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SOLVA.kIILITY O' EQUATIONS BY RADICALS

INTRODUC ION

It is we].]. known that an algebraic equation of degree 2, 3,

or 14 is solvable in terms of radicals of numbers which lie in I

coefficient field, while, in general, equations of degree n > 14 cannot

be so solved. D7 employing the ideas of groups of substitutions and

adjunctions to fields it is possible to prove the above statement as

well as to consider the solvability by radicals of any algebraic

equation, whether its coefficients are constants or depend on one

or more variables. This is what is known am the Galois Theory of

Iquatione.

The theory Ia simplified to some extent by the more modern

approach of considering groups of automorphiams on the roots instead

of the substitution groups. That the two groups are isomorphic is

proved by Albert (1, pp.].83-1814). It is this approach by means of

au.tomorphiain groups that Maclkiffee uses (3, pp.100-112), and. the

purpose here is to attempt to clarify sope of the points on which

MacDu.ffee is a little vague.

Some of the results used. in this section are given without

proof since they are discussed in full by such authors as Albert

(1, pp.l146-165), Dickson (2, pp.l50-163), MacDu.ffee (3, pp.9l99),

and. others.

Throughout this thesis I is used to denote a field which is

a subfield of the complex field. Let p(x)*O be a polynomial equation

of degree n with coefficients in F. It follows from the Fundamental

Theorem of Algebra that p(x)0 has exactly n roots, which are in



general not in 7. A root p of p(x)u'O which is not in I is said to

be algebraic relative to 1.

Let p(x) be irreducible in its coefficient field I

p be a root of the equation p(x)0. Let g(x) be a polynomial func-

tion of z.

THOBM 1. If g(p)'O, then p(x) g(x) (3, p.91).

It follows immediately that the irreducible equation p(z)"O

satisfied by p is unique, and that the number p satisfies no equation

of degree < n.

TLEOR4 2. Th. set of all rational functions of p with

coefficients in P form a field 7(p), called the stem field of p(x)0

(3, p.92).

This process of obtaining 7(p) is called the a&junction

of p to 1.

ThORM 3. The numbers of 7(p) are unique1y ozpressibls

the form

where the a's are in 1(3, p.92).

The roots p. p, p'. ,.., p° of p(x)sO ax's called the

conjugates of p. Lach of the conjugates p determines a field

The fields 7(p), 7(p'), ..., 7(p'') are called a set of conjugate

fields, and they are all isomorphic. They may all be distinct, or

they may all be equal, or they may fall into sets of eçus.] fields.

If they ar, all equal, the field 1(p) is called normal.
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The number

h-I

$ h-I
p

a."* a,+a1p" +ap"2+ ...+anp",

p

ci)

are called the conjugates of a.. The number a. lies in the field F(p

and. the number a. lies in the field 7(p)),
so that, in general, the

conjugates of a. lie in different fields.

kiOREM 4. Every number a. of 7(p) satisfies an quation

f(4-O of degree n with coefficients in F, whose n roots are the n

conjugates of a. (3, p.93).

This equation

f(x)a (za.)(x- a.')...(xa.'')

= + f x + ,, + f0 * 0

is called the principal equation of a..

TREOBEM 5. Then conjugates a., a.', ..., a."are either

all distinct or else they fall into h systems, each system containin.g

k equal mimbers. In the first case, f(x) is irreducible; in the

second case, f(x) is the kth power of an irreducible polynomial of

degree b (3, p.914).

If the principal equation f(x)u0 ii irreducible,

called a primitive number of 7(p).

TOR14 6. If w is a primitive number of 1(p), then

J'(w)iuF(p) (3, p.95).



TIOI1 7. vsry iniprimitive number of 1(p) defines

subfield. of 1(p) (3, p.96).

Th. root field of p(x) 0 is defined to be the field

R1(p, P', ... p°'), obtained. by adjoining to I all the roots of

p(x) s o That the order of a&juncition is innnaterial follows from

Theorem 8.

THORM 8. If p1 and. p are two numbers algebraic rels

Uve toP, the a&junotion of p to 7(p) gives the same field. T(p,p2)

the ad.junction of p1 to 7(p1). Thei', exists a single number p,

algebraic relative to $, such that 7(p,p1)mP(p) (3, p.96).
Thus the root field of p(x).0 is the stem field ct'

least one number w. An irreducible equation satisfied by such a number

w is called a resolvent of p(x) 0.

