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SOLVABILITY OF LGUATIONS BY RADICALS
INTRODUCLION

It is well known that an algebraic equation of degree 2, 3,
or 4 is solvable in terms of radicals of numbers which lie in its
coefficient field, while, in general, equations of degree n > 4 cannot
be so solved., By employing the ideas of groups of substitutions and
adjunctions to flelds it is possible to prove the above statement as
well as to consider the golvability by radicals of any algebraic
equation, whether its coefficients are constants or depend on one
or more variables, This is what is known as the Galois Theory of
Equations.

The theory is simplified to some extent by the more modern
approach of considering groups of automorphisms on the roots instead
of the substitution groups. That the two groups are isomorphic is
proved by Albert (1, pp.183-184), It is this appreach by means of
automorphism groups that MacDuffee uses (3, pp.100-112), and the
purpose here is to attempt to clarify some of the points on which
MacDuffee is a little wvague,

Some of the results used in this section are given without
proof since they are discussed in full by such authors as Albert
(1, pp.146=165), Dickson (2, pp.150=163), MacDuffes (3, pp.91=99),
and others.

Throughout this thesis F is used to denote a field which is
a subfield of the complex field. Let p(x)=0 be a polynomial equation
of degree n with coefficients in F. It follows from the Fundamental

Theorem of Algebra that p(x) =0 has exactly n roots, which are in



general not in F. A root p of p(x)=0 which is not in F is said to
be algebrale relative to F.

Let p(x) be irreducible in its coefficient field F and let
p be a root of the equation p(x)=0. Let g(x) be a polynomial func-
tion of x.

THEOREM 1. If g(p)=0, then p(x) | g(x) (3, p.91).

It follows immediately that the irreducible equation p(x)=0
satisfied by p is unique, and that the number p satisfies no equation
of degree < n,

THEOREM 2. The set of all rational functions of p with
coefficients in F form a field F(p), called the stem field of p(x)=0
(34 pe92)e

This process of obtaining F(p) is called the adjunction
of p to Fe.

THEOREM 3. The numbers of F(p) are uniquely expressidble
in the form

ama +a p+ta p +eseta, P
where the a's are in F(3, p.92).

The 100t8 Py P's P's eees 7" of p(x)=0 are called the
conjugates of p. Each of the conjugates pﬁ'datarminss a field F(é“).
The fields F(p), F(p')s eees F(p™™") are called a set of conjugate
fields, and they are all isomorphic. They may all be distinct, or
they may all be equal, or they may fall into sets of equal fields.

If they are all equal, the field F(p) is called normal,
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2 h-1{
a=a +ap +tap *eeta, p

h-1

a'= s, +ap +a p+ eeeta, . p
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are called the conjugates of a. The number o’ lies in the field F(p‘ﬂ).
and the number o lies in the field F(p™), so that, in general, the
conjugates of a lie in different fields.

THEOREM 4, Every number a of F(p) satisfies an equation
£(x) = 0 of degree n with coefficients in F, whose n roots are the n
conjugates of a (3, Pe93)e

This equation

2(x) = (x=a)(x=a')ees(x=a"")
2x"4+f x4 a0t f,=0
is called the principal equation of c.

THEOREM 5. The n conjugates o, o'y, ees, o™ are either
all distinct or else they fall into h systems, each system containing
k equal mumbers., In the first case, f(x) is irreducible; in the
second case, f{x) is the kth power of an irreducible polynomial of
degree h (3, p.94).

If the principal equation f£(x)=0 is irreducible, o is
called a primitive number of F(p).

THEOREM 6, If w is a primitive number of F(p), then

Fw)=P(p) (3, pe95)e



THECEEM . ZEvery imprimitive mmber of F(p) defines a
subfield of F(p) (3, p.96).

The root field of p(x)=0 is defined to be the field
E=F(p, p'y eoes p™"), obtained by adjoining to ¥ all the roots of
p(x)= 0, That the order of adjunction is immaterial follows from
Theorem 8.

THEOREM 8. If p, and p, are two numbers algebraic rela-
tive to F, the adjunction of p, to F(p,) gives the same field F(p, ,p,)
as the adjunction of p, to F(p,)s There exists a single mumber p,
algebraic relative to ¥, such that F(p,,p,) = P(p) (3, P.96).

