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This thesis is composed of four parts: i) system

description, ii) model development, iii) parameter

estimation, and iv) validation. The natural system used

here is an aspect of the immune system, namely, the

distribution of recirculating lymphocytes in various

organs throughout the body. This distribution gains

importance because: i) it is consequential in effective

defense of the body, and ii) lymphocyte maldistribution

may be a symptom of a disease state.

Certain deterministic models of lymphocyte

distribution have been published previously. Here,



discrete-time and continuous-time stochastic models are

developed. The class of models studied here are closed

compartmental. The derived structures are a vector

bilinear time series with two inputs (or random

coefficient autoregression) and a vector stochastic

differential equation, respectively, for the discrete

and the continuous cases. Various properties of the

solutions are studied. Parameter estimation for a

7-compartment system is done using nonlinear

optimization with weighted least squares and -2 In

likelihood criteria (assuming Gaussianity for

convenience, though not completely realistic). The

outputs of the models are statistically examined against

best available experimental data. The residual errors

are analyzed for proximity of fit, validity of the

models, Gaussianity, and stationarity. Multiple

comparisons are performed to test lack of fit of

individual compartments and in so doing major sources of

error in estimation are assessed.

The particular class of models studied here are

structurally unstable. The means are marginally stable

and for the estimated values of the parameters the

variances diverge.
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IDENTIFICATION OF STOCHASTIC SYSTEMS WITH RANDOM

PARAMETERS WITH PARTICULAR REFERENCE TO

THE RECIRCULATING LYMPHOCYTES IN

THE IMMUNE SYSTEM

CHAPTER 1

INTRODUCTION:

MATHEMATICAL AND PHYSIOLOGICAL PRELIMINARIES

1.0 INTRODUCTORY REMARKS

Nature has always fired the curiosity of man

leading to philosophical speculation, modeling at

different levels (perceptual ,linguistic, physical,

mathematical and philosophical), and consequent
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understanding and integration with previous knowledge.

It has been observed time and again that in diverse

phenomena when appropriate assumptions are made, the

structure of the mathematical model turns out to be the

same. Enns et.al. (1981) note in their preface that

" The nonlinear models involved tin nature]
often span several different disciplines,
a simple example being the Volterra-type
model in population dynamics which has its

analog in nonlinear optics and plasma
physics (the 3-wave problem), in the
discussion of social behavior of animals,
and in biological competition and selection
at molecular level."

This is the case with a variety of other structures.

Thus results derived from or applicable to a

mathematical model for a biological system can have

potential implications for applications in other areas

when given proper and relevant interpretation. This is

the case of the present project.

After discussing the purpose of this research and

the proposed plan of the thesis, this chapter will

review compartmental analysis, the immune system, and

its mathematical models.
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1.0.1 RELEVANCE OF THIS RESEARCH.

Many biological phenomena have been modeled from

different points of view. The immune system is one of

the physiological systems that has been modeled at

various hierarchical levels: subcellular, cellular, and

organismic. This research concerns cell populations and

thus links together many of the processes that occur at

the cellular and subcellular levels, namely, i) cells

providing defense, physically and biochemically, ii)

cells conveying information by physically moving from

one region of the body to another (e.g.,

antigen-macrophage interaction, T-B cell cooperation),

and iii) information transmission through hormone-like

activity of agents released by the cells (e.g.,

lymphokines and antibody). The group of processes

treated here is collectively termed LYMPHOCYTE

CIRCULATION or sometimes RECIRCULATION since most of the

lymphocytes involved experience the phenomena repeatedly

in their lifetime. The focus here is on the

distribution (to be precise, on quantification of the

'norm' of the distribution) of the recirculating

lymphocyte pool (RLP). This is important because i) the

RLP is consequential in effective defense of the body,

ii) a maldistribution can be a symptom of a disease

state, and iii) different patterns of maldistribution



4

may be indicative of different diseases.

This project can be of interest to systems

scientists, applied mathematicians, statisticians,

physiologists, immunologists, and medical researchers.

A knowledge of differential equations, bilinear time

series (or random coefficient autoregression),

stochastic differential equations, and aspects of

numerical analysis is assumed. For mathematically

oriented biologists, who might not be familiar with some

of mathematical aspects, fairly detailed appendices are

included. It is impossible, especially for a PhD

dissertation, to be self-contained. Thus an attempt has

also been made to compile a good, up-to-date, relatively

comprehensive (though not exhaustive) collection of

references.

1.0.2 PLAN OF THE THESIS.

This project is an attempt to collect various

mathematical and physiological items together and

combine them in a happy marriage. In order to describe

and quantify the processes mentioned before the

following plan will be adopted. To start with, some

mathematical situations that will arise later
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(compartmental analysis) are reviewed. Related

propositions are given in appendices. To keep the

biological aspects in perspective, a brief outline of

the immune system and some models of its diverse

functions are discussed (e.g., humoral immune response,

cytotoxicity, disease). For the sake of brevity and

lest the digression be too severe, sometimes only the

sources are given. Then the processes associated with

recirculation are focussed on and a few related

experimental techniques discussed. The paper by Smith &

(late) Ford, 1983, which is the source of all the

experimental data that has been used in this study, is

considered and the published deterministic, linear

(time-invariant, time-variant, and time-delay) and

nonlinear models presented. After discussing the need

for stochasticity, the discrete-time and continuous-time

stochastic models are developed, their parameters

interpreted through hemodynamic arguments, and their

theoretical structure investigated for stability,

second-order stationarity, and strict stationarity.

Parameter estimation is done using weighted least

squares and -2 In likelihood minimizing criteria. To

estimate the deterministic part of the parameters,

first-moment equations are used for both models. For

noises (both multiplicative and additive) the mean is
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assumed zero and the variances are estimated from the

second-moment equations. To investigate the validity of

the stochastic models detailed statistical analyses are

performed on the residual differences between

experimental and estimated states. In the end, the

possible relations between the two stochastic models are

examined, their lack of fit with the experimental data

analyzed, the inadequacy of the estimation procedures

and of the data discussed, suggestions for improvement

made, and possible conclusions drawn.

1.1 MATHEMATICAL PRELIMINARIES.

Until recently, only arithmetic and classical

statistics were the mathematical tools used by

biologists. Of late, other areas of mathematics have

started making inroads into life sciences.

Historically, works of Vito Volterra, Lotka and

Rashevsky pointed in that direction. The desire to

mimic the "inherent purposiveness" and other properties

of biological systems in construction of artificial

systems has given additional impetus to analytical

studies. Limitations of human thought combined with the

number of variables and their interactions to be



considered simultaneously in nonlinear biological

processes create difficulties which can only be

surmounted by good experimental design and the use of

available compatible analytical tools.

Compartmental analysis is one of the tools that

has been used. It will be discussed here and some of

the results are given in Appendix 2. There is a brief

discussion of multiplicative processes in Appendix 1.

1.1.1 COMPARTMENTAL ANALYSIS.

Physiological systems can be treated as

interacting subsystems , which, if further structure is

ignored, can be renamed compartments and their

interaction analyzed as such. Tracing the origins of

compartmental analysis would mean working through the

history of differential eqUations and would take us too

far from the topic, but the present application arose in

relation with pharmacokinetics (Teorell, 1937a; Teorell,

1937b) and with studies using radioactive tracers

(Zilversmit, et.al., 1943). The term "compartment" was

introduced by Sheppard (1948). Subsequently, many books

appeared reviewing compartmental modeling: Sheppard

(1962), Atkins (1969), and Jacquez (1972), the last



being a standard reference up to now. Since the 1950's

ecosystem modeling using linear time-invariant system

models has also contributed a great deal to

compartmental analysis (O'Neill, 1979). Recent reviews

of the subject include: Brown (1980), Godfrey (1983),

Anderson (1983), and Lambrecht and Rescigno (1983), and

there is also a critique by Zierler (1981). Most of the

literature is in terms of linear time-invariant system

analysis.

1.1.1.1 TYPES OF COMPARTMENTAL SYSTEMS.

When the compartments of a system are connected

in series (or in a chain) and only adjacent compartments

communicate, they form a CATENARY system. If there is

one central or "mother" compartment and all others

communicate with it as "daughter" compartments, they

form a MAMILLARY system. Both are diagrammed in Figure

C:621
oc32.

41111memamilDommme

1. K23

CX.
01 01 OS

(b) catenary system

(a) mamillary system

Figure 1. Types of compartmental
systems. (Godfrey, 1983)
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If material does not pass out of the system it is

considered CLOSED , otherwise it is OPEN. A subsystem

of compartments which receives input from the remainder

of the system but does not transfer out of the subsystem

(i.e. a closed subsystem) is called a TRAP.

1.1.1.2 ASSUMPTIONS.

It is implicit in the term compartmental analysis

that it considers a lumped system with only a finite

number of compartments. Besides, it is assumed that the

compartments are homogeneous and well-mixed; particles

of a particular species are indistinguishable from one

another; all particles in a compartment have the same

probability of transition, upon entrance into a

compartment they mix instantly, and that the amount of

tracer is very small compared to the tracee (so as not

to influence the overall dynamics).

1.1.1.3 STRUCTURE OF COMPARTMENTAL SYSTEMS.

The general form of a compartmental system with n
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compartments is

= f. -

j4i

i = 1,...,n ,

... (1.1)

where = fj (t, e, x )

the function describing

the flow rates from

compartment j to

compartment i;

Subscript denotes the

environment.

0 = a1 } the

parameter set, a;j- being

the system parameters.

x = Ex, ,X2, ,Xr, Jt, the

state vector with

components xi.

t = time.

If f_ = 0, V i there is nothing excreted to the

environment so that the system is closed; otherwise it

is open. Physical considerations constrain the flow to

be nonnegative (fg 0, V i,j). Thus compartmental

models can also be considered as systems of first-order
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constrained differential equations. Explicit expression

of f gives rise to various forms of systems discussed

below.

1.1.1.4 LINEAR TIME-INVARIANT SYSTEMS (LTI).

When f- = a x. a-- being the rate constants,

the system of equations becomes of the form

i.( ) = -ka-x.(t)

Letting

x t b ui t ) ,

jr-o
it4
i = 1,...,n ,

where u.(t) = input (i = 1,...,m).

...(1.2)

azt:= (
) i = 1,...,n , ...(1.3)

) "o 9it'

(1.2) becomes

;00 = :5=a-- x-(t) - a- x (t) +

.1

Jul. (t) .

...(1.4)
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In vector form (1.4) is

i(t) = Ax(t) + Bu(t) , ...(1.5)

where A = EaLi ], B = J.

The n n system matrix A has the following properties:

i) a- > 0, i/j,

ii) a« < 0, and

iii) = -a ,

oj

Such matrices are called COMPARTMENTAL MATRICES and are

column diagonally dominant since

I > l`k18- I
i = 1,...,n.

jA4

Physically this reflects conservation of matter or

energy.

Similar matrices occur in studies of reactor

criticality (Birkhoff & Varga, 1958) and their negatives

in the theory of dielectric relaxation (Axilrod, 1956).

They are related to Metzler matrices of economics
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(Newman, 1959).

A is an essentially nonnegative matrix and many

results are available for such matrices. See Appendix

1. Some results related to nonnegativity, boundedness,

connectivity, stability, and identifiability of

functions of A are given in Appendix 2.

Directed graphs have been used to study LTI

compartmental systems. When nodes represent the

compartments and the directed edges the transfer paths,

the graph is referred to as a CONNECTIVITY DIAGRAM. If

starting from any compartment, material can pass to any

other compartment in the system by some path, then the

system and its associated connectivity diagram (and its

compartmental matrix) is called STRONGLY CONNECTED.

1.1.1.5 LINEAR TIME-VARYING SYSTEMS (LTV).

If the rate coefficients aj are treated as

functions of time a-V CO
'I

,then a.' = a(t) and

the system is called linear time- varying.

i(t) = > (a,.(t)x.(t) - a (t)xi(t))
V

j*'



or

a. (t)x.(t) + (t)

X(t) = A(t)x(t) + u(t)

114

Reasoning from conservation of matter Mazanov (1976)

demonstrated the stability of the solution of (1.6),

thinking of A(t) as a time-varying compartmental matrix

(see Appendix 3, propsition A3.1).

Many physiological functions exhibit periodicity

(circadian or other) so that periodically varying rate

coefficients with period T are important

a.. (t) = a., (t+T) ...(1.7)
1-)

There is periodicity in ecosystems also, reflecting

variations in light, temperature, and seasons.

Although periodicity will not be encountered in

this project, it is of interest to note that Mulholland

& Keener (1974) have shown that, if initially all the

compartments in a time-varying system contain some

material then some material remains in them thereafter,

i.e. the amount never becomes a negative quantity. If

the system is periodic and has a positive, periodic

input with the same period then it has a unique periodic
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solution. In the case of an open system with no inputs,

there is no periodic solution and each state decays

asymptotically to zero (see Prop A3.2)

Another form of variation occurs when some or all

of the rate coefficients change suddenly from one value

to another. Such changes may be due to exercise in a

subject who was previously resting or due to food intake

when fasting-

1.1.1.6 NONLINEAR SYSTEMS (NL).

In various studies the flows, f'' , have been

related to the states in different ways. If

= a- fJ (x.) i = 0,1,...,n; ...(1.8)

j = 1,...,n ; ij ,

where a;5 0 and constant, fi(xj) > O.

Thus (1.1) becomes

= fo +
9

f. (x ) J f (x.)] - f,;(xi ) .

...(1.9)
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In some cases, especially in pharmacokinetics and

metabolic systems, the flows have been modeled as

capacity-limited (i.e. following Michaelis-Menten

kinetics):

\o,

= x(t) ,

+ pct)
(1.10)

where Vim, and Km are constants.

In other cases Langmuir saturation (Kruger-Thiemer

et.al, 1964) has been used

(1 (TZ)C4: (0) .(t)f1 x

where 0:: is a constant such that (1 - Oixi(t)) 0.

Michaelis-Menten kinetics has considerable

importance as it can be used whenever there is a

capacity-limited elimination of substances e.g. enzyme

kinetics, metabolism, renal excretion, liver function.

Compartmental systems with such kinetics are discussed

in Tong & Metzler (1980) and many examples are given in

Gibaldi & Perrier (1982) and Carson, Cobelli, and

Finkelstein (1983).

