

AN ABSTRACT OF THE THESIS OF

Michael M. Anderson for the degree of Master of Science in Computer Science

presented on June 13, 2013.

Title: Physical Activity Recognition of Free-Living Data Using Change-Point Detection

Algorithms and Hidden Markov Models

Abstract approved:
Weng-Keen Wong

Physical activity recognition using accelerometer data is a rapidly emerging field with
many real-world applications. Much of the previous work in this area has assumed that
the accelerometer data has already been segmented into pure activities, and the activity
recognition task has been to classify these segments. In reality, activity recognition
would need to be applied to ”free-living” data, which is collected over a long, continuous
time period and would consist of a mixture of activities. In this thesis, we explore two
approaches for segmenting realistic free-living time series data. In the first approach,
we apply a top-down strategy in which we segment free-living data using change-point
detection algorithms and then classify the resulting segments using supervised learning
techniques. In the second approach, we employ a bottom-up strategy in which we split
the time series into small fixed-length windows, classify these windows, and then smooth
the predictions using an HMM. Our results clearly show that the bottom-up approach
is far superior to the top-down approach in both accuracy and timeliness of detection.

c©Copyright by Michael M. Anderson
June 13, 2013

All Rights Reserved

Physical Activity Recognition of Free-Living Data Using
Change-Point Detection Algorithms and Hidden Markov Models

by

Michael M. Anderson

A THESIS

submitted to

Oregon State University

in partial fulfillment of
the requirements for the

degree of

Master of Science

Presented June 13, 2013
Commencement June 2014

Master of Science thesis of Michael M. Anderson presented on June 13, 2013.

APPROVED:

Major Professor, representing Computer Science

Director of the School of Electrical Engineering and Computer Science

Dean of the Graduate School

I understand that my thesis will become part of the permanent collection of Oregon
State University libraries. My signature below authorizes release of my thesis to any
reader upon request.

Michael M. Anderson, Author

ACKNOWLEDGEMENTS

I would like to acknowledge and thank my advisor, Dr. Weng-Keen Wong, for providing
me with a clear and overarching vision of this project at all stages of its development, as
well as for his experience and helpfulness with all of the rough patches, sticking points,
and unexpected problems that invariably accompany an endeavor of this magnitude. I
would like to thank Dr. Stewart Trost for providing his expertise and for his generous
assistance in obtaining the datasets that we used for our experiments. I would also like
to thank the members of my committee: Dr. Prasad Tadepalli, Dr. Raviv Raich, and
Dr. Hector Vergara, for giving their time to help supervise the final stages of this project.
Finally, thanks go to all of my family and friends who encouraged and stood by me along
the way. They are too numerous to name but they know who they are.

TABLE OF CONTENTS
Page

1 Introduction 1

2 Related Work 3

3 Methodology 5

3.1 Datasets . 5
3.1.1 Synthetic Data (OSU Hip) . 5
3.1.2 LiME . 7

3.2 Featurization . 8

3.3 Base Classifiers . 10

3.4 Top-Down Approach . 11
3.4.1 Change-Point Detection . 11
3.4.2 Experimental Setup . 12

3.5 Bottom-Up Approach . 15
3.5.1 HMMs . 15
3.5.2 Experimental Setup . 17

3.6 Performance Metrics . 18

4 Results 20

4.1 Top-Down . 20

4.2 Bottom-Up . 25

4.3 Discussion . 29

4.4 Timing . 30

5 Conclusion 35

Bibliography 35

LIST OF FIGURES
Figure Page

3.1 Sample data from the OSU Hip and LiME datasets. Both datasets are
triaxial and each axis is shown in a different color. 6

3.2 Reference and Test Data . 12

3.3 Data Lifecycle of Change-Point Detection Experiments 13

3.4 Visual Interpretation of an HMM . 17

3.5 Data Lifecycle of HMM Experiments . 18

3.6 An example time series with 20 ticks of data, from a dataset with three
classes: A, B, and C. Four true class labels and their associated windows
are shown above the axis; four predicted class labels and their associated
windows are shown below the axis. 18

4.1 OSU Hip Results. Graphs are organized into rows by base classifier, and
columns by evaluation metric. Change-point detection results were aver-
aged over 30 splits into training, testing, and validation datasets. Error
bars show a 95% confidence interval around the average. 22

4.2 LiME Day 1 Results. Graphs are organized into rows by base classifier,
and columns by evaluation metric. Change-point detection results were
averaged over 30 splits into training, testing, and validation datasets. Er-
ror bars show a 95% confidence interval around the average. 23

4.3 LiME Day 2 Results. Graphs are organized into rows by base classifier,
and columns by evaluation metric. Change-point detection results were
averaged over 30 splits into training, testing, and validation datasets. Er-
ror bars show a 95% confidence interval around the average. 24

4.4 OSU Hip Results. Comparison of base classifier performance with and
without the HMM smoothing layer, with test data split into fixed window
sizes. Graphs are organized into rows by base classifier, and columns by
evaluation metric. Error bars show a 95% confidence interval. 26

4.5 LiME Day 1 Results. Comparison of base classifier performance with and
without the HMM smoothing layer, with test data split into fixed window
sizes. Graphs are organized into rows by base classifier, and columns by
evaluation metric. Error bars show a 95% confidence interval. 27

LIST OF FIGURES (Continued)
Figure Page

4.6 LiME Day 2 Results. Comparison of base classifier performance with and
without the HMM smoothing layer, with test data split into fixed window
sizes. Graphs are organized into rows by base classifier, and columns by
evaluation metric. Error bars show a 95% confidence interval. 28

4.7 Comparison of top-down and bottom-up results for OSU Hip. Graphs are
organized into rows by base classifier, and columns by evaluation metric.
Results for false positives per second of {0.005, 0.01, 0.017, 0.019, 0.021,
0.024, 0.028, 0.033, 0.05, 0.1} are top-down experiments, while results for
false positives per second of {0.017, 0.019, 0.021, 0.024, 0.028, 0.033} are
bottom-up experiments. 32

4.8 Comparison of top-down and bottom-up results for LiME Day 1. Graphs
are organized into rows by base classifier, and columns by evaluation met-
ric. Results for false positives per second of {0.005, 0.01, 0.05, 0.1} are top-
down experiments, while results for false positives per second of {0.017,
0.019, 0.021, 0.024, 0.028, 0.033} are bottom-up experiments. 33

4.9 Comparison of top-down and bottom-up results for LiME Day 2. Graphs
are organized into rows by base classifier, and columns by evaluation met-
ric. Results for false positives per second of {0.005, 0.01, 0.05, 0.1} are top-
down experiments, while results for false positives per second of {0.017,
0.019, 0.021, 0.024, 0.028, 0.033} are bottom-up experiments. 34

LIST OF TABLES
Table Page

3.1 Statistics used to convert time series windows into feature vectors (taken
from [42]). T is the number of ticks in the given time series, x and v are
individual axes of the time series data, and x(i) is the ith data tick of x. . 9

Chapter 1: Introduction

One of the general goals of artificial intelligence is to build computing devices that are
“context-aware”, that act as more than just passive number-crunching machines that
receive input data through very restrictive and wholly human-operated channels such
as a keyboard or mouse. Context-aware devices are capable of using sensor data to
understand the environment that they are situated in, such as the locations of nearby
objects and how the objects are moving [1]. One subfield of context-aware computing
that has been receiving considerable attention in recent years is activity detection. The
goal of activity detection is to build computer plus sensor systems that are able to
determine what activity a human subject is performing at any given moment.

Such systems have a variety of real-world applications. Research is exploring the
feasibility of using both wearable and non-wearable sensor systems to monitor the health
of elderly patients that have or are at risk of developing degenerative physical and mental
diseases [10]. The goal is to build sensor-based monitoring systems that can aid doctors
and family members in tracking the decline of patients over time. Also, detection of
an abnormal activity may indicate that a senior is undergoing a serious medical event
such as a heart attack or slip-and-fall [39]. Another application of activity detection
is to track the energy expenditure of subjects as they go through the course of their
day. The traditional method of performing such tracking is with self-reporting by the
subject of their activities. Wearable sensors offer an alternative approach that is not
susceptible to misreporting due to bias, poor memory, or other confounding factors that
a human reporter introduces into the system. One approach is to use sensor data to
estimate the vigorousness or metabolic equivalent (MET) of an activity and calculate
energy expenditure directly [31], while another is to attempt to predict the type of
activity performed, and calculate energy expenditure using knowledge of how vigorous
that activity is generally [37].

