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 Broad-scale estimates of above ground forest biomass (AGB) are typically 

produced by applying individual-tree equations to inventory data consisting of 

measurements from probabilistically or purposively selected trees. The associated 

uncertainty for these estimates depends primarily on three sources of error that interact 

and propagate: (1) measurement error, the quality of the tree-level measurement data 

used as inputs for the individual-tree equations; (2) model error, the uncertainty about 

the equations predictions themselves; and (3) sampling error, the uncertainty due to 

having obtained a probabilistic or purposive sample, rather than a census, of the trees 

on a given area of forest land. Often only sampling error is accounted for, resulting in 

an underestimation of the actual uncertainty for estimates of AGB. With an increased 

importance placed on accurate estimation of AGB for broader scales comes an 

increased need to credible portray the true magnitude of their associated uncertainties. 



 One additional benefit of accounting for all three sources of uncertainty is that 

it provides an opportunity to observe possible gains in precision to be had by 

addressing measurement error. Terrestrial LiDAR is a high-precision instrument that 

has proven useful in forest inventory applications. Several studies have assessed the 

performance of this technology in extracting tree-level metrics. However, no research 

efforts exist that have taken this information and subsequently assessed the impact of 

this measurement performance on the total uncertainty of broad-scale estimates of 

forest-related parameters, such as AGB. 

 This study aims to compare the total propagated error for two sets of regional-

level component equations for lodgepole pine AGB, and for two sets of high-precision 

instruments by accounting for all three of these sources of error. The two sets of 

models compared included a set of newly-developed component ratio method (CRM) 

equations, and a set of component AGB equations currently used by the Forest 

Inventory and Analysis (FIA) unit of the United States Department of Agriculture 

(USDA) Forest Service. Instrument comparisons made were between a phase-based 

terrestrial laser scanner (TLS) and traditional forest inventory instruments, which in 

this study were a Spencer combination tape and a Trupulse Laser Rangefinder 360R. 

Monte Carlo simulations were used to propagate measurement, model and sampling 

error, and to compare total uncertainty between models, and between instruments. 

Input variables for the equations were diameter at breast height, total tree height and 

height to crown base; these were extracted from the terrestrial LiDAR data through the 

creation of automated algorithms. 



 Relative contributions for measurement, model and sampling error using the 

current regional equations were 5%, 2% and 93%, respectively, and 13%, 55% and 

32%, respectively using the CRM equations. Relative standard error (RSE) values for 

the current regional and CRM equations with all three error types accounted for were 

20.7% and 36.8%, respectively. Relative contributions for measurement, model and 

sampling error for the TLS were 5%, 70% and 25%, respectively, and 11%, 66% and 

23%, respectively using the traditional instruments. RSE values for the TLS and 

traditional instruments, with all three error types accounted for, were 52.1% and 

54.4%, respectively. Results for the model comparisons indicate that per acre 

estimates of AGB using the CRM equations are far less precise than those produced 

with the current set of regional equations. Results for the instrument comparisons 

indicate the TLS can in fact reduce uncertainty in broad-scale estimates of AGB 

attributed to measurement error. 
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Chapter 1: General Introduction  

 As concerns grow over the effects associated with rises in atmospheric carbon, 

the objective of producing reliable stock and change estimates for forest carbon stores 

becomes increasingly important (Heath et al. 2008). While estimates of forest carbon 

at various scales are becoming important variables sought after by forest managers, 

direct measurement of carbon stored in forest vegetation is difficult to quantify, 

particularly at broader scales. Therefore, relationships between the dry weight of forest 

vegetation, commonly referred to as forest biomass, and its carbon content are often 

used to obtain estimates of forest carbon. Estimates of forest biomass are usually 

obtained first, with these estimates subsequently then being converted to estimates of 

carbon using empirically-derived species-specific conversion factors. Biomass as a 

unit of measure has also proven useful for purposes of quantifying forest bioenergy 

resources for use in alternative energy markets. 

 Forest biomass stores that are quantified and reported almost exclusively 

include the above-ground portion due to the complex and exceeding difficult manner 

of sampling and measurement required for estimating the below-ground portion (Lu 

2006). Furthermore, different methods exist for estimating biomass for overstory trees 

and for understory shrubs and forbs. Examined here are the species-specific equations 

used for predicting above ground biomass (AGB) of individual trees. These equations 

result from linear and non-linear regressions of observed values of biomass on easily 

measurable tree-level attributes, such as diameter at breast height and total tree height. 

Observed values are primarily gathered during destructive sampling efforts that aim to 
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ascertain total biomass for all major tree components, such as bark, branches, foliage 

and bole wood.  

 Forest managers routinely apply these individual-tree equations to inventory 

data consisting of measurements from probabilistically or purposively selected trees to 

obtain broad-scale estimates of AGB. These broad-scale estimates are often reported 

with accompanying reliability statements, describing the magnitude of certainty 

behind these estimates of AGB. The reliability of these estimates produced using this 

approach depends on three primary sources of uncertainty, or error, that interact and 

propagate: (1) the quality of the tree-level measurement data used as inputs for the 

individual-tree equations; (2) the uncertainty about the equations predictions 

themselves; and (3) the uncertainty due to having obtained a probabilistic sample, 

rather than a census, of the trees on a given area of forest land (Cunia 1965). With an 

increased importance placed on precise estimation of AGB for broader scales comes 

an increased need to accurately portray the true magnitude of their associated 

uncertainties. This would involve accounting for all three of the aforementioned 

sources of uncertainty when constructing reliability statements for AGB, rather than 

only the third listed source, as is usual in many broad-scale forest inventory 

operations. One of the primary investigations in this study aims to compare the total 

propagated error for two sets of regional-level AGB component equations by 

accounting for all three of these sources of error. This information would provide a 

means for determining which model is more precise for use within the region for 
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which they were developed, while also illustrating the relative contributions of each 

error type. 

 One additional benefit of accounting for all three sources of uncertainty is that 

it provides an opportunity to observe possible gains in precision to be had by 

addressing uncertainty that arises due to issues with tree-level explanatory 

measurement data. More commonly referred to as measurement error, this form of 

uncertainty can be addressed prior to data collection in a number of different ways. 

These include choice of instrument, calibration of said instrument and by minimizing 

faulty collection results from data observing and recording personnel through various 

standardized training and implementation procedures (Weiskittel et al. 2011, p.277). 

One of the other primary investigations in this study looks comparing the choice of 

high-precision instruments for addressing error propagation due to measurement error. 

 Terrestrial LiDAR is one such high-precision instrument that has proven useful 

in forest inventory applications. Terrestrial laser scanning (TLS) technology has been 

used for measuring tree-level metrics such as diameters outside bark and bole heights 

(Somonse et al. 2003, Hopkinson et al. 2004, Henning and Radtke 2006, Bienert et al. 

2006, Maas et al. 2008, Weiß 2009, Pueschel et al. 2013) as well as crown metrics 

such as height to crown base and crown volume (Chasmer at al. 2006, Jung et al. 

2011). Almost all of these studies have assessed the performance of the TLS for 

extracting tree-level metrics. However, no research efforts exist that have taken this 

information and subsequently assessed the impact of this measurement performance 

on the uncertainty of broad-scale estimates of forest-related parameters, such as AGB. 
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With this information, forest managers would also be equipped with the ability to 

gauge whether the gains in precision justify the investment in this technology as a tool 

for use in their forest inventories. 

 With the comparison of the total uncertainty between equations this thesis aims 

to illustrate the effect of accounting for all three sources of error and their relative 

contributions to estimates of AGB from both sets of equations. In doing so, it is shown 

how additional credibility can be gained for the reliability statements that accompany 

estimates of AGB. Additionally, this thesis also aims to show how this approach 

captures the impact terrestrial LiDAR can have on the precision of broad-scale AGB 

estimates. Chapter 2 assesses the relative contributions of all three sources of error to 

the total propagated error for two sets of component equations for lodgepole pine in 

the Pacific Northwest region. Chapter 3 compares the total propagated error associated 

with using the TLS versus traditional inventory instruments. Lastly, the final Chapter 

4 provides a generalized synthesis of the central research findings, linking their utility 

into inventory and monitoring of AGB, while also tying their relevance into future 

research efforts that would further the efforts documented here. 
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CHAPTER 2: COMPARISON OF UNCERTAINTY IN PER UNIT AREA 

ESTIMATES OF ABOVEGROUND BIOMASS FOR TWO SELECT MODEL SETS  

 

Introduction 

 Increasingly central to the planning and monitoring-related goals of disciplines 

such as forestry and ecology, the production of defensibly precise broad-scale 

estimates of above ground biomass (AGB) all but requires a thorough recognition of 

their primary associated sources of variability. The widespread sample-based approach 

of acquiring these AGB estimates for forested areas typically involves applying 

individual-tree regression equations to trees selected within randomly selected sample 

plots to obtain tree-level estimates of AGB. All individual-tree estimates are then 

summed to obtain plot-level estimates, with all plot values subsequently averaged then 

expanded up to per unit area levels of ABG. The reported precision of these per unit 

area estimates using this approach commonly reflect only the sampling error; the 

variability resulting from among-plot differences in plot-level values of ABG. In 

addition to sampling error, two other primary sources of error have been shown to 

interact and propagate during the process of scaling individual-tree estimates of AGB 

up to per unit area levels; namely measurement error and model error (Cunia 1965). 

Measurement error is defined as the difference between a defined “true” value and the 

measured value of a given attribute. Model errors are sourced mainly from the residual 

variability around the model predictions and uncertainty in the parameter estimates. 

Because only sampling error is accounted for, uncertainty estimates for AGB are often 

an underestimation of the actual uncertainty. If uncertainty estimates for AGB are to 



6 

 

be statistically credible, accounting for all three of these error types must take place 

when reporting these uncertainties.  

 Measurement error is a source of uncertainty that has received attention in the 

forestry literature. A number of authors have investigated the measurement error of 

particular instruments used in forestry applications (Behre (1926), Bell and Gourley 

(1980), McRoberts et al. (1994), Williams et al. (1994), Skovsgaard et al. 1998, 

Plamondon (1999), Kalliovirta et al. 2004), while others have characterized the 

distributions of measurement errors for measured tree variables (McRoberts et al. 