 Tims the root field of p(x)=0 is the stem field of at
least one mumber w, An irreducible equation satisfied by such a mumber
w is called a resolvent of p(x)= 0,

An equation p(x)=0 without a multiple root is called
separable. Lvidently this is a2 weaker condition on p(x) than the
condition that it be irreducible, for the latter implies the former,
while an equation which i1s separable is not necessarily irreducible.

THEOREM 9. If the separable squation p(x)=0 is of degree
n, the degree of the resolvent of its root field is < nl (3, p.98).

If p(x)=0 is irreducible in P, but is completely reducible
into linear factors in any of its stem fields, it is called a normal
equation, That is, all the mumbers of the stem field of a normal
equation can be written as polynomials in any other root.

An sutomorphism of F(p) is defined to be a correspondence

a €—> B of the numbers of F(p) provided it is an automorphism of



both the addition and multiplication groups of F(p)e The automorphism
is sald to be relative to F,, & subfield of F(p), if every number of
¥, corresponds to itself under the automorphism.

A set of numbers m,, U,, esep @, of F(p) such that every
number a of F(p) is uniquely expressible in the form

aFa U, +8u +*eeeta, U,y a;eF,
is said to form a basis for F(p). By Theorem 3 one such basis is
1, ps P's eees P« If these numbers do form a basis for F(p), every
automorphism of F(p) relative to F can be defined by stating the corre—
spondence p <—> p’' of p with the mumber p', For, if

a=a,+ap +a.p *eeeta, p
is any number of F(p), then

aé>a' ma tap +ap tesata, p

THEOREM 10, If p ¢—> p' is an automorphism of F(p) relative
to P, then p’ is one of the conjugates of p (3, P<99).

THEOREM 11, If p’ is & conjugate of p, then p <> p' 1is
an automorphism of F(p) relative to P 4f and only if F(p')=F(p)

(3s pe99).

Tme, since the conjugate fields of a normal equation are
all equal, a normal equation of degree n with coefficlents in P has
exactly n automorphisms relative to F.

THEOREM 12, The automorphisms of F(p) relative to F form

a group (3, pe99).



THE GALOIS GROUP

Let N be the root field of the separable equation p(x)=0
with coefficients in ¥, and let G be the group of automorphisms of ¥
relative to P. Let F, be a field such that PSP < N, Then the
totality of elements of ¢ which leave numbers of F, invariant form
a subgroup G, of G called the Galois group of N relative to F, o
Thms G is the Galois group of N relative to ¥, and the identity
antomorphism I ig the Galois group of ¥ relative to itself.

THEQREM 1. Let N be 2 normal field of order n over F
with Galois group G relative to F, and let FcF Cc K. Then, if F
is normal, the Galois group G, of N relative to F, is an invariant
subgroup of G.

Proof. Since P, is normal, every element g¢ G carries
each mumber ¢ #, into some mumber o' ¢¥,, Thus g8 g carries a
into itself so that g@ & CG,. Similarly, &'G, gSG,. Hence, g0, & =@,
80 that G, 1s an invariant subgroup of G.

THEOREM 2. If N, is a proper subfield of the field N=F(p),
there exists some number f¢ N, such that K, = F(B).

Proof. The field N, consists of numbers in N all of which
are imprimitive in N, For suppose we N, is a primitive mumber of N,
Then F(w)=F(p) is in N,, which is a contradiction.

Among the nmumbers of N, there is at least one which satis~
fies an irreducible equation of highest degree k < n, Say B is such

a mumber. Then F(B)CN . Assume there is some mmber o which is in



H, but not in ¥(B). By adjoining o to the field F(B), the field
P(B,a) = P(o) is obtained, where o€ N, . Then, F(B) cF(B,a)=F(o) <N .
But F(o) is of degree k by hypothesis, so that § is a primitive mumber
in ¥(o), Hence, F(B,a)=F(B) for all mumbers a in K, so that F(B)=H .

THEOREM 3. If N and N, are normal fields, FCN CR, and
if G and H are the Galois groups of N relative to F and N,, respec-
tively, then G/H is the Galois group of N, relative to Fe

Proof, The Galois group of N, =F(p) relative to F is the
group K of k automorphisms

B> By B €D BY, aee, B € TN
Or, in terms of p, K consists of the automorphisms
P ED Py PED Py eoey pE p(w)o

Row, H consists of the automorphiamse of G which leave the elements
of N invariant, and the elements g o & ¢ eees &, Of K are distinct
modulo H, Thus, the Galois group of N relative to F is the quotient
group G/E which contains the elements H, g Hy eesy g, He

P-ECREM 4, If H is a subset of G, all the elements of N
which correspond to themselves under the automorphisms H form a sub=
field ¥, of N.

