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Chapter 1: Introduction

1.1 Identification and significance of problem

With the proliferation of security attacks targeted on network traffic, enterprises and

organizations are following different security policies and classifications. This has made

data transfer across multi-level security cross-domain environments more challenging.

One of the solutions for MLS environments is using message filters [1], [8] in which

a cross-domain guard (CDG) examines the data traversing between the networks. The

CDG will only allow the messages that follow certain security policies to pass through

it.

Although CDG limits the sensitive information leak between domains, it does not

address more important issues like cross-domain authentication and identity protection.

Also there is no efficient mechanism to ensure authentication and key management in

these systems. These are some of the main challenges in designing cross-domain proto-

cols for MLS cross-domain environments.

1.2 Background

There are three main challenges faced by the MLS cross-domain environments. They

are: service authentication, preserving privacy and covert channel.
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1.2.1 Service Authentication

Currently the service authentication in MLS cross domain environments uses different

keys for different resource authentication. So, large storage space is needed for storing

the keys and key management is expensive. For instance, if a user is compromised,

all the keys have to be updated, including the legitimate user’s, in order to prevent the

compromised user from accessing the resources. This causes communication overhead

and delays. Hence the current service authentication system is inefficient.

1.2.2 Preserving Privacy

To access the services on another domain, the current approaches require the identity

of the client to be revealed to the service provider. The current cross-domain service

invocation protocols uses SAML protocols [9] to authenticate the service in a different

domain. In MLS cross-domain environments, where the high clearance user does not

want to reveal the identity to the service provider in low clearance domain, we need an

authentication technique where the low clearance service provider can authenticate the

high clearance user without knowing the user’s identity. Also, the service provider must

be authenticated to the user to make sure that they are interacting with a genuine service

provider.
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1.2.3 Covert Channel

The information traffic from high security domain to low security domain causes sensi-

tive information to leak. According to the Bell-LaPadula model [3], such information

transfers should not be allowed through the covert channel. But this means that the low

security domain will not receive any acknowledgement for the data it transferred to the

high security domain. Thus, the low security domain has no way to know if the data

transfer was successful. Many solutions were suggested to address this issue. One of

the notable solutions is store-and-forward (SAF) protocol which uses a gateway between

the low and high security domains.

1.3 Proposed solution

The proposed solution is efficient, secure and covert channel capacity bounded (ESC3B)

protocols that addresses the three challenges mentioned above for MLS cross-domain

environments. The ESC3B protocol consists of three algorithms that help to address

these challenges. The first challenge, service authentication and key management, is

addressed by the Efficient Attribute-based Fine-Grained Authentication (EAFA) algo-

rithm. The second challenge, privacy preservation is solved by Anonymous Authenti-

cation (A2) algorithm. And the third challenge, covert channel information transfer is

addressed by the Limiting Covert Channel Capacity (LC3) algorithm.
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1.4 Overview

In this thesis, we describe and implement the ESC3B protocol. We describe each al-

gorithm in detail, implement the components and analyze the performance of the algo-

rithms individually and as an integrated system. We also develop a user interface to test

the ESC3B prototype.

Chapter 2 describes the background of each algorithm in ESC3B. In Chapter 3, we

describe the system architecture, design and implementation details of the EAFA, A2

and LC3 algorithms. We also describe the enhancements we made to improve the pro-

totype. In Chapter 4, we explain the unit testing and performance evaluation details of

individual algorithms and the integrated system. Finally, in Chapter 5 we present the

conclusion and future work.
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Chapter 2: ESC3B Protocol

2.1 EAFA Algorithm

In every network domain, there are multiple resources like database, storage, tactical in-

formation, etc. These are locked to prevent illegal access by unauthorized users. Each of

these resource is assigned a unique accessing key and only the user with appropriate au-

thentication key is granted access to the corresponding attribute. The proposed scheme

follows the RSA cryptosystem [2]. But, for the encryption/decryption mechanism, we

use a hierarchical structured keys. In EAFA algorithm, each user needs to store only one

key corresponding to the user’s clearance level. This reduces the key storage space at

the user significantly and simplifies the key management at the service provider side.

(a) Current Approach (b) The Proposed Approach

Figure 2.1: Fine-Grained Authentication

Let us assume that the lock and unlock keys used for authenticating a network re-

source are not necessarily identical. If O is a network resource locked by a key Kl and
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unlocked by Ku, where Kl and Ku are not necessarily identical, mathematically the lock

and unlock operations are represented as follows:

Lock : C = LKl(O) = OKl(modN)

Unlock : O =UKu(C) =CKu = (OKl)Ku = O(modN)

where C is the resource locked by the key Kl . The lock and unlock keys Kl and Ku are

chosen such that,

KlKu ≡ 1(modφ(N))

Oφ(N) ≡ 1(mod(N))

gcd(O,N) = 1

where N = p× q for two primes p and q, and φ(N) is the Euler’s totient function (the

number of positive integers upto N which are relatively prime to N). i.e, φ(N) = (p−

1)(q−1)[5], [12].

2.1.1 Hierarchical Key Structure

In EAFA, a hierarchical key structure is used to provide a multi-level clearance. Higher

clearance users are provided powerful keys and lower clearance users are provided

weaker keys. The higher clearance user can authenticate more resources using the

same key and the lower clearance user can authenticate lesser resources. In current
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approaches, the higher clearance user will have to hold all the keys needed to decrypt

corresponding resources. This causes key management issues and security risks.

