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Predicting Fish Recruitment in the Northeast Pacific Using Climate Indices 

 

Introduction 

 The study of recruitment in fisheries began with Johan Hjort in the early twentieth century. 

Many important discoveries have been made since then and important theories were developed. 

However, there are still many questions involving recruitment, from the broad “what determines 

recruitment?” to the more specific “what aspects of the environment have the greatest impact on 

recruitment?” These questions focus on one of the most unpredictable aspects of a population. It 

is vital to understand these questions to successfully predict the future state of stocks and allow 

managers to formulate strategies that keep stocks at healthy, consistent levels. 

 Keeping stocks at healthy levels depends on all life stages of the species, but some are more 

important than others. Recruitment in particular is important to the overall population for many 

reasons. Recruitment is the addition of a new group of individuals to an existing pool of 

individuals. In a population context, this is often regarded as the addition of young individuals to 

the pool of adults. It is highly variable (Rothschild 2000). It is the step between the larval and 

juvenile life stages and adulthood, controlling the size of each age class in a stock. It is strongly 

affected by both changes in the environment and variations in the size of the reproductive stock 

(Planque and Frédou 1999). Furthermore, it has been difficult to separate the effects of 

environment and parental stock size (Planque and Frédou 1999).  

Predicting stock-recruitment relationships remains a challenge to successful recruitment 

forecasting. It is well-known that spawning stock biomass is one of the most important predictors 

of recruitment (Subbey et al. 2014). However, the importance of other factors is still being realized 

and implemented into recruitment predicting models. 
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 Traditionally, most fish stock predictions were based only on short-term biological 

variables, such as a population’s age structure, growth rates, and levels of recruitment (Brander 

2003). However, this method does not account for climatic variability and cannot give long-term 

predictions. It also does not include the effects of fishing pressure. Adding important 

environmental variables such as sea surface temperature, salinity, and rainfall has allowed for the 

creation of models with much stronger predictive power (Sundby and Nakken 2008). However, 

adding more variables also makes models more complicated, which decreases their practicality, 

efficiency, and ease of use. Also, relationships between recruitment variability and environmental 

variables may change over time (Myers 1998).  Clearly, environmental variables, particularly ones 

with long-term, large-scale variability need to be included in predictions, especially long-term 

predictions (Brander 2003).  

This inclusion is especially important due to changing climate-recruitment correlations. 

The effects of climate on fish productivity are non-stationary, meaning they change over time, so 

modelling relationships between them clearly has limitations when working over long time periods 

(Litzow et al. 2018). Climate-biology relationships can weaken over time, but may not be 

synchronous over a community scale (Puerta et al. 2019). 

Regime shifts are another example of the importance of considering large-scale climate 

variability in long-term predictions. A regime shift is often defined as an abrupt change in the 

characteristic behavior of a natural phenomenon from one mean state to another, which persists 

for a decade or more (Hare and Mantua 2000). They have occurred successively in the Pacific 

Ocean, although do not appear to have a temporal pattern. The best-known regime shift in the 

Pacific Ocean is the 1976/77 regime shift. This regime shift has had far-reaching impacts on the 

ecosystems in the North Pacific Ocean (Hare and Mantua 2000). Another regime shift, the 1988/89 
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regime shift is not as well-studied, in part because it was less obvious in the climate data (Hare 

and Mantua 2000). However, it is clearly visible in biological records of fish species (Hare and 

Mantua 2000).  

 Regime shifts can lead to a reorganization of the community structure of ecosystems 

(Anderson and Piatt 1999). Recruitment can be affected and rates of predation can change 

(Anderson and Piatt 1999). These can cause drastic changes in the size of a population. If these 

changes are not addressed by managers, overfishing and eventually fishery collapse can occur. 

Studying regime shifts provides useful information on how fish stocks are affected, which allows 

the incorporation of regime shifts into the assessment and management of fisheries resources (King 

et al. 2015).  

 More recent analyses and predictions of fish stock population have included climatic 

variation in the form of climate indices. These multivariate indices were developed to represent 

the complex variability of oceanic environmental patterns (Keyl and Wolff 2008). Many climate 

indices exist, each of which is based on certain parameters in a specified area, so each describes 

only certain aspects of the climate (Integrated Climate Data Center 2019). In the Pacific Ocean, 

some of these indices include: Pacific Decadal Oscillation Index, Pacific North American Index, 

Oceanic Niño Index, Western Pacific Index, and the Northern Oscillation Index.  

Climate indices vary in which environmental variables are used to derive them and where 

the data are from. This means that each index has a geographic center of influence. As such, some 

indices are better at describing the climate in a particular area than others are. However, the 

climatic features described by the climate index may have effects in areas distant from the 

geographic area where the data from that index have originated. There are several reasons for why 

this may be the case. For example, species with long migratory strategies may integrate the effect 
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of environmental variability over spatially large scales. Also, the presence of atmospheric 

teleconnections, which are large-scale patterns of pressure and circulation anomalies that cover 

great distances, may generate influences from one area (e.g. tropics) to another (e.g. extratropics) 

(Climate Prediction Center 2008). 

Including climate indices in models used for prediction is useful because they are a simple 

way to integrate over a wide range of information which may not have direct known connections 

to the fish stock being predicted. Local climate measures, typically average monthly temperature 

or rainfall, often fail to capture complex associations between weather and ecological processes, 

which may explain why large-scale climate indices are better than local ones for predicting 

ecological processes (Hallett et al. 2004). Climate indices allow for longer-term predictions than 

local environmental variables (Keyl and Wolff 2008). Studies have long been testing the 

relationship between climate indices and stock productivity. An example is a study relating the 

North Pacific Gyre Oscillation (NPGO) index, the Pacific Decadal Oscillation (PDO) index, and 

the Multivariate El Niño-Southern Oscillation Index (MEI) with productivity estimates of the 

North Pacific albacore tuna (Thunnus alalunga) population (Zhang et al. 2014). 