An equation p(x)"O without & multiple root is called

separable. vidently this is a weaker condition on p(x) than the

condition that it be irreducible, fox' the latter implies the former,

while an equation which is separable is not necessarily irreducible.

TEORJ4 9. If the separable equation p(x)*0 is of degree

n, the degree of the resolvent of its root field ii nI (3, p.98).

If p(z)O is irreducible in 7, but is completely reducible

into linear factors in any of its stem fields, it is called a normal

equation. That is, all the numbers of the stem field of a normal

equation can be written as polynomials in any other root.

An automorphisin of 7(p) is defined to be a correspondence

a. E) of the numbers of 7(p) provided it is an autoinorphism of
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both the ad4ition and multiplication roia of F(p). The automorphiam

is said to be relative to F, a. subfield of 7(p), if every number of

7, oorreupond.s to itasif under the automorphiem.

A et of numbers ii,, u., ..., u, of 7(p) such that every

munber a. of 7(p) La uniquely expressible in the form

a0u0 + au, + ... + a CI,

is said to form a basis for 7(p). By Theorem 3 one such basis is

1, p, p, p. If these numbers do form a basis for 7(p),

automorphisin of 7(p) relative to F can be defined by stating the corre-

eponctence p 4) p' of p with the number p'. For, if

a.*a0+ap +ap +

iaany number of 7(p), then

a. (_) a. *a.0+a.,p' +ap +

J1 10. If p (_> p' is an automorphuarn of F(p

to 7, then p' Le one of the conjugates of p (3, p.99).

T0RM 11. If p' is a conjugate of p, then p p' is

an automorphism of 7(p) relative to I if and only if 7(p)'F(p)

(3, p.99).

This, since th. conjugate fields of a normal equation are

all equal, a normal equation of d.e&ree n with coefficients in F has

eiactly n automorphiems relative to 1.

Th0RM 12. The automorphisms of 7(p) relative to F form

a group (3, p.99).



T1 GAIOIS GROUP

Let N be the root field of the separable equation p(9*O

with coefficients in 7, and let G be the group of automorphisms of I

relative to 7. Let 7, be a field such that 7 ?, N. Thin the

totality of elements of G which leave numbers of 1, invariant form

a subgroup G, of G called the Galois group of N relative to?, .

Thai G is the Galois group of N relative to 7, and the identity

au.tomorphism I is the Galois group of 1 relative to itself.

TOBM L. Let N be a normal field of order n over V

with Galois group G relative to F, and. let 7C7, N. Then, if 7

is normal, the Galois group G, of N relative to F, is an invariant

subgroup of G.

Proof. Since F, is normal, every element g G carries

each nwaber cc? into some number c&1i?. Thus gG, carries a

into itself so that gGg'cG,. Similarly, gG,gG,. Hence,

so that G, is an invariant subgroup of G.

TKSOBl4 2. If N, is a proper ubfield of the field. N

there exists some number c N such that N, *

Proof. The field N, consists of numbers in N all ot' which

are ixaprimitive in N. For suppose wi N, is a primitive number of N.

Then F(w)u'7(p) is in N,, which ii a contradiction.

Among the numbers of N, there is at least one which satie-

fies an irreducible equation of highest degree It < n. Say is iüch

a number. Then i() N. Aaume there is some number a. which i in
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N1 but not iii 7(u). By adjoth1 a. to the fi&4 '(). the field

Y(1,a.)'(a) is obtained, where aN. Then, F()'(i,a.)*1(a)N.

&it F(a) is of degree k by hypothesis, so that f3 is a primitive numbs?

in 1(a), Hence, f(fi) for all nuinbere a. in N, so that Z(f)N.

ThEOREM 3. If N and N1 are normal fields, 7CN,CN, and

if 0 and H are the Gable groups of N relative to 1 and N, respec-

tively, then 0/H is the Gable group of N1 relative to 2.

Proof. The Ge.lois group of N .iF(3) relative to 2 Is the

group K of Ic automorphiwns

<

Or, in terms of p, K consists of the automorphisnie

$ _____ (1-I)
p (-3 p, p p , ..., p <- ) p .