The proposed approach provides a hierarchical key structure so that each user just

needs to hold only one unique key to access the data in all security classes. This helps

to simplify the key management, reduces key storage space and provide increased key

protection. Consider a function D(N) such that,

D(N) = cφ(N)+1

where c is any constant and c > 0. Thus,

D(N)≡ 1(modφ(N))

Let (d1,d2, ...,dn) be the set of divisors of D(N) where d1 < d2 < ... < dn. We can

group these divisors in a pair-wise form
(
(d1,dn),(d2,dn−1), ...,(dk,dn−k+1)

)
where the

product of each pair equals D(N). The key pair can be written in a generalized form

as dn− j,d j+1. So, if we lock a resource using any key pair dn− j,d j+1, where d j+1 | dk

(i.e., dk is divisible by d j+1 ), then we can authenticate that resource using key dk since

dk = αd j+1, where α > 0 and j < n. Therefore,

dn− jdk ≡ dn− j(αd j+1)



8

The actual key used for authentication can be computed as:

Kactual = dk/α = d j+1

Thus, if we have three clearance levels A, B and C, by choosing parent key pairs (d1,dn),

(d2,dn−1) and (d3,dn−2) such that d1 | d2, d1 | d3 and d2 | d3, we can lock all A-clearance

attributes using dn−2, all B-clearance attributes using dn−1, and all C-clearance attributes

using dn. Thus, an A-clearance user can authenticate A, B and C-clearance attributes.

The B-clearance users can authenticate B and C-clearance attributes, but the C-clearance

users can only access C-clearance attributes. C-clearance users will not be able to access

A-clearance attributes because d3 does not divide d1, thus Kactual will be < 1.

Figure 2.2 illustrates the hierarchical key structure. When distributing the keys to

users, the service provider keeps N, φ(N) and Kl as secret.

Figure 2.2: Hierarchical Key Structure
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2.1.2 Exponential Key Generation

Although the above method allows us to generate keys for authenticating resources, it

might take a long time to find the divisors of D(N). We can use exponential operation

to generate unlocking keys corresponding to the locking key Kl where the original un-

locking key is Ku. {Kl,Ku} is called the parent key pair and all the other keys derived

from it are called children key pairs.

To generate children keys using exponential function, the N need not be a product

of two prime numbers. For any two arbitrary integers X and Y satisfying the equation,

Y −X = φ(φ(N)), the children key pairs (Ku)
X ,(Kl)

Y are derived from the parent key

pair {Kl,Ku} where KlKu ≡ 1(modφ(N)).

2.2 Anonymous Authentication (A2) Algorithm

When a user in one domain tries to access resources on another domain, for each access

we need to perform authentication across domains. By using the proposed A2 algorithm,

we can perform the authentication operation by hiding the user’s identity.

Also, from the aspect of a distributed application where the subprograms (residing

in different domains) want access to some resources in another domain(s), by using the

proposed scheme, the subprograms do not need to authenticate every time they access

the designated resources across the domains. This will significantly reduce the time

delay, performance and chances for covert communications between the domains. The

A2 algorithm mainly has two key functions, Credential Generation (CG) and Credential

Authorization (CA).
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2.2.1 Credential Generation (CG)

The user first generates credentials corresponding to the service he wants. These cre-

dentials are later authorized by the service provider in the Credential Authorization step.

Once authorized, the user uses them to authenticate to the services. Figure 2.3 shows

the steps in the Credential Generation process.

Figure 2.3: Credential Generation

The credential generation procedure consists of the following steps:

• Nonce Generation

The first step of Credential Generation is, generating two fresh nonces N1 and
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N2. The purpose of using fresh nonces each time is to prevent the adversaries

from using the compromised information of the previous sessions to perform au-

thentication and access to the resources. Also, the fresh nonce will play as the

blind factor that prevents the service provider knowing about the signed message.

The user then signs a nonce N2 using its private key, KU and obtain a message〈
U,N2

〉
KU

, where U is the identity of the user.

• Computing Root of Credential Chain (C0)

The user then computes the root value of the credential chain C0 by using a one

way hashing function such as SHA-256.

C0 = h(N2,U,
〈
U,N2

〉
KU

)

where h(.) is a secure one-way hash function and KU is the user private key.

• Computing Credential Chain Values

Now, the credential chain C j is computed as,

C j = h j(C0)

where j ≤ n and h j(.) denotes the hash function applied j times on the C0. i.e.,

h j(C0) = h(h(...h(C0))) j times

• Computing Blind Credential Chain
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Finally, the user computes the blind credential chain as,

CU =
〈
N1
〉

PK
×Cn

where PK is the public key of the service provider. Typically, this public key is

pre-distributed to the subscribed users.

2.2.2 Credential Authorization (CA)

The user and service provider must authenticate each other first, in order to access the

services or resources. To authorize the service, the user will send out the blinded cre-

dential chain to the service provider. The credential authorization process is illustrated

in Figure 2.4. It consists of two steps:

Figure 2.4: Credential Authorization

• Sending Authorization Request

The blinded credential chain CU is sent to the service provider along with the
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user identity IDU , the service certificate Cert (which binds the user identity IDU

with its public key PU
K , signed by the private key of the service provider PS

R),

and the identity of the request service. Once the service provider receives the

authorization request, it verifies with its public key.