1994, Canavan and Hann, 2004). Work has also been done to investigate the effects of 

measurement error on the uncertainty of forest model predictions (Westfall and 

Patterson 2007, Suty et al. 2013, Berger et al. 2014). Westfall and Patterson (2007) 

used the two stage error distribution method, also described by Canavan and Hann 

(2004), to model measurement variation distributions. Using quality assurance data 

from 682 inventory plots implemented by the Forest Inventory and Analysis (FIA) 

unit of the United States Department of Agriculture (USDA) Forest Service, they were 

able to assess the effects of measurement variability on several volume change 

estimates, including ingrowth, accretion, removals and mortality. Error due to 

measurement variability was minimal compared to the sampling variability, with 

accretion being the most sensitive to systematic measurement errors. Suty et al. (2013) 

used Taylor series expansion and empirical comparisons between two volume growth 

prediction methods to illustrate the effect of introduced bias from random 

measurement errors to inputs for non-linear volume growth models used in the 
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Swedish National Forest Inventory (NFI). Similarly, Berger et al. (2014) used Taylor 

series expansion and Monte Carlo simulations to approximate the effects of 

measurement errors in four independent variables on the relative error of stem volume 

equations currently used in the Austrian NFI. None of these authors, however, took the 

next step and looked at how measurement error affected broad-scale AGB estimates. 

 The effects of model errors on the variability of broad-scale forest inventory 

estimates have also been investigated. Breidenbach et al. (2014) assessed how 

variability in models used by the Norwegian NFI affects biomass stock and change 

estimates for Norway spruce. A parametric bootstrap approach was employed to 

quantify the contributions of parameter estimate uncertainty, inflated model residual 

variance and within-plot correlation to the total uncertainty of biomass stock and 

change in Norway. McRoberts and Westfall (2014) used Monte Carlo simulations to 

examine how volume model-related variability influences broad-area estimates 

generated from 2,178 FIA plots across a study area in northeastern Minnesota, USA. 

A comparison was made of the gains using species-specific models versus 

coniferous/deciduous nonspecific models, calibrated from a species-specific dataset 

collected from 2,102 trees across 24 states of the northern and northeastern Unites 

States. Both of these authors found the model errors to be minimal contributors to the 

total uncertainty. However, neither author investigated the effects of measurement 

error as well. 

 Unfortunately, very few studies have addressed the effects of all primary 

sources of error on broad-scale forestry inventory estimates. Mowrer and Frayer 
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(1986) addressed the effects of measurement error, model error and sampling error by 

measuring the cumulative variance of five 10-year projections from a growth and yield 

model for pure even-aged clonal quaking aspen using both Taylor series expansion 

and Monte Carlo simulations. Gertner (1990) approximated the effect of all three 

sources for non-linear individual-tree volume functions used to estimate stand-level 

volume per acre. Chave et al (2004) examined the effects of these different sources of 

error using permanent plot data from the moist forests of the canal region of Panama. 

In addition to the three aforementioned error sources, the magnitude of uncertainty 

from the specific model form chosen was assessed. This study is similar in that all 

three forms of error were empirically compared for two different sets of component 

models developed for lodgepole pine (Pinus contorta) for use in the Pacific Northwest 

region. In doing so, we were able to produce credible depictions of uncertainties useful 

for determining which model is the most reliable for future use.  

Component Ratio Method 

 The FIA is charged with the task of providing stock and change estimates for a 

large number of national-scale forest-related variables, with their estimates of AGB 

being drawn upon and used for a wide range of applications. Regional-level equations 

for small to mid-level estimation in specific regions are publicly available and used by 

many individuals seeking species-specific localized component estimates of AGB. 

However, these suites of equations often source from an array of different studies, 

inconsistent methodologically and in sample size, often yielding AGB estimates that 

differ across regions for trees of identical size and species. To address consistency 
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issues in estimation across regions, the national-level Jenkins equations were 

developed and used by FIA for national-scale estimation (Jenkins et al. 2003).  

Stemming from extensive meta-analysis of 2,640 published equations for component 

and total-tree biomass, the resultant Jenkins equations are a group of 10 generalized 

component and total tree biomass equations with diameter at breast height (DBH) as 

the only independent variable. 

 Reservations about the low-level of species specificity of these generalized 

models arose when large variations of AGB estimates were observed when applied to 

smaller-scale operations. This was illustrated by Zhou and Hemstrom (2009) who 

observed Jenkins estimates of total AGB of softwoods in the state of Oregon to be  

17% greater compared to regional species-specific equations. Hence, in 2009 a new 

component ratio method (CRM) was proposed as the standard for nationwide AGB 

reporting. This method uses a combination of the component ratios from the Jenkins 

equations, regional bole volume equations and percent bark estimates, so as to ensure 

consistency with regional tree-level volume estimates (Heath et al. 2008, Woodall et 

al. 2010). However, despite the conformance with regional-based estimates of bole 

volume, the reliance on the national-scale generalized Jenkins component ratios yields 

the same non-specificity for regional and finer-scale applications.  

 A new set of species-specific CRM component equations for lodgepole pine 

(Pinus contorta) are presented here for comparing total uncertainties with those 

produced from the current regional equations. These new CRM equations are 

heretofore referred to as the CRM equations; the hybrid CRM method described in the 
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previously paragraph will be referred to as CRM-FIA. These new CRM equations 

originate from a pilot research study aimed at developing new regional-level models 

for AGB consistent across regions. Rather than rely on the component ratios from the 

Jenkins models and the current regional volume models, these equations directly 

predict the proportion of tree-level AGB for bole wood, bark, branch wood and 

foliage. With these new CRM equations for component AGB stemming from one 

study, rather than a host of different studies as with the current regional equations, and 

with the specificity for use in smaller, more localized operations, the prior stated 

issues with consistency, specificity and congruence are addressed. The three 

independent variables for these new models are DBH, total height (HT) and height to 

crown base (HTCB). 

 To evaluate the performance of these new equations relative to the current 

regional approach for estimating tree-level AGB for lodgepole pine, comparisons of 

the magnitude of the cumulative propagated error will be made between the two sets 

of equations. Using Monte Carlo simulations, and applying both sets of equations to 

cluster sample plot data associated with destructively sampled trees used for 

development of the new CRM models, we were able to quantify the effects of 

measurement and model error on the precision of per unit area estimates of AGB for 

both approaches.  
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Methods 

Study locations 

 In order to capture regional differences in tree form, the data for this study 

were collected from both the Willamette National Forest (WNF) and the Deschutes 

National Forest (DNF) in western and central Oregon, respectively, All locations were 

within a mid-elevation band, with the WNF locations spanning from 1,160-1,340 

meters in elevation and the DNF locations from 1,280 to 1,340 meters in elevation. 

The WNF locations encompassed two forest types: (1) a diverse mixed-species 

coniferous forest, with observed species being Douglas-fir (Pseudotsuga menziesii), 

western hemlock (Tsuga heterophylla), lodgepole pine, mountain hemlock (Tsuga 

mertensiana), noble fir (Abies procera), Engelmann spruce (Picea engelmanii), and 

western white pine (Pinus monticola); and (2) a homogenous coniferous forest 

composed of primarily lodgepole pine and with a small element of grand fir (Abies 

grandis). The DNF locations encompassed one forest type of homogenous coniferous 

species composition, with observed species being lodgepole pine and ponderosa pine 

(Pinus ponderosa). 

Field data 

 For all locations, accessible sample trees were subjectively selected based upon 

morphological characteristics that included DBH, HT, and crown ratio (CR), as well 

as absence of defect or abnormalities. Efforts were taken to select sample trees either 

located in different forest stands types, or sufficiently distanced apart so as to avoid 
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issues with spatial autocorrelation.  A total of 32 trees were measured over a four 

week period during July and August 2013. DBH, HT and CR ranged from 13.5 to 42.9 

cm, 9.2 to 31.9 m and 0.30 to 0.948, respectively.  

 Standing- tree measurements were conducted prior to felling, with DBH being 

measured to nearest 0.254 cm. using a Spencer combination tape and with both HT 

and height to crown base (HTCB) being measured to the nearest 0.03 m. using a 

Trupulse Laser Rangefinder 360R. For this study, HTCB was defined as the bole 

height of the first live limb. Downed-tree measurements of HT and HTCB were 

measured with a 30.48 m open reel fiberglass tape. Due to the need for determining 

the point on the bole where 4.5 ft. above the uphill side of the tree was located prior to 

felling, and because DBH was measured with strict attention to detail while the sample 

trees still stood, standing-tree measurements of DBH were considered to be the “true” 

values and were not subsequently re-measured. It should also be noted that a large 

number of additional measurements that weren’t independent variables into the 

models were taken on the felled trees for the creation of the new CRM equations. 

 For estimation of component biomass per unit area, ground plot data was 

collected from the forest stands from which the 32 sample trees were sourced. All 

trees (> 4” in diameter) within a cluster plot comprised of four circular fixed area 

subplots arranged around each sample tree were measured for attributes such as 

species, DBH, HT and HTCB, among others. A 0.017 hectare plot was the primary 

subplot (radius 7.33 m) with the pith of the sample tree as the center. The centers of 

the other three circular subplots were located 36.58 m. at azimuths of 120, 240 and 
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360° from the pith of the sample tree. The secondary subplots were 0.008 hectares in 

area (radius 5.18 m), this reduction in plot size being a reflection of the relative 

importance of these plots to the central goal of maximizing the number of trees 

sampled. 

Models Compared 

 The Pacific Northwest unit of the FIA currently uses three different equations 

for bole, bark and branch AGB, and a published wood specific gravity value (USDS 

FS 1999) to estimate lodgepole pine component AGB for region-specific applications 

(Zhou and Hemstrom 2010). The summation of all three component estimates of AGB 

is the total tree estimate of AGB, without foliage. Bole AGB for lodgepole pine is 

estimated by first predicting total bole wood volume using the following equation 

published by Brackett (1977): 

       =   
- .        . 4   4  lo (    )  .        lo (   ) (1) 

                               

where       is the predicted total main bole wood volume including top and stump 

(ft³) and log(.) is the logarithm function (base 10). This prediction is then multiplied 

by the following species-specific average wood density value to obtain bole AGB:   

 Bole      =       ×WD (2) 

with   
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 WD = SG × W 

 

(3) 

where Bole      is the predicted the oven-dry bole biomass (lbs) for the i
th

 tree, WD 

is the calculated wood density value (lbs/ft³), SG is the published wood specific 

gravity value for lodgepole pine (0.38) and W is the density of water (62.4lbs/ft³).  

 Bark and branch AGB for lodgepole pine are estimated by using the following 

equations published by Standish (1985): 

 
Bark         .   .  (

       

   
)         

 

(4) 

 Branch        .    .  (
       

   
)         

(5) 

 

where Bark      is the predicted oven-dry bark biomass for the standing tree bole up 

to a 2.5 cm bole diameter (kg) for the i
th

 tree, Branch      is the predicted oven-dry 

branch biomass of wood and bark of live limbs attached to the main bole (kg) for the 

i
th

 tree, DBHcm i is diameter at breast height (cm) and HTm i is total tree height (m).   

