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Cavitation instabilities in elastic-plastic solids under spherically-symmetric

and axisymmetric loadings were investigated using the finite element method. Both

quasi-static and dynamic analyses were used to solve these problems.

In the quasi-static analyses, we investigated a cavitation instability in

elastic/perfectly-plastic, linear hardening elastic-plastic, power hardening elastic-

plastic, and constrained silver materials. Here, when the instability occurs, the

cavity expands under no change in remote stresses arid strains in all cases. In the

case of axisymmetric loading on power hardening elastic-plastic material (e =

0.003 and n = 0.25), we found good agreement between our FEA solution and the

approximate solution (Hou and Abeyaretne, 1992) only when the remote field

remained elastic. In the case of axisymmetric loading on constrained silver, we

found good agreement between our FEA solution and the experimental results of

Kassner et al. (1998). Moreover, a cavitation instability was found for stress ratios,

/oj, beyond the range proposed by Kassner et al. (1998), i.e. as low as cr2/a1 =

0.5. Unfortunately, when the stress ratio was small, FEA simulations appeared to

have difficulty determining the exact cavitation instability state because the mesh

along the boundaries deteriorated very fast during the onset of instability.

In the dynamic analyses, we investigated cavity expansion in

incompressible and elastic/perfectly-plastic materials. Both inertia and strain-rate
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hardening effects were considered. For dynamic loads below the critical load

required for cavitation in the quasi-static case, the cavity expanded rapidly initially

but eventually decelerated and stopped at a finite value. For dynamic loads above

this critical value, the cavity expanded rapidly initially and then decelerated and

settled into expansion at a constant rate. This observation held for both spherically-

symmetric and axisymmetric loading.
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A STUDY OF CAVITATION INSTABILITIES IN SOLIDS

1. INTRODUCTION

Interlayers consisting of thin (e.g. 1 .im-lmm) and soft ductile material

welds, bonds, or brazes between strong base materials, when tested in tension, may

exhibit high ultimate tensile strength despite the relatively low strength of the

interlayer material. This strength is due to the mechanical constraint provided by

the stronger base material that restricts the transverse contraction of the interlayer.

This constraint produces a substantial triaxial stress state within the interlayer and

reduces the effective Von Mises stress, thus reducing the tendency of the interlayer

to plastically deform and fracture in the ductile manner. Although the explanation

for the increased ductile fracture stress is reasonable, the low plastic strain to failure

is still unclear.

These fracture mechanisms were recently studied by Kassner et al. (1998),

for ductile fracture in thin, constrained silver films. They proposed that this fracture

results from cavitation instabilities. Here, cavities grow without the necessity for

continual increase in remote stress and without substantial far-field plastic strain.

Furthermore, their finite element analysis showed that unstable cavity growth could

be extended to some axisymmetric stress states where the ratio of the radial stress

or the hoop stress (o o) to the normal stress, a1, is greater than 0.65. This is

beyond the range of the stress ratio, o/o, proposed by Haung et al. (1991) in

which o-/crj > 0.75.

The purpose of this dissertation is to study: (1) the mechanism of ductile

fracture related to cavitation instabilities under both spherically-symmetric and

axisymmetric loading, (2) the range of applied triaxial stress stages, o/o, in which

the unstable cavity growth can occur, and (3) the dynamic effects on prediction of



cavitation instabilities, including rate-sensitive plasticity and inertia. Both

analytical and finite element techniques are used in developing the solutions.



2. LITERATURE REVIEW

Cavitation in solids has been observed in experiments of metals under many

circumstances, i.e. Yerzley (1939), Gent and Lindley (1958), and recently Kassner

et al. (1998). However, mathematical models of cavitation instabilities have been

developed to elucidate this phenomenon since 1948. The objective of this chapter is

to review the mathematical formations and FEA analyses relevant to cavitation

instabilities in which a cavity contained inside an infinite solid medium can expand

unstably under no change in applied loading. Particular focus was given to both

quasi-static and dynamic analyses.

2.1 QUASI-STATIC ANALYSIS OF CAVITATION INSTABILITIES IN
ELASTIC-PLASTIC SOLIDS

Quasi-static analysis is a well-known method in analyzing structural

responses when the frequency of excitation applied to the structure is less than

roughly one-third of the structure's lowest natural frequency of vibrating.

Consequently, the effects of inertia can be neglected and the structure is, therefore,

in static equilibrium.

The analysis is divided into two groups by loading conditions: spherically-

symmetric loading and axisymmetric loading. In spherically-symmetric loading,

the load is applied in the radial direction of a spherical cavity. This is a simplified

version of the axisymmetric loading, and it is easy to analyze because the equations

can often be integrated explicitly. In the other, the load applied in the axial

direction of the cavity is generally different from load in the radial direction.

Hill (1950) pioneered developing the mathematical method for an

expansion of a spherical cavity in an infinite solid medium in which pressure, p. is

applied gradually to the cavity surface so that the dynamic effects can be negligible.



The material is assumed to be an isotropic and elastic/perfectly plastic solid. The

generalized coordinates were chosen to be the spherical coordinates, r, 0, and Ø To

calculate the large strains in the plastic zone (after the onset of yielding on the

cavity surface), he introduced the incremental displacement of a particle as

E3u f3u (au
du dc+dr=t dc+v dc, (2.1)

ar Lcc or)

where r is the radial distance to a particle in the plastic zone, c is the radius of

plastic zone, and v is the velocity of a particle. Both r and c are taken as the

independent variables. The increments of stress and strain could be written as

d6r
=--(du)=-dc,

Or Or

du vdc
ds9=de =-=---,

dr r
(Oo

dcr,. = __..Ldc+u_ dc,
Or)

do9 =do
Or)

The compressibility condition gives

(2.2)

1-2v
ds + ds + de = (do + do0 + do). (2.3)

E

where v is Poisson's ratio and E is Young's Modulus. Substituting equation (2.2)

into (2.3) and integrating lead to the relationship between c and the deformed cavity

radius, a, as

c{ E
1

a13(1v)Yf'
(2.4)

and the approximation of the threshold pressure, p, at which the cavity grows

without bound as

2Y I E
(2.5)p =---1

3(lv)Y)f



where Y is the yield stress. He also extended his analysis to include a work-

hardening medium. For simplification, the stress-strain curve of the material in

compression is taken to be of the form

(2.6)

5

where H is the amount of hardening expressed as a function of the logarithmic total

equivalent strain, . In the case when a cavity is expanded from zero radius in an

infinite medium, he arrived with the approximation of p, as

z3 "1dz2Y I 2E ''L 2fH{hTt[31JJ_
(2.7)

+ln
Ji+3+2)' j

r
where z = -.

a

In particular, if H H'e where H' is a constant rate of hardening, Bishop et al.

(1945) have shown that

2Y 12E'1 2ir2H'+lnI - 11+
3Y)] 27

(2.8)

Chadwick (1957) modified the work done by Hill (1950) in the area of the

treatment of the large displacement in the plastic zone after the onset of yielding.

He introduced the logarithmic strain,

where

(dr") du 1(du'2e.=lnIl=+II +..
di) dr 2drJ

(2.9)
( \

U 1tue0=lnIj=+--II +...,
y) r 2rj

r=u+r. (2.10)

The expression of the deformed cavity radius, a, as a function of the cavity

pressure, p, was written as



where

(i p
a = a exP___J[(1 -8)' {exP(6 _1)_1)}+(1 , (2.11)

l2Y

b
E
Y

3= (1 + v),
3E

(2.12)

and a0 is the initial cavity radius. A plot of cavity expansion versus load factorp/Y

in a medium of heavily cold work copper assuming no work-hardening (with

Y/E =2.l9xlO3and v = 0.34) is shown in Figure 2.1. It was also found; in

particular, that the radius of the cavity increases indefinitely as the applied pressure

approaches Pc

(2.13)

This equation is in good agreement with the values obtained from Hill (1950) in

equation (2.5). By assuming an incompressible medium and the work-hardening

represented by a polynomial expression of the type

N

H(fds1')=H(fds"). (2.14)

p apparently becomes

N n+1

p =_Y[i_1n(r)]+[_J n!(n+1), (2.15)

where r =1- (1- e)3 and is the Reimann zeta function (Appendix A). In the case

of linear work-hardening, N = 1 and (2) = !2r2 and

po =.y[1_In(r)]+_-2r2Hi, (2.16)

where H1 is the linear work-hardening constant. This equation is the same as in

equation (2.8) presented by Bishop, Hill, and Mott (1945).
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Figure 2.1 Cavity expansion vs. load factor in copper without work-hardening in a
medium of cold-worked copper.

McClintock (1968) investigated the expansion of a long cylindrical hole in a

elastic/perfectly plastic solid. He determined the relationships of the void growth

rate, b/b, on the imposed axial strain rate, è, and the transverse stress, o, as

shown in Figure 2.2. The cylindrical void has the initial radius, r, and the cunent

radius, b. The analysis was performed using the stress-strain relationships of

elastic-plastic system associated with the von Mises yield criterion. He finally

obtained

(2.17)
b 2 Jy)2

This equation shows an exponential increase in the void growth rate with positive

transverse stress.
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Figure 2.2 Long cylinder void extended along the r and z-axis.

Rice and Tracey (1969) studied the ductile enlargement of voids in a triaxial

stress field in an infinite body under an axisymmetric strain field è as shown in

Figure 2.3. To simplify their analysis, they assumed that the material was

incompressible, rigid-plastic. If i = ', then the incompressibility requires

=i =e/2
They solved this problem using the Rayleigh-Ritz method. This involves

choosing mathematical functions that are capable of approximation the true

solution. These functions contain parameters that are optimized (though a

variational formula) so that the approximate solution comes as close as it possibly

can to the true solution.
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Figure 2.3 Spherical void in a remote simple tension rate field. Applied tensile

loads are T and S.

The approximate velocity field is chosen as

i =s°'x +Dñ +Et, (2.18)

where D and E are constants to be determined, z is a spherically-symmetric

volume changing field, and ãf is a shape changing field which preserves void

volume.

The first term of the above equation is a uniform strain field and represents

the solution for points in the body far from the cavity. The second term represents a

spherically-symmetric velocity field corresponding to a change in volume of the

cavity but no change in shape. They used the following mathematical function to

represent uf as
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x,. (2.19)

The term D that multiplies this is the parameter that will be optimized to get

the best possible approximation. The third term represents a velocity field that

changes the void shape but not its volume. The mathematical functions chosen for

this are fairly complicated. This term was found to have a small effect on the

overall solution. Therefore, it will not be considered in detail. E is the parameter to

be optimized to get the best possible approximation.

They assumed that the volume changing part of void growth far

overwhelms the shape changing part when the remote mean stress is large. The

closed form approximate formula for D is obtained by substituting equation (2.18)

(without the third term) into the variational formula, which yields

D=0.283exp (2.20)
2r )

or =0.283eexpI I, (2.21)

where k is the average radial velocity of the cavity boundary, am is the mean

remote normal stress and r is the yield stress in shear. The plot of D as a function

of cf/re is shown in Figure 2.4.
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Figure 2.4 High triaxiality solution of Rice and Tracey. Radial expansion of a
cavity is exponentially related to the mean stress/yield stress ratio.

Schrems (1999) extended the work of Rice and Tracey to determine the

relationships between the remote final strain, e, and the triaxiality,

(2.22)

as a function of the cavity expansion. S and Tare the remote axial stress and the

remote radial stress respectively. By assuming an incompressible solid medium,

the mean stress, o, can be given by the Tresca yield criterion as

a 123 1+2
(2.23)

In 3(1i)
According to the von Mises yield criterion for the uniaxial tension in the remote

field, r can be expressed as

(2.24)

11
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She substituted equations (2.23) and (2.24) into the high triaxiality equation (2.21)

presented by Rice and Tracey (1969). After evaluating the integrations, she finally

obtained

12

=3.534e 2OE)InL (2.25)

where the subscript i andfrepresent an initial and final state respectively.

For example, to expand the cavity by a factor of 100, the remote strain is

12

=16.275e 2(I-Z) (2.26)

Radial cavity expansion by a factor of 100, 5, and 1.6 is shown graphically in

Figure 2.5. It is found that strain decreases rapidly as the triaxiality increases.

CID

10

8

2

0 rIT -.-_--_----t i

0 0.2 0.4 0.6 0.8 1

Figure 2.5 The remote axial strain vs. the triaxiality as a function of the cavity
expansion.
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Huang et al. (1991) studied cavitation instabilities in an infinite elastic-

plastic solid. Later, Tvergaard et al. (1992) extended their work (Huang et al.,

1991) to account for a power hardening elastic-plastic solid. The cavitation

instabilities occur when an isolated void in an infinite, remotely stressed elastic-

plastic solid, grew without bound under no change of remote stress or strain. They

studied the problem for cavitation states under both spherically-symmetric stress

and under general axisymmetric stress.

In the case of the spherically-symmetric cavitation state, the material was

assumed an isotropic, incompressible elastic-plastic solid. Using the equilibrium

equation and integrating with the boundary conditions, they obtained

_=_2rfE2h'{1
1-R1/R011d17

V l (2.27)

The cavitation limit stress, f Sr. was obtained from equation (2.27) by letting

RQ/R, -+co; i.e,

-=-2 rf[ln11 311di
11 jl (2.28)

V Ji [3 k jij

=_f[e32 _1] f()d. (2.29)

The cavity limit exists if e3'2f() can be integrate. Consider an elastic-

perfectly plastic material with an initial tensile yield strain, . A direct evaluation

of equation (2.29) gives

. 1n[1_e_312]d, (2.30)

h1+11+o(s) (2.31)

The approximation in equation (2.31) is obtained from the exact expression in

equation (2.30) using 1 exp (-3c4 / 2) 3s / 2. This is accurate for <0.01.

The radius of the plastic zone,R, satisfies
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(2.32)
R0) 2o, 3

In the limiting cavitation state, equation (2.31) gives

(3e/2)3. (2.33)

Equations (2.31) and (2.33) are given by Hill (1950). The plastic zone has a fixed

size relative to the current size of the cavity (typically 4 to 8 times the current

radius of the cavity, depending on er). Outside the plastic zone is an elastic field in

which the strains diminish to zero as J(3

Next, they considered a power-law hardening solid with

o/Y f(s)= ele),, when kI '
(2.34)N=sign(e)(/c) ,when e

Values of Se,. / Y were obtained numerically from equation (2.29). The relationship

between o / Y and R0 / R. from equation (2.27) is plotted in Figure 2.6 for N = 0,

0.1, 0.2, and 0.3. The cavitation limit stress is approached rapidly and is effectively

attained once the void has expanded to about three times its original radius.

When the material is elastically compressible the analysis is not so simple

but some specific results can be obtained. In particular the limit yield stress for the

elastic-perfectly plastic solid with Poisson's ratio, v, is

-(1+v)c. }

(2.35)2(1v) 1+CY[(1+v)(e 1)+2(1-2v)] d,

where a =1-2(1 2v) With terms of order e,, and smaller neglected, equation

(2.35) becomes

J}.
(2.36)

o,,, 3a1 3(1 v)e

This equation is the same as equation (2.5) presented by Hill (1950).
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Figure 2.6 Remote stress vs. radius of the cavity for the spherically-symmetric
loading.

In the case of axisymmetric loading, they solved the problem by coupling

an analytical solution for points away from the cavity to a finite element solution

for points near the cavity. They solved the problem for two cases: (1) when the far

field state is elastic, and (2) when the far-field state is plastic. These results are

shown in Figure 2.7. The solid lines on the left hand side of the dashed line

represent the results when the far-field state is elastic. The others represent the

results when the far-field state is plastic.
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Figure 2.7 Cavitation limits for a spherical void in elastic-plastic power hardening
solid subjected to remote axisymmetric stressing (Y/E = 0.003 and v 0.3). (a)
Axial tensile stress; (b) Mean stress.

Hou and Abeyaratne (1992) examined the phenomenon of cavitation under

axisymmetric loading. They seek all points in (a a- cr3) stress space, such that,

when the local principal true stress components (a-, ,a-2, 03) at a particle reach a

point on that set, cavitation ensues. This set can be described by a surface

ç(o,o,,a3) = 0 in stress space, which is referred to as a cavitation surface, and

corresponds to a cavitation criterion that arises naturally from the analysis. In the

case of a piecewise power-law elastic material, the agreement of cavitation between

their approximate criterion and Tvergaard et al. (1992) is good only if the cavitation

occurs before yielding in the remote field.

Since determining an exact solution of the non-linear field equations and

non-symmetric boundary conditions was difficult, they focused attention instead on

finding an approximate solution. By considering a particular subclass solution of
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the set of all kinematically admissible deformation fields, they found an

approximate solution by construction of a three-parameter family of deformation

fields, with parameters /3 (representing the cavity size), a2 and ct (representing the

overall ratios of cavity), and obtained three algebraic equations for determining

these three constants:

3 a(/3,a2,a3)
(2.37)

2 ,4rfl

3a2 (fl,a,,a3)
(2.38)02 cr1

4it(1+/33) 5a2

3a3 ac6,a2,a3) (2.39)03 cr1
4r(l+/33) aa3

where (fl, a2, a3) is the total internal energy stored in the body corresponding to

the three-parameter deformation field. In the case of axisymmetric cavitation, the

deformation field is assumed axisymmetric. Consequently, the overall ratios of

cavity can be written as

a=a7 a3. (2.40)

The occurrence of cavitation can be described by a cavitation curve in the (o ,a2)-

plane when /3=0. Substituting equation (2.40) into (2.37)-(2.39) and

manipulating, there results

1

°rn = 24rfl /3
J[5=0'

(2.41)

3a2 a4(fl,a)I
(2.42)

111=0'
8ir 0a

where a, is the mean stress. The total energy can be written as



2T I

(fi, a) = 2,r J $
Jf(s)dsR2dR sinOdO,

000

(2.43)

R + +

where Ee is the equivalent strain; f characterizes the response of the material in

uniaxial tension as a function of the logarithmic strain, e; x1, x,, and x3 are the

location of a particle in the reference configuration. Then, they evaluated the

integrals, which result from substituting equation (2.43) into (2.41) and (2.42),

numerically. The cavitation curves associated with different values of the initial

yield strain, , at a fixed value of the hardening exponent are illustrated in Figure

2.8. Figure 2.9 depicts the cavitation curves associated with different values of e at

a fixed value of hardening exponent. It is seen that, as decreases, the critical

stress-levels increase.

cTm/Y

10

OL
-2 -1 0 1 2

T

Figure 2.8 Cavitation curves for elastic-plastic materials on (cr,, I) plane, where for
different yield strains is the triaxiality. The hardening exponent is n and n = 0

coresponds to an elastic/perfectly-plastic material.
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Figure 2.9 Cavitation curves for elastic-plastic materials for different yield strains
= 0 corresponds to a rigid-plastic material.

Kassner et al. (1998) studied cavitation instabilities in constrained thin

silver film in both experiments and a finite element analysis. They demonstrated

that the cavities growth without the necessity for continued increase in remote

stress and without substantial far-field plastic strain. In the finite element analysis,

they used a pure finite element analysis approach (near field) with an arc-length

solver capable of handling limit points.

The finite element analysis of an axisymmetric model composed of a single

cavity contained in a finite body was performed where the outer boundaries were

300 cavity radii from the cavity radius. The finite element mesh consisted of 400

elements graded with a fine mesh near the cavity and a coarse mesh away from the

cavity. The model was simulated using a quarter-symmetry mesh in the finite

element code, ANSYS. Unstable cavity growth was assumed to occur when the

cavity continued to expand without increase in remote stress or strain. This

approach gave results that were with in 1% of those reported by Tvergaard et al.

(1992). Moreover, they showed that unstable cavity growth such as described by

Tvergaard et al. (1992) can be extended to at least some axisymmetric stress states
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where 2/O1 <0.75. Figure 2.10 shows the expansion of a single cavity versus

remote axial strain for various axisymmetric triaxial stress states for silver. Figure

2.11 illustrates the maximum principal stress, cr versus the corresponding o/cr at

which an isolated cavity will growth without further increases in far-field stresses.

Here, the agreement between FEA predicted stresses and straines for instability are

in reasonable agreement with the experimental values.

(a)

(b)

z
2
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a
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5

41

oJo..O.95
a /o.0.9O
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I.
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Figure 2.10 Single cavity expansion vs. remote axial strain for (a) axisymmetric
loading at a silver interlayer for 2/1 0.8, (b) cr2/cr1 0.75.
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Figure 2.11 The FEA predicted maximum principal stress for failure vs.
based on unstable expansion of isolated at two strain rates. The predicted plastic
strains to failure are also reported. The experimental stresses for ductile fracture are
indicated.

Tvergarrd (1999) extended the work of Tvergaard et aT. (1992) to consider

the effect of a large initial yield strain on a power hardening elastic-plastic material.

It was shown how the critical stress value decayed for increasing value of the yield

strain. Analyses were carried out for remote spherically-symmetric tension as well

as for more general axisymmetnc remote stress field, with an initially spherical

void. Different levels of strain hardening were also considered.

2.2 DYNAMIC ANALYSIS OF CAVITATION INSTABILITIES IN ELASTIC-
PLASTIC SOLIDS

The dynamic analysis of spherical cavity formation has been recognized as

having complex general governing equations. A further important complication is

that under the practical conditions of cavity formation due to high-explosive action
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some return motion following the important first expansion phase is to be expected.

As a result, some simplifying assumptions must be made if analytical solutions are

required. Otherwise, purely numerical solutions of the integration of the governing

equations need to be developed. Since cavitation instabilities are determined only

by the analysis of the first phase expansion, this literature review will be confined

to this analysis.

Hill (1948) pioneered the development of mathematical models of the

dynamics of cavity formation from zero radius. He focused attention on deriving

general conclusions concerning earth movement near a deep underground

explosion. However, his theory is limited to frictionless solids such as fully

saturated clays, because otherwise the correct yield criterion is that of Coulomb

rather than that of Tresca. In particular, for the case of an incompressible and

elastic/perfectly plastic material, the equation of motion of plastic-elastic response

was written as

P(t) = {i+ in(LJ} +p(aä +a2), (2.44)

in which cavity pressure, P(t), related with cavity radius, a(t), and its time

derivative where Y is yield stress, p is density, and p is shear modulus.