• Receiving Confirmation

After the authorization request is verified, the service provider signs the blinded

credential chain CU as CS =
〈
CU
〉

PSID
R

and sends it back to the user as an authoriza-

tion confirmation. Upon receiving the authorization confirmation from the service

provider, the user decrypts and verifies IDU and IDS (the service provider’s iden-

tity). It then eliminates the blinding factor to obtain the signed credential chain.

i.e,

(CS)/N1 =
〈〈

N1
〉

PSID
K

〉
/N1

= N1
〈
Cn
〉

PSID
R

/N1

=
〈
Cn
〉

PSID
R

Although only the nth credential is signed, the rest of the hash chain values C0 to

Cn−1 is automatically authorized due to the one way nature of hash function.

2.2.3 Authentication Protocol

We assume that there are two security domains, Low and High. The user/client is in

the high security domain and the service provider is in the low security domain. The
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high domain contains three components- user/client, service proxy and identity provider

(IdP). Similarly the low domain contains the service provider, client proxy and the iden-

tity provider proxy (IdPP). The Figure 2.5 illustrates the communication between differ-

ent components in the high and low domain. The function of each of these components

Figure 2.5: A2 Prototype for Cross-domain communication

is defined below:

• Client/User (U): This is the application that invokes a service by the users. We

assume that the user U has authentic credentials corresponding to the requested

services.

• Identity Provider (IdP): The IdP manages the users’ identity, credentials and the

corresponding services (within or across domains) that each user is allows to ac-

cess.

• Service Proxy (SP): The SP is the component that collects the request send by the

user and forwards it to the IdP and CP.
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• Service Provider (P): The service provider P denotes the service requested by the

user U. It could be a web service, database access, file transfer, etc.

• Client Proxy (CP): The CP accepts the request from another domain and forwards

it to the P. It also sends back the reply from the P to U.

• Identity Provider Proxy (IdPP): The IdPP acts as an intermediate identity verifica-

tion for the corresponding requested services. IdPP doesn’t have any information

of the users identity and services.

The authentication protocol has two parts, In-domain authentication and Inter-domain

authentication.

• In-domain Authentication

The client sends service request to the service proxy (SP) server located in the

domain H. The service request is of the form
(

SID,
〈
IDU ,NU ,C j,Cn

〉
PidPS

k

)
where

SID is service ID, IDU is user ID, NU is a fresh nonce, C j and Cn are credential

chain values. The IDU , NU , C j and Cn are signed by the identity provider. When

the credential chain is used for the first time, C j =Cn. So, user sends both Cn and

its signature
〈
Cn
〉

KR
U

for authentication. In this case, the service request will be(
SID,

〈
IDU ,NU ,Cn,

〈
Cn
〉

KU
R

〉
PidPS

k

)
. Each credential is used only once. Hence, a

credential chain of length n can be used to access the service in n sessions.

The service proxy forwards the request to IdP for authentication. IdP uses its

private key PidPS
k to decrypt

〈
IDU ,NU ,Cn

〈
Cn
〉

KU
R

〉
PidPS

k

. It then verifies and au-

thenticates the service request.
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• Inter-domain Authentication

After IdP authenticates the request, it encrypts the request using the domain key

KH . Each domain will have a unique key. The information returned to SP is

{KH ,NI,
〈
NU ,C j,Cn

〉
KH
}. The service proxy will send the request

{KH ,SID,NI,
〈
NU ,C j,Cn

〉
KH
} to the client proxy. Client proxy receives the re-

quest from High domain and routes it to service provider. The service provider

then forwards it to IdPP for authentication. IdPP uses its domain key KL to authen-

ticate the request by verifying KH . The IdPP verifies whether the service request

is the first one in the credential chain by verifying C j =Cn. Upon successful veri-

fication, the identity provider stores Cn and C j. When it receives the next request,

the identity provider verifies whether the value h(C j) matches the current stored

value C j+1. If yes, it updates the stored value to C j.

After IdPP completes the authentication, it responds back to service provider

with authenticated request including
〈
NI,SID,NU ,C j

〉
PS

K
. The service provider P

computes two secret keys: KUP = h(C j,NP,NU ,0) and K′UP = h(C j,NP,NU ,1).

P sends the authenticated service request (NP,NI,
〈
NU ,SID

〉
KUP) to client proxy

which forwards it to SP. SP routes it back to user U. The user then computes the

two keys KUP, K′UP by itself and decrypts and verifies NU , C j and SID. Now, the

user can start secured communication with the service provider using the shared

keys KUP and K′UP.
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2.3 Limiting Covert Channel Capacity (LC3) algorithm

The data transmission from a low security domain to a high security domain will com-

promise the system security as the adversary can covertly transmit data over these chan-

nels. So it is important to allow the data transmission without compromising the security.

2.3.1 Existing Protocols for MLS cross-domain communication

Some of the existing techniques for secure MLS cross-domain data transmissions are:

(a) Read Down (b) Write Up

Figure 2.6: Existing Protocols for MLS cross-domain communication

1. The Read-Down Protocol

The read-down protocol for MLS cross-domain communications is illustrated in

Figure 2.6a. In this protocol, the low will send its data messages to a data buffer.

The high will then read the messages out from the data buffer. Since there is no

feedback signal from the high indicating whether it read a message successfully

or not, the read-down protocol can eliminate the covert transmission. However,
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there exists several issues in data reliability and system efficiency:

• Wasting resources:

Typically in read-down protocol, high will continuously poll the data buffer.

In case the Low has lower transmission rate, it will waste high’s resources

(e.g., CPU time, energy, etc.) as most of the time the buffer is empty.