 The new CRM equations under comparison here directly predict the proportion 

of AGB for the bole, bark, branch and foliage components. These proportions can then 

be multiplied by an estimate for total tree AGB of the user’s choice. In this study  the 

total tree biomass equation used was produced using the same data used to create the 

CRM equations for lodgepole pine. Both the CRM equations and the total tree 

biomass equation were fit in separate systems of equations using the seemingly 
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unrelated regression method (SUR) in SAS statistical software (SAS Institute Inc., 

v9.4). According to Poudel (2014, personal communication)
1
 the four CRM 

component equations and the total tree equation are of the form: 

 pBole
i
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 Total Treei e p     
 

   

    
 
  

 
] (10) 

where pBole
i
, pBark

i
, pBracnh

i
 and p olia e

i
 are the estimated proportions of  

component AGB  for bole wood, bark, branches and foliage, respectively, exp(.) is the 

exponential function, ln(.) is the natural logarithm function and the  s are the 

estimates parameters from the SUR procedure. The 
  

 
 is the correction factor, as 

described by Baskerville (1972) and McRoberts and Westfall (2014), for the resulting 

bias when back-transforming model predictions from the logarithmic to the initial 

scale of interest, where  ̂   is the estimated mean squared error, or residual variance. In 

the above equations, the values of the  ̂s and  ̂   are expressed on the logarithmic 

                                                 
1
 Poudel, K.P., Dissertation in progress. Department of Forest Engineering Resources and Management, 

College of Forestry, Oregon State University. 
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scale. For ease of future readability, all models, whether CRM, Total Tree or current 

regional models will be generally referred to as component models, unless where the 

mentioning of a specific model is deemed necessary. 

Measurement Error Variability 

 For HT and HTCB, the differences between the standing-tree measurements 

and the downed-tree measurements were calculated for all 32 trees. In this study, the 

downed-tree measurements are considered to be the known “true” values due to the 

ease with which measurements could be taken as accurately as possible. The summary 

data for these differences were subsequently calculated for each input variable for the 

models (Table 2.1). 

Using a grouping method detailed by Hosmer and Lemeshow (1989), and 

implemented by Berger et al. (2014), a simple linear regression model through the 

origin was constructed to predict the standard deviation of the measurement errors. In 

order to conduct regressions of standard deviation of measurement errors on input 

variables, the data required grouping. Using the notation and general methodology of 

Berger et al (2014) for the example of HT: (1) the data were sorted in ascending order 

with respect to downed-tree measurement HT values; (2) with the minimum 10 

groups, as recommended by Hosmer and Lemeshow (1989), the sorted HT values 

were grouped into groups of size 3, with the last group including the remainder of the 

HT values; (3) for every g
th

  group, the means of the HT measurements from step 1 

and        were estimated, where        
 

   
√∑ (             ̅̅ ̅̅ ̅̅ ̅̅ ̅)  

     is the 



17 

 

standard deviation of the measurement errors for HT and             
 

-    are the 

HT measurement errors, where     is the downed-tree height measurement and HT  

is the standing-tree height measurement; (4) the following model form was fit to the 

grouped data for HT using the method of ordinary least squares: 

   ̂       ̂
 
     

 

(11) 

where   ̂      is the estimated standard deviation of the measurement errors for HT 

and  ̂
 
 is the model parameter estimate.  

Integrating Simulated Measurement Errors into Model Uncertainty 

 We based our methods of integrating the measurement error into the model 

uncertainty on those described by Berger et al. (2014). Using the standard deviations 

from Table 2.1 and equation 11, Monte Carlo simulations, conducted using R software 

(R Core Team 2012), were used to approximate model uncertainties reflective of the 

additional uncertainty due to measurement error. Within each simulation, we were 

able to produce measurement errors that were then applied to “true” input values from 

the downed-tree measurements to produce “contaminated” input values for the 

equations. Input variable contamination was a two part process. For consistency, we 

will stay with the example of HT. First, for the k
th

 component model, a multiplicative 

factor ~N(1,  DHT²) was randomly generated and multiplied together with the input 

variables, where  DHT is the standard deviation of the height measurement errors in 

Table 2.1; and (2) an additive factor ~N(0,  D̂M  HT²) was randomly generated and 
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added to the input variables, where  D̂M  HT is the predicted standard deviation from 

equation 11 (Berger et al. 2014). 

 The resultant contaminated model predictions were recorded over 5000 

iterations, for all component models. The impact of the additional uncertainty was 

assessed by calculating the mean prediction and root mean square error (RMSE) and 

the relative RMSE (RRMSE) over all iterations using the dataset of 32 trees with the 

following formulas: 

 
mean 

 

 
∑  ̂ 

 

   

 

 

(12) 

  M    √
 

 
  ∑(    ̂ ) 

 

   

 (13) 

 

where  i is the observed value and  î is the prediction for the i
th 

tree. RRMSE is 

calculated by simply dividing RMSE by the mean. 

 To convert the CRM predicted ratios and RMSEs to tree-level units (oven-dry 

kg), two steps were taken; (1) the CRM ratios were multiplied by the prediction for 

total tree biomass produced by equation 10 to obtain tree-level predictions of 

component AGB; (2) to produce absolute RMSEs for this product, the square root of 

the sum of the squared relative RMSEs was multiplied by the predictions in step 1. 

The following formula for the combined RMSEs is  
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             ̂     √(
         

   ̂     
)   (

      

   ̂  
)   (14) 

 

where          is the combined RMSE in tree-level units,           is the RMSE 

for the CRM component ratios and        is the RMSE for Total Tree AGB 

(equation 10). 

Integrating Models Errors into Sampling Uncertainty 

 In order to integrate the model errors, contaminated or not, into the sampling 

uncertainty, the magnitude of the model errors integrated needed to be contingent 

upon the magnitude of the model predictions. Using the previously described grouping 

approach with respect to the model errors, a simple linear regression model through 

the origin was constructed to predict the magnitude of the model errors. Following the 

notation and general methodology of McRoberts and Wesfall (2014): (1) for the k
th

 

component model, a joined list of  i   i and  ̂i was created and sorted in ascending 

order with respect to  ̂i, where  i   ̂i- i; (2) with the minimum 10 groups, as 

recommended by Hosmer and Lemeshow (1989), the sorted triads of observations 

were grouped into groups of size 3, with the last group including the remainder of the 

means; (3) for every g
th

  group, the mean observation  ̅  
 

  

∑   

  

   
 , the mean 

prediction   ̂ 
̅̅̅ 

 

  

∑  ̂ 

  

   
 and the mean square error      

 

  - 
∑    

 
    were 

calculated, where    is the number of trees in the g
th

 group; (4) the following model 
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form was fit to the grouped data for each component model using the method of 

ordinary least squares 

  ̂i  ̂ 
  ̂i (15) 

where  ̂i is the predicted model error for the i
th 

tree,  ̂
 
 is the model parameter 

estimate and  ̂i is the model prediction for the i
th 

tree. It should be noted that with 

measurement error integrated into the model errors, the value of  ̂
 
 is expected to 

increase, reflecting this additionally accounted for source of uncertainty. 

 A bootstrapping technique, in conjunction with equation 15, was used to 

simulate the effects of model errors on the uncertainty of per unit area estimates of 

component AGB for all models. A similar Monte Carlo simulation sequence and 

notation described by McRoberts and Westfall (2014) was used for each component 

model. 

  irst  the data set containin  the “true” values of the    sample trees was 

randomly sampled with replacement to produce a bootstrapped-sample of size 32. 

Similar to the previously described method of simulating measurement errors, 

contaminated model predictions for all 32 pseudo-sampled trees were produced by 

adding a randomly generated residual,  i ~N(0,  ̂i
 
), to the prediction for the i

th
 

pseudo-sampled tree produced using the k
th

 component model, where  ̂  is estimated 

using equation 16. Using the contaminated predictions and the pseudo sample data, a 

new model, of the same form as the k
th

 component model, was refit. For equations 1, 

6, 7, 8, 9 and 10, due to their original model form, the contaminated predictions and 
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the pseudo sample data required transformation to the lo 
  

-lo 
  

 and ln-ln scale, 

respectively, prior to refitting.  

 Second, the refit equations were applied to the ground plot data set. For the i
th 

tree in the j
th 

plot, predictions of tree-level component AGB were produced by adding 

the model predictions to a randomly generated constrained residual,   i where   i is 

the randomly generated residual ~N(0,  ̂i
 
), and   is a multiplicative constraining 

factor that yields model efficiency values of 0.95. Model efficiency, calculated as 

       (
∑ ei 

npl

i  

∑ ( i  ̅) 
npl

i  

) (16) 

   

where npl is the number of trees in the ground plot data set, is a goodness-of-fit 

statistic similar to the more familiar r² from the ordinary least squares procedure, 

where the higher the value the better the fit of the model to a given data set (Vanclay 

and Skovsgaard 1997, McRoberts and Westfall 2014). This multiplicative factor 

constraint was implemented in order to have a standardized quality of fit of the model 

to the ground plot data for purposes of comparing the standard errors of the mean for 

all component models. Due to recent published findings illustrating the minimal effect  

correlation among trees within plots has on the standard error of the estimates, 

correlation among residuals was not integrated into the analysis of this study (Berger 

et al. 2014, Breidenbach et al. 2014, McRoberts et al. 2014).  
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 Third, to obtain the estimated per acre values of component AGB on the j
th

 

cluster plot, the summation of all subplot-level per unit area component AGB 

predictions on the l
th

 subplot were calculated as 

 
   ∑  

 

   

 

 

(17) 

with 

    
∑     

  

   

            
        

 (18) 

   

where    is the number of trees observed in the l
th

 subplot and      is the i
th 

tree on the 

l
th

 subplot.   

 Fourth, for each simulation cycle the mean and variance of the mean across all 

cluster plots were calculated as  

  ̅ 
 

   

∑  

   

   

 (19) 

    ̂( ̅) 
 

          
∑(    ̅)  

   

   

 (20) 

 

where     is the number of cluster plots (32 in this study). 

 Finally, the mean prediction and mean within-simulation variance over 5000 

simulation cycles were calculated as 
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(22) 

 Comparisons of the mean predictions as well as final propagated error will be 

compared for all component models for both approaches. Metrics used for comparison 

include RMSE, RRMSE, standard error of the mean (SE) from equation 20 and 

relative SE (RSE). 