A more general case compared to (1.8) is when
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f,
V

= a- (x) x
J

- ...(1.12)

i = 0,1,...n; j = 1,...,n; iij.

so that the nonlinear representation of (1.6) may be

written as

;((t) = f(x) + u ell. 1013)

It has been shown by Maeda, Kodama, & Ohta (1978)

that with certain constraints on a-, (.) in (1.12),

nonnegativity of the off-diagonal elements in the

nonlinear compartmental matrix implies nonnegativity of

the state of the system. With additional conditions on

a- (.) of these off-diagonal elements, stability and

uniqueness of the equilibrium set is ensured.

Lewis & Anderson (1980) have shown that if

arbitrary time-delays (including varying ones) are

introduced in intercompartmental transfers, system

properties like nonnegativity, boundedness, and

stability are not affected. Ladde (1976) has also

analyzed the stability of open systems of the form

X(t) = A(t,x) x(t) (1.14)
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1.1.1.7 STOCHASTIC COMPARTMENTAL SYSTEMS.

Stochastic variability in physiological

experiments can have many and varied causes - for

example, changes in cell volume/area ratio, changes in

membrane permeability, presence of drugs other than the

one administered, changing environmental and measurement

conditions, or presence of only a relatively small

number of particles of interest within each compartment.

Variablity can be incorporated either by making

the transfer rate coefficients stochastic, or by keeping

them constant and thinking of the state as random

variable (or vector). In both cases the state ends up

as a stochastic process. Additive noise may also drive

the state to take into account some of the sources of

variability that might otherwise have been neglected by

the model.

1.1.1.7.1 STOCHASTIC VARIABILITY OF RESPONSES.

Matis & Wehrly (1979) review this approach.

Briefly, if there are N subjects, each with n

compartments, there will be N responses (to a tracer,

say) and curve-fitting each response gives a sum of
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x.(t) = Z At exp(it), t > 0

j = 1,...,N

The N values of A,; and > (i = 1,...,n) may be treated

as sample values of random variables, and if N is large,

the sample statistics can be regarded as a reasonable

approximation of the population. It is generally

assumed that {A.,} and IM are independent and

identically distributed (i.i.d.), stationary sequences,

and that the sequences are independent of one another.

The distribution of -)N,: should be nonnegative. Thus, in

a sense, estimation of stochastic parameters becomes a

deterministic problem. The minimizing criterion used

may be a weighted sum of squares of differences between

mean values of observed x(t) at each observation time

point and the mean values estimated from the model.

1.1.1.7.2 STOCHASTIC RATE COEFFICIENTS.

Instead of taking the rate coefficients static as

above, they can be considered as varying dynamically.

Comparatively little literature is available in this
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case. Jacquez (1972) mentioned it and Cobelli & Morato

(1978) have presented an estimation procedure using

nonlinear filters.

1.1.1.7.3 STOCHASTIC STATE VARIABLES.

Here the rate coefficients are assumed either

constant or timevarying deterministic and the state

variables as stochastic processes. Such models are of

particular interest when the number of particles in a

compartment are small, they are assumed to move

independently of one another and their transitions are

thought to be Markovian. Purdue (1979) has reviewed

this approach.

1.1.1.7.4 MISCELLANEOUS.

There have been attempts at making more general

stochastic models. Matis & Tolley (1979) combined a

number of possible sources of stochasticity to give a

general framework for stochastic modeling. Some

researchers have generalized the Markov interaction

process to a SemiMarkov process (Weiner & Purdue, 1977;
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Marcus, 1979). Combined use of additive and parameteric

noises does not seem to have received much attention in

compartmental models.

1.2 THE IMMUNE SYSTEM.

All animals have defense mechanisms to protect

them from invasion of foreign bodies (e.g. viruses,

microbes, etc.). In mammals there are several lines of

defense, the first of which is the passive, physical

protection of the skin. For agents that somehow

penetrate the first line of defense and are recognized

as potentially harmful (i.e. as non-self) there are

several other mechanisms. These include those that are

non-specific (or innate) and those that are specific (or

acquired) (Guyton, 1976). Both of these types of

immunity may be either humoral or cellular. There is a

continuous interaction between all these different

mechanisms. This project will be concerned only with

acquired immunity, the existence of all the other

defense mechanisms and their interactions being assumed.

These may to a degree contribute to the "noise" due to

uncertainty in the models to be derived later. For a

brief review of the immune system see Appendix 8. Most
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of the relevant vocabulary is covered there and in the

Glossary (Appendix 10).

1.2.1 LYMPHOCYTE MIGRATION.

There is substantial evidence of migration of

lymphocytes (See section 2.1). Opinions as to the

functions of this migration or circulation in blood and

lymph vary (See section 2.1.6). Yet it seems that this

circulation and recirculation may be an effective way of

ensuring that the relevant specific lymphocytes interact

with antigen and with each other, and that memory cells

(i.e. primed lymphocytes) become disseminated to the

various lymphoid tissues in the body (Greaves, Owen, &

Raff, 1974). Thus lymphocyte migration could be thought

of as consequential in control of infection and disease.

Lymphocytes basically exhibit two traffic

patterns: i) homing, and ii) recirculation. Homing

refers to cell migration from one site to another, while

in recirculation there is continuous movement between,

and through, the lymphoid tissues (McConnell, Munro, &

Waldman, 1981). There are cells which may be thought of

as "organ-seeking", i.e. they home-in on a particular

organ and remain there.
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Recirculation was first conjectured by Sjoval

(1936) and demonstrated by Gowans and his colleagues

(Gowans, 1959; Gowans & Knight, 1964). Figure 2

demonstrates the different traffic patterns.

blood

bicod

Figure 2. Major lymphocyte traffic
patterns in an adult. Key: 0
represent recirculating pool (RLP);
El not part of RLP.
(McConnell, et.al., 1981)

The unhatched areas in the diagram form the

recirculating lymphocyte pool (RLP) while the hatched

area refers to the homing pattern of lymphocyte traffic.

High endothelial venules (HEV) are the sites of

lymphocyte migration into lymph nodes and elsewhere.

1.2.2 FORMATION OF THE RLP.

Factors that control entry of cells into the RLP

are poorly understood. There are two possibilities: i)



2'4

cells continually leave the primary lymphoid organs and

directly enter the RLP as potentially long-lived cells,

and ii) cells leaving the primary tissue undergo a phase

of "maturation" in the secondary lymphoid tissue (e.g.

contact with antigen) before entering the RLP (Sprent,

1977). There is more evidence for the latter and as

such the formation of the RLP is illustrated in figure 3

which is a combination of figures 2 and 13.

THY,Mtjs BONE MARAOW

Figure 3. A schematic of the formation
of RLP. Key: v = virgin;
m = memory. (Sprent, 1977)

It is assumed that the virgin cells are short-lived. If

they do not come into contact with an antigen they die

soon, otherwise they mount a primary response to the

antigen. This encounter determines that some of the

responding cells are triggered to form long-lived
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recirculating memory (B,,Tm) cells. According to this

notion, most, perhaps all, recirculating cells are

memory cells, and any response they participate in is a

secondary response. More on recirculating lymphocytes

will be presented in Chapter 2. Their models will also

be discussed there.

1.3 MATHEMATICAL MODELING IN IMMUNOLOGY AND BIOMEDICINE.

As mentioned earlier, of late there has been

considerable activity in mathematical modeling of

complex natural phenomena. Numerous conferences and

many recent books attest to this: the Springer-Verlag

Lecture Notes in Biomathematics, Rubinow (1975), Bell,

Perelson, & Pimbley (1978), Fedina et.al. (1981),

Carson, Cobelli, & Finkelstein (1983), Marchuk (1979b),

Marchuk (1983), Marchuk & Belykh (1983), Moller,

Popovic, & Thiele (1983). In some cases biological

models have been included in conferences in physical

sciences (Arnold & Lefever, 1981; Avula et.al., 1984).

There have been biomedically related papers in many IFIP

Working Conferences also. There has also been an

interest in building stochastic models, two examples

being the Trento (Italy) conference from which the
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papers were published under the title "Stochastic

Methods in Life Sciences: General Aspects and Specific

Models" as a special issue of the Bulletin of

Mathematical Biology (DeLisi, Iannelli, & Koch, 1983)

and the special issue of the Acta Applicandae

Mathematica (Koch & Hazewinkel, 1985) on "Mathematics of

Biology". Several reviews have appeared on the models

of the immune system: Merrill (1980), Mohler, Bruni, &

Gandolfi (1980) and DeLisi (1983). Many models have

been proposed related to certain aspects of the immune

system, in particular the immune response. Some aspects

of such modeling are reviewed in Appendix 9.
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CHAPTER 2

RECIRCULATING LYMPHOCYTES AND

MATHEMATICS OF THEIR DISTRIBUTION

2.0 INTRODUCTORY REMARKS.

An overview of the immune system and models of

some of its aspects were discussed in the previous

chapter. Apparently the discrete nature of the immune

system with strategically located organs requires

efficient communication to integrate its functioning.

Of the three major communication systems (nervous,

endocrine, and circulatory) that can influence immune

functions we will be interested only in the circulatory

system in the present study. It is involved in

information transmission, in transport of cells along

their migratory paths, in removal of unwanted, dead and

toxic matter from the body to appropriate sites of
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excretion, and in the defense of the organism. The

lymphatic system is a part of the circulatory system and

functions to transport excess tissue fluid to the

blood-stream and also to help defend the body against

invasion by pathogens.

This chapter reviews the physiology of the

recirculating lymphocytes, studies dealing with their

distribution in the body, and the deterministic

mathematical models thereof. Perchance quantification

of the norm of distribution pattern and statistical

analysis of deviation from the norm and/or

maldistribution may be helpful in the diagnosis and

estimation of disease severity, and in the

classification and differential diagnosis of

ecotaxopathies. Ecotaxopathy refers to abnormalities in

migratory patterns, and some of its manifestations in

man are: i) Hodgkin's disease, ii) Crohn's disease

(gastrointestinal tract disease), iii) chronic liver

disease (alcohol-related, hepatitis B, primary biliary

cirrhosis), iv) skin diseases (psoriasis), v) connective

tissue diseases (rheumatiod arthritis), vi) central

nervous system diseases (multiple sclerosis), vii) solid

tumors, viii) chronic lymphocytic leukemia, and many

others.
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2.1 RECIRCULATING LYMPHOCYTES & EXPERIMENTATION.

The existence of recirculating lymphocytes was

hypothesized and demonstrated by Gowans (1959). (Also

see sections 1.2.1 and 1.2.2) Subsequent work (Gowans &

Knight, 1964; Ford & Gowans, 1969; Ford, 1969; Ford,

1975; Hall, Scollay, & Smith, 1976; DeSousa, 1981) has

elaborated on the anatomy and physiology of

recirculation.

A summary of the more important facts is

presented below.

2.1.1 PROCESSES OF RECIRCULATION

There are three basic processes (Ford, Smith, &

Andrews, 1978):

0 Lymphocytes leave the bloodstream by adhering to

the surface of the vascular endothelium and

subsequently crossing the capillary walls. Factors

contributing to the mechanism of selection of cells

that cross over are: a) hemodynamic and b)

physico-chemical interaction between blood cells and

vascular endothelium.

ii) Within lytphoid tissue, T-cells and B-cells
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segregate from each other after they cross the

capillary wall End reach the extravascular

compartment.

iii) Each cell type returns to the blood by

migrating along pre-defined paths within the tissues.

2.1.2 TRAFFIC IN LYMPHOID TISSUE.

Average lifespan in mouse of B-cells in

thoracic-duct lymphocytes (TDL) is 5-7 weeks and of

TDL-T cells 4-6 months (Ford,1975; DeSousa,1981).

Different figures are reported in Elves (1972) and

McConnell et.al. (1981). There is also a difference in

the tempo of recirculation of T- and B- cells, the

latter are much slower (Ford, 1975; DeSousa, 1981). TDL

are mostly T-cells, only 15-20 % in mice and 20-35 % in

rats being B-cells (Ford, 1975). T-cells recirculate in

about 18 hours, of which less than one hour is spent in

blood or lymph (Parrott & Wilkinson, 1981).

Distribution of injected labeled lymphocytes in rat and

plaice is shown in figure 4. Several factors influence

the circulation of lymphocytes. Details may be obtained

in Sprent (1977) and DeSousa (1981).

1. Antigenic factors
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i) Non-specific effects (i.e. those that effect

the whole RLP, not just specific cells) --- e.g.,

"trapping" and increase in blood flow to the lymph

node(s) draining the infected area.

ii) Specific recruitment of cells. For example,

effect on specific cells during trapping.

iii) Role in initiation, propagation, and

persistence of immunity:

Initiation Both circulating and

noncirculating lymphocytes participate in the

development of the primary response. There is a

possibility that a specific antigen may induce

differentiation of noncirculating virgin T- or B-

cells to recirculating cells (as seen in section

1.2.2)

Propagation --- Information about the arrival of

an antigen is disseminated throughout the body by

the RLP.

Persistence --- Most evidence suggests that

recirculating lymphocytes are memory cells (See

section 1.2.2).

2. Non-antigenic factors.

i) Phenotype of cell --- different cells have

different microenvironmental preferences. Cell

surface receptors, surface charge, size and cell



32

density affect circulation and movement through

small vessels.

ii) Metal cations --- binding to Zn , Fe4" can

cause maldistribution.

iii) Agents that modify cell locomotion, e.g.

Sodium azide interferes with selective interaction

of cells with postcapillary endothelium.

iv) Irradiation --- B-cells are more radiosensitive

than T-cells. In humans T-suppressor cells are

more radiosensitive than T-helper cells.

v) Cortisone (or ACTH), Stress --- cause decreased

TDL output. Continuous high levels of ACTH may

cause lymphocyte lysis and inhibition of blood to

lymph recirculation.

vi) Certain diseases may cause lymphocytopenia

(e.g., Newcastle disease virus) or lymphocytosis

(e.g., Bordetella pertusis).

vii) Anesthesia with ether leads to

lymphocytopenia.

viii) Chemotactic and cellular factors some of

which are mentioned in figure 11 (Appendix 8).

Others include complement (C3 unit) and

lymphokines. Lymphokines are active soluble

factors (other than Ig's) released by lymphocytes,

e.g., Migration inhibition factor (MIF), Leukocyte
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migration inhibition factor (LIF), Macrophage

chemotactic factor (MCF), Lymphocyte chemotactic

factor (LCF), Lymphocyte trapping factor.
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Figure 4. Recirculation of lymphocytes
in rat and plaice (DeSousa, 1981)

(a) Radioactivity in samples of lungs
spleen MLN thymus (A. A), liver
(a____41.0, and intestine (s.-ag) from rats injected
intravenously with [3H7-uridine-labelled TDL.
(b) Pattern of change in plaice with label injected
into renal portal vein.
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2.1.3 TRAFFIC IN NON-LYMPHOID TISSUE (Primarily based on

DeSousa, 1981).