Hoskins (1960) developed the mathematical procedures for analyzing

dynamic expansion of a spherical cavity in an infinite solid medium subjected to a

known function of internal pressure, P(t), on the current cavity surface. He focused

his analysis on the first phase of expansion and also the nature of the return motion

following the first expansion phase. To simply his analysis, he assumed that

material is incompressible and elastic-perfectly plastic. The incompressibility

condition eliminates the wave effects of the elastic region from the analysis. By

using the conservation of mass and the hypothesis of the constant density, p, of the

medium, he showed that the particle velocity, v, could be determined in terms of

the velocity of the cavity surface, a, as



a2â
= (2.45)
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where a is the current cavity radius. The equation of motion of the elastic response

was obtained as

4 a3a3
( 2..a =--E ° _p1(a a+2ad)/r-a4á2I2r4}+f(t), (2.46)r

r3

wheref(t) is an arbitrary function. However, if the radial stress, c., is taken to

vanish at infinity, thenf(t) 0. Consequently, equation (2.46) simplifies to that

cavity pressure, P(t), can be written as

P(t) =E(1_a/a3)+p(aä+.â2). (2.47)

This equation is subjected to the initial conditions, a = ao and a = 0 at t = 0. It is

valid throughout the elastic response. He also found, in particular, that the onset of

yielding at the cavity surface was quite independent of inertia effects. For the

plastic-elastic response, the equations of motion were given by the same procedures

as equation (2.46), but, instead, there was one equation for each region: a plastic

and elastic region. Moreover, the radial stress, 0., must be continuous across the

plastic-elastic boundary at r = c so that the equation of motion becomes

P(t) =Y+ln(c/a)+ p(ad+.á2). (2.48)

In this equation, the first two terms correspond the quasi-static result, and the

remaining term represents the modification due to inertial effects. The requirement

that elastic material at the plastic-elastic boundary is just about to yield is

aa
(2.49)

C3 2E'

Substituting equation (2.49) into (2.48) yields

1+1nl1P(t)
2y[

12E a1")_JjJ+(2). (2.50)

This equation is subjected to the initial conditions determined by equation (2.46) at

the time of the initial yielding on the cavity surface.
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Hunter and Crozier (1968) studied the similarity solution for the rapid

uniform expansion of a spherical cavity from zero initial radius in a compressible

elastic-plastic solid. Their motivation was that the incompressible theory could lead

to supersonic'value of interface velocity, b ( 5 times of cavity velocity in general

solid material) for values of cavity velocity, a, in excess of one-fifth the velocity

of small amplitude plastic wave. Such behavior is unacceptable in the context of an

incompressible approximation. Other nonphysical features of the incompressible

model are the instantaneous transmission of energy to the remote regions and the

complete failure of the continuous velocity field to allow for a description of the

shock discontinuities that arise in real material.

Unfortunately, the introduction of compressibility precludes the possibility

of obtaining a completely general solution for arbitrary monotonic a(t), and it

becomes necessary to specify initially the form of a(t). So, they introduced the

simplest cavity expansion as

a - Vt, (2.51)

where u is the constant velocity of expansion and t is time. For the case of

equation (2.51), the problem admits a similarity solution in which stress, density

and velocity depend on a single similarity variable

rt. (2.52)

Consequently, the governing partial differential equations reduced to ordinary

nonlinear differential equations; for the small values of v the latter may be solved

analytically, while for larger value it is necessary to resort to numerical methods of

integration.

Substituting a = 0 and a = v into equation (2.5) given by Hill (1948)

reduces to

P(u) = v{i + ln(2p/Y)}+pv2, (2.53)

and the predictions of the compressible theory were compared directly with this

result. They found from the compressible theory that
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P = pc2 [exp {pjpc2 + (v/c)2 K(v/c,v, Y/pc2)} _i]. (2.54)

where vis Poisson's ratio, c is the velocity of small amplitude plastic waves, andp,

is the threshold pressure given by Hill (1950), and K is a function of the indicated

variables which is known analytically for v/c << 1, and numerically for large

values of v/c.

Forrestal and Luk (1988) developed an analytical model for an elastic-

plastic response of compressible materials from a uniform expansion of a spherical

cavity with the constant expansion velocity, V. Here, they demonstrated the effect

of compressibility on 606 1-T6 aluminum. Their analysis was basically similar to

that presented by Hunter and Crozier (1968); however, intensive work was done on

numerical evaluations of the differential equations. Additionally, they found an

approximation of the full nonlinear solution by eliminating the nonlinear terms in

the differential equations. This approximation leads to the results as shown in

Figure 2.12-2.13. The material properties of 6061-T6 aluminum are Y 300 MPa,

Y/K = 0.00435, po=2,7i0 kg/rn3, and v = 1/3 in which K is the bulk modulus and

po is the initial density of material. Figure 2.12 shows the elasticplastic interface

velocity, c, versus the expansion velocity. Figure 2.13 shows radial stress at the

cavity wall versus expansion velocity.



26

15.0

12.0

U

B.0

0
Q.

4.0

0.0
00

INCOMPRESSIBI.E

COMPRESSIBLE,
PULL NONLINEAR

- COMPRESSIBLE,
APPROXIMATE

1.0 20 3.0 4.0

(p0JV'12V

Figure 2.12 Elastic-plastic interface velocity versus cavity-expansion velocity for
606 1-T6 aluminum.
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Figure 2.13 Radial stress on the cavity wall versus cavity expansion velocity for
606 1-T6 aluminum.

Luk et al. (1991) extended their work (Forrestal and Luk, 1988) to include

power-law strain hardening materials defined by the modified Ludwick equation



27

(Charkrabarty, 1987). The model considered the material as incompressible and

compressible. For an incompressible material, they obtained a closed-form

solution, where as the compressible results required the numerical solution of

differential equations. Their objectives were to present the effects of

compressibility on strain-hardening materials and to use the results for formulating

the penetration equations of Forrestal et al. (1991), who modeled 6061 -T65 1 targets

as a strain hardening material.

The analysis used the same methods outlined in their previous work but

with more complexity in the numerical evaluations of differential equations, since

the strain-hardening term was introduced into the governing equations. Figure 2.14

shows show the predictions for the strain-hardening exponent, ii = 0, 0.05 1, and 0.1

for the incompressible and compressible model of6061-T65l aluminum.
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Figure 2.14 Radial stress on the cavity surface versus cavity expansion velocity for
(a) an incompressible material and (b) a compressible material.



28

3. THEORY OF CAVITATION INSTABILITIES UNDER
SPHERICALLY- SYMMETRIC LOADING

3.1 QUASI-STATIC ANALYSIS

This analysis follows the work outlined by Chadwick (1957). However, our

analysis emphasizes cavitation instabilities in both a finite and infinite solid

medium subjected to spherically-symmetric loading, which is gradually increased

so that dynamic effects can be negligible. The material is assumed to be an

isotropic and elastic-plastic solid.

3.1.1 Cavitation instabilities in a finite solid medium with elastic/perfectly-plastic
materials

We begin by considering a spherical solid medium with internal radius, a,

and external radius, b, subjected to uniform tension, cr0, at r b as shown in Figure

3.1. To simplify our analysis, we assume that b is much larger than a and R

throughout the deformation state so that the remote field remains elastic. The initial

position of some arbitrary point inside the body is specified by the spherical polar

coordinates (ro, 0, and q) with the origin at the center of the cavity. Since the

system has a radial symmetry throughout the deformation, the position after

loading is given by (r, 6, and ç5).
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Figure 3.1 Spherical cavity in a finite solid medium under spherically-symmetric
loading.

3.1.1.1 The elastic response

As o gradually increases from zero, the deformation is entirely elastic. As a

result, the elastic response is governed by the equilibrium equation (neglecting the

convective and acceleration term),

d2u 2 du 2
0, (3.1)

dr2 rdr r

and stress-strain relations satisfy

du u1E v)+2v ,
(1+v)(1-2v)L dr rj

E [du u1
I
V-+-°

(1+v)(1-2v)L dr rj (3.2)
du

6r
dr

U
go =g0 =-,

r



where U is the radial displacement, E is Young's Modulus, and v is Poisson's

ratio. The boundary conditions are

0r((2) = 0,

°rQ')= 0o.
(3.3)

The solution of equation (3.1) and (3.2) subjected to the boundary conditions (3.3)

is

{i

as"
-(f) }/j. (3.4)

(3.5)2r)J
au=-1 1(1 + v)aa 1 + (1 2v)r}/[1

).
(3.6)

2 r2

The equations (3.4)-(3.6) are valid until the onset of plastic yielding. At plastic

yielding, the state of stress is given by the yield criterion of Tresca as

a = (3.7)

where Y is the yield stress. Since cr9 crr is greatest on the cavity wall, r = a,

yielding begins there. The corresponding pressure can be obtained by substituting

equations (3.4)-(3.5) into (3.7)

7cr31J (3.8)

3.1.1.2 The plastic-elastic response

When o > cr, a plastic zone is formed around the cavity with outer radius

R while the rest of medium remains elastic. The boundary conditions are given by
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£TEIr:b -a0,
(3.9)

a,Ira =0,

and the radial stresses must continue across the interface at r = R

,Ir=R 7jr=R' (3.10)

where indices E and P represent the elastic and plastic zone respectively.

From equations (3.1)-(3.2), the stresses in the elastic zone, R r b, are

A(2E ( Ea
r3 1+v) kj-2v

(3 11)
A(E (Ea9 =i +Bi
r3 1+v) 1-2v

where A and B are parameters to be determined by the boundary conditions (3.9)

and the yield criterion (3.7). A and B are found to be

(1+ v) YR3
A=

3E
(3.12)

(1-2v)( 2YR"B=
E

The elastic stress-strain distribution is therefore

2yrR R1a

E YrR 2R]cr9 =-I---+ +a,3[r b
(3.13)

6E 2Y(1+v)R3 1-2v[ 2YR1
3E + E [0o

+

E(l')l? 1-2Vr 2YR1
3E

3+ EL 3b3j
The displacement is

(1-2v)F 2YR1
(3.14)

r E
[ao--jr.

3E
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The stresses in plastic zone, a r R, are governed by the equilibrium

equation:

=0.
dr r

(3.15)

By using the yield criterion in equation (3.7) and integrating with the boundary

conditions (3.10), the stresses distribution is

2Y
1

R3
+1=0_[ -] 2Yln

(3.16)
Y[ 2R3] (rji=a0+- +2Yln

and the relationship between a and R satisfies

R ci
=e2 (3.17)
a

where b >> R. By using the flow rule, the compressibility condition gives the

relationship presented in equation (2.3). Then, equation (2.3) is integrated with the

boundary condition (3.10), which results

r +2e9 =-[(l-2v)crr +2(1_2v)oo}_--(1_2v)[fr+ao]. (3.18)
E E

As b increases, the strain in the plastic zone becomes large especially near

the cavity wall. In order to deal with the large strain in the plastic zone, the most

favorable choice is the logarithmic strain:

( / \2idr du 1duS =1nIi=+I +...
dij) dr 2dr)

(3.19)
(r u 1(u2e9=lnlI=+li +....

r 2cr)

Combining equations (3.16) and (3.19) with equation (3.18) yields

= 3flln--,Ld] R

r23'dr = .L r02dr,
R3

(3.20)



where

fl=(1-2v). (3.21)
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According to a continuity requirement on the displacement at the interlace, r = R,

the solution of equation (3.20) must satisfy

where

r=R (3.22)
=R(1-a),

a=(1+v). (3.23)

Integrating equation (3.20) with the upper limit in equation (3.22) and the lower

limit at r = a when i = a0 , we obtain

çr2-3fldr =
f° (3.24)

exp[(l- fl)(1 -)] -1 = (1- /3)[(.L) exp(1 ._2.) -(1 _-a)3],

or a a0exp[_(f_.)]{(1 - /3)' (exp[_-(1 /3) __i)]_i) + (1_a) (3.25)\ ( 3o

If a >>ao then 0 and p Scr where Se.,. is the cavitation limit stress.

Substituting into equation (3.24) results in

S 2[i 1
ln{1_(1_fl)(1_a)3}]. (3.26)

i-s

Moreover, we found that the cavitation limit could be accurately determined by the

slope between a and ee. Let us consider

da
urn da0urn

E de I

de9 lr=b
°Ir=b

(3.27)

if a is large but less than an infinity, o is less than Se,.. As the result, we introduced

a parameter, 8, into equation (3.26) as
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s =1[+ 1 lnhi_(i_fl)(i_a)3}_8]. (3.28)3[1fll
Thus, equation (3.27) becomes

da

da
lim urn

0

(7-4S dc o-*o
(3.29)

r b do0 r=b

00 =.c

We evaluated equation (3.29) using Mathematica program, which results

lim
da

(3.30)
0o4Scr ds'

r=b

This equation implies that the cavitation limit occurs when the slope between a and

89 becomes infinite.

3.1.2 Cavitation instabilities in an infinite solid medium with elastic/perfectly-
plastic materials

Consider an infinite solid medium containing an internal cavity with inner

radius, a, subjected to uniform far-field tension, o, on the outer surface, r = ', as

shown in Figure 3.2. The analysis proceeds using the same methods as those

discussed in Section 3.1.1. It is obvious that these solutions can be obtained by

directly replacing b and o in solutions of the previous section with infinity and cr

respectively.

3.1.2.1 The elastic response

The elastic solutions are given as

ar ={i_J} (3.31)
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I
c70 :=cy1+----',

2r

(1+v)a3a,,, 1
2E

and the applied pressure at the onset of yielding is

2Y
0cr

Elastic zone

\Plastic zone_i

Jr

(3.32)

(3.33)

(3.34)

Figure 3.2 Spherical cavity in an infinite medium under remote spherically-
symmetric loading.

3.1.2.2 The plastic-elastic response

In the elastic zone, R r o, the elastic solutions can be written as
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Ea =---+ar
2YR3

3 r3

a YR3

Er--
2Y(1+v)R3i-,

3E r
Y(1+v) R3

3E

UE=[__1_')[3Er)
In the plastic zone, a r R, the stress distribution is

2Y
ar" a,--+2Y mi - I,

3 1R)

a8 =a +r+2Y in(L
3 R)

Additionally, the relationship between a and acan be written as

(3.35)

(3.36)

-1/3

a = aoexpiI_(.-_+)]{(1 fl)1 (exp[_(i fl)(_i)]_i)+ (1 cr)1 (3.37)
2Y

and the cavity limit stress, Ser, is given by equation (3.26). Equations (3.14) and

(3.37) are the same as those of Chadwick (1957). Figure 3.3 illustrates the plot of

the cavity expansion au/a versus the load factor aJY for the case of the perfectly

plastic medium: E = 10 Mpsi, Y = 40,000 psi, and v = 0.33.

In order to compare equation (3.26) with those of HillI (1950) and Huang et

al. (1991) for the case of cavitation instabilities in an elastic-plastic medium,

substituting equations (3.21) and (3.23) into (3.26) results in

S 2[ 1-=- 1+ in 1_(1_2s (1_2v))(1(1 v
Y 3[ 1-2e (1-2v) )J

} ]
(3.38)

y

Values of 1 (1 2v) for various combinations of v and e are displayed in

Table 3.1. It is seen that

1-2e(1-2v)1, (3.39)



when e, <102. Therefore, substituting equation (3.39) and

v )J =1E(1v)+O(E2), (3.40)

into equation (3.38) and rearranging lead to

=[1+lfl{1_(1_2ey(1_2v))(1y(1_v))}']+O(ey2)

=r1+1r 1 }]+o(E2.
(3.41)

3[ l3(1v)e
Equation (3.35) is the same as those of Hill (1950) and Huang et al. (1991).
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Figure 3.3 Cavity expansion vs. load factor in elastic/perfectly-plastic material:
E = 10 Mpsi, e = 0.004, and v= 0.33.



Table 3.1 The variation of 1-2s (1-2v)with v and e

0.2 0.3 0.4

102 0.98800 0.99200 0.99600

i0 0.99880 0.99920 0.99960

10 0.99988 0.99992 0.99996

3.1.3 Cavitation instabilities in an infinite solid medium with strain-hardening,
elastic-plastic, materials

The analysis of cavitation instabilities with strain-hardening materials is

derived using the same methods as those described in Section 3.1.2. In order to

include the strain-hardening effects into the governing equation, the yield condition

is given in the form of

OTr

00

(3.42)

whereH is the work-hardening function and dê" is the increment of equivalent

plastic strain. The boundary conditions are

I r=a
0,

p E 2Y (3.43)
r r=R r Ir=R =+O

where Olr_R is given by equation (3.35).

For the plastic-elastic response, the radial stress is obtained by integrating

the equilibrium equation (3.15) with the boundary conditions (3.43):

R
(3.44)2Y +3ln[J]+2j H(

r
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To simplify our analysis, we assumed that the medium is incompressible. Then

the equation of mass conservation can be expressed as

r3 -i =a3 a =R3R. (3.45)

Manipulating the last equality in equations (3.45) and making use of the

displacement relation in equation (3.35) yields

R3R=yR3, (3.46)

where

y=i(iØ)3,
(347)

=Y/2E.

Next, equating the middle equality in equations (3.45) with (3.46) yields

1/3

(3.48)
a

where

8=l_a/a. (3.49)

By combining the Prandit-Reuss relations,

dI =df =2d4, (3.50)

with the assumption that the plastic strain components arc much larger than the

corresponding elastic strain, we obtain

JdeI' =2s =21n(r/i). (3.51)

Substituting equations (3.48) and (3.51) into (3.44) results

(3.52)

where

(3.53)

It is found that

=[y+H121n')1' >0. (3.54)
do 2[ a0jj



This equation implies that ala0 increases monotonically with c. Thus, if o. is

equal to a finite value, Se,., when 6= 1, we have a cavitation instability similar to

the one shown in Figure 3.3. By changing the integration variable of the second

term in equation (3.52), we obtain the expression for the cavitation limit stress, Se,-,

as

H(ij)
Scr = Y [1 in ill +

£1n(1-Ø) exp(-17)
1dii. (3.55)

The integral on the right appears to converge for varieties of functions, H.

Chadwick (1957) demonstrated that a function ofH could be accurately represented

by a polynomial expression given in equation (2.14). Finally, he evaluated the

corresponding form of equation (3.55), which results in

2 N

Ser =.Y[1_1nr]+_J n!C(n+1), (3.56)
3

where is the Reimann zeta function. In the case of linear work-hardening, N 1

'r-and ç(2)=

Scr =1[1_ln(y)F,t2Hi, (3.57)

where H1 is the linear work-hardening constant.

Let consider a stress-strain curve for the linear strain-hardening material

illustrated in Figure 3.4. It is found that the stress-strain relation is

( m
EIE',

1,n )
(3.58)

where rn is the linear strain-hardening constant. Comparing equations (3.42) with

(3.58), it is found that

H1
m

E. (3.59)
1 in
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ru

e

Figure 3.4 Stress-strain curve for linear hardening elastic-plastic materials.

3.2 DYNAMIC ANALYSIS

This analysis follows the work presented by Hopkins (1960) on the analysis

of dynamic expansion of an internal pressurized spherical cavity in incompressible

medium. However, in this analysis a remote tension is applied. Furthermore, we

included the strain-rate hardening effects into our analysis. As mentioned by many

authors, the rate of cavity expansion is relatively high during the first expansion

phase in which it will directly affect to material properties. This phenomenon is

observed in rate-dependent materials such as metals. We will study effects of

inertia and strain-rate hardening on dynamic responses of the medium

independently.
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3.2.1 Cavitation instabilities in an infinite solid medium with combined strain-
rate hardening and inertia effects

We begin by considering an infinite solid medium containing an internal

cavity with inner radius, a, subjected to uniform far-field pressure, o, on an outer

surface, r = , as shown in Figure 3.2. In order to deal with large deflections, we

use strain-rates in the forms of

Er r/atv/,
= = v/r,

(3.60)

where v is a velocity field depending on the radial distance measured from the

center of cavity, r, and time, t. To simply our analysis we assume that (1) crC. is

suddenly applied at t = 0 and remains constant for all time and (2) the medium is

incompressible. The incompressibility requires that

Er+Eô+Eø= (3.61)

Substituting equations (3.60) into (3.61) gives

(3.62)

so that the particle velocity can be written in term of the velocity of cavity

expansion as given in equation (2.44) by Hopkins (1960). Thus, the strain-rates can

be written as

Er
=_2a2á/r3,

= a2à/r3,

and the equation of motion is

(3.63)

('at) av)aa 2 )_P_+V_}
ar r at ar

(3.64)
a21

=P[(a2a+2aa2_2a

rr

where p is the density of material and a is the current cavity radius.
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To describe the post-yield behavior of yield stress on strain-rate

hardening materials, we use the yield stress equation (Perzyna, 1966):

(3.65)

where Y and Y0 are the yield stresses in the initial and current states respectively;

is the equivalent plastic strain-rate; m and C are constants. To simplify our

analysis further, we assume that the elastic strain rate components are much smaller

than the plastic strain rate components; therefore, ê, ê. For radial symmetry, the

equivalent plastic strain rate can be written as

2 2 211/2

ep [&r_) +(r_é) +(e9-e)j

2.
=--(e0 r)'

2a2á

r3

(3.66)

Thus, the expression of the yield stress for linear strain-rate hardening (rn = 1) is

y=y[i+c2].
(3.67)

3.2.1.1 The elastic response

The initial response is purely elastic throughout the medium such that small

strain components are expected. The boundary conditions are

r=a =

ar 1r= =

(3.68)

By integrating the particle velocity equation (2.44), and substituting it into the

expression for the hoop strain, we arrive at

u a3a
3

(3.69)
r 3r
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where ac is the initial cavity radius at t = 0. In case of the radial symmetry, the

hoop strain is given by Hooke's law as

80 (
(3.70)

and together with equation (3.69), we obtain

a3 a
°r o =-2E

3r3
(3.71)

Substituting equations (3.71) into (3.64) and then integrating with boundary

conditions (3.68), obtain

(3.72)

Let us define the displacement of cavity surface, t5 as

8= a a0. (3.73)

It follows from equation (3.72) and the assumption of small 8 and S that the

governing equation becomes

3 pa pa0
(3.74)

This is a linear ordinary differential equation subjected to the initial conditions,

8=8=0 at t =0. Integrating equation (3.74) yields

ö=ao[i_cos / 4E (3.75)
4 EL 43pa02J

This equation is valid until the onset of yielding on the cavity wall. At yielding, the

state of stress is given by substituting equations (3.67) into the yield condition

(3.7):

0r =[i+c2i] (3.76)

Equating equations (3.71) with (3.76) and evaluating at r = a results

[1+C]=2E. (3.77)
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This equation is used to determine the initial conditions for the plastic response

where the expressions for a and a are given by equations (3.73) and (3.75).