This is Theorem 43,1 (3, p.100) and is proved there.

Tims, H determines a unique subfield F, of N. Now conasider
the Galois group 6, of N relative to F,» Since every subset of G,
leaves every element of P, invariant, one such subset could possibly
determine F, uniquely, Hence, although a subset H will determine &

unique subfield F , the group determined by F, , namely its Galois



group G,, might contain H as a proper subseti.

THECREM 5. If H is an invariant subgroup of G, zll the
elements of N which correspond to themselves under H form a normal
subfield F, of N,

Proofs Some element g in G carries F, into the conjugate
field F'. Then gHg™' carries all the elements of F} into themselves.
But H is an invariant subgroup so that H leaves F} invariant. Since
F, is the totality of mumbers of N left invariant by H, FVcF, .
However, if F} is a proper subfield of F, then, by Theorem 2, F!

is of degree less than h, But this is impossible, since all the
conjugates of F, are of degree h. Hence, FY=F 8o that F is normal,

THEOREM 6, If H is a maximal {nvariant subgroup of the
Galois group G of N relative to ¥, then there exists a normal field
N,, FCN,CH, such that the Galols group of N relative to ¥, is H,

Proofs Since H is invariant, it determines a normal sub=
field N, in the sense of Theorem 5., Now, in general, N determines
G, the Galois group of N relative to N,, where G>G,2H, Hovever,
K, is normal so that G, would be invariant by Theorem 1. But H is
a maximal invariant subgroup of G so that G =H, or H is the Galois
group of N relative to N.

TIEOREM Te If £f(x)=0 is & normal equation of degree n
(defining the normal field N) with the Galois group G relative to
F, and if G contains an invariant subgroup E of order h {defining
the normal subfield N, ), then f£(x) factors into k factors, each of

degree h with coefficients in N, (3, p.103).



Then f£(x)= £ (x)f (x)+-+£ (x) with each f£,(x) of degres h.
Suppose £,(x) is the factor which bas p as a zero. Then, f (x) is
irreducible in N ; for, suppose f (x) has an irreducible factor
g (x) of degree m< h with coefficients in N,, where g (p)=0. Now,
1t is evident that N=N (p) since N,(p)=F(B,p) = #*p,8) = F(p), so
that g (x)=0 is a normal equation defining N, Then the mumbers
1, Ps P's sess p  form a basis for N over N,. Also, there exist
numbers 1, B, By ssey B which form a basis for N, = F(8) over F.
Bov, the products B p° (420, 1, eeep k=13 J=0, 1, evey
m=1) form a basis of N over F if they are linearly independent.
Assume that they are linearly dependent., Then there exists a relation
C,+CB+CB +eeatc B +c ptc,Bptecete, B o7 =0
where the ¢ .¢F and are not all zero. But B¢ N, so that this becomes
a.+d ptd,p'*esetd, p"m0O
where the d, ¢ ),. Since the numbers 1, p, Py eeey p  are linearly
independent over N,, the d, are all zero; i.e.,
d,mg,+c B+c,B +eeatc B =0,
d, ®c +0 B+c, B +eeete, B =0,
¢ o & o o 6 o s e e & o

2 K-t
4 .= ck(m-0+ ck(m-n)ﬂ B+ ck(‘n—l)u.s +eoet cmk-\ 6 =0,

But the numbers 1, B, B, eess B are linearly independent over F
go that the c's must all be zero, & contradiction.
Tma, the products B'l pj form a basis of K over P, But B

is of degree n over F a0 that mk=n or m=h, Since the same argument



is valid for any of the roots of f{x)=0 it follows that all the
factors £ (x), £,(x)y eeey £ (x) are irreducible in N,.