In most normal non-lymphoid tissue there are very

few lymphocytes. The first response of skin to

application of sensitizing agents or intradermal

injections of antigen is usually the appearance of

polymorphs or macrophages, although small or blast-like

lymphocytes can be induced to extravasate 20-30 times

above the baseline level (DeSousa, 1981). Mucosal

sites, especially gut mucosa, normally contain lymphoid

cells which differ in number and type from other

non-lymphoid sites, e.g. skin. In non-mucosal sites

the proportion of B-cells which extravasate is much

smaller than T-cells. The latter predominate in human

peripheral lymph and other extravascular fluids.

Afferent or peripheral lymph contains very few

lymphocytes, or considerable number of macrophages, and

a different ratio of T:B cells (7.6:1) as compared to

efferent lymph (2.5:1) and blood (2:1). After antigenic

stimulation there is increased vascular permeability

(DeSousa, 1981). Experiments suggest that use of a

contact sensitizer can change blood flow and cell

traffic. There is an increase in blood flow with a

concomitant increase in lymphoblast migration and a

small increase in small lymphocyte migration. There is
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also a simultaneous increase in blood flow to the

draining LN, but this is directly connected to small

lymphocyte traffic and not to blast cell traffic

(Ottaway & Parrott, 1979).

Gut associated (GALT) and bronchial associated

lymphoid tissues (BALT) are continuously exposed to

antigens and are thus more important of the mucosal

sites. In human gut there are 106-10' cells/mm3. The

major classes of immunoglobulins (antibodies), IgA, IgM,

and IgG, appear in the following approximate ratio

40:3:1. Small quantities of IgD and IgE are also

present. During biopsies lymphocytes found in the human

colon are larger than circulating lymphocytes. Of the

mononuclear cells 58% are T-cells, 32% B-cells, and the

remaining 10% monocytes or macrophages (DeSousa, 1981).

In BALT there is a higher proportion of

monocytes/macrophages compared to GALT: 50-70% of

mononuclear cells are monocytes or macrophages and only

30-50% lymphocytes; of these, 68% are T-cells and 20.5%

B-cells. Most cells in mucosal surfaces are effector

cells rather than affector (or memory) cells. For more

details see DeSousa (1981). Also, there was recently a

conference on Mucosal Immune System (McGhee & Mestecky,

1983) whose proceedings contains a great deal of

information.
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2.1.4 CONTRIBUTIONS OF RLP TO THE PRIMARY AND SECONDARY

RESPONSES.

1. The following events happen during the primary

response (Ford, 1975):

i) Recruitment of migratory cells,

ii) Selective depletion of RLP,

iii) Selective enrichment of antigenically

stimulated tissue,

iv) Specific recruitment of antigen-sensitive

cells within the intravascular compartment.

2. The following happen during the secondary response

(Ford,1975):

i) Dissemination of immune memory, (See section

2.1.2(1.iii))

ii) Specific recruitment of memory cells.

Antigen-sensitive T-cells are recruited from the RLP in

both the primary and secondary responses (Ford, 1975;

DeSousa, 1981). B-cells also are recruited in the

secondary antibody response, but in the primary response

most virgin B-cells reside in lymphoid tissue.
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2.1.5 FACTORS PROMOTING EXTRAVASATION/MIGRATION (Parrott

& Wilkinson, 1981).

Besides the factors - mentioned in section 2.1.2 as

influencing traffic in the lymphoid tissue, the

following factors affect migration of cells, either

directly or indirectly, throughout the body of the

organism:

1. Blood flow,

2. Antigen-directed locomotion,

3. Cell- mediated immunity

4. Inflammation,

5. Temperature, and

6. Vascular permeability.

As seen in sections 2.1.1 and 2.1.3 blood flow is

a very important factor in the migration of lymphocytes.

In general, the flow velocity is proportional to the

reciprocal of the effective cross-sectional area of the

vessel. Different blood cells exhibit different flow

properties. Most red blood cells tend to flow near

vessel axis, while most lymphocytes and monocytes tend

to flow near vessel walls (DeSousa, 1976).

Several factors are carried by the blood which

are influential in modifying lymphocyte motion, e.g.,

antigen and chemoattractants. Chemokinetic factors,
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lymphokines, and the presence of other cells (e.g.

macrophages) can induce extravasation from capillary

beds. Serum albumin acts as a chemokinetic agent and

can influence lymphoblast motion once they are within

the tissues (Also see Ottaway & Parrott, 1979).

Lymphokines, are biologically active, soluble factors

(other than antibodies) elaborated by stimulated

lymphocytes. Some of these were mentioned in section

2.1.2(2.viii). There are several others (for details

see Cohen, Pick, & Oppenheim, 1979, or any other book on

lymphokines). Many lymphokines have a specific action,

either helper, or suppressor, or an action on

macrophages (e.g., Ag-dependent MIF). Other lymphokines

have

action

vascular

non-specific action: helper, supressor (MIFIF),

on inflammatory cells (MIF, LIE), action on

endothelium or other cells (TMIF), growth

stimulation (LAF), and direct action on antigen (LT).

Inflammation and cell-mediated immunity influence

migration/extravasation of lymphocytes indirectly

through the above factors .

Raised temperature of the body (or in the area of

inflammation) creates an environment for increased

migration of antigen and of lymphocytes (Marchuk, 1983).

With antigenic stimulation there is an increase
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in vascular permeability and this results in leakage of

protein from the vessels. It has been demonstrated

experimentally that lymphoblast extravasation is not

dependent on permeability (Rose & Parrott, 1977). See

the note on serum albumin above.

2.1.6 FUNCTIONS OF LYMPHOCYTE MIGRATION / RECIRCULATION

(See section 1.2.1).

There has been speculation on what the functions

of lymphocyte migration could be. Different suggestions

include: i) information dissemination, ii) access of

adaptive immunity to non-lymphoid tissue, and iii) some

sort of physiological surveillance. All of these may

have elements of truth in them.

Migration continually redistributes Ag-sensitive

(i.e. memory) cells between the anatomically dispersed

components of the peripheral lymphoid system thus

affecting information dissemination and integrating the

functioning of the immune system (Lozovoy & Shergin,

1979; Sprent,1977). It allows access of sensitized or

effector lymphocytes to regions of antigen in

non-lymphoid tissue e.g. skin.
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Some researchers argue that recirculation is a

physiological property of immunologically virgin

lymphocytes as observed in a fetus, and as such must be

a part of some sort of physiological surveillance. One

view is that it could be involved in recognition and

binding of metal ions as a protective device against

metal toxicity and preferential use of indispensible

metals, like Fe+++ and Zn4.1-, by bacteria or transformed

cells (DeSousa, 1981).

2.1.7 METHODS USED TO STUDY MIGRATION.

The techniques to prepare and label lymphocytes

are given in detail in Ford & Hunt (1973). To study

cell traffic some sort of a marker is needed so that

relevant cells can be tracked. Many different markers

have been used:

1. Chromosomal markers --- T6, Barr bodies (The

condensed X chromosome in the female).

2. Radioisotopes --- [311]-thymidine, [3H]-uridine,

EH7-adenosine, [ '4C]-uridine, "'In], [3S],

s"CrJ-sodium chromate,

(Iododeoxiuridine), [3H]-dextran sulphate, [
31

I)]

(not used any more).
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Radiolabels differentially label different

classes of lymphocytes. They are detected either

by organ counting (scintillation counting) or by

autoradiography. (Ford, 1975; Ford, Smith, &

Andrews, 1978; DeSousa,1981)

3. Isoantigens (Ly system) --- Among lymphocytes

isoantigens are specific to T-cells (DeSousa,

1981).

4. Functional markers --- Functionally different

classes of lymphocytes migrate differently. For

example, when memory cells from a donor rat are

passaged through an intermediate rat before being

given to a receipient, lymphocytes from immunized

donors which protect them from Listeria

monocytogenes, say, do not migrate from blood to

lymph in the intermediate (Ford, 1975).

2.2 THE EXPERIMENTAL RESULTS BEING MODELED.

As mentioned earlier, the distribution of

labelled lymphocytes has been studied by many people.

Some results were presented in figure 4 for rat TDL and

fish (plaice) neural duct lymphocytes over time. At

early instants of time (10 minutes and 30 minutes)
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considerable proportion of recovered trichloroacetic

(TCA)-soluble radioactivity was present in the lungs and

gills. By 24 hours, the majority of recovered

radioactivity was present in the peripheral organs, i.e.

spleen and lymph nodes in the rat and spleen and kidney

lymphoid tissue in plaice (DeSousa,1981). Data are from

Goldschneider & McGregor (1968) and Ellis & DeSousa

(1974).

A more recent experiment along the same lines is

that of Smith & Ford (1983). They try to correct some

of the pitfalls of the previous studies and sample data

more often. It is data from this experiment that will

be modeled here.

2.2.1 THE EXPERIMENT OF SMITH & FORD (1983).

Smith & (late) Ford (1983) study the

recirculating lymphocytes under conditions as close as

possible to the physiological conditions. In the paper

they report in effect three experiments: i) a survey of

distribution of lymphocytes, ii) tempo of recirculation

from blood to thoracic duct lymph, and iii) estimation

of time taken for lymphocytes to cross HEV into LN.

Only the one that is relevant to distribution will be
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summarized here.

AO rats, adult male donors and adult female

recipients were used. In vitro labeling of TDL was done

with sodium-E51Cr]-chromate, then passaged from blood to

lymph in an intermediate rat to ensure using

recirculating live lymphocytes. The results of the

experiment are given in Table 1 and graphed in figure 5.

Five rats were sacrificed at most of the 13 sample time

points. (See section 4.1 for details). After removal

of the 13 relevant organs (viz., blood, lungs, spleen,

liver, right and left popliteal LN, coeliac LN,

superficial cervical LN, deep cervical LN, mesenteric

LN, peyer's patches, gut, and bone marrow) the results

of scintillation counting were calculated as percentages

of injected dose per organ and per gram of tissue. The

results tabulated here are the means and standard

deviations of activity per organ expressed as
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percentage of the injected dose.
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Figure 5. Means of the data from the
experiment by Smith & Ford (1983).
The values are expressed as % of
injected dose per organ. (a) Covers
0-30 minutes and (b) 30 minutes to
24 hours. In (b) there are two scales
on the ordinate.
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superficial
Cervic-1 LN

deep
cervical LN

coeliac LN

mesenteric
LN

Peyer's
patches

small
intestine

spleen

lung

liver

bone/tibia

blood/10m1

R. popliteal
LN

L. popliteal
LN

Table 1

ORIGINAL DATA FROM SMITH & FORD (1983)
(mean + standard deviation)

% radioactive label (relative to injected dose) per organ

0 1 2 5 10 30 60 150 360 540 720 900 1080 1440

0.00 0.18 0.24 1.02 2.20 5.15 7.46 7.71 8.43 8.97 9.40 8.88 8.75 7.83
i

+.06 +.11 +.68 +1.01 +1.18 +.76 +1.91 +1.72 +1.72 +1.13 +.43 +.99 +1.53

0.00 0.06 0.09 0.49 1.11 2.17 3.55 3.63 4.35 4.32 4.99 4.62 4.29 3.97
+.02 +.04 +.30 +.45 +.47 +.40 +.95 +.40 +.64 +.74 +.55 +.28 +.54

0.00 ns ns 0.09 0.15 0.41 0.60 0.60 0.84 0.71 0.94 0.84 0.68 0.81
+.07 +.06 +.15 +.13 +.13 +.17 +.18 +.16 +.14 +.17 +.13

0.00 0.14 0.17 0.86 1.66 4.91 8.18 9.32 10.79 12.65 15.97 16.34 17.27 15.62
+.05 +.07 +.65 +.65 +1.40 +1.43 +1.40 +1.32 +3.80 +3.25 +1.55 +2.48 +1.71

0.00 0.19 0.85 1.58 3.97 6.68 5.73 6.16 6.09 7.46 6.68 6.44 6.39
+.70 +.69 +1.07 +.96 +.50 +1.06 +.90 +1.53 +1.23 +.99 +1.27

0.00 0.90 0.87 1.29 1.35 1.20 0.81 1.69 2.05 2.65 1.99 2.56 1.54 1.72
+.21 +.18 +.69 +.39 +.45 +.78 +.66 +.99 +1.35 +1.23 +1.47 +.51 +1.02

0.00 2.29 5.31 10.56 19.51 38.92 39.41 32.31 21.32 17.90 19.14 14.86 15.48 15.48
+1.79 +1.68 +2.64 +6.04 +5.45 +5.58 +3.42 +2.97 +3.72 +3.33 +3.22 +1.92 +.78

0.00 35.50 40.08 27.63 22.97 8.46 2.50 2.73 2.33 1.85 1.66 2.02 1.86 2.03
+6.14 +6.13 +6.73 +4.87 +1.25 +.60 +.51 +.20 +.26 +.33 +.36 +.41 +.38

0.00 12.84 12.13 16.24 11.24 6.22 3.92 3.66 3.66 4.04 4.11 4.56 4.24 5.26
+2.76 +2.82 +6.16 +2.70 +.83 +.83 +.39 +.58 +.39 +.45 +1.09 +.32 +.51

0.00 1.15 1.15 1.36 1.61 1.81 2.26 2.23 1.33 1.24 2.17 0.72 1.01 0.73
+.21 +.21 +.49 +.44 +.69 +.50 +1.29 +.38 +.55 +1.22 +.34 +.50 +.15

100. 41.47 36.59 38.91 29.58 11.64 3.34 4.06 3.25 3.06 2.41 3.13 2.46 3.04

+4.94 +1.80 +4.80 +5.34 +2.93 +1.15 +.88 +.34 +.52 +.56 +.92 +.58 +.65

0.00 0.24 0.63 0.73 0.72 0.77 0.78 0.78 0.84 0.73 0.75
+.07 +.16 +.09 +.13 +.10 +.20 +.06 +.17 +.04 +.14

0.00 0.06 0.16 0.21 0.23 0.22 0.28 0.33 0.28 0.25 0.23
+.02 +.06 +.04 +.06 +.06 +.08 +.06 +.05 +.02 +.03
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Soon after injection (1 minute) 40% of the

injected dose is in the lung, 40% in the blood, and 13%

in the liver and very little elsewhere. After 2 minutes

the radioactivity in the lungs follows that in blood.

