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Summary

This report presents a theoretical analysis for the behavior of long, circu-
lar, cylindrical shells of sandwich construction under axial compressive
loads. The analysis is designed to evaluate the effects of the relatively low
shearing moduli of sandwich cores on buckling stresses. Families of curves
are presented for use in designing shells of sandwich construction having iso-
tropic facings and orthotropic or isotropic cores.

The results of the theoretical analysis were compared with those obtained
from tests on a series of curved panels. It was found that the theory applied
reasonably well to curved plates of sizes sufficient to include at least one
ideal buckle. Application of the theory thus is not limited to long, complete
cylinders.

!This progress report is one of a series prepared and distributed by the
Forest Products Laboratory under U. S. Navy, Bureau of Aeronautics
Order No. NAer 01237 and 01202, and U. S. Air Force No. USAF 18
(600) -70. Results here reported are preliminary and may be revised
as additional data become available. Original report published June 1952.
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—Maintained at Madison, Wis. , in cooperation with the University of Wis-

consin.
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Introduction

In the design of aircraft and guided missiles, it was found necessary to de-
vise a method of determining the stress at which curved sandwich panels
subjected to axial compression become elastically unstable. It is known
that, for thin, homogeneous materials, a curved form greatly increases the
critical load as compared to a flat sheet of the same approximate size. A ,
similar increase may be expected for curved sandwich panels. Although
this report applies primarily to sandwich construction for aircraft, the re-
sults are general and apply to any structures of the type considered.

This report presents a theoretical analysis of the behavior of long, circular,
cylindrical shells of sandwich construction under axial compressive loads
and an experimental confirmation of this analysis by tests on curved panels
of sufficient size to include at least one ideal buckle. Thus, these panels
are assumed to simulate the action of complete cylinders.

The buckling of a homogeneous, isotropic, thin-walled cylinder was treated
by von Karman and Tsien (16)1 and by Tsien (13, 14) in related papers.
These authors assumed, in addition to the wave form of the classical theory,
inward buckles of diamond shape to represent the characteristic buckles that
are actually observed. They used an energy method to determine the criti-
cal compressive stress. This method, in which only diamond-shaped buckles
are used, was applied by March (7) to cylinders made of plywood, an ortho-
tropic material. Particular attention was paid to the effect of initial irregu-
larities that contribute to the observed scatter of experimentally determined
critical stresses of both isotropic and orthotropic cylinders.

In this report, the effect of shear deformation in the core of a sandwich
cylinder is taken into account by employing an approximate "tilting" method.
This method was used by Williams, Leggett, and Hopkins in their analysis
of flat sandwich panels (18) and by Leggett and Hopkins in their analysis of
flat sandwich panels and cylinders (4). It amounts essentially to assuming
that the transverse components of shear stress are constant across the thick-
ness of the core. The form of buckles assumed by Leggett and Hopkins (4)
in the cylinder is different from that assumed in this report.

The core and facings are taken to be orthotropic, with two of their natural
axes parallel, respectively, to the axial and circumferential directions of
the cylinder. The facings, which may be equal or unequal in thickness, are

3
—Underlined numbers in parentheses refer to Literature Cited at end of
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assumed to be thin, but their flexural rigidities are not neglected, as these
may be of importance in certain cases. All stress components in the core
are neglected except the transverse shear components. It was pointed out
by Reissner (12) that the stress component in the core normal to the facings
may be of importance in the analysis of sandwich shells. Preliminary calcu-
lations indicate that the effect of this component is small in the problem under
consideration.

As was done in work described by Forest Products Laboratory Report No.
1322-A (7), initial irregularities are assumed to be present and to grow un-
der increasing compressive load until buckling occurs. For a discussion of
this important matter, the reader is referred to that report and, in particu-
lar, to the observations of the growth of artificially produced initial irregu-
larities. Also as described in report No. 1322-A, a large deflection theory
is used to take into account the nonlinear support associated with the curva-
ture of the shell, as discussed by von Karman, Dunn, and Tsien (17). The
derivations of the differential equation for a stress function and of the ex-
pression for the energy of deformation are extensions of the analysis used
by von Karman and Tsien (16) for the homogeneous, isotropic cylinder to the
sandwich cylinder composed of orthotropic materials. Suitable modification
is made for the effect of shear deformation in the core of the sandwich.

Theoretical Analysis

Choice of Axes Notation

The choice of axes is shown in figure 1, the coordinate y being measured
along the circumference. The notations for stress and strain are those of
Love's treatise (5). The components of displacement in the axial, circum-
ferential, and radial directions, respectively, are u, v, and w, the latter
being positive inward. Since initial irregularities of the cylindrical surface
are assumed, the symbol wo is used to denote the initial distance, measured
radially, of a point of the middle surface from a true cylindrical surface of
radius r, and the symbol w to denote the corresponding distance at any stage
of the deformation. The thickness of the core is denoted by c and that of each
facing by f / and f2 , respectively.

Extensional Strains and Stresses

Expressions can now be written for the extensional strains uniform across
the thickness of the cylindrical shell and for the corresponding mean mem-
brane stresses. On these will be superposed a system of flexural strains,
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(1)

(2)

(3)

(4)

and the energy of deformation associated with each system of strains will
be found.

The extensional strains are expressed by the equations:

	

8u 1 (8w-\	
-- 

21 ew
exx = ex +	 8x	 2 --Qax

\ 8y
_ 1 ( awol	 woe =	

2	
--

r +YY ay 2	 ayr

au 8v aw aw O ewo oe = 
w

xY ay ax Ox ay 8x 8y

In each facing, the corresponding stress components are:

ExXx =	 (e	 + o- e )
XX yx yy

Ey
Y = 	 (eyy + crxy exx)

Y

X =	 ey xy xy

where Ex and E are Young's moduli, p. is the modulus of rigidity forxy
shearing strains referred to the x and y directions, cr and o- are Poisson's

	

xy	 yx
ratios, and X = 1 - Cr o- . All of these quantities are elastic properties ofxy yx
the facings. Because the stress components Xx, Y, and Xy are neglected

L
in the core, the mean membrane stress components for the cylinder are:

EaX =	 (exx 	 e )x k xx °yx yy
Eb

Y y =	 (eyy °xy exx)

X =	 e
y m xy

where:

E - Ex 0 1 4. f2)	 E (f i + f 2 )	 (f + f )y.
Ea	 Eb =	 = 

u.xy 1 2 

and:
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1
eyy = 

Eb 
y

Y 
-

1	 cr
x =	 Y	 xY x__x Eb y Eb

o-xy

Ea
(8)

h=c+fl +f2

From the relation:

o-	 =	 o-Ex yx E y xy

that holds for orthotropic materials and equations (4), it follows that:

Ea cryx = Eb crxy

By using this relation, it is found from equation (3) that:

1 	 o-yx
13	

Eb 
Y

Yxx Ea

1exy =
Y

The mean membrane stress components satisfy the equations of equilibrium:

aRx arc
- 0

ax	 ay

(9)
aXy

+ _1 - 0
8x	 ay

They can consequently be expressed in terms of a stress function as follows:

	

— a2F	 a2F	 82F

	

xx = 2 ,	 Te=	 2	 y,	 = _	 (10)
ay	 axay

It is found from equations (1) by eliminating u. and v that:

82 e	 a2 e82eXX 	 yy	 xy = ( 82w ) 2 a2w 82w
+

8y2	8x2	 axay	 axay	 8x2 ay2

(92wo)2 
azwo 92wo 1 8

2w 1 8woo)	
+ —

axay	 ax2 ay2 r 2 r 2

Rept. No. 1830	 -5-



(12)

(13)

(15)

(16)

By introducing (10) in (8) and substituting the results in (11), the following
differential equation for F is obtained:

84F	 a4F	 a 4F _( 	
2

	

a 2w 0 2 w	 aZw 2(	 0)A	 + B	 + C  , ,)
ax4	 ay 4	ax4ay' axay	 8x2 ay 2	 axay

a 2
w a 2 w	 1 a 2 w 1 a2w

0-+
ax

2
 ay 2 	r ax 2 r ax 2

where:

2cr
A- 1, B =—I , C_ 

1	 xy
Eb	 Ea Ean

It is readily established that the following expression represents the energy
of extensional deformation of a rectangular portion of the shell with edges of
length a and b:

h a,.
W 1 =	 B3E 2 +	 2 2G-xY	 +	 2 dy dx

0 0	 Y	 Ea x Y	 Y

Form of Buckles and Initial Irregularities 

The stress components Xx, Y and X in (14) are derived from a stress
function F, satisfying the differential equation (12), which involves deriva-
tives of wo and w representing the initial and deformed middle surface of the
shell. Fo`r w, the inward radial deflection, the following form will be chosen:

—w = g + 6 cos (gy - ax) c o s 2 (f3y + ax)
r

where

13 = n a = 
b	 a

The nodal lines of the trigonometric portion of equation (15) are shown in
figure 2. The displacement w is positive inward. In equation (16), a and b
represent the length and width, respectively, of a diamond. The initial ir-
regularities will be assumed to have the form (15). This is done for the pur-
pose of simplifying the calculations. Then wo is chosen in the following form:

(14)
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wo
= g + 6 cos 2 03y - ax) cos 2 ((3y+ a%)r	 o	 o

An initial flat spot on the surface of the cylinder could be described roughly
by equation (17). An initial irregularity was introduced here, as it was in
report No. 1322-A (7), to obtain a qualitative description of its influence in
causing an isolated buckle to develop in its vicinity. If the initial depth of
an irregularity of the form (17) is very small, the dimensions of the area
that it occupies are not very important. For this reason in order to simplify
the calculations, the dimensions a and b in equation (17) are taken to be the
same as those in equation (15). From the qualitative description that is ob-
tained of the development of an isolated buckle, conclusions were drawn in
report No. 1322-A that led to the derivation of the final formulas from the
analysis for the case wo = 0.

The details of substituting (15) and_ (17) in (12), of obtaining the stress func-
tion F and the stress components Xx , Y , and X of substituting these stress
components in equation (14), and of related operat ions are identical with the
corresponding operations performed in report No. 1322-A (7). Reference
is therefore made to equations (21) and (31) of that report. The following
differences in notation should be noted:

Notation of Report No. 1322-A 	 Notation of Present Report

(17)

H

EL CrTL
H

f, fo
I

X , Y , X

E E
a b

a_yx crxy

Eb Ea

6, 6.

3Ey

From equation (14), the energy of extensional deformation W 1 is then found

to be:

W, = hab {
4r

4 a4 i34 (	8	 60)
2 	1 r

128E43
4 	

2 0 2 (6 + Er..9)) 

128Aa
4

2	 2

	

1
+	

1 
,

16 (Aa4 + 8113/34 + 9Ca'(3 7` ) 16(81Aa4 + B/34 + 9Ca2)32)

	

4 ( - 	  + 1
8crr

2
(32 (6 + 6 0)	 xy

+ 4Bp
2
 + 4Ac i

2 + Ea C 1 p
64(Aa4 Bp4 ca,2(32)

(18)
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This equation is equation (31) of report No. 1322-A (7) with the proper values
inserted for the former abbreviations M and S. The quantities p and c1

represent the mean compressive stress and the mean circumferential stress,
respectively.

If n is the number of buckles in a circumference, the width b of an individual
buckle and n are related by the equation:

b	 21Tr
	

(19)
n

Then:

w= 	 (20)
b 2r

It will be convenient to denote the ratio — of the dimensions of a buckle by:
a

b az = = 	 (21)
a	 13

In the expression obtained from (18) by using equations (20) and (21), let:

= n
2 h— , g = 6L, g =S 	 (22)

	

h	 oh

K1
 = Az 4 + 81B + 9Cz

2	(23)

K2 = 81Az
4 + B + 9Cz2	 (24)

K3 = Az 4 + B +
2	(25)

z 4	 1	 + z4	 z4	 17z4	 (26)
e l - 4096B 4096A 512K 1 512K2 2048K3

z4
e 2 -

f- 512A 32K3

1 
	 z4

e3 256A 32K3

Equation (18) then becomes:

(27)

(28)
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W 1 = hab	 e 1 12 (g 2 - 0 2 ) 2 - e 2 1 (t2

+ e 3 (t - ,:))	 —2- +

/
21 h

2 B z Ac

r	 2

p +	 +
21

	
-L')r

2	 o-

Ea cipj

2)(t - go)

(29)

Flexural Energy of the Shell 

To determine flexural energy of the shell, the following simplified expres-
sions for the changes in curvature and unit twist are used:

82 (w - w0) 8 2 (w - wo) 82 (w - w0)

Ox2 	Oy2
	 Oxay

A discussion of the approximations involved will be found in a paper by
Donnell (1). These expressions were used by von Karman and Tsien (16)
and by March (7). The expressions (30) are exactly those used in calculat-
ing the flexural energy of a flat sandwich plate. The approximate flexural
energy of such a plate was found by March (9) and by Ericksen and March (2)
by using the "tilting" method of Williams, Leggett, and Hopkins (4, 18).