Let the normal equation p{x)=0 define the normal field N
and let G be the Galois group of N relative to F. Suppose G has the
series of composition G, H,, H,, eeey H, I and prime quotient groups
G/E,, H/H, eesy H_JH, H.. Then H ,CG leaves some normal field N,
invariant, where FCN,CN, By Theorem 6, H is the Galols group of N
relative to N ; by Theorem 3, G/H, 1s the Galois group of N, relative
to F. G/H, is simple, since H, is maximal. Now, by the previous
argament p(x) has a factor p (x) of degree h with coefficients in
N , which is irreducible in X . That is, p,(x)=0 is a normal equa~
tion defining the field N over K,, where the Galeis group of N
relative to N, is H,. Then, since H, is & maximal invariant subgroup
of H, H, leaves some field N, invariant, where FCN, CK, <N. Now,
N, ie normal relative to N, since N, coincides with each of its
conjugates under the automorphisms H,. Then H, ig the Galois group
of N relative to N,, and H,/ H, is the Galois group of N, relative
to N, and is simple. Continuing in this manner, the fields FCN, K C
N, CeesCH_ CH CN are obtained, where N, is normal relative to N; ,
H_/H, is the Galois group of N, relative to N, , and H, is the

Galois group of N relative to N,

10



1
SOLUTION BY RADICALS

An equation p(x)= 0 with coefficients in a field F is
solvable by radicals relatively to F if all the roots of p(x)=0
can be obtained in a finite number of steps frem the numbers of F
by the rational operations and root extractions, The object now
is to establish the result that an equation is solvable by radicals
relatively to its coefficient field if and only if the factors of
composition of its Galois group are all primes. The sufficlency
follows almost immediately from Theorems 1l and 12, which are proved
by MacDuffee (3, pp.109=11l).

1f, corresponding to the prime quotient groups G/H ,
H/H,, «.op B_/H, H  of the Galois group G of p(x)=0, there exist
the normal fields ND K D ..c DN DOF, then p(x)=0 is solvable by
radicals relatively to F if and only if the resolvent of N, is solv~
able by radicals relatively to the field N, for every i. Since
the roots of any one resolvent are polyncmials in each root of every
other resolvent, it is immaterial which resolvent of N, is chosen.

An equation is called cyclic if its Galols group is cyclice

THEOREM 11, Every [nermal] cyclic equatien p(x)=0 of
degree n is solvable by radicals relatively to the field P{p) where
p is & primitive nth root of unisy. | |

THEOREM 12. BEvery root of unity can be expressed in terms
of radicals relatively te the ratiocnal field,

By the last two theorems every normal cyclic equatioen is

solvable by radicals relatively to its field of coefficients. The



resolvent of the root field N of the cyclic equation p(x)=0 is a
nermal cyclic equation, Hence, numbers of N, in particular the reoots
of p(x)=0, are expressible as radicals., This result is stated in
the following theorem.

THECREM 13, Every cyclic equation p(x)= 0 of degree n
is solvable by radicale relatively to the field of its coefficients.

In order to prove the necessity in the statement at the
beginning of this section, it will be useful to establish the results
stated in Theorems 14 through 18,

THEOREM 14, Every pth root of unity, where p is a prime,
can be expressed in terms of radicals of index less than p.

Proof., The statement is certainly true for p=2 and p=3,
Asgume it holds for every prime less than pe The roois 0 , T 4 eeey T,
of the reciprocal equation (3, p.lll) where g= (p=1)/2 can be ex-
pressed as linear functione of V¢, , 7{@7. ...,?f§;, vhere . is a
munber of the field F(p, ), p, a primitive qth root of unity. Tims,
a primitive pth root of unity p can be expressed in terms of radicals
of a primitive qth root of unity p,, the radicals being of index less
than pe If q®=p p,<esp, 1is composite, a primitive qth root of unity is

o> Vp, -PPe, .P-PaP,\};: N

where p  is a primitive p th root of unity. Thus, sincg the state~
nent was agsumed to be true for every prime less than p, p, is express~
ible in terms of radicals of index less than p. Then p is alse se

expressible,
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THEOREM 15 The function x’=a=0, p a prime, is irre-
ducible in a field F(p) if a is not the pth power of any mumber in
P(p), where p is a primitive pth root of unity (2, p.156).

THEOR:M 16. Let p be an odd prime and p a primitive pth
reot of unity. Then the Galois group G of x"= A relative to F(p),
where A is in F(p), consists of the identity automorphism if one root
of x"=A is in P(p), but is a cyclic group of order p if no root of
xP= A is in F(p).