Results and Discussion 

Model Predictions and Uncertainty 

 Once the predicted CRM component ratios were produced, they were 

multiplied by the predicted total tree biomass obtained using the SUR equation. When 

measurement error is not integrated into the model errors, the CRM predicts 

comparable amounts of tree-level AGB for each component, except for branches 

where the CRM predicts over 2.5 times that of the currently used Standish (1985) 

equations (Table 2.2). This difference could likely be explained by differences 

between the geographic location of the two study locations, as well as differences in 

the field protocol for sub-sampling branches. The Standish (1985) equations were fit 

from a dataset stemming from throughout the province of British Columbia, Canada 

where a difference in growing season duration and conditions may result in less 

branch AGB than in the mid latitudes of lodgepole pines range, where the data in this 
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study are sourced. The sub-sampled branches selected in the Standish (1985) study 

were randomly selected from three diameter classes, two from each class, whereas in 

this study branches were randomly selected, independent of size, from three different 

live crown height strata, with four from the bottom, three from the middle and two 

from the top stratum, giving greater weight to the portion of the crown where larger 

branches typically occur. As a result of this difference in predicted branch AGB, the 

predicted total tree AGB without foliage (TTWOF) when measurement error is not 

accounted for is greater than that of the regional equations. This result contrasts to the 

results found by Chojnacky (2012) who found the aforementioned hybrid CRM 

approach to yield predictions that were less than those from the current regional suite 

of equations for all but two genera. RMSE values for tree-level component and 

TTWOF estimates were generally larger for the regional models, with the RMSE for 

the regional bole and branch component models being 53% and 41% higher, 

respectively, than the CRM component model RMSEs. The TTWOF RMSE for the 

regional estimate was also 45% higher than the CRM estimate.  

 With the integration of measurement error into the model errors, this difference 

between TTWOF RMSE values was substantially larger (Table 2.3). As expected, all 

RMSE values increased for all tree-level component and TTWOF RMSE values, but 

the 621% increase from 79.56 kg without measurement error to 573.95 kg with 

measurement error for the regional bole component model RMSE was dramatic. 

RRMSE values for all regional models showed substantial increase as well (Table 

2.4). This substantial imprecision is most likely due to extrapolation, which occurred 
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through the random simulation of measurement errors. The measurement error 

simulation procedure produced intermittently extreme values of DBH and HT for 

inputs into the equation. Hence, this dramatic increase illustrates the model not being 

suitable for extrapolation outside the range of DBH and HT for which it was intended. 

With the TTWOF RMSE value for the regional equations being almost five times that 

of the CRM TTWOF RMSE value, the CRM was the more precise approach for tree 

level estimation of AGB. The model prediction for the regional bole component model 

also increased a substantial 86% with simulated measurement error integrated, 

resulting in a 72% increase for TTWOF. The CRM model predictions for branch and 

foliage AGB increased slightly, while the predictions for bole and bark AGB 

decreased with simulated measurement error, resulting in a 7% decrease for TTWOF 

for the CRM prediction. 

Per Unit Area Estimates and Uncertainty 

 When only sampling error is considered for per unit area estimation, the 

standard error of the means for the CRM were greater in magnitude than those 

produced using the current regional equations (Table 2.5), showing a reversal in the 

trend observed with the model RMSEs. However, the RSEs are very comparable; 

particularly the TTWOF RSE values (Table 2.7). As was the case with the tree-level 

predictions, the bole and branch component models comprise the two greatest portions 

of the TTWOF variability, with the CRM branch model precision being substantially 

less than the regional branch model. This relatively large TTWOF RSE value can 

likely be attributed to three reasons relating to the ground plot data. First, the small 
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plot sizes of the three outer 1/48
th

 acre subplots likely reduced the precision of the per 

acre estimates of component AGB (Johnson and Hixon 1952, Freese 1961, Gray 

2003). Secondly, the ground plot data was combined from different forest locations, 

with different species compositions, stand densities and structure. Thus, the variability 

between the 32 cluster plots was expectedly large. Third, the small sample size of only 

32 cluster plots could be contributing to these large RSE values as well.  Similar to the 

tree-level predictions when measurement error integrated, the CRM predictions for all 

components and TTWOF were larger than those produced by the regional equations.  

 When the model error was integrated into the simulations for per unit area 

estimation, the precision of the current regional equation predictions was relatively 

unchanged; showing less than a 2% increase in the SE for TTWOF, suggesting the 

model error of the regional models are trivial contributors to the total uncertainty 

(Table 2.6). This is in line with the results of several authors who have looked at the 

effects of model uncertainty on per unit area estimates of forestry parameters (Berger 

et al. 2014, Breidenbach et al. 2014, McRoberts and Westfall 2014, Ståhl et al. 2014). 

With the relatively small sample size of only 32 trees, this small increase in 

uncertainty could partially be attributed to the Q²=0.95 constraint for establishing a 

baseline of comparison between the two sets of equations. However, we anticipate the 

SE values would only marginally increase without this constraint, as shown by 

McRoberts and Westfall (2014).  

 The precision of the CRM predictions, however, showed a substantial change 

with integration of model errors, with the SE for TTWOF increasing nearly threefold.  
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With the CRM approach, where two estimates with their own amounts of uncertainty 

are multiplied together, the resulting estimate of total component AGB is hierarchical 

in nature; with the residuals of the Total Tree and component ratio equations being 

serially correlated. When this degree of serial correlation is present between the 

residuals of two hierarchical responses, predictions themselves will be unbiased and 

consistent, but will also be highly inefficient with the uncertainty estimates being 

enlarged (Kutner et al. 2004, p.481). Thus, as suggested by the results of the 

simulations in this study, the effect of applying both CRM estimates to plot data and 

multiplying the resultant estimates together, without accounting for the correlation 

structure between these two models, can produce per unit area estimates with a low 

degree of reliability. 

 The effect of accounting for measurement error in addition to model and 

sampling error was seen in an increase in the SE and RSE values for both sets of 

equations (Tables 2.7 & 2.8). The TTWOF SE for the CRM and regional equations 

increased by 15% and 5%, respectively. The relative proportions of SE due to 

measurement, model and sampling error for the regional equations were 5%, 2% and 

93%, respectively. Gertner (1990) found similar results for proportion of total variance 

while looking at the effect of all three sources of error while estimating stand-level 

volume per acre. The same relative proportions of SE for the CRM equations were 

13%, 55% and 32%, for measurement, model and sampling error, respectively. The 

relative proportion of the SE due to measurement error being as large as it is (13%) 
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indicates the measurement error also contributed fairly heavily to the total per unit 

area uncertainty for the CRM estimates. 

 With a relatively small dataset of only 32 lodgepole pine trees that were 

subjectively selected, rather than probabilistically, from a fairly limited portion of the 

species’ ran e  the predictions and their respective uncertainties reported in this study 

likely have amount of bias. However, despite these admitted inferential limits, a clear 

depiction of the general contributions of measurement, model and sampling error to 

the total propagated error was given for both models. 

Conclusion 

 As defensibly precise estimates of AGB across a range of scales are 

increasingly sought after by FIA and others users of individual-tree biomass equations, 

the need to produce reliable depictions of their associated uncertainty will continue to 

develop.  This study has confirmed that not accounting for both measurement and 

model error does in fact result in an underestimation of per unit area uncertainty of 

AGB. Due to the substantial contribution of the models errors with the CRM 

equations, the per unit area estimates produced with those equations were much less 

precise than the current regional equations.  

 Ultimately, if FIA were to implement the usage of these CRM equations for 

lodgepole pine in the Pacific Northwest region, accounting for the uncertainty of the 

combined equations should accompany this implementation. This would result in 

reliability statements with increased credibility. While the predicted means from the 
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CRM equations could theoretically yield more accurate estimates when applied to 

different stands of lodgepole pine, the results of this study suggest those estimates 

would be less precise than those that would be produced by the current regional 

equations. The results of this study also provide an impetus for future research to 

depict the anticipated reduction in uncertainty associated with accounting for the 

aforementioned correlation structure. Further, given these results it is reasonable to 

assume the precision of the estimates produced by the CRM-FIA approach are 

substantially underestimated. While the issue of consistency with the current regional 

models is still prevalent, the comparatively greater reliability of their estimates of 

AGB on a per unit area basis, using the trees in this study, dissuades their replacement 

for small to midscale usage by the CRM equations evaluated here.  
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Table 2.1: Summary statistics of the measurements 

errors for HT and HTCB 

  n Min. Mean Max. SD 

HT (m) 32 -2.56 -0.82 2.26 0.83 

HTCB (m) 32 -1.04 -0.07 1.37 0.49 

 

 

Table 2.2: Model predictions and RMSE values for CRM ratios, CRM tree-level estimates and tree-level estimates for the regional 

equations, without measurement error. Total minus foliage, the sum of the tree-level component estimates, is used as another means 

for comparison between the models. Tree-levels units are in kilograms of dry biomass.  

Model Means-Without Measurement Error Model RMSEs-Without Measurement Error 

Total Tree (SUR) 284.83 
  

Total Tree (SUR) 73.78 
  

Component 
CRM Ratios 

CRM Tree-
Level 

Regional Tree-
Level 

Component 
CRM 

Ratios 
CRM Tree-

Level 
Regional Tree-

Level 

Bole 0.677 192.83 182.44 Bole 0.081 55.04 79.56 

Bark 0.054 15.42 14.21 Bark 0.031 9.76 10.59 

Branch 0.192 54.79 20.78 Branch 0.061 22.34 30.74 

Foliage 0.080 22.69 NA Foliage 0.023 8.81 NA 

Total Minus Foliage 263.04 217.43 Total Minus Foliage 87.14 120.89 
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Table 2.3: Model predictions and RMSE values for CRM ratios, CRM tree-level estimates and tree-level estimates for the regional 

equations, with measurement error. Total minus foliage, the sum of the tree-level component estimates, is used as another means 

for comparison between the models. Tree-levels units are in kilograms of dry biomass.  

Model Means-With Measurement Error Model RMSEs-With Measurement Error 

Total Tree (SUR) 284.83 
  

Total Tree (SUR) 73.78 
  

Component 
CRM 

Ratios 
CRM Tree-

Level 
Regional Tree-

Level 
Component 

CRM 
Ratios 

CRM Tree-Level Regional Tree-Level 

Bole 0.607 172.92 338.50 Bole 0.324 157.07 573.95 

Bark 0.044 12.40 14.13 Bark 0.057 16.62 49.99 

Branch 0.207 58.93 20.67 Branch 0.079 27.22 72.87 

Foliage 0.090 25.52 NA Foliage 0.040 13.07 NA 

Total Minus Foliage 244.24 373.29 Total Minus Foliage 200.91 696.80 

 

Table 2.4: Model RRMSE values for CRM ratios, CRM tree-level estimates and tree-level estimates for the regional equations, 

with and without measurement error. Total minus foliage, the sum of the tree-level component estimates, is used as another means 

for comparison between the models.  