In this method it is assumed that any line in the core that is initially straight
and normal to the undeformed plate will remain straight after the deforma-
tion, but will deviate in the x and y directions from the normal to the de-
formed plate by amounts that are expressed by the parameters k and k'.
These parameters are determined by an energy method. These "tilting"
factors k and k' are introduced as well as two quantities q and q' that deter-
mine the positions of the surfaces in which, respectively, the components u
and v of the displacement in the core vanish. The letters k' and q' replace
h and r, respectively, of report No. 1583-B, because h and r have already
been used in the present report. The following derivation of the expression
for the flexural energy follows closely that used for the flat sandwich panel
in Forest Products Laboratory Report No. 1583-B (2), to which reference
is made for further details. For the sake of simplicity in writing, the initial
irregularity w0 will be for the present taken equal to zero. It will then be

introduced in the final steps by replacing w by w - wo.

The components of displacement in the core (fig. 3) are taken to be:

aw
uc = - k	 - q)

vc =- k'	 - q')Ow
ay

we = w (x, y)

(30)

(31)
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Thus t = q denotes the surface in which the components of displacement in

the x direction vanish and k is the parameter describing the inclination in
the x direction of the respective plane sections to the normal to the deformed
surface.. Similarly q' and k' are related to the displacements in the y direc-
tion. These four quantities are to be determined in such a way that the flexur-
al energy associated with a prescribed deflection w is a minimum.

To arrive at expressions for the components of displacement in the facings,
it is noted that the continuity of the displacement at the facing-to-core bonds
requires that the components (31), evaluated at t = 0 and = c, shall be
those at the inner surfaces of the facings f i and f 2 , respectively. Within
each facing, the components of displacement are–assumed to be such that
a straight line initially normal to the undeformed surface of the plate will
be straight and normal to the deformed surface. Accordingly, the compon-
ents of displacement in the facings f, and f 2 , respectively, are:

u 1 = (kg aawxt )

v l = (k'

wl

3w (32)q't) 8y

(x,	 y)
and

u2 = -[k (c - q) + - c] aw
ax

v 2 = -

w2 = w

[k' (c - q') +

(x,	 y)

- c] :y	 (33)

The components of strain in the core c and facings f 1 and f 2 will be denoted
by the superscripts c, 1, and 2, respectively.

From (31), the transverse shear strains in the core are:

(c)	 8w	 (c)	 8w
e tx = (1 - k) ax e	 = (1 - k') ay	 (34)

The effect of the remaining strains in the core is assumed to be negligible.

In finding the strain energy of the facings in the bending of the plate (or shell),
it is convenient to consider the components of strain in the facings to result
from the superposition of two states of strain. The first of these consists of
the membrane strains in the facings associated with flexure, that is the
strain in their middle surfaces. From (32) and (33), these strains are found
to be:
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fl a2w
2 a

xx
e (2) = - [k (c - q) +

fl, 
ax
a2w

exx
(1) 

= (kcj. + T) 2

e(1) (kw + f l )82w
yy	 2 ay2

82we (1) = (kq + k I q t + f1 ) axayxy

and

(35)

e (2) =	 1c- [.
YY

a2w
ay2

e ) = - [k (c - q) + k (cxy
qt)

a2-2] axay
(36)

The second state of strain in the facings is that associated with their bending
about their own middle surfaces. This state, in either facing, has the com-
ponents:

a 2we	 = - 
XX	 ax2

et = - I a 2w
YY	 8y2

ft
et = -	 o2 w
xy	 axay

(37)

iwhere is measured from the middle surface of the facing under considera-
tion.

The strain energy in the core or facings is given by the expression (6, 8).

1U = 2Xiff [Ex e
2
xx + Ey e

2yy + 2E o e ex yx Xx yy

+ Xp.xy e 2xy + Xp. e2 +	 e 2	dt dy dx
yt	 tx tx

where for the material under conside
Ex and Ey are Young's moduli; fix
and 6d a-	 are Poisson's ratios.xy  

ration (core or facing), X = 1 -	 ;
II	 rigidity;r, and . are moduli of rigidity; yx

PrimeciTaters will denote the elastic

(38)
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constants of the core material and unprimed letters will denote those of the
facing material. The integration indicated in formula (38) is to be carried
out over the area OABC of figure 2 and the thickness of the core or facings.

The energy in the core is obtained by substituting expressions (34) into (38),
the remaining strains in the latter formula being neglected as previously
stated. After integrating with respect to over the thickness of the core,
the expression for the energy, denoted by Uc , is

a b

Ti c = ff [p. i tx (1

o o

n	

(11 dy dx) 2 (uw)	 yt (1 -
ax (39)

The strain energy in the facings associated with the membrane strains is the
sum of the energies obtained from (35) and (36). With the substitution of
these expressions into (38) one obtains, after integration with respect to t,
the following expression which is denoted by UM.

a	 b

U M
W

1 (kg + fl ) 2 + f z
x {-f i (c - q) f2_} a )

2

  2X
I I
0	 0

7 2 2
ax

+ E
y

•	 I

f(k q
f l	 2

+ —
2 ) '	 t+ flc	 (c - q) + f.1

2	 2
a w)
ayZ1 2 2

1	 fl	 2
+ 2E a-	 (kq + )(k I q + T ) + f 2 (k (c - q) + -)6't (c -	 + f2)J a2w a2wx yx	 2	 8x2 ay2

+ kp.xy 1 (kq + k ' q ' + f1 ) 2 + f2 I k (c 21( 
z
 ) dy dx (40)q)	 (c - c1')	 19)r

The strain energy in the facings associated with the flexural strain, U, is
obtained by substituting expressions (37) into (38) and integrating over 

F
the

volume of each facing. After integrating with respect to t,

C 1 3 24.4:2 3 ) ja jb LFE Ha212 	 2 2
OF = 	 	 (8 w)+ E	 + 2E 0- a2 2

	

Ex 2	 x yx

	

ax	 Y ay2	ax ay20 0

(82w )21
ktixy	 dy dxaxay (41)
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Now in all of the expressions (39), (40), and (41) replace w by w - wo. The
flexural energy W2 of the region OABC of the shell is the sum of U M, UM' F'
and U c .