Till about 1/2 hour it falls sharply in both and

substantially in the liver. In the spleen, and all the

LN and peyer's patches the label steadily increases.

Cell localization in gut and bone marrow seems flat from

1/2 hour on. At least in the spleen , LN, and peyer's

patches the rate of cell entry is apparently directly

proportional to their concentration in the blood as

suggested by experiments on isolated organs (Smith &

Ford, 1983). The network of interconnections for the

system is given in figure 6. The superficial and deep

cervical LN and the left and right popliteal LN were

lumped together as subcutaneous LN (SCLN, total of about

550mg) a portion of which (about 350mg) are associated

with efferent lymphatics and the rest (about 200mg)
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2.3 MODELS OF RECIRCULATING LYMPHOCYTE DISTRIBUTION.

Data from the above Smith & Ford (1983)

experiment has been used to model distribution behavior

of lymphocytes. The deterministic models that have been

developed are given below.

2.3.1 LINEAR TIME-INVARIANT MODEL (Mohler, Farooqi, &

Heilig, 1984)

This model is based on the connectivity diagram

in figure 6 above, each compartment being treated as

obeying Fick's law. The output rate from each is

assumed proportional to the amount of lymphocytes in

that compartment. The model is:

(t) = aix(t) - (6).g` (0x,: (t )

i = 1,...,5,7,9,10

X4(t) = - 0.1,,g(t)x(t) 9 g3(t)xl(t)

X3 (t) = ao,z(t) - pagl(t)x8(t) + le09(t)x9(t)

+ otogw(t)xw(t)
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x«(t) = pdtgi (t)x4 (t) png (t)xli (t)

ccut(t) = -[x, (t) + kz(t) + X3 (t) + ks(t)

+ (a4+a,..1-oc1+4;+,%+4c0)x12(t)

p4g,(t)x,(t) - imit(t)xs(t)

- Algo(t)x.(t)]

...(2.1)

g.(t) = 1.0 i = 1,...,11 ...(2.2)

The subscripts are as follows:

1 = lungs 7 = miscellaneous

2 = bone marrow tissues

3 = spleen 8 = mesenteric LN

4 = liver 9 = gut

5 = subcutaneous LN 10 = peyer's patches

(SCLN) with efferent 11 = coeliac LN

lymphatics 12 = blood

6 = SCLN with other tissues

Written in vector form (2.1) has the same structure as

(1.5) with B=0. The system is strongly connected. The

system matrix A is a closed compartmental matrix and is

irreducible (by Proposition A2.4). It is also

essentially nonnegative. By propositions A2.1 and A2.2



the solution x(t) is nonnegative for t 3> 0 and by

proposition A2.3 it is bounded. By proposition A2.5 the

eigenvalues of A are nonpositive and by propositions

A2.6 and A2.7 the spectral radius is zero. This means

that we have a marginally stable system. It is an

identifiable system (proposition A2.8) and the

parameters are estimated using physiologically

reasonable guesses to start with and varying these in a

small neighboring interval by trial and error and trying

to obtain as small a difference as possible between the

estimates and the experimental data. The criterion used

being the sum of the absolute values of the differences.

The parameter values obtained are:

1 2 3 1 4 5 6 1 7 I 8 9 10 11

et.:

p.:

1.8

2.0

0.02

0.016

0.055 :

0.03 :

0.25

0.07

0.0045

0.0002

0.002 :

0.03 :

0.15 :

0.004 :

0.003

0.001

0.015

0.005

0.0024

0.0006 f 1.00

The model is sensitive to minor changes in parameters

p4
*

and is
to

2.3.2 LINEAR TIME-VARIANT MODEL (Mohler, Farooqi,

Heilig, 1984)
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The linear time-invariant model does not take

into account time delays in the compartments. One way

to approximate them is to use appropriate time-varying

coefficients. For this case equation (2.1) is taken as

before, and in (2.2) gilt) are approximated by:

{

gi,(t) = 1.0 - exp(-t/ ), i = 2,4,... 1

133[1 + ---(1-exp(-t/-c ))], i = 3

1.0 i =

2.3)

In vector form the system of equations become (1.6) with

u=0. The system is strongly connected, closed,
- -

compartmental, and nonperiodic. By proposition A2.4,

A(t) is irreducible; by proposition A3.2 x(t) is

nonnegative for t > 0, and by proposition A3.1 the

system is stable. It is an identifiable system

(proposition A2.8), and the parameters are estimated as

for the time-invariant case. The parameter values

obtained are:

I 2 3 4 5 6 7 8 ; 9 10 IT

04: 1.8 0.02 0.08 0.1 0.004 0.002 0.09 0.005 0.015 i 0.003

1.7 1.00 0.0015 2.02 0.0005 0.05 0.01 0.005 1 0.05 0.003 1.00

'61
0.008

540 60 400 500 200 200 20
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2.3.3 LINEAR TIME-INVARIANT, TIME-DELAY MODEL (Mohler,

Farooqi, & Heilig, 1986a; 1986b)

Instead of assuming capacitive delays as in the

linear time-variant model above, discrete time delays

are used in this case. Such delays may be interpreted

as transit times through compartments. The model is a

set of difference-differential equations:

(t) =
I 12

(t) (t)

xi( t) = ccx,i(t) - fazxz(t) - Va:xt:(t-zz)

i = 2,...,5,7 9 10

k(t) = axu(t) + p4x(t) + 1.1x1(t-tI) - 4(t)

- `24x4 (t-"c4

)19(t) = ax,(t) + Ax (t) (t-to p6x,(t)

)),0x,o(t_tio) - Axs(t) - ,Raxect--co

(t) = p4x4(t) + 04(t-1:4) - Adcu(t)
-?;

II
(t-1 )

11

i(t) = -(X,(t) + ).(2(t) + i3(t) + ks(t)) -
(a4÷(Z6 +E.X.1+ces+CC9+c4,0)x1z(t) + (t)

+ (t) + (t) + 21x4 (t-;)
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+ xi(t-lcs) + Xxu(tc4)

x13(t) = xs(t) + x6 (t)

where 13 = total SCLN,

rtt = time-delay in compartment i

This system has properties similar to those above. The

parameters are estimated using an algorithm in which

integration is done numerically by Treanor's method and

the optimization by Powell's technique (Powel1,1964)

with least squares criterion. It is a stiff system so

that the use of ordinary fourth-order Runge-Kutta is not

advisable. Treanor's method (Treanor, 1966) is used

instead. The parameter values obtained are:

! i 1 1 2 3 1 4 5 1 6 7
8

9 10 11

OLz 1.0 : 0.01 0.1 0.3 0.016 0.005 0.05 i 0.006 0.02 0.012 0.3

0.8 : 0.015 0.0007 0.3 1 0.0001 0.008 0.002 i 0.0006 0.03 0.001 0.7

0.004 0.0075 0.0005 i 0.0027 1 0.0065 0.0004 i 0.0035 0.0005 0.0023 0.001

1C 250 60 600 : 180 150 300 1 150 150 180 180

In this case, the model is very sensitive to changes in

the values of -r,
/ -4

-(1_, and in particular the last two
4

parameters.
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2.3.4 NONLINEAR MODEL (Mohler, Faroogi, & H ilig, 1984)

The nonlinear model is based on a slightly

different network than given in figure 6. All the lymph

nodes (SCLN, mesenteric and coeliac LN) are lumped

together to form a single compartment (# 5 in this

case). Homogeneity of structure and function of LN is

assumed. This simplies the migration network,the new

version of which is given in figure 7. It is almost a

mammillary system that is strongly connected and closed.

The model is:

(t ) = (XI xi2(t ) - (3,x, (t)

2(t) ce2.(1- )/xz(t))xu(t) - 162(1-exp(-t/21))x2(t)

Xa(t) = oe3x12(t) - (33M+ 4:(1-exp(-t/1=3))]x3(t)

)Z4(t) = oc4(1- 54x4(0)xm(t) - r4x4(t)

+ (3.3[ 1+ 22 1-exp(-t/ -r3) 1.1x3(t)
(35

Xs(t) = asxm(t) + -?5(1-Ssxs(0)xcl(t)

- Ar(1-exp(-tPcs))xg(t)

;(4.(1) = aixu(t) - 01x;(t)



57

)1 ax (t) + (1- X (t))x (t)x1 ft)
q q q

- 1610(1-exp(-t/r10))x0(t)

= cc,,x12.(t) + Y(1- Si.x,r, (t) ) x,z(t ) x, (t )

- p.(1-exp(-t/r,a))x40(t)

= -(X,(t) + Xz(t) + )13(t) + iZ4(t)

+ + + q(t) + 0 (0)

The parameters are estimated by trial and error as for

the linear time-invariant case. The parameter values

obtained are:

S:

2 3 4 5 7 9 9 10 1

1.5 : 0.004

2.0 : 0.016

0.55

360

0.055
1 0.5

0.0015 : 0.42

0.009

0.001

0.0075

0.055

150

0.0035

0.047

720

0.025

0.002

0.0015

0.003

0.01

1.0

360

0.0015

0.003

0.01

1.0

360

0.0011 ;

0.0006:

0.008

0.16

540
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10

Figure 7. Connectivity diagram for
the nonlinear model.

In the nonlinear model .tz and -to may be too large, and

ASS
, and Sio for LN, gut, and PP may be too

constraining. The states of the four models are

compared in figures 8a to 8c (for spleen, bone marrow,

and lungs) with each other and with the experimental

data.
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(a)

a

(c)

4 10

.. Tn. Oar.4. .61 So.*1.
a Oa, 66*.t.664 6.465661

74464466 1400 1061 3446

0 60 710 01 240 SOO 330 440 S00 KO 440 720 700 NO 300 14001 IOW
ay.. 0241

444440641 104440 Dee
1644306, WOO 5m64066,

0 17610 Ocs141 3464666.
S 1,74-64002t, Lima Opelel 964461on

r.00.4041. 1.604 .46 56.4040

40

1 20

10

10 60 OS 200 NO Sap 440 440 910 GOO 340 720 740 440 400 340 3040 010
464 mow t 440

60

(rni 1,01 Cab
70.410 SD...

0 Lops 24401 SOY..
11.46,6o4n7, loom WON S40o400On
1OO-4.07, l.664 WOO 51460664

120 240 500 420 480 540 800 860 720 710 MO 900 980 01 010
Noe OW moo. 16.14)

(a) Rat Spleen, Lymphocyte Response
(b) Rat Bone-Marrow, Lymphocyte Response
(c) Rat Lungs, Lymphocyte Response

Figure 8. States of the four models
compared with the experimental

data
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CHAPTER 3

THE DISCRETE-TIME AND CONTINUOUS-TIME

STOCHASTIC MODELS: THEIR DEVELOPMENT

AND THEORETICAL ANALYSIS

3.0 INTRODUCTORY REMARKS.

Deterministic models were presented in the last

chapter. In this chapter stochastic models will be

developed for the distribution of recirculating

lymphocytes in the body, parameters in the model

explained, and the theoretical structure of the models

analyzed.

In nature, generally processes occur as a

combination of discrete and continuous events. All

other things remaining constant the process of taking

measurements or making observations is usually discrete.

With such a process a data time series is generated,
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inspite of the fact that the process being observed may

be inherently continuous. That is, during observation,

a continuous trajectory is sampled at discrete time

points. In view of this, a discrete-time model and a

continuous-time model, will be developed in that order.

Before developing the models, some ideas which are

common to both will be discussed, for example, the need

for having stochastic models, how to represent

randomness,

both models.

and the description of the parameters in

3.1 NEED FOR STOCHASTICITY.

Some researchers (Matis & Wehrly, 1979; Tiwari,

1979) have argued in favor of stochastic models because,

according to their arguments, they are more general and

realistic where deterministic models may be misleading.

In the present case stochasticity is justified for

several reasons. Some of them are uncertainties in the

cellular microenvironment, uncertainty in the proportion

of T- and B- cells and their properties, uncertainties

in flow rates and physical properties of the vessels,

and recognition of the fact that there is lack of

information on the sum total of influences (which makes
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it more realistic). There will be more justification

for stochasticity when the parameters are described.

3.2 REPRESENTATION OF STOCHASTICITY.

Stochastic equations have been used in many areas

of life sciences; e.g. population dynamics (Turelli,

1977; Weidlich & Haag, 1983), epidemics (Ludwig, 1974),

genetics (Maruyama, 1983), and to describe neuronal

behavior (Holden, 1983).

Stochasticity can be represented either in the

form of stochastic difference equations or that of

stochastic differential equations. Here stochasticity

will be thought of as being generated by the

coefficients. In stochastic difference equations,

sequences of random variables are modeled. Such

equations arise if i) a continuous-time model is

approximated for computation on a computer, ii) some of

the parameters in a deterministic model are treated as

random processes, and iii) the system is perceived as

inherently stochastic.

In the continuous case, stochastic differential

equations may arise naturally. Two convenient
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representations include Ito and Stratonovich (see

Appendix 4) type of equations where the solution is a

diffusion process. In the literature such models have

been justified if:

i) the noise is wide-band;

ii) the time scales for the noise and the

noise-free system dynamics are different, such that

the noise is much faster; and

iii) a continuous Markov process is to be modeled.

Many examples involving stochastic differential

equations are given in Arnold & Lefever (1981) and the

special issue of Bulletin of Mathematical Biology

(vol.45(4), 1983).

3.3 DESCRIPTION OF THE PARAMETERS.

Previously (Mohler, Farooqi, & Heilig, 1984;

1986a; 1986b) the parameters in the models of

recirculating lymphocytes were simply referred to as

directional permeabilities without explaining in detail

what that meant. Such intuitive appeal to a phrase may

be misleading. Here the factors influencing the

parameters will be discussed in some detail.

Consider flow of lymphocytes in a single
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compartment as in figure 9.

Figure 9. Fick's principle

Such a flow should satisfy Fick's principle, rheological

properties of blood and those of lymphocytes (See

section 2.1, esp. 2.1.1, 2.1.3, and 2.1.5). By Fick's

principle (Rubinow, 1975)

clrn
dt

= Jin Jot&

where

m = mass, t = time,

J; = mass influx rate of matter,

Jut = mass efflux rate of matter.

...(3.1)

Since blood flow and WBC-vessel wall interaction

are the most important factors in lymphocyte migration,

there will be a digression through fluid dynamics of

blood, which will be discussed next, en route to an
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explanation of parameters in the model equations. The

next four subsections are intended to provide a physical

interpretation of the parameters.