Activity detection generally assumes that sensor data will be represented as a time
series, and that at any given moment in the time series the subject is performing one
and only one type of activity. Thus the time series is thought of as being partitioned

2

into a number of non-overlapping intervals (windows), which are delimited by moments
in time when the subject stopped performing one activity and started performing an-
other. Previous work has treated activity detection as an offline problem, and has rarely
considered performance metrics other than accuracy. In this work we are interested in
the feasibility of partitioning and classifying a time series on free-living data in real time.
In addition to accuracy, we will also evaluate our algorithms in terms of the amount of
time required to detect that an activity change has occurred.

We used change-point detection to partition time series data into activity windows
for classification. Change-point detection is a field of statistics popular in control theory
and other similar applications. We call this our top-down approach, because this method
takes as input an initial time series and partitions it into smaller pieces using change-point
detection. As an alternate approach we used the well-known technique of partitioning
the time series into small fixed-length, non-overlapping windows, predicting the activity
type of each window using a base classifier, treating that prediction as the observable
state of an HMM, and then finally solving the HMM for its hidden states. We call this
our bottom-up approach, because we begin with small windows of fixed-length, and use
an HMM to smooth windows together into larger activity intervals.

We found that the bottom-up approach outperformed the top-down approach in
terms of both accuracy and detection time, for all of the datasets and base classifiers
that we tried.

3

Chapter 2: Related Work

As mentioned in the previous chapter, sensor systems may consist of environmental or
wearable devices. Some examples of environmental sensors that activity detection re-
searchers have used to gather data are microphones [10], weight detection panels [25],
cameras [9], and water usage detectors [10]. Researchers will generally place environ-
mental sensors inside of a house, have subjects live in the house for a period of time, and
attempt to predict for activity types such as cooking and watching TV.

Various wearable devices have been tried as well, such as RFID gloves [12], [25], but
the most popular wearable for activity detection purposes is the accelerometer. Besides
being inexpensive, accelerometers tend to be small and lightweight, and so are fairly
unobtrusive and user-friendly. Accelerometers also gather data at a high frequency, and
as such may be used to collect a sizeable amount of data in a relatively short amount of
time.

Whether or not an accelerometer will yield data that is discriminative for a set of
activity types depends partially on where the accelerometer is worn on a subject’s body.
For example, an accelerometer worn on the ankle will be more discriminative for the
activity of cycling than it would be if it was worn on the hip, and different types of
arm movements will likely be discriminated only by an accelerometer worn on the arm.
For this reason some researchers have opted to use multiple accelerometer systems to
capture movement information from different parts of the body [4], [8]. However, this
approach can be cumbersome for the wearer, so a single accelerometer is preferred when
it is reasonable to assume that it will be discriminative for the relevant set of activities.
Recent research has noticed that real subjects are likely to carry smartphones with
built-in accelerometers, and has explored the possibility of collecting data from those
accelerometers for activity detection purposes [4], [7], [14], [21].

Activity sensor data tends to be noisy and not amenable to a deterministic or rule-
based analysis, so activity types are typically modeled probabilistically, and activity
detection is usually formulated as a supervised learning problem. The various common
supervised learning algorithms are all familiar to the activity detection literature, though

4

neural networks are especially popular, such as in [2], [29], [31]. More complicated
modeling approaches have also been tried, such as plurality voting with bagged, boosted,
and stacked classifiers [22]; conditional random fields [6], [12], [38], [40]; and HMMs [12],
[15], [20], [40].

In the past few years researchers have begun to recognize the need to test on realistic
free-living data [12], [14], [32], [40]. The time required to detect that a change in activity
has occurred was considered in [11], [28], but in the context of the very different problem
of video activity recognition. Our work is one of the first to consider the feasibility of
performing accelerometer activity recognition in real time by using both accuracy and
detection time as performance metrics.

5

Chapter 3: Methodology

3.1 Datasets

For our experiments we were interested in testing our algorithms on real-world free-living
data. In the past researchers have gathered activity data under unrealistic laboratory
conditions, and unfortunately there are not many labeled free-living datasets publicly
available. We tested our algorithms on two datasets that were available to us. The first
was synthetically generated by concatenating lab visit data together, while the second
was real-world free-living data.

3.1.1 Synthetic Data (OSU Hip)

We generated a synthetic, free-living dataset using physical activity data collected by
Stewart Trost of the Nutrition and Exercise Sciences department of Oregon State Uni-
versity [37], [41]. This dataset consisted of 91 time series collected over a 2-week period
in a laboratory environment, from 50 children between the ages of 5 and 15. Subjects
performed 12 different types of activities over two separate lab visits, with a hip-worn
ActiGraph GT1M accelerometer that collected triaxial acceleration data at a frequency
of 30Hz (see top graph of Figure 3.1).

Data was collected from two separate visits to the lab, where the subjects performed
6 activities per visit. Each subject performed the 12 activities in the same order. In the
version of the dataset available to us, we had all 12 activities of 41 of the subjects, only
the first 6 activities of an additional 5 subjects, and the last 6 activities of the remaining
4 subjects. Subjects were given breaks in between each activity and activities lasted
5-10 minutes, however, these unlabelled breaks were removed from the version that we
used. Additionally, only two minutes of data were available for each subject, so time
series consisted of six 120 second long activities. We concatenated the data from these
six activities together to create a synthetic, free-living dataset. Each of the 91 time series
contained a total of 6 ∗ 120 ∗ 30 = 21600 data ticks.

6

120 240 360 480 600 720
0

1

2

3

4

5

6

Time (Seconds)

A
m

pl
itu

de

Sample OSU Hip Time Series

Computer Game Sweeping Brisk Walking Basketball Running Treadmill Walking

Figure 3.1: Sample data from the OSU Hip and LiME datasets. Both datasets are
triaxial and each axis is shown in a different color.

7

We determined that several of the activities were very similar and that it would be
difficult to discriminate between them. As a result, we combined some of them together
to create a 7-class version of the data. The classes were lying down, sitting (hand-writing,
computer game), standing (laundry, sweeping, and catch), walking (comfortable, brisk
and treadmill walking), dancing, running, and basketball.

3.1.2 LiME

This dataset consisted of 23 time series, each containing roughly 10 continuous days worth
of data from an individual subject. It was collected by Helen Brown from the Univerity
of Cambridge, and Gemma Ryde from the University of Stirling, Scotland. Subjects
wore an ActiGraph GT3X+ accelerometer during the entire period, which collected
triaxial acceleration data at a frequency of 30Hz, as well as an activPal inclinometer
on their thighs. The inclinometer provided what we considered the ground truth labels
of the data by automatically delimitting and classifying intervals using the orientation
of the subject’s thigh at any given moment. It classified a horizontal orientation as
lying down/sitting, a vertical orientation as standing, and a combination of the two as
walking. The bottom graph of Figure 3.1 shows a time series segment from the dataset
that contains all 3 activities.

This dataset was challenging to work with because of its size, as each individual time
series contained roughly 25 million ticks of data. To help alleviate this problem, we split
each time series into individual days. We then treated the first full 24 hour period of
data that began at midnight, from each subject, as one whole dataset (LiME Day 1),
and the second such period as a separate dataset (LiME Day 2). We did not use any
data from the remaining days.

In contrast to the OSU Hip dataset, LiME was not synthetic and activity lengths
were variable. For LiME Day 1, the average activity length was 100 seconds with a
standard deviation of 881 seconds, and the median length was 12 seconds. The average
number of activities per time series was 871. As would be expected, statistics for LiME
Day 2 were comparable: the average activity length was 104 seconds with a standard
deviation of 803 seconds, and the median length was 12 seconds. The average number
of activities per time series was 834. The medians were relatively small because many of
the activities were short, while the mean and standard deviations were larger because a

8

few of the activities were extremely long (e.g. when subjects were sleeping).

3.2 Featurization

To formulate our experiments as classification problems, we split each time series into a
set of non-overlapping windows and represented each window as a feature vector. How
we decided where one window ended (and where the next began) varied between experi-
ments, and is described in sections 3.4 and 3.5. Our feature set was a large collection of
statistics that have been shown to be discriminative for activity classification in previous
research [16], [24], [31], [41]. In all we used 18 statistics that were uniaxial, i.e. were
only a function of the data from a single axis of a given window, as well as one biaxial
statistic. The uniaxial statistics were applied to data from each axis separately, and the
biaxial statistic was applied to data from each of the C3

2 = 3 possible pairs of axes, for
a total of 18 ∗ 3 + 3 = 57 features.

9

F1. Sum of values of a period of time:
∑T

i=1 x(i).

F2. Mean: µx = 1
T

∑T
i=1 x(i).

F3. Standard deviation: σx =
√

1
T

∑T
i=1[x(i)− µx]2.

