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ABSTRACT

The growth of linear disturbances to stable and unstable time-periodic basic states is analyzed in an asymptotic
model of weakly nonlinear, baroclinic wave–mean interaction. In this model, an ordinary differential equation
for the wave amplitude is coupled to a partial differential equation for the zonal-flow correction. Floquet vectors,
the eigenmodes for linear disturbances to the oscillatory basic states, split into wave-dynamical and decaying
zonal-flow modes. Singular vectors reflect the structure of the Floquet vectors: the most rapid amplification and
decay are associated with the wave-dynamical Floquet vectors, while the intermediate singular vectors closely
follow the decaying zonal-flow Floquet vectors. Singular values depend strongly on initial and optimization
times. For initial times near wave amplitude maxima, the Floquet decomposition of the leading singular vector
depends relatively weakly on optimization time. For the unstable oscillatory basic state in the chaotic regime,
the leading Floquet vector is tangent to the large-scale structure of the attractor, while the leading singular vector
is not. However, corresponding inferences about the accessibility of disturbed states rely on the simple attractor
geometry, and may not easily generalize. The primary mechanism of disturbance growth on the wave timescale
in this model involves a time-dependent phase shift along the basic wave cycle. The Floquet vectors illustrate
that modal disturbances to time-dependent basic states can have time-dependent spatial structure, and that the
latter need not indicate nonmodal dynamics. The dynamical splitting reduces the ‘‘butterfly effect,’’ the ability
of small-scale disturbances to influence the evolution of an unstable large-scale flow.

1. Introduction

Although it is natural to presume that the atmosphere
has a unique past, present, and future, a given model of
the atmosphere may have many histories, corresponding
either to different initial conditions or to different def-
initions of the zero of time. In numerical weather pre-
diction, ensemble forecasting has been developed to ex-
ploit this freedom, by combining multiple model pre-
dictions in an attempt to improve a single atmospheric
forecast (Epstein 1969; Leith 1974).

Two different techniques for ensemble generation
have recently been implemented in operational global
numerical weather prediction models: bred growing
modes (Toth and Kalnay 1997) and singular vectors
(Buizza et al. 1993; Ehrendorfer and Tribbia 1997). Bred
growing modes are computed by a repeated ‘‘breeding’’
cycle, in which the differences between forecast ensem-
ble members and a control forecast is rescaled and added
to the analysis at each analysis cycle to initialize a new
ensemble. Singular vectors are optimal disturbances
(Lorenz 1965; Farrell 1989) computed by maximizing
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specific measures of disturbance growth over predeter-
mined forecast intervals.

The spread and distribution of a forecast ensemble
provide predictive information that is not available from
individual model forecasts. The behavior of forecast en-
sembles, of course, also reflects the physics of the at-
mosphere, as represented by the corresponding models.
One might hope that the study of the physics of these
ensembles might lead to insights into the dynamics of
the atmosphere, as well as to improved forecasting tech-
niques. A number of studies have begun to address ques-
tions regarding the physical and dynamical content of
singular vectors and bred growing modes in systems
ranging in complexity from the low-order Lorenz (1963)
equations to operational numerical weather prediction
models (e.g., Buizza and Palmer 1995; Buizza 1995;
Trevisan and Legnani 1995; Legras and Vautard 1996;
Szunyogh et al. 1997; Vannitsem and Nicolis 1997).

The present contribution is an effort in this latter di-
rection. The object is to compute and analyze singular
vectors and the simplest analogs of bred growing modes
in a model of baroclinic wave–mean interaction that is
physically consistent but still simple enough to admit a
fairly complete analysis, at least for specific parameter
values. The overall goal is to improve insight into the
processes of disturbance growth in time-dependent bar-
oclinic flows. The dynamics studied here are the as-
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ymptotic wave–mean interaction equations derived by
Pedlosky (1971) and studied further by Pedlosky and
Frenzen (1980) and Klein and Pedlosky (1986). These
equations describe the evolution of a weakly nonlinear
baroclinic wave and a zonal flow correction for a zonal
flow near marginal stability. This is the simplest phys-
ical model of nonlinear baroclinic dynamics that is cur-
rently available. It represents the extension to weak non-
linearity of the Phillips (1954) two-layer model of linear
baroclinic instability, and is summarized in a popular
pedagogical text (Pedlosky 1987). It retains much of the
simplicity of the Lorenz (1963) equations, to which it
is related (Pedlosky and Frenzen 1980). By virtue of its
asymptotic derivation, it also admits a direct geophys-
ical interpretation in the parameter regime of most in-
terest.

The analysis focuses on disturbances to periodic so-
lutions of these model equations. Periodic solutions of-
fer a convenient framework for investigating the be-
havior of linear disturbances to time-dependent basic
states, which is intermediate between the study of dis-
turbances to steady flows (e.g., Phillips 1954) and the
study of disturbances to flows with general time de-
pendence (e.g., Joly and Thorpe 1991; Farrell and Ioan-
nou 1996). Since the cycles are time-dependent, they
present many of the same obstacles to analysis as more
general flows. But, since each cycle has a definite pe-
riod, and a distinct and well-defined spatiotemporal
structure that is determined by the evolution of the sys-
tem over a finite time, they have intuitively appealing
identities as discrete physical objects, and are amenable
to quantitative analysis of the interplay between time-
dependent eigenmodes and transient disturbance
growth. The present approach is partially motivated by
recent work on cycle expansions for chaotic systems
(e.g., Artuso et al. 1990a,b; Christiansen et al. 1997;
Cvitanović et al. 2000), and is related to a recent study
based on the Lorenz system (Trevisan and Pancotti
1998).

The model is briefly reviewed in section 2. Section
3 describes the relevant time-dependent basic states, and
sections 4 and 5 discuss the Floquet and singular vector
analyses, respectively. Section 6 contains discussion,
and section 7 summarizes the results.

2. Model

The model studied here is a two-layer, f -plane, qua-
sigeostrophic fluid in a periodic channel with a rigid lid
at the upper boundary, and Ekman dissipation at both
upper and lower boundaries. Weakly nonlinear baro-
clinic wave–mean interaction has been studied in this
model by Pedlosky (1971) and Pedlosky and Frenzen
(1980), and is summarized in Pedlosky (1987). The
model equations and the relevant parameters are sum-
marized here, in notation mostly following the previous
references, to which the reader is referred for additional
details.