3.2.1.2 The plastic response

After the onset of yielding on the cavity surface, the yielding spreads

outward from the cavity. The boundary conditions are

0r I ra = 0,
(3.78)

0'r =

and radial stresses must be continuous across the interface

rIr=R _arlr=R. (3.79)

In the plastic zone, a <r <R, the radial stress, o', is given by substituting

the yield condition (3.76) into equation (3.64) and integrating with the boundary

condition (3.78):

[
(rJ 2 11 1o;J =21' in --Ca2à

a 3 r a
(3.80)42 3 2aa_P[!(a2ä+2aâ2)_

2r4
_aä__.â].

In the elastic zone, R <r < x', it follows from equation (3.64) that

[1 a4â2l_pf_(a2ä2ad2)_
2r4

(3.81)
[r

The relationship between a and R is obtain by equating equations (3.71) with (3.76)

and then evaluating at r = R:

R3 =---[E(a3 _a)_31Ca2a1.
31

(3.82)

By applying the boundary condition (3.79) and making use of equation (3.82), we

arrive at the differential equation of the cavity radius,



r E(1_)a=I
Pa[ 3 (E{1}-3YoC;)

----ml -
21 [2 (EJ1_4l_31c)] (3.83)
3 [3i' 1. aJ

_) 2

3 aL2E{1 }-3Yc }
which is subjected the initial condition obtained from equation (3.77).

that

For the quasistatic case where a = a 0, it follows from equation (3.83)

2Y "2E I a1o- =l1+lnl 1
3 [ 3}

L

(3.84)

and letting a -* oo at = Se,., it results in

2Y[ 1+lnIIl. (3.85)
2E'l

This equation has the same result as Huang et al. (1991).

For the dynamic case we assume that a,. is different from Se,. by an amount

2Y[ 2E

L

cc=I1+ln -i-A (3.86)

Next, substituting equation (3.86) into (3.83) yields



47

1 2Y E(1
a\

a=I -I i+lnI Ij+A
pa[ 3

L
3)] 3(E{1_}_3Y0C)

_1n[__'E1_4}_31C)] (3.87)
3 [3Y a

4YCà 3 Y 3 .7
+

3 a 2E{14}3yca 2

If the cavitation instabilities does not exist, the maximum value of cavity radius,

arnax, will be finite and at this point a =0 and a <0. Then, substituting these values

into equation (3.87) results in

1 all
A----2-lnI 1pa[ 3 J]<O.

r-
h. '

Since 0<a/a <1, l < 0. Therefore, o. must be below the static cavitation

stress to avoid a cavitation instability in the dynamic case.

These nonlinear differential equation (3.83) was solved by using ODE 45

code, in the Matlab program. The numerical scheme is based on an explicit Runge-

Kutta 45 formula, the Dormand-Prince pair. The tolerances were set at 10_8 for both

real and absolute tolerance. Figure 3.5 illustrates the yield stress versus the strain

rate for incompressible and elastic/perfectly-plastic material with various linear

strain-rate hardening effects: E = 10 Mpsi, , = 0.004, v= 0.5, p= 0.000259 ib-

sec2/in4, and 0 C 0.1 sec. Figure 3.6 illustrates the numerical solution at an

applied load of 163.094 Ksi slightly above the cavitation limit stress (Scr = 163.093

Ksi) for (a) Cavity expansion versus time and (b) Velocity of cavity expansion

versus time. As expected, the cavity growth rate is lower when the strain-rate

hardening increases.
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Figure 3.5 Yield stress vs. strain rate for incompressible and elastic/perfectly-
plastic material with various linear strain-rate hardening effects: E 10 Mpsi, , =

0.004, v= 0.5, p = 0.000259 lb-sec2/in4, and 0 C 0.1 sec.
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Figure 3.6 Numerical solutions of dynamic responses (with combined strain-rate
hardening and inertia effects) under spherically-symmetric loading for various
linear strain-rate hardening coefficients, 0 C 0.01 sec. (a) Cavity expansion vs.
time; (b) Velocity of cavity expansion vs. time. The step loading is suddenly
applied for magnitude of 163.094 Ksi (slightly above the cavitation limit stress, Scr

= 163.093 Ksi) and remains constant for all time.
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3.2.2 Cavitation instabilities in an infinite solid medium with only strain-rate
hardening effects

The solution for this problem is obviously obtained from ones in Section

3.2.1 by replacing p with zero. For the elastic response, it follows from equilibrium

equation (3.64) that there is not enough information to construct the differential

equation for a cavity radius. For plastic-elastic response, the governing equation is

obtained from equation (3.87) as

E(1-'
\ a)cr-__________

3 ({i_' _3YC)

3.

_Qlflr__(EJl
3

L
I _-f_3YC.)1 (3.89)

4YCà 3 1 =0.
+ a 2E{1_}_3YC

There are no initial conditions given for this equation; however, they can be

determined in an approximate way. First, we have to determine a minimum value

of a at which equation (3.89) is still valid. Then, we solve for the corresponding

value of a. Finally, we assume that a and a are responses at t = 0. This

approximation is quite accurate since, by without inertia mass, the time at initial

yielding is apparently very close to zero. This nonlinear equation is solved

numerically by using the Secant method (Hoffman, 1992) in the Matlab program.

The material is assumed to be incompressible and elastic/perfectly-plastic solids

with various linear strain-rate hardening effects: E = 10 Mpsi, = 0.004, V 0.5, p

= 0.000259 lb-sec2/in4, and C = 0.1, 0.05, and 0.01 sec. Figure 3.7 illustrates the

numerical solution at an applied load of 163.094 Ksi slightly above the cavitation

limit stress (Se,. 163.093 Ksi) for (a) Cavity expansion versus time and (b)

Velocity of cavity expansion versus time. Again, the cavity growth rate is lower

when the strain-rate hardening increases.
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Figure 3.7 Numerical solution of dynamic responses (with only strain-rate
hardening effects) under spherically-symmetric loading for various linear strain-
rate hardening coefficients, 0.01 C 0.1 sec. (a) Cavity expansion vs. time; (b)
Velocity of cavity expansion vs. time. The step loading is suddenly applied for
magnitude of 163.094 Ksi (slightly above the cavitation limit stress, Scr 163.093
Ksi) and remains constant for all the time.
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3.2.3 Cavitation instabilities in an infinite solid medium with only inertia effects

The solution for this problem is apparently obtained from ones in Section

3.2.1 by replacing C with zero. Therefore, for the elastic response the governing

differential equation is the same as equation (3.74). At the onset of yielding on the

cavity wall, the yield condition is obtained from equation (3.77) as

Y=2Es =2-
a0

(3.90)

where 8 is cavity displacement when t = t1 at the initial yielding. Substituting

equations (3.75) into (3.90), results in

2Y'/3pa
(3.91)

4E

and corresponding a1 and a1 are

(Y
I

a =11+

a k_ Y
(3.92)

\1Ep J
These are the initial conditions for a governing equation in the plastic-elastic

response.

'S

In the plastic-elastic response, the differential equation of the cavity radius

i F 21' ( 1_')) 3a=I oç--I 1
pa 3 3Y a3J))aj. (3.93)

Furthermore, the velocity of cavity expansion at steady state response can explicitly

solved from equation (3.93) by letting ii = 0 at a co:

12a =j(o Scr), (3.94)
Vp

where Se,. is the cavitation limit stress given by the quasi-static analysis.
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The nonlinear differential equation is solved by using ODE 45 code in

the Matlab program with both real and absolute tolerance set at 1 8 The material is

assumed to be incompressible and elastic/perfectly-plastic solid: E = 10 Mpsi, , =

0.004, v= 0.5, and p= 0.000259 lb-sec2/in4. Figure3.8-3.10 illustrates the cavity

growth for various far field loadings. Figure 3.8 demonstrates the return motion of

the cavity following the first expansion phase when the applied load is 158 Kpsi

below the cavitation limit stress (Se,. = 163.093 Ksi) as described by Hoskin (1960).

Figure 3.9 demonstrates the responses when the applied load is equal to the

cavitation limit stress. Figure 3.10 demonstrates a cavitation instability when the

applied load is slightly greater than the cavitation limit stress.
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Figure 3.8 Numerical solution (with only inertia effects) under spherically-
symmetric loading at o = 158 Ksi (below the cavitation limit stress, Scr = 163 .093
Ksi) for (a) cavity expansion vs. time and (b) velocity of cavity expansion vs. time.
The step loading is suddenly applied for magnitude of 158 Ksi and remains
constant for all time.
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Figure 3.9 Numerical solution (with only inertia effects) under spherically-
symmetric loading at = 163.093 Ksi (equal to the cavitation limit stress) for (a)
cavity expansion vs. time and (b) velocity of cavity expansion vs. time. The step
loading is suddenly applied for magnitude of 163.093 Ksi and remains constant for
all time.
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Figure 3.10 Numerical solution (with only inertia effects) under spherically-
symmetric loading at o. = 163.094 Ksi (slightly above the cavitation limit stress,
Scr = 163.093 Ksi) for (a) cavity expansion vs. time and (b) velocity of cavity
expansion vs. time. The step loading is suddenly applied for magnitude of 163.094
Ksi and remains constant for all time.
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3.2.4 Cavitation instabilities in a finite solid medium with only inertia effects

We begin by considering a spherical solid medium with internal radius, a,

and external radius, b, subjected to uniform tension, 0o, at r = b as shown in Figure

3.1. The analysis is performed with the same method as the one mentioned in

Section 3.2.3. For the elastic response, the boundary conditions are

I ra

aFIFb 00
(3.95)

Substituting equations (3.71) into (3.64) and then integrating with boundary

conditions (3.95), we obtain

1p(l/a_1/b)[0 _(a _)(u/a _1/b)
(3.96)

+pa2 {_.
(1/an 1/b4) 2a (1/a 1/b)}].

This differential equation is subjected to the initial conditions: a = a Oat t = 0. To

simplify, we assume that b>>a; therefore, the initial conditions of the plastic-elastic

response are given by equations (3.91) and (3.92).

For the plastic-elastic response, the boundary conditions are

a- =0,r Fa
(397)

a-rjr=b °0

and radial stresses must be continuous across the interface

crrlr=R clrlr=R. (3.98)

In the plastic zone, a < r < R, the radial stress, o, is given by substituting

the yield condition (3.7) into equation (3.64) and integrating with the boundary

condition (3.97):

a-=2l1n)_p[!(a2ä+2aâ2)__aä_..á2]. (3.99)

In the elastic zone, R <r < b, it follows from equation (3.64) that



' 2 a4à2la,__E(ao)_p1i(a2äaa
) 2r] (3.100)

r3 Lr

The relationship between a and R is obtained by equating equations (3.71) with the

yield condition (3.7) and then evaluating it at r =

R3 =---E(a afl.
3Y0

(3.101)

It follows from the boundary condition (3.98) that the differential equation for

cavity radius is

a1 2E(aa)
pa(1a/b)[[ 3Y1 a3J)3Y b3

J (3.102)

3
--pa2 {3_4a/ba4/b4}].

The nonlinear differential equation is solved by using ODE 45 code in the

Matlab program with the real and absolute tolerance set at 1 08. The material is

assumed to be incompressible and elastic/perfectly-plastic solid: E = 10 Mpsi, =

0.004, v= 0.5, andp= 0.000259 lb-sec2/in4. Figure 3.18 illustrates an effect of

medium size on the prediction of cavitation instabilities when the applied load is

equal to 163.094 Ksi (L/D = 300) slightly above the cavitation limit stress (Scr =

163.093 Ksi). The medium size, LID, is the ratio of an external radius to an internal

radius of a spherical medium at time, t = 0. For a small medium size, we found that

the cavity grew exponentially when time increased. This is caused by insufficient

inertia force to retard the cavity growth. However, a sufficiently large medium size

has cavity growth similar to that of an infinite medium.
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Figure 3.11 The effects of model sizes on the prediction of dynamic responses
(with only inertia effects) of cavitation instabilities using a finite body modeling.
The plot of cavity expansion vs. time for various model sizes. The step loading is
suddenly applied for magnitude of 163.094 Ksi (slightly above the cavitation limit
stress, Scr = 163.093 Ksi) and remains constant for all the time.



4. THEORY OF CAVITATION INSTABILITIES UNDER
AXISYMMETRIIC LOADiNG

Since it is difficult to determine an exact solution for a cavitation instability

under axisymmetric loading conditions, we focus our attention on solutions using

the finite element method.

4.1 PROBLEM FORMULATION

We use the cylindrical coordinate system (r, 0, and z) to specify a medium

configuration as illustrated in Figure 4.1 where X1 and X2 represent the r and z-axis

respectively. The spherical void and the cylindrical medium have an initial radius,

ro and R0 respectively. The boundary conditions satisfy

UI Ix,=0=0,

I

=0=0,
(4.1)

a2,

I2 =R0
= a1,

where the ratio of ci10 was kept fixed throughout a numerical analysis.

The governing equations for dynamic response of a medium will be derived

by requiring the work of external forces to be absorbed by the work of internal,

viscous, and inertia forces for any small kinematically admissible motion. By

neglecting body and viscous forces, the principal of virtual work is written as

J{86}T {a}dV + L{su}T p{u}dV ${öu}T {P} dS, (4.2)

where & and ce are small arbitrary displacements and their corresponding strains

respectively, P are prescribed surface tractions, p is the mass density of the

medium, and V and S are the volume and surface area respectively.
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Figure 4.1 A quarter-symmetry model of a body containing a spherical cavity at the

center.

4.2 FEA THEORY

The main benefit of a finite element method is the ability to represent a

structure as an assemblage of discrete finite elements with the elements being

interconnected at nodal points on the element boundaries. In this section, we will

go through the theoretical development of a finite element method.

4.2.1 Finite element linear analysis

We begin by considering the finite element formulation of a four-node

isoparmetric, axisymmetnc element with two degrees of freedom (x and x2) at each

node as illustrated in Figure 4.2. The advantage of using isoparametric formulation

is the ability to generate nonrectangular elements. The displacements in the local
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coordinates (X1 and X2) within an element are assumed to be a function of the

displacements at the four finite element nodal points. Therefore, we obtain

{u}=[H]{ii}, (4.3)

where H is the displacement interpolation matrix, and t2 is the vector of the nodal

global displacement components. The displacement interpolations can be written in

the matrix form:

where

I u1(,,j) [h1 0 h2 0 h3 0 h4 01
U2

h1 0 h2 0 h3 0 h4]

u

' ()=.(i+)(i+),
h,(7) =(i)(I+),

h3 (4,) =3(i)(ii),

h4 (,i) =j(i+)(iq).

(4.4)

(4.5)

u,' is the displacement of nodej in the X direction, and and i are the transformed

coordinates in the range ito 1. In the isoparametric formulation, the element

geometry is interpolated in the same way as displacements:

I x 1

1xi&i)l

TX, (,ii)
= [H] x L (4.6)

Lx: i

where xf is the coordinate of nodej in the X, direction.
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IIp

Figure 4.2 Two-dimensional four-node axisymmetric element.

The strain-displacement relations are given as

1611] 1 au111x, 1

622

1712 lau1/ax2+aU2/aX,

U2/X2
(4.7)

r
r

L33J [ j

and it follows from equations (4.4) that

[ooio±o1
ax1 ax,

1

r6111

1 I

1u 1

6
I

x2 x2 x2
2

1 712 1' I a, h1 ah2 ah2 3h3 h3 ah ah4 I N (4.8)

L33i HLO!OlOOh u2J

[ x,

{s} =[B]{ul}.

Unfortunately, h1, h2, h3, and h4 are written in terms of and i, but we need to

differentiate them with respect to Xj and x2. By using the chain rule, we obtain
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Jahi/al 1ah/ax1l
ah1/aJ1 loh/ax2J'

where

(4.9)

1x1/ ax2/al
Lax1ia ax2/a77]'

(4.10)

and i = 1, 2, 3, and 4. Multiplying with [J]4 on both sides results in

Iah,/ax11 1I1ahi/l (4.11)=

The stress-strain relations are

01

(4.12)

where

1 01u 1v
LI

1 0
V

[E]= (1v)E 1v lv
(4.13)

(1+ v)(l 2v)
0 0

1 2u
0

2(1u)

0 11u 1u
We rewrite the principal of virtual work in equation (4.2) in term of a single

finite element as

L
0p{Su}T{u}dV

+ L
{8e}T {a}dV = J{Su}T{P}dS, (4.14)

where

1Ir1{P}=' . (4.15)
L X2J



and °p is the density at time, t = 0. Substituting equations (4.3), (4.8), and (4.12)

into (4.14), we obtain the equilibrium equation for a single finite element as

[M}{}+[K]{I} ={R}, (4.16)

where Mis the mass matrix, K is the stiffness matrix, and Fe is the vector of applied

surface tractions

[M]= ffl°p[H]T[H]dV, (4.17)

[K}= JJf [B]T {E][B]dv, (4.18)

{R} = jJ{H}T{P}dS. (4.19)

In the quasi static analysis, the finite element equation is obtained from

equation (4.16) by neglecting the term associated with the nodal accelerations:

[K]{ä} ={R}. (4.20)

4.2.2 Finite element nonlinear analysis

Nonlinearity in structures can be classified as material nonlinearity, which

is associated with the changes in material properties (i.e., in plasticity), or

geometric nonlinearity, which is associated with changes in configuration (i.e., in

large deflections of a slender beam). In general, for a time-independent problem in

linear analysis both K and R are regarded as independent of z2 , whereas in

nonlinear analysisK and/or R are regarded as functions of z. Table 4.1 gives a

classification that is used in practical nonlinear analyses.

In a nonlinear analysis, the equilibrium equation of a body has to be

established in the current configuration. Moreover, it is necessary to employ an

incremental formulation in which a time variable is assumed to describe the loading

and the motion of the body. To develop the solution strategy, we use the



Lagrangian (material) formulation by assuming that solutions for the static and

kinematic variables from the time 0 to time t are known. Then, we solve for a

solution at time, t + At, by using the equilibrium equation at time, t + At, and then

we repeat the same processes for each additional time increment until the loading is

completely applied to the body.

Table 4.1 Classification of nonlinear analysis.
Typical formulation Stress and strain

Type of analysis Description
used measures

Materially nonlinear Infinitesimal Materially nonlinear Engineering stress and

only displacements and only strain

strains, stress-strain

relation is nonlinear

Large displacements, Displacements and 1. Total Lagrangian Second Piola-

large rotations, but rotations of fibers are 2. Updated Lagrangian Kirchhoff stress and

small strains large, but fiber Green Lagrange strain

extensions and angle

changes between

fibers are small; the

stress-strain relation

may be linear or

nonlinear

Large displacements, Fiber extensions and 1. Total Lagrangian Second Piola-

large rotations, and angle changes between 2. Updated Lagrangian Kirchiioff stress and

large strains fibers arc large, fiber Green Lagrange strain

displacements and

rotations may also be

large; the stress-strain

relation may be linear

or nonlinear
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4.2.2.1 Stress and strain tensor

In a large deformation analysis, the configuration of the body is changed

continuously; therefore, auxiliary stress and strain measures are required. In this

study, we use the second Piola-Kirchhoff stress, a'S, and Green-lagrange strain, s.

Their benefit over the conventional measures is that their components do not

change when the body is undergoing a rigid rotation.

A fundamental measure of the deformation of the body is obtained from the

deformation gradient, X. In the global coordinates (xj, x2, and x3) at time t, 'X is

defined as

atx1/ox, a'/a° at/aO

'X= 'x,/°x x,/a0x, x2/0x3
, (4.21)

atx/aox a'x3/a°x2 'x3/5°x3

where superscript, 0, represents a component at time t = 0. For a two-dimensional

axisymmetric element, 'X becomes

a'x /ô°x, Yx1 /a°x, 0

= a'2/a°x, 3x2/ô0.r2 0 . (4.22)

0 0

The second Piola-Kirchhoff stresses, S, and the Green-lagrange strains, e, are

written as

= det(X) X 'a XT, (4.23)

(4.24)

where o. is the Cauchy stress tensor at time t, and I is the identity matrix.

Substituting equation (4.23) and (4.24) into (4.14) results in

L
Op{si}r {tü}doV L {}T {S}d0V = 8uT {F}d°S. (4.25)

OSt i

This equation is the basic expression for the finite element formulation of nonlinear

analysis.



4.2.2.2 Total and updated lagrangian fonnulation.

To develop a governing equation for the nonlinear finite element method,

there are two well-known formulations: the total lagrangian formulation (TL) and

updated lagragian formulation (UL). The TL formulation has been recognized as

the Lagrangian formulation in which the solution schemes are referred to an initial

configuration at time 0. However, the UL formulation is based on the same

procedures that are used in the TL formulation, but the solution schemes are

referred to the last calculated configuration. Both the TL and UL formulations

include all kinematic nonlinear effects due to large displacements, large rotations,

and larges strains, but whether the large strain behavior is modeled appropriately

depends on the constitutive relations. The only advantage of using one formulation

rather than the other depends on its greater numerical efficiency. By manipulating

equation (4.25), Bathe (1996) arrived at the basic incremental equations used in the

finite element formulations.

Using the TL formulations, he obtained:

1. Dynamic analysis with the implicit time integration:

[M]{ttA} + [KL + = {t+&R}_ {F}, (4.26)

2. Dynamic analysis with the explicit time integration:

(4.27)

3. Static analysis:

[:KL + = {ttR}_ {F}, (4.28)

and using the UL formulations yields:

4. Dynamic analysis with the implicit time integration:

+ KNL]{Ail} = {tbJR} {:F}, (4.29)

5. Dynamic analysis with the explicit time integration:

(4.30)



6. Static analysis:

where

[:KL + :KNL].tAa = {'R} {:F}, (4.31)

M = Time-independent mass matrix,

'K = Linear strain incremental strain incremental stiffness matrix,

not including the initial displacement effect,

KL, :KL Linear strain incremental stiffness matrices,

KNL, 'KNL = Nonlinear strain incremental stiffness matrices,

t+&R = Vector of externally applied nodal point load at time t+zlt;

this vector is also used at time tin explicit time integration,

'F, 'F, F = Vectors of nodal point forces equivalent to the element

stresses at time t; these vectors are also employed

corresponding to time t+zlt,

= Vector of increments in the nodal point displacements

= Vector of nodal point accelerations at time t; this vector is

also employed corresponding to time t+zlt.