For equilibrium, the "tilting" factors k and k' and the ordinates q and q' of
the neutral surfaces are to be chosen so that the total energy is a minimum.
But these factors appear only in the flexural energy W 2 . Hence, they must
be chosen to satisfy the conditions

8W2	 aw2	 8W	 aw2 - o- o, 	  - o, ak - oa (kq)	 a(k' q' )	 ak,
By proceeding exactly as in report No. 1583-B (2), the quadratic form (A14)
of that report with k' and q' replacing h and r, respectively, is obtained for
W2 . The coefficients B. in equation (A14) are defined by equations (A15) in
terms of the quantities Ai, which are defined by:

A l

a b	 2
71/41 f f [Ex (a 2 wo))	 .ixy (

a2 
(w wo) )2]

\ 8x	 axay

2(w -

0 0

dy dx	 (42)

a	 b
1 fA 2 -

8 2
+ Xi.ixy(

a 2 	-	 a - wo)

(4

Ex yx 
8x2	 a

o(w - w))21

2

dy dx3x8y

a	 b

((4443))

Ix- fA 3 = f
o	 0

a	 b
A 4 =,	 IIf f I

q 	 o

A5 

= 

f

a

 f

b p., 

Y

a2 (w - w0))2 a2 (w
dy dx

(45)

(46)

Ey( a 2	
/	

XI-LxyY
( a (w	

wo)) 
2

axay

dy dxt x	 ax

fa w _ wco) 2
dy dx

_	 ay
0 a
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On factoring out the common factor, it is found that:

2W2 = r 2 (6 - 60 ) 2 ab [ 13 1 1 (kq) 2 + 2B 2 ' (kq) (k'q') + B 3 ' (k'q')2

+ 2B 4' (kq) k + 2B 5 ' (kq) k' + 2B 5 ' (k'q t ) k + 2B 6 1 (k'qe)

B 7 k2 + 2B 8 9 kk +B 9 '	 + 2B lo t (kq) 2B11.'

+ 2B 12' k + 2B 13 k' + B 14 + B15 (47)

where the quantities B i ' are defined in terms of the quantities Ai ' by equa-

tions (A15) of report No. 1583-B, each Ai replacing the corresponding Ai

in those equations. The quantity in brackets in equation (47) corresponds to
2U 1 in report No. 1583-B. (Note that equation (A22) of that report should
read P =

It is easy to see that the steps of imposing the conditions

OW 2	aw	 aw
- 0,	 2  - o, 

aw 
- o,	 2 - o

8(kq)	 (k' q')	 ak

and of determining kq, k'q', k, and k' and substituting their values in the ex-
pression (47) for 2W 2 are identical with those taken in report No. 1583-B (2)

and that 2W2 is equal to the right-hand member of equation (A25) of that re-

port multiplied by r 2 (6 - 6 0 ) 2 ab. It is concluded from equations (A26), (A27),
and (A28) of report No. 1583-B that:

[A 1 ' + 2A2 ' + A3 ' + (A11A3' - A2'2) A(-1)—r + --(-I),-1
4 A5 

A 4)	 A 1 c)	 4) 2 (A 1 e A3 ' - A2'2 )	1 	 3 1 +	 , ++ 	

	

A4	 A 5 	 A4 A 5

+ If (A l + 2A + A3 ')
	

(48)

where I, If , and 4 are defined by:

W 2 = 1/2 r 2 (6 - 60) 2

Rept. No. 1830	 -14-



(57)

(58)

(59)

d = 3E3c z 4 + Xp.
1	 xy

d 2 = (Ex cryx + Xp.xy)z2

d3 = 3Ey + Xp.xy z

Also,

3422	 _

	

t	 2 1	 2
A' 4 - 	Rtx 3g il z 

	

8	 8

Substituting these expressions for A'. equation (48) becomes

	

111 2	
[K4 +  3 x  (d i d3 - d2 2)( , 1 , + -.7.--.1118024)

W = — r (8 - 80) 2	 1-1.3cz4	 il	 yti
2 2k

802,1,4)	 802d24)	 641344) 2 (d I d3 - d22)
I + 	 i 	 +	 a + 	

3 Xp: z 2	 3 xiit
q	 9X

2 
P'

' 
xil' y z

The following transformations are made by using equations (20) and (22):

802(1) 	 _  2 n2 4.	 _  27.14 	 _	 c
"

34.
1 

r
2 

3Xp. tx rh Ex 
x

Sx 3Xp.h1.

and

8024)  _
3Xp.	 Ex LlY

where
2Exci)

S
y 

- 3Xti,
	rh

2

where
2E3(4)

(60)

(61)
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The coefficient of the expression in brackets in equation (59) is also trans-
formed by using equations (20) and (22). The expression for W 2 becomes:

Sx

(g - go) 2 ab ,g2h3 1-(I/h3 ) [K4 + (d1d3 - d 2 2 ) - ''1--, x (—
z`
, + 

Sy )]
~ 	  

W2	 32Xr 2. L	 rid / S_ rici3 s	 i2 (d i d3 - d2 2) S S
1 + 	 ''' +	 Y +	 x Y 

2Ex z2 Ex	 Ex z2

+ (If /h3 ) K

Or

W2 = e4 ab rig (g - g) 2
 h

2o r

where

1
e 44 32X

Sx
(1/h3 ) [K4 + (d / d3 - d2 2) f-	 +

x z 

Tid i Sx 	TIcl3 S
Y 	

ri2 (d 1 d3 - d 2 2 ) SxS.51

Ex z

1 + 	 2	 Zz2
Ex	 Ex

+ (If /h3 ) K4 (64)

Virtual Work of the Compressive Load

Exactly as in equation (35) of report No. 1322A (7), the virtual work, W3,
of the compressive load, calculated for the region OABC, figure 2,
found in the notation of the present report to be:

W3 = abh [Bp2 + Ey pc / +	 r2 a (6 2 - 602)P]
a

x	 3	 2 o-

crwxY e 5 (g 2 - g o2 ) p (65)= abh [Bp 2 +	 pc,
'a

where
3	 2 (66)

e 5 = 64

It will be convenient to consider the mean energy per unit volume of the
cylindrical shell. Hence:

w = (w 1 + W2 - W3)/abh	 (67)

(62)

3
(63)
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In accordance with equations (29), (63), and (65):

W =	 (t
2
 - t o

z
)
2 

- e 2 1 (t
2 -

2 )	 - to) e3 	 - to)
z

	

 h Bp	 Ac 1 2

e412	
h

- t o) 7 - e 51 (t
2
 - t ot )  P	 z	 2

The Buckling Stress 

For equilibrium, the derivatives of W with respect to the various parameters
c l , t,	 and z vanish. From the condition

it follows that c = 01

Now c 1 denotes the mean circumferential stress. The parameter g appears

only in the expression for c, as given by equation (30) of report No. 1322-A

(7). The fact that c 1 vanishes implies that g, which describes a uniform

radial expansion of the cylinder, takes on such a value that the mean circum-
ferential stress vanishes. Further consideration of the parameter g is not
necessary.

