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Appendix 1 

We fit models representing three diagnostic tests in two populations to estimate the 2 

posterior distribution of each tests’ sensitivity and specificity (ELISA, RBT, CFT).  The data is 3 

represented as a vector of test results from n1=161 and n2=220 observations, where the counts of 4 

test results in each population are assumed to follow a multinomial distribution (Table 3).  The 5 

model assuming conditional independence also assumes that test accuracy is constant across 6 

populations and that the true infection prevalence differs between populations.  This model 7 

requires 8 parameters (SeE, SeR, SeC representing ELISA, RBT and CFT test sensitivity, 8 

respectively; SpE, SpR, SpC representing test specificity; pi, pi2 representing prevalence) and 9 

results in the following multinomial cell probabilities:  10 

Pr(ELISA +, RBT+, CFT+)= pi(SeE SeR SeC) + (1-pi)((1-SpE)(1-SpR)(1-SpC)) 11 

Pr(ELISA +, RBT+, CFT-)= pi(SeE SeR(1-SeC)) + (1-pi)((1-SpE)(1-SpR)SpC) 12 

with similar extensions for the remaining probabilities.  Models that adjust for correlation among 13 

test outcomes require additional parameters to represent dependence between each test’s 14 

sensitivity and specificity, such that six additional parameters are required to represent 15 

conditional dependence between all three tests (covariance between test sensitivity, aER, aEC, aRC, 16 

and specificity bER, bEC, bRC).  The fully dependent model is non-identifiable given the data and 17 

the number of parameters.  As a result, we use prior assumptions and model selection to add 18 

constraints on the model’s structure and ensure identifiability (Berkvens et al., 2006).  To 19 

compare the fit of models assuming different amounts of conditional dependence, we used model 20 

selection was based on Deviance Information Criteria (DIC).  We also calculated conditional 21 

correlations between tests because when tests are highly accurate despite measuring the same 22 

biological response (Hui and Walter, 1980) or when correlations are low (represented by a 23 



 2

conditional correlation ≤0.2), independence may also be appropriate (Georgiadis et al., 2003).  24 

Although these tools clarify the importance of model assumptions and prior information (Menten 25 

et al., 2008), models with similar fits to the data may still result in different estimates (Albert and 26 

Dodd, 2004).  We, therefore, explore the effects of model selection on the sensitivity and 27 

specificity estimates by reporting results from models assuming both conditional independence 28 

and dependence between tests (van Smeden, 2014; Supplement Table S1). 29 

Prior distributions for diagnostic test sensitivity and specificity were represented as beta 30 

distributions and calculated in the program, Beta Buster (http://www.epi.ucdavis.edu/ 31 

diagnostictests/betabuster.html).  We set the mode of the beta distribution as the estimates 32 

generated by a meta-analysis of brucellosis test validations from the European Union (Grenier et 33 

al., 2009) and the 5th percentile of the distribution as the lowest published estimate of test 34 

accuracy (Nielsen, 2002).  The lowest published estimate for ELISA accuracy was significantly 35 

higher than estimates for the RBT and CFT (92.5%).  To represent our uncertainty in applying 36 

this sensitivity estimate, we avoid strong prior information by setting the 5th percentile of the 37 

beta distribution at 60% (Table 1) and exploring the consequence of this assumption with a 38 

sensitivity analysis.  We used uniform reference priors for the conditional dependence 39 

parameters bounded by the range of possible values given test sensitivity and specificity (Toft et 40 

al., 2007) and the population prevalence was defined based on published serological surveys of 41 

the Kruger National Park buffalo population (Chapparo et al., 1990). 42 

All latent class models were run with WinBUGS and the R2WinBUGS package (Sturtz et 43 

al., 2005) in R (R Core Team, 2012).  WinBUGS uses Markov Chain Monte Carlo (MCMC) 44 

sampling to obtain the joint posterior distribution of the model (Spiegelhalter et al., 2000).  45 