Model RRMSEs-Without Measurement Error Model RRMSEs-With Measurement Error 

Total Tree (SUR) 24.1% 
      

Component 
CRM 

Ratios 
CRM Tree-

Level 
Regional Tree-

Level 
Component 

CRM 
Ratios 

CRM Tree-Level Regional Tree-Level 

Bole 12.0% 28.5% 43.6% Bole 53.4% 77.5% 169.6% 

Bark 57.7% 63.3% 74.5% Bark 131.6% 155.7% 353.9% 

Branch 31.5% 40.8% 147.9% Branch 38.2% 62.4% 352.6% 

Foliage 28.9% 38.8% NA Foliage 44.2% 68.3% NA 

Total Minus Foliage 42.9% 55.6% Total Minus Foliage 77.8% 186.7% 
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Table 2.5: Per hectare estimates and SE values for CRM and regional equations, without accounting for measurement or 

model error. Total minus foliage, the sum of the per acre component estimates, is used as another means for comparison 

between the models. Tree-levels units are in kilograms of dry biomass per hectare.  

Sampling Error Only 

 Mean  SE  

Component 
CRM Plot-

Level Regional Plot-Level Component 
CRM Plot-

Level Regional Plot-Level 

Bole 24690.09 17875.77 Bole 4373.71 3383.30 

Bark 1862.87 1578.96 Bark 330.47 284.07 

Branch 6489.43 2497.86 Branch 1130.67 436.49 

Foliage 2603.83 NA Foliage 438.48 NA 

Total Minus Foliage 33042.39 21952.59 Total Minus Foliage 5834.85 4103.86 

 

Table 2.6: Per hectare estimates and SE values for CRM and regional equations, accounting for model error. Total minus 

foliage, the sum of the per acre component estimates, is used as another means for comparison between the models. Tree-

levels units are in kilograms of dry biomass per hectare. 

Sampling Error (With Model Error) 

 Mean  SE  

Component 
CRM Plot-

Level Regional Plot-Level Component 
CRM Plot-

Level Regional Plot-Level 

Bole 32768.33 16940.20 Bole 11649.73 3341.45 

Bark 3253.51 1602.48 Bark 1253.84 295.64 

Branch 9896.37 2971.86 Branch 3130.85 548.02 

Foliage 3109.95 NA Foliage 742.51 NA 

Total Minus Foliage 45918.20 21514.55 Total Minus Foliage 16034.43 4185.12 
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Table 2.7: Per hectare estimates and SE values for CRM and regional equations, accounting for both measurement and model error. 

Total minus foliage, the sum of the per acre component estimates, is used as another means for comparison between the models. 

Tree-levels units are in kilograms of dry biomass per hectare.  

Sampling Error (With Model and Measurement Error) 

 Mean  SE 

Component 
CRM Plot-

Level Regional Plot-Level Component 
CRM Plot-

Level Regional Plot-Level 

Bole 33287.96 16701.94 Bole 12245.38 3566.87 

Bark 6673.57 1600.91 Bark 2893.22 296.29 

Branch 10227.99 2968.04 Branch 3335.24 547.98 

Foliage 3272.53 NA Foliage 803.54 NA 

Total Minus Foliage 50189.53 21270.89 Total Minus Foliage 18473.84 4411.13 

 

Table 2.8: RSE values for CRM and regional equations, for all three scenarios depicted in the previous three tables. Total minus 

foliage, the sum of the per acre component estimates, is used as another means for comparison between the models.  

Sampling Error (RSEs) 

 
Sampling Only Model Errors Measurement and Model Errors 

Component CRM Plot-Level Regional Plot-Level CRM Plot-Level Regional Plot-Level CRM Plot-Level Regional Plot-Level 

Bole 17.7% 18.9% 35.6% 19.7% 36.8% 21.4% 

Bark 17.7% 18.0% 38.5% 18.4% 43.4% 18.5% 

Branch 17.4% 17.5% 31.6% 18.4% 32.6% 18.5% 

Foliage 16.8% NA 23.9% NA 24.6% NA 

Total Minus Foliage 18.5% 18.7% 34.9% 19.5% 36.8% 20.7% 
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CHAPTER 3: ADDRESSING UNCERTAINTY IN PER UNIT AREA ESTIMATES 

OF ABOVEGROUND BIOMASS USING TERRESTRIAL LIDAR 

 

Introduction 

 Sound forest management decisions that satisfy an array of ecological, 

economic and social criteria are often based upon forest attributes that carry with them 

a defensible magnitude of certainty. Broad-scale forest inventory and monitoring 

programs such as the United State Department of Agriculture (USDA) Forest 

Inventory and Analysis (FIA) produce estimates and reports of forest resources that 

bear increasing utility for agencies and other users alike. The need for uncertainty 

statements with rigorous and thorough construct, accurately depicting the precision of 

the point estimates they theoretically encapsulate, is also increasing. With the growing 

use of FIA inventory data for attributes such as above ground biomass (AGB), gains in 

precision made by addressing specific sources of uncertainty could yield far-reaching 

benefits for forest managers, and scientists drawing inference and making decisions 

from their AGB estimates.   

 The largest source of uncertainty in a typical inventory setting is often 

sampling error (Mowrer and Frayer 1986, Gertner 1990), which is the uncertainty 

reflecting the intractability of obtaining a census on the entirety of the AGB resources 

in given forested area. The size of this error is contingent upon the sampling 

methodology and intensity and the inherent variation in the items being sampled. This 

is also frequently the only variability estimate accounted for when inventory reports 

are produced. However, based upon results discussed in Chapter 2, other sources of 



38 

 

uncertainty, or error, need to be addressed. Depending upon the allometric model, or 

sets of models, used to predict tree-level AGB, model errors tend to contribute 

minimally toward the total uncertainty. Measurement error, however, has been shown 

in previous studies, as well as in Chapter 2, to be a notably sizeable contributor to this 

uncertainty worthy of addressing. 

Terrestrial LiDAR 

 When conducting a sample-based forest inventory, an array of measurements 

on selected sample trees are carefully taken with various instruments. Assuming 

rigorous calibration, the quality of instrument readings depend primarily upon ocular 

judgment and varying skill levels of usage. The inevitable deviation from true values 

of the attributes due to this inherent variability in readings can be minimized in a 

number of different ways. Relevant to this study, choice of instrument can have a 

profound impact on the magnitude of these measurement errors. 

 Terrestrial LiDAR technology holds promise for the addressing of 

measurement error through automated extraction of desired parameters. Unlike 

airborne laser scanning (ALS) technology, which already has wider use in broad-scale 

forest inventories, terrestrial laser scanning (TLS) technology emits laser light pulses 

at much higher point densities from a grounded perspective. This results in 

informationally-dense 3D geometric representations, known as point clouds, of lower 

to mid-vertical forest structure useful for finer-scale tree and plot-level analysis. With 

additional detail captured of the below-canopy architecture, foresters are able to 



39 

 

extract information about the vertical profile of the merchantable portion of the stem, 

which can be seen from below but not from above the canopy.  

 As opposed to being secured onto small aircraft as with ALS systems, TLS 

units are typically mounted and operated on tripods for use in forest inventory 

applications. Despite being obviously limited to smaller area applications, use of the 

TLS in these scenarios is applicable for isolated sample plots where the entirety of a 

forested land-base is not measured. With many forest inventory operations, such as 

FIA, using a cluster plot design, a design used in part to minimize travel costs, the 

spatial coverage limitation with the TLS would likely not be a prohibitive factor for its 

use. 

 Several authors have assessed the performance of TLS in obtaining specific 

individual-tree variables, such as taper (Thies et al. 2004), diameter outside bark 

(DOB) (Somonse et al. 2003, Hopkinson et al. 2004, Henning and Radtke 2006, 

Bienert et al. 2006, Maas et al. 2008, Weiß 2009, Pueschel et al. 2013), canopy 

metrics such as crown area, crown volume and height to crown base (Chasmer at al. 

2006, Jung et al. 2011), and bole reconstruction for stem volume calculation (Yu et al. 

2012). Henning and Radtke (2004) compared DOB measurements of nine 

destructively sampled loblolly pine (Pinus taeda) trees to DOB measurements 

obtained. DOBs, measured in 1m intervals, were reported to be within 1-2cm, with 

greater accuracy achieved for stem portions below the base of live crown. Maas et al. 

(2004) and Bienert et al. (2006) reviewed and compared work flow and data 

processing procedures for extracting common inventory attributes such as DOBs and 
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total tree height (HT). Chasmer et al. (2006) used coinciding ALS and TLS data to 

compare against field-based plot measurements of HT, height to crown base (HTCB) 

and maximum crown width. Average height estimate biases were similar for both ALS 

and TLS at 1.1m and 1.2m, respectively. ALS overestimated HTCB by an average of 

1.4m due to point density distributions being weighted toward the top of the tree, 

whereas TLS underestimated HTCB by 6.4m, not only resulting from the inverse of 

the aforementioned distribution due to an inverted perspective, but largely due to not 

accounting for the occurrence of dead branches.  

 The great majority of these studies have focused primarily on investigating 

how tree-level TLS measurements compare to either felled or standing tree 

measurements. Yet, to our knowledge, no studies have been done to assess the effects 

of TLS measurement errors on the final uncertainty of per unit area estimate of AGB. 

This is relevant for broad-scale inventory and monitoring program like FIA that may 

benefit from using TLS for inventory measurements, where the impact of these 

propagated errors can be substantial when expanded to broader scales. Hence, this 

study investigates how the total propagated error of AGB associated with using a TLS 

compares to that associated with using common forest inventory instruments used for 

standing tree measurements. This study uses data from three types of measurements 

performed on 25 lodgepole pine (Pinus contorta) trees as the basis for making these 

comparisons. TLS scan data, standing tree-measurements using traditional forest 

inventory instruments and destructive sampling measurements comprise the three 

measurement sets. Using the CRM set of models for predicting lodgepole pine AGB 

examined in Chapter 2, the same Monte Carlo simulation approach will be employed 
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for making comparisons between associated uncertainties of per unit area estimates of 

AGB for each measurement method.  

Methods 

 Study locations, sample tree selection criteria and procedures remain the same 

as described in Chapter 2. However, due to logistical circumstances limiting scanner 

use in the field only 25 of the 32 measured and felled trees were scanned with the 

TLS. Hence, for future reference the dataset used in this study contains measurements 

for 25 trees. For these 25 trees, true values of DBH, HT and CR ranged from 13.5 to 

42.2 cm, 9.2 to 28.3 m. and 0.373 to 0.947, respectively. Details for standing tree 

measurement, downed-tree measurement and inventory plot protocols are also 

described in Chapter 2.  