Now, H consists of the automorphiams of 0 which leave the elements

of N invariant, and. the elements g. g, ..., of K are distinct

mothilo H. Time, the Gabois group of N relative to P is the quotient

group 0/H which contains the elements H, gH, ..., gH.

TZEOBEM i. If H is a subset of 0, all, the elements of N

which correspond to themselves under the automorphisms H form a sub

field 1' of N.

This is Theorem 113.1 (3, p.100) and. is proved there.

Time, N determines a. unique subfield 2
I
of N. Now consider

the Gable group G of N relative to 1 Sincs every subset of G

leaves every element of P invariant, one such subset could possibly

determine 7 uniquely. Hence, although a subset H will determine a

unique subfield B, the group determined by 7,,, namely its Gable



group G, might contain H as a proper aubet.

TH)BM 5. If B is an in'va"iant subgroup of G, all the

elements of N which correspond to themselves wider H form a normal

subfield F, of N.

Proof. Sone element g in G carries F, into the conugats

field P'. Then gHg carries all, the elements of 7' into themselves.

But K is an invariant subgroup so that H lavea t invariant. Since

Y is the totality of numbers of N left invariant by H, P'CJ,

However1 if ? is a proper subfield of F1 then, by Theorem 2, Y'

is of degree less than a.. But this Ic impossible, since all the

conjugates of F, are of degree Ii. Hence, yl! s F, so that 7, is normal.

TBioEii 6. If H ii a maximal invariant subgroup of the

Galois group G of N relative to 7, then there exists a normal field

N, ?CN,CN, such that the Galois group of N relative to N, is H.

Proof. Since H is invariant, it determines a normal sub"

field N, in the sense of Theorem 5. Now, in general, N, determines

G1, the Galois group of N relative to N,, where GDaH. However,

N, is normal so that G, would be invariant by Theorem 1. But H is

a vatimal invariant subgroup of G so that G, H, or H is the Gable

group of N relative to N1.

TiEEM 7 If f( x) -0 is a normal equ.ati on of degree n

(defining the normal field N) with the Oalois group G relative to

7, sM if G. contains an invariant subgroup H of order h (defining

the normal subfield N), then f(x) factors into Ic factore, each of'

degree h with coefficients in N, (3, p.103).



Then f(x)'Sf(x)f(x)"fk(x) with each ff(x) of d.eree b.

Suppose f(x) is the factor which has p as a zero. Then, f(x) is

irreducibl. in N; for, suppose f(x) has an irreducible factor

g(x) of degree m<h with coefficients in N, where g(p)aO. Now,

it is evident that NaN(p) since N(p)s7(13,p)sP(p,13)*F(p),

that g(x)*O is a normal equation defining N. Then the numbers

1, p. p, ,., p
rn-i

form a basis for N over N. Also, then, exist

numbers 1, 3, 13, ..., 13 which form a basis for Na 7(13) over!.

Now, the products
13ia

(laO, 3., ..., k-l; J0, 1, ...,

m 1) form a basis of N over 7 if they are linearly independent.

Assume that they are linearly dependent. Then there exists a relation

c0 + c13+ o131 + ,..+ c13' + cp+ c 13p+ ,..+ c 13 ptm 0

where the c c F and are not all zero. Bit 3c N so that this becomes

d+ d.p+ dpt + ... + dpm a 0

where the d.cN1. Since the numbers 1, p, p, p' ars linearly

independent over N,, the d., are all zero; i.e.,

d + 013+ c13 + .,.+ c113 O'

ci, a c + o13+ + ... +

13+ 0k(l)13 + 0nk-i -
Bizt the numbers 1, 13, 13, ..., are linearly independent over F

so that the c's must all be zero, a contradiction.

Tims, the products p form a basis of N over P.

Ia of degree n over 7 so that mk*n or mh. Since the same argument

9
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is valid for any of the roots of f(x)a0 it follows that all the

factors f(x), f2(x), ..., f(x) are irreducible in N.