From the condition a —w = 0, it follows that:
at

P =[2eil
e 2 (3	 + g o)	e 3 (t	 h (70)

to)-	 +	 +
Tit  e 5

where p, as previously noted, is the mean compressive stress.

Let:
e l	 e 2 e3	 e42	 v	 = (71)

Y 1 =	 Y 2 	 Y 31 1	 '	 2	 Ea	3	 Ea	'4	 EaEa

Then (70) can be written:

p = 
-r-a.

,	 Y2 (3t + to)	 Y3 Yell (t - t o) h
(72)

4.'1 1 11	 +‘S	 (:)/	 — 2t g e 5

The mean compressive strain c is expressed by:

(68)

aw
acl

(69)
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1= —
ab

0	 0

As in report No. 1322-A (7), it is found that:

E	
3 r) 2	 2	 h

= BP + 6 -4 z	 ) —o r

The further equilibrium conditions

OW = 0 and —
aw 

= 0
az

are to be satisfied. The first of these is associated with the number of
buckles in a circumference or with the width of an individual buckle, and the
second with the ratio b/a of the width of a buckle to its length. It is not
analytically feasible to use these conditions in connection with equation (68).

The following method of arriving at the critical value of p is based upon an
extended discussion in report No. 1322-A (7). Briefly, it was considered
that an isolated initial irregularity would increase in size and depth with in-
creasing mean compressive stress p. It was therefore considered that the
load-mean compressive strain curve, with p as a function of e, for a given
small initial depth of irregularity would be the envelope of the family of
curves for p as a function of e, drawn for a series of values of q by combin-
ing equations (71) and (72). On taking into consideration the possibility of
jumps from one energy level to another, it was concluded that the critical
values of p would scatter considerably, as they actually do in test, depend-
ing upon the depth of the initial irregularity and the characteristics of the
loading process. It was noted that the value of p at the relative minimum
point on the envelope of the curves for p as a function of c, drawn for t o = 0,

was intermediate among the possible critical values of p. This minimiWn
was accordingly chosen as the "theoretical" critical stress, because it could
be conveniently determined by finding a relative minimum of p as a function
of t and	 It is necessary to employ numerical methods to determine the
relative minimum value of p.

In report No. 1322-A (7), the aspect ratio z of the buckles was assumed on
the basis of experimental observations before the minimization of p was
undertaken. Here, because of the influence of shear deformation in the core,
a suitable value to assign to z can not be estimated.

Equation (71), with t o = 0, can be written in the form:

p = KEa r	 (74)

(73)
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where
32	 ,2	 2y3

K - --2- [4i1 TIG - 3yt + — + 2 N4 iii	 (75)
3z	 /1

The mean compressive stress, p f , in the facings is related to the mean com-
pressive stress in the shell by th-6 equation

Pf (f l 	f2 )	 (76)P

On recalling the definition of Ea. , it is seen that equation (74) can be written

pf = KEx (77)

For a relative minimum of pf , the condition

8K = 0 must be satisfied.
at

From this condition, it follows that:
3y2

= 8Y

64	
Y4

,Y3	 9'112
K = 	 - 	4.	 TI)	 (79)

3z 2	 32yo

In equation (79), K is a function of n and z, which occur in the definitions of
11 1 , y2 , y3 , ana. y4. By using the definitions of the quantities Ea, Eb,

and p.m that appear through the symbols A, B, and C in the equations 76),

(27), and (28), the following expressions are obtained for y i , y2 , and y3

(see equations (71), (26), (27), and (28):

4	 E
y 	 + 	

z4

-Y 1 - 4096 4096 Ex + 
	

E
x	 9 z Z Ex 512 (z 4 — + 81 +E	 P-	

18crxyzZ)
Y	 xy

z4 17z
4

+ 	 +

	

4 
E

x	 2 EX	2Ex

	

A Ex	 z
512 (81z y- + 1 + 9z E - 18o- z 2) 2048 (z -E-- + . 1 + — 27 z 2 )xy

	

Y	 Y	 Y	 li-xy	 xY
(80)

(78)

The substitution of this value of t in (75) yields
2
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4
z

z 2E,
32 (z 4 Ex + 1 +	 2o- z 2 )

Ey	 xPxy	 y

EY 
Y 3 =

256Ex
(82)

E
Y  + 	 z 4

Y2 - Ex	 z4E,
512Ex 32	 + 1 +	 -2Q z2)xy

(8 1 )

In obtaining the expression for y4 from equations (63) and (70), it is con-
venient to introduce the notation—

T = 3z 4 
+ 3 -5+ —2 (EEx

so that

K4 = Ex T

and

K
4	 hT

cr	 +	 ) z 2
x yx	 xy

2	 7.1	 S X

(83)

(84)

(85)

(86)

E
a	

f
1 

+ f
2

then
T

I + — (d d	 - d	 )	 (—+ S )K
4
	 3	 2	 E	 2	 yx z

- 32Xh 2 (f 1 + f2) lc:1 1 5x 	iid 3S„(d i d 3 - d22)SxS
7+ +

+

1 +
Ex z2	 Ex2 z2Ex

Buckling. Stress of Sandwich Constructions with Isotropic 
Facings and Orthotropic or Isotropic Core 

For isotropic facings, considerable simplifications can be made. In this
case

Ex .= Ey = (Ex cryx 24.xy) = E, p.xy = = E/2 (1 + o-)

CrXY = CrYx = °-

Then
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1+ z 4
+ 	

z4	 z4	 17 z4 
Y 1 = 4096 512 (z 2 + 9) 2 512 (9z 2 + 1) 2 2048 (1 + z2)2

Y2 512	 32 (1 +

1	 z 4
+

(88)

(89)
Y3 - 25632 (1 + z 76%2

I (d i d 3 - d2 2 )	 (Sx s )
+

T (3z 4 + 3 + 2z 2 ) E2	 z 2 Y
+ (90)Y

4 
= 

32X. h2 (f 1 + f2 ) Sx 
+ 

rid3S	 ri2S
x S

(d d 3 - d22)

where

1 + Ez2
E2 z2

T = 3z 4 + 3 + 2z
2 (91)

24, E
S y

2c E (92)S =x	 p.
Cx

rh =
3k 11 Yt

rh

After some manipulation involving substitution of expressions for y i , y7,

y 3 , and y4 , formula (79) for K for sandwich construction with isotropic

facings and orthotropic core can be written as:

M I

	

	Mei + M 3 11
2

Sx	 If
21 

K =	 +	 	 + M

	

3K h2 (f 1 + f2) 1 + M4 tiSx + Mo2Sx2 I	
2

where

M1 3z 2 (N 3 - 32y i )

M = —	 (95)
z2

(d
1
d3 - d22) 1

M = 	  (— + 0)	 (96)
3	 E2 z 2	 z2

(87)