 Considering more than one species will allow scientists to make conclusions that can be 

adapted to a variety of life history strategies and may be more useful when making preliminary 

predictions or predictions for data-poor species. The use of climate indices, since they describe 

large-scale climate patterns, is useful for this purpose. Climate indices such as the ones described 

above are calculated from data that comes from a large region of the ocean, but not necessarily the 

same region the stock of interest is from. Because of this, it is useful to consider the predictive 

power of a climate index on species from the same geographic region. We hypothesize that climate 
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indices derived from data originating from the same region as the target species are more likely to 

have a significant effect on recruitment than indices from other geographic regions. 

This study seeks to use climate indices to address some of the many questions that still 

surround the recruitment of fish larvae. Its overarching purpose is to determine how the 

productivities for a range of fish stocks in the eastern Pacific Ocean are related to climate indices. 

This information could then be used to predict recruitment in the future with only knowledge of 

climate indices and spawning stock biomass. Two hypotheses are tested. First, stocks in the same 

region will be best predicted by the climate index most influential in that region. Previous literature 

indicates that in the East Bering Sea, that means the PDO (Mantua et al. 1997). In the Gulf of 

Alaska, it is the NPGO (Di Lorenzo et al. 2008). In the west coast, ENSO becomes more important 

(Dahlman 2016). Second, there will be a decrease in number of stocks best predicted by the Pacific 

Decadal Oscillation from before the 1988/89 regime shift to after it. 

 

Methods 

 The data used in this study consist of fish spawning stock biomass, recruitment, and climate 

index values. Spawning stock biomass is “The total weight of the fish in a stock that are old enough 

to spawn” (Froese and Pauly 2019). In this study, recruitment is the amount of fish added to the 

exploitable stock each year due to the number of fish from a year class reaching a certain age 

(Wallace and Fletcher 2000). Climate indices are calculated values that can be used to describe the 

state and the changes in the climate system (Integrated Climate Data Center 2019).  

The spawning stock biomass and recruitment data were obtained from the National 

Oceanographic and Atmospheric Administration (NOAA) Fisheries Service, the federal office 

responsible for the stewardship of U.S. ocean resources. NOAA Fisheries Service assesses and 
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predicts the status of fish stocks, sets catch limits, and ensures compliance with fisheries 

regulations. NOAA Fisheries Service collects data from commercial and recreational catch records 

and surveys (trawl and acoustic). These data are then input into stock assessment models. The 

output of these models was used in this study. The fish stock data were downloaded from NOAA 

Fisheries Service online Species Information System Public Portal (https://www.st.nmfs.noaa.gov/ 

sisPortal/sisPortalMain.jsp) between 2016 and August 2018. The stock list provided by the portal 

shows all federally managed fish stocks by region. Stocks in the Bering Sea, Gulf of Alaska, and 

Pacific Coast were examined for availability of recruitment and spawning stock biomass data and 

estimates starting more than eight years before 1988. Stocks meeting both of these criteria were 

included in the preliminary analysis. 

The spawning stock biomass (SSB) and recruitment for each stock were extracted from 

stock assessment time series. All SSB and recruitment data were log-transformed (log base 10). 

Recruitment data were also lagged to age zero if necessary to reconcile with the parental stock 

biomass and climate indices and referred to the year of birth. Recruitment was plotted versus time 

to determine if the data had anomalous patterns that would raise red flags (Appendix 1). If only a 

portion of the data showed a trend, that portion was removed from the dataset. This was done to 

remove any artefacts of the stock assessment model analyses. The removed portion was always 

the first data point(s) (earliest year(s)) or last data point(s) (most recent year(s)). Because the data 

is from stock assessment models, results from the oldest and most recent years may be less accurate 

than data from the middle period. One stock that showed anomalous variation throughout the entire 

time period was also removed. One stock did not have eight years of data before 1988 after its 

anomalous portion was removed, so it was removed from the analysis. 

https://www.st.nmfs.noaa.gov/%20sisPortal/sisPortalMain.jsp
https://www.st.nmfs.noaa.gov/%20sisPortal/sisPortalMain.jsp
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In the final analysis, thirty stocks from twenty-four different species were included (Table 

1). The stocks are from three regions in the eastern Pacific Ocean: East Bering Sea, Gulf of Alaska, 

and West Coast (Figure 1). The East Bering Sea (EBS) region has twelve stocks. The Gulf of 

Alaska (GOA) region has seven stocks. The West Coast (WC) region has eleven stocks.  

 Because the commercial fisheries for many WC species extend along the entire WC, from 

British Columbia to California, not all stocks from this region could be attributed to any specific 

section of the West Coast, such as Southern Pacific Coast or Northern Pacific Coast. However, 

some species were more likely to be found in certain areas. The chilipepper rockfish (Sebastes 

goodei) is considered a south WC species, common only below 42°N (Field et al. 2016). Boccaccio 

(Sebastes paucispinis) is also considered southern Pacific coast species in its stock assessment 

(NOAA Fisheries 2017). Splitting the stocks from this region into three sections: Southern Pacific 

Coast, Northern Pacific Coast, and Pacific Coast, would have resulted in very small sample sizes 

for each section, so all stocks were retained in a general Pacific Coast section. 

 Eight stocks from the East Bering Sea region included both East Bering Sea and Aleutian 

Islands data. 

Three climate indices were used in this analysis: Oceanic Niño Index (ONI), North Pacific 

Gyre Oscillation (NPGO), and Pacific Decadal Oscillation (PDO). The ONI data came from 

NOAA Climate Prediction Center (https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring 

/ensostuff/ONI_v5.php), NPGO data from Georgia Institute of Technology (http://www. 

o3d.org/npgo/), and PDO data from the Joint Institute for the Study of the Atmosphere and Ocean 

(http://research.jisao.washington.edu/pdo/).  