WinBUGS code for the final model representing covariance between the ELISA and CFT is 46 
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displayed in Supplement 2.  Models were run with two chains and 100,000 iterations were 47 

performed for posterior inference after discarding the first 50,000 samples of the MCMC chain 48 

to allow convergence.  Convergence was visually assessed with trace plots and with the Gelman 49 

and Rubin diagnostic (Gelman and Rubin, 1992).  Convergence diagnostics were assessed with 50 

the coda package in R (Plummer et al., 2006). 51 

  52 
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Supplementary Material  53 

Supplement Table S1. Comparison of model fit based on DIC values.  In the model assuming full 54 

conditional dependence, the parameter representing conditional dependence between the RBT 55 

and CFT test sensitivity and the parameter representing conditional dependence between the 56 

ELISA and RBT test specificity were not identifiable, but estimates of ELISA sensitivity and 57 

specificity were separable and comparable to smaller models.  Therefore, model selection based 58 

on DIC was used select a plausible model for the data (in bold).  95% Bayesian credible intervals 59 

for ELISA sensitivity (ELISA-SE) and ELISA specificity (ELISA-SP) are shown for each 60 

model.  The modeled assumptions had a minimal effect on the estimated median sensitivity and 61 

specificity.  The median estimates of test sensitivity ranged from 92.78 to 96.05 while estimates 62 

of test specificity ranged from 85.31 to 88.14. 63 

Model  DIC ELISA- SE ELISA-SP 
  Conditional Independence  63.26 93.74 (87.60- 97.97) 87.09 (83.68- 90.13) 
  CD between ELISA & CFT  59.24 92.78 (86.94- 97.44) 86.98 (83.59- 90.03) 
  CD between RBT & CFT  61.31 95.06 (88.25- 99.55) 88.14 (84.09- 98.12) 
  CD between ELISA & RBT  62.44 92.21 (84.90- 97.25) 84.74 (75.55- 97.20) 
     

  CD between EL & RBT, RBT & CFT  60.14 93.19 (81.80- 99.36) 85.31 (75.50- 96.25) 
  CD between EL & CFT, RBT & CFT  61.77 96.05 (89.09- 99.90) 87.88 (83.85- 97.86) 
  CD between EL & RBT, EL & CFT  62.79 92.94 (83.87- 98.05) 84.39 (74.91- 88.89) 
     

  CD between all sensitivity  61.67 92.18 (83.46-97.29) 87.57 (83.78-97.96) 
  CD between all specificity  62.07 93.94 (86.51-99.26)  84.64 (75.54-89.09) 
  CD among all tests  60.19 93.00 (82.10-99.41) 84.18 (74.58-95.15) 
 64 

 65 

  66 
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Supplement 2.  The model structure representing three diagnostic tests and two populations is 67 

presented below.  This WinBUGS code specifies the model structure and was called into R via 68 

the R2WinBUGS package.  We represent ELISA, RBT, and CFT sensitivity as se[1], se[2], and 69 

se[3], respectively and ELISA, RBT, and CFT specificity as sp[1], sp[2], and sp[3], respectively.  70 

Covariance between ELISA and CFT sensitivity and specificity are represented as a12 and b12.  71 

Brucellosis prevalence in the Lower Sabie herd is represented as pr and brucellosis prevalence in 72 

the Crocodile Bridge herd is represented as pr2.  Model structure was modified based work in 73 

Rahman et al. (2013) and Toft et al. (2007).  Additional R or WinBUGS code for this analysis 74 