F4. Coefficients of variation: σx
µx

.

F5. Peak-to-peak amplitude: max{x(1), ..., x(T)} −min{x(1), .., x(T)}.

F6-10. Percentiles: 10th, 25th, 50th, 75th, 90th.

F11. Interquartile range: difference between the 75th and 25th percentiles.

F12. Lag-one-autocorrelation:
PT−1

i=1 [x(i)−µx][x(i+1)−µx]PT
i=1[x(i)−µx]2

.

F13. Skewness:
1
T

PT
i=1[x(i)−µx]3

(1
T

PT
i=1[x(i)−µx]2)

3
2

, asymmetry of the signal probability distribution.

F14. Kurtosis:
1
T

PT
i=1[x(i)−µx]4

(1
T

PT
i=1[x(i)−µx]2)3

− 3, peakedness of the signal probability distribution.

F15. Signal power:
∑T

i=1 x(i)2.

F16. Log-energy:
∑T

i=1 log[x(i)2].

F17. Peak intensity: number of signal peak appearances.

F18. Zero crossings: number of times the signal crosses its median.

F19. Correlation between each pair of axes:
PT

i=1[x(i)−µx][v(i)−µv]qPT
i=1[x(i)−µx]

PT
j=1[v(j)−µv]

.

Table 3.1: Statistics used to convert time series windows into feature vectors (taken from
[42]). T is the number of ticks in the given time series, x and v are individual axes of
the time series data, and x(i) is the ith data tick of x.

One discriminative characteristic of an activity is its overall vigorousness. The sum
[F1] and the sample mean [F2] both act as simple and obvious ways of measuring vigor-
ousness, as more intense activities will tend to involve higher rates of acceleration during
movement. We also used the 10th [F6], 25th [F7], 50th [F8], 75th [F9], and 90th [F10]

10

percentiles of the data, as well as signal power [F15] and log energy [F16] as supplemental
measures of overall activity intensity.

Another characteristic of an activity is how much it varies in intensity. The sam-
ple standard deviation [F3], coefficient of variation [F4], peak-to-peak amplitude [F5],
number of zero crossings [F18], as well as the interquartile range [F11] were useful for
discriminating between activities with a consistent level of intensity (low variance, etc.)
and activities that were more rhythmic or staccato in intensity (high variance, etc.).

Lag-one-autocorrelation [F12], skewness [F13], kurtosis [F14], and peak intensity
[F17] were useful for discriminating between activities that tend to be similar in their
overall intensity and variation in intensity, but that yielded data with other types of
difference in shape. Skewness indicates whether the data is more concentrated above
or below its mean. Kurtosis indicates that the data is concentrated near its mean or
conversely that it is fat-tailed. Lag-one-autocorrelation is a measure of the general re-
lationship between data ticks and their immediate neighbors in time. Peak intensity is
the number of times that the data repeatedly reached its maximum value.

Finally we looked at a single bimodal statistic across each pair of axes, the correlation
coefficient [F19], which discriminates between activities where acceleration values in one
axis are predictive of acceleration values in another axis, versus activities where that is
not the case.

3.3 Base Classifiers

We tested three classification models on the featurized versions of our data: decision
trees, support vector machines, and neural networks. We used R for our experiments,
and used the R libraries ‘rpart’ [36], ‘e1071’ [18], and ‘nnet’ [23] to build our decision tree,
SVM, and neural network models, respectively. Default rpart values were used for the
decision tree experiments. The rpart package implements a procedure for automatically
tuning how aggressively it prunes its decision tree models, and hence our validation set
was not used to tune this parameter. For the neural net experiments, the maximum
number of iterations was set to 100000, and the maximum number of weights was set to
1000000.

For the OSU Hip experiments we tuned the cost parameter C of the svm on the
validation set with 6 values: {0.01, 0.1, 1, 10, 100, 1000}. The single-layer feed-forward

11

neural network took two tuning parameters, and we tuned with each 2-tuple from the
set N ×W , where N = {1, 2, . . . , 30} was the numbers of nodes in the hidden layer, and
W = {0, 0.5, 1} was the weight decay parameter.

Since the LiME datasets were an order of magnitude larger, we tuned them slightly
differently because of time constraints. Setting the C parameter to 1000 proved to
be very computationally expensive for the SVM model; instead we tuned C from the
values {0.01, 0.1, 1, 10, 100}. Running 30 ∗ 3 = 90 tuning experiments for the neural
networks was also prohibitively expensive; instead we tuned using values from N ×W =
{5, 10, 15} × {0, 0.5, 1}.

3.4 Top-Down Approach

3.4.1 Change-Point Detection

For this approach, the data was split into non-overlapping segments using techniques
from the statistical field of change-point detection. Change-point detection has found
application in many problem domains that require analysis of time series data from
dynamic systems, including failure detection [3], quick detection of attacks on computer
networks [34], and monitoring of heartbeat fluctuations during sleep [30]. Change-point
detection techniques assume that each tick of a time series is a draw from some probability
distribution, but that the distribution may suddenly change as time passes. The goal is
to predict when these changes have occurred. A score is generated for each time tick,
and if the score is above a given threshold a change is predicted to have occurred between
that tick and its immediate predecessor. To generate a score at a time tick, a window
of data that immediately preceeds it (the reference data) is compared to it along with a
window of data that immediately follows it (the test data), as shown in Figure 3.2.

Model-based approaches to change-point detection assume that each tick in a time
series is a draw from some underlying probability distribution. Scores are generated
by estimating the distribution of the reference data and the test data, and then by
calculating the likelihood that the two distributions are different. Parametric estimation
methods have been employed where is it reasonable to assume that the given data belongs
to a particular family of distributions [35]. Non-parametric methods have also been found
to be viable where no such modeling assumptions are reasonable [17]. Distance-based

12

Figure 3.2: Reference and Test Data

approaches such as Singular Spectrum Analysis generate scores through other metrics of
dissimilarity or difference between the reference data and the test data [19]. Notationally,
we say that for each tick i in a time series:

s(i) = D(Xr(i), Xt(i))

Where s(i) is the score of the ith tick, Xr(i) is the reference data associated with the
ith tick, Xt(i) is the test data associated with the ith tick, and D(A,B) is a function that
computes the dissimiliarity between a matrix of data A and matrix of data B. D(A,B)
varies between change-point algorithms. Note that for a given algorithm it may not be
possible to generate scores right at the very beginning of the time series (insufficient
reference data) or at the very end of a time series (insufficient test data).

3.4.2 Experimental Setup

Each dataset that we tested consisted of multiple time series gathered from a number
of different subjects. To perform an experiment on a dataset we began by partitioning

13

Figure 3.3: Data Lifecycle of Change-Point Detection Experiments

the set of time series into disjoint subsets of training, validation, and testing data. Each
individual time series was then partitioned into a set of non-overlapping windows, and
each window was converted into its own feature vector. Once the dataset was featurized,
the experiment could be treated as a typical classification problem. Classifiers were built
with the training set, and tuned (when necessary) on the validation set. Finally, the
tuned model was evaluated by prediction on the testing set. A visualization of the data
lifecycle is shown in Figure 3.3.

There are many different modeling assumptions and associated algorithms for gen-
erating change-point detection scores, and one simple baseline approach that we wanted
to test was the Shewhart Control Chart [27]. This approach assumes that the reference
data is drawn from a multivariate normal distribution, and that scores are calculated by
the Mahalanobis distance of the target time tick from the estimated multivariate normal:

s(i) =

√
[X̄r(i)−X(i)]T

1
Sr(i)

[X̄r(i)−X(i)]

where X̄r(i) is the sample mean of the reference data, Sr(i) is the sample covariance
matrix of the reference data, and X(i) = Xt(i) is the ith data point.

We were also interested in testing the performance of a newer and more sophisticated
change-point detection algorithm: the Kullback-Leibler Importance Estimation Proce-
dure (KLIEP) [13], [33]. This approach generates scores using the Kullback-Leibler (KL)
divergence between the reference data and the test data. One method of doing this is

14

to estimate the density of the reference distribution and test distribution separately,
and then compare them using a likelihood ratio (known in the change-point detection
literature as importance). Instead, KLIEP estimates the importance directly using a
non-parametric model.

