% ,

1

A-c 1 A-c 1
Fi.(0) = exp x

P-c rjlw
1-c

(B.1)

Lff2 (1 +cw)21%

tan-1 dw ,

(l+cw)2
w2[0_(1 4.cw)2],. - w2]

and a, 8 and P are defined as in Appendix A.
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For 0 = 0, (B.1) reduces to

2a
tyur

F
(A-c)1/2(t/r)1/2 . (B.2)

4.(0)

KID for this problem is obtained from (2.4.1) and (B2).

In order to obtain KID for comparison with the results

of this investigation, we divide KID by KIS =

a[r(l+ct)]1/2 and obtain

KID

where

= k(A,c) 1/t/(1+ct) ,

k(A,c) =
2 21/2

(A-c)1/2 .

rF+(0)

For A = 0.542 an evaluation of F÷(0) by application of

the Gauss quadrature formula (2.5.11) yields the fol-

lowing numerical values of k(A,c):

c/A k(A,c)

0.0 0.580

0.2 0.503

0.4 0.414

0.6 0.306

0.8 0.157
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APPENDIX C

Cauchy Integrals Near Ends of

the Line of Integration

The results stated in this appendix were obtained

by N. I. Muskhelishvili [80]. The numbers of equations

are the same as those in the reference.

Let L = ab be a smooth arc and let p(t) be a func-

tion, given on L, satisfying the following conditions:

a) On any closed interval atb' of the arc ab, not

including the ends a, b, the function p(t) satisfies

the H(p) condition

Ip(t2) - p(t1)1 < A It2 - t1 IN', (29.1)

where A does not depend on the position of t1 and t2 in

the interval a'b', but it may depend on the choice of

a1, b/ (in fact, it may increase without limit when a/

a or b1 b).

b) Near the ends a, b the function p(t) is the

form

p*(t)
p(t) = , / = a + iQ , 0 < a < 1 , (29.2)

(t-c)/

where c is either of the ends a, b, a and fl are real

constants and p*(t) satisfies the H condition near and

at c. In (29.2), (t-c)1 is any definite branch which
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varies continuously on L. Further, note that for a > 0

the condition (29.2) gives

v**(t)
v(t) (29.2a)

It-cIa

where y**(t) is a bounded function such that

It-c1"40**(t) satisfies the H condition for any e > 0

and vanishes for t = c. In fact,

p**(t) = p*(t)e-i"(t-c)-0

where 1' = arg (t -c); the proposition then follows by

(7.3a) and (7.6), which are

4(t) = It -tole et°, 0 < e < 1, (7.3a)

where a is any constant.

4(t) = It-tolf [t-to]iv (7.6)

where v is any real constant.

Next examine

1 I p(t) dt
0(z) = (29.3)

27i t-z
L

Under the assumed conditions for the point z, which is

near c but not on L, 0(z) is of the form:

1) If 7 = 0 [i.e, p*(t) = p(t)],

p(o) 1

4110(z) = f ---- log + 00(z) , (29.4)
27i z-c

where the upper sign is taken for c = a, the lower for

c = b. By log [1/(z-c)] = - log(z -c) is to be under-

stood any branch, one-valued near c in the plane cut
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along L; to(z) is a bounded function tending to a defi-

nite limit when z -. c along any path.

2) If y = a + 0 * 0,

eI771-1 gyp" (c)

4(z) = ±
2isin/w (z-c)/

where the signs are chosen as in 1), (z-c)/ is any

branch, one-valued near c in the planecut along L and

taking the value (t-c)/ on the left side of L, and

to(z) has the following properties: if a = 0, it is

bounded and tends to a definite limit when z -, c; if

a > 0,

(29.5)

C

140(z)1 <
(z ciao

(29.6)

where C and c/o are real constants such that as < a.