For a weakly supercritical mean flow, a weakly non-
linear disturbance consisting of a single zonal wave
component generates a small correction to the mean
zonal flow, which in turn affects the growth or decay
of the wave. The asymptotic analysis conducted by Ped-
losky (1971) yields the coupled system of equations
describing this interaction. This system consists of a
second-order ordinary differential equation for the wave
amplitude A(t), coupled to a partial differential equation
for the mean-flow correction C(y, t). If C is expanded
in terms of sinusoidal cross-channel modes, the partial
differential equation transforms into an infinite set of
coupled ordinary differential equations, which may be
written

dA
5 2gA 1 B, (2.1)

dt

JdB 1 1
2 25 2 gB 1 A 1 1 g 2 a (A 1 V ) , (2.2)O j j[ ]dt 2 2 j51

dVj 25 2g(b V 2 c A ), j 5 1, 2, . . . , (2.3)j j jdt

where J → ` for the complete expansion, and
2 232m (2j 2 1)

a 5 , (2.4)j 2 2 2 2 2 2[(2 j 2 1) 2 4m ] [(2 j 2 1) p 1 K ]
2 2(2j 2 1) p

b 5 , (2.5)j 2 2 2(2j 2 1) p 1 K

c 5 2 2 b . (2.6)j j

In terms of these variables, the upper- and lower-layer
streamfunctions are (to second order in the small pa-
rameter «, whose square measures the supercriticality
of the basic steady zonal shear flow)

1
c (x, y, t) 5 2 U y 1 «A(t) coskx sinmpy1 s2

21 « C(y, t), (2.7)

1 2mp
c (x, y, t) 5 1 U y 1 « A(t) coskx 1 « B(t) sinkx2 s [ ]2 Us

23 sinmpy 2 « C(y, t), (2.8)

where the mean-flow correction C(y, t) is
J2K m cos[(2j 2 1)py]

C(y, t) 5 U (t) , and (2.9)O j2U (2j 2 1)j51s

8m(2j 2 1)
U (t) 5j 2 2 2 2 2[(2 j 2 1) 2 4m ][(2 j 2 1) p 1 K ]

23 (V 1 A ). (2.10)j

Here K 5 (k2 1 m2p2)1/2 is the total wavenumber of
the baroclinic wave, Us is the mean shear of the basic
flow, and g 5 r/(2s) is the Ekman damping coefficient
«r scaled by twice the inverse timescale, the small ex-
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FIG. 1. Limit cycle (stable periodic orbit) for g 5 0.1280. The
cross-channel structure of variables is shown vs time t along the orbit.
(Upper panel) A sinpy (the order « part of the wave streamfunction
at x 5 0). (Middle panel) B sinpy [order «2, proportional to the lower-
layer wave streamfunction at x 5 p/(2k)]. (Lower panel) Umean 5
S Uj sin(2j 2 1)py (proportional to the order «2 zonal-flow correc-
tion).

FIG. 2. (a) The projections of the g 5 0.1280 limit cycle (solid
line) and the unstable g 5 0.1315 period-T cycle (dashed line) on
the A–B phase plane. (b) The projection of the chaotic attractor for
g 5 0.1315 on the A–B phase plane, as represented by a finite segment
of a numerical solution.

ponential growth rate «s of the linear wave. The channel
walls are at y 5 {0, 1}. Since aj ; j24 as j → `, the
system may be well approximated numerically by trun-
cating the sums in (2.2) and (2.9) at a finite value J, as
is done below. A more accurate truncation may be
achieved by setting Vj 5 VJ for J , j # J1 in (2.2), with
large J1; the sum from J to J1 is then over known co-
efficients and need be evaluated only once. This trun-
cation is accurate because bj, cj → 1 as j → `, so (2.3)
implies that Vj → V` as j, t → ` for bounded |A|. A
brief comparison of these truncations is shown below
(Fig. 3), but otherwise the computations use the crude
truncation at finite J.

Thus, in (2.1)–(2.3), A is the scaled amplitude of the
wave, B is a measure of the phase shift between the
upper and lower layers (which is of order «2), and each
Vj represents a scaled combination of zonal-flow com-
ponent j and the squared wave amplitude. The discus-
sion below primarily refers to the zonal-flow expansion
coefficients Uj from (2.9)–(2.10), rather than Vj. The
form (2.1)–(2.3) is convenient for numerical calcula-
tions. Also, it shows immediately that when g 5 0, the
Vj are constants, and (2.1)–(2.2) reduce to an integrable
cubic oscillator similar to the Duffing equation, describ-

ing a reversible, inviscid wave–mean interaction cycle
whose amplitude is determined by initial conditions.

3. Periodic orbits

a. The g 5 0.1280 limit cycle

A numerical exploration of (2.1)–(2.3) has been con-
ducted by Pedlosky and Frenzen (1980). The present
study focuses on a set of solutions with m 5 1 and K 2

5 2p2 (k 5 p), corresponding to a wave with equal
zonal and meridional scales. For these values of m and
K, the results of Pedlosky and Frenzen (1980, Fig. 3)
suggest that solutions of (2.1)–(2.3) undergo a period-
doubling transition to chaos near g 5 0.13. Unless oth-
erwise noted, the results described here were obtained
with the simple truncation at J 5 6 in (2.2). In some
cases, slightly different results were obtained for other
truncations (see Fig. 3, below) but the main points made
here were not affected. Differences between the present
numerics and those of Pedlosky and Frenzen (1980) also
lead to small but inessential differences in the solutions
and their dependence on g. A brief summary of other
numerical issues is given in the appendix.

For g 5 0.1280 (and for a range of adjacent g; see
Fig. 3 below), the numerical solutions approach a limit
cycle (Figs. 1, 2a). Let the period of this limit cycle
(and its unstable continuation; see below), which de-
pends weakly on g, be denoted by T; for g 5 0.1280,
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FIG. 3. Feigenbaum diagrams for 0.1280 # g # 0.132. This diagram
is constructed by plotting the value of A at each time t . T0 at which
B 5 0 and A . 0 for numerical solutions at each value of g, where
T0 is chosen large enough to allow decay of transients. (a) Crude
truncation, J 5 6; (b) crude truncation, J 5 24; (c) improved trun-
cation, with J 5 6 and the sum over coefficients approximated by
the first 1000 terms. The improved truncation at J 5 6 gives results
that are nearly identical to the crude truncation at J 5 24.