Let the estimate of the importance R̂ be represented by this model:

R̂ =
pt
p̂r

=
Tt∑
i=1

αjKG(Xrt, Xt(j))

Where pr and is the probability density of the reference data, hatpr is the estimate
of pr, pt is the probability density of the test data, Tt is the number of ticks in the test
window, α is a vector of model parameters to solve for, Xrt is the concatenation of the
reference and the test data, Xt(i) is the ith element of the test data, and KG[A,B] is
the Gaussian kernel with width σ:

KG[A,B] = exp
(
−||A−B||

2

2σ2

)
Now solve for α so that the empirical KL divergence between p̂t and pt = R̂pr is

minimized, which is equivalent to the following convex optimization problem:

max
α

Tt∑
j=1

log

(
Tt∑
k=1

αkKG[Xt(j), Xt(k)]

)

s.t.
1
Tr

Tr∑
j=1

Tt∑
k=1

αkKG[Xr(j), Xt(k)] = 1

and α1 . . . αTt ≥ 1

Finally, the scores that we wish to generate are just the estimate of the importance
given by the solution to the complex optimization problem, i.e. s(i) = R̂(i).

Since this approach uses a Gaussian kernel, it requires the selection of a kernel width σ
for each time tick. We used an implementation of KLIEP that is available at Sugiyama’s
website (http://sugiyama-www.cs.titech.ac.jp/ sugi/software/KLIEP/), which included
a cross-validation procedure for the value of σ. The CV procedure chooses a number of
disjoint splits of the test data along with a number of different candidate σ’s, and runs
KLIEP with each combination of split and candidate σ. Then it chooses the candidate

15

σ that, on the average across all of the splits, maximizes the KL divergence (the maxα
equation above) the most.

For the OSU Hip dataset, we used this CV procedure to choose the kernel width.
This computationally intensive approach was impractical for the UQ dataset because it
is orders of magnitude larger, so instead of running it on every tick of that data, we ran
the CV procedure on a small sample of data. From this smaller sample we were able to
empirically identify 0.01 as a plausible σ, and so fixed σ at that value for our experiments
on that dataset.

Our selection of reference and test window sizes were informed by two considerations:
first that the window sizes contain enough data to accurately model the reference and
test distributions, and second that the window sizes were small enough to detect activity
changes at real time speeds. Previous research [41] found that a reference window size
of 10 seconds contained just enough information to discriminate well between OSU Hip
activities. Since this window size worked well in previous experiments, and since the
activities of the UQ dataset were comparable in average length, we decided to fix our
reference window size at 10 seconds for both datasets. Because we were interested in
minimizing detection time, and because 1 second was the smallest window that we felt
could provide some information about an activity, we fixed our test window size at 1
second for both datasets.

Once change-point detection scores were generated, we tested a number of threshold
values that determined which scores were high enough to be considered a predicted
change-point. Threshold values were chosen by considering the false positive rates of
change prediction for the change-point detection algorithms. A smaller false positive rate
corresponded to a higher and more conservative threshold, which split the time series
into fewer segments. A larger false positive rate corresponded to a lower threshold, which
split the time series into more segments.

3.5 Bottom-Up Approach

3.5.1 HMMs

An alternate technique to our change-point detection approach was based around the
Hidden Markov Model (HMM). An HMM is a temporal graphical model that contains

16

a set of hidden states H = {H0, H1, . . . ,Hw} as well as a set of observed states O =
{O1, O2, . . . , Ow} (see Figure 3.4). The index of either type of state represents a point
in time, such that if there exists two indices i and j where i < j, i is thought of as
having happened before j. Each hidden state in the model contains a value from the
state space U = {U1, U2, . . . , U`}, and each observed state contains a value from the
observation space V = {V1, V2, . . . , Vm}. The values of the hidden states are unknown,
and the values of the observable states are known. It is also assumed that, as indicated
by Figure 3.4, that the value of an observable state Oi is dependent only the value of the
corresponding hidden state Hi, and that the value of any hidden state Hi is dependent
only on the value of its immediate predecessor Hi−1.

Furthermore, the dependencies between hidden states and their followers are as-
sumed to be described by a stationary stochastic process known as the transition model,
T : U2 → [0, 1]. The dependencies between a hidden state and its adjacent observable
state are assumed to be part of a separate but also stationary stochastic process known
as the observation model, S : U × V → [0, 1]. In other words, both models can be
thought of as a function of two values, that output the probability of a change from
the first value to the second via a dependency arc in the HMM. The usual approach to
estimating T and S given only O is an application of expectation maximation known
as the Baum-Welch algorithm [5], which is useful for finding T̂ and Ŝ that are locally
maximally likely. However, suppose a training HMM 〈Htr, Otr〉 with the same model
parameters is given, and the values of all of its hidden states as well as its observable
states are known. T and S are then approximated by the following global maximum
likelihood estimators:

T̂ (Ui, Uj) =
|{Hk ∈ Htr | Hk = Ui and Hk+1 = Uj}|

|{Hk ∈ Htr | Hk = Ui}|

Ŝ(Ui, Vj) =
|{Hk ∈ H | Hk = Ui and Ok = Vj}|

|{Hk ∈ H | Hk = Ui}|

Finally, if all of the values of O are known, and we are given a T̂ and an Ŝ estimated
from a training HMM, then the goal we are interested in is to use that information (along
with the model assumptions) to find the most likely values for each state in H. There
exists a polynomial-time dynamic programming solution to this problem known as the

17

Figure 3.4: Visual Interpretation of an HMM

Viterbi algorithm. [26]

3.5.2 Experimental Setup

The data lifecycle for the HMM experiments is shown in Figure 3.5. We began by
partitioning each time series into small non-overlapping windows, where each window
corresponded to a discrete time index in the HMM. Within a given experiment the
window size was fixed, but across different experiments we tested window sizes of length
{10, 12, 14, 16, 18, 20}. After the time series were partitioned they were then featurized.
Classification models were built with training data, and tuned (in the case of the SVM
and neural net models) using validation data, in the same way that has already been
described previously in this chapter.

Unlike the change-point detection experiments, this experiment required that the
data be split into 4 equal parts: training (classifier), validation, training (HMM), and
testing rather than 3. Here we formulated the problem of making predictions on the
testing set in terms of an HMM by treating the second training set as a training HMM.
In our datasets we let H be the ground truth activity classes of the windows, and O be
the predicted activity classes of the windows, where the predictions were made by the
classifiers trained on the first training set. We used the procedure above to calculate T̂
and Ŝ, and assumed that these estimates held for the testing set as well as the second

18

Figure 3.5: Data Lifecycle of HMM Experiments

training set. We then used the tuned base classifier to predict on the testing set, giving
us O. Finally, we used O, T̂ , and Ŝ to run the Viterbi algorithm on the testing set and
predict the ground truth activity classes H.

3.6 Performance Metrics

Figure 3.6: An example time series with 20 ticks of data, from a dataset with three
classes: A, B, and C. Four true class labels and their associated windows are shown
above the axis; four predicted class labels and their associated windows are shown below
the axis.

To measure the performance of our classification algorithms we used two metrics.
Accuracy is defined as the number of ticks that an algorithm correctly classifies in a
time series, over the total number of ticks in the time series. Accuracy is computed

19

by counting the number of correctly predicted ticks for each true window separately,
summing the counts, and dividing by the total number of ticks. An example section of
a time series is shown in Figure 3.6, and the accuracy of the shown predictions is given
as follows:

Accuracy =
CPT(A1) + CPT(B) + CPT(C) + CPT(A2)

(Total number of ticks)
=

3 + 3 + 0 + 4
20

= 50%

where CPT(.) is the number of correctly predicted ticks in an interval, and A1 and
A2 are the true class ”A” windows.

Since we were also interested in our algorithms’ feasibility for activity classification
in real time, we used detection time as a second metric. Detection time is computed
by counting how many ticks are required for a prediction algorithm to start correctly
predicting the class, after a true window begins. These counts are summed, and then
divided by the number of true activities.

Consider again the time series segment in Figure 3.6. Over the true window beginning
at tick 1 (class A), the algorithm predicts A immediately, so the detection time for that
window is 0. Over the second true window beginning at tick 4 (class B), the algorithm
does not start predicting B until tick 6 so the detection time for that window is 6−4 = 2.
Over the third true window starting at tick 9 (class C), the algorithm never predicts C,
so the detection time for that window is 3, the full length of the window. Over the fourth
true window starting at tick 12 (class A), the algorithm starts to predict C at tick 14,
but does not predict A until tick 16, so the detection time for that window is 16−12 = 4.
Thus the average detection time over the time series segment is:

(0 + 2 + 3 + 4) ticks
4 windows

=
9
4

ticks per window

In the change-point detection experiments accuracy and detection time were averaged
over 30 random splits of the given dataset into training, validation, and testing sets.
Because the HMM experiments were more computationally expensive, accuracy and
detection time were averaged over 10 random splits of the given dataset into training
(base classifier), validation, training (HMM), and testing sets.