There are multiple indices that describe the El Niño Southern Oscillation (ENSO) climate 

pattern. ONI is NOAA’s primary indicator for measuring ENSO (Dahlman 2016). El Niño 

https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring%20/ensostuff/ONI_v5
https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring%20/ensostuff/ONI_v5
http://www/
http://research.jisao.washington.edu/pdo/
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conditions exist when the ONI is +0.5 or higher and La Niña conditions exist when it is -0.5 or 

lower (Dahlman 2016). ONI is measured over the region 120°-170°W. ENSO is driven by the 

difference in sea level pressure between the eastern and western tropical Pacific. 

 The North Pacific Gyre Oscillation (NPGO) index is defined as the second principal 

component (PC) of sea surface height anomalies (SSHa) over the region (180°W–110°W; 25°N–

62°N) (Di Lorenzo et al. 2008). It is driven by difference in sea level pressure between two 

atmospheric features, the North Pacific High and the Aleutian Low.  

The Pacific Decadal Oscillation (PDO) index is defined as the first principal component of 

sea surface temperature anomalies (SSTa) over the region (20°N-70°N) (Mantua et al. 1997). It is 

driven by the Aleutian Low. The PDO is also forced by atmospheric variability in the tropics. 

During ENSO events, an atmospheric bridge connects the North Pacific with the equatorial Pacific, 

causing alterations in the equatorial Pacific to affect the North Pacific (Newman et al. 2016). For 

example, when El Niño events peak during the northern hemisphere winter, the Aleutian Low 

deepens, causing changes in the surface ocean that lead to a positive PDO pattern (Newman et al. 

2016).  

 All three indices are calculated either monthly or on a sliding bimonthly (Jan-Feb, Feb-

Mar, etc.) scale. In order to compare them with the annual stock data, a single value was calculated 

by averaging the January through April values. These four months were selected to create an 

average value for the year because many species spawn during this period, so their larvae are 

exposed to the climate conditions at this time. The young larvae are strongly affected by 

environmental conditions during their first few months of growth (Houde 2008). 
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 All three variables were split into two time periods for the analysis, separated 

between 1988 and 1989, because a regime shift occurred in the winter of 1988/89 and that had 

strong impacts on the influence of different climate patterns.  

A recruits per spawners ratio, which is a common measure of productivity, was calculated 

by subtracting the log-transformed spawning stock biomass values from the log-transformed 

recruitment values. Using RStudio (R version 3.4.1, http://www.r-project.org/), four generalized 

additive models (GAMs) were created for each stock where R is recruitment, SSB is stock 

spawning biomass, α0 is the intercept, α1 is the effect of spawning stock biomass, α2 the effect of 

a climate index (NPGO or ONI or PDO) and ε is an error term (Eq. 1).  

𝐿𝑜𝑔(𝑅) − 𝐿𝑜𝑔(𝑆𝑆𝐵) = 𝛼0 + 𝛼1(𝑆𝑆𝐵) + 𝛼2(𝑐𝑙𝑖𝑚𝑎𝑡𝑒 𝑖𝑛𝑑𝑒𝑥) + 𝜀  𝐸𝑞. 1 

All models included the effect of spawning stock biomass on the recruits per spawner ratio. 

Each model included the effect of a different climate index and the fourth model did not include 

the effect of any climate index.  

The AIC (Akaike Information Criterion) was used to determine which model was best at 

predicting each stock. The AIC is a technique that estimates the likelihood a model will predict or 

estimate the future values, and a good model is one that has minimum AIC among all the other 

models (Mohammed et al. 2015). The AIC of each of the four models was obtained and the model 

with the lowest AIC value was considered the best predictor of the stock-recruitment relationship 

for that particular stock. Each best model was tested for temporal autocorrelation at lag one. 

If there was not significant temporal autocorrelation at lag one, the model was considered 

the final selection for best predictor of the stock-recruitment relationship. If there was significant 

temporal autocorrelation at lag one, generalized additive mixed models (GAMMs) were created 

for each climate index. Two models were created per index, one with an autocorrelation structure 
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and one without. The two were compared via AIC. The best model of the two was in turn compared 

via AIC with the best models with and without autocorrelation comparisons for the other three 

indices. In summary, this final AIC was a four-way comparison of whichever model (with or 

without autocorrelation structure) had the lowest AIC score for each of the indices (NPGO, ONI, 

PDO, and none). The model with the lowest AIC was selected as the best for that stock. 

Residuals were examined for normality and homogeneity of variance and any issues were 

noted (Table 2, Appendix 2). However, violations of either were not fixed because we deemed 

them to be influential, given the small sample size (i.e. difficult to test for normality and 

homogeneity of variance with only 10-20 data points available). 

The AIC was used to determine the significance of the best model. The effect of the climate 

index on the ratio of recruits to spawners for the best model for each stock was examined and 

described (Appendix 3). Effects were described by the following terms: no effect, linear positive, 

linear negative, nonlinear positive, nonlinear negative. 

This procedure was done separately on both sets of times series data, through 1988 and 

after 1988. After the analysis, the results of the two time periods were compared. 

 

Results 

 Of the thirty-two stocks in the collection phase, thirty, representing twenty-three species, 

fit the criteria and were used in the subsequent analysis (Table 1). There was a range in the number 

of years of data in the period before and after the regime shift (Figure 2). 

 No stocks were temporally autocorrelated in the 1988 and earlier time period, whereas six 

stocks were temporally autocorrelated in the 1989 and after time period. Of these, the models with 

the autocorrelation structure improved the fit for four of the six stocks. For the other two stocks 
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(EBS turbot, WC widow rockfish), there was a problem with convergence once the autocorrelation 

structure was included. Therefore, the original best model, which was temporally autocorrelated, 

was used. This may result in slightly decreased predictive power for these few stocks. 