Let the normal equation p(x)a'O define the normal field N

and let G be the Galota group of N relative to F. Suppose a has the

series of composition G, H,, B, ..., H5, I and prime quotient groups

G/E1, H/H, ..., H5/H5, H. Then U1CG leaves some normal field N,

invariant, where ICNCN. By Theorem 6, B is the Galois group of N

relative to N; by Theorem 3, G/N, is the Galois group of N, relative

to F. a/H, is simple, since H, is maximal. Now, by the previous

argument p(x) has a factor p,(x) of degree h with coefficients in

N1, which is irreducible in N. That is, p(x)"O is a normal equa-

tion defining the field N over N1, where the Gelois group of N

relative to N, is H. Then, since Ha is a jnriml invariant subgroup

of H,, H2 leaves some field N invariant, where FCN, N2 CN. Now,

N2 ie normal relative to N, since N coincides with each of its

conjugates under the automorphisins H. Then Ha is the Gelois group

of N relative to N, and. NJ K is the Galois grau.p of Na relative

to N, and. is simple. Continuing in this manner, the fields 7 C N C

C N C N C N are obtained, where N is normal relative to N,

B1/H, is the Gelois group of N relative to Ni,, and. R is the

Galois group of N relative to N.



SOWTION BY RADICALS

An equation p(x).O with coefficients in a field F ia

solvable by radicals relatively to P if all the roots of p(x)0

can be obtained, in a finite number of steps from the nunibers of F

by the rational operations and. root extractions. The object now

is to establish the result that an equation is solvable by radicals

relatively to its coefficient field if and only if the factors of

composition of its Galots group are all primes. The sufficiency

follows almost immediately from Theorems 11 and 12, which are proved

by )4acDu!fee (3, pp.109lU).

If, corresponding to the prime quotient groups G/N,

H of the Galoia group G of p(x)'0, there exist

the normal fields NJ NJ ... J N F, then p(x) -0 is solvable by

radicals relatively to F if aM only if the resolvent of N is solv-

able by radicals relatively to the field N for every i. Since

the roots of any one resolvent are polynomials in each root of every

other resolvent, it is immaterial which rosolvent of N1 is chosen.

An equation is called cyclic if its Gable group is cyclic.

THOR4 11. Every [normal] cyclic eqiiatton p(x)0 of

degree n is solvable by radicals relatively to the field 1(p) whers

p is a primitive nth root of unity.

TNR4 12. Every root of unity can be expressed in terms

of radicals relattvely to the rational field.

3y the last two theorems every normal cyclic equation is

solvable by radicals relatively to its field of coefficients. ml

U
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resolvent ef the root field. N of the cyclic equation p(x)O is a

normal cyclic equation. Hence, nwnbero of N, in particular the roots

of p(x)O, are expressible as radicals. This result is stated. in

the following theorem.

THEORFJ4 13. avery cyclic equation p(x)*O of degree n

in solvable by radicals relatively to the field. of its coefficients.

In order to prove the necessity in the statement at the

beginning of this section, it will be useful to establish the results

stated. in Theorems 114 through LB.

THORM 114. very pth root of unity, where p is a prime,

can 'be expressed in terms of radicals of index less than p.

Proof, The statement is certainly true for p*2 and p3.
Assume it holds for every prime less than p. The roots , i. ...,
of the reciprocal equation (3, p.111) where q (p 1)/2 can be ex

pressed as linear functions of -{7, where is a

number of the field F(p), p a primitive qth root of unity. Time,

a primitive pth root of unity p can be expressed in terms of radicals

of a primitive qth root of unity p, the radicals being of index less

than p. If PIP"P is composite, a primitive qth root of unity is

Pp
p.

*

where p, is a primitive p.th root of unity. Time, since the state-

mit was asswned to be true for every prime lees than p, p, is express-

ible in terms of radicals of index less than p. Then p Ia also so

expressible.
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THQREM 15. The function x"-'aO, p a prime, is irre

d.uoible iii a field 7(p) if a is not the pth power of any number in

l(p), where p is a primitive pth root of unity (2, p.156).

TEORLM 16. Let p be an odd. prime and p a primitive pth

root of unity. Then the Ga1oi group G of x*A relative to 7(p),

where A is in 7(p), consists of the identity automor'phiam if one root

of z1EA is in 1(p), but is a cyclic group of order p if no root of

X'A is in 7(p).