T ø 24.176 (Fig. 1). Note that, since the Eqs (2.1)–
(2.3) are unchanged by the transformation (A, B) →
(2A, 2B), an asymmetric cycle is accompanied by a
twin of opposite parity, corresponding to an arbitrary
along-channel phase shift of a half-wavelength. For sim-
plicity, attention is restricted here to the cycle with par-
ity such that the maximum value of |A| occurs for A .
0. Corresponding results for the twin cycle may be ob-
tained by changing the appropriate signs or phases.

In the wave–mean oscillation corresponding to this
limit cycle, there is a periodic reduction in zonal shear
driven by the growing wave, followed by saturation of
wave growth as the source of instability is removed,
and subsequent decay of the wave amplitude and re-
surgence of the zonal shear (Fig. 1; the origin of time
is fixed here and below so that t 5 0 at the point of the
cycle where B 5 0 and A . 0). Coriolis forces that
arise from the wave-induced meridional circulation
drive the changes in zonal flow. The wave amplitude A
oscillates between a positive and a negative maximum,
each time remaining small for substantial times as it
changes sign (Fig. 1). The mean-flow correction reduces
the vertical shear everywhere, and is nearly in phase
with the squared wave amplitude, consistent with a dom-
inant balance between mean-flow acceleration and po-
tential vorticity fluxes due to secular changes in the
wave amplitude, as might be anticipated for small values
of friction g. Similarly, since g is small, the weakly
nonlinear phase shift B ø dA/dt over most of the cycle,
as for the linear modes of instability of the steady zonal
flow. The cycle is asymmetric and not sinusoidal. The
positive maximum for A is slightly larger than the neg-
ative minimum, and the transition from negative min-
imum to positive maximum takes longer than the re-
verse. The system evolves relatively slowly near the
unstable equilibrium A 5 B 5 Uj 5 0, and |B| is largest
for intermediate values of |A| (Figs. 1, 2a).

b. Unstable and higher-order cycles (g 5 0.1315)

As g increases past 0.1280, the system undergoes a
sequence of period-doubling bifurcations. Near g 5
0.1292, the period-T limit cycle loses stability, and a
stable period-2T cycle appears. (Away from the bifur-
cation point, the ratio of the periods of these two cycles
is only approximately 2, but it is customary and useful
to continue to identify it as a period-2T cycle, and sim-
ilarly for the higher-order cycles.) Near g 5 0.1305, the
period-2T cycle loses stability, and a stable period-4T
cycle appears. Chaos appears to ensue for g greater than
about 0.1309 (Fig. 2b). This sequence is conveniently
visualized in a Feigenbaum diagram based on a Poincaré
section, in which the value of A when B 5 0 and A .
0 is plotted against g for a set of numerical solutions
(Fig. 3a). Near g 5 0.1316, there is an abrupt change
in the solution structure; additional analysis suggests
that this change marks the merger of a pair of antisym-
metric attractors. More accurate numerical solutions

show a similar bifurcation sequence, shifted slightly to-
ward smaller g (Figs. 3b,c).

The periodic orbits that lose their stability in this
period-doubling sequence persist as unstable periodic
orbits (e.g., Fig. 2a). For g less than about 0.1309, the
stable state is a finite-period limit cycle, and the unstable
periodic orbits are not directly relevant to the long-time
dynamics. In the chaotic regime, however, the set of
unstable periodic orbits can be related to the structure
of the attractor and the long-time dynamics in a specific,
quantitative manner, and may be used to compute sta-
tistical averages over the attractor (e.g., Artuso et al.
1990a,b). This relation is only briefly illustrated here,
and will be pursued in more detail elsewhere.

For g 5 0.1315, in the chaotic regime, the evolution
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FIG. 4. Numerical Poincaré return map for g 5 0.1315, constructed
by plotting each value of A for B 5 0 and A . 0 against the previous
value of A for B 5 0 and A . 0, for a finite segment of a numerical
solution. The solid lines are a spline fit to the Poincaré map, and the
identity map F(A) 5 A.

FIG. 5. Unstable cycles for g 5 0.1315: (a) p1, period T; (b) p10, period 2T; (c) p1110, period
4T; (d) p11010, period 5T; (e) p11110, period 5T; (f ) p111111111010, period 12T.

may be usefully represented by a one-dimensional map
(Fig. 4). From the spline representation of this map,
unstable period orbits may be determined systematically
in the standard way, by associating the symbols 0 and
1 with the intervals to the left and right, respectively,
of the point where the map achieves its maximum, gen-
erating a set of binary symbol sequences, and finding
the corresponding unique orbit points by inverse iter-
ation. These points may then be used as first guesses

for periodic points of the differential equations, which
may be improved by a shooting technique that uses
Newton’s method.

The corresponding unstable cycles for the repeated
symbol sequences 1, 10, 1110, 11010, 11110, and
111111111010 are shown in Fig. 5. Because of the ge-
ometry of the map, many symbol sequences do not have
corresponding cycles. No cycle corresponds to the re-
peated sequence 0, nor to any sequence containing 00,
since all points in the left-hand interval are mapped to
points on the right-hand interval (Fig. 4). The unstable
cycles ‘‘fill out’’ (more precisely, and under certain con-
ditions that may or may not strictly hold here, are dense
on) the attractor (Figs. 5, 2b); it is this property that
makes them useful for computing averages.

4. Floquet vectors

a. Formulation

Small disturbances to the periodic cycles described
in the previous section will satisfy a linearized form of
(2.1)–(2.3), in which the given periodic cycle is the
time-dependent basic state about which the equations
are linearized. The solutions of the corresponding lin-
earized equations may be computed by standard tech-
niques for linear differential systems with periodic co-
efficients (e.g., Coddington and Levinson 1955), often
known as Floquet theory. For a periodic orbit solution
P(t) 5 [A(t), B(t), U1(t), U2(t), . . . , UJ(t)], any linear
disturbance may be written as a fixed sum of the J 1
2 Floquet eigenvectors {f j(t), j 5 1, 2, . . . , J 1 2},
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FIG. 6. Floquet exponents lj, j 5 1, . . . , 8, for the g 5 0.1280
(squares) and g 5 0.1315 (stars) period-T cycles, ordered by de-
creasing exponent. The dashed lines indicate the corresponding values
of 2g.

where (for nondegenerate systems) each vector has the
form f j 5 Fj(t) exp(lj t), for a (J 1 2)-component
vector function F j(t), with F j(t 1 T) 5 F j(t) [or pos-
sibly Fj(t 1 T) 5 2F j(t)]. Each f j is a solution of
the linearized equations around the given cycle.