1	 z 4

(93)

64	 9y2 2
(94)
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1
d 1 = 3Ez

4
 +  (1 - o-) Ez

2

Eaz 2 + —
1 

(1 - a) Ez 2
2

3E + —
2 

(1 - cr) Ez 2

d 2 =

d =3 -

1
M4 = (-

d
--2- + d 3 0) E-4	 z

(d i c1 3 - d2
2

) 0
M - 	 	 (98)

5	 E2 z2
t

Sy	 I-L pc
or	 0 =	 (99)0 = Sx 

P. ),.

(97)

1
If a is taken to be —4 , then:

1
d = 3Ez

2
 (z

2
 + -8-)	 (103)

1

5
d

2 = 
—
8 

Ez
2	(104)

z2
d

3 = 3E (—+ 1)	 (105)
8

If also y i , y2 , y3 , and T are expressed in terms of z and 9 (Eq. 87, 88, 89,
–2:-	 6

and 90) then the following expressions can be used in formula 89:
/ 23

3 	 1 + 	 z 

1	 Ez 2
1.64z	 4(1 + z2)2] M

1 =
	 +

122 2	 3(1z43(1 + z 2 ) 2	 1 + z 4	 17z 4
+ 	  + 	  +

128

	

16(z2 + 9) 2	16(9z 2 + 1) 2 64(1 + z2)2

3
M 3z 2 + 2 + —,2 --	 z'

(107)

1	 1
+M

3
 = —

8 
(9z

4
 + 70z 2 + 9) (-7 0)

z
(108)

(106)
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3
M4 =8 [8z 2 + 1 + (z 2 + 8) 0]	 (109)

1M 5 = IT [9z 4 + 70z2 +	 0	 (110)

For constructions for which the shear deformation in the core is negligible,
as it is when p. I tx is very large and 0 is finite, Sx may be taken equal to zero.

Then expression (93) can be minimized with respect to n, resulting in:

Ko = 2
2M 1 /sA 2 (1 + If)

3X (f 1 + f2 ) h2

Thus, Ko is a function of M 1 and M2 and the stiffness of the sandwich. It
was found by computation that a relative minimum of M 1 M2 = 0.24 occurs at

z = 0.95. The minimum buckling stress is then proportional to:

K - 4
5Q1

(112)

where 	
X (f i + f 2) h

Q 1 = 	 	 (113)
I+ If

By letting N = g-, the following expression can be written from equation (89)3- 

for constructions having any value of Sx:

+ M31Sx5M 1 Q 1	 5 N =	 	 -FQ M	 (114)
6 Q 1 (1 + Q2) 1 + M4 riSx + M5-92 Sx2	 2

where

Q 2 =	
(115)

It was found in Forest Products Laboratory Report No. 1505 (10) that the
values of I + If and If can be expressed as follows:
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(1 - c 3 /h3 ) (1 - c/h) -	 (1 - c/h)4 - 3(1 - c/h)2 --2-c14 -
4	 h3

Q 2 12cd2

	

Q 	 2.\/ 	

	

1	 c
2

/11
2 + c/h

3X (122)

1 3[h 3 12cd2
(116)I + If = 1 - c/h

(h - (h - c)c12 (117)
if -	 48

where
f l	 f2 d -

4

(118)
2

After substituting these expressions in the formulas for 	 and Q2 and

simplifying Q 1 and Q2 become:

Q1
12X. (1 - c/h)2 (119)

12cd2
- c 3 /h3) (1 - c/h) - h 3

d2
-1- (1 - c/h)4 + 3 (1 - c/h)2

(120)

In equation (114) M i , M2, M 3, M4, and M5 depend upon z and 0, and Q1

and Q 2, depend upon c/h and d/h. Formula (114) can then be written with

appropriate values of 0, c/h, and d/h and then a relative minimum value N
found by choosing a series of values of z and n. The facing stress at which
buckling will occur is then given by:

p = 
4N E h

f 5Q 1	r
(121)

Buckling Stress of Sandwich Constructions 
with Isotropic Facings of Equal Thickness 
and Orthotropic or Isotropic Core 

Factors in formula (114) can be simplified for sandwich constructions hav-
ing facings of equal thickness. Then d = 0 and after simplification
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and finally formula (114) becomes

	

5Q 1 M	 (1 + c/h)2
N= 4	 r1	 24X

}

M 2 1 (124)(1 - c/1-)2
72X

[

M z i + M 3 112
 
Sx

1 + M
4

r1S
x
 + M

5
1

2
S
x

1 (1 - c/h)
Q 22	 3 1 + c/h

(123)

The buckling load, which is proportioned to N is obtained by finding the lowest
relative minimum of expression (124) with respect to rl and z. Expression

(124) can be minimized by taking a derivative with respect to ri and setting
the derivative equal to zero. This leads to a sixth power equation in
Minimum roots of with respect to z and for various values of Sx , c/h, and

were determined by means of a digital computer. Minimum values of N
at various values of Sx and for c/h equal to 0.9, 0.8, 0.7, and 8 equal to

0.4, 1.0, and 2.5 are given in Table 1 and shown as functions of Sx in figures

4, 5, and 6. Also included in the table and figures are values of N for
c/h = 1. These values represent sandwich constructions for which the stiff-
ness of the individual facings are assumed to be zero. Although no actual
constructions can be made of this type, the values can be considered as
representing the limit for constructions having extremely thin facings. These
values of N were obtained as follows. Substitution of c/h = 1 in equation (124)

for N leads to

(125)

which has one relative minimum value for rl = co. This minimum value is

given by
5M3

N 	 	
(126)

125x M 5

Substituting in this equation the values of M 3 and M given by equations (108)
5

and (110 yields
1 

5 ( 	 + 9)
N =

	

	 (127)
k Sx 9

5 m l 1 m2i + M 3 i2 
Sx

N = 47 +	 601/4.

2
T1

M4 1Sx	M5 1 Sx)
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which is minimum for z = co. This minimum value (for cr = 1/4; hence
= 15/16) is given by

5 	 0.431N -
3 15 Sx	

Sx
(128)

Substitution of this value of N in equation (118) and using the value of Sx for
f l = f2 and c/h = 1 leads to the following limiting expression for pf:

4Eh	 5	 3X 	 _ h
Pf	 045: r	 12F	 Ef	 2f P. 2'c

(129)

For values of Sx ranging from 0 to about 0.6 it was found that equation (128)
did not give lowest  minimum values. In this range of S x the minimum values
were obtained from equation (124) by use of a digital computer.