Proof. The roots of xA can be written x. px. px, ...,x

where x is one root of xbA, for if xyx, y'3. Thus, the coefft

dent field 1(p) ii also the root field of xA if xcF(p), so that G

contains only the identity automorphiam.

If no root is in 7(p), xA is irreducible, for then A

is not the pth power of any number in 7(p). Now, consider the

field 1 of xA whore l is obtained by adjoining a root x to

coefficient field 7(p). A number a. of 7 is represented uniquely by

cLao+ax&+aaxi+...+ap.x, acF(p). But xPx, so that

a a + a1 x ...+ a_1pX X' a,+ a:x+ aX& + ... + a1x

a?(p). Time, since the numbers in the stem field F can be written

as po1rnomials of any other root x with coefficients in f(p), 7 is

normal. Hence, x A is a normal equation so that Cr contains e

P automorphisms.

THEOREM 17. Let the normal field 7(p) be defined, by the

irreducible equation f(x)suO of degree n with coefficients in 7, and

let 1(h) be defined by xA. Then, if x is not in 7(p), F(x)AF(p)'7.



Proof. Let w be any number in the intersection. Then,

since 7(w)CF() and F(w)cP(p), 7(w) is in the intersection. The

Galois group K of Y() relative to 7(w) is a subgroup of the Galois

group K of F(x) relative to F, which is of prime order. Hence,

KI or K-K. However, if K1, F(w)7() which is imposaible,

since I(x) is not in 7(p). Then KK so that F(w)*1, or wi)'.

OBM 18. Let I contain a rmnber A and. the pth roots

of unity and. let N"F(p) be defined, by the normal equation f(x)*O

of degree n. Let be a root of xA. Then, if G is the Galois

group of N relative to 7, G is the Galois group of N() relative

to 7(i) if x is not in N, or H is the Galois group of N() - N re1s

ttv. to '(x) if is in N, where H is a maximal invariant subgroup

of G of prime index,

Proof. The function f(x) is irreducible in 1(i) if x
not in 7(p), for, if f(x) bad factors with coefficients in 1(i), these

coefficients mist also be in 7(p), since f(x) is completely factorable

in 1(p). 3it, according to the last theorem, the intersection of

these two fields contains only numbers in 7. Then f(x)0 defines

the normal field N() with coefficients in P() so that G i. the

Galois group of N() relative to F().

If x is in 7(p), then P(p)1(x)J7. Since 7(i) is normal,

the Galois graup H of 7(p) relative to () is an invariant subgroup

of G by Theorem 1. By Theorem 3, G/H is the Galois group of ()

relative to I, GIN. being cyclic of prime order by Theorem i6. Hence,

H is maximal of prime index.



It is now possible to prove the result mentioned. at the

beginning of the section, which Ia stated again in the followIng

theorem.

THEOREM 19. If G is the (a1oia group of an equation p(x)*O

relative to its coefficient field 7, a necessary and. sufficient oondi

tion that p(z) s 0 be solvable by radicals relatively to P is that the

factors of composition of consist entirely of primes.

Proof. It should be noted here that by the Jord.anH8lcier

Theorem the factors of composition for two series of composition are

the same except possibly for ord.r.

Assume that the roots of p(x)'O can be derived by rational

operations and root extractions from numbers in P or from numbers

obtained from them by those operations. Make a list
l/p.

a , a , ...,

of all the radicals appearing in the expressions for the roots, whe

the p's are primes, since a pqth root is a pth root of a qth root.

List first the underneath rad.icsl In such a two-'story radical followed

later by the twostory radical itself. Nake the list such that a, is

in 1, a, is in the field obtained by adjoining to P the first radical,

a is in. the field obtained by adjoining to B' the first two radicals,

etc.