Here, attention is restricted to the shortest cycles, the
unstable period-T cycle for g 5 0.1315 and the stable
period-T cycle for g 5 0.1280. These two cycles are
very similar (Fig. 2a; see also Figs. 1 and 9a, below),
with nearly indistinguishable spatial and temporal wave
and mean-flow structure, the main difference being only
that one cycle is stable and the other slightly unstable.
The corresponding periods T are T 5 24.176 for g 5
0.1280 and T 5 24.479 for g 5 0.1315. The Floquet
problems were solved numerically, as described in the
appendix.

b. Results

The Floquet characteristic exponents lj for these two
cycles are shown in Fig. 6. Positive exponents indicate
instability, and negative indicate stability. The solutions
are obtained for the truncation J 5 6, so there are eight
Floquet eigenvectors. Some of the corresponding struc-
ture functions F j for g 5 0.1280 are shown in Fig. 7.
The Floquet vectors essentially divide into two types.
The neutral vector (f 1 for g 5 0.1280, or f 2 for g 5
0.1315) is proportional at each point of the cycle to the
rate of change along the cycle, and so describes wave-
dynamical processes, as does the oscillation itself. The
least and most stable nonneutral Floquet vectors (f 2

and f 8 for g 5 0.1280, or f 1 and f 8 for g 5 0.1315)
are also of this type, as they each differ in structure

from the neutral vector essentially only by a change in
phase at minima of |A| and an exaggerated asymmetry
between the maxima in the unstable mode, relative to
the neutral mode (Figs. 7a,b,d). In contrast, f 4–f 7 have
mean-flow structure dominated by higher meridional
harmonics (Fig. 7c). These modes have decay rates near-
ly equal to g, and evidently describe the frictional decay
of the higher mean-flow harmonics. The vector f 3,
which has intermediate stability, appears to be a mixture
of these two types.

The decaying wave-dynamical mode f 8 distinguish-
es itself from the corresponding least stable nonneutral
wave-dynamical mode (f 2 or f 1) by its larger ampli-
tude during the decay phase that follows each wave
maximum along the basic-state wave–mean cycle. This
distinction can be seen by comparing the wave or mean-
flow disturbances in Figs. 7b and 7d immediately before
and after each wave amplitude maximum in Fig. 1. The
sustained disturbance growth or decay described by the
wave-dynamical Floquet vectors is accomplished by this
asymmetry in the disturbance oscillations.

The dynamical splitting into two types of modes is
evident also in the disturbance heat (or potential vor-
ticity) flux associated with these cycles. An appropriate
heat flux quantity is the cycle average of the product
FAFB, the first two components of F j, for each j. For
both cycles, this quantity is of order 1022 for f 1–f 3;
21022 for f 8; and 1025, 1026, 1027, 1028 for f 4–f 7,
respectively. Thus, the wave-dynamical modes have
much larger heat fluxes than the decaying zonal flow
modes; the heat flux is large but countergradient for the
rapidly decaying wave-dynamical mode f 8.

This dynamical splitting persists for the higher-order
g 5 0.1315 cycles. Characteristic exponents for 138 of
these cycles, ordered by symbol sequence, exhibit sub-
stantial variations for the least and most unstable modes,
and for the third mode, and very little variation for
modes 4 through 7 (Fig. 8). The variations in the ex-
ponents compensate, as they must, since the sum of the
exponents equals the trace of the Jacobian matrix; nu-
merically these sums were equal and constant to 1027

or less, while the neutral eigenvalue was numerically of
order 1026 or less. The eigenvectors for g 5 0.1280 and
g 5 0.1315 are very similar, as can be anticipated from
the similarity of the cycles (Figs. 1, 2a, and 9a). The
unstable vector (f 1) for g 5 0.1315 is similar to the
least stable nonneutral vector (f 2) for g 5 0.1280, with
a modest change in the relative magnitude of the wave
amplitude peaks (Figs. 7a, 9b); the bifurcation to insta-
bility of the cycle as g varies is associated with the
change in sign of the Floquet exponent for this vector.

c. The bred growing mode analogy

The Floquet vectors are the simplest analog of the
bred growing modes (BGMs; Toth and Kalnay 1997)
used for ensemble generation in operational forecast
models. As noted above, bred growing modes are com-
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FIG. 7. Time-dependent physical fields corresponding to the Floquet eigenvector structure functions Fj(t), ordered as in Fig. 6, for the g
5 0.1280 cycle. The corresponding Floquet eigenvectors are f j 5 exp(ljt)Fj. The format is as in Fig. 1, except that each panel shows the
corresponding linear disturbance variable: (a) F1, the neutral vector, proportional to the rate of change along the limit cycle; (b) F2; (c)
F5; (d) F8.
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FIG. 8. Floquet exponents for 138 unstable periodic cycles pn
(n)lj

for g 5 0.1315. The dashed line is the sum of the eight exponents
for each cycle (equal to the trace of the Jacobian matrix), divided by
8. Six of these 138 cycles are shown in Fig. 5.

FIG. 9. (a) As Fig. 1, but for the g 5 0.1315 period-T cycle. (b)
As Fig. 7a, but for the first Floquet vector F1 of the g 5 0.1315
period-T cycle.

puted by an iterated breeding cycle, in which the dif-
ferences between forecast ensemble members and a con-
trol forecast is rescaled and added to the analysis at each
analysis cycle to initialize a new ensemble. In the sim-
plest idealization, in which only linear disturbances are
permitted and no additional model of the forecast–anal-
ysis cycle is included, the Floquet vectors (or suitably
orthogonalized combinations thereof ) may be viewed
as analogs of the modes that one may expect eventually
to emerge from a BGM iteration for a control forecast
corresponding to the periodic basic state. (For a non-
periodic basic state, the idealized analogs of BGMs are
Lyapunov vectors.)