3.3.1 HEMODYNAMICS.

Human blood constitutes a cell suspension in

plasma, the latter being a solution which is 90% water

by weight, 7% plasma protein, 1% inorganic molecules,

and 1% other organic molecules (Guyton, 1976).

Essentially all the cells are red blood cells (RBC or

erythrocytes), with all white blood cells (WBC or

leukocytes) making up < (1/600)-th of the total cellular

volume, and platelets < (1/800)-th of the cellular

volume. Under ordinary conditions RBC occupy about 50%

of blood volume. They are small and number about

5x106/mm3. Normally WBC are about 5000-8000/mm3 and

platelets 250,000-300,000/mm3. Plasma behaves like a

Newtonian viscous fluid with coefficient of viscosity

= 1.2 cP (centi-Poise), but the whole blood is

non-Newtonian because the blood viscosity varies with

the hematocrit (% of total volume of blood occupied by

cells). (Fung, 1981)

If the width of the channel in which blood flows
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is much greater than RBC diameter, blood can be

considered a homogeneous fluid. In the human body there

are about 10
t0

blood vessels with diameter approximately

equal to RBC diameter, ranging between 4-10/(Am. These

are the capillaries, in which the RBC are squeezed and

deformed, and move in a single file. In this case it is

more useful to consider blood as a nonhomogeneous fluid,

with two phases, one phase being the RBC, the other

being the plasma.

As just noted the non-Newtonian characteristics

of human blood are due to blood cells. How these cells

move, especially RBC, is an important issue. It has

been observed that human RBC tend to form aggregates,

called rouleaux, because of the presence of fibrinogen

and globulins in the plasma. The smaller the blood flow

rate the more prevalent the rouleaux. With increase in

shear rate, rouleaux tend to break up, and the blood

viscosity reduces. Tumbling of the rouleaux while

flowing adds to disturbance in flow and complicates the

cell motion. Rouleaux do not form in all animals. RBC

are deformable and when single they tend to be aligned

with the streamlines.

The hematocrit (% cell vol./blood vol.) in normal

blood is quite high --- about 45 in large vessels, and
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25 in small ones. At such concentrations, no one cell

can act alone. Goldsmith (1972) as quoted in Fung

(1981) has observed that due to this crowding:

i) The velocity profile in a channel is no longer

parabolic as in Poiseuille flow (See section 3.3.2),

ii) RBC deformation is more than can be attributed

to shear alone, and

iii) Cell paths exhibit erratic displacements in a

direction normal to the flow. This is because of

frequent encounters of a cell with neighboring cells.

The cell path therefore, shows features of a random

walk.

It has been pointed out previously that RBC tend to move

toward the tube axis during flow. This leaves

marginal layer of plasma, whose width increases with

increase in the shear rate. This layer is relatively

free of RBC. Unlike RBC, the WBC tend to move toward

the walls (See section 2.1.5).

In the next two sections homogeneous flow in big

vessels and nonhomogeneous flow in small ones will be

discussed. After that there will be a brief discussion

of factors involved in WBC interaction with vessel

walls.
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3.3.2 FLOW IN BIG VESSELS.

If blood flow is assumed to be a steady, laminar

flow in a long, rigid, circular, cylinderical tube, then

such a flow is governed by Hagen - Poiseuille Law (Fung,

1984).

Td4 6.p

128,A L-

where

Q = flow rate or volume flow rate,

d = vessel diameter,

= fluid (blood) viscosity,

L = length of vessel segment over

which pressure drop is L4,

op = pressure drop along L.

...(3.2)

3.3.3 MICROCIRCULATION (Fung, 1981; Fung, 1984)

Reynold's number (the ratio of inertial to

viscosity forces) tends to 1.0 at the level of terminal

arteries. Further downstream, in the arterioles,

capillaries, and venules it tends to become less than

1.0. Thus inertial forces become less important and
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flow is determined by a balance of viscosity forces and

pressure gradient at this level. Features unique to

microcirculation are:

i) Small Reynold's number (<<1.0),

ii) Blood cells behave individually, not as a

group,

iii) Exchange of fluid and other matter occurs

between blood and tissue surrounding the blood

vessels, and

iv) Flow is regulated locally by the smooth muscle

of the microvasculature

A striking feature of capillary circulation is the

continuous variation of blood flow. Changes occur in

velocity, direction of movement, and number of

capillaries with active circulation. Capillary blood

flow is nonhomogeneous and unsteady, a major part being

due to heartbeat. Sometimes RBC rush by, and at other

times there are no RBC at all. Thus the velocity is

unsteady and so is the hematocrit. Interaction between

cells and tube walls becomes significant. Flexibility

of RBC and active migration of WBC play a role.

Apparent coefficient of viscosity of blood in

microvessels can be greatly increased under the

following conditions:

i) Existence of large WBC or exceptionally large
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RBC (with diameters greater than that of the

capillary blood vessel). The vessel may become

occluded by these cells.

ii) The smooth muscle in the arterioles or in the

sphinctors of the capillaries may contract so that

the diameters of these vessels are greatly reduced,

causing the effect of i) to take place. This

contraction may be initiated by nerves, metabolites,

or by mechanical stimulation.

iii) The WBC have a tendency to adhere to the blood

vessel wall. If they do, they increase resistance to

blood flow. Thrombocytes may be activated, causing

clotting and increasing resistance further.

iv) Cell flexibility may be changed. Hardening of

RBC, as in sickle cell anemia, increases the

coefficient of viscosity of the blood.

The effects ii) and iii), besides controlling apparent

viscosity, effectively control the vessel diameter.

Since diameter appears in fourth power in equation

(3.2), its importance is obvious.

3.3.4 FORCE OF INTERACTION OF LEUKOCYTES AND VASCULAR

ENDOTHELIUM (Fung, 1984).
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The flow behavior of RBC and WBC is different.

ABC do not stick to the endothelium unless they are

damaged. WBC, however, often stick to the endothelial

wall or roll slowly on it, while plasma and RBC rush by

them. The resultant shear force S (dynes) imparted to

WBC by blood flow can be expressed as a dimensionless

ratio S/(V,,,p.d) which is a function of other

dimensionless constants:

f(
V,,yA gt

H) ...(3.3)

where

dc = diameter of WBC considered

as a sphere,

dt = diameter of blood vessel,

Vm = max. velocity of undisturbed

flow in the blood vessel,

= linear velocity of centroid

of the WBC,

. plasma coefficient of viscosity,

p = plasma density,

H = hematocrit.

Noting that Reynold's number Na = pVmdt44.: and refering
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to the ratio S/Vm/Ad, as shear coefficient Cs, we have

.
Cs f (

.I.
N H)

Vm R

...(3.4)

Cs is strongly dependent on H. Since H is stochastic in

vivo (see section 3.3.3), the shear force fluctuates

with time.

A WBC adhering to a vessel wall is subjected to

shear stress on its surface by a number of factors: by

the plasma and the RBC, by pressure variations in the

flowing blood, by a shear stress at the interface of the

WBC and the endothelium, by a variable normal stress

on the interface, and by a body force due to

acceleration and gravity. The mean rolling velocity of

the WBC is only about 4% of the mean blood flow velocity

in the venule. With such a small rolling velocity, the

flow pattern around the rolling WBC should be almost the

same as that around a stationary cell.

Using a geometrically and dynamically similar

system it has been shown experimentally that for the

shear force:

S OC N Soc c S oc H, Scc Vm ...(3.5)
do

Thus, the forces acting on WBC are shear and the
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effective frictional drag. Velocity, being dependent on

shear and drag, is a function of x, the distance along

the vessel, as both the forces are. Thus acceleration

is a function of x. Because of different accelerations

at different points (x), the concentrations (C) are

different at different x, hence there is a concentration

gradient (9C/ax) and by Fick's first law of diffusion a

current (J = -Dli(aCiax) or)

J = cvAC

exists, where the coefficient

= f(D, A, S, F4,01 , x), ...(3.6)

D = diffusion constant,

A = cross-sectional area of the vessel.

Thus if the compartment in Fig 9 is thought of as

a blood vessel, Jan and in (3.1) may be written in

terms of cell concentrations, the coefficients being

interpreted as functions of various factors mentioned in

(3.6). The shear S in (3.6) is in turn a function of

the influences pointed out in (3.4).
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3.4 DEVELOPMENT OF THE DISCRETE-TIME MODEL.

In this section a discrete-time model will be

presented for recirculating lymphocytes. Data from the

Smith and Ford (1983) experiment discussed in section

2.2 will be used as was done for the deterministic

models in section 2.3. A mathematical analysis of

systems which have a structure similar to the model

developed here is given in Appendix 5.

For our purposes a simplified system with 7

compartments will be used, instead of the original 13

compartments. Recognizing the importance of blood,

lungs, spleen and bone marow they have been kept as

separate compartments. All the others have been lumped

into three compartments, assuming homogeneity of

structure and function within a compartment: i) lymphoid

tissue like liver, gut, peyer's patches and nonlymphoid

miscellaneous tissues as "other tissues", ii) the LN

(SCLN, MLN, CLN, etc) draining the other tissues

compartment as "LN-a", and iii) all the other LN as
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"LN-b". The new network is shown in figure 10.

Figure 10. Connectivity diagram for
the 7 compartment model.
(Key: 1=Bone marrow, 2=Spleen,
3="Other tissue", 4=LN-a,
5=LN-b, 6=Lungs, 7=Blood.)

Discussion of blood flow in the previous section

was concerning blood vessels, both large and small.

Organs or the compartments just mentioned may be thought

of as vessels which sometimes behave as large and

sometimes as microvessels (as in trapping). Thus they

each possess an effective diameter and an effective

viscosity which are functions of its vasculature and the

physiological microenvironment prevailing at that

particular time. For any compartment the label present
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at any instant depends on the total amount that enters

and the total amount that leaves that compartment. The

amount that leaves is proportional to the concentration

in that compartment. The amount entering is the um of

the amounts coming from various compartments, each being

proportional to label concentrations in the source

compartment. The "constants" of proportionality are

taken as random variables which have a deterministic

component and a stochastic component. In this way

equations similar to (3.1) hold for each compartment and

the parameters can be given similar interpretation as

before but now the parameters refer to ok)mpartments

rather than to blood vessels. Flow rates in different

organs in rat are not available, for the most part

because it has been difficult to measure them up to now

in an animal of that size. Because of this presence of

inherent stochasticity and the lack of precise knowledge

of various variables the model equations in



discrete-time are:

xL(n+1) = (1-ctdxi(n) - 16,;(n)xL(n) + 0.4x7.(n)

+ 10,(n)x7(n) + fe(n+1),

= 1,2,3,5,6

x4(n+1) = cy3( ) + 4(n)x ( ) + (1-c(4)x4(n)

- (54(n)x4(n) + c147x7(n) + bp)x7(n)

+ E4(n+1)

xl(n+1) = cLixt(n) + (5,(n)x(n) + c4,..xz(n)

+ pz(n)x2(n) + a4x4(n) + A4(n)x4(n)

+ asxs.(n) + pr(n)x5.(n) + ex4x4(n)

+ 1,84(n)x6(n)

+ [1 - (a a+ +a +41+a
7. 6
+a )x7(n)

4-1. 31 4T $7
bti(r1)+133(n)+Iii(n)+b4.1(n)+Ii/(n)

+ bs-i( n ))x (n) - g3(n+1)

..(3.7)

where
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E4 (n+ 1) = .2(r14-1) ... (3.8)

x;,(n) = state of compartment i at time instant n,

being the number of lymphocytes in

compartment i expressed as a % of the

total number in the system as measured
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by the presence of radioactive label.

d-= deterministic part of transfer parameters

(leaving i), a;,} is portion of ai going

from 7 to i. di (and a4) scales the

% activity in compartment i (or 7) at

instant n (dimensionless).

/k(n) = stochastic part of transfer parameters

(leaving i), ) is the portion of

p4(n) going from 7 to i.

{i:k(n)} are i.i.d. and constitute

multiplicative noise (dimensionless).

E,;(n) = additive noise, added at the input and/or

output of the compartment, {e;(n)} are

i.i.d. (dimensions of % activity).

{84(n)} and {e,;(n)} are independent.

The subscripts are as follows:

1 = bone marrow,

3 = other tissue,

5 = LN-b,

7 = blood.

In vector form

2 = spleen,

4 = LN-a,

6 = Lungs,

x(n+1) = A x(n) + /8(n) x(n) + e(n+1)

...(3.9)

where



A =

x(n) = [x1(n) x
7
(n)P

6(n) = [E,(n) El(n)P

' stands for transposition.

1 - ai a17

1-al 0 a"
1 CIL, a3T

96
CG3

3
1 044

1 Ct.s.

a4 {

as}
1- 1-06 NI

W.
1

ci,z 0 c4
%

ce.s. c4.4 1- ce.

(5(n) =

6
=
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.. (3.11)

-p,(n) b,l(n)..

-15a(n)
56

b27(n)

-Ain) b31(n)

55 6n) -kn) N4(n)
-1qr(n) los;(n)

-A(n) 141(n)
..(n) (1,(n) 0 f3,;( n ) l';(n) CI) -pin),

.. (3.12)

b (n) = n) such that 8 ;(n) = :;.N :b4(n).

...(3.13)

In the above model the state of a compartment is

the number of lymphocytes in it expressed as a

percentage of the total number of lymphocytes in all the

compartments. This total number is equivalent to the

number of injected lymphocytes, assuming no births and

deaths, and no loss of label. Experimentally the number

of cells in any compartment is measured by the amount of
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radiolabel activity. The 7x7 matrix A is constant and

stochastic (in the sense of Appendix 1). The 7x7 matrix

p(n) is compartmental (in the sense of section 1.1.1.4)

and is interpreted as the random component in (3.6).

.(n) is a random 7-vector. Presence of E:(n) in (3.7)

may be justified by changes in the same variables as for

A(n), but this time these are due to intercompartmental

stochasticity rather than intracompartmental randomness

(as for pz(n)). Also ez(n) may mimic the presence of

different types of immunities (see sections 1.2 and 2.1)

and other physiological factors, and the random

variation in different organisms within the same

species.

Equation (3.9) can be viewed as a system of

difference equations with both slope and intercept

random. The same system may be thought of as a Markov

chain generated by two stochastic processes. In other

words, it is a Markov chain in a random environment, but

such processes will not be discussed here. The second

term on the right-hand side of (3.9) causes the

structure to be similar to that of bilinear time series.

A fairly detailed discussion of bilinear time

series with one and two inputs is given in Appendix 5.