Proof. The roots of x"® A can be written X, PXe £ X» seesf X
where X 18 one root of x"= A, for if x=yx, y'=1l. Tms, the coeffi-
clent field F(p) is also the root field of x= A if xe¢F(p), so that G
contains only the identity automorphism,

If no root is in F(p), x’=A is irreducible, for then A
is not the pth power of any mumber in P(p). KNow, consider the stem
field F, of x"= A where F; 1s obtained by adjoining a root Xx; to the
coefficient field F(p)e A number a of F, is represented uniquely by
ama +a, X, *+8 X *eesta, X'y ;¢ P(p)e But x;= 0 'x, so that
a=a,+ a, pi" X+ &zpaci.oxz‘* ..._._a’-'pﬂ’-l)(i-c) xp-- =g 4+ 8:X"‘ a;xz PO +a"_‘x‘°';
a/e¢P(p)e Thus, since the mumbers in the stem fleld F; can be written
as polynomials of any other root X with coefficients in £(p), ¥, is
normal, Hence, x"= A is a normal equation so that G contains exactly
P automorphiams.

THEOREM 17. Let the normal field F(p) be defined by the
irreducible equation £(x)= 0 of degree n with coefficients in F, and

let F(X) be defined by x*= A, Then, if X is not in F(p), F(X)AF(p)=F.
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Proof., Let w be any number in the intersection. Then,
since P(w)CF(x) and F(w)cP(p), F(w) is in the intersection. The
Galois group K, of F(x) relative to F(w) is a subgroup of the Galois
group K of F(x) relative to F, which i1s of prime order. Hence,

K, or K, =X, However, if K ,= I, F(w)=P(x) which is impossible,
since F(x) is not in F(p). Then K,=X so that Flw)=F, or we F,

THEOREM 18. Let F contain a nmumber A and the pth roots
of unity and let N=F(p) be defined by the normal equation f(x)=0
of degree n. Let X be a root of x"= A, Then, if G is the Galois
group of N relative to F, G is the Galois group of R(x) relative
to P(x) 4f x 18 not in N, or H is the Galois group of N(x)=XN rela~
tive to P(x) if x is in N, where H is a maximal invariant subgroup
of G of prime index.

Proof. The function f(x) is irreducible in F{x) if x is
not in P(p), for, if £(x) had factors with coefficients in F(x), these
coefficients must alsc be in F(p), since £{x) is completely factorable
in P(p). But, according to the last theorem, the intersection of
these two fields contains only numbers in P, Then f(x)=0 defines
the normal field N(x) with coefficients in F(X) so that G is the
Galois group of H(x) relative to F(x).

If x is in P(p), then P(p)DF(x)DOF. Since P(x) is normal,
the Galois group H of F(p) relative to F(x) is an invariant subgroup
of G by Theorem 1, By Theorem 3, G/H is the Galois group of F(x)
relative to P, G/E being cyclic of prime order by Theorem 16. Hence,

H i3 maximal of prime index.
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It is now possible to prove the result mentioned at the
beginning of the section, which is stated again in the following
theorem,

THEOREM 19, If G is the Galois group of an equation p(x)=0
relative to ite coefficient field P, a2 necessary and sufficient condi-
tion that p(x)= O be solvable by radicals relatively tc F is thzt the
factors of composition of G consist entirely of primes.

Proof, It should be noted here that by the Jordan~Hbélder
Theorem the factors of composition for two series of composition are
the same except possibly for order.

Assume that the roots of p(x)=0 can be derived by rational
operations and root extractions from mumbers in F or from nmumbers
obtained from them by those operations. Make a list

Ye. ) %
&, » a/P' s senyp 8-:.

of all the radicals appearing in the expressions for the roots, where
the p's are primes, since a pqth root is a pth root of a gth root.
List first the underneath radical in such a two=story radical followed
later by the two-story radical itself, Make the list such that a, is
in ¥, a, is in the field obtained by adjoining to ¥ the first radical,
a, 1s in the field obtained by adjoining to ¥ the first two radicals,
etcCe