The value of N given by equation (128) and the value of the stress given by
equation (129) are independent of the radius of the cylinder and are the usual
critical values associated with shear instability of the core (15).

The value of 8 of 0.4 and its reciprocal 2.5 were used in the calculations be-
cause they apply to honeycomb cores oriented with the weak direction and
the strong direction parallel to the length of the cylinder. It has been noted
from figures 4 and 6 that in the range of small values of S x where N is inde-

pendent of c/h, the orientation of the core makes little difference in the
value of N.

Application of Theoretical Results 

The compressive facing stress at which buckling of cylinders of orthrotropic
sandwich construction occurs is given by equation (77).

Pf = KEx

where Ex is modulus of elasticity of facings in axial direction, h is sand-
wich thickness, r is mean radius of curvature, and K is given by formula
(79) as

K =
3z 2	1
64 [Y3 9y22

32Y 1 1 + Y471
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5M 1 Q 1 5 
N -

60 / (1 + Q2)

M2 1 + M 3 n2
Sx

	  Q
2

M 2 T1+
NI 4iSx + M5 n2 Sx21 

where values of y
1
, y

2
, and y

3
 are functions of z according to equations (80),(81),

and (82) and y, is a function of and z according to equation (86) and K is

taken as the least relative minimum with respect to and z.

For sandwich constructions having isotropic facings of unequal thickness
and orthotropic core K is given by

4N
K - 

5Q 1

where Nis given by equation (114) as

-

where Q 1 and Q 2 are given by equations (119) and (120) and M 1 , M2, M3,

M4 , and M 5 are functions of z according to equations (106), (107), (108),

(109), and (110) and N is taken as the least relative minimum with respect
to n and z.

For sandwich constructions having isotropic facings (Poisson's ratio 1/4) of
equal thickness and orthotropic core such that 9 = 0.4 or A =2.54 or isotropic

core (A = 1.0) equation (114) for N has been solved for c/h = 1.0, 0.9, 0.8,
and 0.7. Values of N for various Sx values are given in Table 1 and in

graphs in figures 4, 5, and 6. Then the critical facing stress is given by

4N h
Pf = 5Q 1 E

where

3 f 	 5 
Q 1 - 2	 2 2c-lh-	 c/h + 1

and N is given in terms of Sx where

4
—These ratios for 9 were chosen as representative of honeycomb cores such

as were evaluated in Forest Products Laboratory Report No. 1849.
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16cfE 
Sx =

and c is core thickness
facings, h is sandwich
and p.	 is modulus of

axial-radial plane.

, f is facing thickness, E is modulus of elasticity of
thickness, (c + 21), r is mean radius of curvature,
rigidity of core associated with shear strains in the

The graphs can be used with little error for determining N for constructions
having facings of unequal thickness, provided S_ is calculated using formula

(60) and Q i is calculated using equation (119).

The analysis may be extended to apply at stresses greater than the propor-
tional limit stress of the facings by use of an appropriate tangent or reduced
modulus of elasticity for the facings. This entails a "trial-and-error" solu-
tion involving use of the tangent or reduced modulus in the quantity S and
elsewhere until the resultant facing stress is compatible with the stress-
modulus curve.

Results of the theoretical analysis fall approximately into three zones, de-
pending upon whether there is no shear deformation in the core (S x = 0),

some shear deformation in the core (small values of Sx), or considerable

shear deformation in the core (large values of SO. —

For no shear deformation, the buckling stress is determined essentially by
means of the isotropic or orthotropic theory (depending upon facing proper-
ties) with the stiffness determined by considering the spaced facings of the
sandwich.

For large shear deformations, the critical stress is associated with insta-
bility of the core in shear. This has been observed for sandwich construc-
tions in general (15), and it has been found that the mean critical stress
thus determined is the same, regardless of the original assumption of the
buckled shape. The smallest value of Sx at which the critical stress is

determined by shear instability of the core, however, is greatly affected by
the assumed form of the buckled shape. The inclusion of the stiffnesses of

the facings If gives rise to the family of curves for different values of c/h,

as shown in figures 4, 5, and 6, instead of a single curve. 1.1 the stiffnesses
of the individual facings had been neglected, one curve only, that for c/h = 1,
would have resulted. The percentage increase in buckling stress due to the
stiffnesses of the individual facings increases as the shear deformation in-
creases. For small shear deformations, the increase is negligible.
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From the reasoning involved in the theory leading to equation (77), consider-
able scatter in the experimental values of the critical stress is to be expected
because of the effect of initial irregularities. Similar scatter is exhibited
by homogeneous cylindrical shells, for the same reason.

The possibility of failure by wrinkling of the facings at a stress lower than
that predicted by equation (77) should be considered.

The analysis in this report involves a number of approximations and assump-
tions. Such procedures are necessary until a more rigorous treatment of the
problem is developed. A completely rigorous treatment of the buckling of a
homogeneous cylindrical shell is still lacking, in spite of the noteworthy
contributions of von Karman and Tsien.

Tests of Curved Panels

The large size of complete circular, cylindrical shells having realistic fac-
ing and core thicknesses and curvatures could not be adapted to the available
testing apparatus. Therefore, axial compressive tests were conducted on
rectangular panels curved to various radii. The dimensions of these panels
were chosen so that their widths and lengths were large enough to include at

least one buckle of a size predicted by theory (b> 2 n
r	 2and a irr ) as shownw

zn
in table 2.

It was then assumed that the curved panel would behave approximately as a
complete cylinder. The type of edge support (described later) was such as
to produce no clamping.

Test Specimens

The test specimens were essentially of isotropic construction having facings
of clad 24ST aluminum alloy on cores of either balsa wood, oriented so that
the grain direction was normal to the facings, or of corkboard of three dif-
ferent densities. Corkboard cores were chosen, because their low moduli
of rigidity afforded means of exploring shells in which sizeable reductions
of buckling stresses, caused by large core shear deformations, could easily
be obtained. These corkboard cores had shearing moduli of 1,500, 950, and
320 pounds per square inch, as compared to 15,000 pounds per square inch
for the end-grain, balsa-wood core.
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Dimensions of the specimens are given in table Z. The panel sizes ranged
from approximately 70 inches square to panels 12 inches wide and 30 inches
long. Mean radii of curvature ranged from approximately 90 inches to 10
inches. The sandwich constructions had facings of 0.012 inch, 0.020 inch,
or 0.032 inch thickness on cores of approximately 1/8 inch, 1/4 inch, or 1/2
inch thickness. All constructions tested had facings of equal thickness.