• Low System Efficiency:

Another way of implementing read-down protocol is to let the high period-

ically perform read-down after some time interval τ . If τ is too small, it

becomes a continuous reading approach, resulting in resource wasting. On

the other hand, if τ is too large, the message rates (i.e., system throughput)

1/τ will be small resulting in system inefficiency.

Also, when using this protocol, the low cannot know whether a message has

been received successfully by the high or not. If high system gets crashed,

then there is no way the low can detect and retransmit the data messages.

2. The Blind Write-up Protocol

An alternate approach for read-down protocol is blind write-up protocol. Figure

2.6b illustrates the blind write-up protocol for cross-domain MLS communication.

In this architecture, the data buffer resides in the high domain. The low is allowed

to write into the data buffer for sending messages. The high will read the data

stored in the data buffer by using ACK/NAK messages. However, the protocol

does not allow the data buffer to send feedback messages to the low. This trans-

mission protocol can assure the security (i.e., no covert transmission); however, it
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cannot provide reliable communications as the low cannot know which messages

have been received successfully.

To allow the high to send feedback to low in the cross-domain MLS environments

without enabling a timing covert channel, we will have to limit the feedback message

rate without affecting the system efficiency. The Data Pump (DP) explained in the next

section helps to limit the covert channel capacity with adjustable parameters for optimal

system transmission efficiency.

2.3.2 Data Pump

Data pump is a communication mediator that resides between any two security levels. It

can be placed in either low or high security domain. In our prototype, we implemented

the data pump in the high domain. The pump is designed in such a way that it only

allows ACK/NAK to be sent from high to low and blocks any message flow from high

to low. Figure 2.7 shows the structure of the data pump. It mainly has three components:

the trusted low buffer (TLB), the trusted high buffer (THB) and the data buffer (BD).

2.3.3 Operation of Pump

The feedback/acknowledgement mechanism using a data pump is explained below. The

low process is service provider (lower clearance domain), the high process is the user

(higher clearance domain). Data buffer (DB) is a data queue, like a regular FIFO buffer,
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Figure 2.7: Message Flow in Data Pump

which is shared between the THB and TLB.

• The low process (L) sends a message to TLB and waits for a feedback (ACK or

NAK message).

• TLB writes the message into data buffer (DB). If the write is successful, it sends

an ACK to L after a certain probabilistic delay.

• Once an ACK is received, L removes the packet from its buffer and sends a new

message. Otherwise, after a pre-defined timeout or on receiving a NAK, L resends

the packet to TLB.

• THB reads the messages from DB and sends it to high process (H). When H

successfully receives a data packet from the THB, it sends an ACK back to THB.

• THB on receiving an ACK from H will remove the message from the DB. Other-

wise, after a timeout, it retransmits the packet to H.
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2.3.4 The Covert Timing Channels

By using the pump, we can isolate the direct communication between the high and low.

But, the adversary will still be able to create a covert timing channel by controlling the

state of the data buffer as mentioned below:

• Controlling the state of DB : The low adversary can fill up the DB if the high

adversary will not remove the messages from DB. Thus, after some time, the DB

will become full. This will create a noiseless covert timing channel between high

and low.

• Covert communication: In a scenario where the DB is full and the low adversary

sends a message to the TLB, the TLB cannot send an ACK back to the low until

space opens up on the DB. But that is totally controlled by the high adversary.

Let ε be the shortest time high takes to remove a message from the DB and allow

low to receive an ACK. Based on the time taken to receive the ACK, the low

adversary can interpret the symbol corresponding to the ACK time i.e, ε and 2ε

can be interpreted as symbol 0 or 1. Since the DB is kept to be full all the time,

the covert channel is noiseless.

2.3.5 Feedback Rate Control

The feedback rate of the data pump can be controlled to make sure that the adversary

will not be able to control the channel. Let Li be the time taken for low to send its ith

packet to the TLB and receive an ACK back. If the DB is not full, the packet can be
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successfully written into the DB without any delay. Therefore, Li depends on the fixed

communication delay Dl . On the other hand, if DB is full, Li can be determined by

adding a random time R onto Dl . The random time R is the time period TLB has to

waits for THB to remove a packet. Mathematically, we can write this as:

Li =


Dl i f DBO

Dl +R i f DBF

where DBO and DBF represent the cases where data buffer has space and data Buffer is

full respectively.

Let H̄ i
m represent the average delay of last m ACKs from high when low is transmitting

the ith message. So H̄ i
m is the moving average with window size m. The main objective

is to achieve high transmission rate while limiting the covert time channel capacity. The

optimal system performance is described in the main result given below.

• Main Result:

The optimal system performance is achieved if L̄i ≈ H̄ i
m where L̄i is the expected

value of Li given by,

L̄i =
1
N ∑Li ≈

1
N ∑H i

m

• Proof

The proof is derived by contradiction.
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– If L̄i > H̄ i
m, there is no covert channel, but the system is wasting transmission

bandwidth. This results in low transmission rate.

– If L̄i < H̄ i
m, the DB is full and timing covert channel will be exploited.

Thus by contradiction, the optimal performance is attained when L̄i ≈ H̄ i
m

2.3.6 Limiting Covert Channel Capacity

The time delay for low to receive an ACK L̄i depends on the fixed communication delay

Dl and delay of an ACK sent by the high to the THB (depending on whether the DB is

full or not). The expected waiting time when DB is full is denoted by µ r̄. Let Ā be a

random variable that we add to the total delay to control the feedback rate.