TLS Field Scanning Protocol 

 In addition to the standing tree measurements, sample trees were scanned with 

a tripod-mounted FARO Focus
3D 

120 TLS prior to felling. As opposed to the more 

common time-of-flight TLS technology the FARO scanner uses phase shift 

technology which uses the shifts of modulated waves of returned infrared light pulses 

to calculate distances traveled (FARO 2014). Maximum ranges of phase-based 

scanners are less than those of time-of-flight scanners; however, measurement rates 

(pulses per second emitted) are usually much higher with greater distance accuracies 

realized than for time-of-flight scanners. See Table 3.1 for the technical data of the 

FARO Focus
3D 

120.  
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 Each sample tree was scanned from three locations around its periphery at 

distances ranging from approximately 3-8m away from the tree. To the best extent 

possible, scan positions were placed at 120° apart from each other to maximize the 

information gathered for characterizing the geometric shape of the tree. For automatic 

co-registration, four manually placed targets were positioned near the sample tree with 

a minimum three targets being visible from each scan position. Targets construction 

consisted of printed checkerboard signs affixed to wooden staked panel boards (Figure 

3.1). Because maximizing information gathered was desired for this study, minimal 

amounts of understory vegetation deemed obstructive were manually removed.  

 Scanning was conducted at a speed of 122,000 pulses per second for 

approximately seven minutes per scan. With transport and setup time between scan 

positions taking an average of 2-3 minutes, scanning each tree from all three angles 

took on average 25-30 minutes. Prior determination of target placement typically 

added an additional 5 minutes, and vegetation removal, if deemed necessary, added 

anywhere from 5 to 60 minutes for two physically capable crew members.  

TLS Point Cloud Registration and Processing 

 The scan data collected at each scan position was part of its own coordinate 

system with the scanner location itself as the origin. In order to fuse all three scan 

positions into one global coordinate system, a process known as registration was 

necessary. Registration uses common reference objects visible in all scans by 

assigning the location of those objects to a new general coordinate system to create 

one registered scan. Registration was done automatically by uploading the scan data 
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into SCENE v4.8 software (FARO 2014). SCENE software is capable of 

automatically recognizing the printed checkerboard targets within each scan image for 

subsequent automatic registration. Quality of registration was reported as tension; the 

average discrepancy in distance, over the entire global coordinate system, between a 

given pair of reference objects. Tensions were generally reported as ranging from 

1mm to 8mm. An automated procedure was used for noise reduction and filtration of 

stray points. For each registered scan, the portion of the point cloud that corresponded 

to the sample tree and its near vicinity was selected visually from the 3D 

representation of the surrounding forest (Figures 3.2 and 3.3). These selected points 

were then exported for later use in extracting DBH, HT and HTCB using Matlab 

2013b (The MathWorks, http://www.mathworks.com, USA). 

Tree Parameter Extraction from Selected Scan Data 

Digital Terrain Model 

 The initial step for extracting the input variables from the point clouds was the 

creation of a digital terrain model (DTM) for representation of the ground elevations 

near the sample trees. This process involved first creating an XY-grid of even spacing 

for each scan, then systematically determining and selecting the point in each grid cell 

with the lowest elevation, or Z coordinate. The Z coordinate of these selected points 

were used to represent the elevation of the area their respective grid cells covered. In 

order to take advantage of the fact that TLS scans yield a much high number of 

ground-returned points that ALS scans, a 0.3048m × 0.3048m grid size was chosen as 
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the optimal grid size so that sufficient detail was preserved while the spatial resolution 

was not greater than the point density on the ground. 

Tree Detection 

 With the ground model complete the next step before obtaining tree parameters 

was to estimate the center of the sample tree at approximately 1.37m above the 

ground. This estimated location served as a control point from which all measurement 

algorithms originated from. As per Mass et al. (2008) the process began by taking a 

thin 5-10cm thick horizontal slice from the point cloud to use as a subset for 

estimation (Figure 3.4). This horizontal slice often included many points representing 

branches and foliage at that height. To expedite the estimation process, only a subset 

of the points in the slice was used. This subset was created by first graphically 

determining the XY range of the main bole, and then selecting only the points within 

that range (Figure 3.5). This subset contains predominantly points returned from the 

bole, with a minimal number of returns representing other features such as branches, 

foliage, lichen and moss.  

 With this subset of points representing a slice of the outside of the bark on the 

main bole, a nonlinear least squares circle-fitting procedure, similar to that described 

by Henning and Radtke (2006), was used for estimating the diameter and XY center of 

the tree. A non-linear least squares optimization function was used for this task. Initial 

estimates, or starting values, for the diameter and XY center were required as inputs. 

The two starting values for the XY center that worked well were the means of the XY 

coordinates of all subset points, provided there were no far outlying points (Maisonobe 
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2007). Restriction of the subset to the XY range of the main bole additionally 

addresses any outliers. The starting value for the diameter of the sample tree consisted 

of using the following equation to solve for a diameter for each of the subset points, 

and then using the mean of all calculated diameters, produced using the following 

equation (Henning and Radtke 2006): 

d̂i    √( ̂c  i)  (ŷc
 y

i
)  

where d̂i is estimated diameter for the  i
th

 subset point, the ( ̂c ŷc
) pair are the means 

of the (x,y) coordinates for all subset points and the ( i  i) pair are the (x,y) 

coordinates of the i
th 

subset point. With these three starting values and the following 

equation as the objective function, the three unknowns were solved for by minimizing 

the sum of squares for all subset points: 

 i    √( ̂c  i)  (ŷc
 y

i
)  d̂i 

where  i is the value of the objective function for the i
th

 subset point and  ̂c, ŷc
 and d̂i 

are the three unknowns. With the spatial location of the center of the tree and its 

diameter approximated, subsequent measurements stemmed from this information. 

 Uphill Side of the Tree and Total Height 

 As is common in forest inventories, when measuring DBH, HT and HTCB for 

the standing and downed tree measurements, all heights up the bole to the tip of the 

sample trees were relative to the ground adjacent to the tree with the highest elevation 
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(Avery and Burkhart 2002, p.144). Thus, it was necessary to identify the uphill-side of 

the tree and determine the elevation of that side relative to the rest of the point cloud. 

Using the approximated center and diameter, all DTM cells determined to be spatially 

adjacent to the base of the sample tree were selected. These cells represented a discrete 

elevation profile surrounding the base of the tree. The selected DTM cell with the 

highest elevation value was determined to be the uphill-side of the tree. The 

corresponding elevation value of that cell, heretofore referred to as the reference z-

value, was used as the minimum reference height for extracting DBH, HT and HTCB.  

 A statistical quality control was implemented in order to ensure the reference 

z-value was not a far outlier representing anomalies such as nearby rocks or protruding 

tree roots. Whereby, if the coefficient of variation (CV) of the elevation values of all 

the selected adjacent DTM cells was above a defined percentage, the adjacent cell 

with the next highest elevation value was chosen. For this study, the defined CV of 

60% was observed to be sufficient in removing the far outliers that occurred. HT was 

then simply calculated as the difference between the highest point in the point cloud 

and the reference z-value. Stray points above the tip of the tree were not observed to 

be a problem due to the prior filtering done in SCENE.  

Diameter at Breast Height 

 While the approximated diameter from the detection slice at 1.37m could serve 

as an estimate of DBH, the height at which the slice was taken was 1.37m above the 

minimum elevation of the entire point cloud, rather than the uphill side of the tree. On 

steeply sloping terrain, differences in relative bole heights could be substantial. 
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Therefore, an improved DBH was extracted 1.37m above the reference z-value using 

the previously described procedure of subsetting followed by the non-linear least 

squares circle-fitting. However, an additional precision constraint was added to 

maximize the reliability of the DBH measurement. If the root mean square error 

(RMSE) of the non-linear least squares procedure was above a defined threshold of 

5mm  a recursive “noise reduction” method, similar to Henning and Radtke (2006), 

was invoked. This process involved continually removing the points whose estimated 

diameters were the maximum absolute distance from the mean of all estimated 

diameters until the standard deviation of the estimated diameters was below the same 

defined threshold. It was observed that using 5mm for this threshold was sufficient for 

minimizing the measurement error, while also removing stray points around, and not 

belonging to, the main bole.  

Height to Crown Base 

 The majority of methods used to quantify crown-related variables such as 

HTCB using LiDAR data are based upon return intensity, point frequency and 

percentile analysis of return height. Return intensity is a measure of the returned 

energy of an emitted pulse. This value differs depending on a number of variables 

having to do with environmental conditions, scanner properties, scanner location and, 

most notably, the surface of reflectance. Using the latter notion, it is possible to exploit 

differences in return intensities between foliage and woody surfaces for estimating 

HTCB.   
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 In order to estimate HTCB in this study, two approaches which combine these 

metrics were examined. The first approach, proposed by Popescu and Zhao (2007) for 

ALS data, involved polynomial fitting to frequency height profiles of individual tree 

crowns. Profiles were created by binning point returns into height bins of size 3.048cm 

for point frequency (Figure 3.6). Fourth-degree polynomials were then fit to these 

profiles, with return height as the input variable and point frequency as the response 

variable. The height of the first inflection point of the fitted polynomial, at the lower 

end of the height profile, was theorized to coincide with the location of HTCB (Figure 

3.7). 

 This second approach consisted of using different percentile heights within a 

subset of points whose intensity values were below a subjectively determined 

threshold. By plotting intensity versus height, a subjective determination of an 

approximate threshold could be determined, below which the intensity values for 

points returned from foliage would theoretically occur (Figure 3.8). The subset of 

points below this threshold served as a representation of the live crown profiles.  

 Using the height of the lowest point in this subset as a measure of HTCB 

resulted in consistent underestimation, similar to the results observed by Chasmer et 

al. (2006). This was likely due to: (1) the presence of dead branches interspersed 

within the lower portion of the live crown, as is common for lodgepole pine; and (2) 

the definition of HTCB used in this study being the height to the lowest live limb 

rather than the height to the lower margin of the main live crown. Thus, HTCB was 

then estimated as the 5
th

, 10
th

 and 25
th

 percentile height of this subset for the 20-40yr, 
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40-80yr and >80yr age classes of sample trees selected, respectively. Selection of this 

threshold was based upon: (1) empirical observation; and (2) the knowledge that 

younger lodgepole pine trees typically have lower HTCB values and fewer dead 

branches. Due to this method yielding the lowest average measurement error, the 

measurements resulting from this approach were ultimately selected for use in the 

subsequent error propagation analysis. 

Error Propagation  

 For DBH, HT and HTCB, the differences between the TLS measurements and 

the downed-tree measurements were calculated for all 25 trees. The same was done for 

HT and HTCB for the standing tree measurements for all 25 trees. Measurement error 

variability was quantified following the same methodology described in Chapter 2. 

Monte Carlo simulations, also mirroring those described in Chapter 2, were used to 

quantify the propagated error associated with both instrument measurements using the 

CRM equations. 