For the stable (g 5 0.1280) cycle, all disturbances
decay except those that are tangent to the cycle. The
resulting BGM-analog disturbance is a time-dependent
phase shift along the cycle, which is described in the
linear approximation by the neutral Floquet vector. A
corresponding BGM-analog ensemble would itself os-
cillate periodically, spreading exponentially along the
cycle during the exponential growth phase of the cycle,
and contracting exponentially during the decay phase.
Thus, in spite of its overall long-term stability, the time-
dependent flow will have a nontrivial BGM analog that
is associated with the cyclic growth and decay of the
baroclinic wave. The local oscillation of disturbance
amplitude that is described by the neutral Floquet vector
is due to precisely the same process that causes the
oscillation of the wave amplitude itself, not an additional
or secondary oscillation or instability. The growth of
disturbances is a direct consequence of the growth of
the time-dependent basic state. It can be inferred that
any time-dependent state will induce a similar type of
disturbance growth during its periods of growth.

For the unstable (g 5 0.1315) cycle, one of the Flo-
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FIG. 10. Attractor structure and linear disturbances on the Poincaré
section B 5 0 and A . 0, projected on the A–V1 plane and with A
and U1 normalized by orbit excursions as for the OR norm. The
unstable period-T orbit (large dot with adjacent label p1) and points
on the attractor from a numerical solution (small dots) are marked,
along with the projections of disturbances from the unstable period-T
orbit p1 along Floquet eigenvectors 1, 2, 3, and 8 (numbered dia-
monds), and the projection of a disturbance from p1 along the first
singular vector (star with label SV1). The disturbances of equal am-
plitude along Floquet vectors 4–7 are small in projection and cluster
near p1.

quet exponents in positive, and the corresponding dis-
turbance will grow exponentially. This mode supplies
a second BGM analog, in addition to the neutral mode.
However, the positive Floquet exponent is roughly
0.025, 40 times smaller than the growth rate of the bar-
oclinic instability and the inverse timescale of the basic
baroclinic oscillation. Thus, the disturbance growth pro-
cesses that are relevant on the baroclinic wave timescale
are still primarily associated with the growth and decay
phases of the oscillation itself, rather than with this ad-
ditional weak time-dependent instability.

If attention is extended to the nonperiodic attractor
indicated by the g 5 0.1315 numerical solutions, the
unstable Floquet vector of the period-T cycle provides
additional information, as the large-scale structure of
the attractor tends to be tangent to this unstable eigen-
vector (Fig. 10). Since the attractor is in general a fractal
object (Fig. 10), the precise meaning of the phrase ‘‘tan-
gent to the attractor’s large-scale structure’’ is not easily
understood, but in practice it is useful if the large-scale
geometry is sufficiently simple. For example, in Fig.
10, both the large-scale structure and the disturbance
along f 1 (and, in this case, also those along f 2 and
f 8) lie on the diagonal from upper left to lower right.
Thus, in this case, the BGM analog can give an indi-
cation of the distribution of dynamically accessible
states near the unstable periodic orbit that would be
relevant to ensemble construction for this idealized
model.

5. Singular vectors

a. Formulation

The Floquet vectors give a complete description of
the behavior of linear disturbances, and identify the dis-
turbances of fixed spatiotemporal structure that will
grow or decay at fixed exponential rates over the course
of a period. Alternatively, it is possible to inquire which
linear disturbances are maximally amplified after a fixed
interval of time (Lorenz 1965; Farrell 1989). Such op-
timal disturbances, referred to here as singular vectors
(SVs), generally exhibit transient growth, and do not
have fixed modal structure.

Let j(t) 5 [j1(t), j2(t), . . . , jJ12(t)] represent an ar-
bitrary linear disturbance to the periodic orbit, and let
N1(j) 5 N̂1(j, j) and N 2(j) 5 N̂ 2(j, j) denote the initial
and final norms, respectively, with respect to which the
amplitude of the disturbance is to be computed, where

N̂1(j, j9) 5 jTN1j9, N̂ 2(j, j9) 5 jTN2j9 (5.1)

are the associated inner products. Here N1 and N2 are
(symmetric) weighting matrices, and the superscript T
denotes transpose. Then the SVs are the vectors j(t1)
that maximize N 2[j(t2)], subject to N1[j(t1)] 5 1.

Since the Floquet vectors span the phase space, the
disturbance j(t) may be written as a sum of Floquet
vectors,

J12

j(t) 5 a f (t) 5 Z(t)a, (5.2)O j j
j51

where Z(t) 5 [f 1(t), f 2(t), . . . , f J12(t)] is the matrix
whose columns are the Floquet vectors f j. The expan-
sion coefficient vectors a 5 [a1, a2, . . . , aJ12] are in-
dependent of time, so if the F j and lj are known, it
suffices to determine the a at the initial time t1 in order
to compute j(t) for any t. Define the ‘‘linear propagator’’
L(t1, t) 5 Z(t)Z(t1)21, in terms of which j(t) 5
L(t1, t)j(t1). Then the SV maximization yields the gen-
eralized eigenvalue problem

[L(t1, t2)]TN2L(t1, t2)j(t1) 5 m2N1j(t1) (5.3)

for the SVs in the usual way (e.g., Buizza et al. 1993).
The matrices Z and L may be calculated directly from
the Floquet vectors f j at the initial (t1) and final (t2)
times. The eigenvalue problem (5.3) may then be solved
by standard methods for the eigenvector–eigenvalue
pairs {(jl, ), l 5 1, . . . , J 1 2}. From (5.2), the2ml

Floquet decompositions of the SVs are then al 5
Z21(t1)jl. The square root m l of each eigenvalue is the
corresponding singular value.

For a given periodic orbit p, the SVs depend on the
initial and optimization times t1 and t2, and on the norms
defined by the matrices N1 and N2. Since the periodic
orbits have been determined numerically, analytical so-
lutions for the SVs are not available, and the SVs must
be calculated numerically, which requires that specific
choices for these quantities be made. Attention is re-
stricted here to two simple choices for N1 and N2, while
the dependence of the corresponding SVs on t1 and t2

is explored more completely.
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FIG. 11. Singular values (solid lines) as a function of t2 (or, equiv-
alently, of t 5 t2 2 t1) along the g 5 0.1280 limit cycle for t1 5 0
and the OR norm, for 0 # t2 # 5T, with the mean decay exp(ljt2)
of the Floquet vectors for the corresponding times (dotted lines); at
each integral period t2 5 nT (large dots), the latter correspond to the
ratio of the instantaneous and initial Floquet vector amplitudes. The
time t2 5 T 5 24.176 is indicated (dash–dot line). The leading sin-
gular value (dashed line) and the mean growth exp(l1t2) for the first
Floquet vector (dotted line with open circles) for the g 5 0.1315
unstable period-T cycle (for which T 5 24.479) are also shown for
comparison.