To achieve a system that satisfies, L̄i ≈ H̄ i
m, we present the below design. We have,

P(Li ≤ t) =P(Li ≤ t | DBO)P(DBO)+P(Li ≤ t | DBF)P(DBF)

P(Li ≤| DBF)P(DBF) = ∑
k

P(Li ≤ t | DBF,R = rk)P(R = rk | DBF)

If {R = rk} is disjoint event, then

P(Li ≤ t) = P(Li ≤ t | DBO)(1−P(DBF))+∑
k

P(Li ≤ t | DBF,R = rk)P(R = rk | DBF)
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But if R is defined when DB is full, we can write the above equation as

P(Li ≤ t) = (1−µ)P(Li ≤ t | DBO)+µ ∑
k

P(Li ≤ t | DBF,R = rk)

where µ = P(DBF)

Also,

P(Li ≤ t | DBO) = P(Dl +A≤ t) = P(A≤ t−Dl)

And, P(Li ≤ t | R = rk) = P(rk +Dl +A≤ t) = P(A≤ t− rk−Dl)

By taking derivative on both sides, we get the density function of Li as,

fLi(t) = (1−µ) fA(t−Dl)+µ ∑
k

pk fA(t− rk−Dl)

Therefore the expected waiting time for low is determined as,

L̄i =
∫ +∞

−∞

t((1−µ) fA(t−Dl)+µ ∑
k

pk fA(t− rk−Dl))dt

Let expected value of R be r̄ = ∑k pkrk. Simplifying the expected wait time, we get

L̄i = (1−µ)(Ā+Dl)+µ ∑
k

pk(Ā+ rk +Dl)

= (1−µ)(Ā+Dl)+µ(Ā+ r̄+Dl)
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Finally, we get

L̄i = Ā+Dl +µ r̄

If DB is never full, µ = 0. So L̄i = Dl + Ā . On the other hand, if DB is full, L̄i =

Dl + Ā+µ r̄. To obtain the best performance, we will have to choose the value of Ā such

that L̄i ≈ H̄ i
m holds. Thus Ā = H i

m−Dl−µ r̄.

2.3.7 Pump Algorithm

The Pump algorithm allows us to set the value of Li. Let Si be the time for low to

send a message and receive an ACK back and ε is a small number. Di is the time that

data pump waits to send an ACK to low. The value of Di is recalculated each time and

changes as the moving average H i
m changes. The relationship between different terms

are: βi = τ +Si−H i
m, τ ′i = β ′i +H i

m−Si, β ′′i = β ′i −Si and a random delay Di = Li−Si.
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The pump algorithm is described below:

Message sent by low is placed in DB

Read H i
m

If Si ≥ H i
m then

µ := ε

Else

µ := H i
m−Si

End If

ζ = random number of mean µ

If Si = Dl OR Si ≥ H i
m then

Di := ζ

If DI > τ−Si then

Di := τ−Si

End If

Else

β
′′← Random[0,βi−Si]

End If

If ζ ≤ β
′′
i then

Di := ζ

Else

ζ
′← Random[τ ′i ,τ]

Di := ζ
′−Si

End If
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Chapter 3: Prototype Architecture

3.1 High-level Software Architecture

We implemented a ESC3B prototype for data sharing from a service provider in low

domain to clients in High domain. We implemented the three algorithms: EAFA, A2

and LC3 individually and evaluated the performance. We then integrated the algorithms

and tested the whole system. In this prototype, we implemented a web-based application

so that the client can send a request to the service provider and retrieve shared data using

a web browser. In the following sections we describe the implementation details of each

of these algorithms and integration details.

3.1.1 EAFA Implementation

The EAFA algorithm is an important software component to enable secure cross-domain

applications in the MLS environments. Using the algorithms explained in section 2.1,

we implemented various functionalities of the EAFA. The two classes we implemented

are EAFA and Crypt.

The table 3.1 lists the APIs we implemented for EAFA algorithm and its functional-

ities. These APIs are in the class Crypt and are invoked by the class EAFA. The main()

function of class EAFA accepts a command line argument which allows the user to spec-

ify the bit size of the key. The user can specify 8, 16, 32 etc. as bit size. The hierarchical
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API Funtionality
calcParentKeys() Calculate the parent key pair {Kl,Ku}
getActualKey() Calculate the actual key Kactual used for authentication
relativePrime() Find the φ(N)
calcChildKeys() Calculate the children key pair {(Ku)

X ,(Kl)
Y}

getDivisors() Get the set of divisors of D to get keys of different levels of clearance.

Table 3.1: EAFA API List

keys obtained using this algorithm is distributed to the users by the service provider.

These keys are later used in the A2 stage for authentication.

3.1.2 A2 Implementation

This subsection describes the implementation of A2 algorithm. The software classes,

APIs and dependencies are illustrated in Figure 3.1.

The client sends the request to the service proxy using the API getClientRequest(String

request) in the proxy class. The proxy will redirect this request to identity provider us-

ing the API authenticateClientReq(String request) in IdP class. IdP internally

uses the API parseAndAuthClientReq(String request) to parse and authenticate

the client request. It checks for the Cn entry in the hash map cacheClientReq to deter-

mine if this is the first request from the client. The cacheClientReq stores the Cn as

the key and C j as the value corresponding to it. Each time the IdP receives a new request

from the client, it updates the C j value.

After authenticating the request, IdP will create the new request with domain key

and send it to service proxy. Service proxy will redirect this request to the client proxy

using the API getCrossDomainRequest(String request). Client proxy sends it to
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Figure 3.1: A2 Algorithm - Classes and Dependencies

the service provider through the API getClientAuthRequest(String request) that

is redirected to the IdPP using the API parseAndAuthClientReq(String request).