20

Chapter 4: Results

4.1 Top-Down

Results for our change-point detection experiments are given in Figures 4.1-4.3. The
performance of the change-point detection algorithms depended heavily on the thresh-
old level for change prediction. In our experiment we varied the threshold level, thus
changing the false positive rate. A large number of false positives per second were
tested, but for the sake of brevity only a representative sample of {0.005, 0.01, 0.05, 0.1}
are shown here.

In the OSU Hip experiments, control charts outperformed KLIEP in terms of detec-
tion time (Figures 4.1.2, 4.1.4, 4.1.6), while the accuracy results (Figures 4.1.1, 4.1.3,
4.1.5) were mixed. Except when predicted windows are large enough to span across mul-
tiple true activities, it is generally expected that accuracy will decrease as false positive
rate increases because small windows contain less information and are less discriminative
than larger windows. This behavior is seen in the control chart accuracy results (grey
bars in Figures 4.1.1, 4.1.3, 4.1.5), but not in the KLIEP accuracy results (white bars
in Figures 4.1.1, 4.1.3, 4.1.5). Follow-up experiments showed that KLIEP peaks in ac-
curacy for false positives per second between 0.2 and 0.3 for all three classifiers. KlIEP
seemed to perform best on this dataset when it was given many opportunities to predict
changes.

Further investigation indicated that across the OSU Hip dataset the KLIEP algorithm
was unable to detect many of the different activity changes without a very low score
threshold value (and a very high false positive rates). Some qualitative plotting of the
OSU Hip data showed that most of its activities have accelerometer amplitude values that
strongly resemble draws from a multivariate normal distribution. Since control charts
assume that the data is drawn from a distribution that is a member of that family,
it is logical that control charts would outperform algorithms with different modeling
assumptions on OSU Hip.

In the LiME experiments, KLIEP outperformed control charts in terms of accuracy

21

across the board, and control charts outperformed KLIEP in terms of detection time
across the board. This suggests that in general control charts correctly detected true
changes more quickly, but that after a correct change prediction it was more likely to
make an incorrect change prediction.

In a few cases (Figures 4.1.2, 4.1.6, 4.2.6) the detection time did not decrease as the
false positive rate increased. On the face of it this would seem to be a non-sequitur, but
this only happened in cases when accuracy also decreased (Figures 4.1.1, 4.1.5, 4.2.5).
Smaller window sizes tend to be correlated with decreased detection times, but it is
possible that predicting with smaller windows, if they happen to contain an insufficient
amount of discriminative data, can actually increase the time required for the classifier
to start correctly predicting the ground-truth activity. Additionally, the given increases
in detection time were small and within confidence bounds.

22

0.005 0.01 0.05 0.1
0

10

20

30

40

50

60

70

80

90

100

False Positives / s

 A
cc

ur
ac

y
(%

)

Figure 4.1.1: Decision Tree Accuracy

CC
KLIEP

0.005 0.01 0.05 0.1
0

20

40

60

80

100

False Positives / s

 D
et

ec
tio

n
T

im
e

(s
)

Figure 4.1.2: Decision Tree Detection Time

CC
KLIEP

0.005 0.01 0.05 0.1
0

10

20

30

40

50

60

70

80

90

100

False Positives / s

 A
cc

ur
ac

y
(%

)

Figure 4.1.3: SVM Accuracy

CC
KLIEP

0.005 0.01 0.05 0.1
0

20

40

60

80

100

False Positives / s

 D
et

ec
tio

n
T

im
e

(s
)

Figure 4.1.4: SVM Detection Time

CC
KLIEP

0.005 0.01 0.05 0.1
0

10

20

30

40

50

60

70

80

90

100

False Positives / s

 A
cc

ur
ac

y
(%

)

Figure 4.1.5: Neural Network Accuracy

CC
KLIEP

0.005 0.01 0.05 0.1
0

20

40

60

80

100

False Positives / s

 D
et

ec
tio

n
T

im
e

(s
)

Figure 4.1.6: Neural Network Detection Time

CC
KLIEP

Figure 4.1: OSU Hip Results. Graphs are organized into rows by base classifier, and
columns by evaluation metric. Change-point detection results were averaged over 30
splits into training, testing, and validation datasets. Error bars show a 95% confidence
interval around the average.

23

0.005 0.01 0.05 0.1
0

10

20

30

40

50

60

70

80

90

100

False Positives / s

 A
cc

ur
ac

y
(%

)

Figure 4.2.1: Decision Tree Accuracy

CC
KLIEP

0.005 0.01 0.05 0.1
0

20

40

60

80

100

120

140

160

False Positives / s

 D
et

ec
tio

n
T

im
e

(s
)

Figure 4.2.2: Decision Tree Detection Time

CC
KLIEP

0.005 0.01 0.05 0.1
0

10

20

30

40

50

60

70

80

90

100

False Positives / s

 A
cc

ur
ac

y
(%

)

Figure 4.2.3: SVM Accuracy

CC
KLIEP

0.005 0.01 0.05 0.1
0

50

100

150

False Positives / s

 D
et

ec
tio

n
T

im
e

(s
)

Figure 4.2.4: SVM Detection Time

CC
KLIEP

0.005 0.01 0.05 0.1
0

10

20

30

40

50

60

70

80

90

100

False Positives / s

 A
cc

ur
ac

y
(%

)

Figure 4.2.5: Neural Network Accuracy

CC
KLIEP

0.005 0.01 0.05 0.1
0

50

100

150

200

250

False Positives / s

 D
et

ec
tio

n
T

im
e

(s
)

Figure 4.2.6: Neural Network Detection Time

CC
KLIEP

Figure 4.2: LiME Day 1 Results. Graphs are organized into rows by base classifier, and
columns by evaluation metric. Change-point detection results were averaged over 30
splits into training, testing, and validation datasets. Error bars show a 95% confidence
interval around the average.

24

0.005 0.01 0.05 0.1
0

10

20

30

40

50

60

70

80

90

100

False Positives / s

 A
cc

ur
ac

y
(%

)

Figure 4.3.1: Decision Tree Accuracy

CC
KLIEP

0.005 0.01 0.05 0.1
0

20

40

60

80

100

120

140

160

False Positives / s

 D
et

ec
tio

n
T

im
e

(s
)

Figure 4.3.2: Decision Tree Detection Time

CC
KLIEP

0.005 0.01 0.05 0.1
0

10

20

30

40

50

60

70

80

90

100

False Positives / s

 A
cc

ur
ac

y
(%

)

Figure 4.3.3: SVM Accuracy

CC
KLIEP

0.005 0.01 0.05 0.1
0

50

100

150

False Positives / s

 D
et

ec
tio

n
T

im
e

(s
)

Figure 4.3.4: SVM Detection Time

CC
KLIEP

0.005 0.01 0.05 0.1
0

10

20

30

40

50

60

70

80

90

100

False Positives / s

 A
cc

ur
ac

y
(%

)

Figure 4.3.5: Neural Network Accuracy

CC
KLIEP

0.005 0.01 0.05 0.1
0

50

100

150

200

250

False Positives / s

 D
et

ec
tio

n
T

im
e

(s
)

Figure 4.3.6: Neural Network Detection Time

CC
KLIEP

Figure 4.3: LiME Day 2 Results. Graphs are organized into rows by base classifier, and
columns by evaluation metric. Change-point detection results were averaged over 30
splits into training, testing, and validation datasets. Error bars show a 95% confidence
interval around the average.

25

4.2 Bottom-Up

Results for our bottom-up experiments are given in Figures 4.4-4.6. Each experiment
was performed by splitting each time series into windows of fixed length corresponding to
discrete time “ticks” in an HMM, and results for windows of length {10, 12, 14, 16, 18, 20}
seconds are shown.

For all three base classifiers, accuracy was high and stable with respect to window
size, over all three datasets. Detection time was also fairly stable in the OSU Hip
experiments, though as would generally be expected it increased somewhat with window
size in the LiME experiments. Further experiments [results not shown] on the OSU Hip
dataset showed that the accuracy and detection time of our bottom-up approach tends
to be poor for very small window sizes, but that it stabilizes with window sizes that
are greater than roughly 5 seconds. This gives a strong indication that 5 seconds is the
amount of information necessary for the classifiers to become as discriminative as they
can be on the datasets in our work.

Using the HMM tended to give a slight boost in accuracy to the base classifiers, but
at the expense of increased detection time. It is likely that the increase in accuracy was
due to the smoothing of false base classifier predictions that were sandwiched in time
between true base classifier predictions, and that the increase in detection time was due
to the general stickiness of activities. Once the subject started performing an activity
the probability of the subject stopping that activity to start a new one was recognized to
be low, which meant that a true change in activity would be less likely to be confirmed
by the smoothing algorithm immediately.