The two choices of norm are referred to here as the
‘‘orbit-relative’’ (OR) and ‘‘amplitude energy’’ (AE)
norms. For convenience, the matrices N1 and N2 are
taken equal in each case. Since the initial and final norms
are then equivalent, the singular values m l are amplifi-
cation factors. This restriction is not necessary, but sim-
plifies the interpretation. In both cases, N1 and N2 are
also taken to be diagonal matrices. For the AE norm,
N1 and N2 are the identity matrix, so the norm is simply
the sum of squares of the disturbance amplitudes jj. In
terms of the physical variables, this is closely related
to the usual energy, except that terms of first and second
order in the small-amplitude parameter « are weighted
equally. A similar norm would be obtained by com-
puting the usual energy and formally setting « 5 1 in
(2.7)–(2.8), so the AE norm is essentially a physical
energy norm based on extrapolation of the small-am-
plitude results to finite amplitude. For the OR norm, the
jth diagonal element in N1 and N2 is the inverse square
of the peak-to-peak amplitude excursion of the jth com-
ponent of the periodic orbit solution. That is, the linear
disturbance of each component is measured relative to
the magnitude of the variation of the corresponding
component along the periodic orbit. Because higher
mean-flow components Uj have relatively small varia-
tion along the periodic orbit, the OR norm gives them
greater weight than does the AE norm.

b. Results

Singular vectors are computed for the stable cycle at
g 5 0.1280 and for the period-T unstable cycle at g 5
0.1315. The dependence of the SVs on initialization
time t1 and final time t2 is investigated, for both fixed-
length (variable t1, constant t 5 t2 2 t1) and variable-
length (constant t1, variable t) optimization intervals.
As above, the calculations are done for the truncation
J 5 6, so each yields 8 SVs. Although there are quan-
titative differences between the results for the two
norms, qualitatively the results are similar.

For g 5 0.1280, the OR-norm SVs for t1 5 0 (Fig.
11) divide into two classes, as did the Floquet vectors.
The first and last SVs (in order of decreasing singular
value) rapidly amplify and decay, respectively, in each
case more rapidly than the corresponding Floquet vector.
The singular value for the first SV, m1, depends strongly
on the optimization interval t 5 t2 2 t1 5 t2, and is
relatively large where the wave amplitude of the peri-
odic cycle is large, and relatively small where the wave
amplitude is small (Fig. 11). The maximum value of m1

for 0 , t2 , T is approximately 800, near t2 5 23. On
longer timescales, m1 continues to oscillate with t2, in
phase with the wave amplitude, but never exceeds 800.
This bounded amplification is consistent with the sta-
bility of the g 5 0.1280 periodic orbit. The fluctuations
in m2 appear to grow with time, at least during the period
0 , t2 , 5T. The intermediate SVs have amplification
factors that correspond closely to the decay rates of the

intermediate Floquet vectors. Thus, the dynamical split-
ting of the Floquet vectors into wave-dynamical modes
and decaying zonal-flow modes is also reflected in the
SVs.

The first SV is primarily a combination of the two
wave-dynamical Floquet vectors, f 2 and f 8, plus a
contribution from the neutral vector f 1. Despite the
strong dependence of m1 on t2 (or, equivalently, on the
optimization interval t) for t1 5 0, the Floquet decom-
position a1 of the first SV is nearly independent of t2,
as the ratios | |/|a1| for the dominant components of1 1a aj j

the first SV change by only a few percent for 0 , t2 ,
T. The Floquet vectors themselves are strongly time-
dependent, so the final physical structure of this SV
depends strongly on t2, and only the Floquet decom-
position is nearly independent of t2.

When t1 varies (for fixed optimization interval t), the
singular values ml continue to split in the same way,
and m1 oscillates in the same way, with maxima where
t2 corresponds to maxima in the wave amplitude for the
basic cycle (Fig. 12a). The Floquet decomposition of
the first SV depends more strongly on t1 with fixed t
(Fig. 12b) than on t2(t) with fixed t1. The wave-dy-
namical and neutral Floquet vectors still dominate the
first SV, but there are rapid oscillations with t1 in the
relative proportion of these contributions during periods
where the wave amplitude is small (t1 ø 5, t1 ø 20).
Elsewhere in the cycle, however, the decomposition in
terms of Floquet vectors is often independent of t1 for
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FIG. 12. (a) Singular values (solid lines) as a function of t1 along
the g 5 0.1280 limit cycle for fixed t 5 t2 2 t1 5 100dt ø t1 1 10
and the OR norm, with the corresponding mean Floquet decays
exp(ljt ) (dotted lines). (b) Floquet vector components (solid line),1a1

(dashed), (dotted), (dash–dot), of the leading singular vector1 1 1a a a2 3 8

a1 vs t1 for fixed t 5 t2 2 t1 5 100dt ø 10 and the OR norm.
Components 4–7 are also shown (solid) but are generally small.

FIG. 13. Singular values (solid lines) and mean Floquet decays
(dotted) for g 5 0.1280 as in Fig. 11, but for the AE norm and for
0 # t2 # T only. The leading singular value for the SE norm is also
shown (dashed).

substantial periods. During these periods, the corre-
sponding physical structure of the first SV can change
rapidly and dramatically. For example, during the in-
terval 6 , t1 , 13, the Floquet decomposition is nearly
fixed (Fig. 12b), but the Floquet vectors change mark-
edly (Fig. 7), as the A and B components sequentially
pass through zero crossings, implying rapid changes in
the physical structure of the first SV.

Additional SV solutions for other values of t1 and t2,
for fixed-length intervals with different t and for var-
iable-length intervals with different t1, confirm these
general tendencies: the amplification factor m1 oscillates
with t2, in phase with the wave amplitude of the cycle;
and the Floquet decomposition a1 primarily involves the
wave-dynamical and neutral vectors, and is relatively
independent of t2 when t1 is near the phase of maximum
wave amplitude (or when t2 is large), and strongly de-

pendent on t1 and t2 when t1 is near the phase of min-
imum wave amplitude. For the AE norm, the depen-
dence of the amplification factors on t1 and t2 is qual-
itatively similar, though quantitatively different (Figs.
13, 14a). The decomposition a1 is still dominated by the
wave-dynamical and neutral Floquet vectors, but the
dependence of the decomposition on t1 is relatively
stronger (Fig. 14b).