 In the period before and including 1988, all indices best predicted roughly the same 

percentage of the thirty stocks (Figure 3). The highest was PDO, which best predicted 30% (9 

stocks) of the stocks, then NPGO and none with 27% of the stocks each (8 stocks), and lastly ONI, 

with 16% of the stocks (5 stocks).  

Considering each of the three regions individually, although there are some similarities 

between them, each shows a different climatic influence on recruitment (Figure 4a, Figure 4b). In 

the period before and including 1988, all three had the same number of stocks best predicted by 

PDO. No region had a considerable majority of stocks predicted by a single index. In the EBS, 

four stocks were best predicted by ONI, three by each PDO and none of the indices, and two stocks 

by NPGO. This is a sharp contrast to the GOA, which is spatially close. In that region, three stocks 

were best predicted by each NPGO and PDO, and one stock by the model with no indices included. 

No stocks were best predicted by ONI. In the WC, four stocks were best predicted by the model 

with no indices included, three by each NPGO and PDO and one stock by the model with ONI. 

 After the regime shift in the winter of 1988/89, most stocks were best predicted by a 

different climate index (Table 3). A different pattern in the distribution of stocks appears (Figure 

5). There was a 10% increase (to 13 stocks) in the number of stocks best predicted by the model 

with no climate index and a 17% decrease (to 3 stocks) in the number of stocks best predicted by 

PDO. The number of models best predicted by ONI increased slightly, from 5 to 7, and the number 

of stocks best predicted by NPGO decreased slightly, from 8 to 7.  
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 In the EBS region, five stocks were best predicted by the model without a climate index, 

followed by four stocks by ONI, two by NPGO, and one by PDO (Figure 6a). In the GOA region, 

three stocks were best predicted by the model without a climate index, two by ONI, and one each 

by NPGO and PDO. In the WC region, the number of stocks best predicted by each model barely 

changed from the earlier time period. Three stocks were best predicted by each NPGO and the 

model with no climate index, two stocks by PDO, and one stock by ONI. The regions can easily 

be contrasted based on the percent of stocks best predicted by each index (Figure 6b). 

For each stock, the model plot of the model which best predicted that stock was produced 

for both time periods (Table 4). These plots represent how recruitment changes with a change in 

the climate index. Before the regime shift in the EBS, four stocks were best predicted by ONI. Of 

these, one had a nonlinear negative effect, one had a linear negative effect, and two had nonlinear 

positive effects. Two stocks were best predicted by NPGO, one of which had a nonlinear negative 

effect and the other of which had a nonlinear positive effect. Three stocks were best predicted by 

PDO, two with nonlinear positive effects and one with a linear negative effect. In the GOA before 

the regime shift, three stocks were best predicted by PDO, one of which had a nonlinear positive 

effect and the other two of which had linear positive effects. Another three stocks were predicted 

by NPGO, two with linear positive effects and one with a nonlinear positive effect. Before the 

regime shift in the WC, three stocks were best predicted by NPGO, with one each nonlinear 

positive, nonlinear negative, and linear positive. Three more stocks were best predicted by PDO, 

all three of which were positive linear effects. One stock was best predicted by ONI and had a 

linear negative effect. 

After the regime shift, two stocks in the EBS were best predicted by NPGO, one each with 

a linear positive and a linear negative effect. Four stocks were best predicted by ONI, three with a 
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nonlinear positive effect and one with a nonlinear negative effect. In the GOA after the regime 

shift, two stocks were best predicted by ONI, one each with a nonlinear positive and nonlinear 

negative effect. PDO and NPGO each best predicted one stock, with a nonlinear negative effect 

for PDO and a linear positive effect for NPGO. After the regime shift in the WC, four stocks were 

best predicted by NPGO, three with linear positive effects and one with a nonlinear positive effect. 

Two stocks were best predicted by PDO, both with linear negative effects. One stock was best 

predicted by ONI and had a linear positive effect.  

 

Discussion 

This study seeks to use climate indices to address some of the many questions that still 

surround the recruitment of fish larvae. Its purpose is to determine how the predictors of the stock-

recruitment relationship for a range of stocks in the eastern Pacific Ocean have changed over time, 

by using the effect climate index. Two hypotheses are tested. First, stocks in the same region will 

be best predicted by the climate index most relevant to that region. This means, as indicated in 

previous literature, that PDO should predict the most stocks in the EBS, NPGO in the GOA and 

northern WC, and ONI in the southern WC (Mantua et al. 1997, Di Lorenzo et al. 2008, Dahlman 

2016). Second, there will be a decrease in number of stocks best predicted by the Pacific Decadal 

Oscillation from before the 1988/89 regime shift to after it. This hypothesis reflects the findings 

of studies, such as Yeh et al. 2011, that found PDO became less influential after 1988 due to the 

1988/89 regime shift. 

The second hypothesis is simpler to address, so it will be discussed first. When considering 

specifically the influence of PDO, it is clear that the number of stocks best predicted by this climate 

index decreased after the regime shift. The decrease was from nine stocks out of thirty (30%) to 
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only three stocks out of thirty (10%). The decrease in number of stocks best predicted by PDO 

suggests that its importance in driving recruitment has decreased. This agrees with other research 

that has found the PDO to be less influential after the regime shift (Yeh et al. 2011, Litzow and 

Mueter 2014, Litzow et al. 2018).  

Before the 1988/89 regime shift, no region had a majority of stocks best predicted by the 

index expected to be most influential in that region. After the regime shift, different indices 

predicted the majority of stocks in each region, but again, they were not the expected indices. This 

mismatch between the climate index that has the most influence in a region and the climate index 

that best predicted the highest number of stocks suggests that different aspects of climate have 

more impact on fish than the region as a whole. 