In this finite element discretization, it is assumed that damping effects are

negligible and the externally applied loads are deformation-independent. The

corresponding matrix and vector evaluations are summarized in Table (4.2). In the

case of the TL and UL formulations, the procedure of generating matrices and

vectors are described in details in Appendix B.
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Table 4.2 Finite element matrix formulations.

Analysis types Matrix evaluations

All Analyses [Mt+&]{}
(f

°p[H]" [H}dV){}

{''R} J{H]T {f+Atf} d°S

Total Largrangian formulation [tK
I { (J0 [BL [0EJ[o'BL

]
d oV){i}

[KNL]{} =

{F}= L[BLIT{s}d0v

Updated Largrangian formulation [tK]{}
( L[

:BL]T [E1[:BL]dtv){a}

[:KNL] =(L[:BNL]T[tI[;BNLIdtv)

{:F}= JV[:BLIr{t}dtv

4.3 Numerical procedures for nonlinear finite element analysis

In this section, we study numerical techniques used to evaluate nonlinear

finite element equations in both static and dynamic analyses as presented by Bathe

(1996).

4.3.1 Static analysis

As we discussed in Section 4.2.2.2 that basic equations in nonlinear analysis

are solved at time t+At. Therefore, the force equilibriums are written as

{
R} { t+&F} = 0, (4.32)

where the vector t+LItR stores the externally applied nodal load, and ''F is the

vector of nodal point forces that are equivalent to the element stresses. Since the
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nodal forces t+IiIF depend nonlinearly on the nodal displacements, it is necessary

to iterate in the solution of equation (4.32) so that an out-of-balance forces become

zero.

4.3.1.1 Modified Newton-Raphson method

One of the most well-known iteration schemes for the solution of nonlinear

finite element equations is the modified Newton-Raphson method. This numerical

scheme is suitable for the static and transient analyses. Basically, it can be written

where

{

t+iv
} {

t+&F}O'), (4.33)

['K]{A} {AR} (434)

(i){t+&u} + , (4.35)

{r+Atü}(°) {tâ}
(4.36)

{t+AtF}(°) = {tF}

and i = 1, 2, 3 ..... These equations were obtained by linearizing the response of the

finite element system about conditions at time t. In each iteration, we calculate an

out-of-balance load vector in equation (4.33), which yields an increment in

displacements obtained in equation (4.34). Then, we continue the iteration until the

out-of-balance load vector, AR', or the displacement increments, M°', are

sufficiently small as illustrated in Figure 4.3.

The convergence rate of this procedure is generally slower than the full-

Newton-Raphson procedure, since it uses the same stiffliess matrix, tK, for some

increments in each time step. The frequency of the updated stiffhess matrix
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depends on the degree of nonlinearity of the system response. Nonetheless, it

requires fewer reformations and inversions on 'K.

Load

t+Atfl

'13

t+MR,.. t+AS4C t+MR... ''F'

Slop. t#AtKtO - tK

t+1&t9 Displacement

Figure 4.3 Illustration of Modified Newton-Raphson iteration scheme (for single
degree of freedom simplification).

4.3.1.2 Arc-length method

The arc-length method is suitable for nonlinear static equilibrium solution

of unstable problems. Applications of arc-length method involve the tracing of a

complex path in the load-displacement response into the buckling/post buckling

regimes. The arc-length method uses the explicit spherical iterations to maintain the

orthogonality between the arc-length radius and orthogonal directions. It is

assumed that all load magnitudes are controlled by a single scalar parameter, i.e.

the total load factor, 2. Unsmooth or discontinuous load-displacement response in

the cases often seen in contact analyses and elastic-perfectly plastic analyses cannot

be traced effectively by the arc-length solution method.
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Mathematically, the arc-length method can be viewed as the trace of the

total load factor. Therefore, all strategies of the Newton-Raphson method are still

the basic method for the arc-length solution. As the displacement vectors and the

scalar load factor are treated as unknowns, the arc-length method itself is an

automatic load step method. In the arclength procedure, the governing finite

element equations at time t+zlt are written as

t+&2{R}{f+A1F} = (4.37)

where "2 is an unknown scalar load factor (normally within the range 1 X

1). The nonlinear equilibrium equations are rewritten in term of total load factor, 2,

as

where

where

= (t+f2(i_I) + AA(0){R} _{1tF}'', (4.38)

{
t+A112(i) -

= t+&2(i) '2.
(4.39)

In order to solve equation (4.38) in an incremental manner, we rewritte it as

['K]{Al2} = (+&2(i_1) {R}
_{' F}°1

['K]{1211} =R, (4.40)

1(i)
= {Au15 {z\z211},

2(i-1) +

+
(4.41)

Furthermore, there are two fundamental methods generally used to determine an

additional relationship between LIAW and Aâ': the spherical constant arc-length

criterion and the constant increment of external work criterion. In the spherical

constant arc-length criterion (Crisfield, 1981 and Ram, 1981), this relationship is

given as
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L,2l(j)T

(a)2+I =(Al)2
18

(4.42)

where ill is the arc length for the step as illustrated in Figure 4.4a, and fi is a

normalizing factor. Substituting equations (4.41) into (4.42) results in a quadratic

equation in L1A. To initialize this numerical computation, the initial arc-length

radius must be defined. The arc-length radius will be updated at each time step

according to the degree of nonlinearity that is involved during the analysis.

In the constant increment of external work criterion (Bathe and Dovorkin,

1999), this relationship is written as

(t2+1A2o){R}T{}(:) =

(tt,i_O + L\A(i)){R}T 0,
(4.43)

where W is an increment value of external work, which is selected based on the

history of iterations in the previous incremental steps, as illustrated in Figure 4.4b.

Consequently, 1)J' is directly calculated from equation (4.43) and then the A2

values for i 2, 3, ... are obtained from equation (4.43) as

{RT}{ü11}
(4.44)

For problems with the sharp turns in the arc-length curve or path dependent

materials, it is necessary to limit the arc-length radius (arc-length load step size).



(a) (b)

Displacement

Figure 4.4 Load-displacement constraint criterion (single degree of freedom
simplification) for (a) Spherical constant arc-length criterion and (b) Constant
increment of external work criterion.

4.3.1.3 Convergence Criteria

If an incremental solution strategy based on iterative methods is to be

effective, convergence criteria should be established for the termination of the

iteration. At the end of each iteration, the solution should be checked whether it has

converged in with preset tolerances, or whether the iteration is diverging. If the

convergence tolerances are too loose, inaccurate results are obtained, and if the

tolerances are too tight, much computational effort is spent to obtain needless

accuracy. Similarly, an ineffective divergence check can terminate the iteration

when the solution is not actually diverging or force the iteration to search for an

unattainable solution.

Since we are seeking the displacement configuration corresponding to time

t+zit, it is natural to require that the displacements at the end of each iteration be

within a certain tolerance of the true displacement solution. Hence, the first

convergence criterion is given as

II 2 (4.45)
II

II 112
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where CD is a displacement convergence tolerance. The vector il is unknown

and must be approximated. Practically, it is appropriate to use the last calculated

as an approximation to t'i . However, in some problems the actual solution

may still be far from the value obtained when convergence is measured using

equation (4.45) with '',2°. This is the case when the calculated displacements

change only little in each iteration, but continue to change for many iterations, for

example, in elastoplastic analysis under loading conditions.

A second convergence criterion is obtained by measuring the out-of-balance

load vector. For example, we may require the norm of the out-of-balance load

vector be within a preset tolerance, CF, of the original load increment:

- t+AtF(i)Ij

(4.46)2 CF.
t+&R 'F1

2

These criteria (4.45) and (4.46) are not normally considered as the

termination measure. For example, in an elastic-plastic system with a very small

strain-hardening modulus entering the plastic region, the out-of-balance loads may

be very small while the displacements may still be grossly in error. Thus, in general

it is required that 6D and 6F are set to a very small values.

In order to provide some indication of when both displacements and the

forces are near their equilibrium values, a third convergence criterion may be

useful, in which the increment in energy during each iteration is compared to the

initial internal energy increment. Convergence is assumed to be reached when a

present energy tolerance, e, satisfies

[{t+ R} {t+& F}''] CE
[UA0T

({
t+& R} {

(447)

This convergence criterion is most attractive in the termination measure since it

contains both displacements and forces.



77

4.3.2 Dynamic analysis

In nonlinear dynamic analysis, a numerical integration scheme is basically

formulated based on an iterative method as mentioned in Section 4.3.1.1. In

addition to that, we have to construct a numerical scheme in such a way that it

contains both iterative and numerical time integration procedures that can march a

solution forward in time.

4.3.2.1 Implicit Integration

All implicit time integration schemes for linear dynamic analysis can also

be employed in nonlinear dynamic response calculations. One of the effective

numerical techniques generally used is the trapezoidal method.

In order to construct an iterative procedure, we use the modified Newton-

Raphson method to enforce equilibrium of a system at time t+At as mentioned in

Section 4.3.1.1. The governing equilibrium equations (neglecting the effects of the

damping matrix) become

(1) (i-I)[M]{''i} [tK]{Auy) (t+AR}{t+&F , (4.48)

(i-I)(t+ttj}(1) {t+&} (4.49)

Using the trapezoid method, the following assumptions are employed:

{t+&a} {ta} Atd'(,
= +{'}), (4.50)

{'&} {t,} Ati11 {t+At}) (4.51)= +(< u>+
2 '

Manipulating the relations in equations (4.49) to (4.51) results in

{ti} + {&2}') {tz} (4.52)

and substituting it into equation (4.48) yields



where

['k]{A}0 {t+&]} _{r+&F}(')

(4.53)4.(4(
At

j{''u}° _{t})__{ta}_

[,] [tK]+41M1
At2 I (4.54)

We now notice that the iterative equations in dynamic nonlinear analysis

using implicit time integration are of the same form as the equations that we

considered in static nonlinear analysis, but both the coefficient matrix and the nodal

point force vector contain contributions from inertia of the system. Therefore, all

iterative solution strategies for static analysis are also directly applicable to the

solution of equation (4.53). Since the inertia of the system renders its dynamic

response, this results in faster convergence rate than in a pure static response

because of the contribution of the mass matrix to the coefficient matrix. The

convergence of dynamic analysis is always achieved by providing At to be

sufficiently small. Additionally, the solution approach is effective if a diagonal

mass matrix is employed. This mass matrix is obtained by using the lumped mass

method.

The convergence tolerances discussed in Section 4.3.1.3 are also employed

in this analysis, but included the effect of inertia. The convergence is reached when

the following conditions are satisfied:

II
M

(4.55)2 RTOL,
RNORM

(+Ll{A}°T ({
t+AtR}

{
f+&F}

1)

{Au}°T ((t+tR}
{
tF} [M]

(
t}) ETOL, (4.56)

where RTOL is a force tolerance and ETOL is an energy tolerance. Iteration with

sufficiently tight convergence is required. Energy is lost if the convergence

tolerance is not tight enough, but depending on problem being considered the
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predicted response may also blow up if iteration is not used. In practice, it is

frequently found that only a few iterations per time step are required to obtain a

stable condition.

4.3.2.2 Explicit Integration

The most common explicit time integration method used in nonlinear

dynamic analysis is the central difference method. As in linear analysis, the

equilibrium of the finite element system is considered at time, t, in order to

calculate the displacements at time, t+zit. Neglecting the effect of the damping

matrix, we operate for each discrete time step solution on the equations as

[jjJ{t} = {IR}{tF} (4.57)

Using the central difference of time integration, the following assumptions are

employed

çç _1
2

({t-Atâ} _2{'â} +{tta}), (4.58)

Itl ....'(5t+&u}{t._&12}) (4.59)
2At

Substituting the relations for equations (4.58) and (4.59) into (4.57) yields

1
(4.60)

At2 .1

At2

from which we can solve for t+At(, The solution are therefore simply corresponds

to a forward marching in time. The main advantage of the method is that with a

diagonal matrix, M, the solution of tâ does not involve a triangular factorization

of a coefficient matrix.

The disadvantage of using the central difference method lies in the severe

time step restriction. For stability, the time step size, At, must be smaller than a

critical time step which is equal to T/,r, where T is the smallest period in the



finite element system. This time step restriction was derived considering a linear

system, but the result is also applicable to nonlinear analysis. Since for each time

step the nonlinear response calculation may be thought of as a linear analysis.

However, whereas in a linear analysis the stiffness properties remain constant, in a

nonlinear analysis these properties change during the response calculations. These

changes in the material andlor geometric conditions enter into the evaluations of

the force vector, tF Since the value of T,, is not constant during the calculation, the

time step, At, needs to be decreased if the system stiffens, and this time step

adjustment must be performed in a conservative manner, so that with certainty the

condition, T,,/,rzlt, is satisfied at all times.

4.3.3 Rezoning the mesh

The Lagrangian formulation is used to generate the finite element equations

in the ABAQUS program (2001). The mesh is attached to the material and

deformed with the material. In large deformation analysis, elements may become so

severely distorted during the analysis that they no longer provide a good

discretization of the problem. Therefore, it is necessary to rezone the mesh by

mapping the solution from a deformed mesh to a new mesh so that the analysis can

continue.

The rezoning procedure consists of an interpolation technique that

extrapolates the solution at integration points of the old mesh to nodes of each

element and then averaging these values over all elements. Next, the location of

each integration point in the new mesh is obtained with respect to the old mesh.

Finally, the solution at the nodes of the old mesh is interpolated to integrating

points of the new element. After rezoning, it can be expected that there will be

some discontinuity in the solution because of the change in the mesh. Therefore, if

the discontinuity is significant, ABAQUS will provide a message that the meshes



81

are too coarse or that the rezoning should be done at an earlier stage before too

severe distortion occurred. This verification process helps to improve the accuracy

of the rezoning scheme.

4.3.4 Quasi-static analysis using an explicit dynamic formulation

Applying the explicit dynamic procedure to a quasi-static problem requires

some special considerations. Since a static solution is, by definition, a long-time

solution, it is often computationally impractical to analyze the simulation in its

natural time scale, which would require an excessive number of small time

increments. To obtain an economical solution, the event must be accelerated in

some way. However, the problem arises if as the event is accelerated, the state of

static equilibrium evolves into a state of dynamic equilibrium in which inertia

forces become more dominant. The goal is to model the process in a short time

period in which inertial forces remain insignificant.

Let us consider an example shown in Figure 4.5. The Figure 4.5 shows two

cases of an elevator full of passenger. In the slow case the door opens and a man

walks in. To make room, the occupants adjacent to the door slowly push their

neighbors, who push their neighbors, and so on. This disturbance passes through

the elevator until the people next to the door cannot move. A series of waves pass

through the elevator until everyone has reached a new equilibrium position. If you

increase your speed slightly, you will shove your neighbors more forcefully than

before, but in the end everyone will end up in the same position as in the slow case.

In the fast case the door opens and a man runs into the elevator at high speed,

permitting the occupants no time to rearrange themselves to accommodate him. He

will injure the two people directly in front of the door, while the other occupants

will be unaffected.



The same thing is true for a quasi-static analysis. The speed of the

analysis is often can be increased substantially without severely degrading the

quality of the quasi-static solution; the end result of the slow case and somewhat

accelerated case are nearly the same. However, if the analysis speed is increased to

a point at which inertial effects dominate, the solution tends to localize, and results

are quite different from the quasi-static solution. In practice, the frequency of

excitation applied to a system has to be less than roughly one-third of the lowest

natural frequency of a system.

(a) (b)

I!

Figure 4.5 Analogy on an effect of loading rates for (a) a slow case and (b) a fast
loading case.



5. FEA RESULTS AND DISCUSSION

Cavitation instability in elastic-plastic solids subjected to spherically-

symmetric and axisymmetric loadings was studied using the finite element

nonlinear program, ABAQUS (2001). In this study, we focused our attention in

both quasi-static and dynamic analyses

To simulate cavitation instabilities using a finite body, one of the most

important parameters affecting a finite element solution is model size, LID, which

is defined as the ratio of an outer radius of the spherical model (or a height of the

cylindrical model) to the cavity radius as illustrated in Figures 5.1 and 5.10

respectively. In quasi-static analysis under axisyrnmetric loading, the effect of

model sizes on FEA solutions was studied and discussed in Appendix C. Here, the

variation of maximum principal stress and remote axial strain at the FEA prediction

of failure for various model sizes are plotted as illustrated in Figure C.1-C.2. It was

found that with a sufficiently large model size (i.e., L/D = 15,000), we have a

cavitation instability similar to that of an infinite model size.

5.1 QUASI-STATIC ANALYSIS OF CAVITATION INSTABILITIES UNDER
SPHERICALLY-SYMMETRIC LOADiNG

The objective of this study was to validate a finite element solution with an

analytical solution presented in Chapter 3. A model of cavity expansion in a finite

body subjected to remote spherically-symmetric loading was accomplished using

the ABAQUS/Standard program. The finite element analysis providing an arc-

length solver capability of handling limit points was used. Again, cavitation

instability is assumed to occur when the slope between remote strain and cavity

expansion becomes infinite as discussed in Section 3.1.1.



A single cavity in an infinite body was simulated using a quarter-

symmetry model of a body with L/D = 350 as illustrated in Figure 5.1. The finite

element mesh was constructed using an eight-node, axisymmetric, quadrilateral

element. It consisted of 400 elements graded with a fine mesh near the cavity and a

coarse mesh away from the cavity. This model size appears to be sufficiently large

for representing a solution of a cavitation instability in an infinite body. The tensile

load was applied in the radial direction along the outer boundary.

1

Figure 5.1 Finite element mesh for a spherical body.

5.1.1 Cavity instabilities in an infinite solid body with elastic/perfectly-plastic
material

In this FEA simulation, the material is assumed to be elastic/perfectly-

plastic where E = 71 GPa and = 0.003. Figure 5.2 illustrates the plot of cavity

expansion versus load factor, oWY, for various Poisson's ratios. Figure 5.3



illustrates the plot of cavity expansion versus remote strain for various Poisson's

ratios.

It was found that this FEA approach obtained an accurate solution in which

the different between the FEA and analytical solutions (discussed in Section 3.1.1)

is less than 1 percent. Furthermore, as v increases, the remote stress for cavitation

increases, while the remote strain decreases.

p,1

C

c3

1

0 1 2 3 4 5

q/Y

Figure 5.2 Cavity expansion vs. load factor, o0/Y, under spherically-symmetric
loading with elastic/perfectly-plastic materials for various Poisson's ratios, V. The
analytical and finite element approaches are represented by ANAL and FEA
respectively.
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Figure 5.3 Cavity expansion vs. remote strain under spherically-symmetric loading
with elastic/perfectly-plastic materials for various Poisson's ratios, v.

5.1.2 Cavity instabilities in an infinite solid body with linear hardening elastic-
plastic material

In this FEA simulation, the material is assumed to be linear hardening

elastic-plastic where E = 71 GPa, = 0.003, linear strain hardening coefficient, m

= 0.006, and o= 213 + 428.57 e" MPa. Figure 5.4 illustrates the plot of true stress

versus total strain. Figure 5.5 illustrates the plot of cavity expansion versus load



factor, a0/Y, for various Poisson's ratios. Figure 5.6 illustrates the plot of cavity

expansion versus remote strain for various Poisson's ratios.

It was found that the FEA solution presented a saw-tooth pattern near the

cavitation instability state for v> 0.45 which was an indication of numerical

instabilities. Therefore, a FEA solution for v> 0.45 was not presented in these

plots. Nonetheless, the cavitation limit stress obtained from the FEA approach (at v

= 0.45) correlates well with the analytical solution obtained from equation (3.58)

when v = 0.5 with the difference of 1.84 percent. Again, as v increases, o

increases, while decreases.
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Figure 5.4 True stress vs. total strain for linear hardening elastic-plastic material: E
= 71 GPa, = 0.003, and the linear strain-hardening coefficient, m = 0.006.
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Figure 5.5 Cavity expansion vs. load factor, a0IY, under spherically-symmetric
loading with linear hardening elastic-plastic materials for various Poisson's ratios.
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Figure 5.6 Cavity expansion vs. remote strain under spherically-symmetric loading
with linear hardening elastic-plastic materials for various Poisson's ratios.



5.2 QUASI-STATIC ANALYSIS OF CAVITATION iNSTABILITIES
UNDER AXISYMMETRIC LOAD[NG

A model of cavity expansion in a finite body subjected to remote

axisymmetric loading was accomplished using the ABAQUS/Standard program.

The finite element analysis provided both an arc-length solver and rezoning mesh

capability. Here, the stress ratio, aIo, was keep fixed throughout a numerical

analysis where o and o are the first and second principal stress respectively.

Again, cavitation instability is assumed to occur when the slope between remote

axial strain and cavity expansion becomes infinite as discussed in Section 3.1.1.

The finite element mesh of a quarter-symmetry model was constructed using an

eight-node, axisymmetric, quadrilateral element. Figure 5.10 illustrates a finite

element mesh with LID = 15,000.

L

L

L1

Figure 5.7 Finite element mesh for a cylindrical body.



5.2.1 Cavity instabilities in linear hardening elastic-plastic material

A single cavity in a finite body was simulated using a quarter-symmetry

model of a body with LID = 15,000 as illustrated in Figure 5.11. The finite element

mesh consisted of 720 elements graded with a fine mesh near the cavity and a

coarse mesh away from the cavity. However, the model size for the cases of o/aj

= 1 and 0.9 was equal to 5,000. These model sizes appeared to be sufficiently large

for representing a solution of a cavitation instability in an infinite body as discussed

in Appendix C. The material is assumed to be linear hardening elastic-plastic solid:

E = 71 GPa, , = 0.003, and v = 0.3. The linear strain-hardening coefficients, m, are

0.1, 0.02, and 0.006, and a= 213 + 71x103 [mI(1-m)] e MPa.

Figure 5.8 illustrates true stress versus total strain for various the linear

strain-hardening coefficients, m. Figure 5.9 illustrates cavity expansion versus

remote axial strain at o,/a1 = 1 for various linear strain-hardening coefficients, m.

Figure 5.10 illustrates cavity expansion versus remote axial stress at o/o = 1 for

various linear strain-hardening coefficients, in. Figure 5.11 illustrates cavity

expansion versus remote axial strain at m = 0.006 for various stress ratios, o/aj.