Results and Discussion 

Measurement Errors 

 Table 3.2 shows the measurement error summary statistics for input variable 

measurements using the TLS and the standing tree measurements (STM). The circle-

fitting procedure for measuring DBH worked quite well overall, with 6 of the 25 trees 

showing exact agreement with the downed tree measurements, and 9 being within 

3.048cm. These results are comparably better than previous studies assessing the 

quality of TLS-derived diameter measurements. Somonse et al. (2003) used a Hough-
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transformation to obtain DBH for 23 trees, reporting minimum, maximum, mean and 

standard deviation of measurement error values as -5.8cm, 5.6cm, 1.7cm and 2.8cm, 

respectively. Hopkinson et al. (2004) reported an average difference of 10cm for plot-

level comparison of DBH between TLS and manual measurement techniques. Thies et 

al. (2004) used a stem reconstruction method involving the fitting of a series of 

cylinders up the main stem of two scanned deciduous trees of different species. DBH 

was calculated as the diameter of the corresponding cylinder at breast height. 

Deviations in TLS-derived DBH measurements from standing tree measurements were 

-1.3cm (3.3in) and 0.6cm (1.5in) for European beech and wild cherry, respectively. 

Henning and Radtke (2006) reported errors of less than 1cm (0.3in) using a similar 

circle-fitting procedure as the one described here when comparing TLS diameters to 

known values from felled trees. In a separate study attempting to model 3D plot-level 

forest structure, Henning and Radtke (2006) reported an average DBH difference of 

4.8cm when comparing TLS measurements to standing tree measurements. It is 

reasonable to believe the quality of these TLS-derived DBH results compared to other 

studies is largely attributable our multi-scan approach, which has been shown to 

reduce the variability TLS-derived DBH measurements (Pueschel et al. 2013). 

 It was observed using a RMSE threshold below 5mm generally resulted in 

underestimations of DBH. This was due to points on the outside of the fissures of the 

bark being the points removed first during this point removal process. Because the true 

values of DBH were measured on the outside of these fissures, stricter thresholds were 

not used. Hence, if this procedure is to be used for older trees of a species with deeply 

fissured bark characteristics, this process may require allowing for higher RMSE 
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thresholds. Average RMSE observed for the fitting of all 25 DBHs was 3.99mm. This 

process holds promise for obtaining upper stem diameters outside bark for purposes of 

taper determination, form factor calculation and possible merchantable height 

identification as well. 

 HT measurement error results for TLS showed lower average bias than the 

STM HT measurements at -0.1m and -1.0m for TLS and STM, respectively. 

Encouragingly, the standard deviation of these measurement errors for HT was also 

lower for TLS, at 0.3m and 0.7m for TLS and STM, respectively. Hopkinson et al. 

(2004) reported an average difference of 1.5m for plot-level HT comparisons between 

TLS and manual measurement techniques. Their reported difference in standard 

deviations of HT measurements was lower at 0.2m. Chasmer et al (2006) reported an 

average underestimation of HT of 1.2m for 15 trees within a closed-canopy stand of 

red pine (Pinus resinosa) scanned from five different locations. The comparative 

improvement upon these studies suggests this method of identifying a reference z-

value from which to subtract from the maximum z-value is superior to other methods. 

However, with stand density and tree size being limiting factors in the accuracy of 

TLS-derived-HT measurements, the quality of the results we present here for HT 

could also likely be a result of several of the sample trees being from stands with 

lower stand densities, and lodgepole pine being a relatively shorter tree species. The 

capability of the FARO Focus
3D 

120 to scan at the point density chosen for this study 

also likely furthered this improvement.  
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 In contrast to HT, HTCB results for the TLS exhibited a larger mean and 

standard deviation of the measurement errors compared to the STM. However, this 

variable has typically been a point of imprecision for TLS extraction procedures. As 

mentioned previously, Chasmer et al. (2006) reported average differences in HTCB 

measurements from “actual” values of  .4m. The author’s HTCB measurement 

method was the identifyin  of the “lowest apparent base-of-live-crown” point. Thies et 

al. (2004) reported HTCB values of -0.12m and -0.11m for the two aforementioned 

sample trees. With the sample trees being relatively large, forked and deciduous, 

HTCB was measured as the height to the first fork. Jung et al. (2011) compared HTCB 

measurements from coincident ALS and TLS data, where the TLS measurements were 

considered to be the actual values. ALS HTCB values were obtained using k-means 

clustering technique which groups the point cloud into a user-defined number of 

classifications based upon differences in the spatial distribution of points within the 

point cloud. The authors chose three classifications to represent ground cover, 

understory vegetation and canopy cover. ALS HTCB was determined from the lowest 

point in the canopy cover classification.  Because differences in the point density 

distribution were deemed too small with the TLS data, k-means clustering was not 

used, replaced by manual identification of the lowest crown return via a monitor 

display. The difference in mean HTCB values was reported as 0.2m. 

 With a wider array of techniques already developed for obtaining HTCB from 

ALS data than TLS data, the interest in assessing the efficacy of the Popescu et al. 

(2007) polynomial fitting method for use in TLS applications was deemed worthwhile. 

Measurement error minimum, maximum, mean and standard deviation for HTCB 
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using the polynomial fitting method with intensity as the response variable were          

-5.8m, 8.2m, 4.2m and 4.0m, respectively. Average measurement error for this method 

ended up being 3.7m greater than the subsetted percentile-height method with the 

difference in standard deviations of measurement error being 2.3m. 

 Applying the TLS inventory parameter extraction techniques used here to 

broad-scale inventory data with several million trees would be time efficient; however, 

future improvements would further bolster the applicability of TLS to larger 

operations. First, rather than the manual graphical method for tree detection employed 

here, more sophisticated automatic tree detection procedures that omit non-bole points 

from branches and foliage, would be necessary. Secondly, for the subsetted percentile 

approach for HTCB, the tree size to percentile relationship may need to be more 

generalized by diameter classes, or calibrated to the specific operation.   

Model Predictions and Uncertainty 

 Once the predicted CRM component ratios were produced, they were 

multiplied by the predicted total tree biomass obtained using the SUR equation. When 

measurement error was not integrated into the model errors, differences in results from 

those discussed in Chapter 2 for the CRM equations were negligible (Table 3.3). 

When measurement error was integrated into the CRM equations, mean predictions 

for all components and total tree-level AGB were very comparable between 

instruments (Table 3.4). The TLS RMSE values for the CRM ratios were lower for all 

components compared to the STM RMSE values (Table 3.5). However, the RMSE of 

the tree-level predictions was 35.9% larger for the TLS, primarily due to the SUR 
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equation having a 147% larger RMSE. This can be attributed to the assumption that 

the STM measurement of DBH, the only input variable for the SUR equation, was 

measured without error, hence the STM simulation procedure did not involve the 

contamination of DBH values. Had measurement error in DBH been assessed, it is not 

unfair to reason that the uncertainty value for the STM SUR equation would be greater 

than the 70.59kg value reported here. Also worthy of noting, the magnitude of the 

difference between STM and TLS may be less dramatic with the use of a separate total 

tree equation  that wasn’t fit within a separate system of equations. Nevertheless  the 

tree-level uncertainty in predicted component AGB associated with using the TLS for 

extracting input variables for the CRM equations is depicted here as likely being 

greater that a spencer tape used by trained individuals.    

Per Unit Area Estimates and Uncertainty 

 Similar to the tree-level results, when only sampling error is considered for per 

unit area estimation, the standard error of the means between the two sets of equations 

show a similar trend observed in Chapter 2 (Table 2.6). With model errors 

incorporated into the simulations for per unit area estimation, the uncertainty increases 

nearly fourfold due to the issues discussed in Chapter 2 concerning serial correlation 

between the total tree and component predictions (Table 3.7). This dramatic increase 

is further illustrated in Table 3.8, where the RSE values for all component and total 

increased two to threefold. Encouragingly, though, was the notable difference in per 

unit area precision between instruments when measurement error was integrated, with 

the total uncertainty associated with using STM being 6% higher than with using the 
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TLS (Table 3.9). Difference in total RSE values for STM versus TLS was 2.3%, with 

the STM RSE values being higher at 54.5% and the TLS RSE values being 52.1%. 

Similar to Chapter 2 CRM results, the relative proportions of SE due to measurement, 

model and sampling error using SRM were 11%, 66% and 23%, respectively. The 

increase in the proportion due to model error from 55% to 66% from the previous 

chapter’s values was attributed to the smaller data set used here. The relative 

proportions of SE due to measurement, model and sampling error using the TLS were 

5%, 70% and 25%, respectively. These results suggest using the TLS can result in a 

lower propagated error, primarily due to a smaller contribution to the total uncertainty 

from measurement error. 

Conclusion 

 With broad-scale inventories, such as FIA and others, likely to face an 

increased demand for defensible AGB uncertainty estimates, accounting for and 

addressing all primary sources of error becomes paramount. Taking the Monte Carlo 

approach shown here, measurement and model error have been successfully integrated 

and accounted for with relative ease. Furthering the point made about inferential limits 

in Chapter 2, with only 25 instead of 32 subjectively selected trees for use in 

comparison, the bias in uncertainty estimation is likely more pronounced in this study 

than the previous. However, not only were the general contributions for all three 

sources of error illustrated, the addressal of measurement error was made by showing 

that the use of the TLS indeed can improve precision of per unit area estimation of 

lodgepole pine AGB using the CRM equations presented here. 



56 

 

 The prior recommendation of accounting for the correlation structure of the 

combined CRM equations bears worth re-mentioning, as this would likely provide a 

better depiction of the gains in precision to be had by using the TLS in conjunction 

with the CRM equations. Future research into this matter could also be best directed at 

similarly assessing the propagated error from using the TLS with other AGB models, 

as well as models for other parameters of interests, both point-in-time and growth-

related. Nevertheless, these results imply the TLS data analysis techniques shown here 

hold value in reducing uncertainty attributed to measurement error, which has been 

shown to contribute a potentially serious amount to the total per unit area uncertainty 

for the CRM estimates 
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Table 3.1: TLS technical data 

Specification Focus
3D 

120 

Range Finder Phase shift 

Field of view (horizontal x vertical) 360° x 305° 

Measurement range 0.6m – 120m 

Distance accuracy ± 2mm at 25m 

Sampling Rate Up to 976k/sec 

Beam radius at discharge 3.0mm 

Beam divergence 0.19mrad (0.011°) 

Weight 5.0kg 

 

Table 3.2: Summary statistics of the measurements errors for STM and TLS 

  Standing Tree Measurements (STM)   

 
n Min. Mean Max. SD 

HT (m) 25 -2.56 -0.98 0.12 0.67 

HTCB (m) 25 -1.04 -0.06 1.37 0.52 

 
Terrestrial LiDAR (TLS) 

   n Min. Mean Max. SD 

DBH (cm) 25 -1.27 -0.25 1.52 0.51 

HT (m) 25 -0.79 -0.06 0.55 0.27 

HTCB (m) 25 -3.29 0.49 3.90 1.68 
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Table 3.3: Model predictions and RMSE values for CRM ratios and CRM tree-level estimates without measurement error. Tree-

levels units are in kilograms of dry biomass.  