The specimens were manufactured by the bag-molding process. Detailed
description of techniques and bonding adhesives used in this process are
given in Forest Products Laboratory Report No. 1574(3). The curvature
was attained at the time of molding by using a steel mold curved to the de-
sired radius. A strip of aluminum 1 inch wide and 0.032 inch thick was
bonded to the facings at each end of the specimen. This was done to facili-
tate machining of the specimen ends and also to prevent local end failure
during the test. The ends of the specimens were machined square and true
in a milling machine.

Testing 

The vertical edges of the specimens were held straight by loose-fitting wood
guides. These guides were approximately 2 inches by 2 inches in cross sec-
tion and of lengths 1/4 inch shorter than the test specimen. They were
grooved in the lengthwise direction with grooves approximately 1/4 inch deep
and wide enough to allow the guides to be slipped onto the edges of the test
specimen. No attempt was made to clamp the vertical edges by fitting the
guides tightly.

The lower ends of specimens not wider than 30 inches were placed on a
heavy flat plate, which was supported by a spherical bearing placed on the
lower head of a hydraulic testing machine. The heads of the testing machine
were then brought together until the specimen just touched the upper platen
with no load indicated. Adjustments were made on the spherical base until
no light could be seen between the ends of the specimen and the loading heads.
Screw jacks were then placed under the lower loading plate to prevent tilting
of the plate while the load was being applied to the specimen. A single thick-
ness of blotting paper was inserted at the ends of the specimen to help pre-
vent local end failures. The load was then applied slowly until failure oc-
curred.

Specimens wider than 30 inches were tested between the heads of a four-
screw, mechanically operated, testing machine. No spherical bearing was
used. The specimens were cut as true as possible. If light could be seen
between the ends of the specimen and the heads of the testing machine, shims
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of paper or brass were inserted until the gap was closed. These wide speci-
mens were also very long; therefore, small irregularities in the end bearing
were absorbed early in the test without causing large variations from uni-
formity in the stresses in the facings.

Results of Tests

The facing stresses at the failing loads of the curved panels are given in
table 2. For later comparison with theoretical values, the parameter N
was calculated for each test specimen by using the formula

N - 
5Q1pfr

4Eh

where

E 10,000,000 pounds per square inch (modulus of elasticity of facings)

The visible failures of the specimens were of a type caused by buckling.
Large, thin specimens actually showed large buckles, which disappeared
after release of load. The appearance of these buckles always caused a
sudden drop in the load. Small, thick specimens showed buckling, followed
immediately by a crimping appearance at the edges of the buckle. This
crimping was undoubtedly due to shear failure of the core caused by high
stresses induced in the sandwich by the buckle. Many of the thick speci-
mens exhibited no visible signs of buckling but showed similar crimping.
The rapidity of failure occurring immediately upon buckling undoubtedly
prevented visual observation of the buckle itself. Similar behavior was ob-
served for cylindrical shells of plywood (11).

Comparison of Theoretical and Experimental Results 

The theoretical and experimental values of N are given in table 2. A com-
parison between them may be obtained by referring to figure 7 which shows
the experimental values plotted against the theoretical values. The scatter
of points about a line representing equality between experimental and theoreti-
cal values shows that theory and experiment agree within approximately + 30

percent.

In view of the inevitable scatter of experimentally determined buckling
stresses that is associated with initial irregularities of shape and variations
of material properties, it is concluded that the agreement between results of
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tests and of theory is satisfactory. The scatter is not as great for shells of
sandwich construction as that observed for thin, homogeneous shells (fig. 44,
report No. 1322-A (7)) or for plywood shells (fig. 3, Forest Products Labora-
tory Report No. 1322 (18)). This reduction in scatter may be attributed to a
greater total thickness of shell. Thus, irregularities that depart from the
true cylindrical surface of the order of the thickness of the shell are less
likely to occur in sandwich shells than in thin, homogeneous shells.

Conclusions

The buckling stress of long, thin-walled, circular cylinders of sandwich con-
struction in axial compression can be found with satisfactory accuracy by the
formulas and curves of the approximate theoretical analysis of this report.

Curved panels of sizes large enough to include at least one ideal buckle
2/rr	 2.rrr

(b	 — and a 7,— ) buckle at stresses approximately equal to those of a
zn

long, complete cylinder.
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Notation

a	 length of buckle.

A	 1/Eb.

A l' 
A2, A 3, A4, A

5
	defined by equations (42) to (46).

A' A
2

, 	 A' A'	 defined by equations (52) to (55).
2'	 3'	 4'	 5

b	 width of buckle.

B	 1/Ea.

c	 thickness of the core.

c 1	mean circumferential stress.

1	 2crxy
p.m	Ea

f l	 f2 
2

d 1, d2, d
3
	defined by equation (57).

e	 e	 etc.	 components of strain.xx 9 xyt

el' e2, e3	
defined by equations (26), (27), and (28).

e4	 defined by equation (64).

e 5
	defined by equation (66).

Ex, Ey	 Young's moduli of the facings

Ex (f1	 f2) 
h

Ey (f i + f2)

h

f f	 thicknesses of the facings.1 , 2

g	 quantity proportional to mean radial expansion.

-36-

C

d

Ea

Eb
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c + f + f1	 2'

defined by equation (49).

If
	defined by equation (50).

k,	 parameters introduced in equations (31).

see equations (74), (75), and (79).

K1, K2, K3
	defined by equations (23), (24), and (25).

K4
	defined by equation (84).

n 2n r/b.

p	 mean compressive stress.

Pf	 compressive stress in the facings.

q, q'	 introduced in equations (31).

3 radius of middle surface of the cylindrical shell.

Sx, Sy	defined by equations (92).

T	 defined by equation (83).

u axial component of displacement.

3 circumferential component of displacement.

U c
	strain energy of the core in the bending of the

U UF' UM
strain energy of the facings in the bending of the

sandwich shell.

w	 radial component of displacement.

wi
	 extensional strain energy.

wz 	 flexural strain energy.

h

I

sandwich shell.
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W
3
	virtual work of the compressive load.

W	 (W
1
 + W

Z
 - W

3
)/abh.

Xx, Xy , etc.	 components of stress.

zb /a .

Tr/a.

13
	 Tr/b.

defined by equations (80), (81), (82), and (86).
'11, y2, 113' y4

6	 a parameter that is proportional to depth of a
buckle.

initial value of 6.
6o

mean compressive strain.

coordinate shown in fig. 3.

'9	 n2 h/r.

X	 (1 - Txy Cr yx).

modulus of rigidity of the facings.
xy

Cae	 )r	
moduli of rigidity of the core.

p.xy (f 1 + f2 )

6 r/h.

6 r /h.
0	 0

Poisson's ratios of the facings.

defined by equation (51).

S / Sy x

Crxy' Cr
yx

(i)
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