Figure 5.12 illustrates cavity expansion versus remote axial at in = 0.006 for

various stress ratios, o,/o. Figure 5.13 illustrates the FEA predicted maximum

principal stress for failure versus o/cj based on cavitation instabilities at in

0.006. Figure 5.14 illustrates the FEA predicted cavity shapes a01a90 for failure

versus ç/a1 based on cavitation instabilities at in = 0.006. Table 5.1 illustrates

deformed meshes at the FEA predicted failure at in = 0.006 for 0.6 o/o 1.
It was found that as in increased, the remote axial strain and stress (at the

FEA prediction of cavitation instability) increased. Furthermore, cavity expansion

appeared to require large remote strain associated with instability when o/o <0.8,

and the shape of cavity at instability depended on loading conditions (i.e., a value

of stress ratio) as illustrated in Figure 5.14. For example, for 0.7 < o/o) <0.8, the

shape of cavity was elliptic with the major axis along the 1-direction. There is
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evidence (but inconclusive) of cavity instability occurring at o/o = 0.6;

however, the FEA simulation was found to be very difficult due to the warping of

boundaries resulting from the large amount of plasticity in a remote field.
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Figure 5.8 True stress vs. total strain for linear hardening elastic-plastic materials:
E = 71 GPa, . = 0.003, and v= 0.3. The linear strain-hardening coefficient is m
and m = 0.1, 0.02, and 0.006 respectively.
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Figure 5.9 Cavity expansion vs. remote axial strain under axisymmetric loading at
a2 /a1 = 1 for various linear strain-hardening coefficients, m = 0.1, 0.02, and 0.006
respectively.
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Figure 5.10 Cavity expansion vs. remote axial stress under axisymmetric loading at
a2 /o = 1 for various linear strain-hardening coefficients, m = 0.1, 0.02, and 0.006
respectively
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Figure 5.11 Cavity expansion vs. remote axial strain under axisymmetric loading at
the linear strain-hardening coefficient, m 0.006, for (a) 0.7 a2/oj 1 and (b)

= 0.65 and 0.6.
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Figure 5.12 Cavity expansion vs. remote axial stress under axisymmetric loading at
the linear strain-hardening coefficient, m 0.006, for (a) 0.7 ç/crj 1 and (b)

= 0.65 and 0.6.
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Figure 5.13 The FEA predicted maximum principal stress for failure vs.
a2 /a1 based on cavitation instabilities in linear hardening elastic-plastic material
(m = 0.006).
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Figure 5.14 The FEA predicted cavity shapes a01a90 for failure vs.
2
/o based on

cavitation instabilities in linear hardening elastic-plastic material (m 0.006).



Table 5.1 Deformed meshes at the FEA predicted failure on linear hardening
elastic-plastic material (m = 0.006) for 0.6 o/a1 1.



Table 5.1 Deformed meshes at the FEA predicted failure on linear hardening
elastic-plastic material (m = 0.006) for 0.6 02/01 1 (Continued).
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Table 5.1 Deformed mesh at the FEA predicted failure on linear hardening
elastic-plastic material (m = 0.006) for 0.6 o/a 1 (Continued).

5.2.2 Cavity instabilities in power hardening elastic-plastic material

A single cavity in a finite body was simulated using a quarter-symmetry,

axisyminetric model of a body with the model size being equal to 15,000 as

illustrated in Figure 5.10. The finite element mesh consisted of 720 elements
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graded with a fine mesh near the cavity and a coarse mesh away from the

cavity. However, the model size for O7/O = 1 and 0.9 was equal to 5,000. These

model sizes appeared to be sufficiently large for representing a solution of a

cavitation instability in an infinite body. The material is assumed to be power

hardening elastic-plastic solid: E = 71 GPa, E = 0.003, v 0.45, strain-hardening

exponent, n = 0.25, and o= sign (e) 213x106(I.jI0.003)°25 when Ii > 0.003.

Figure 5.15 illustrates true stress versus total strain for power strain-

hardening material. Figure 5.16 illustrates cavity expansion versus remote axial

strain for various stress ratios. Figure 5.17 illustrates cavity expansion versus

remote axial stress for various stress ratios. Figure 5.18 illustrates a comparison of

cavitation curves obtained from the FEA method with the approximate solution

presented by Hou and Abeyartne (1992) for a case of an incompressible solid.

Figure 5.19 illustrates the FEA predicted cavity shapes a0/a9 for failure versus

o/o- based on cavitation instabilities. Table 5.2 illustrates deformed meshes at the

FEA predicted failure for 0.4 o/cTj 1.

It was found that a cavity expansion appeared to require large remote strain

associated with instability when o/o) <0.8, and the shape of cavity at instability

depended on loading conditions as illustrated in Figure 5.19. There is evidence (but

inconclusive) of cavitation instability occurring at o2/o1 = 0.4; however, FEA

simulation was found to be very difficult due to the warping of boundaries resulting

from the large amount of plasticity in the remote field. The FEA prediction of

cavitation limit stresses for various stress ratios were compared with those of Hou

and Abeyartne (1992) as illustrated in Figure 5.19. We found that both solutions

correlated well only if the cavitation instability occurs before yielding of the remote

field.
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Figure 5.15 True stress vs. total strain for power hardening elastic-plastic material:
E = 71 GPa, e = 0.003, v= 0.45, and the strain-hardening exponent, n = 0.25.
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Figure 5.16 Cavity expansion vs. remote axial strain under axisymmetric loading at
the stain hardening exponent, n = 0.25, for (a) 0.7 o/oj I and (b) 0.4 o/aj
0.6.
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Figure 5.17 Cavity expansion vs. remote axial stress under axisymmetric loading at
the strain-hardening exponent, n = 0.25, for (a) 0.9 o/aj 1 and (1,) 0.7
cr2/al 0.8
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Figure 5.17c Cavity expansion vs. remote axial stress under axisymmetric loading
at the strain-hardening exponent, n = 0.25, for 0.4 /aj 0.6.
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Figure 5.18 Comparison of cavitation curves obtained from FEA with the
approximate solution (Hou and Abeyartne, 1992) for the case of an incompressible
solid. The FEA predicted maximum principal stress for failure vs. o/o based on
cavitation instabilities in power hardening elastic-plastic material (., = 0.003 and n
= 0.25).
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Figure 5A9 The FEA predicted cavity shapes a01a90 for failure vs. o/a based on
cavitation instabilities in power hardening elastic-plastic material (t, 0.003 and n
= 0.25).



Table 52 Deformed meshes at the FEA predicted failure on power strain-
hardening material (s, = 0.003 and n = 0.25) for 0.4 ç/oj 1.



Table 5.2 Deformed meshes at the FEA predicted failure on power strain-
hardening material (e 0.003 and n = 0.25) for 0.4 o/crj 1 (Continued)
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Table 5.2 Deformed meshes at the FEA predicted failure on power strain-
hardening material ( = 0.003 and n = 0.25) for 0.4 o/aj 1 (Continued)



111

Table 5.2 Deformed meshes at the FEA predicted failure on power strain-
hardening material ( = 0.003 and n = 0.25) for 0.4 o/o 1 (Continued).
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5.2.3 Cavity instabilities in constrained thin silver films

A single cavity in a finite body was simulated using a quarter-symmetric

model. In each loading case, the model size was obtained from the FEA solutions

presented in Appendix C in such a way that it could represent a solution of a

cavitation instability in an infinite body. The material was constrained silver: E=

71 GPa, Y= 49.7 MPa, and v= 0.37.

Figure 5.20 illustrates true stress versus total strain of constrained silver.

Figure 5.21 illustrates cavity expansion versus remote axial strain for various stress

ratios. Figure 5.22 illustrates cavity expansion versus remote axial stress for various

stress ratios. Figure 5.23 illustrates the FEA predicted maximum principal stress for

failure versus O2/OI based on cavitation instabilities. Figure 5.24 illustrates the FEA

predicted cavity shapes a0/a90 for failure versus o/a based on cavitation

instabilities. Table 5.3 illustrates deformed meshes at the FEA predicted failure for

0.5 a/o, 1.
It was found that cavity expansion appeared to require large remote strains

associated with instability when a2/aJ <0.75, and the shape of cavity at instability

depended on the loading condition as illustrated in Figure 5.24. There is evidence

(but inconclusive) of cavitation instability occurring at 02/01 = 0.5; however, again,

the FEA simulation was found to be very difficult due to the warping of boundaries

resulting from the large amount of plasticity in the remote field. Values of caviation

limit stress obtained from the finite element analysis were compared with those

from experiments result by Kansser et al. (1998). We found that both results

correlated well except at o/aj = 0.76.
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Figure 5.20 True stress vs. total strain of constrained silver: E = 71 GPa, Y 49.7
MPa, and v 0.37.
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Figure 5.21 Cavity expansion vs. remote axial strain under axisymmetric loading
with constrained silver for (a) 0.85 O2/Q) 1 and (b) 0.7 c/o 0.8.
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Figure 5.21 c Cavity expansion vs. remote axial strain under axisymmetric loading
with constrained silver for 0.5 o/o 0.6.
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Figure 5.22 Cavity expansion vs. remote axial stress under axisymmetric loading
with constrained silver for (a) 0.85 O2/O 1 and (b) 0.8 02/çj 0.65.
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Figure 522c Cavity expansion vs. remote axial stress under axisymmetric loading
with constrained silver for 0.5 o/o 0.6.
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Figure 5.23 The FEA predicted maximum principal stress for failure vs.
based on cavitation instabilities in constrained silver.
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Figure 5.24 The FEA predicted cavity shapes a0/a90 for failure vs. c72/crl based on
cavitation instabilities in constrained silver.
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Table 5.3 Deformed meshes at the FEA predicted failure on constrained silver
forO.5 cr2/aj 1.
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Table 5.3 Deformed meshes at the FEA predicted failure on constrained silver
for 0.5 o2/cr1 1 (Continued).
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Table 5.3 Deformed meshes at the FEA predicted failure on constrained silver
for 0.5 o/o) 1 (Continued).
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Table 5.3 Deformed meshes at the FEA predicted failure on constrained silver
for 0.5 o/aj 1 (Continued).
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Table 5.3 Deformed meshes at the FEA predicted failure on constrained silver
for 0.5 1 (Continued).
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Table 5.3 Deformed meshes at the FEA predicted failure on constrained silver
for 0.5 o/aj 1 (Continued).

Cavity Shape Deformed Body-___-
0.5

/
Lt_II I

1/
1t175(Yi/
TlmYLA - -

5.3 DYNAMIC ANALYSIS OF CAVITATION INSTABILITIES UNDER
SPHERICALLY-SYMMETRIC LOADING

The objective of this study was to validate a finite element solution with an

analytical solution presented in Chapter 3. A model of cavity expansion in a finite

body subjected to sudden remote spherically-symmetric loading was accomplished

using the ABAQUS/Explicit program (for analyses with inertia effects) and

ABAQUS/Standard program (for analyses without inertia effects) respectively. In

case of an analysis with inertia effects, a finite element analysis provided both an

explicit solver and adaptive mesh capability. Since the adaptive mesh procedure

required us to use only a linear element, a quarter symmetric mesh was constructed

using four-node, axisymmetric, quadrilateral elements. In the later case, a finite

element analysis provided the Newton-Raphson solver, and a mesh was constructed

using eight-node, axisymmetric, quadrilateral elements.
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5.3.1 Cavitation instabilities in an infinite solid body with combined strain-rate
hardening and inertia effects

A finite element mesh consisted of 600 elements graded with a fine mesh

near the cavity and a coarse mesh away from the cavity. To eliminate reflected

waves from boundaries, infinite elements were attached to all elements along the

outer boundaries. Then, a quarter symmetry mesh was sliced into a small piece in

order to accelerate the computational time. Figure 5.25 illustrates a finite element

mesh at LID = 600. This finite element mesh was obtained from the extensive

numerical testing needed to sufficiently represent an infinite body. The material is

assumed to be an incompressible and elastic/perfectly-plastic solid with linear

strain-rate hardening effects: E = 10 Mpsi, &, = 0.004, p = 0.000259 lb-sec2/in4, the

linear strain-rate hardening coefficients, C = 0.005, 0.01, 0.05, and 0.1 sec, and Y

25,000 (1 + C) psi. The quasi-static cavitation stress, Sc,-, was found to be

163.093 Ksi as presented in Section 3.2.3.

Figure 5.25 Finite element mesh for a spherical body using an infinite element on
the outer surface

Figures 5.26 and 5.27 illustrate comparison between a FEA and analytical

solution under step loading. However, for preventing numerical difficulties in the

finite element analysis, this load was applied over a rise time of 4.5x106 sec and

then held constant. This rise time is less than the time required for the material
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around the cavity to reach the yield point. Figure 5.26 illustrates cavity

expansion (in 1 -direction at C = 0.1 sec) under a remote stress with magnitude of 2

percent above and 2 percent below the quasi-static cavitation stress, Se,.. Figure 5.27

illustrates cavity expansion (in the 1-direction) under a remote stress, S = 163.094

Ksi (slightly above Scr), for various values of C.

It was found that the remote stress below the quasi-static cavitation stress

(i.e., S = 0.98 Se,.) failed to cause a cavitation instability while the value above it

did. As C increases, the rate of cavity expansion decreases. Moreover, we found a

good agreement between FEA and analytical solutions in all cases.

5
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S = 1.02 Sce (FEA)

0.2 0.4 0.6 0.8 1.0

Time (sec)

Figure 5.26 Cavity expansion vs. time for dynamic responses (with combined linear
strain-rate hardening and inertia effects at C = 0.1 sec) under spherically-symmetric
loading by the analytical approach (ANAL) and the finite element approach (FEA).
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Figure 5.27 Cavity expansion vs. time for dynamic responses (with combine strain-
rate hardening and inertia effects) under spherically-symmetric loading (at S
163.094 Ksi) for various linear strain-hardening coefficients, 0.1 C 0.005 sec.
The analytical and finite element approaches are represented by ANAL and FEA
respectively.

5.3.2 Cavitation instabilities in an infinite solid body with only inertia effects

A quarter symmetry mesh consisted of 1000 elements graded with a fine

mesh near the cavity and a coarse mesh away from the cavity where LID = 100 (for

a case of S = 158 Ksi) and LID = 300 (for a case of S = 163.094 Ksi). Again, this

finite element mesh was obtained from extensive numerical testing needed to

sufficiently represent an infinite body. The material is assumed to be

incompressible and elastic/perfectly-plastic solid: E = 10 Mpsi, = 0.004, p

0.000259 lb-sec2/in4.

Figures 5.28 and 5.29 illustrate a comparison between the FEA and

analytical solution for cavity expansion (in 1-direction) in a spherical body
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subjected to step loadings with magnitude of 158 Ksi and 163.094 Ksi below

and above Se,.. Again, for preventing numerical difficulties in the finite element

analysis, this load was applied over a rise time of 4.5x106 sec and then held

constant.

It is found that there is good agreement between FEA and analytical

solutions in both cases. In case of a remote stress below the quasi-static cavitation

stress (i.e., S = 158 Ksi), a cavitation instability failed to occur while the value

above it did.
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Figure 5.28 Cavity expansion vs. time for dynamic responses (only inertia effects)
under spherically-symmetric loading (at S = 163.094 Ksi) by the analytical
approach (ANAL) and the finite element approach (FEA).
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Figure 5.29 Cavity expansion vs. time for dynamic responses (only inertia effects)
under spherically-symmetric loading (at S = 158 Ksi) by the analytical approach
(ANAL) and the finite element approach (FEA).

5.3.3 Cavitation instabilities in an infinite solid body with only strain-rate
hardening effects

A quarter symmetry mesh consisted of 720 elements graded with a fine

mesh near the cavity and a coarse mesh away from the cavity with LID = 10,000.

Again, this finite element mesh was obtained from extensive numerical testing as

described in Appendix C. The material is assumed to be incompressible and

elastic/perfectly-plastic solid with linear strain-rate hardening effects: E = 10 Mpsi,
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= 0.004, p = 0.000259 lb-sec2/in4, and the linear strain-rate hardening

coefficients, C = 0.1 and 0.05 sec.

Figure 5.30 illustrates a comparison between the FEA and analytical

solution for cavity expansion (in 1-direction) in a spherical body subjected to step

loadings with magnitude of 163.094 Ksi for C= 0.1 and 0.05 sec respectively. It

was found that the agreement between the FEA and analytical solution is good for

C 0.05 sec. However, for C < 0.05 sec, a FEA solution was blow up after a short

time period.

10

U

C=0.lsec(ANAL)

C0.lsec(FEA)

C = 0.05 sec (ANAL)

C = 0.05 sec (FEA)

- £
-

Time (sec)

10

Figure 5.30 Cavity expansion vs. time for dynamic responses (with only strain-rate
effects) under spherically-symmetric loading (S = 163.094 Ksi) for the linear strain-
rate hardening coefficients, C = 0.1 and 0.05 sec. The analytical and finite element
approach are represented by ANAL and FEA respectively.



132

5.4 DYNAMIC ANALYSIS OF CAVITATION iNSTABILITIES UNDER
AXISYMMETRIC LOADING

A model of cavity expansion in a finite body subjected to suddenly remote

axisymmetric loading was accomplished using the ABAQUS/Explicit program (for

a case when p 0) and ABAQUS/Standard program (for a case when p= 0). The

material is assumed to be incompressible and elastic/perfectly-plastic solids with

power strain-rate hardening effects as illustrated in Figure 3.31 where E 10 Mpsi,

= 0.004, p= 0.000259 lb-sec2/in4, C= 0.1 see, n = 0.3, and Y= 25,000(1 +

0.1 03) However, for the case when p =0, the material is assumed to be

compressible (v= 0.45) to prevent numerical difficulties in determining a quasi-

static cavitation stress, Sc,.. Again, the ramp loading was applied over a rise time of

4.5xl06 Sec and then held constant. In each case, load was applied to a body with

magnitude of 2 percent above and 2 percent below the quasi-static cavitation stress.

Values of quasi-static cavitation stress (or maximum principal stress) were obtained

from a finite element analysis where Se,. 160.179 Kpsi at o/c) = 1, Scr = 170.065

Ksi at o/aj 0.9, and Scr = 175.272 Ksi at o/a = 0.8 respectively.

For the case with only inertia effects, a finite element analysis provided

both an explicit solver and adaptive mesh capability. A quarter symmetric mesh

was constructed using four-node, axisymmetric, quadrilateral elements. For the

later case, a finite element analysis provided the Newton-Raphson solver. The mesh

was constructed using eight-node, axisymmetric, quadrilateral elements.
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Figure 5.31 Yield stress vs. strain rate of incompressible and elastic/perfectly
plastic material with power strain-rate hardening effects: E = 10 Mpsi, = 0.004,
p= 0.000259 lb-sec2/in4, C= 0.1 sec, and n 0.3.

5.4.1 Cavitation instabilities in an infinite solid body with oniy inertia effects

A quarter symmetry mesh consisted of 1000 elements graded with a fine

mesh near the cavity and a coarse mesh away from the cavity with LID = 300 (for a

case of S = 1.02 Scr) and L/D = 100 (for a case of S = 0.98 Scr) where S is defined as

a maximum principal stress.

Figures 5.32-5.34 illustrate the cavity expansion in the 1-direction as a

function of time for cr2/o = 1, 0.9, and 0.8, respectively. In each case, remote stress

values below the quasi-static cavitation limit failed to cause a cavitation instability,

while values above it did. For those cases, when cavitation did occur, the cavity

expanded rapidly at first and then settled in a relatively uniform growth rate.
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Figure 5.32 Cavity expansion vs. time for dynamic responses (only inertia effects)
under axisymmetric loading at o/o = 1 for (a) S = 1.02 Scr and (b) S = 0.98 5cr.
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Figure 5.33 Cavity expansion vs. time for dynamic responses (only inertia effects)
under axisymmetric loading at ci/cr = 0.9 for (a) S 1.02 Scr, and (b) S = 0.98 Sr.
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Figure 5.34 Cavity expansion vs. time for dynamic responses under axisymmetric
loading at cr2/oJ = 0.8 for (a) S = 1.02 Scr and (b) S = 0.98 5cr.
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5.4.2 Cavitation instabilities in an infinite solid body with only strain-rate
hardening effects

A quarter symmetry mesh of a cylindrical model consisted of 720 elements

graded with a fine mesh near the cavity and a coarse mesh away from the cavity

withL/D 10,000.

Figures 5.35-5.37 illustrate the cavity expansion in the 1-direction as a

function of time for cr2/a-I = 1, 0.9, and 0.8, respectively. Again, the remote stress

values below the quasi-static cavitation limit failed to cause a cavitation instability,

while values above it did. When cavitation occurs, the cavity expands rapidly and

then settles into a uniform growth rate.
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Figure 5.35 Cavity expansion vs. time for dynamic responses (with only strain-rate
effects) under axisymmetric loading at o/a = 1 for S = 1.02 S and 0.98 S
respectively.
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Figure 5.36 Cavity expansion vs. time for dynamic responses (with only strain-rate
effects) under axisymmetric loading at a/oj = 0.9 for S = 1.02 Scr and 0.98 Scr

respectively.
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Figure 5.37 Cavity expansion vs. time for dynamic responses (with only strain-rate
effects) under axisymmetric loading at o/o = 0.8 for S 1.02 Scr and 0.98 Scr

respectively.

5.5 QUASI-STATIC ANALYSTS USING ABAQUS EXPLICIT

An explicit finite element analysis has been known for its computational

efficiency over an implicit finite element analysis (Lindgren and Edberg, 1990;

Robelo et al., 1992). In this study, a quasi-static response of a cavitation instability

in constrained silver (as discussed in Section 5.2.3) was simulated using an explicit

dynamic code, ABAQUS/Explicit. The FEA predicted quasi-static stresses at

failure, Scr, were equal to 838 and 904 MPa for /aj = 1 and 0.9 respectively.
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A quarter symmetry mesh consisted of 1,000 elements graded with a

fine mesh near the cavity and a coarse mesh away from the cavity with LID = 300.

In each case, a ramp loading was applied to a body with magnitude of 838 MPa (for

a case when a2/cTJ = 1) and 902 MPa (for a case when a2/o-j = 0.9) over a rise time

of 10 seconds and then held constant. These loading parameters were chosen after

extensive numerical testing to minimize dynamic effects from a finite element

solution. When remote stress is less than Scr, a cavitation instability failed to occur,

while a value above Sc,. resulted in larger remote strain at instability. The CPU

times required to execute these cases were 29 minutes and 35 seconds (for a case

when cr/crj = 1 comparing with 45 seconds in the static approach) and 27 minutes

and 17 seconds (for a case when cr2lcrj = 0.9 comparing with 54 seconds in the

static approach) on HP J6000s server: 550MHz (dual processors) and 4GB RAM.