For the unstable cycle at g 5 0.1315, the results are
much the same. This can be anticipated from the sim-
ilarity of the cycles themselves, and of the Floquet vec-
tors and exponents, and the relatively long timescale of
the instability (1/s ø 40) relative to the baroclinic wave
timescale. The major difference is that, on long time-
scales, the leading SV amplification factor m1 tends to
increase at an exponential rate equal to the leading Flo-
quet exponent, as should be expected (Fig. 11). The
Floquet vector decomposition of the leading SV has the
same structure as for g 5 0.1280, with contributions
primarily from the wave-dynamical and neutral vectors.

Some singular vectors were computed for a third,
scaled physical energy norm, which was equivalent to
the AE norm except that the second-order quantities B
and Uj were scaled by « 5 0.01, corresponding roughly
to a physical energy for a small but finite-amplitude
disturbance. The qualitative results were again generally
similar (Fig. 13, dashed line).

As noted above, the leading Floquet vector of an un-
stable cycle in a chaotic regime tends to be tangent, in
some large-scale sense, to the attractor. Because of the
contributions from other vectors, the leading SV does
not generally share this property. This suggests that, to
the extent that prediction errors are due solely to errors
in estimating the initial conditions on the attractor, as
they will be if the model attractor accurately describes
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FIG. 14. As Fig. 12, but for the AE norm.

the dynamically accessible states, the leading SV will
in general be irrelevant to the predictability of the non-
linear system, since the disturbances it describes will
evidently be dynamically inaccessible. However, if the
attractor is examined on smaller scales, its fractal struc-
ture becomes apparent, and a leading SV disturbance
may apparently still lie on the attractor (Fig. 10). This
illustrates that inferences about the accessibility of states
described by Floquet vectors (or BGMs) and SVs in an
idealized model such as this one rely on the simple
geometric structure of the model attractor, and may not
easily generalize to more complex models. If model
error is such that the dynamically accessible states are
not accurately described by the attractor, then of course
such inferences also do not follow.

6. Discussion

The Floquet vector analysis illustrates that, in this
highly constrained model of baroclinic wave–mean dy-
namics, disturbance growth and decay on the wave time-
scale are dominated by the wave growth and decay pro-

cesses that give rise to the basic-state oscillation. This
is true even in the unstable (g 5 0.1315) case, since
the Floquet instability is weak, with growth timescale
much longer than the wave growth timescale. The neu-
tral Floquet vector, which corresponds to phase shifts
along the cycle, always gives rise to a nontrivial bred
growing mode analog. This mode describes disturbance
growth and decay that arise purely from the wave
growth and decay processes associated with the basic-
state oscillation.

For the singular vectors, more rapid transient ampli-
fication is possible, primarily during the first wave
growth events encountered by the disturbance. This
transient growth clearly arises from nonorthogonality of
the Floquet vectors with respect to the inner products
considered here, as it could not otherwise exceed the
growth of the leading Floquet vector. In the long-term
average, the transient growth eventually halts for the
stable (g 5 0.1280) case, but does not decay. The finite
asymptotic growth arises from the existence of distur-
bances corresponding to phase shifts along the cycle,
which are neutral in the long-term average. In contrast,
transient linear disturbances to steady flows generally
decay after amplifying. In the unstable case, the tran-
sient growth eventually asymptotes toward exponential
growth at the rate of the leading Floquet vector, as it
must.

The Floquet vectors divide into two sets, the first
including two wave-dynamical vectors and the neutral
vector, and the second containing vectors associated
with the decaying, high meridional modes of the zonal
flow. Thus, despite the constraints that arise from the
exact time periodicity of the basic state, which might
be anticipated to impose artificial characteristics on the
solutions, the natural modes of the eigenvalue problem
reflect identifiable physical processes in an appealing
way. In addition, this splitting is associated with a ten-
dency toward orthogonality (for the inner products con-
sidered here) between the wave-dynamical modes and
the decaying modes. This orthogonality is clear for lin-
earization about the zero state (A 5 B 5 Uj 5 0), but
need not persist for linearization about the time-depen-
dent states.

One manifestation of this orthogonality is the cor-
responding split in the composition of the singular vec-
tors. The leading singular vector is dominated by the
wave-dynamical and neutral Floquet vectors, while in-
termediate decaying singular vectors closely follow the
decay of the intermediate Floquet vectors. This split
occurs because orthogonal, or nearly orthogonal, vectors
cannot be effectively combined to induce nonmodal
transient amplification. The Floquet vectors, and thus
their dynamical splitting, are independent of the norm
used to measure the amplitude of disturbances. In con-
trast, the singular vectors depend on this norm. The
results described here indicate that the dynamical split-
ting of the Floquet vectors is sufficiently robust that
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reasonable choices of norm preserve this splitting in the
singular vectors, to a recognizable degree.

The approximate constancy of the Floquet vector de-
compositions of the leading singular vector as a function
of initial (t1) and optimization (t2) times, for substantial
segments of the cycles, was an unexpected result. It
evidently indicates that individual Floquet vectors cap-
ture essential aspects of disturbance evolution even over
partial cycles, during which the periodic character of
the time-dependent basic state is not yet apparent. In
this sense, the Floquet vectors appear to be physically
more meaningful than might have been anticipated. It
also also indicates a rigidity of the asymptotic dynamics,
in which the relative orientation of the Floquet vectors
in phase space tends to persist for timescales associated
with the basic-state wave growth and decay. This is
presumably related to the presence of a single dominant
physical instability in the model, the baroclinic insta-
bility of the basic zonal shear flow at the fixed wave-
number k.

Some aspects of these results appear consistent, in a
general sense, with results from more complex models.
For example, Vannitsem and Nicolis (1997) find that
growing Lyapunov vectors (the analog of Floquet vec-
tors for nonperiodic states) in a 3-layer quasigeostrophic
numerical model tend to have wavenumber spectra that
peak at synoptic scales, while decaying vectors have
greater variance at smaller and larger scales, suggesting
a broadly similar dynamical split between growing and
decaying vectors that are distinguished by spatial struc-
ture. Buizza and Palmer (1995) analyze singular vectors
from an operational global numerical weather prediction
model. They find that growing singular vectors tend to
have maximum amplitude in regions where the local
value of the expression for the Eady growth rate is large,
suggesting a link between baroclinic wave dynamics and
growing singular vectors, but also find evidence of non-
modal growth in the leading singular vectors. These
findings are also broadly consistent with the behavior
of the present, idealized model. However, there are many
important differences. The large number of amplifying
Lyapunov and singular vectors, respectively, in the more
complex models is a significant difference from the pre-
sent model, in which at most one Floquet or singular
vector shows substantial amplification. It has been ar-
gued above that the primary mechanism for disturbance
growth on the wave timescale in the present model in-
volves a time-dependent phase shift along the cycle that
is essentially neutral on long timescales. In the more
complex models, the phase shift mode presumably still
exists and contributes to transient growth, but the ad-
ditional spatial degrees of freedom allow disturbances
that alter the basic synoptic structure in more funda-
mental ways.