The experiments also show the reason for the difference in performance between the
top-down and bottom-up approaches. The difference could have been caused by the
use of change-point detection algorithms to segment the data as opposed to using fixed
length windows, or the ability of the HMM to smooth predictions made on temporal data.
The side-by-side comparison of the same fixed window length classification experiments
performed with and without HMM smoothing suggests that the smoothing effect of the
HMM does not explain most of the performance difference, and that the performance
difference between the top-down and bottom-up approaches was mostly due to noisy
segmentation by the change-point detection algorithms.

26

10 12 14 16 18 20
0

10

20

30

40

50

60

70

80

90

100

 A
cc

ur
ac

y
(%

)

Window Sizes (Seconds)

Figure 4.4.1: Decision Tree Accuracy

With HMM
Without HMM

10 12 14 16 18 20
0

2

4

6

8

10

12

 D
et

ec
tio

n
T

im
e

(s
)

Window Sizes (Seconds)

Figure 4.4.2: Decision Tree Detection Time

With HMM
Without HMM

10 12 14 16 18 20
0

10

20

30

40

50

60

70

80

90

100

 A
cc

ur
ac

y
(%

)

Window Sizes (Seconds)

Figure 4.4.3: SVM Accuracy

With HMM
Without HMM

10 12 14 16 18 20
0

1

2

3

4

5

6

 D
et

ec
tio

n
T

im
e

(s
)

Window Sizes (Seconds)

Figure 4.4.4: SVM Detection Time

With HMM
Without HMM

10 12 14 16 18 20
0

10

20

30

40

50

60

70

80

90

100

 A
cc

ur
ac

y
(%

)

Window Sizes (Seconds)

Figure 4.4.5: Neural Network Accuracy

With HMM
Without HMM

10 12 14 16 18 20
0

5

10

15

20

25

30

 D
et

ec
tio

n
T

im
e

(s
)

Window Sizes (Seconds)

Figure 4.4.6: Neural Network Detection Time

With HMM
Without HMM

Figure 4.4: OSU Hip Results. Comparison of base classifier performance with and
without the HMM smoothing layer, with test data split into fixed window sizes. Graphs
are organized into rows by base classifier, and columns by evaluation metric. Error bars
show a 95% confidence interval.

27

10 12 14 16 18 20
0

10

20

30

40

50

60

70

80

90

100

 A
cc

ur
ac

y
(%

)

Window Sizes (Seconds)

Figure 4.5.1: Decision Tree Accuracy

With HMM
Without HMM

10 12 14 16 18 20
0

10

20

30

40

50

60

70

80

90

 D
et

ec
tio

n
T

im
e

(s
)

Window Sizes (Seconds)

Figure 4.5.2: Decision Tree Detection Time

With HMM
Without HMM

10 12 14 16 18 20
0

10

20

30

40

50

60

70

80

90

100

 A
cc

ur
ac

y
(%

)

Window Sizes (Seconds)

Figure 4.5.3: SVM Accuracy

With HMM
Without HMM

10 12 14 16 18 20
0

10

20

30

40

50

60

70

 D
et

ec
tio

n
T

im
e

(s
)

Window Sizes (Seconds)

Figure 4.5.4: SVM Detection Time

With HMM
Without HMM

10 12 14 16 18 20
0

10

20

30

40

50

60

70

80

90

100

 A
cc

ur
ac

y
(%

)

Window Sizes (Seconds)

Figure 4.5.5: Neural Network Accuracy

With HMM
Without HMM

10 12 14 16 18 20
0

10

20

30

40

50

60

70

80

90

 D
et

ec
tio

n
T

im
e

(s
)

Window Sizes (Seconds)

Figure 4.5.6: Neural Network Detection Time

With HMM
Without HMM

Figure 4.5: LiME Day 1 Results. Comparison of base classifier performance with and
without the HMM smoothing layer, with test data split into fixed window sizes. Graphs
are organized into rows by base classifier, and columns by evaluation metric. Error bars
show a 95% confidence interval.

28

10 12 14 16 18 20
0

10

20

30

40

50

60

70

80

90

100

 A
cc

ur
ac

y
(%

)

Window Sizes (Seconds)

Figure 4.6.1: Decision Tree Accuracy

With HMM
Without HMM

10 12 14 16 18 20
0

10

20

30

40

50

60

70

80

 D
et

ec
tio

n
T

im
e

(s
)

Window Sizes (Seconds)

Figure 4.6.2: Decision Tree Detection Time

With HMM
Without HMM

10 12 14 16 18 20
0

10

20

30

40

50

60

70

80

90

100

 A
cc

ur
ac

y
(%

)

Window Sizes (Seconds)

Figure 4.6.3: SVM Accuracy

With HMM
Without HMM

10 12 14 16 18 20
0

10

20

30

40

50

60

70

 D
et

ec
tio

n
T

im
e

(s
)

Window Sizes (Seconds)

Figure 4.6.4: SVM Detection Time

With HMM
Without HMM

10 12 14 16 18 20
0

10

20

30

40

50

60

70

80

90

100

 A
cc

ur
ac

y
(%

)

Window Sizes (Seconds)

Figure 4.6.5: Neural Network Accuracy

With HMM
Without HMM

10 12 14 16 18 20
0

10

20

30

40

50

60

70

80

 D
et

ec
tio

n
T

im
e

(s
)

Window Sizes (Seconds)

Figure 4.6.6: Neural Network Detection Time

With HMM
Without HMM

Figure 4.6: LiME Day 2 Results. Comparison of base classifier performance with and
without the HMM smoothing layer, with test data split into fixed window sizes. Graphs
are organized into rows by base classifier, and columns by evaluation metric. Error bars
show a 95% confidence interval.

29

4.3 Discussion

We found it difficult to directly compare performance between the top-down and bottom-
up approaches, because we varied false positives per second in the top-down experiments,
and varied the fixed-length window size in the bottom-up experiments. However, for a
given false positive rate change-point detection algorithms split a time series into windows
of a certain average size, which generally decreases as the false positive rate increases.
From this it is possible to relate false positive rates from the top-down experiments to
the window sizes of the bottom-up experiments. HMM false positive rates per second
of {0.033, 0.028, 0.024, 0.021, 0.019, 0.017} correspond to average window sizes of {10,
12, 14, 16, 18, 20}. Figures 4.7, 4.8, and 4.9 show a side-by-side comparison of the
top-down and bottom-up approaches, using this conversion. As seen in Section 4.1, two
algorithms were tested for each of the change-point detection experiments, but only the
best performing algorithm (highest in accuracy or lowest in detection time) is shown
here, for each individual experiment. Our results show that the bottom-up approach
outperformed the top-down approach, both in terms of accuracy and detection time,
regardless of the dataset and base classifier.

A contributing factor to the particularly high accuracy and low detection time results
generally attained for the OSU Hip experiments was that the data consisted of activities
that were synthetically glued together. The same group of activities were performed
in the same order by each of the 50 subjects in this dataset, making transitions from
one activity to the other very predictable for a temporal model. By contrast, the LiME
datasets consisted of unsynthetic data gathered from a large set of unstructured and
variable-length activities, so the activity transitions were not as predictable and are
more indicative of an application of our techniques in the real world.

A final point of interest was that SVM (Figures 4.7.3, 4.7.4, 4.8.3, 4.8.4, 4.9.3, 4.9.4)
clearly outperformed the other two base classifiers, and that the faster and simpler de-
cision tree model (Figures 4.7.1, 4.7.2, 4.8.1, 4.8.2, 4.9.1, 4.9.2) matched up well against
neural networks (Figures 4.7.5, 4.7.6, 4.8.5, 4.8.6, 4.9.5, 4.9.6). This result is signifi-
cant because much of the previous research that has formulated activity detection as a
supervised learning problem has used neural networks exclusively.

30

4.4 Timing

Since we are interested in the feasibility of performing activity detection on accelerometer
data in real time, we tested how long it would require our approaches to segment and
classify a time series in a streaming, online fashion. Experiments were performed using
an Intel(R) Core(TM) 2 Quad Processor Q9550.

There are three different computations that a device must perform to do activity
recognition in real time. The first (when using the top-down approach) is to calculate a
change-point detection score for an individual time tick. When the device obtains a new
tick of accelerometer data, it must generate a change-point detection score and compare
it to the score threshold to decide whether or not to predict an activity change. We
estimated the amount of time required to determine whether an activity change should
be predicted by choosing 1000 random ticks from our data, and running our two change-
point detection algorithms on the reference and test data corresponding to each tick.
We found that on average the control chart algorithm took 0.050ms per tick, and that
the KLIEP algorithm took 31.4ms per tick. If no change was predicted, then the device
needs to take no further action for this tick.