A bilinear time series with two inputs has sometimes
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been called random coefficient autoregression. The

discussion in Appendix 5: includes assumptions made in

analyzing the series, recursive expressions for the

solution and the first two moments, stability,

stationarity, existence and convergence of moments, and

asymptotic properties of least squares and maximum

likelihood estimators. Here, only the biological

interpretation of the results in the appendix

presented.

will be

It is assumed that, in (3.9), A is a constant

matrix, p(n) is a matrix such that EIA(n)] = 0 and

E[p(n)0(n)] = Cp, and E(n) is such that E[e(n)] = 0

and E[E(n)E'(n)] = G. {0z(n)} and {8,:(n)} are

independent. <g) , the Kronecker product, is defined in

section A5.1. Equation (3.9) may be used to find the

solutions (A5.5) and (A5.11). Stability can be thought

of as the ability to reach an equilibrium value

independent of the initial condition. For a more

precise statement of second-order stability see section

A5.3. In the case of the system under discussion it

depends on two second order terms: one based on the

determininstic coefficients, AA and the other based on

the interaction term, the variation in A, Co. The

biological interpretation is given in the biological

corollary 3.1 (corresponding to proposition A5.1).
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BIOLOGICAL COROLLARY 3.1. The number of

recirculating lymphocytes in any compartment reaches an

equilibrium value if the variation in that number

reaches an equilibrium and vice versa. This happens

independently of the number of recirculating lymphocytes

present initially. The variation in the number of

lymphocytes depends on the deterministic parameters of

the system and the variation in these parameters within

the compartment.

For the system (3.9) constancy of mean and

variance implies second-order stationarity (see

corollary A5.1). Precise results are in section A5.4.

Biological corollaries 3.2 and 3.3 correspond to

propositions A5.2 and A5.3 respectively.

BIOLOGICAL COROLLARY 3.2 If all the disturbances

are independent of each other, then the number of

lymphocytes have a constant mean and variance if the

variation in the number reaches an equilibrium and vice

versa.

BIOLOGICAL COROLLARY 3.3. The mean number of

lymphocytes and the variation around it described in

Biological Corollary 3.2 have unique values.

The condition for second-order stability and
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second-order stationarity is the same. They are related

as seen in proposition A5.4. In fact they are two

versions of the same concept; one (stability) refe,ing

to the ability to reach equilibrium independent of the

initial condition, and the other (stationarity)

emphasizing the values reached. The following reflects

this relationship.

BIOLOGICAL COROLLARY 3.4. If the number of

lymphocytes in any compartment in figure 10 reaches an

equilibrium independent of the initial conditions then

the distribution of lymphocytes in that compartment has

a constant mean and variance. With the passage of time

the equilibrium value of the number of cells and the

constant mean number of cells coincide.

Strict stationarity reflects time-invariance of

distributions (see section A5.6). The following

corollary reflects this idea corresponding to

proposition A5.5.

BIOLOGICAL COROLLARY 3.5. If the noises are

independent and identically distributed amongst

themselves and over time, then in any compartment the

distribution of lymphocytes which has constant mean and

variance as described above becomes asymptotically

time-invariant.
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3.5 SUMMARY OF BIOLOGICAL IMPLICATIONS.

A summary of the results presented as biological

corollaries above is given here. If the variation in

the number of recirculating lymphocytes in any

compartment reaches an equilibrium which does not depend

on the number of cells present initially in the

compartment then the mean number of cells also reaches

an equilibrium. This means that at equilibrium the

distribution of these cells in that compartment has

attained a unique constant mean and standard deviation.

When the random perturbations in the RLP are independent

and identically distributed, the necessary and

sufficient condition for the lymphocyte distribution in

any compartment to have a constant mean and standard

deviation at equilibrium is that the variation in the

number of lymphocytes there be stable. Under these

conditions the distribution is also asymptotically

time-invariant. This implies that the number of

recirculating lymphocytes can be characterized in terms

of their population distributions in different

compartments.

3.6 DEVELOPMENT OF THE CONTINUOUS-TIME MODEL.
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As mentioned before a time series is generated

when a continuous process is sampled at discrete time

points. Up to now a discrete-time model and its

properties were presented. In the remaining portion of

the chapter a corresponding continuous-time model and

relevant theoretical analysis will be discussed.

Physiological reasoning is similar to that in

section 3.3 and 3.14 and still 7 compartments will be

modeled. The mathematical reasoning follows that of

Zuev (see Marchuk et.al., 1985a; Marchuk et. al., 1986)

very closely. The deterministic model would be a system

of ordinary differential equations

xC-b)
f ( x ( t ) , 0 ) ,

ct
t [0,s] , ...(3.14)

where x(t) e fiR' is a state vector,

e /R is the vector of parameters,

x(0) is the initial state.

The undisturbed state of the system corresponds to

xt(8) = x(t,0) ,

while the disturbed state is realized by using

( 3 . 15 )
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in (3.14). Here 80(0 = SBA E I1( is a function of

time. Consider the i-th real trajectory

x; = x (0+SO +4)

te[0,1,],

The set X = {xt, te[0,z], i = 1,2,...,l} is the

realization of a stochastic process. Thus the

stochastic model for the description of the disturbed

state of the system is

GIXt f(x 67-49),
t7dt-

t6[0,-t] . ...(3.17)

Assume the perturbations to be small and rewrite (3.16)

using xt to denote the disturbed state.

Ott = f(x 9+E ...(3.18)

where X
t

is fixed, 5 > 0 is small. The random

disturbances in (3.18) will be considered small if with

small E > 0,

lim Pfsup)x: - x(3)) > 8} = 0 ...(3.19)
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for any S > 0. Equation (3.19) may be interpreted as

the formal statement of the assumption that the observed

trajectories have a common state xt(e), i.e. xt(i) =

Ex:. Assume that the random deviations (et - xt(6)) are

short-lived, in other words they are caused by a fast

random variable. Thus in (3.17) assume SO, = ) where
tit

is a stochastic process with values in Ile , 6 > 0

and small. Therefore

dxt

dt
= f ( xst , teE0,-c . ...(3.20)

tr

The parameter E. takes into accounts the division of

variables into fast and slow components. The

disturbances have been assumed to be random i.e. ELIO

= 0, Vt. Also, since they are fast, for arbitrary t >

0, E. > 0 and qe ffe.

t.c

lim iff(xe,10+ )ds - tf(x,i)I > 8} = 0 .t tie

...(3.21)

In such a case it can be shown that with

sup E I f (t, ) 1 < cc for any <>0, S>0 ,
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equation (3.18) holds. The process It may be considered

to fulfill the strong mixing condition. Taking this,

together with certain other assumptions (see proposition

A4.3), it can be shown that the normalized difference

= (xtt - xt(i5))/WT

converges weakly, as in [0,-c] to a Gauss-Markov

,0
process 5t satisfying

,0
dt = A(xt(0) F9)rt dt + dWt , .o ...(3.22)

For the structure of A and for other details see

Appendix 4.

Writing the deviations as
ca

EXt =(et -
t
(§)) =ArES

t
,

and using (3.23) in (3.22) yields,

...(3.23)

dExt = A(xt(o),J)Sxtdt + 4-E-701W: . ...(3.24)

Assuming C = cov(W°
t t

W°
45

) = ] and considering the

right hand side to be linear in 9 , (3.24) can be

written as

dSxt = A (xt.(4),i4)8x
t
dt + GdW /

...(3.25)
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where G = ] and Wt is a Wiener process with

covariance matrix as Idt, I being the identity matrix.

The undisturbed compartmental model can be written from

(3.14) as:

dx
t

= A(x (j),6)xtdt .
...(3.26)

Equation (3.25) describes the deviation in (3.26).

Adding (3.25) and (3.26)

d(xt+ S ) = A(xt(8),8).(xt

Using yt = xt in (3.27)

)dt + GdWt .

dyt = A(xt(B)M.ytdt + GdWt . ...(3.28)

Here matrix A(.,.) is a function of the undisturbed

state, but in general it can be under the influence of

random disturbances so that we may rewrite (3.28) as

dyt = A(yt (e) 09) .yt dt + G(yt (9),(9)dW .

...(3.29)
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3.7 THE SOLUTION AND ITS PROPERTIES.

After enlisting the relevant assumptions, the

solution of (3.29) and its properties will be presented.

There will be a brief mention of complexity of the

solution. Properties related to long-term behavior,

stability and stationarity, will be taken up just as for

the discrete model. Relation to diffusions and their

recurrence properties will also be mentioned.

Unlike the discrete-time model here results on

the general structure will be discussed and the model

equations treated as a special case of the general

equation (3.30) so that the results hold for this also.

3.7.1 ASSUMPTIONS.

Rewrite (3.29) as

dx
t

= f(t,xt) xt dt + G(t,xt) dWt . (3.30)

Following will be assumed as related to the

continuous-time model which is a special case of (3.30).

xt. =c, to < t < oo ,
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where x t e Et, ,t], Wt is an m-dimensional Wiener

process, leg" G (n x m matrix) e [t, x . xt is

nonanticipating for t e [t. ,t]. c is a random variable

independent of Wt-Wt .

3.7.2 THE SOLUTION AND ITS COMPLEXITY

For conditions of existence and uniqueness of the

solution of a stochastic differential equation (SDE) see

Arnold (1974) or any other standard text on stochastic

differential equations. The general linear stochastic

differential equation of interest here can be written as

dx
t

= (A(t)x
t
+a(t) )dt + i_7(B,.(t)xt+bi.(t))dW; ,

...(3.31)

where

x ; a(t),b (t) ; A(t),B (t) E fit" ;

= (Wit , ,W:) ' e (R" is a Wiener process.

Even when a(t) E b(t) E 0, and A(t) E A and Ei.(t)

d = Axidt + Bixtdolt ,
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the solution of (3.30), xt, cannot in general be given

explicitly in a simple form. Only when the matrices

A,B1 ,...,Bm commute

x = exp((A- Eie/2)(t-t0) + 01` » .

-(3.33)

When they do not commute the solution is more

complicated. It is well known that the complexity of

the solution of (3.30) depends on the vector fields

generated by g/(t,x),...,gm(t,x) comprising the columns

of G(t,x). Under certain conditions the solution of

(3.31) can be written explicitly, but the expression is

quite complicated. For details see Kunita (1980, 1981).

Although in some cases the solution of (3.30) may

be available, generally it is not in a convenient form

and would be very cumbersome if used in a simulation or

in estimation. Fortunately other ways are available to

study certain statistics of the nonlinear solution.

3.7.3 FIRST AND SECOND MOMENTS OF THE SOLUTION.

The relations that the first two moments of the
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solution of (3.31) must satisfy are given in Appendix 4

(see proposition A4.2). These relations ((A4.4) for the

first moment and (A4.5) for the second moment) are

ordinary differential equations and can be handled in

the usual way.

3.7.4 LONG-TERM BEHAVIOR OF THE SOLUTION.

3.7.4.1 STABILITY OF THE SOLUTION.

Consider (3.31) with continuous coefficients with

respect to t. Assume that the existence and uniqueness

conditions are satisfied and that with probability one,

c is a constant. Stability of the first and second

moments reduces to the stability of equations (A4.4) and

(A4.5).

3.7.4.2 SDE's AS DIFFUSIONS.

Under proper assumptions (Thm 9.3.1 of Arnold,

1974) SDE's can be thought of as diffusions. Autonomous

SDE's can always be taken as homogeneous diffusions.
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For more details refer to Appendix 4, section A4.4.

3.8 THE CONTINUOUS-TIME MODEL EQUATIONS AND THOSE USED

IN ESTIMATION.

For the lymphocyte distribution model, equation

(3.31) is assumed with a(t) s b(t) 7: 0 and m = 7, the

number of compartments. Further it is assumed that A(t)

E A, B,:(t) E Bz, i.e. they are constant. In other

words a homogeneous, autonomous system analogous to the

discrete model is obtained as

dx
t

= A xt dt + 13 x
t

dWt (3.34)

Additive noise is assumed zero for the time being. As

the analytical solution of this is rather unwieldy when

the Lie algebra generated by A, B, is not

Abelian, (A4.4) is used to estimate A, and (A4.5) to

estimate B ;, i = 1,...,7. In the present case (A4.4)

and (A4.5) reduce respectively to

rh t = A mt

and

...(3.35)
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P(t) = AP(t) + P(t)A' + 757 B:P(t)B: ...(3.36)
4=1

The matrices A and B-
1. 7

i = 1 1...1 7 are as follows:

A =

-c.1 o4
-0(A2. 0 azi.

-a'3 am.

06.3 -C4
4

a
.14

-a.s. all,

-0(.4 a44

a., a-, 0 0(.4 a. s a.4 a.T ,

(3.37)

A is thus irreducible and compartmental (essentially

nonnegative). i = 1,...,6 are 7x7 with only 2

non-zero elements in column i; all the other elements

are zero:

Bi

B3 =

0

0

0
0

P,

1 0

1 0

95 1 0
0

to

I 63

to
' 0

4) BL = t 0

t 0

t 0

r 2

4) B4 =

to
to

0

st7 I 164

0

0
I

f54



Bs =

B1 =

Nis

i = 1,..,6
a '
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I

...(3.38)

Various results above can be specialized to

(3.34). Stability of (3.35) depends on the eigenvalues

of A and that of (3.36) on the eigenvalues of the system

matrix obtained by using the equations for variances and

covariance from the lower triangle of the P matrix.

Equation (3.36) can also be expressed in the

vector form using the vech operator (see Appendix 5,

section A5.2.3.1).

vec P = [(I ®A) + (A6DI)]vec P + ®Bi)vec P
i=,

7
= [(AIEDA) + 21(B: ® BWvec P ,

,=,
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where (A eA) = (AG') + (loc.

vech H= HAGA) + 2(k.013i)71( vech P

...(3.40)

where H and K are as defined in section A5.2.3.1.

Checking the stability of (3.36) is equaivalent to

checking the stbility of (3.40).

Results of estimation and their analyses are the

topic of the next chapter.
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CHAPTER 4

RESULTS OF ESTIMATION AND

STATISTICAL ANALYSES

4.0 INTRODUCTORY REMARKS

Stochastic models, both discrete-time and

continuous-time were presented in the last chapter. In

this chapter their parameter estimation will be given

and the results analyzed. The proximity of fit with the

experimental data will be assessed statistically. In

the case of lack of fit further tests will be performed

to look into which compartment(s) might be the main

cause of this. First the nature and the shortcomings of

the available physiological data will be described.

Criteria used during parameter optimization and the

statistical tests that will be done will be discussed

next. After that the discrete-time model will be taken

up, estimation results tabulated, and stability and
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statistical tests performed. The same will be done for

the continuous-time model.