The IdPP authenticates the request similar to IdP. It maintains its own hash Map with

the Cn and C j values.

After authentication, The IdPP returns back the reply to the service provider. Service

provider internally calls the API parseReply(String request) to parse the IdPP re-

ply and creates the new reply with KUP and K′UP that is returned back to the client.

3.1.3 LC3 Implementation

The main component of the LC3 algorithm is the data pump (DP). DP can lie in the low

or high domain. In our prototype, we implemented the DP in the high (User) Domain.
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The low, high and DP are web services. Low sends message (chunks of a data file) to

the DP, which is inserted into the Data Buffer (DB). The message from DB is sent to

the high and removed from the DB when the DP receives an ACK from the high. The

software modules of the LC3 algorithm is illustrated in Figure 3.2. The data pump class

Figure 3.2: Data Pump

has two APIs: TLB() and THB() for receiving from low and sending messages to high

respectively. The low sends a message to the TLB() in DP. The message is stored in data

buffer (if the DB is not full), which is an FIFO queue. THB() software module will scan

the DB and if there is a message, it sends it to the high. The ACK time from high is

stored in an array list, i.e., HighAckTimeList. The H i
m (i.e., the moving average of the

last m ACKs) and the ACK delay are calculated in the API findDelay() based on the

window size m which can be set to any desired value.

3.2 Developing Interface to Client

To provide an entry interface to the client, we developed a login page. The login page

allows the user to enter a user name and password. We assume that different users
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in different security clearance levels have different usernames and passwords. Also,

we assume that the usernames and passwords are provided beforehand via subscription

procedure. Figure 3.3 shows the login page/user interface that accepts the username and

Figure 3.3: User Interface for Web-based Cross-domain Data Sharing

password from the user. In our prototype, we implemented the following functions to

handle the entered username/password.

• Clients Credential Verification: The password entered is checked for a mapping

to EAFA key previously distributed by the service provider to the client.

• Forwarding Service Request: Once authenticated, the password entered by the

user has a mapping to EAFA key and the client request is initiated and sent to the

Service Proxy. If there is no corresponding key, then an error message is displayed

on the web browser.
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3.3 Improvements and Enhancements

We made many software enhancements to improve our prototype design. Below are

some of the changes:

3.3.1 Dynamically Discovering and Binding to a Web Service

In the initial stages of development, we used static client (using stub) to communicate

with the web services. We later changed these to dynamic client, which communicates

with a web service across domains. Instead of using the stub classes from the web

services description language (WSDL), which is generated during the compile time, we

modified the code to incorporate the dynamic binding. We used the XML-based Remote

Procedure Call (JAX-RPC) standard interfaces like setTargetEndpointAddress and

setProperty to configure the call to the web service. Figure 3.4 shows the dynamic

binding flow between client (in high domain) and various web services (in low domain).

The software components are communicating with each other (in different machines)

via ip address and port number.

The advantages of dynamic client over the static client are:

• Binding of request On-the-fly: Compile time is too early to bind to a web service

URL, as we may need to add some configuration or dynamic binding routine

later. Dynamic client offers a flexible way to achieve this by allowing the request

binding at the run time.

• Simplifying Process Building: With static client, the build process will be more
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Figure 3.4: Dynamic Binding for Web-based Cross-domain Data Sharing

complex, as we need the web services description language (WSDL) before com-

piling the client, which may involve deploying the web service beforehand.

• Enabling URL Passing: We can pass the URL of the web services as a command

line argument on the run.

3.3.2 Dynamic Argument Passing

We made enhancements to pass the URL of the service requested by the user through the

command line of client class main() function. This argument is automatically parsed

and passed to other software components. Below are the steps on how the URL is parsed.
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• The command line argument is passed to the client in the form:

htt p : //ip : port/ServiceProxy/services/Proxy?(client proxy =

htt p : //ip : port/ClientProxy/services/clientProxy?(serv prov = htt p : //ip :

port/ServProv/services/ServProv?cmd = download f ile))

• The above argument is parsed by the client to get the service proxy URL. The rest

of the argument (htt p : //ip : port/ClientProxy/services/clientProxy?(serv prov=

htt p : //ip : port/ServProv/services/ServProv?cmd = download f ile)) is passed

as a parameter to the service proxy call, which is further parsed to obtain the client

proxy URL.

• The Service Providers URL (htt p : //ip : port/ServProv/services/ServProv?cmd =

download f ile) is passed as a parameter to the client proxy which is in turn used

to make the call to the service provider.

• In our prototype, we assume that the IdP and IdPP URLs are already available

(known) to the service proxy and service provider. So these URLs are hardcoded

in SP and P respectively.

3.3.3 Integrating EAFA, A2 and LC3

In this section, we explain the integration details of the ESC3B protocols.

In a real time scenario, since the authentication keys will be distributed to the user

by the service provider beforehand, we generated the keys using the EAFA algorithm

and hardcoded these values in the A2 stage.
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We integrated the A2 and LC3 algorithms by adding the data pump component in the

high clearance domain along with the client, IdP and service proxy components. We ex-

tended the client and service provider by adding some functionalities. In addition to the

credentials for authentication, the client request contains parameters specifying service

needed (for e.g, file download service and the filename) to the service provider(P). The

service request sent by the client does not pass through the DP. The request and the re-

ply flow remains the same. After authentication is successful, the service provider sends

back the authentication reply to the client that will in turn compute the corresponding

KUP, K′UP keys. The shared keys are used for encrypting/decrypting data transmitted

across domains.