If a change was predicted in the first step, then the second step is to featurize the
window of data corresponding to the activity that just ended. The amount of time
required to featurize an activity window increases with the length of the window. The
OSU Hip dataset contained 120 second long activities, and the median length of the LiME
activities was considerably smaller than that, therefore we fixed the window length at 120
seconds for this experiment. The amount of time required to featurize these windows,
again averaged over 1000 runs, was 98.5ms.

Once the data from an activity window is featurized, the activity must be predicted
using a base classifier. We assume that the classifier has already been trained and
validated previously. We averaged the activity prediction time over 60 runs on each of
our base classifiers, with featurized windows and models built during our change-point
detection experiments. We found that the average time required to predict an activity
with decision trees was 372ms, with SVMs was 368ms, and with neural networks was
369ms.

Alternatively, the bottom-up approach does not include the computation of a change-
point detection score, but does include as a final step the computation (via the Viterbi

31

algorithm) of the set of hidden states in an HMM that are most likely to correspond
with classifier predictions on the windows in the test data. The Viterbi algorithm is an
offline algorithm that considers all of the windows in the time series rather than just the
latest window, but it nonetheless runs quickly. The amount of time required to perform
this calculation on an OSU Hip time series, averaged over 1000 runs, was 928ms. An
online implementation of this algorithm would be faster still, running in constant time
with respect to the number of windows rather than linear time.

These experiments show that the amount of time required to process an activity tick
is in the worst case only 98.5ms + 372ms + 928ms = 1.40s, which is a very reasonable
amount of delay for online applications.

32

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

10

20

30

40

50

60

70

80

90

100

 A
cc

ur
ac

y
(%

)

False Positives / s

Figure 4.7.1: Decision Tree Accuracy

Top−Down
Bottom−Up
Bottom−Up without HMM

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

20

40

60

80

100

120

 D
et

ec
tio

n
T

im
e

(s
)

False Positives / s

Figure 4.7.2: Decision Tree Detection Time

Top−Down
Bottom−Up
Bottom−Up without HMM

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

10

20

30

40

50

60

70

80

90

100

 A
cc

ur
ac

y
(%

)

False Positives / s

Figure 4.7.3: SVM Accuracy

Top−Down
Bottom−Up
Bottom−Up without HMM

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

10

20

30

40

50

60

 D
et

ec
tio

n
T

im
e

(s
)

False Positives / s

Figure 4.7.4: SVM Detection Time

Top−Down
Bottom−Up
Bottom−Up without HMM

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

10

20

30

40

50

60

70

80

90

100

 A
cc

ur
ac

y
(%

)

False Positives / s

Figure 4.7.5: Neural Network Accuracy

Top−Down
Bottom−Up
Bottom−Up without HMM

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

10

20

30

40

50

60

 D
et

ec
tio

n
T

im
e

(s
)

False Positives / s

Figure 4.7.6: Neural Network Detection Time

Top−Down
Bottom−Up
Bottom−Up without HMM

Figure 4.7: Comparison of top-down and bottom-up results for OSU Hip. Graphs are
organized into rows by base classifier, and columns by evaluation metric. Results for
false positives per second of {0.005, 0.01, 0.017, 0.019, 0.021, 0.024, 0.028, 0.033, 0.05,
0.1} are top-down experiments, while results for false positives per second of {0.017,
0.019, 0.021, 0.024, 0.028, 0.033} are bottom-up experiments.

33

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

10

20

30

40

50

60

70

80

90

100

 A
cc

ur
ac

y
(%

)

False Positives / s

Figure 4.8.1: Decision Tree Accuracy

Top−Down
Bottom−Up
Bottom−Up without HMM

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

20

40

60

80

100

120

140

160

 D
et

ec
tio

n
T

im
e

(s
)

False Positives / s

Figure 4.8.2: Decision Tree Detection Time

Top−Down
Bottom−Up
Bottom−Up without HMM

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

10

20

30

40

50

60

70

80

90

100

 A
cc

ur
ac

y
(%

)

False Positives / s

Figure 4.8.3: SVM Accuracy

Top−Down
Bottom−Up
Bottom−Up without HMM

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

20

40

60

80

100

120

140

 D
et

ec
tio

n
T

im
e

(s
)

False Positives / s

Figure 4.8.4: SVM Detection Time

Top−Down
Bottom−Up
Bottom−Up without HMM

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

10

20

30

40

50

60

70

80

90

100

 A
cc

ur
ac

y
(%

)

False Positives / s

Figure 4.8.5: Neural Network Accuracy

Top−Down
Bottom−Up
Bottom−Up without HMM

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

50

100

150

200

250

 D
et

ec
tio

n
T

im
e

(s
)

False Positives / s

Figure 4.8.6: Neural Network Detection Time

Top−Down
Bottom−Up
Bottom−Up without HMM

Figure 4.8: Comparison of top-down and bottom-up results for LiME Day 1. Graphs
are organized into rows by base classifier, and columns by evaluation metric. Results
for false positives per second of {0.005, 0.01, 0.05, 0.1} are top-down experiments, while
results for false positives per second of {0.017, 0.019, 0.021, 0.024, 0.028, 0.033} are
bottom-up experiments.

34

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

10

20

30

40

50

60

70

80

90

100

 A
cc

ur
ac

y
(%

)

False Positives / s

Figure 4.9.1: Decision Tree Accuracy

Top−Down
Bottom−Up
Bottom−Up without HMM

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

50

100

150

 D
et

ec
tio

n
T

im
e

(s
)

False Positives / s

Figure 4.9.2: Decision Tree Detection Time

Top−Down
Bottom−Up
Bottom−Up without HMM

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

10

20

30

40

50

60

70

80

90

100

 A
cc

ur
ac

y
(%

)

False Positives / s

Figure 4.9.3: SVM Accuracy

Top−Down
Bottom−Up
Bottom−Up without HMM

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

50

100

150

 D
et

ec
tio

n
T

im
e

(s
)

False Positives / s

Figure 4.9.4: SVM Detection Time

Top−Down
Bottom−Up
Bottom−Up without HMM

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

10

20

30

40

50

60

70

80

90

100

 A
cc

ur
ac

y
(%

)

False Positives / s

Figure 4.9.5: Neural Network Accuracy

Top−Down
Bottom−Up
Bottom−Up without HMM

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

50

100

150

200

 D
et

ec
tio

n
T

im
e

(s
)

False Positives / s

Figure 4.9.6: Neural Network Detection Time

Top−Down
Bottom−Up
Bottom−Up without HMM

Figure 4.9: Comparison of top-down and bottom-up results for LiME Day 2. Graphs
are organized into rows by base classifier, and columns by evaluation metric. Results
for false positives per second of {0.005, 0.01, 0.05, 0.1} are top-down experiments, while
results for false positives per second of {0.017, 0.019, 0.021, 0.024, 0.028, 0.033} are
bottom-up experiments.

35

Chapter 5: Conclusion

The purpose of this work was to test the feasibility of classifying accelerometer data in
real time. We were also interested in using change-point detection techniques for deciding
when one activity ended within a time series and the next began, and to contrast this
methodology with an HMM approach. The bottom-up approach clearly outperformed
the top-down approach in terms of both accuracy and detection time, because our change-
point detection algorithms did a poor job of correctly classifying the data. Additionally,
we showed that both the detection time and the computation time required by our best
performing approaches were low enough for online activity recognition to be feasible.

36

Bibliography

[1] G.D. Abowd, A.K. Dey, P.J. Brown, N. Davies, M. Smith, and P. Steggles. Towards
a better understanding of context and context-awareness. In Proceedings of the 1st
international symposium on Handheld and Ubiquitous Computing, HUC ’99, pages
304–307, London, UK, UK, 1999. Springer-Verlag.

[2] K. Aminian, P. Robert, E. Jequier, and Y. Schutz. Estimation of speed and in-
cline of walking using neural network. Instrumentation and Measurement, IEEE
Transactions on, 44(3):743–746, 1995.

[3] S.J. Bae, B.M. Mun, and K.Y. Kim. Change-point detection in failure intensity: A
case study with repairable artillery systems. Computers and Industrial Engineering,
64:11–18, January 2013.

[4] L. Bao and S.S. Intille. Activity recognition from user-annotated acceleration data.
pages 1–17. Springer, 2004.

[5] L.E. Baum, T. Petrie, G. Soules, and N. Weiss. A Maximization Technique Occur-
ring in the Statistical Analysis of Probabilistic Functions of Markov Chains. The
Annals of Mathematical Statistics, 41(1):164–171, 1970.