Buizza and Palmer (1995) identify systematic time
evolution toward larger spatial scales in growing sin-
gular vectors, and infer a nonmodal character of the
singular vectors from these changes in their spatial

structure. In the present model, the wave scale is fixed,
but changes in the relative amplitudes of the wave and
mean-flow components can effectively alter the char-
acteristic scale of the disturbance. The Floquet vectors
in the present model may thus be seen as a counter-
example to this general line of reasoning: they illustrate
that modal disturbances to time-dependent basic states
can have time-dependent spatial structure. In the case
of the Floquet vectors, the spatial structure is time-pe-
riodic, but for times shorter than the basic-state period,
this periodicity need not be evident. Similarly, Lyapu-
nov vectors, which are the analogs of Floquet vectors
for nonperiodic basic states, may in general have non-
periodic spatial structure.

In the present model, the single baroclinic wave is
coupled to an infinite set of meridional harmonics of
the zonal flow. The model can thus describe zonal-flow
disturbances of arbitrarily small meridional scale. As
the model also evidently has dissipative, nonperiodic
solutions of the general type discussed by Lorenz
(1963), it is interesting to examine the character of its
‘‘butterfly effect,’’ the influence of small-amplitude,
small-scale disturbances on large-scale structure. If the
zonal-flow expansion is truncated at a finite J, then it
is clear that a randomly chosen disturbance will project
on the growing Floquet (or Lyapunov) vector, with prob-
ability unity. However, the split of the Floquet vectors
into wave-dynamical and decaying zonal-flow modes
indicates that the projection of small-meridional-scale
disturbances on the growing mode will generally be
small. If J is large, so that disturbances on the meridional
scale of butterflies may be resolved, a randomly chosen
disturbance is likely to have extremely small projection
on the growing mode. If the timescale required for
growth of such an infinitesimal perturbation is longer
than the timescale of physical interest, then the small-
scale disturbance will have no physical effect on the
large-scale flow. This is reminiscent of the classical res-
olution of the Poincaré recurrence paradox: the time-
scale of recurrence may exceed the lifetime of the uni-
verse.

The insensitivity of the numerical solutions to trun-
cation level J (Fig. 3) suggests that the evolution on the
attractor of the higher meridional modes may in prin-
ciple be parameterized in terms of the wave amplitudes
and the lower meridional modes. Independent distur-
bances of the higher meridional modes would then ev-
idently have to be represented in the truncated system
as (stochastic) disturbances of the wave amplitudes and
lower meridional modes. Small enough disturbances,
however, would still be negligible by the above argu-
ment, so that a practical resolution limit would seem to
exist beyond which even external disturbances could be
safely neglected. The dynamical splitting of the time-
dependent disturbance modes that arises in the present
mode can evidently increase the spatial scale of this
resolution limit, by focusing the projection of the small
disturbance on the damped modes, and reducing its pro-
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jection on the growing modes. The identification of a
similar splitting, and the related spatial scales and struc-
tures, in numerical weather prediction models could lead
to more efficient initialization techniques.

7. Summary

Floquet vectors and singular vectors and the corre-
sponding eigenvalues were computed above for stable
and unstable periodic cycles of a simple model of weak-
ly nonlinear baroclinic wave–mean interaction. Each set
of vectors was found to divide into two dynamical clas-
ses, the first associated with baroclinic wave dynamics
and the second with the frictional decay of high merid-
ional modes of the zonal flow. The decompositions of
the leading singular vector in terms of the time-depen-
dent Floquet vectors were relatively uniform along the
cycle, while the leading singular value depended strong-
ly on initial and optimization times. Disturbance growth
in this simple model was found to be related to the wave
growth and decay mechanisms associated with the time-
dependent basic state.

The results suggest a perhaps surprising connection
between the singular vectors (for the chosen norms),
which are computed with respect to arbitrary, fixed time
intervals along the cycle, and the Floquet vectors, which
are defined only as periodic solutions to the disturbance
equations linearized about the basic periodic cycles. It
is possible that a similar close relation may exist be-
tween singular vectors and growing and decaying wave-
dynamical modes (where ‘‘modes’’ is meant in the sense
of Lyapunov vectors for the general, nonperiodic case)
in more complex models.
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APPENDIX

Numerical Methods

The numerical solutions were computed using the
public-domain subroutine LSODAR. The root-finding
capability of LSODAR was used to construct the Poin-
caré sections by solving for B 5 0 and checking A .
0. The Floquet problems were solved in the standard
way, using LSODAR to integrate the linearized equa-
tions and obtain the fundamental matrix, and the matrix
eigenvalue solver DGEEV to solve the matrix eigen-
value problem. Unstable periodic cycles were obtained
as described above, by spline-fitting the Poincaré map,
and using inverse iteration to generate first guesses for
a Newton method iteration that in turn used the LU
solvers DGETRF and DGETRS. The higher-order cy-
cles were obtained in the standard way, by searching
for the sequence of points corresponding to the inter-

sections of the high-order cycle with the (B 5 0, A .
0) Poincaré section, rather than for a single periodic
point; this requires increasing the state vector by a factor
equal to the order of the cycle, but allows the integration
intervals to be limited to single Poincaré return times
for each pair of points, preventing convergence failures
of the Newton iteration for long-period cycles that
would otherwise arise from the finite precision of the
initial conditions. It proved necessary to use a succes-
sive orthogonalization method to maintain numerical
accuracy for the higher-order Floquet problems; that is,
by analogy to standard techniques for numerically es-
timating Lyapunov exponents, the initial conditions for
the Floquet calculations were iteratively adjusted ac-
cording to orthogonalizations of the final states, to allow
resolution of the decaying Floquet modes in the final
states and thereby improve the conditioning of the as-
sociated matrix problem.
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