An interesting result of the analysis is that twenty-four of thirty (80%) stocks were 

predicted by a different climate index before the regime shift than after. This could indicate that 

climate influences on recruitment are less coherent than predicted. 

  The mismatch in predicted best model and the observed spread in best models could also 

be due to differences in life history between different types of fish. For example, groundfish are 

planktonic for the first part of their life cycle, before they settle to seafloor habitat. Only averaged 

winter values for the indices were used in the models. It is possible that a differently timed index 

would have been a better predictor. 

 Climate in a specific region may be described by a climate index focused on that area, but 

it is still affected by atmospheric teleconnections with other regions. In particular, the tropics are 

connected to the North Pacific through atmospheric teleconnections which strengthen during El 

Niño conditions. The NPGO and PDO are both forced by the Aleutian Low, so they are connected 

that way. In addition, climate indices, although they are a convenient way to link climate and its 



25 
 

 

effects on biological systems, may not be the ideal way to do so. In many cases, they perform 

better than local weather conditions because they are larger-scale (Forchhammer and Post 2004). 

However, climate indices can hide some local weather and environmental patterns that may have 

been better predictors of biological systems than the indices themselves. 

 This study did not consider the effects of the 1976/77 regime shift on the stocks, using data 

both before and after that regime shift in the before 1989 period. This regime shift had less of an 

obvious impact on biology, but may have still had some effect, which could have affected which 

climate index was the best predictor of each stock. However, the time series were not long enough 

to test a community-wide hypothesis in relation to the 1976/77 regime shift. This study also did 

not consider the effects of recent heatwave anomalies, such as the “Blob,” that negatively affected 

many marine organisms, including fish (Walsh et al. 2018). 

 Considering only the West Coast, some of the variability may be due to the size of the 

region. Many stocks in that region are found along the entire coast, while others exist on one end 

or the other. It is likely that different climate features are influential in different parts of the region. 

For example, ONI, may be more influential on the southern species than the northern ones. Other 

species that have a wider range may be best predicted by the model with none of the climate indices 

because the influence of different climate features may cancel out when considering the entire 

stock. 

 Several studies have performed analyses similar to those in this study, including Litzow 

and Mueter (2014). Their study combined multiple time series of biological data and summarized 

the ecological variability with principal component analysis (Litzow and Mueter 2014). It used a 

range of biological time series, including salmon, groundfish, small pelagic fishes, and 

macroinvertebrates and found that the abrupt change in amplitude of the PDO pattern after the 



26 
 

 

1988/89 regime shift was associated with a gradual decline in its connection to biological 

variability (Litzow and Mueter 2014). Puerta et al. (2019) found similar results when focusing on 

the Gulf of Alaska, namely a reduced importance of the PDO and a non-stationary relationship 

between climate forcings and biological responses. Their study also used principal component 

analysis (Puerta et al. 2019). An interesting future project would be to substitute principal 

component analysis for the methodology used in this study, which would provide an aggregated 

population response for each region of the Northeast Pacific Ocean. However, care must be taken 

with the use of PDO, which assumes stationary relationships among the intervening time series 

(Puerta et al. 2019). 

 One important consideration for the reliability of the results of this study is the variation in 

the amount of data available for the model to be run on. Particularly in the pre-1989 period, some 

stocks had years more data than others. More data could mean that the model performs better 

because any small variations are drowned out. However, a long time series could also mean the 

climate pattern most influencing the stock changed during the period the model was run on. 

 This study was performed using the output of NOAA Fisheries Service stock assessment 

models as data. The use of assessment output as data for further analysis is becoming more 

common as the availability of assessment results increases (Brooks et al. 2015). However, analyses 

using these results as data often overlook uncertainty, bias, and structural assumptions in the stock 

assessment model (Brooks et al. 2015). This can lead to a reduced accuracy in analyses using 

assessment results and less confidence in the results of such analyses (Brooks et al. 2015). 

Avoiding using assessment results as data is the ideal fix, but if that is not possible the assessment 

results should be checked for potential problems (Brooks et al. 2015). This can be done by 

completing sensitivity analyses and cross-validation methods, among other techniques (Brooks et 
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al. 2015). In this study, the assessment results were checked for bias in the form of anomalous 

patterns of recruitment (Appendix 1, 2).  

 Understanding how climate affects recruitment is vital to the health of ecosystems and 

fisheries, as it has such a strong impact on adult biomass. In particular, studying how climate 

impacts recruitment in separate regions is important to understand how stocks in that specific 

region will respond to different climate forcings. Furthermore, studying the impacts of climate 

over different periods of time illustrates how important it is to maintain current data and utilize 

new data. Regime shifts, in particular, rapidly change climate patterns, which leads to different 

influences on fish stocks in a region. Further complicating the picture is global warming, which 

also needs to be studied to understand its impacts. Sustainable fisheries and healthy ecosystems 

depend on this knowledge. By considering these changing patterns and influences of climate when 

making management decisions will allow future scientists and managers to set sustainable goals 

for fisheries. 
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Figure 1. Map of the Northeast Pacific Ocean showing the general location of the three regions 

and the number of stocks in each region. 
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Figure 2. The number of stocks with the number of years of stock assessment data each model 

was run on.  
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Figure 3. Percentage of total stocks best predicted by each model in the period before and 

including 1988. 
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Figure 4a. Number of stocks best predicted by each model in each region through 1988. 

 

 

 

 

 
Figure 4b. Percent of stocks in each region best predicted by each climate index in the period 

through1988. 
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Figure 5. Percentage of total stocks best predicted by each model in the period starting in 1989. 
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Figure 6a. Number of stocks best predicted by each model in each region after 1988. 