By Theorem 111, the ptb roots of unity are expressible in

terms of radicals of indices less than p. The roots of x * 1, then,

can be expressed rationally in terms of radicals forming a chain of

the above type where the firet number listed is the root of a rational



number-. List the radicals of the chain for p 3 followed by thos'

for p5, etc., for the primes up to and including the maximum of

p, .,, p. After the last of these write the previous list aM

obtain the list

b4'I

where the are primes, b is in the field 7, b is in the field

obtained by adjoining to P the first radical, b3 is in the field

obtained by adjoining to 7 the first two radicals, etc. The roots

of p(x)mO are rational functions of these radicals with coefficients

in P. Also, the adjunction to 7 of the first i-i radicals results

in a field containing all th. qth roots of unity. By the previous

theorem, the adjunction to P of the first radical listed, which is

i/-3, does not affect G it/ is not in the root field N of p(x)O,

or it reduces G toa mtmal invariant subgroup of index q,1 if

in N. The ad.junction of the second radical to the resulting field

either leaves the resulting Galois group unchanged or reduces it to

a maximal invariant subgroup of index q Continuing in this manner

a field is obtained containing the roots of p(x)"O, the Gable group

of which is the identity I. Now, each time that the group was reduced

the resulting group was a maximal invariant subgroup of prime index

of the preceding group. Hence, the factors of composition are all

primes, so that the conditIon is necessary.

Now, if the factors of composition are all primes, the

groups GIN, E,/K, H/H3, ... are all of prime order; hence, they

are cyclic. Now, since li/E is the Gabois group of relative



to N,t1ie resolvent o N1 over a cyclic equation. Thus

roots of p(x)O are obtainable from the field, of ooetftcients br

the solution of a chain of cyclic equations. By Theorem 13 each of

these equations is solvable by radicals relatively to th. field of

the coefficients of the preoed.in equation.

17



TE GENERAL EQATION 

The following results are necessary in order to discuss 

the general equation. 

A scalar x of a ring D containing a ring A is cafled an 

indeterminate over A if and. only if the expression 

p0+px+.,,+pxQ, p*A, 

implies the quantities p, p, ..., p are all zero. 

The indeterminatee x, ..., x over A of DJA are call. 

independent indeterminate a over A if no polynomial in x1 
with coefficients in A is zero, unless these coefficients themselves 

are all zero. 

Le D be a field and x, ,.., z, independent indeterminates 

over D. The equation 

is then a separable equation with roots in the polynomial r: g 

Dlx, 
..., 

x) and coefficients in r*D(c, 
..., 

cj. The Galoie 

group G of f(x) relative to P is isomorphic to G6,, a subgroup of 

the group G, of all permutations of x, ..., x. t every permw- 

tation of x, ..., x, defines an autoinorphiam of Na'D(x, ..., x) 

which leaves the elements of P invariant. Thus G G, so that U 

is of order ut. 

TEORM 20, The general equation of degree n has for its 

Galois group the symmetric group of order ni. 

Proof, If a., ..., a., are independent indeterxninatea 

over some field D, then the general equation is 

18 
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Let ? ..., aj, which is equivalent to D(c, .., ;) where

..., c are given by

and are independent indeterminatee over 1). Then the coefficients a.-

may be replaced by the corresponding new independent indeterminates

c (1, p.11&8), and. it has already been shown that the Gelois

group of this equation is of ord.er ni.

It has been noted that the general equation of degree n 2,

3, ) is solvable by radicals. As an example of the theory developed

her. consider the case of n.h. The Galois group G1,, contains the

permutations of the symmetric group of order 21. The alternating

group of order 12 is a maximal invariant subgroup of G0, and its

elements are listed below.

pl pa(l2)(l3)

p2 - (12)(3h.) p6 - (13)(12) p0- (l)4)(13)

p.(13)(2h.) p?(l2)(])1) p11(23)(2h)

p4 (])4)(23) p, (lh)(12) P, (2h)(23)

It can be shown that G4: p, p, p, p is a msj&]

invariant subgroup of the alternating group. Nov G4 contains the

subgroups G : p, p, G: p, p, G25: p, p, which are maximal

invariant subgroups of Grç, since G4 is abelian. Thus, the factors

of composition of are 2, 3, 2, 3, which are all prime.

ThCl1 21. The general equation of degree n> is not

solvable by radicals.
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Proof. The syiametric grou.p G of order ni has the maxi.ma)

invariant subgroup A, which is the 1terating group o order nt/2.

3ut this group Is simple for n> 1 (2, p.200), so that the factors

of composition of G are 2, nI/2. The result follows from Theorem 19,

since nI/2 is not a prime for n> 11..
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