Figure 5.38 illustrates a comparison between solutions obtained from a

static and dynamic approach. It was found that the agreement between these

approaches is good when a remote field remains elastic (i.e., the case when /aj =

1). However, this dynamic approach is an inefficient way to deal with this problem

since the computational time was more than 30 times longer than a static approach.

Moreover, simulating of a cavitation instability when yielding occurs in a remote

field requires a large model size (i.e., LID> 5,000) resulting in an increase of a

number of elements in a mesh which increases computation time a considerable

amount.
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Figure 5.38 Comparison between the static and dynamic analysis at az/oj = 1 and
0.9 using the ABAQUS/Standard and ABAQUS/Explicit programs respectively. In
the dynamic analysis, a body was subjected to the ramp loading over the rise time
being sufficiently long to minimize inertia effects.
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6. CONCLUSIONS

In this study, cavitation instabilities in elastic-plastic solids under

spherically-symmetric and axisymmetric loadings were investigated. Both quasi-

static and dynamic analyses were used to solve these problems.

In the quasi-static analyses, we investigated a cavitation instability in

elastic/perfectly-plastic, linear hardening elastic-plastic, power hardening elastic-

plastic, and constrained silver materials. The feasibility of this finite element

method was examined by comparing its solution to analytical solutions developed

for a case of spherically-symmetric loading as discussed in Chapter 3. It was found

that the agreement between these methods was good (less than 1 percent error).

Furthermore, in the case of an axisymmetric loading, a cavitation instability was

observed in all cases under no change in remote stresses and strains during the

cavitation instability state. In the case of power hardening elastic-plastic material

( 0.003 and n = 0.25), the FEA solution was compared with the approximate

solution (Hon and Abeyaretne, 1992). We found good agreement between these

solutions only when the remote field remained elastic, i.e. /aj > 0.9. In the case

of constrained silver, we found good agreement between our FEA solution and

experimental results (Kassner et al., 1998) except at I j = 0.76. Moreover, a

cavitation instability was found for stress ratios beyond the range presented by

Kassner et al. (i.e., as low as = 0.5). However, in our study, the values of

cavitation stresses and remote strains appeared to be larger than those reported in

their finite element analysis. This is simply because, with our sufficiently large

model size, the effects of interactions between the cavity and remote boundaries

can be minimized. As the stress ratio decreases, the remote strain increases

substantially as the cavitation instability state is approached. Unfortunately, when

the stress ratio was small (i.e., c2/cyj <0.6 for the case of constrained silver), FEA

simulations appeared to have difficulty determining the exact cavitation instability
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state since the mesh along the boundaries deteriorated very fast during the onset

of instability. In the case of a quasi-static analysis using an explicit finite element

analysis, this approach was found to be an inefficient way to deal with a quasi-

static problem since the computational time required is much longer than that of a

static approach.

In the dynamic analysis, we investigated cavity expansion in incompressible

and elastic/perfectly-plastic materials. Both inertia and strain-rate effects were

considered. Again, the feasibility of this finite element method was examined by

comparing its solution to the analytical solutions developed for a case of sudden

remote spherically-symmetric loading as discussed in Chapter 3. It was found that

the agreement between these methods was good. For dynamic loads below the

critical load required for cavitation in the quasi-static case, the cavity expanded

rapidly initially but eventually decelerated and stopped at a finite value. For

dynamic loads above this critical value, the cavity expanded rapidly initially and

then decelerated and settled into expansion at a constant rate. This observation held

for both spherically-symmetric and axisymmetric loading
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APPENDIX A
THE ZET FUNCTION OF RIEMANN

A.1 DEFINITION OF THE ZETA-FUNCTION

Let s = a+ it where s and t are real; then, if d > 0, the series

c(s) =
,i=1

is a uniformly convergent series of analytic function in any domain in which; and

consequently the series is an analytic function of s in such a domain. The function

is called the Zeta-function; although it was known to Euler, its most remarkable

properties were not discovered before Riemann who discussed it in his memoir on

prime numbers; it has since proved to be of fundamental importance, not only the

Theory of Prime Numbers, but also in the higher theory of the Gamma-function

and allied functions.

A.2 THE GENERALIZED ZETA-FUNCTION

Many of the properties possessed by the Zeta-function are particular cases

of properties possessed by a more general function defined, when cr 1 + 5, by the

equation

1

c(s,a)
n=O a + 17)

where a is a constant. For simplicity, it is assumed that 0 <a 1, and then taking

arg(a + n) =0. It is evident that ç(s, q) =
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A.3 THE EXPRESSJON OF AN INFINITE iNTEGRAL

Since (a + n)F(s) = x'e )xdx when arg x 0 (and a fortiori when a-

1 + 8),wehave c 1 + 6

N

['(s)c(s,a) = urn fxs_1eXdx,
Nos

n=O

f_I= urn f 1e fl_e_X
e_+1+dx}

N

where F(s) is the Gamma function.

Now, when x 0, eX 1+x, and so the modulus of the second of these

integrals does not exceed

fx2e'dx = (N + a)'' ['(a- 1),

which (when cr 1 + 5) tends toO asN- .

sI -ax
1 'x ec(s,a) 1e dx;

this formulas corresponds in some respects to Euler's integral for the Gamma

function.



APPENDIX B
FORMULATIONS OF MATRICES IN FINITE ELEMENT NONLINEAR

METHOD

The establishment of matrices used in the two-dimensional UL and TL

formulations was presented by Bath (1991). In the numerical integration, these

matrices are evaluated at the Gauss integration points.

B. 1 TOTAL LARGRANGIAN FORM(JLATION

1. Linear Strain-Displacement Transformation Matrix

= BLo +

0h11 0 0h21 0 ... ohNl 0

0 ok,2 0
O'2,2

0 OhN2

= 0h12 0h1,1 0h22
O'2.1 ohN2 OhNl

0
x1 x1 x1

1 0k, 121 0k,1 h1

112 Ok,2 l2 0111,2 42

(111 0111,2 + I 0h11) (121 Ok,2 +122 0h) (ii, 0k,2 + 112 k)

0330 330
xl x1

121 01121 /11 0h,.,. 121 oliN!

122 0h22 lj2ohN2 l22QhN,

(121 01177 + 122 0k,1) 011N7 +lfl OliN!) (l,i OhN, +/22 QhN,I)

0 ... l33 0
x1

where
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ho k,j

= - tuk;

O =;hkoxk;

ill

122 =Ohk2'u;

121 0h1 tu:;

'12 =Ohk2u;

N= number of nodes.

2. Nonlinear Strain-Displacement Transformation Matrix

[/, 0 0 oliN1 0 1

0 0h22 0 ohN2 0

tBONL
0 0k,1 0 0h21 0 ohNI

I

I.

0 0k,2 0 0h22 ... 0 ohN2 I

0][o .

3 Second PiIola-Kirchhoff Stress Matrix and Vector
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rts
0 11 0 12

0 0 0i
l'
1021 'S022 0 0 01

[s]=I 0 0 'S0 11
'S0 12

0 0 'so 21

tç
0 I

0'-'22

[0 0 0 0
tç
0-'33J

I es
I 0 II

{'sI-0
22

''S
I 0 12

I ist0 33.)

B.2 UPDATED LAGRANGIAN FORMULATION

1. Linear Strain-Displacement Transformation Matrix

I ,h 0 ,h21 0 ,hNl 0 I

0 k,2 0 ,h22 0 ,hN2 I

:BL = I

, k2 k,1 ,h22 ,h21 f/iN 2 ,hNl I,

LL 0
I

0 0

where

h
I k,j

a'

Ic t+& Ic t kuj= uu,
N

t k
xl X1

2. Nonlinear Strain-Displacement Transformation Matrix



0 ,h21 0 fhNl 0

I 1k2 0 1h22 0 lhN2 0

1B
0 NL

0
I

Ik,I 0 1/12,1 0 t'N,1

I
0 OI,2 0 ,h 0 EhN2

0[t t

3. Second Pilola

1011

[to.]
0

0

0

Kirch

U12

to.

0

0

0

{to.}
1t

1 t

1'3i

off SI

0

0

1011

tO21

0

ress Matrix and Vector

o 0

o o

0 0

to. 0

0 a
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APPENDIX C
EFFECTS OF MODEL SIZES ON A QUASI-STATIC ANALYSIS UNDER

AXISYMMTRIC LOADING

One of the most important parameters affecting the FEA simulation of a

cavitation instability is model size, L/D, which is defined as the ratio of a height of

the cylindrical model to the cavity radius as illustrated in Figures 5.10. Here, we

studied an effect of model sizes on the FEA prediction of a cavitation instability in

constrained silver under axisymmetric loading by using the ABAQUS/Standard

program. It provided both an arc-length solver and rezoning mesh capability.

The finite element mesh consisted of two zones. The first zone is a spherical

zone surrounding the cavity in which mesh density (number of elements per a unit

volume) was kept fixed throughout FEA simulations for various model sizes (i.e.,

the outer radius of this zone is 350 cavity radii from the cavity center). The second

zone is a zone far away from the cavity consisting of a coarse mesh. The material is

constrained silver as mentioned in Section 4.3. Figure C. 1 illustrates the maximum

principal stress at failure for various model sizes. Figure C.2 illustrates the remote

total strain at failure for various model sizes. It was found that with a sufficiently

large model size (i.e., L/D = 15,000), we have a cavitation instability similar to that

of an infinite model size. Unfortunately, for cr2/crj <0.5 a simulation appeared to

have difficulty determining the exact cavitation instability state because of rapid

deterioration of the mesh along the boundaries during the onset of instability.
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Figure C. 1 The maximum principal stress at failure for various model sizes under
axisymmetric loading with constrained silver for (a) 0.8 c/aj 1 and (b) 0.5

a'2/o 0.75.
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Figure C .2 The remote total strain at the at failure under axisymmetric loading for
various model sizes with constrained silver for (a) 0.8 a2/cr1 I and (b) 0.5
cr/crj 0.75.
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NUMERICAL SUBROUTINES USED FOR SOLUTIONS IN CHAPTERS 3
AND 5

This section contains Matlab input files used for solutions of quasi-static

and dynamic analyses of a cavitation instability under spherically-symmetric

loading as discussed in Chapter 3. These files are orderly printed and results are

displayed according to figure numbers listed in Chapters 3.

D.1 INPUT FILE: fig0303.m

%% Figure 3.3 (fig0303.m)
dc
clear all

%% Irput Variables
%%
Et=1 0e6; % Young's Modulus
Y=40e3; % Yield Stress
nu=0.33; % Poisson's Ratio
alpha=Y*( 1 +nu)/3/Et;
beta=2*(1 2*nu)*Y/Et;
S_cr2/3 *( 1 +log( 1/(1 -(1 beta)*( 1 -alpha)"3))/( 1 -beta))-.00 1;
point=1 00;
x=Iinspace(0,Scr,point);
y=exp(-x./2+ 1/3). *(((exp(( 1 +beta)*( 1.5 1))- 1)1(1 -beta)+( 1-
alpha)"3 *ones( 1 ,point))."(- 1/3));
xlimit=[Scr S_cr];
ylimit=[1 5];
plot(x,y,'-',xlimit,ylimit,'--')
xlabel('Load Factor, \sigma \infty/Y','fontname','times','fontsize', 12)
ylabel('Cavity Expansion, ala 0','fontname','times','fontsize', 12)
axis([0 4.5 1 5])
text(4, 1 .25,'Scr/Y','fontname','timest,'fontsize', 12)
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D.2. INPUT FILES: fig0306.m and fileO3O6a.m

D.2.1 Input file: fig0306.m

%% Figure 3.6, 5.32, and 5.33
clear all
dc
%%
%% The numerical solution of a cavity expansion with combining inertia and
%% strain-rate effects under sudden spherically-symmetric loading.
%%
%% Input Parameters in U.S. units
%%
E=10e6; % Young's Modulus (psi)
Yo=40e3; % Yield Stress (psi)
p=2.59E-4; % Density (lb-sec'2/int'4)
%C=0.; % Linear Strain Rate coefficient (sec)
S=163094; % Cavitation Stress (psi)
%Scr=(2*Yo/3*( I +log(2*E/3IYo))); % S=1 .O2Scr; %S=0.98*Scr;
%%
%% Initial condition for figure 3.6

par=[O .2556019441824866E-5; 0.00001 .26018221312627E-5; 0.0001
.29905841698617E-5; 0.01 .129826237014004E-4];
%%
%% Initial condition for figure 5.33

%par=[0 .2556019441824866E-5];
%tl =. 1 3759506853707388E-4;% at c=0. 1; S=l 63,094 psi
%t1.136728406085636E-4; % at c=0.05; S=163,094 psi
%tl=.129826237014004E-4; % at c=0.01; S163,094 psi
%tl=.121385467178408E-4; % at c0.O05; S=1 63,094 psi
%tl=.29905841698617E-5; % at c=0.0001; S163,094 psi
%tl=.26018221312627E-5; % at c=0.00001; S=163,094 psi

%% Initial condition for figure 5.32

%tl=.13759624347297987E-4; %at c=0.1; S=159,831.3572 psi (0.98xScr)
%tl=.13759571261500932E-4; %at c=0.l; S=166,355.0860 psi (1.O2xScr)
%tl =. 1 29838052453635874E-4;%at c=0.0; S=1 59,831.3572 psi (0.98xScr)
%tl=.12981 5055509798785E-4;%at c=0.01; S=166,355.0860 psi (1 .O2xScr)
tf=10; %Final time for numerical solution
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solu[];
for i=1 :lengthQar)

C=par(i,1);
tl=par(i,2);
a11+.75*S/E*(1 cos((4*E/3/p)t0.5*tl));
al dotS*(3/4fE/pY0.5*sin((4*E/3/p)\0.5*t1);
%%
%% Numerical Method Using 0DE45
%%
options_i =odeset('RelTol', 1 E-8,'AbsTol', [1 E-8 1 E-8J);
[t,a]=ode45('figO3O6a', [ti ,tf],[al ;al dot] ,options_1 ,S,C,E,Yo,p);
%C_mC*ones(length(t), 1)
%solu=[solu; C_mt a]
subplot(2, 1,1)
plot(t,a(:, 1 ),'-')
% Title('The Dynamic Analysis of Cavity Expansion in an Incompressible

Solid' ,'fontsize', 12)
xlabel('Time (sec)','fontsize', 11)
ylabel('Cavity Expansion, ala_0','fontsize', 11)
hold on
subplot(2,1 ,2)
plot(t,a( :
axis([0 tf 0 200])
xlabel('Time (sec)','fontsize', 11)
ylabel('Velocity of Cavity Expansion (in/sec)','fontsize', 11)
hold on

end
legend('C = 0 sec','C = 1x10"5 sec','C = 1x10t_4 sec','C = 1x10'-2 sec')
Legend('boxoff)
% legend('C = 0.005 sec','C = 0.01 sec','C = 0.05 sec','C = 0.1 sec')
% save c:\data.txt solu -ascii -double -tabs

D.2.2 Input file: figO3O6a.m

function out3=figO3O6a(t,a,dummy,S,C,E,Yo,p)
% Define an ODE equation
%%
out3=[a(2); 1/p/a(1)*(S_(2*Yo*E*(1_1/a(1 )A3)131(E*(1_lfa(1)A3}
(3 *yo*C*a(2)/a( 1 ))))-(2 *yo/3)*(log(2/3/yo* (E*( 1-1 /a( 1 )"3)-
(3 *Yo*C*a(2)Ia( 1 ))))-(2 *C*a(2)/a( 1 ))*(3 *yo/(2* (E*( 1-1 /a( 1 )A3)_
(3 *yo*C*a(2)/a( 1))))- 1 ))-( 1.5 *p*a(2)A2))];



161

D.3 INPUT FILE: fig0307.m

%% Figure 3.7 (flg0307.m)
clear
dc
%%
%% The numerical solution of a cavity expansion with only strain effects
%%
%% Input Parameters
%%
E=1 0e6; % Young's Modulus (psi)
Yo=40e3; % Yield Stress (psi)
S=l 63094; % Cavitation Stress (psi)
C=0.05; % Linear Strain Rate Coefficient (sec)
%%
%% Initial conditions
%%
ic=[0.01 1.01254010679 259.0043 125698026; 0.05 1.0125402
51.7066490672265; 0.1 1.012541 25.75405576254178 J;
%%
%% Set numerical accuracy
%%
errx=1E-9;
erry=1E-9;
erryy=1 000;
errxx=erryy;
Max iter=l 000;
for i=1 :length(ic)

C=ic(i, 1);
ao=ic(i,2);
adot_o=ic(i,3);
adot=[};
solu=[0 0 ao adotoj;

gdot={];
gdot( 1 )=0;
t_step=0;
%%
%% Guess initial solution to start Secant Method
%%
delta t=1 E-4;
tf1.;
a=ao+deltat*adoto;
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adot( 1 )=adoto;
adot(2)=adot_o-5;
n=tfldeltat;
j=1;

%%
%% The Secant Method
%%
for i=1:n

f( 1 )=(S_(2*Yo*E*( 1-1 /a3)/3/(E*( 1-1 /a"3)-(3 *yo*C*adot(1 )Ia)))-
(2*Yo/3)*(log(2/3/Yo*(E*(1 -1 /a"3)-(3 *yo*C*adot(1 )/a)))-
(2*C*adot(1)/a)*(3 *yo/(2*(E*(1 _1/a"3)_(3 *yo*C*adot(1)/a))) 1 )))* 1 E20;

f(2)=(S(2*Yo*E*(1 -1 /a3)/3/(E*( 1-1 /a'3)-(3 *yo*C*adot(2)/a)))..
(2*Yo/3)*(log(2/3/Yo*(E*( 1-1 /a1\3)(3*Yo*C*adot(2)/a)))
(2*C*adot(2)/a)*(3*Yo/(2*(E*(1 -1 /af'3)(3*Yo*C*adot(2)/a)) 1 ))))* 1 E20;

while abs(errxx) >= errx abs(erryy) >= erry
gdot(j+ 1 )=(f(j+ 1 )-f(j))/(adot(j+ 1 )-adot(j))/ 1 E20;
adot(,j+2)=adot(j+ 1 )-f(j+1 )/gdot(j+ 1)/I E20;
f(j+2)=(S(2*Yo*E*( 11 /a3)/3/(E*( 1-1 /a'3)-(3 *yo*C*adot(j+2)/a)))_

(2*Yo/3)*(log(2/3/Yo*(E*(1 -1 Iaf3)(3*Yo*C*adot(j +2)/a)))-
(2* C*adot(j+2)/a)*(3*Yo/(2*(E*( 1-1 /a"3)-(3 *yo*C*adot(j+2)/a))).. 1 )))* 1 E20;

erryy=z(f(j+2)f(j+1 ))Il E20;
errxx=adot(j+2)-adot(j+ 1);
adotf=adot(j +2);
ifj>=Max_iter

break
end
j=j+1;

end
format long g
tstep=i*delta_t;
solu=[solu; j+1 t step a adotf];
a=a+deltat*adotf;
j=1;
adot( 1 )=adotf+0.2;
adot(2)=adotf-0 .2;
errxx=1 00;
erryy=errxx;

end
subplot(2, 1,1)
plot(solu(:,2),solu(:,3));
xlabel('Time (sec)','fontsize', 11)
ylabel('Cavity Expansion, a/a 0','fontsize', 11)
hold on
subplot(2, 1,2)
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plot(solu(:,2),solu(:,4));
axis([0 tf 0 50])
xlabel('Time (sec)','fontsize', 11)
ylabel('Velocity of Cavity Expansion (inlsec)','fontsize', 11)
hold on
end
legend('C = 0.01 sec','C 0.05 sec', 'C = 0.1 sec','boxoff)
legend('boxoff)

D.4 INPUT FILES: fig0308.m and figO3O8a.m

D.4.1 Input file: fig0308.m

%% Figure 3.8-3.10
clear all
dc
%%
%% The numerical solution of a cavity expansion without strain-rate effects under
%% sudden spherically-symmetric loading.
%%
%% Input Variables in U.S. units
%%
E10e6; % Young's Modulus (psi)
Yo=40e3; % Yield Stress (psi)
p=2.59E-4; % Density (lb-sec'2/int'4)
C0.; % Linear Strain Rate Coefficients (sec)
%S=158000; % Cavitation Stress (psi)
%S=(2*Yo/3 *( 1 +log(2*E13/Yo))); % Cavitation limit Stress (psi)
S=l 63094;
%%
%% Initial conditions at the onset of Yielding on the cavity surface
%%
ti =(O.75*p/E)IO. 5*acos( 1 (2*Yo/3/S));
a 1 =( 1 +Yo/2/E);
aldot=(S*Yo/E/p*(l -Yo/3/S))"0.5;
%%
%% Numerical Method Using 0DE45
%%
tf=0.01; % Final time of numerical solution
options_i =odeset('RelTol', 1 E-8,'AbsTol',{ 1 E-8 1 E-8]);
[t,a]=ode45('stm02',[t 1 ,tf] ,[al ;al dot] ,options_1 ,S,C,E,Yo,p);
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z=num2str(S);
subplot(2,1 ,1)
plot(t,a(:, 1 ),'-)
Title('The Dynamic Analysis of Cavitation Jnstabilities','fontsize', 12)
xlabel('Time (sec)','fontsiz&, 12)
ylabel('Cavity Expansion, a/a_O','fontname','times','fontsize', 12)
hold on
subplot(2, 1,2)
plot(t,a(: ,2),'-')
axis([0 tf 0 10,000])
x1abe1(Time (sec)','fontname','times','fontsize', 12)
ylabel('Velocity of Cavity Expansion (in1sec,Tontname','times','fontsize', 12)
hold on
data={t,a];
nsize(data)
%save c:\data cO5s.txt data -ascii -double -tabs

D.5 INPUT FTLES: figO3l 1.m and figO3l la.m

D.5.1 Input file: figO3ll.m

%% Figure 3.11 (figO3ll.m)
clear all
dc
%%
%% The response of the dynamic system in a finite solid body with strain-rate
%% effects. The structure is subjected to step loading at time t=0.
%%
%% Input Variables in U.S. units
%%
E10e6; % Young Modulus (psi)
Yo=40e3; % Yield Stress (psi)
p=2 .59E-4; % Density (1bsecA2/int4)
C=0.; % Linear Strain Rate Coefficient (sec)
S=163094; % Cavitation Stress (psi)
size=[300 500 1000 1O"16];
%%
%% Initial conditions at the onset of yielding on the cavity wall

t 1 =(O.75*pIE)/'O.5 *acos( 1 (2*Yo/3IS));



al=(1+Yo/2/E);
al dot=1S *Yo/E/p*( 1 Yo/3/S))AO.5;
%%
%%Numerical Method Using 0DE45
%%
tf=O.03; % Final time of numerical solution
for i=1 :length(size)

b=size(i);
options_i =odeset('RelTol', 1 E-8,'AbsTol',[ 1 E-8 I E-8]);
[t,a]=ode45('figO3 11 a',[tl ,tf] ,{al ;al dot] ,options_1 ,S,C,E,Yo,p,b);
plot(t,a(:, 1)Lt)

xlabel('Time (sec)','fontsize',12)
ylabel('Cavity Exp ansion, a/a_O')
hold on

end
legend('L/D = 300','L/D 500','L/D = 1000','L/D = \infty',2)

D.5.1 Input file: figO3lla.m

function out3=figO3 11 a(t,a,dummy,S,C,E,Yo,p,b)
% Define an ODE equation

out3=[a(2);1IpIa(1)/(1a(1)/b)*(S_(2*YoI3)*(1+1og(2I3IYo*E*(11/a(1)/\3))_
2/3 *E/yo/bA3 *(a( 1 )"3- 1 ))-(O.5 *p*a(2)A2)*(3 4*a( 1 )fb+a( 1 )'4/b'4))J;
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APPENDIX E
ABAQUS INPUT FILES AND REZONING SUBROUTINES

This section contains ABAQUS input files and rezoning subroutines used in

the finite element analyses presented in Chapter 5. These files are orderly printed

and results are displayed according to figure numbers listed in Chapter 5. The other

input files that are not shown in this section can be obtained directly from the

author.