After responding to the request, the service proxy will start the file download oper-

ation. It opens the file specified by the client and encrypts it using the KUP. To cope

with the large file sizes, the service provider performs file processing by dividing the

files into smaller data blocks(packets). Each data block will be then encrypted and sent

to the client through the DP. The client will decrypt the data using KUP and save it.

Figure 3.5: Data sharing across domains
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Chapter 4: Performance Evaluation

We conducted various tests and experiments to evaluate the performance of the imple-

mented prototype. We first evaluated the performance of each algorithm individually.

Then we tested and evaluated the integrated ESC3B prototype.

4.1 EAFA Testing and Performance Evaluation

We evaluated the performance of the EAFA algorithm from different aspects:

• Correctness: We tested the correctness of EAFA algorithm to ensure that the

algorithm is working as designed. We verified that the encryption key and its

corresponding decryption key are working by encrypting/decrypting various files.

Additionally, we tested hierarchical keys by checking whether a decryption key

of a higher security level can also decrypt the data encrypted by a lower security

level encryption keys.

• Efficiency: We evaluated the efficiency by testing how long it takes for key gen-

eration, data encryption and decryption. Figure 4.1 illustrates the performance

comparison of EAFA and RSA algorithms.

• Security: We tested the protection level when sharing data across domains. EAFA

can ensure that only corresponding security clearance users can decrypt the data
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Figure 4.1: Key Generation Time

shared across domains. The lower clearance users learn nothing about the en-

crypted data of higher security levels using their keys.

4.2 A2 Testing and Performance Evaluation

We tested the A2 algorithm by initiating a service request from user to the service

provider and checked the correctness of authentication algorithm at IdP and IdPP. We

also checked the KUP and K′UP keys calculated by the user against the keys calculated

by the service provider.

Below are the results of the performance evaluation test we conducted on the A2

algorithm.

4.2.1 Authentication Delay vs. Number of Requests

We tested the average delay time against the number of authentications (service requests)

with and without using the A2 algorithm. Figure 4.2 illustrates the results. The A2
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algorithm requires only one authentication for any number of requests sent by the client

using the same Cn, whereas the other (standard algorithm) requires one authentication

per request. Also, the average delay time for A2 algorithm is significantly low compared

to the algorithm without it.

Figure 4.2: Authentication Delay vs. Number of Requests

4.2.2 Authentication Delay vs. Number of Clients

We evaluated the algorithm performance in terms of authentication delay versus the

number of users. Figure 4.3 illustrates the delay times versus the number of clients

by using A2 algorithm and without it (standard algorithm). The delay time is more

for standard algorithm as the verification needs to be done for each request sent by the

client. Also, in both the cases, the delay increases as number of clients increases.
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Figure 4.3: Authentication Delay Vs. Number of Clients

4.3 LC3 Testing and Performance Evaluation

The LC3 (data pump) algorithm was tested by sending data packets from service provider

(P) to the client (U) through the data pump (DP) and the acknowledgements from U to

P. Various performance test results are mentioned below.

4.3.1 Acknowledgement Delay

The acknowledgement delay for low (Li) using the DP was collected for various window

sizes (m) and number of messages (N). We measured the ACK delay with and without

a covert timing channel.

• Without Covert Transmission: In this scenario, we assume that there is no ad-

versary in the high domain. Thus, the high process will send an ACK immediately

after it receives a message from the DP. Figures 4.4a - 4.4d represent the ACK de-

lays Vs. acknowledgements for various window sizes.

• With Covert Transmission: In this scenario, we assume that there is an adversary
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(a) ACK Delay (m = 10, N=100) (b) ACK Delay (m = 30, N=100)

(c) ACK Delay (m = 50, N=100) (d) ACK Delay (m = 100, N=100)

Figure 4.4: ACK Delay Vs. Acknowledgements without covert transmission

in the high domain that controls the high process. The delay time depends on the

message the adversary wants to transmit. Figures 4.5a - 4.5c represent the ACK

delays for each transmitted data packet assuming that the adversary in the high

domain controls the ACK delays for covertly transmitting its information. As

expected, the distribution of the ACK delays scattering around two mean values

corresponding to time delays made by the adversary in the high.
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(a) ACK Delay (m = 10, N=100) (b) ACK Delay ( m = 50, N=100)

(c) ACK Delay (m = 100, N=100)

Figure 4.5: ACK Delay Vs. Acknowledgements with covert transmission

4.3.2 Throughput

We compared the throughput of the transmission without and with covert timing channel

in Figures 4.6a and 4.6b respectively. We varied the window sizes of the data pump and

measured the transmission throughputs. The throughput of the system without the covert

timing channel is significantly greater than that of the system with covert timing channel.

This is because with covert timing transmission, the adversary in the high domain will

control the ACK sending back the DP, thus, slowing down the whole system.
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(a) W/o covert channel, N=100 (b) W/ covert channel, N=100

Figure 4.6: Throughput Vs. Window Size

4.4 Integrated System Performance

We evaluated the performance of the integrated system, especially after integrating the

data pump with A2 algorithm.

4.4.1 Acknowledgement Delay

• Without Covert Timing Channel : We evaluated the delays of the ACK mes-

sages when there is no covert transmissions. Figures 4.7a - 4.7c show the ACK

delay with respect to different window sizes. As expected, when there is no covert

transmission, the ACK delays (Li) for different data packets are almost same as

H i
m. This is because the client sends the ACK right after it receives a data packet

successfully.