4.1 THE PHYSIOLOGICAL DATA AVAILABLE.

The Smith & Ford (1983) data was given previously

for 13 compartments (section 2.2). It tabulates only

means and standard deviations of observations (%

activity per organ) at each time point (n) in each organ

(i). The sample size (i.e. the number of rats which

were sacrificed at each sample time) varies from 2 to 6.

Missing data and variations are as follows:

Mean --- not available at (either label present was

in trace amounts or was not measureable):

n = 1 for peyer's patches, coeliac LN, right and

left popliteal LN,

n = 2 for coeliac LN, right and left popliteal LN,

and

n = 5 for right and left popliteal LN.

Standard deviation --- not available for. the above 9

points and also not at n = 2 for peyer's patches.

Covariances --- not available.

Sample size (N) :

2 at n = 2 for peyer's patches,
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3 at n = 1 for deep cervical LN,

4 at n = 1 for superficial cervical LN and

mesenteric LN,

n = 2 for deep cervical LN,

n = 5 for coeliac LN,

6 at n = 540 for all 13 organs, and

5 at all other observation points.

The 13 instants at which measurements were made are (in

minutes): 1, 2, 5, 10, 30, 60, 150, 360, 540, 720, 900,

1080, 1440 and there is the initial condition (i.e, at n

= 0).

A limited amount of raw data is available in the

form of graphs, but it is very hard to interpret.

Points for different rats cannot be identified.

Some of the compartments were lumped to form the

7 compartment model as discussed earlier in section

3.4). The new data is given in Table 2 for means and

second moments. Like most biological and social data

the observations have been made at unequally spaced

intervals of time and there seem to be many outliers in

the raw data. The estimation procedures mentioned in

sections A5.8.1 and A5.8.2 assume equally spaced data.

During estimation, no matter what algorithm is used, the

values of the parameters have to be optimized by
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minimizing some function of the difference between the

experimental data and the corresponding estimated

values. The criteria used to do this will be discussed

next.
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Table 2. SMITH & FORD (1983) DATA FOR THE
7 COMPARTMENT MODEL.

FIRST MOMENTS FROM FORD'S DATA

1

(% activity per compartment)

COMPARTMENT NUMBER

Time; #1 #2 #3 #4 #5 #6 #7

01 0.00 0.00 0.00 0.00 0.00 0.00 100.00
11 1.15 2.29 19.20 .23 .16 35.50 41.47
21 1.15 2.29 16.37 .29 .21 40.08 36.59
51 1.36 10.56 19.06 1.52 .96 27.63 38.91

10 1.61 19.51 20.91 3.12 2.30 22.97 29.58
30 1.80 38.93 25.73 8.27 5.17 8.46 11.64
60 2.26 39.41 31.77 13.12 7.60 2.50 3.34

1501 2.23 32.31 36.46 14.39 7.82 2.73 4.06
360 1.33 21.32 46.36 16.65 8.76 2.33 3.25
540 1.24 17.90 48.24 18.48 9.13 1.85 3.06
720 2.17 19.14 42.21 22.55 9.86 1.66 2.41

9001 .71 14.86 47.47 22.50 9.30 2.02 3.13
10801 1.01 15.48 47.22 23.05 8.92 1.86 2.46
1440; .73 15.48 49.51 21.08 8.13 2.03 3.04

SECOND MOMENTS FROM FORD'S DATA

1

Time

(%

#1

activity per compartment)**2

COMPARTMENT NUMBER

#2 #3 #4 #5 #6 #7

1

01 0.00 0.00 0.00 0.00 0.00 0.00 10000.

11 1.37 8.45 376.30 .06 .03 1297.9 1744.2
21 1.37 8.07 275.96 .09 .05 1644.0 1342.1

51 2.09 118.48 402.20 2.81 1.15 808.71 1537.0
101 2.79 417.12 445.15 10.32 5.79 551.34 903.49

301 3.72 1545.2 664.07 70.60 27.40 73.13 144.07
60 5.36 1584.3 1011.6 174.30 58.07 6.61 12.48

1501 6.64 1055.6 1330.2 209.66 63.01 7.71 17.26
360; 1.91 463.36 2151.7 279.41 78.01 5.47 10.68
540; 1.84 334.25 2329.9 356.52 84.99 3.49 9.63
7201 6.20 377.50 1785.7 519.33 97.96 2.86 6.12
9001 .62 231.19 2258.3 508.74 86.70 4.21 10.64

10801 1.27 243.32 2231.1 537.64 80.06 3.63 6.39
1440; .56 240.24 2454.2 447.66 67.17 4.27 9.66
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4.2 MINIMIZING CRITERIA.

The estimates obtained from the models at

appropriate time instants were used in the cost

functions which were minimized using nonlinear

optimization, viz., Powell's technique (Fletcher &

Powell, 1963; Powell, 1964). Two cost functions were

used, weighted least squares and maximum likelihood. In

weighted least squares the variances from the

experimental data were used as weights so that in effect

a chi-squared criterion was minimized. Expressions for

weighted least squares and maximum likelihood (assuming

independent Gaussian errors) criteria are given in

Appendix 6. The case when lognormal errors are assumed

is also discussed there.

Before the estimation procedures are presented

there will be a digression to describe the statistical

tests that will be performed on the results.

4.3 STATISTICAL ANALYSIS.

Once "optimal" estimates of the parameters have

been obtained, tests need to be done to check the

validity of the model, a model being considered valid if
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its performance in terms of its output is similar to

that of the real-world system when similar inputs are

applied to both. In other words, if the state of the

model is so "close" to the state in the experimental

data that the difference between the two can still be

attributed to chance then the model is valid. Since the

states have been thought of as possessing a stochastic

component (section 3.4), the model will be valid if the

stochastic process generated by the model is drawn from

the same population as the real-world data. This

intuitively means that the difference between the two

(referred to as "residual error" from now on) should

have a more or less symmetrical distribution with zero

mean in a range where the errors are very small. As the

residual error size increases the distribution is

increasingly asymmetric. It is impossible to say with

any degree of certitude that the two populations under

consideration are the same. What can be decided though,

is that the two populations are so similar that there is

no significant difference between them in a statistical

sense.

The statistical analyses are performed on the

residual errors, er, between the experimental data and

the estimated states.



er(j)

x(j)

where
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...(4.1)

ef(j) = residual errors at instant j,

the components being ef. (j),

i = 1,...,7 (activity).

x(j) = measured state at j,

components being )0j).

X(j) = estimated state at j,

components being x.(j).

There are 7 sets of residual errors

(j), j=1,...,131, i = 1,...,7 .

As just mentioned the problem is to decide if the

distributions from which they are drawn are similar

enough. Thus the hypothesis to be tested (assuming

continuous populations) is:

H.: F (en) = = = F7(%) (null)

H : The populations differ in some way

(alternative)
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Descriptions of the various tests are given in

Appendix 7. Three types of statistical analyses were

done: the classical one-way analysis of variance, Link

and Wallace analysis of variance and Friedman's two-way

analysis of variance. The three are compared in the

appendix. Multiple comparisons that were done are also

discussed. Terms used in the statistical literature are

given in parenthesis in the description of the tests.

Before proceeding further a comment on the

robustness of the F-test is in order. The test is

considered to be robust for "moderate departures" from

normality provided the sample sizes are reasonably

large, and for "moderate departures" from the constant

variance assumption when the sample sizes are

approximately equal. It is sensitive to the assumption

of equality of variances for unequal sample sizes

(Gibbons, 1985). Recently there have been attempts to

quantify such traditionally used statements. Tiku

et.al. (1986) show that F-test is asymptotically robust

with increasing sample size. For small samples recently

it has been shown using Laguerre series approximation of

the nonnull distribution that if the underlying

distribution is skewed (e.g., lognormal) or is symmetric

with very large kurtosis then the variance-ratio test is

not robust (Tan, 1982; Tiku, et.al., 1986).
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4.4 ESTIMATION OF PARAMETERS IN THE DISCRETE MODEL.

4.4.1 ESTIMATION RESULTS.

Since only means and variances are given in the

data, equations (A5.7) and (A5.8) were used as dictated

by logic. The first moment equation (A5.7) was used to

estimate A. It was solved recursively, taking k=1 and

starting n at O. In the case of the second moment

equation (A5.8), the diagonal of the matrix E[x(n)x'(n)]

was used to estimate (CO3G), covariances not being

available. The equation used in estimation is

P
4
(n+1) = diag[E[x(n+1)x1(n+1)]}

= diagIAE[x(n)V(n)1111+E[p(n)x(n)x'(n)(3'(n)71

+ diagICE[e(n+1).E'(n+1)]C}

P
a
(n+1) = A

4
F '.1(n) + Cd P

e
(n+1)

where

...(4.3)
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a a ",

( 1 -ea + i.sf ato-bil
(1 -0G)2 + isl 0 cl'44-1:4;

( 1 -0;)1 + s'. cl;i0-05,

Ad = ce3+16.; ( 1 cc) + 154 alail-d.4

( 1-Ces)z + A
41+ b2si

( 1 -a)' + ,e,, at.:,+ bli
a. . .a + p, cr2a + (33, 0 a+ i!,1 ee'll ces+p. ( 1-ce)l- +r

4 4 7 .7---5 4 4

Cd =

CY,t-5,

1.4

FS 2
GE&

4.4

and Pe (n) = diagtECE(n)V(n)]}

Some important covariances, like those between blood and

the other compartments, are not available in the

experimental data. Others, like those between bone

marrow and the other compartments can be safely ignored.

Equation (4.3) does not take the important covariances

into account.

The estimated values and residual errors are

presented in Tables 3 to 6 for the first and second

moments as least squares and maximum likelihood

estimates depending on which minimizing criterion was

used. In all of these 4 tables the columns are the

compartments in order and the rows the time instants.
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The cost functions Q.(.) mentioned in section 4.2

are minimized. Q z(.) is a function of the sample

variance of the residual errors, so that effectively

this is what is minimized to obtain the "best" parameter

estimates. For the Gaussian assumption, ) and

(.) have similar interpretation. Being divided by

variance from the data as weights, Q.(.) is

dimensionless ratio. For the first moments min Q,e(A) =

5.73 and min Q
ZL

(A) = 6.39, while for the second moments

P, rmin Q (C G) = 16428.22 and min Q (CA.G) = 15.45. The

estimated parameter values are tabulated in Table 7.

The minimized %2-values (i.e., 91*(min Q,xt(A.)), see

Appendix 6) are significant which indicates that the

residual errors are quite large. In other words the

model does not fit the data.

Detailed statistical analyses of the estimated

results follow Table 7.
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Table 3

THE DISCRETE MODEL
WEIGHTED LEAST SQUARES ESTIMATION

FIRST MOMENTS

ESTIMATED VALUES AT OBSERVATION INSTANTS
(% activity per compartment)

COMPARTMENT NUMBER

Time #1 #2 #3 #4 #5 #6 #7

0 .0000E+00 .0000E+00 .0000E+00 .0000E+00 .0000E+00 .0000E+00 .1000E+03

1 .4859E+00 .6532E+01 .3520E+01 .3529E+00 .3664E+00 .3913E+02 .6473E+02

2 .7947E+00 .1071E+02 .5792E+01 .5857E+00 .6034E+00 .4941E+02 .5121E+02

5 .1425E+01 .1935E+02 .1059E+02 .1098E+01 .1106E+01 .4603E+02 .3829E+02

10 .2143E+01 .2947E+02 .1644E+02 .1774E+01 .1722E+01 .3372E+02 .2799E+02

30 .3162E+01 .4594E+02 .2794E+02 .3535E+01 .2974E+01 .1137E+02 .9914E+01

60 .2991E+01 .4755E+02 .3338E+02 .5238E+01 .3651E+01 .4900E+01 .4648E+01

150 .1993E+01 .3892E+02 .4000E+02 .9399E+01 .4726E+01 .3384E+01 .3310E+01

360 .1161E+01 .2576E+02 .4647E+02 .1652E+02 .6415E+01 .2522E+01 .2472E+01

540 .9466E+00 .2058E+02 .4775E+02 .2007E+02 .7421E+01 .2220E+01 .2180E+01

720 .8612E+00 .1820E+02 .4766E+02 .2201E+02 .8231E+01 .2095E+01 .2058E+01

900 .8269E+00 .1718E+02 .4715E+02 .2294E+02 .8932E+01 .2045E+01 .2010E+01

1080 .8135E+00 .1675E+02 .4660E+02 .2332E+02 .9564E+01 .2026E+01 .1991E+01

1440 .8053E+00 .1650E+02 .4572E+02 .2337E+02 .1068E+02 .2012E+01 .1977E+01

THE MATRIX OF RESIDUAL ERRORS

Time

(%

#1 #2

activity per compartment)

COMPARTMENT NUMBER

#3 #4 #5 #6 #7

1; .6641E+00-.4242E+01 .1568E+02-.1229E+00-.2064E+00-.3631E+01- .2326E+02

2; .3553E+00-.8419E+01 .1058E+02-.2957E+00-.3934E+00-.9329E+01- .1462E+02

51- .6519E -01- .8792E +01 - .8470E+01 .4223E+00-.1455E+00-.1840E+02 .6170E+00

101- .5334E +00 - .9961E +01 .4469E+01 .1346E+01 .5776E+00-.1075E+02 .1593E+01

301-.1362E+01-.7011E+01- .2205E+01 .4735E+01 .2196E+01-.2906E+01 .1726E+01

601-.7315E+00-.8144E+01- .1613E+01 .7882E+01 .3949E+01- .2400E +01 - .1308E+01

150 .2373E+00- .6607E +01 - .3537E +01 .4991E+01 .3094E+01-.6543E+00 .7500E+00

360 .1691E+00- .4440E +01 - .1072E+00 .1311E+00 .2345E+01-.1917E+00 .7778E+00

540 .2934E+00-.2678E+01 .4894E+00-.1595E+01 .1709E+01-.3705E+00 .8803E+00

720: .1309E+01 .9357E +00 - .5445E+01 .5442E+00 .1629E+01-.4347E+00 .3523E+00

900;- .1169E +00 - .2317E +01 .3191E+00-.4424E+00 .3679E+00-.2509E-01 .1120E+01

1080; .1965E+00-.1274E+01 .6169E+00-.2728E+00-.6437E+00-.1660E+00 .4689E+00

1440!-.7533E-01-.1019E+01 .3785E+01-.2291E+01-.2545E+01 .1796E-01 .1063E+01
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Table 4