E.l QUASI-STATIC ANALYSIS UNDER SPHERICALLY-SYMMETRIC

LOADING

E.l.1 Input file: staticl.inp

*HEADING
Cavitation Instabilities
**

**Figure 5.2 (nu 0.3)
**

**NODAL COORDINATES
**

*NODE
l,1.,0.
21,0.,l.
8001 ,350.,0
8021 ,0.,350
1 0000,0.,0
*NGEN,LNEC
1,21,1,10000
8001,8021,1,10000
*NSET,NSETDO,GETE
1,21,1
*NsET,NsETJpp,GETE
8001,802 1, 1
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*flLL, BIAS=0.88, TWO STEP
DOWNN.UPP,80, 100
*NSET,NSETTOP,GENETE
800 1,802 1,1
*NsET,NsETBoTToM,GENEpTE
1,8001,100
*NSET,NSETLEFT,GENfjfijE
21,802 1,100
*NSET,NSETNODEOUT
1,21
**

**ELEMENT CONNECTIVITY
**

*ELEMENT,TyPECA)(8R
1,1,201,203,3,101,202,103,2
*ELGEN,ELSETALLE
1,40,200,1,10,2,40

*ELSET,ELSETTOPE,GE4JATE

40,400,40
*ELSET,ELSETELOUT
400
**

* *MATEPJL PROPERTIES
**

*SOLff SECTION,MATERIAL=SILVER, ELSET=ALLE

*ELASTJC,TypE4SOTROpJC
71 .E3,0.3
*pLASTIC,HAJJENGI5OTROpJC
213,0.
**

**HISTORY DATA
**

*STEP,NLGEOM4C400
* STATIC ,R1KS
0.005,1 .,0.,0. I ,4.,1 ,1 ,5.
**

* *BODY CONDITIONS
**

*BOTJNlJJ\Y
BOTTOM,YSYMM
LEFT,XSYMM
**
* *LOJJS



**

*DLO
TOPE,P2,-1 0000.
**

**OUTPUT REQUESTS
**

*NODE PR1NT,FREQUENCY=0
*EL PRINT,FREQUENCY=0
*MONITOR,NODE 1 ,DOF= 1
*OUTPUT FIELD VARIABLE=PRESELECT
*OUTPUT,FIELD,OPW
*NODE OUTPUT, NSET=UPP
COORD
*NODE OUTPUT, NSET=TOP
COORD
* OUTPUT, HISTORY,FREQ= 1
*ELEMENT OUTPUT,ELSET=ELOUT
LE,S
*NODE OUTPUT, NSET=NODEOUT
U
*EL PRINT,ELSET=ELOUT
S,E
*ENr STEP

E.1.2 Input file: staticlx.inp

Cavitation Instabilities
**

**Figure 5.5 (nu = 0.3)
**

**NOD/T COORDINATES
**

*NODE
1,1.,0
21,0., 1.
8001 ,350.,0.
8021,0.,350.
1 0000,0.,0.
*NGEN,LINEC
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1,21,1,10000
800 1,802 1, 1, 10000
*NSET,NSETDOWNN,GENERATE
1,21,1
*NSET,NSETpp,GENJ\TE
8001,8021,1
*4 ILL, BIAS=0.88, TWO STEP
DOWNN,UPP,80, 100

800 1,8021, 1
*NSET,NSETBOTTOM,GE4TE
1,8001,100

21,8021, 100
*NSET,NSETNODEOUT
1,21
**

* * ELEMENT CON1ECTIV1TY
**

*ELEMENT,TYPECA)(8R
1,1,201,203,3,101,202,103,2
*ELGEN,ELSETjLE
1,40,200,1,10,2,40
*ELsET,ELsETTopE,oEpTE
40,400,40
*ELSET,ELSETELOUT
400
**

* *MATERIjL PROPERTIES
**

*SOLD SECTION,MATERIAL=SILVER, ELSET=ALLE
*MATEpJLNaEsILvER
*ELASTIC,TYPE=ISOTROPIC
71 .E3,0.3
*PLASTIC,HENINGISOTROPIC
2 13,0.
2132 13,497.
**

**HISTORY DATA
**

*STEP,NLGEOM,fls4C1 000
*STATIC,RS
0.005,1.,1E-5,0.O1,4.,1,1,25.
**



IVLI]

**BOJPJJY CONDITIONS
**

*BOJNDJY
BOTTOM,YSYMM
LEFT,XSYMM
**

**LoJwS
**

*DLO
TOPE,P 1,-I 0000.
**

**OUTPUT REQUESTS
**

*RESTj\T,wpJTE,FREQUENCy400
*NODE PRINT,FREQUENCY=Q
*EL PR1NT,FREQUENCY=O
*MONITOR,NODE I ,DOF=1
*OUTPUT,FIELD,VLEPRESELECT
*OUTPUT,FIELD,OPEW
*NODE OUTPUT, NSET=UPP
COORD
*NODE OUTPUT, NSET=TOP
COORD
*OUTPUT, HISTORY,FREQ=I
*ELEMENT OUTPUT,ELSET=ELOUT
LE, S
*NODE OUTPUT, NSET=NODEOUT
U
*EL PRINT,ELSET=ELOUT
S,E
*END STEP

E.2 QUASI-STATIC ANALYSIS UNDER AXISYMMETRIC LOADING

E.2.1 Input file: testlOOyO2.inp

*READING
CAVITATION INSTABILITIES
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**

**Figure 5.9-5.14 (Stress ratio = 1 and m = 0.0006)
**

**NODAL COORDINATES
**

*NODE
1,1.,0.
25,O.,1.
800 1,300.,0.
8025,0.,300.
12001,5000.,0.
1201 3,5000.,5000.
1 2025,0.,5000.
1 00000,0.,0.
*NGEN,LIIC
1,25,1,100000
8001,8025,1,100000
**NOEN
* * 12013,12025,1

*NSET,NSETN1 2001
12001
*NSET,NSETN1 2013
12013
*NSET,NSETN 12025
12025
*ILL,BIAS.95,TWO STEP
N12001,N12013,12,1
*ILL,fflS.95,TWO STEP
N12025,N12013,12,-1
*NSET,NSETDO,GETE
1,25,1
*NsET,NsET4Jpp 1 ,GENERATE
8001,8025,1

12001, 12025, 1
*JLL, BIAS=0.9, TWO STEP
DOWNN,UPP 1,80,100
*NFILL, BJAS=0.87, TWO STEP
IJPP 1 ,UPP2,40, 100
*NSET,NSETzTOp,GEpTE
12013,12025,1
*NSET,NSETBOTTOM,GETE
1,12001,100
*NsET,NsETLEFT,GEpTE
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25,12025,100
*NSET,NSET4JP,GENEPTE
12001, 12013, 1
*NSET,NSETpPGE.{p,TE
8001,8025,1
12001,12025,1
*NSET,NSETNODEOUT
1,25
*NSET,NSETCONTR1JP,GETE
12001,12012,1

12014,12025,1
**

* *ELEMENT CONNECTIVITY
**

*ELEMENT,TErZC8R
1,1,201,203,3,101,202,103,2
481,8001,8201,8203,8003,8101,8202,8103,8002
*ELGEN,ELSETZALLE
1,40,200,1,12,2,40
481,20,200,1,12,2,20
*ELSET,ELSETTOPE,GETE
620,720,20
*ELsET,ELsETJpE,GENEpTE
500,600,20
*ELSET,ELSETELOUT
620
**

**MATEPJAL PROPERTIES
**

*SOLD SECTION,MATERIAL=SILVER, ELSET=ALLE
*MATEfflAL,NESJLVER
*ELASTIc,TypEISOTROpIC
71 .E3,0.3
*PLASTIC,HMffENINGISOTROPIC
213,0.
213213,497.
**

**HISTORY DATA
**
* * *EQUATION
* *2

**CONTRTOP,2, 1., 12013,2,-i.
**2
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**CONTRUP11 .,12013,1,-1.
*STEP,NLGEOM,NC1 000
* STATIC,RIEKS

0.005,1.,1E-5,O.01,4.,1,1,25.
*CONTROLS,pM?J4ETER5FJELD
0. 5E-4,,,,,,,,
* CONTROLS,PARAMETERS=TIME 1NCREMENTATION
25,25,25,30,,16,,
**
**JJJ)jSJy CONDITIONS
**

*BO1JND.IY

BOTTOM,YSYMM
LEFT,XSYMM
**

**LOAJS
**

*DLOJJ
UPE, P2,-10000.
TOPE,P2,- 10000.
**

**OUTPUT REQUESTS
**

*RESTJT,\AJfflTE,FREQUENCY 1000
*NODE PRINT,FREQUENCY=0
*EL PRINT,FREQUENCY=0
*MONITOR,NODE1 ,DOF=1
*OUTPUT,FIELD,VILEPRESELECT
*OUTPUT,FIELD,OPEW
*NODE OUTPUT, NSET=UPP
COORD
*NODE OUTPUT, NSET=DOWNN
COORD
*OffpUT, HISTORY,FREQ=1
*ELEMENT OUTPUT,ELSETELOUT
LE,S
*NODE OUTPUT, NSET=NODEOUT
U
*EL PRTNT,ELSET=ELOUT
S,E
*END STEP
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E.2.2 Input file: trlOOzO3.inp

*HEjSJING
CAVITATION INSTABILITIES
**

**Figure 5.16-5.19 (Stress ratio = 1)
**

**NODAL COORDINATES
**

*NODE
1,L,0.
25,O.,1.
8001 ,200.,O.
8025,0.,200.
12001,1 5000.,0.
12013,15000.,15000.
12025,0.,15000.
1 00000,0.,0.
*NGEN,LC
1,25,1,100000
8001,8025,1,100000
**NGEN
**12013,12025,1
*NSET,NSETN1 2001
12001
*NSET,NSETN1 2013
12013
*NSET,NSETN12O25
12025
*}'ILL,BJSO.85,TWO STEP
N 12001 ,N 12013,12,1
*ILL,BIAS85,TWO STEP
N12025,N12013,12,-1
*NSET,NSETDO,GETE
1,25,1
*NsET,NSETJpp 1 ,GENERATE
8001,8025,1
*NsET,NsETJpp2,GENETE
12001,12025,1

BIAS=0.90, TWO STEP
DOWNN,UPP1 ,80,100
*NE'JLL, BIAS=0.8, TWO STEP
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UPP 1 ,UPP2,40, 100
*NSET,NSETTOP,GENEPTE
12013,12025,1
*NSET,NSETBOTTOM,GENERATE
1,12001,100
*NSET,NSET=LEFT,GEpTE
25,12025,100
*NSET,NSET1JP,GENEPTE
12001, 12013, 1
*NSET,NSETPP,GETE
8001,8025,1
12001,12025,1
*NSET,NSETNODEOUT
1,25

12001, 12012, 1
*NSET,NSETCONTRTOP,GETE
12014,12025,1
**

**ELEMENT CONNECTIVITY
**

*ELEMENT,TEZC8R
1,1,201,203,3,101,202,103,2
481,8001,8201,8203,8003,8101,8202,8103,8002
*ELGEN,ELSETALLE
1,40,200,1,12,2,40
481,20,200,1,12,2,20
*ELsET,ELsETTopE,GEpTE
620,720,20

500,600,20
*ELSET,ELSETELOUT
620
**

**MATEPJ PROPERTIES
**

* SOLID SECTION,MATER1AL=SILVER, ELSETALLE

*ELASTIC,TypEz4SOTROpIC
71 .E3,0.45
*pLASTJC,JTADEN4GJSOTROpJC
2 13,0.
220,0.000315645
230,0.000839192
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240,0.00145529

250,0.002172158

260,0.002998366

270,0.003942834

280,0.005014831

290,0.006223978

300,0.007580242

310,0.009093944

320,0.010775752

330,0.012636684

340,0.014688108

350,0.016941744

360,0.019409658

370,0.022104269

380,0.025038344

390,0.028225001

400,0.031677706

410,0.035410276

420,0.039436879

430,0.04377203

440,0.048430596

450,0.053427794

460,0.058779188

470,0M64500695

480,0.07060858

490,0.077119459

500,0.084050296

525,0.103329197

550,0.125622123

575,0.151222847

600,0.180438807

625,0.213591103

650,0.251014502

700,0.340081984

750,0.450592653

800,0.585716528

850,0.748842253

900,0.943577094

950,1. 173746935

1000,1.443396288

1050,1.756788284

1100,2.118404675

1150,2.532945837

1200,3.005330769
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**

**HJSTORY DATA
**
* **EQUATION
**2
**CONTRTOP,2,1 .,12013,2,-1.
* *2

**CONTRUP1112O131..1
*STEP,NIGEOM,NC4OO
* STATIC ,RIKS
0.01,1.,0.000 1,0. 1,2.,1, 1, 14.

*CONTROLS,pAp1ETERSrTfE INCRIEMENTATION
14,15,15,30,,,,
**

**BOJ1PAJY CONDITIONS
**

*BOJNDjY
BOTTOM,YSYMM
LEFT,XSYMM
**

**LOJS
**

*DLO
UPE,P2,-1 000.
TOPE,P2,- 1000.
**

**OUTPUT REQUESTS
**

*pSTaT\IJJuTEFREQlJENCy400
*NODE PRINT,FREQUENCY=0
*EL PRINT,FREQUENCY=0
*MONITORNODEI ,DOF=1
*OUTPUT,FIELDVILEPRESELECT
*OUTPUT,FIELD,OPEW
*NODE OUTPUT, NSET=UPP
COORD
*NODE OUTPUT, NSET=DOWNN
COORD
* OUTPUT, HISTORY,FREQ=1
*ELEMENT OUTPUT,ELSET=ELOUT
LE,S
*NODE OUTPUT, NSET=NODEOUT
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U
*EL PRINT,ELSET=ELOUT
S,E
*EIPJ STEP

E.2.2 Input file: orlOOfOl.inp

*HEjNG
CAVITATION INSTABILITIES
**

**Figure 5.2 1-5.24 (Stress ratio = 1)
**
**

* *NOD/J COORDINATES
**

*NODE
1,1.,0.
25,0.,1.
8001 ,200.,0.
8025,0.,200.
1 1001,4000.,0.
1 1013,4000.,4000.
1 1025,0.,4000.
1 00000,0.,0.
*NGEN,LINEC
1,25,1,100000
800 1,8025,1, 100000
**NGEN
**1 1013,11025,1
*NSET,NSETN 11001
11001
*NSET,NSETN1 1013
11013
*NSET,NSETN1 1025
11025
*4IfJLL,BSO.98,TWO STEP
Ni 1001,N1 1013,12,1
*ILL,BIAS98,TWO STEP
Ni 1025,N1 1013,12,-i

1,25,1
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*NSET,NSETZ4JPP I ,GENERATE
8001,8025,1
*NSET,NSET=UPP2,GENERATE
11001,11025,1
*N}ILL, BIAS=0.90, TWO STEP
DOWNN,UPP 1,80,100
*N}'JLL, BIAS=0.8, TWO STEP
UPP 1 ,IJPP2,30, 100
*NSET,NSETTOP,GEfiTE
11013,11025,1
*NSET,NSETBOTTOM,GE1fiTE
1,11001,100
*NSET,NSETLEFT,GETE
25,11025,100
*NsET,NsETp,GETE
11001,11013,1
*NsET,NsETJJpp,GEfiTE
8001,8025,1
11001,11025,1
*NSET,NSETNODEOUT
1,25
*NsET,NsETcoNTRup,GETE
1100 1,11012,1

11014,11025,1
**

**ELEME CONNECTIVITY
**

1,1,201,203,3,101,202,103,2
481,8001,8201,8203,8003,8101,8202,8103,8002
*ELGEN,ELSETALLE
1,40,200,1,12,2,40
481,15,200,1,12,2,15
*ELSET,ELSETTOPE,GETE
585,660,15
*EL5ET,EL5ETpEQE1TE
495,570,15
*ELSET,ELSETELOUT
585
**

**TEPL PROPERTIES
**

* SOLID SECTION,MATERIAL=SILVER, ELSET=ALLE
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*MATEPLLNESILVER
*ELASTJC,TyPE=JSOTROPJC
71 .E3,0.37
*PLASTIC,HARDENINGISOTROPIC
49.7,0.,70
100,0.001,70
115,0.002,70
139,0.004,70
153,0.006,70
164,0.00799,70
171,0.00999,70
182,0.01404,70
193,0.01998,70
208,0.02997,70
219,0.04002,70
233,0.06002,70
244,0.07996,70
251,0.09996,70
254,0.15002,70
256,0.19999,70
259,2.99635,70
260,99.99634,70
**

**HISTORY DATA
**

***EQUATION
**2
**CONTRTOp,2,1.,1 1013,2,-i.
* *2

**CONTRTJP111 1013,1,-i.
* STEP ,NLGEOM,INC=400
*STATTC,RII(S
0.01,1 .,0.0001,0.1,2.,1,1,10.
*CONTROLS,PJtI1ETERSF1ELD

* CONTROLS,PARAMETERS=TIME INCREMENTATION
14,15,15,30,,,,
**

**BO1JNTjARY CONDITIONS
**

*BOARY
BOTTOM,YSYMM
LEFT,XSYMM
**



181

**LOAfS
**

*DLO
UPE,P2,-i 000.
TOPE,P2,-1000.
**

**OUTPUT REQUESTS (INC=100 is the last increment.)
**

*RESTT,\XJIUTE,FREQJJENCY=40o
*NODE PRJNT,FREQUENCY=O
*EL PRINT,FREQUENCY=0
*MONITOR,NODE1 ,DOF=1
*OrPUT,FIELD,VJLEPRESELECT
*OUTPfl,FIELD,OPIEW
*NODE OUTPUT, NSET=UPP
COORD
*NODE OUTPUT, NSET=DOWNN
COORD
*OUTPUT, HISTORY,FREQ=1
*ELEMENT OUTPUT,ELSET=ELOUT
LE, S
*NODE OUTPUT, NSET=NODEOUT
U
*EL PRINT,ELSET=ELOUT
S,E
*E1s413 STEP

E.3 ABAQUS SUBROUTINES

Ill

Reads the output database file and imports the deformed shape of
the billet at the end of step 1 as an orphan mesh part. The
orphan mesh part is then used to create a 2D solid part which
can be meshed by the user.
,, ,, I,

from abaqus import *
from part import *

# NOTE: USER MUST DEFINE THESE VARIABLES.
odbName = 'orlOOfOl .odb' # Name of output database file.
modelName = 'Model-i' # Model name.



orphanlnstance = 'PART-i-i' # Deformed instance name.
deformedShape = DEFORMED # Shape.
angle = 15.0 # Feature angle.
importStep = 1 # Step number.

# Import orphan mesh part.
orphanBillet = mdb .model['Model- 1'] .PartFromOdb(fileName=odbName,

name='orphanBillet',
instance=orphanlnstance,
shape=deformedShape,
step=importStep)

# Extract 2D profile and create a solid part.
newBillet rndb.modei['Model- 1'] .Part2DGeomFrom2DMesh(name='newBillet',

part=orphanBillet,
featureAngle=angle)

print 'Deformed billet is now ready for rezoning.'