can be obtained by contacting E. Gorsich (eringorsich@gmail.com). 75 

model 76 
{ 77 
r[1:8] ~ dmulti(p[1:8], n) 78 
r2[1:8] ~ dmulti(p2[1:8], n2) 79 
p[1] <- pr*(se[1]*se[2]*se[3]+se[2]*a13) + (1-pr)*((1-sp[1])*(1-sp[2])*(1-sp[3])+(1-sp[2])*b13) 80 
p[2] <- pr*(se[1]*se[2]*(1-se[3])-se[2]*a13) + (1-pr)*((1-sp[1])*(1-sp[2])*sp[3]-(1-sp[2])*b13) 81 
p[3] <- pr*(se[1]*(1-se[2])*se[3]+(1-se[2])*a13) + (1-pr)*((1-sp[1])*sp[2]*(1-sp[3])+sp[2]*b13) 82 
p[4] <- pr*(se[1]*(1-se[2])*(1-se[3])-(1-se[2])*a13) + (1-pr)*((1-sp[1])*sp[2]*sp[3]-sp[2]*b13) 83 
p[5] <- pr*((1-se[1])*se[2]*se[3]-(1-se[2])*a13) + (1-pr)*(sp[1]*(1-sp[2])*(1-sp[3])-(1-sp[2])*b13) 84 
p[6] <- pr*((1-se[1])*se[2]*(1-se[3])+se[2]*a13) + (1-pr)*(sp[1]*(1-sp[2])*sp[3]+(1-sp[2])*b13) 85 
p[7] <- pr*((1-se[1])*(1-se[2])*se[3]-(1-se[2])*a13) + (1-pr)*(sp[1]*sp[2]*(1-sp[3])-sp[2]*b13) 86 
p[8] <- pr*((1-se[1])*(1-se[2])*(1-se[3])+(1-se[2])*a13) + (1-pr)*(sp[1]*sp[2]*sp[3]+sp[2]*b13) 87 
 88 
p2[1] <- pr2*(se[1]*se[2]*se[3]+se[2]*a13) + (1-pr2)*((1-sp[1])*(1-sp[2])*(1-sp[3])+(1-sp[2])*b13) 89 
p2[2] <- pr2*(se[1]*se[2]*(1-se[3])-se[2]*a13) + (1-pr2)*((1-sp[1])*(1-sp[2])*sp[3]-(1-sp[2])*b13) 90 
p2[3] <- pr2*(se[1]*(1-se[2])*se[3]+(1-se[2])*a13) + (1-pr2)*((1-sp[1])*sp[2]*(1-sp[3])+sp[2]*b13) 91 
p2[4] <- pr2*(se[1]*(1-se[2])*(1-se[3])-(1-se[2])*a13) + (1-pr2)*((1-sp[1])*sp[2]*sp[3]-sp[2]*b13) 92 
p2[5] <- pr2*((1-se[1])*se[2]*se[3]-(1-se[2])*a13) + (1-pr2)*(sp[1]*(1-sp[2])*(1-sp[3])-(1-sp[2])*b13) 93 
p2[6] <- pr2*((1-se[1])*se[2]*(1-se[3])+se[2]*a13) + (1-pr2)*(sp[1]*(1-sp[2])*sp[3]+(1-sp[2])*b13) 94 
p2[7] <- pr2*((1-se[1])*(1-se[2])*se[3]-(1-se[2])*a13) + (1-pr2)*(sp[1]*sp[2]*(1-sp[3])-sp[2]*b13) 95 
p2[8] <- pr2*((1-se[1])*(1-se[2])*(1-se[3])+(1-se[2])*a13) + (1-pr2)*(sp[1]*sp[2]*sp[3]+sp[2]*b13) 96 
 97 
#Priors 98 
pr ~ dbeta(2.35, 4.14) 99 
pr2 ~ dbeta(1.96, 2.78) 100 
se[1] ~  dbeta(6.2881, 1.13) 101 
se[2] ~dbeta(1.9348, 1.018)   102 
se[3] ~ dbeta(2.0791, 1.045)   103 
sp[1] ~ dbeta(6.30745, 1.1361) 104 
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sp[2] ~ dbeta(8.077, 1.0142)   105 
sp[3] ~ dbeta(2.5335, 1.003) 106 
ll1 <- max(-(1-se[1])*(1-se[3]), -se[1]*se[3]) 107 
ul1 <- min(se[1]*(1-se[3]),(1-se[1])*se[3]) 108 
a13 ~ dunif(ll1,ul1) 109 
ll2 <- max(-(1-sp[1])*(1-sp[3]), -sp[1]*sp[3]) 110 
ul2 <- min(sp[1]*(1-sp[3]),(1-sp[1])*sp[3]) 111 
b13 ~ dunif(ll2,ul2) 112 
 113 
# correlation between ELISA and CFT  114 
cc_a13 <- a13/(sqrt(se[1]*(1-se[1]))*sqrt(se[3]*(1-se[3]))) 115 
cc_b13 <- b13/(sqrt(sp[1]*(1-sp[1]))*sqrt(sp[3]*(1-sp[3]))) 116 
} 117 