Model Means-Without Measurement Error Model RMSEs-Without Measurement Error 

Total Tree (SUR) 287.11 
 

Total Tree (SUR) 70.59 
 Component CRM Ratios CRM Tree-Level Component CRM Ratios CRM Tree-Level 

Bole 0.672 193.07 Bole 0.067 51.24 

Bark 0.055 15.66 Bark 0.034 10.62 

Branch 0.195 56.04 Branch 0.055 21.02 

Foliage 0.082 23.40 Foliage 0.022 8.63 

Total  1.004 288.17 Total  0.179 91.50 

 

Table 3.4: Model predictions for CRM ratios and CRM tree-level estimates with measurement error, for STM and TLS. Tree-levels 

units are in kilograms of dry biomass.  

Model Means-With Measurement Error 

Total Tree (SUR)-STM 287.11 
   Total Tree (SUR)-TLS 296.57 
   

 
STM TLS STM TLS 

Component CRM Ratios CRM Ratios CRM Tree-Level CRM Tree-Level 

Bole 0.599 0.620 172.03 177.97 

Bark 0.061 0.061 17.45 17.47 

Branch 0.209 0.208 60.11 59.80 

Foliage 0.091 0.091 26.19 26.21 

Total 0.961 0.980 275.78 281.45 
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Table 3.5: Model RMSE values for CRM ratios and CRM tree-level estimates with measurement error, for STM and TLS. Tree-

levels units are in kilograms of dry biomass. 

Model RMSEs-With Measurement Error 

Total Tree (SUR)-STM 70.59 
   Total Tree (SUR)-TLS 174.70 
   

 
STM TLS STM TLS 

Component CRM Ratios CRM Ratios CRM Tree-Level CRM Tree-Level 

Bole 0.297 0.067 95.30 123.09 

Bark 0.047 0.034 14.04 15.16 

Branch 0.074 0.055 25.81 43.16 

Foliage 0.037 0.022 12.46 19.19 

Total 0.455 0.179 147.61 200.61 

 

Table 3.6: Per hectare estimates and SE values for CRM equations, without accounting for measurement or model error. Units are 

in kilograms of dry biomass per hectare. 

Sampling Error Only 

Component Mean SE 

Bole 23,270.38 4,945.90 

Bark 1,842.11 357.83 

Branch 6,414.97 1,234.54 

Foliage 2,544.31 463.86 

Total  31,527.46 6,538.27 
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Table 3.7: Per hectare estimates and SE values for CRM equations accounting for model error. 

Units are in dry kilograms of biomass per hectare. 

Sampling Error (With Model Error) 

Component Mean SE 

Bole 37,062.80 17,659.36 

Bark 4,947.56 3,317.42 

Branch 9,275.29 4,043.61 

Foliage 3,425.94 1,234.22 

Total  51,285.65 25,020.39 

 

Table 3.8: Per hectare estimates and SE values for CRM equations accounting for model error. 

Units are in dry kilograms of biomass per hectare. 

Sampling Error (With Model and Measurement Error) 

 Mean  SE 

Component STM TLS Component STM TLS 

Bole 37,819.12 37,442.94 Bole 19,201.47 18,583.77 

Bark 3,984.19 3,740.49 Bark 4,502.45 3,429.02 

Branch 9,475.49 9,475.52 Branch 4,266.80 4,363.27 

Foliage 3,512.56 3,547.24 Foliage 1,316.67 1,355.31 

Total 51,278.80 50,658.95 Total 27,970.72 26,376.05 

 

Table 3.9: RSE values for CRM equations accounting for model and measurement error.  

Sampling Error (RSEs) 

 
Sampling Only Model Errors Model and Measurement  Errors 

Component 
  

STM TLS 

Bole 21.3% 47.6% 50.8% 49.6% 

Bark 19.4% 67.1% 113.0% 91.7% 

Branch 19.2% 43.6% 45.0% 46.0% 

Foliage 18.2% 36.0% 37.5% 38.2% 

Total 20.7% 48.8% 54.5% 52.1% 
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Figure 3.1: Planar view of scan points depicting typical field scanning setup with 

four checkerboard targets setup around the sample tree, located middle right.  

 

Figure 3.2: Filtered overhead 3D view of registered point cloud. Black circles denote 

scan locations around the sample tree, located right center.  

 

 

 



64 

 

Figure 3.3: Clipped sample tree from surrounding forest depicted in Figure 2.2. 

 

Figure 3.4: Birds eye view of detection slice taken at 1.37m above the lowest point in 

the point cloud. Unrestricted subset included branches and foliage located within the 

height range of the slice. 
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Figure 3.5: Birds eye view of detection slice taken at 1.37m above the lowest point in 

the point cloud. Unrestricted subset included branches and foliage located within the 

height range of the slice.

 

Figure 3.6: Graph of point frequency versus elevation, depicting the 0.1m height bins. 

Actual total tree height is 16.95m. 
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Figure 3.7: Fourth-order Polynomial Fit to the Frequency Height Profile. The first 

inflection point from the ground was theorized to correspond to the location of HTCB. 

 

Figure 3.8: Graph of intensity values versus elevation for 0.1m height bins. 

Subjectively determined subset threshold is shown in red. 

 

 

 

 



67 

 

Chapter 4: General Conclusion  

 This aims of this study included the assessment and comparison of uncertainty 

for two sets of equations for lodgepole pine AGB for use in the Pacific Northwest, 

with an additional aim to compare the capabilities of two sets of instruments in 

reducing total uncertainty due to measurement error. The two sets of equations 

compared were the CRM and current regional models for lodgepole pine AGB used by 

FIA. The instrument comparison made was between a FARO Focus
3D 

120 and the 

combination of a Trupulse Laser Rangefinder 360R and a Spencer combination tape. 

Monte Carlo simulations were used for propagating measurement, model and 

sampling error and to compare total uncertainty between models, and between 

instruments. Input variables for the equations were DBH, HT and HTCB; these were 

extracted from the TLS point clouds through the creation of automated algorithms. 

Additionally, the uncertainty due to measurement error was found to be lower when 

using the TLS versus the standing tree measurements.  

 The scope of inference for this study is limited by a number of different 

factors. The relatively small portion of the range of lodgepole pine that was covered 

for creation of the CRM equations limits the inference for the entirety of the region 

these equations are intended to represent. Additionally, with a relatively small sample 

size of subjectively selected trees, the uncertainty results observed for both sets of 

equations and instruments are indeed approximations, likely having some amount of 

bias. Furthermore, only a majority, rather than all, of the trees used for the creation of 

the CRM equations were scanned by the TLS, also rendering as approximations the 
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inferences about total uncertainty due to measurement error. Despite these inferential 

limits, these findings can be as a basis for deciding which equations set is desirable for 

use. The relative contributions of each source of error also provide depictions of which 

error source is of most concern for each equation set, and for each set of instruments. 

This study is also the first to the author’s knowled e to illustrate that the TL  holds 

legitimate value in reducing broad-scale uncertainty due to measurement error. 

 The second chapter of this study specifically compared the relative 

contributions of measurement, model and sampling error between the newly-created 

CRM equations and the current regional equations for lodgepole pine. The CRM 

equations were found to be less precise than the current regional equations with the 

integration of all three sources of uncertainty. This is due to the hierarchical nature of 

the CRM approach, where two estimates that are highly correlated, with their own 

respective sources of uncertainty, are multiplied together to produce total component 

AGB. These findings can be used as a validation for the continued use of the current 

regional lodgepole pine equations in the Pacific Northwest region. 

 The third chapter of this study specifically compared the relative contribution 

of measurement error to total uncertainty estimates of AGB using both terrestrial 

LiDAR and traditional inventory instruments. This assessment was done using the 

CRM equations in an attempt to illustrate the ameliorative effect of using a high 

precision TLS to reduce the already-inflated total uncertainty associated with these 

equations. Results showed the total uncertainty associated with using the TLS being 

lower than the standing tree measurements by a difference of 2.3% in RSE.  While this 
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difference could be deemed small for these point-in-time estimates, with monitoring 

programs performing multiple re-measurements over time, where there is an even 

greater need for standardized and precise measurements, the significance of these 

results suggest the TLS could further reduce uncertainty for trend estimation purposes. 

Hence, this information may provide an impetus for its future assimilation into various 

forest inventory and monitoring programs, such as FIA, as a valuable tool for 

increasing precision of the status and trend of AGB estimates.  

 In order to ascertain the exact contribution of model uncertainty using the 

CRM equations presented here, future research efforts will need to take into account 

the correlation structure between the total tree biomass equation and the component 

ratio equations. Use of Bayesian Markov Chain Monte Carlo simulations would be the 

logical next step in accounting for this correlation structure. Future studies are also 

well positioned to easily take the methods presented here and apply them to other 

species-specific equations for AGB. Investigations into using the same multi-scan 

approach for plot-level analysis would add credence to the work done here, as that is 

likely the more applicable inventory scenario forest managers would be utilizing the 

TLS, rather than for single trees, as was done in this study. Extraction of additional 

tree-level input variables, such as upper stem diameters, merchantable top height and 

crown width would provide additional information about how the performance of the 

TLS in extracting these variables propagates up to per unit estimates of AGB. All of 

these future research efforts stand to increase the defensibility of reported precision 

estimates for AGB derived using individual-tree equations, while also helping 

determine under which scanning scenarios, and for which input variables, does the use 
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of the TLS translate into quantifiable gains in precision for broad-scale estimates of 

AGB. 
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LIST OF ACRONYMS USED IN TEXT 

 

Acronym Definition 

AGB Aboveground biomass 

ALS Airborne laser scanner 

CRM Component ratio method 

CRM-FIA Component ratio method used by FIA 

CV Coefficient of variation 

DBH Diameter at breast height 

DNF Deschutes National Forest 

DOB Diameter outside bark 

DTM Digital terrain model 

FIA Forest Inventory and Analysis 

HT Total tree height 

HTCB Height to the base of live crown 

LiDAR Light detection and ranging 

NFI National Forest Inventory 

RMSE Root mean square error 

RRMSE Relative root mean square error 

RSE Relative standard error 

SE Standard error 

STM Standing tree measurements 

SUR Seemingly unrelated regression 

TLS Terrestrial laser scanner 

TTWOF Total tree aboveground biomass without foliage 

WNF Willamette National Forest 

 