E.4 DYNAMIC ANALYSIS UNDER SPHERICALLY-SYMMETRIC LOADING

E.4. 1 Input file: modelO600cOlshO2.inp

*HEADNG
Cavity Expansion
**

**Fjglure 5.26 (S = 1.02 Scr and C = 0.1 see)
**

*pj\PAMETER
delta x=1 000*cos(1 0*pi/1 80)
delta y=1 000*sin( 1 0*pi/1 80)
**

**NODAL COORDINATES
**

*NODE,SYSTEMZC
1,1.,0.
2,1.,10
5001 ,600.,0.
5002,600., 10.
5101,1200.,0
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5102,1200.,1O.
1 O00O,0O.
*NGEN,Lll=C
1,2,1,10000
500 1,5002, 1,10000

1,2,1
*NSET,NsETpp,GE4fiTE
5001,5002,1
*ilILL, BL&S=0.87, TWO STEP
DOWNN,UPP,50, 100
*N5ET,NSETBOTTOM,GETE
1,5001,100
*N5ET,NSETTOp,GETE
2,5002,100
*NSET,NSETNODEOUT

*TpAsFopNsETTopTypER
<delta_x>,<delta_y>,0.,-<deltay>,<deltax>,0.
**

**ELEMENT CONNECTIVITY
**

*ELEMENT,TYpErCA)(4R
1,1,101,102,2
*ELGEN,ELSETALLE
1,50,100,1,1,1,50
*ELEMENT,TypEc)c4ELsET4I.4F
51,5002,5001,5 101,5 102
*ELSET,ELSETz4JpE
50
*ELSET,ELSETFMASSGEJTE
1,901,50
* SOLID SECTION,ELSET=ALLE,MATERIAL=SILVER
1.,
*SQLID SECTION,ELSET=INF,MATERIAL=SILVER
2.,
**

**MATEPJL PROPERTIES
**

*MATE1JAL,NpJE5JLyER
*DENSITY
2.59E-4,
*ELASTIC,TYPEISOTROPIC
1 0E6,0.486
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*PLASTIC
4E4,0.
*PTE DEPENDENT
10,1
**

**BOIJPRY CONDITIONS
**

*BOIJ1.lJJY
BOTTOM,YSYMM
TOP,YSYMM
*PLITENEMPDEFD4ITIONSMOOTH STEP
0.,0.,4.5E-6,166355.086,10,166355.086
**

**STEP
**

* STEP,NLGEOM=YES
Step-i
*DJnc,E)pLIcIT
,1.
*BULK VISCOSITY
1.4,1.2
*4JApTIvE MESH,ELSET=ALLE,CONTROLS=T 1 ,MESH SWEEP S=3
*jflpTwE MESH CONTROLS,NAME=T1 ,SMOOTHING=GRADED
**FJyD MASS SCALING, FACTOR=1,ELSET=FMASS

UPE,P2,- 1
**

**OUTPUT REQUESTS
**

INTER VAL=1 ,TIME MARK=NO
*MONITOR,DOFZ1 ,NODE=1
* OUTPUT,FIELD,NTJMBER INTER VAL=200,VARIABLE= PRESELECT
* OUTPUT,HISTORY,VARIABLE=PRESELECT
* ENERGY OUTPUT
ALLAE, ALLCD, ALLFD, ALLIE, ALLKE,
ALLPD, ALLSE, ALLVD, ALLWK, ETOTAL
*OUTPUT,HISTORY,TIME INTERVAL=.005
*NODE OUTPUT,NSET=NODEOUT
U
*ELEMENT OUTPUT,ELSET=UPE
MISES,S,SP,LE
*END STEP
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E.4.2 Input file: dyhardo2ocO0.inp

*HEAf4G
Cavity Expansion
**

**Figure 5.28 (S 163,094 psi)
**

* *NOD COORDiNATES
**

*NODE
1,1.,0.
21,0.,1.
5001 ,300.,0.
5021 ,0.,300.
I 0000,0.,0.
*NGEN,LJNEC
1,21,1,10000
5001,5021,1,10000
*NsET,NsETDow,GEpTE
1,21,1
*NsET,NSETpp,GETE
5001,5021,1
*ILL, BIAS=0.9, TWO STEP
DOWNN,UPP,50, 100
*NSET,NsETTop,GEpJ.TE
5001,5021,1
*NsET,NsETBoTToM,GEpTE
1,5001,100
*NsET,NsETLEFT,GEp,ATE
21,5021,100
*NSET,NSETNODEOUT
1,21
**

* * ELEMENT CONNCTWITY
**

*ELEENT,TypECAX4R
1,1,101,102,2
*ELGEN,ELSETALLE
1,50,100,1,20,1,50
*ELsET,ELsETTopE,GEpTE
50,1000,50
*ELSET,ELSETELOUT
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*ELSET,ELSETFMAS S,GENBRATE
1,951,50
2,952,50
3,953,50
4,954,50
5,955,50
6,956,50
7,957,50
8,958,50
9 ,959,5 0

10,960,50
* SOLID SECTION,ELSET=ALLE,MATERIAL=SILVER
1.,
**
* *TERIAL PROPERTIES
**

*DENSITY
2 .59E-4,
*ELAsTIc,TypEIsoTRopIc
1 0E6,0.499
*PLASTIC
4E4,0.
**PTE DEPENDENT
**2,1
**

**BOJNT)RY CONDITIONS
**

BOTTOM,YSYMM
LEFT,XSYMM
*pLITjENEpDEFflJTJON5MOOTH STEP
0.,0.,4.4797E-6,1 63094,10,163094
**

**STEp
**

* STEP,NLGEOM=YES
Step-i

,0.017
*BULK VISCOSITY
.2,.12

MESH,ELSET=ALLE,CONTROLS=T1 ,MESH SWEEPS=4
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MESH CONTROLS,NAME=T1 ,SMOOTH1NG=GRADED
*FIXED MASS SCALING, FACTOR=14,ELSET=A11E
*DLO,PLITIJDE44P
TOPE,P2,- 1
**

**OUTPUT REQUESTS
**

iNTER VAL=1 ,TIME MARK=NO
*MONJTOR,DOF1 ,NODE=1
*OUTPJJI[',FIELD,NIJMBER INTER VAL=1 7,VARIABLE==PRESELECT
*OUTp,HJSTORy,yJLEpRESELECT
*ERGY OUTPUT
ALLAE, ALLCD, ALLFD, ALLIE, ALLKE,
ALLPD, ALLSE, ALLVD, ALLWK, ETOTAL
*OUTPUT,HISTORY,TIME INTERVAL=.00 1
*NODE OUTPUT,NSET=NODEOUT
U
*ELEMENT OUTPUT,ELSET=ELOUT
MISES,S,SP,LE
*END STEP
*STEP,NLGEOMYES
Step-2
*DY IC EXPLICIT
,O.184
*BULK VISCOSITY
.6,1.2
*pfApTIvE MESH,ELSET=ALLE,CONTROLS=T2,MESH SWEEPS=1

MESH CONTROLS,NAME=T2,CURVATURE REF1NEMENT=1O
*FI)(ED MASS SCALiNG, FACTOR=440,ELSET=ALLE

TOPE,P2,-1
**

**OUTPUT REQUESTS
**

*RESTT/DTENIJr4BER 1NTERVAL=1 ,TIME MARKNO
*MONITOR,DOF1 ,NODE=1
*OUTPUT,FIELD,NTJMBER INTERVAL=41 ,VARL&BLE=PRESELECT
*OUTPUT,H1STORYVAfflLEPRESELECT
*ERGY OUTPUT
ALLAE, ALLCD, ALLFD, ALLIE, ALLKE,
ALLPD, ALLSE, ALLVD, ALLWK, ETOTAL
*OUTPUT,HISTORY,TIME INTERVAL=.004
*NODE OUTPUT,NSET=NODEOUT
U



*ELEMENT OUTPUT,ELSETELOUT
MISES,S,SP,LE
*END STEP

E.4.3 Input file: dyhardzc0lOno3.inp

Cavity Expansion
**

**Figure 5.30 (S 163,094 psi and C = 0.1 sec)
**

**NODAL COORDiNATES
**

*NODE
1,1.,0.
21,0.,1.
8001 ,300.,0.
8021 ,0.,300.
1 0000,0.,0.
*NGEN,LIIEZZZC

1,21,1,10000
8001,8021,1,10000
*NSET,NSETDO,GETE
1,21,1
*N5ET,NSETJppGETE
8001,8021,1
*N}JLL, BIAS=0.89, TWO STEP
DOWNN,UPP,80, 100
*NSET,NSETTOP,GETE
800 1,8021,1
*NSET,NSETBOTTOM,GE4JTE
1,8001,100
*NsET,NsETLEFT,GEpTE
21,802 1,100
*NSET,NSETNODEOUT
1,21
**

**ELEMENT CONNECTIVITY
**

*ELEMENT,TEC8
1,1,201,203,3,101,202,103,2



*ELGEN,ELSETALLE
1,40,200,1,10,2,40
*ELsET,ELsETTopE,GENEpTE
40,400,40
*ELSET,ELSETELOUT
400
**

**MATERIAL PROPERTIES
**

*SOLff SECTION,ELSET=ALLE,MATERIAL=SILVER
*MATEMAL,NEZSILVER
*ELASTIC,TypEIsoTRopIc
1 0E6,0.499
*PLASTIC
4E4,0.
*PTE DEPENDENT
10,1
**

**BOJNDRY CONDITIONS
**

*BOfJjSJy
BOTTOM,YSYMM
LEFT,XSYMM
*pLIT1JDENESTEpDEF1NITJONrSMOOTH STEP
0.,163094,100,163094
**

** STEP
**

*STEp,NLGEOMyE5,pLJT[JTESTEp,JNC1 000
Step-i
*STATIC
1E-8,30
*DLO,PLITTJlESTEP
TOPE,P2,- 1
* CONTROLS,PARAMETERS=FIELD
1 E-4,,,,,,,,
*CONTROLS,PETERSTE INCREMENTATION
100,100,100,100,50,,,
**25,25,25,30,,l 6,,
**

**OUTPUT REQUESTS
**

*RESTT,\VPJTE,FREQ1JENCY 1000
*NODE PR1NT,FREQUENCY=0
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*EL PRINT,FREQUENCY=0
*MONJTOR,NODE1 ,DOF=1
*OUTP,FffiLDVLEPSELECT
*OUTPUT,FIELD,OPEW
*NODE OUTPUT, NSET=UPP
COORD
*NODE OUTPUT, NSET=DOWNN
COORD
*OIJFPUT, HISTORY,FREQ=1 0
* ELEMENT OUTPUT,ELSETr=ELOUT
LE, S
*NODE OUTPUT, NSET=NODEOUT
U
*EL PRINT,ELSET=ELOUT
S,E
*E4TJ STEP

E.4.4 Input file: speciall00n0lz.inp

*HEAfflG

Cavity Expansion
**

**Fjgure 5.32 (S = 1.O2Scr)
**

**NODAL COORDiNATES
**

*NODE
1,1.,0.
21,0.,1.
5001 ,300.,0.
5011 ,300.,300.
502 1,0.,300.
1 0000,0.,0.
*NGEN,LC
1,21,1,10000
*NGEN
5001,5011,1
5011,502 1, 1
*NSET,NSETDOGETE
1,21,1
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5001,5021,1
*NF'ILL BIAS=0.9, TWO STEP
DOWNN,UPP,50, 100
*NSET,NSET=TOpGENE4TE
5011,5021,1
*NSET,NSETBOTTOMGE4ETE
1,5001,100
*NSET,N5ET=LEFT,GENEfiTE
21,5021,100
*NSET,NSETJPGENETE
5001,5011,1
*NSET,NSETNODEOUT

*NSET,NSETCONTR UP GENERATE
5002,5011,1
*NSET,NSET=CONTR TOP GENERATE
5011,5020,1
**

**ELEMENT CONNECTIVITY
**

*ELEMENT,TYPECA)(4R
1,1,101,102,2
*ELGEN,ELSET=ALLE
1,50,100,1,20,1,50
*ELSET,ELSETJpE GENERATE
50,500,50
*ELSET,ELSET=TOPE,GENERATE
550,1000,50
*ELSET,ELSETELOUT
550
*ELSET,ELSETFMAS S,GBNERATE
1,951,50
2,952,50
3,953,50
4,954,50
5,955,50
6,956,50
7,957,50
8,958,50
9,959,50
10,960,50
*SOLD SECTION,ELSET=ALLE,MATERIAL=SILVER

**
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* *MATEPJAL PROPERTIES
**

*MATEJLNJSJ4ESILVER
*DENSITY
2.59E-4,

1 0E6,O.499
*PLAS TIC
4E4,O.
**

* *BODJY CONDITIONS
**

*BOIJI.lY
BOTTOM,YSYMM
LEFT,XSYMM
*pLJTJJTJENEp4pDEFJNITIONSMOOTH STEP
O.,O.,4.5E-6, 163382.63,5,163382.63
**

**STEP
**

*STEP,NLGEOMYES
Step-i
*DYAJ4ICE)(PLJCIT
,O.017
*BK VISCOSITY
.2,1.2
*AJTJVE MESH,ELSET=ALLE,CONTROLS=T 1 ,MESH SWEEPS=4
*jJ)ApTwE MESH CONTROLS,NAME=T1 ,SMOOTHING=GRADED
*FIXED MASS SCALING, FACTOR=18,ELSET=A1IE

TOPE,P2,- 1
UPE,P2,- 1
**

**OUTPUT REQUESTS
**

*RESTT,lilJPdTE,NlJER INTER VAL= 1 ,T1ME MARK=NO
*MONJTOR,DOF4 ,NODEi
*OUTPUT,FIELD,NIJMBER INTERVAL=1 7,VARIABLE=PRESELECT
*OUTPUT,HISTORY,VAJILEZrPRESELECT
*ERGY OUTPUT
ALLAE, ALLCD, ALLFD, ALLIE, ALLKE,
ALLPD, ALLSE, ALLVD, ALLWK, ETOTAL
*OUTPUT,I{ISTORY,TIME INTERVAL=.001
*NODE OUTPUT,NSET=NODEOUT
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U
*ELEMENT OUTPUT,ELSET=ELOUT
MISES,S,SP,LE
*E STEP
*STEP,NLGEOMYES
Step-2

,O.184
*BULK VISCOSITY
.6,1.2
*DTI\IE MESH,ELSETALLE,CONTROLS=T2,MESH SWEEPS 1
*J)PTWE MESH CONTROLS,NAME=T2,CURVATUPE REFTNEMENT=1O
*FIXED MASS SCALING, FACTOR=43O,ELSETALLE
*DLO,fPLIT1JDErD.J4P
TOPE,P2,- 1
UPE,P2,- 1
**

**OUTPUT REQUESTS
**

INTERVAL=1 ,TIME MARK=NO
*MONITOR,DOF1 ,NODE=1
*OUTPUT,FIELD,NIJMBER iNTER VAL=4 1 ,VARIABLE=PRESELECT
*OUTpUT,}{ISTORy,VLEpRESELECT
*EJRGY OUTPUT
ALLAE, ALLCD, ALLFD, ALLIE, ALLKE,
ALLPD, ALLSE, ALLVD, ALLWK, ETOTAL
*OUTP1J[',RISTORY,TIME INTERVAL=.004
*NODE OUTPUT,NSET=NODEOUT
U
*ELEMENT OUTPUT,ELSET=ELOUT
MISES,S,SP,LE
*EN] STEP

E.4.5 Input file: testlOOnOlz.inp

*HENG
Cavity Expansion
**

**Figlare 5.35 (S 1.O2Scr)
**

* *NODAL COORDINATES
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**

*NODE
1'l.,o.

25,0.,1.
8001 ,300.,0.
8025,0.,300.
1200 1,l0000.,0.
12013, 10000., 10000.
12025,0.,10000.
100000,0. ,0.
*NGEN,LNC
1,25,1,100000
8001,8025,1,100000
*NSET,NSETN12001
12001
*NSET,NSETN1 2013
12013
*NSET,NSETN1 2025
12025
*JLL,BIA5.95,TWQ STEP
N12001,N12013,12,1
*ILL,BJAS.95,TWO STEP
N12025,N1201 3,12,-i

1,25,1
*NsET,NsET4Jpp 1 ,GENERATE
8001,8025,1
*NsET,NSETJpp2,GE4fijE
12001,12025,1
*NFILL, BIAS0.9, TWO STEP
DOWNN,UPP 1,80,100
*ILL, BIAS=0.87, TWO STEP
UPP1 ,UPP2,40, 100
*NSET,NSETTOP,GETE
12013,12025,1
*NsET,NsETBoTToM,GENEpTE
1,12001,100
*NSET,NSETLEFT,GEJJTE
25, 12025, 100

12001,12013,1
*N5ET,NSETUPp,GE1fiTE
8001,8025,1
12001,12025,1
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*NSET,NSETNODEOUT
1,25
*NSET,NSETCONTRUP,GENEPTE
12001,12012,1
*NSET,NSETCONTRTOP,GEN}TE
12014,12025,1
**

* *ELEMENT CONNECT IVITY
**

*ELEMENT,TyPE=CAX8pJ
1,1,201,203,3,101,202,103,2
481,8001,8201,8203,8003,8101,8202,8103,8002
*ELGEN,ELSETALLE
1,40,200,1,12,2,40
481,20,200,1,12,2,20
*ELSET,ELSETTOpE,GEpTE
620,720,20
*ELSET,ELsETJpE,GENEpTE
500,600,20
*ELSET,ELSETELOUT
620
**

* *MATEPL PROPERTIES
**

*SOLD SECTION,MATERIAL=SILVER,ELSET=ALLE
*MATEpTNJfEsILvER
*ELAsTIc,TypEISOTROpIC
1 0E6,0.45
* PLASTIC
4E4,0.
*PTE DEPENDENT
2154.43469,3.333333333
*LITIJDE,NJffiSTEP,DEFJNJTION5MOOTH STEP
0.,163382.63,100,163382.63
**

**HISTORY DATA
**

*STEpNLGEOMyESJfpLITIJrjESTEplls4C1 000
Step-i
* STATIC

1 E-6,20, 1 E-6

0. 5E-4,,,,,,,,
*coNTRoLs,pJ?ETERsTIE INCREMENTATION
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25,25,25,30,,1 6,,
**

**BOIIPJ)RY CONDITIONS
**

*BOIJWJ)JY
BOTTOM,YSYMM
LEFT,XSYMM
**

**

UPE, P2,-i.
TOPE,P2,-1.
**

**OUTpUT REQUESTS
**

*RESTAJT,VJJTEFREQUENCYZZ1 000
*NODE PRINT,FREQUENCY=0
*EL PRINT,FREQUENCY=0
*MONITOR,NODE1 ,DOF=1
*OUTPUT,FmLD,VJ\JLEPRESELECT
*OUTPUT,FffiLD,OPW
*NODE OUTPUT, NSET=UPP
COORD
*NODE OUTPUT, NSETDOWNN
COORD
* OUTPUT, HISTORY,FREQ= 1
*ELEMENT OUTPUT,ELSET=ELOUT
LE,S
*NODE OUTPUT, NSET=NODEOUT
U
*EL PRNT,ELSET=ELOUT
S,E
*END STEP

E.4.6 Input file: flOOeO2.inp

*HEMflS4G
Cavity Expansion
**

**Figure 5.38 (Stress ratio = 1)
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**
**
**NODAL COORDINATES
**
*NODE
1,1.,o.

21 ,O., 1.

5001 ,300.,O.

501 1,300.,300.

5021 ,O.,300.

1 0000,O.,O.

*NGEN,LIC
1,21,1,10000
*NGEN
5001,5011,1

5011,5021,1

*NSET,NSETDOl4,GEJTE
1,21,1
*NsET,NsETJpp,GENERATE
5001,5021,1

*.HJLL, BIAS=0.87, TWO STEP
DOWNN,UPP,50, 100
*NSET,NSETTOp,GENETE
5011,5021,1
*NSET,NSETBOTTOM,QE?TE
1,5001,100

*NSET,NSETLEFT,GEIs.ffipTE
21,502 1,100

*NSET,NSETTJP,GENEPTE
5001,5011,1
*NSET,NSETNODEOUT

*NsET,NsETcoNTRup,GENEpATE
5002,5011,1

*NSET,NSETCORTOP,GENERATE
5011,5020,1
**
**ELEMENT CONNECT 1VITY
**
*ELEMENT,TypECM(4R
1,1,101,102,2

*ELGEN,ELSETALLE
1,50,100,1,20,1,50

*ELsET,ELsETTJpE,GENEpATE



50,500,50
*ELSET,ELSETTOPE,GE1TE
550,1000,50
*ELSET,ELSETZELOUT
550
*ELSET,ELSETFMASSGETE
1,951,50
2,952,50
3,953,50
4,954,50
5,955,50
6,956,50
7,957,50
8,958,50
* SOLID SECTION,ELSET=ALLE,MATERIAL=SILVER
1.,
**

**MATEPJL PROPERTIES
**

*MATERI,NESmVER
*DENSITY
10490.,

71000.E+6,0.37
*pLASTIC,HDENJNGJSOTROpJC
49.7E+6,0.
1 OOE+6,0.001
11 5E+6,0.002
1 39E+6,0.004
1 53E+6,0.006
1 64E+6,0.00799
171 E+6,0.00999
1 82E+6,0.0 1404
1 93E+6,0.0 1998
208E+6,0.02997
21 9E+6,0.04002
233E+6,0.06002
244E+6,0.07996
251 E+6,0.09996
254E+6,0. 15002
256E-f-6,0. 19999
256.075E+6,0.26990
256.1 50E+6,0.33981
256.225E+6,0.40972
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256.300E+6,0.47963
256.375E+6,0.54954
256.45 OE+6,0.61 944
256. 525E+6,0.6893 5
256.600E+6,0.75926
256.675E+6,0.8291 7
256.750E+6,0.89908
256.825E+6,O.96899
256.900E+6, 1.03890
256.975E+6, 1.10881
257.050E+6, 1.17872
257. 125E+6,1 .24862
257.200E+6,1 .3 1853
257.275E+6,1 .3 8844
257.350E+6,1 .45835
257.425E+6, 1.52826
257.500E+6,1.59817
257.575E+6, 1.66808
257.650E+6, 1.73799
257.725E+6,1 .80790
257.800E+6,1 .8778 1
257.875E+6,1 .94772
257.950E+6,2.01 762
25 8.025E+6,2.08753
258.100E+6,2.1 5744
258.1 75E+6,2.22735
258.250E+6,2.29726
258.325E+6,2.3671 7
258.400E+6,2.43708
258.475E+6,2.50699
258.550E+6,2.57690
258.625E+6,2.64680
258.700E+6,2.7 1671
258.775E+6,2.78662
258. 850E+6,2 .85653
258.925E+6,2.92644
259E+6,2.99635
**

**BODJSJY CONDITIONS
**

*BO1JJY
BOTTOM,YSYMM
LEFT,XSYMM
*pLITUDENEIvJpSMOOT}{O
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0.,O.,10.,i.,500.,i.
**

**STEp
**

*STEP,NLGEOMYES
Step-i

*DY IC EXPLICIT
,15.
*APTWE MESH,ELSET=ALLE,CONTROL5=T 1 ,MESH SWEEPS=5
*AJPTWE MESH CONTROLS,NAME=T 1 ,SMOOTH1NG=GRADED
*FD(ED MASS SCALING, FACTOR=500,ELSET=FMASS

UPE,P2,-838E+6
TOPE,P2,-83 8E+6
**

**OUTPUT REQUESTS
**

INTERVAL=1 ,TIME MARK=NO
*MONITOR,DOF 1 ,NODE=1
*OIJTPUT FIELD N1JMBER INTER VAL= 1 00,VARIABLE=PRE SELECT

*Energy Output

ALLAE, ALLCD, ALLFD, ALLIE, ALLKE,
ALLPD, ALLSE, ALLVD, ALLWK, ETOTAL
*OUTPUT,HJSTORy TIME 1NTERVAL=0. 15
*NODE OUTPUT,NSET=NODEOUT
U
* ELEMENT OUTPUT,ELSET=ELOUT
S,SP,LE
*END STEP