 

 

 

 

 
Figure 6b. Percent of stocks in each region best predicted by each climate index in the period 

after 1988. 
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Figure 7. Examples of each type of relation between climate index and recruitment. The types 

are positive linear, positive nonlinear, negative linear, and negative nonlinear. (a) is positive 

linear, symbolized by / (WC Chilipepper rockfish, after). (b) is negative linear, symbolized by \ 
(EBS Northern rockfish, after). (c) is negative nonlinear, symbolized by ⋂ (EBS Pollock, 

before). (d) is positive nonlinear, symbolized by ⋃ (GOA Arrowtooth flounder, before). The 

shape of the relationship for the best model of every stock is shown in Table 4.  

(a) (b) 

(c) (d) 
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Table 1. Each stock separated by region with the time period for which data were available. 

Region Stock Scientific Name Time Period Duration 

(years) 

East 

Bering 

Sea 

Pollock Gadus chalcogrammus 1964-2015 51 

Pacific cod Gadus macrocephalus 1977-2016 39 

Yellowfin sole Limanda aspera 1954-2015 61 

Greenland halibut Reinhardtius 

hippoglossoides 

1950-2016 66 

Arrowtooth flounder Atheresthes stomias 1976-2015 39 

Rock sole Lepidopsetta spp. 1975-2008 33 

Flathead sole Hippoglossoides 

elassodon 

1977-2013 36 

Alaska plaice Pleuronectes 

quadrituberculatus 

1975-2015 40 

Atka mackerel Pleurogrammus 

monopterygius 

1977-2015 38 

Pacific ocean perch Sebastes alutus 1960-2013 53 

Northern rockfish Sebastes polyspinis 1977-2013 36 

Blackspotted and Rougheye 

rockfish complex 

Sebastes aleutianus 1977-2013 36 

Gulf of 

Alaska 

Pacific ocean perch Sebastes alutus 1961-2014 53 

Pollock Gadus chalcogrammus 1970-2015 45 

Pacific cod Gadus macrocephalus 1977-2016 39 

Arrowtooth flounder Atheresthes stomia 1961-2015 54 

Dusky rockfish Sebastes ciliatus 1977-2012 35 

Flathead sole Hippoglossoides 

elassodon 

1978-2015 37 

Northern rockfish Sebastes polyspinis 1961-2014 53 

West 

Coast 

Pacific mackerel* Scomber japonicus 1983-2016 33 

Sablefish Anoplopoma fimbria 1950-2015 65 

Dover sole Microstomus pacificus 1950-2011 61 

Widow rockfish Sebastes entomelas 1950-2015 65 

Chilipepper rockfish Sebastes goodei 1950-2017 67 

Bocaccio Sebastes paucispinis 1950-2017 67 

Canary rockfish Sebastes pinniger 1950-2017 67 

Pacific hake Merluccius productus 1966-2017 51 

 Arrowtooth flounder Atheresthes stomia 1950-2017 67 

 Lingcod Ophiodon elongatus 1950-2009 59 

 Longspine thornyhead Sebastolobus altivelis 1962-2013 51 

 Petrale sole Eopsetta jordani 1950-2015 65 

 Shortspine thornyhead* Sebastolobus alascanus 1950-2013 63 

*These stocks were not included in the analysis due to not having enough data and 

showing an anomalous pattern of recruitment throughout the time series, respectively. 
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Table 2. Which index each stock was best predicted by before and after the 1988/89 

regime shift and which stocks changed the model they were best predicted by. 
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Table 3. Effect of climate index on recruitment. The symbols in the table represent the 

shape of the relationship. Examples of the four general shapes are shown in Figure 7. 
Region Stocks Before After 

Best Model Effect Best Model Effect 

East 

Bering 

Sea 

Pollock ONI ⋂ ONI ⋃ 

Pacific cod PDO \ ONI ⋃ 

Yellowfin sole ONI ⋃ None \ 

Greenland halibut NPGO ⋂ ONI ⋃ 

Arrowtooth flounder None - NPGO / 

Rock sole PDO ⋃ ONI ⋂ 

Flathead sole None - None - 

Alaska plaice ONI ⋃ None - 

Atka mackerel NPGO ⋃ None - 

Pacific ocean perch PDO ⋃ None - 

Northern rockfish ONI \ NPGO \ 

Blackspotted and Rougheye rockfish None - None - 

Gulf of 

Alaska 

Pacific ocean perch PDO / None - 

Pollock NPGO / PDO ⋂ 

Pacific cod None - None - 

Arrowtooth flounder PDO ⋃ NPGO / 

Dusky rockfish PDO / ONI ⋃ 

Flathead sole NGPO ⋃ None - 

Northern rockfish NPGO / ONI ⋂ 

West 

Coast 

Sablefish ONI \ NPGO / 

Dover sole NPGO ⋃ PDO \ 

Widow rockfish PDO / None - 

Chilipepper rockfish PDO / NPGO / 

Bocaccio NPGO / None - 

Canary rockfish None - ONI / 

Pacific hake PDO / None - 

Arrowtooth flounder None - PDO \ 

Lingcod NPGO ⋂ NPGO / 

Longspine thornyhead None - NPGO ⋃ 

Petrale sole None - None - 
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Appendix 1. Plots of recruitment versus time for each stock, used to determine if any anomalous 

patterns exist. Red points were not included in the analysis, blue points were included. 
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Appendix 2. Check of assumptions. Independence refers to temporal autocorrelation where “yes” 

means there is no temporal autocorrelation. Examples of “good” and “bad” normality and 

homogeneity of variance are shown below the table, as well as an example of temporal 

autocorrelation.  