• With Covert Timing Channel: We assume that there is an adversary at the client,

which wants to covertly transmit information to the other adversary residing in
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(a) ACK Delay (m = 10, N=100) (b) ACK Delay (m = 20, N=100)

(c) ACK Delay (m = 50, N=100) (d) ACK Delay (m = 100, N=100)

Figure 4.7: ACK delay Vs. Acknowledgements Without Covert Timing Channel

the low domain. To simulate this scenario, we assume that the adversary sends

message with bits ‘0’ and ‘1’ following a uniform distribution. To transmit bit

‘0’ the adversary doesn’t delay the ACKs and to transmit bit ‘1’, it delays the

ACKs. Figures 4.8a - 4.8c illustrate the ACK delays with respect to different

window sizes. As expected, the ACKs delays now classified into two clusters

corresponding to the transmissions of bits ‘0’ and ‘1’ of the adversary.
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(a) ACK Delay (m = 10, N=100) (b) ACK Delay ( m = 50, N=100)

(c) ACK Delay (m = 100, N=100)

Figure 4.8: ACK Delay Vs. Acknowledgements with covert timing channel

4.4.2 Bit Error Probability

We simulated a covert channel by allowing the data pump to become full and tested the

probability of a bit ‘0’ sent from high being interpreted as ‘1’ in low and vice-versa. We

calculated the bit error probability and covert channel capacity for various ACK delays

from high domain. P( y=0
x=1) is the probability of bit ‘1’ sent from high interpreted as ‘0’

in low and P( y=1
x=0) is probability of bit ‘0’ sent from high interpreted as ‘1’ in low.
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Figures 4.9a and 4.9b show the bit error probabilities for various ack delays from

the high. As expected, bit error probability P( y=0
x=1) decreases when high ACK delay in-

creases because low domain can distinguish between the different ack delays and P( y=1
x=0)

increases as high ACK delay increases.

(a) P( y=0
x=1 ) vs. High ack delay (b) P( y=1

x=0 ) vs. High ack delay

Figure 4.9: Bit Error Probability

Figure 4.10a and 4.10b shows the average number of bits correctly interpreted. Figure

(a) Window size, m=10 (b) Window size, m=100

Figure 4.10: Bits Correctly Interpreted

4.11 shows the covert channel capacity at different high ack delays. As expected, when
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window size increases, the covert channel capacity decreases.

Figure 4.11: Covert channel capacity Vs. high ack delay

4.5 ESC3B Prototype Performance Evaluation

We conducted various tests and experiments to evaluate the performance of the im-

plemented prototype using the user interface. Particularly, we performed data sharing

across two domains using different data sizes and formats. We tested the prototype us-

System Configuration System 1(Service Provider) System 2(Client)
Processor 2.5 GHz Intel Core i5 2.9 GHz Intel Core i7
Memory 8 GB 1600 MHz DDR3 15.4 GB
Operating System Mac OS Linux(Ubuntu)
IP address 172.16.0.4 172.16.0.5

Table 4.1: System Configuration

ing two systems connected via a LAN networks. The client process was deployed on the

System 2 and the web services were deployed in System 1, whose configurations are il-

lustrated in table 4.1. We used different file formats and sizes to evaluate the end-to-end
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File Type File size(KB)
PDF ∼50, 100, 200, 500, 700
DOCX ∼50, 100, 250, 1000
JPEG ∼50, 100, 600, 800

Table 4.2: File Types and Sizes

delay as well as data throughput of the implemented prototype. The sizes and formats

are illustrated in table 4.2.

To evaluate the performance of ESC3B prototype using the user interface, we mea-

sure two important parameters of the cross-domain data sharing as follows.

4.5.1 Service Delay

This metric evaluates the system delay which measures the time interval since a request

is sent until whole data file is downloaded. Thus, the service delay can be considered

as an end-to-end delay including authentication, data encryption/decryption, data trans-

mission and retransmission of a cross-domain data sharing. Figure 4.12 illustrates the

average service delay versus the data file size of different formats. The average service

delay of each data format was computed by averaging the service delays of multiple

experiments using the same system parameters.

The end-to-end service delay includes the authentication delay, transmission delay and

encryption/decryption delay. The average time taken by the client to send an authen-

tication request and receive a reply from the service provider was same for all the file

types and file sizes. On the other hand, the time to encrypt a file and send it to client and
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Figure 4.12: Average Delay Time of Cross-domain Data Sharing vs. File Size

decrypt it at the client side varies according to the file size and types. As a result, the

average delays increase with the file sizes of the data files.

4.5.2 Average Network Throughput

Figure 4.13 illustrates the average network throughput of different data formats versus

the file sizes. As expected, the transmission throughput across domains between the

client and service provider is stable regardless of the data sizes and formats.

Figure 4.13: Average Throughput vs. File Size
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Chapter 5: Conclusion and Future research

We presented a ESC3B protocol which addresses three main challenges in MLS cross-

domain environments. We implemented three algorithms, EAFA, A2 and LC3 as part

of ESC3B protocol and a user interface (UI). We tested and evaluated the correctness,

stability and efficiency of these algorithms and integrated them to create the prototype.

We successfully did the end-to-end testing of prototype using the UI.

In the future we can apply the ESC3B protocol with Hadoop to improve its security

features. We can integrate our proposed ESC3B algorithms with the Hadoop to enable

MLS cross-domain computing. We can also apply the hierarchical key structure in cloud

computing to manage access to resources/services by users of various security levels.
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