[6] U. Blanke and B. Schiele. Remember and transfer what you have learned-recognizing
composite activities based on activity spotting. In Wearable Computers (ISWC),
2010 International Symposium on, pages 1–8. IEEE, 2010.

[7] T. Choudhury, S. Consolvo, B. Harrison, J. Hightower, A. LaMarca, L. Legrand,
A. Rahimi, A. Rea, G. Bordello, B. Hemingway, P. Klasnja, K. Koscher, J.A. Lan-
day, J. Lester, D. Wyatt, and D. Haehnel. The mobile sensing platform: An em-
bedded activity recognition system. Pervasive Computing, IEEE, 7(2):32–41, 2008.

[8] S.I. de Vries, F.G. Garre, L.H. Engbers, V.H. Hildebrandt, and S. van Buuren.
Evaluation of neural networks to identify types of activity using accelerometers.
Medicine & Science in Sports & Exercise, 43(1):101, 2011.

[9] T.V. Duong, H.H. Bui, D.Q. Phung, and S. Venkatesh. Activity recognition and
abnormality detection with the switching hidden semi-markov model. In IEEE
Computer Society Conference on Computer Vision and Pattern Recognition, pages
838–845, June 2005.

37

[10] J. Fogarty, C. Au, and S.E. Hudson. Sensing from the basement: a feasibility study
of unobtrusive and low-cost home activity recognition. In Proceedings of the 19th
annual ACM symposium on User interface software and technology, UIST ’06, pages
91–100, New York, NY, USA, 2006. ACM.

[11] K. Grauman. Efficient activity detection with max-subgraph search. In Proceed-
ings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), CVPR ’12, pages 1274–1281. IEEE Computer Society, 2012.

[12] T. Gu, Z. Wu, X. Tao, H.K. Pung, and J. Lu. Epsicar: An emerging patterns based
approach to sequential, interleaved and concurrent activity recognition. In Pervasive
Computing and Communications, IEEE International Conference on, pages 1–9,
2009.

[13] Y. Kawahara and M. Sugiyama. Change-point detection in time-series data by
direct density-ratio estimation. Proceedings of the SIAM International Conference
on Data Mining, pages 389–300, 2009.

[14] J.R. Kwapitz, G.M. Weiss, and S. Moore. Activity recognition using cell phone
accelerometers. SIGKDD, 12(2):74–82, 2010.

[15] J. Lester, T. Choudhury, N. Kern, G. Borriello, and B. Hannaford. A hybrid dis-
criminative/generative approach for modeling human activities. In In Proc. of the
International Joint Conference on Artificial Intelligence (IJCAI, pages 766–772,
2005.

[16] Z. Li. Exercises intensity estimation based on the physical activities healthcare sys-
tem. In Communications and Mobile Computing, 2009. CMC’09. WRI International
Conference on, volume 3, pages 132–136. IEEE, 2009.

[17] D. Matteson and N. James. A nonparametric approach for multiple change point
analysis of multivariate data. 2012.

[18] D. Meyer, E. Dimitriadou, K. Hornik, A. Weingessel, and F. Leisch. e1071: Misc
Functions of the Department of Statistics (e1071), TU Wien, 2012. R package
version 1.6-1.

[19] V. Moskvina and A.A. Zhigjavsky. An algorithm based on singular-spectrum anal-
ysis for change-point detection. Communication in Statistics. Statistics and Simu-
lations, 32:319–352, 2003.

[20] D.M. Pober, J. Staudenmayer, C. Raphael, and P.S. Freedson. Development of
novel techniques to classify physical activity mode using accelerometers. Medicine
& Science in Sports & Exercise, 38:1626, 2006.

38

[21] A. Rai, Z. Yan, D. Chakraborty, T. Wijaya, and K. Aberer. Mining complex activ-
ities in the wild via a single smartphone accelerometer. In Proceedings of the Sixth
International Workshop on Knowledge Discovery from Sensor Data, pages 43–51.
ACM, 2012.

[22] N. Ravi, N. Dandekar, P. Mysore, and M. Littman. Activity recognition from
accelerometer data. In In Proceedings of the Seventeenth Conference on Innovative
Applications of Artificial Intelligence(IAAI), pages 1541–1546. AAAI Press, 2005.

[23] B. Ripley. Feed-forward Neural Networks and Multinomial Log-Linear Models, 2013.
R package version 7.3-6.

[24] M.P. Rothney, M. Neumann, A. Béziat, and K.Y. Chen. An artificial neural network
model of energy expenditure using nonintegrated acceleration signals. Journal of
Applied Physiology, 103(4):1419–1427, 2007.

[25] J. Rowan and E.D. Mynatt. Digital family portrait field trial: Support for aging in
place. In Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, CHI ’05, pages 521–530, New York, NY, USA, 2005. ACM.

[26] S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach, pages 566–
583. Prentice Hall, third edition, 2010.

[27] W. Shewhart. Quality control charts. Bell System Technical Journal, pages 593–603,
1926.

[28] B. Song, N. Vaswani, and A.K. Roy-Chowdhury. Summarization and indexing of
human activity sequences. In IEEE International Conference on Image Processing,
pages 2925–2928, 2006.

[29] Y. Song, S. Shin, S. Kim, D. Lee, and K. Lee. Speed estimation from a tri-axial
accelerometer. In Proceedings of the 29th Annual International Conference of IEEE
EMBS, August 2007.

[30] M. Staudacher, S. Telserb, A. Amannc, H. Hinterhuberb, and M. Ritsch-Marte. A
new method for change-point detection developed for on-line analysis of the heart
beat variability during sleep. Statistical Mechanics and its Applications, 349:582–
596, April 2005.

[31] J. Staudenmeyer, D. Pober, S. Crouter, D. Bassett, and P. Freedson. An artifi-
cial neural network to estimate physical activity energy expenditure and identify
physical activity type from an accelerometer. Journal of Applied Physiology, pages
1300–1307, 2009.

39

[32] C. Strohrmann, H. Harms, G. Tröster, S. Hensler, and R. Müller. Out of the lab and
into the woods: kinematic analysis in running using wearable sensors. In Proceedings
of the 13th international conference on Ubiquitous computing, UbiComp ’11, pages
119–122. ACM, 2011.

[33] M. Sugiyama, S. Nakajima, H. Kashima, P. von Bnau, and M. Kawanabe. Direct
importance estimation with model selection and its application to covariate shift
adaptation. Annals of the Institute of Statistical Mathematics, 60:699–746, 2008.

[34] A.G. Tartakovsky, B.L. Rozovskii, R.B. Blazek, and H. Kim. A novel approach
to detection of intrusions in computer networks via adaptive sequential and batch-
sequential change-point detection methods. IEEE Transactions on Signal Process-
ing, 54:3372–3382, September 2006.

[35] G. Thatte, U. Mitra, and J. Heidemann. Parametric methods for anomaly detection
in aggregate traffic. IEEE/ACM Transactions on Networking, 19:512–519, April
2011.

[36] T. Therneau, B. Atkinson, and B. Ripley. Recursive Partitioning, 2013. R package
version 4.1-1.

[37] S.G. Trost, W.K. Wong, K.A. Pfeiffer, and Y. Zheng. Artificial neural networks
to predict activity type and energy expenditure in youth. Medicine and Science in
Sports and Exercise, pages 1801–1809, September 2012.

[38] T. van Kasteren, A. Noulas, G. Englebienne, and B. Kröse. Accurate activity
recognition in a home setting. In Proceedings of the 10th international conference
on Ubiquitous computing, UbiComp ’08, pages 1–9, New York, NY, USA, 2008.
ACM.

[39] J. Wang, Z. Cheng, M. Zhang, Y. Zhou, and L. Jing. Design of a situation-aware
system for abnormal activity detection of elderly people. In Proceedings of the
8th international conference on Active Media Technology, AMT’12, pages 561–571,
Berlin, Heidelberg, 2012. Springer-Verlag.

[40] T. Wu, Y.T. Chiang, and J.Y. Hsu. Continuous recognition of daily activities from
multiple heterogeneous sensors. In Proceedings of the 2009 AAAI Spring Symposium
on Human Behavior Modeling, pages 81–85, March 2009.

[41] Y. Zheng. Predicting activity type from accelerometer data. Master’s thesis, Oregon
State University, August 2012.

40

[42] Y. Zheng, W.K. Wong, X. Guan, and S. Trost. Physical activity recognition from
accelerometer data using a multi-scale ensemble method. In Twenty-Fifth Annual
Conference on Innovative Applications of Artificial Intelligence. IAAI, 2013.