 Before After 

Region Stocks Nor-

mality 

Homogeneity 

of Variance 

Indepen-

dence 

Nor-

mality 

Homogeneity 

of Variance 

Indepen-

dence 

EBS POLL N N Y N N Y 

COD Y N Y N Y Y 

YFS Y N Y Y N Y 

TRBT N N Y N Y N 

ATF N N Y N Y Y 

RSOLE N N Y N N Y 

FSOLE N N Y N Y N 

AKPLA N N Y N N N 

ATKA N N Y N N Y 

POP N Y Y N N N 

NROCK N N Y N Y Y 

BROCK N Y Y N N Y 

GOA POP N N Y N Y Y 

POLL N Y Y N N Y 

COD N N Y N N N 

ATF N N Y Y N Y 

DUSK N N Y N N Y 

FSOLE N N Y N N Y 

NROCK N Y Y N N Y 

WC SAB N N Y N Y Y 

DSOLE N N Y N Y Y 

WIDOW Y N Y N N N 

CHILI N N Y N Y Y 

BOCACC N N Y N N Y 

CANARY N N Y N N Y 

HAKE Y N Y Y Y Y 

ATF N N Y N Y Y 

LING N Y Y N N Y 

LSTH Y N Y N N Y 

PSOLE Y N Y N N Y 
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WC Hake – before: good example of normality 

 
 

EBS Alaska Plaice – before: bad example of normality 
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GOA Flathead Sole – after: good example of homogeneity of variance 

 
 

EBS Flathead Sole – before: bad example of homogeneity of variance 
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GOA Cod – after: temporal autocorrelation 
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Appendix 3: R code used for analysis 

 
#Shannon Riley Honors Thesis 

#Predicting Fish Recruitment in the Northeast Pacific Using Climate Indices 

#Code updated 4/21/2019 

 

#INSTRUCTIONS 

#run on all stocks, make sure all four models for each stock have same number of data 

points 

#record AIC results, significance of best, number of observations model is run on 

(years of data), autocorrelation at lag 1 

#if temporal autocorrelation, run gamm with autocorrelation correction 

 

#Libraries 

library(mgcv) 

 

 

 

#Data set up 

allyears=read.csv("C:/Users/Shannon Leah Riley/Documents/College 

Courses/Thesis/Datasets/Final_Clean_Data.csv") 

beforeand1988 <- subset(allyears, Year <= 1988) 

after1988 = subset(allyears, Year >=1989) 

 

 

#Set dataframe 

#Set stock 

beforeand1988$bstrec=beforeand1988$WCWIDOWr          #log base 10 of recruitment up to 

and including 1988 

beforeand1988$bstssblo=beforeand1988$WCWIDOWssb      #log base 10 of stock spawning 

biomass up to and including 1988 

beforeand1988$bstssbli=10^(beforeand1988$WCWIDOWssb) #linear stock spawning biomass up 

to and including 1988 

after1988$astrec=after1988$WCWIDOWr                  #log base 10 of recruitment from 

1989 on 

after1988$astssblo=after1988$WCWIDOWssb              #log base 10 of stock spawning 

biomass from 1989 on 

after1988$astssbli=10^(after1988$WCWIDOWssb)         #linear stock spawning biomass 

from 1989 on 

#Set indices 

beforeand1988$bPDO=beforeand1988$PDO.Index.Winter..JAN.APR..Average 

beforeand1988$bONI=beforeand1988$ONI.Average..DJF.MAM. 

beforeand1988$bNPGO=beforeand1988$NPGO.Index.Winter..1.4..Average 

after1988$aPDO=after1988$PDO.Index.Winter..JAN.APR..Average 

after1988$aONI=after1988$ONI.Average..DJF.MAM. 

after1988$aNPGO=after1988$NPGO.Index.Winter..1.4..Average 

 

 

#Subset Before and 1988 

subset_b=na.exclude(beforeand1988[,c(1,65:70)]) 

 

#Before and 1988 gams, pick best via AIC 

gam_b_NPGO=gam(I(bstrec-bstssblo)~s(bstssbli, bs="cr", k=3)+s(bNPGO, bs="cr", k=3), 

data=subset_b) 

gam_b_ONI=gam(I(bstrec-bstssblo)~s(bstssbli, bs="cr", k=3)+s(bONI, bs="cr", k=3), 

data=subset_b) 

gam_b_PDO=gam(I(bstrec-bstssblo)~s(bstssbli, bs="cr", k=3)+s(bPDO, bs="cr", k=3), 

data=subset_b) 

gam_b_none=gam(I(bstrec-bstssblo)~s(bstssbli, bs="cr", k=3), data=subset_b) 

AIC(gam_b_NPGO,gam_b_ONI,gam_b_PDO,gam_b_none) 
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#gam summary 

#only need to check model with lowest AIC score 

summary(gam_b_NPGO) 

summary(gam_b_ONI) 

summary(gam_b_PDO) 

summary(gam_b_none) 

 

#check Assumptions - GAM, Independence 

#only need to check model with lowest AIC score 

pacf(residuals(gam_b_NPGO),main='bNGPO Temporal partial autocorrelation') 

pacf(residuals(gam_b_ONI),main='bONI Temporal partial autocorrelation') 

pacf(residuals(gam_b_PDO),main='bPDO Temporal partial autocorrelation') 

pacf(residuals(gam_b_none),main='bNone Temporal partial autocorrelation') 

 

#Validation on residuals 

#only need to check model with lowest AIC score 

par(mfrow=c(2,2)) 

gam.check(gam_b_NPGO) 

gam.check(gam_b_ONI) 

gam.check(gam_b_PDO) 

gam.check(gam_b_none) 

#Visualize: additive effects 

#only need to check model with lowest AIC score 

plot(gam_b_NPGO,pages=1,res=T,pch=16,shade=T) 

plot(gam_b_ONI,pages=1,res=T,pch=16,shade=T) 

plot(gam_b_PDO,pages=1,res=T,pch=16,shade=T) 

plot(gam_b_none,pages=1,res=T,pch=16,shade=T) 

 

 

 

 

#Subset After 1988 

subset_a=na.exclude(after1988[,c(1,65:70)]) 

 

#After 1988 gams, pick best via AIC, is it different than before and 1988 best? 