By Theorem 14, the pth roots of unity are expressible in
terms of radicals of indices less than p, The roots of x" =1, then,
can be expr;ssed rationally in terms of radicals forming a chain of

the above type where the first number listed is the root of a rational
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mumber. List the radicals of the chain for p=3 followed by those
for p=5, etc., for the primes up to and including the maximum of
P,s sess D o After the last of these write the previous list and

obtain the list

where the q's are primes, b, is in the field F, b, is in the field
obtained by adjoining to F the first radical, b, is in the field
obtained by adjoining to F the first two radicals, etc. The roots
of p(x)=0 are rational functions of these radicals with coefficients
in P, Also, the adjunction to F of the first r=1 radicals results
in a field containing all the q,th roots of unity. By the previous
theorem, the adjunction to P of the first radical listed, which 1s
V=3, does not affect & if V=3 is not in the root field ¥ of p(x)=0,
or it reduces & to a maximal invariant subgroup of index q, if V=3
ie in H. The adjunction of the second radical to the resulting field
either leaves the resulting Galois group unchanged or reduces it to
a maximal invariant subgroup of index q,. Contimaing in this manner
a field is obtained containing the roots of p(x)=0, the Galols group
of which is the identity I. Now, each time that the group was reduced
the resulting group vas a maximal invariant subgroup of prime index
of the preceding group. Hence, the factors of composition are all
primes, so that the condition is necessary,.

Now, if the factors of composition are all primes, the
groups G/H,, B,/H,, H [H,, «.s are all of prine order; hence, they

are cyclic. Now, since H. /H, is the Galois group of N, relative



to N, ,the resolvent of N; over X, 1s a cyclic equation. Tims, the
roots of p{x)=0 are obtainable from the field of coefficients by
the solution of a chain of cyclic equations., By Theorem 13 each of
these equations is solvable by radicals relatively to the field of

the coefficients of the preceding equation.

17



THE GENERAL ECUATION

The following results are necessary in order to discuss
the general equation.
A scalar x of a ring D containing a ring A is called an
indeterminate over A if and only if the expression
Po+DP X+ ceatp,X =0, P; €A,
implies the quantities p,, P, seey p, are all zero.
The indeterminates x,, «.ey X, Over A of DDA are called

independent indeterminates over A if no polynomial in X5 seey X,

with coefficients in A is zero, unless these coefficients themselves

are all zero.

18

Lev D be a field and x,, ¢es, X, independent indeterminates

over D, The equation

£(x)® (x=x Jese{x=x,)=x"=c x4+ .00+ (--3,)|1 ¢,=0
is then a separable equation with roots in the polynomial ring
DIx,, ssey, x,] and coefficients in F=D(c,, sssy ¢,)e The Galois
group G of £(x) relative to F is isomorphic to G, a subgroup of
the group G, of all permutations of x,, «e., X,o But every permu-
tation of X,y eeey x, defines an automorphism of N=D(x , ees, X,)
which leaves the elements of F invariant. Thus G,=«C,,, so that G
is of order ni,

THEOREM 20. The general equation 6f degree n has for its
Galois group the symmetric group of order nl.

Proofs If a,, «esy a, are independent indeterminates

over some field D, then the general equation is
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f(x)=x"+a,x " +.00ta,=0,
Let P=D(x,, ooy a,), Which is equivalent to D(c,y seey C,) Where
C.» oeey ©, are given by
£(x)= (x=x )eeo(x=x )2x = ¢, x" + .00+ (-1)" ¢, =0
and are independent indeterminates over D. Then the coefficients a,
may be replaced by the corresponding new independent indeterminates
(-l)i ¢, (1, p.143), and it has already been shown that the Galois
group of this equation is of order nl.
It has been noted that the general equation of degree n=2,
3» % is solvable by radicals. As an example of the theory developed
here consider the case of n= k4, The Galois group G, contains the
permutations of the symmetric group of order 24, The alternating
group of order 12 is a maximal invariant subgroup of G,, and its
elements are listed below.
p,=1 ps = (12)(13) Pq = (13)(14)
p, = (12)(34) p, = (13)(12) P = (14)(13)
P, = (13)(24) p, = (12)(14) p, = (23)(24)
p, = (14)(23) p, = (14)(12) p. = (24)(23)
It can be shown that G,: p , P,+» P,s» P, 18 a maximal
invariant subgroup of the alternating group. Now G 4 contains the

subgroups Gl’,: Poo P Gz‘ :

kS

P,» Py» &, Py p s which are maximal
invariant subgroups of G,, since G, 1s abelian, Thus, the factors
of composition of G, are 2, 3, 2, 1, which are all prime.

THEOREM 21, The general equation of degree n> 4 is not
solvable by radicals.



Proof. The symmetric group G of order nl has the maximal
invariant subgroup A, which is the alternating group of order ni/2,
But this group is simple for n> 4 (2, p.200), so that the factors

of composition of G are 2, nl/2. The result follows from Theorem 19,

since nl/2 is not a prime for nd> U4,
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