gam_a_NPGO=gam(I(astrec-astssblo)~s(astssbli, bs="cr", k=3)+s(aNPGO, bs="cr", k=3), 

data=subset_a) 

gam_a_ONI=gam(I(astrec-astssblo)~s(astssbli, bs="cr", k=3)+s(aONI, bs="cr", k=3), 

data=subset_a) 

gam_a_PDO=gam(I(astrec-astssblo)~s(astssbli, bs="cr", k=3)+s(aPDO, bs="cr", k=3), 

data=subset_a) 

gam_a_none=gam(I(astrec-astssblo)~s(astssbli, bs="cr", k=3), data=subset_a) 

AIC(gam_a_NPGO,gam_a_ONI,gam_a_PDO,gam_a_none) 

 

#gam summary 

#only need to check model with lowest AIC score 

summary(gam_a_NPGO) 

summary(gam_a_ONI) 

summary(gam_a_PDO) 

summary(gam_a_none) 

 

#check Assumptions - GAM, Independence 

#only need to check model with lowest AIC score 

pacf(residuals(gam_a_NPGO),main='aNGPO Temporal partial autocorrelation') 

pacf(residuals(gam_a_ONI),main='aONI Temporal partial autocorrelation') 

pacf(residuals(gam_a_PDO),main='aPDO Temporal partial autocorrelation') 

pacf(residuals(gam_a_none),main='aNone Temporal partial autocorrelation') 

 

#Validation on residuals 

#only need to check model with lowest AIC score 
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par(mfrow=c(2,2)) 

gam.check(gam_a_NPGO) 

gam.check(gam_a_ONI) 

gam.check(gam_a_PDO) 

gam.check(gam_a_none) 

#Visualize: additive effects 

#only need to check model with lowest AIC score 

plot(gam_a_NPGO,pages=1,res=T,pch=16,shade=T) 

plot(gam_a_ONI,pages=1,res=T,pch=16,shade=T) 

plot(gam_a_PDO,pages=1,res=T,pch=16,shade=T) 

plot(gam_a_none,pages=1,res=T,pch=16,shade=T) 

 

 

 

 

#Temporal Autocorrelation Correction Models 

 

#After 1988 gamms, pick best via AIC 

#NPGO 

gamm_a_NPGO=gamm(I(astrec-astssblo)~s(astssbli, bs="cr", k=3)+s(aNPGO, bs="cr", k=3), 

data=after1988,method='REML') 

gammAR1_a_NPGO=gamm(I(astrec-astssblo)~s(astssbli, bs="cr", k=3)+s(aNPGO, bs="cr", 

k=3), 

                    correlation = corAR1(form =~1),data=after1988,method='REML') 

AIC(gamm_a_NPGO$lme,gammAR1_a_NPGO$lme) #compare with and without autocorrelation 

structure 

#ONI 

gamm_a_ONI=gamm(I(astrec-astssblo)~s(astssbli, bs="cr", k=3)+s(aONI, bs="cr", k=3), 

data=after1988,method='REML') 

gammAR1_a_ONI=gamm(I(astrec-astssblo)~s(astssbli, bs="cr", k=3)+s(aONI, bs="cr", k=3), 

                   correlation = corAR1(form =~1),data=after1988,method='REML') 

AIC(gamm_a_ONI$lme,gammAR1_a_ONI$lme) #compare with and without autocorrelation 

structure 

#PDO 

gamm_a_PDO=gamm(I(astrec-astssblo)~s(astssbli, bs="cr", k=3)+s(aPDO, bs="cr", k=3), 

data=after1988,method='REML') 

gammAR1_a_PDO=gamm(I(astrec-astssblo)~s(astssbli, bs="cr", k=3)+s(aPDO, bs="cr", k=3), 

                   correlation = corAR1(form =~1),data=after1988,method='REML') 

AIC(gamm_a_PDO$lme,gammAR1_a_PDO$lme) #compare with and without autocorrelation 

structure 

#None 

gamm_a_none=gamm(I(astrec-astssblo)~s(astssbli, bs="cr", k=3), 

data=after1988,method='REML') 

gammAR1_a_none=gamm(I(astrec-astssblo)~s(astssbli, bs="cr", k=3), 

                    correlation = corAR1(form =~1),data=after1988,method='REML') 

AIC(gamm_a_none$lme,gammAR1_a_none$lme) #compare with and without autocorrelation 

structure 

#Find best model 

AIC(gammAR1_a_NPGO$lme,gammAR1_a_ONI$lme,gammAR1_a_PDO$lme,gammAR1_a_none$lme)  #AIC 

w/ all autocorrelation structure models 

 

#gamm summary 

#only need to check model with lowest AIC score 

summary(gammAR1_a_NPGO$gam) 

summary(gammAR1_a_NPGO$lme) 

summary(gammAR1_a_ONI$gam) 

summary(gammAR1_a_ONI$lme) 

summary(gammAR1_a_PDO$gam) 

summary(gammAR1_a_PDO$lme) 

summary(gammAR1_a_none$gam) 

summary(gammAR1_a_none$lme) 
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#Validation on residuals 

#only need to check model with lowest AIC score 

par(mfrow=c(2,2)) 

gam.check(gammAR1_a_NPGO$gam) 

gam.check(gammAR1_a_ONI$gam) 

gam.check(gammAR1_a_PDO$gam) 

gam.check(gammAR1_a_none$gam) 

#Visualize: additive effects 

#only need to check model with lowest AIC score 

plot(gammAR1_a_NPGO$gam,pages=1,res=T,pch=16,shade=T) 

plot(gammAR1_a_ONI$gam,pages=1,res=T,pch=16,shade=T) 

plot(gammAR1_a_PDO$gam,pages=1,res=T,pch=16,shade=T) 

plot(gammAR1_a_none$gam,pages=1,res=T,pch=16,shade=T) 

 

 

 