THE DISCRETE MODEL
-2 LN LIKELIHOOD ESTIMATION

FIRST MOMENTS

ESTIMATED VALUES AT OBSERVATION INSTANTS
(% activity per compartment)

COMPARTMENT NUMBER

Times #1 #2 #3 #4 115 #6 #7

0 .0000E+00 .0000E+00 .0000E+00 .0000E+00 .0000E+00 .0000E+00 .1000E+03
1 .4885E+00 .6490E+01 .3501E+01 .3536E+00 .3657E+00 .3884E+02 .6492E+02
2 .7997E+00 .1065E+02 .5768E+01 .5874E+00 .6030E+00 .4916E+02 .5138E+02
5 .1435E+01 .1927E+02 .1055E+02 .1102E+01 .1106E+01 .4594E+02 .3840E+02
10 .2158E+01 .2935E+02 .1639E+02 .1780E+01 .1724E+01 .3370E+02 .2810E+02
30 .3179E+01 .4582E+02 .2790E+02 .3547E+01 .2980E+01 .1141E+02 .9996E+01
60 .2998E+01 .4747E+02 .3337E+02 .5251E+01 .3662E+01 .4923E+01 .4688E+01
150 .1980E+01 .3886E+02 .4002E+02 .9405E+01 .4742E+01 .3391E+01 .3331E+01
360 .1149E+01 .2570E+02 .4652E+02 .1651E+02 .6434E+01 .2523E+01 .2484E+01
540 .9379E+00 .2051E+02 .4781E+02 .2005E+02 .7439E+01 .2221E+01 .2190E+01
720 .8539E+00 .1814E+02 .4772E+02 .2198E+02 .8246E+01 .2095E+01 .2067E+01
900 .8202E+00 .1712E+02 .4722E+02 .2291E+02 .8945E+01 .2045E+01 .2018E+01

1080 .8071E+00 .1669E+02 .4668E+02 .2329E+02 .9574E+01 .2026E+01 .2000E+01
1440 .7991E+00 .1644E+02 .4580E+02 .2334E+02 .1068E+02 .2012E+01 .1986E+01

THE MATRIX OF RESIDUAL ERRORS
(% activity per compartment)

COMPARTMENT NUMBER

Time #1 #2 #3 #4 #5 #6

1 .1570E+02- .1236E +00 - .2057E +00 - .3343E +01 -.6615E+00-.4200E+01
2; .1060E+02- .2974E +00 - .3930E +00 - .9085E +01 -.3503E+00-.8362E+01

-.7499E-01-.8705E+015i .8506E+01 .4183E+00-.1458E+00-.1831E+02
10 .4517E+01 .1340E+01 .5764E+00-.1073E+02-.5478E+00-.9841E+01

-.1379E+01-.6890E+01-30 .2167E+01 .4723E+01 .2190E+01-.2951E+01
60 .1604E+01 .7869E+01 .3938E+01- .2423E +01 --.7381E+00-.8062E+01-

150 3561E+01 .4985E+01 .3078E+01-.6608E+00.2505E+00-.6546E+01-
360 .1594E+00 .1414E+00 .2326E+01-.1934E+00.1810E+00-.4375E+01-
540 .4272E+00-.1575E+01 .1691E+01-.3710E+00.3021E+00-.2614E+01
720. .1316E+01 9979E+00-.5513E+01 .5705E+00 .1614E+01-.4348E+00
9001-.1102E+00-.2257E+01 .2480E+00-.4130E+00 .3549E+00-.2511E-01
1080: .2029E+00-.1215E+01 .5437E+00-.2424E+00-.6538E+00-.1660E+00
14401-.6906E-01-.9621E+00 .3709E+01-.2261E+01-.2549E+01 .1779E-01

#7

.2345E+02

.1479E+02

.5055E+00

.1479E+01

.1644E+01

.1348E+01

.7295E+00

.7656E+00

.8704E+00

.3433E+00

.1112E+01

.4603E+00

.1054E+01
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Table 5

THE DISCRETE MODEL
WEIGHTED LEAST SQUARES ESTIMATION

SECOND MOMENTS

Time #1

ESTIMATED VALUES AT OBSERVATION INSTANTS
(% activity per compartment)"2

COMPARTMENT NUMBER

#2 #3 #4 #5 #6 #7

0 .0000E+00 .0000E+00 .0000E+00 .0000E+00 .0000E+00 .0000E+00 .1000E+05
1 .7884E-01 .1425E+02 .9318E+01 .9297E+01 .5041E-01 .5113E+03 .1313E+04
2 .1035E-01 .1592E+02 .1498E+02 .1489E+02 .6188E-01 .5128E+03 .5795E+03
5 .3528E-02 .1738E+02 .3075E+02 .3055E+02 .8543E-01 .4067E+03 .4152E+03
10 .2452E-02 .1868E+02 .5607E+02 .5570E+02 .1214E+00 .2747E+03 .2899E+03
30 .7399E-03 .1818E+02 .1479E+03 .1470E+03 .2483E+00 .6648E+02 .8960E+02
60 .3169E-03 .1384E+02 .2637E+03 .2620E+03 .4237E+00 .1906E+02 .3962E+02
150 .1736E-03 .5812E+01 .5005E+03 .4972E+03 .9378E+00 .9028E+01 .2193E+02
360 .1328E-03 .1947E+01 .7203E+03 .7156E+03 .2128E+01 .6704E+01 .1685E+02
540 .1448E-03 .1815E+01 .7718E+03 .7667E+03 .3148E+01 .7286E+01 .1837E+02
720 .1613E-03 .1991E+01 .7877E+03 .7825E+03 .4169E+01 .8119E+01 .2047E+02
900 .1784E-03 .2206E+01 .7927E+03 .7875E+03 .5192E+01 .8985E+01 .2264E+02

1080 .1957E-03 .2427E+01 .7943E+03 .7891E+03 .6217E+01 .9856E+01 .2483E+02
1440 .2303E-03 .2871E+01 .7952E+03 .7900E+03 .8271E+01 .1160E+02 .2922E+02

THE MATRIX OF RESIDUAL ERRORS
(% activity per compartment)"2

COMPARTMENT NUMBER

Time #1 #2 #3 #4 #5 #6 #7

1

11 .1052E+01-.4847E+02 .3546E+03-.9362E+01-.1576E+00-.7446E+03-.2031E+04
21 .1248E+01-.2748E+02 .2501E+03-.2405E+02-.8088E-01 .7365E+03 .3637E+03
51 .2072E+01 .8248E+02 .3454E+03-.5297E+02 .9801E+00 .1667E+03 .9466E+03
101 .2773E+01 .3789E+03 .3378E+03-.9580E+02 .5549E+01 .1165E+03 .4931E+03
30' .3712E+01 .1509E+04 .3728E+03-.2181E+03 .2691E+02-.3451E+02 .2090E+02
60 .5356E+01 .1557E+04 .4883E+03-.3445E+03 .5722E+02-.2599E+02-.3992E+02
150 .6636E+01 .1044E+04 .3326E+03-.7795E+03 .6114E+02-.8119E+01-.1144E+02
360 .1913E+01 .4594E+03 .7138E+03-.1146E+04 .7376E+02-.6353E+01-.1131E+02
540 .1839E+01 .3306E+03 .7889E+03-.1172E+04 .7870E+02-.9365E+01-.1434E+02
720 .6196E+01 .3735E+03 .2129E+03-.1040E+04 .8963E+02-.1146E+02-.2059E+02
900 .6188E+00 .2267E+03 .6754E+03-.1061E+04 .7633E+02-.1164E+02-.1891E+02
1080 .1269E+01 .2384E+03 .6449E+03-.1035E+04 .6763E+02-.1376E+02-.2602E+02
14401 .5543E+00 .2344E+03 .8663E+03-.1127E+04 .5064E+02-.1621E+02-.2847E+02
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Table 6

THE DISCRETE MODEL
-2 LN LIKELIHOOD ESTIMATION

SECOND MOMENTS

Time #1

ESTIMATED VALUES AT OBSERVATION INSTANTS
(% activity per compartment)**2

COMPARTMENT NUMBER

#2 #3 #4 #5 #6 #7

0 .0000E+00 .0000E+00 .0000E+00 .0000E+00 .0000E+00 .0000E+00 .1000E+05
1 .8059E-01 .1422E+02 .9306E+01 .9287E+01 .5076E-01 .5095E+03 .1309E+04
2 .1055E-01 .1588E+02 .1496E+02 .1486E+02 .6226E-01 .5108E+03 .5772E+03
51 .3590E-02 .1733E+02 .3069E+02 .3049E+02 .8583E-01 .4049E+03 .4133E+03

10 .2493E-02 .1863E+02 .5594E+02 .5558E+02 .1219E+00 .2732E+03 .2883E+03
30 .7503E-03 .1810E+02 .1476E+03 .1466E+03 .2488E+00 .6586E+02 .8889E+02
60 .3214E-03 .1377E+02 .2632E+03 .2615E+03 .4241E+00 .1884E+02 .3931E+02
1501 .1762E-03 .5775E+01 .4998E+03 .4966E+03 .9383E+00 .8935E+01 .2178E+02
3601 .1350E-03 .1933E+01 .7201E+03 .7154E+03 .2128E+01 .6645E+01 .1676E+02
5401 .1472E-03 .1802E+01 .7719E+03 .7669E+03 .3148E+01 .7225E+01 .1828E+02
720 .1641E-03 .1978E+01 .7880E+03 .7828E+03 .4169E+01 .8052E+01 .2037E+02
900 .1816E-03 .2192E+01 .7930E+03 .7879E+03 .5193E+01 .8912E+01 .2254E+02
1080 .1991E-03 .2412E+01 .7947E+03 .7895E+03 .6217E+01 .9778E+01 .2472E+02
1440 .2344E-03 .2854E+01 .7956E+03 .7904E+03 .8272E+01 .1151E+02 .2909E+02

THE MATRIX OF RESIDUAL ERRORS
(): activity per compartment)**2

COMPARTMENT NUMBER

Time #1 #2 #3 #4 #5 #6 #7

11 .1047E+01-.4789E+02 .3547E+03-.9352E+01-.1575E+00-.7203E+03-.2061E+04
21 .1246E+01-.2733E+02 .2501E+03-.2401E+02-.8149E-01 .7420E+03 .3632E+03
51 .2072E+01 .8260E+02 .3455E+03-.5285E+02 .9793E+00 .1700E+03 .9481E+03

101 .2773E+01 .3790E+03 .3380E+03-.9556E+02 .5548E+01 .1192E+03 .4946E+03
301 .3712E+01 .1509E+04 .3735E+03-.2175E+03 .2691E+02-.3343E+02 .2163E+02
601 .5356E+01 .1557E+04 .4894E+03-.3435E+03 .5722E+02-.2558E+02-.3963E+02
1501 .6636E+01 .1044E+04 .3339E+03-.7783E+03 .6114E+02-.7933E+01-.1131E+02
3601 .1913E+01 .4595E+03 .7142E+03-.1146E+04 .7376E+02-.6229E+01-.1125E+02
5401 .1839E+01 .3306E+03 .7886E+03-.1172E+04 .7870E+02-.9236E+01-.1428E+02
7201 .6196E+01 .3735E+03 .2123E+03-.1041E+04 .8963E+02-.1132E+02-.2053E+02
9001 .6188E+00 .2267E+03 .6747E+03-.1062E+04 .7632E+02-.1149E+02-.1884E+02
10801 .1269E+01 .2384E+03 .6442E+03-.1036E+04 .6763E+02-.1359E+02-.2595E+02
1440: .5542E+00 .2345E+03 .8655E+03-.1128E+04 .5064E+02-.1601E+02-.2839E+02
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Table 7

ESTIMATED PARAMETERS VALUES FOR THE DISCRETE MODEL

WLS = Weighted Least Squares estimation
-2LL = -2 Ln Likelihood estimation

Deterministic Parts of Multiplicative Parameters:

1
: :

WLS .11948E-01 .48594E-02 .78494E-02 .65323E-01 .15659E-02

: 1

I

I 1..

-2LL .12159E-01 .48854E-02 .78598E-02 .64899E-01 .15616E-02

1 1
: 1-

a." oc, .

,

°LIT as .

,

031.

1
: 1

WLS .35198E-01 .33771E-02 .34741E-02 .41243E-03 .36640E-02
:

-2LL .35008E-01 .33798E-02 .34816E-02 .41566E-03 .36575E-02

: 1 : :

.

0.b .

.

4441. I a,
WLS .38460E+00 .39131E+00 .49617E+00

-2LL .38342E+00 .38843E+00 .49964E+00

Standard Deviations of the Multiplicative Noises:

t. cr.s,

1

.

.44,
1

:

4;4
1

Ts

WLS .10245E-02 .99294E+00 .99673E+00 .15762E-03 .10000E+01
1

.

1 1

-2LL .10245E-02 .99294E+00 .99674E+00 .15762E-03 .10000E+01

: 1 1 1

WLS .93364E+00 .29113E+00:

-2LL .93364E+00: .29076E+00:

Standard Deviations of the Additive Noises:

Cr*, bas CC. 'Ter

WLS .23895E-04 .19190E-05 .22762E+01 .56450E-05 .74743E-01
1 1

-2LL .23895E-04 .19190E-05 .22733E+01 .56450E-05 .74743E-01

Ts,

WLS .37201E-06 .23510E+01

-2LL .37201E-06 .23481E+011
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4.4.2 STABILITY ANALYSIS.

WEIGHTED LEAST SQUARES:

First-moments --- A is an irreducible matrix. It

is column stochastic (in the sense of Appendix 1)

and thus its spectral radius is 1 (see proposition

A2.6 in Appendix 2). The seven compartments are

not linearly independent because blood is the sum

of the other compartments and overall it is a

closed system. The subroutine HQR from EISPACK

was used to find the eigenvalues and confirm the

value of the spectral radius.

Second-moments --- The matrix (A0A + c
P

) is a

49 x49 sparse matrix and the usual method for

finding eigenvalues are not efficient in such

case. Ranges of eigenvalues were estimated using

Gershgorin's Circle Theorem (Lancaster, 1969) and

the fact that the spectral radius of a matrix is

always greater than or equal to the largest

diagonal element,

P(A) 1 max ,a,;
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It turned out that the spectral radius was greater

than 1 (The eigenvalues lie in the interval

[-6.27,8.5] and the spectral radius > 1.9992).

-2 Ln LIKELIHOOD:

First-moments --- The spectral radius of A, p(A)

Second-moments --- The spectral radius p(AOA +

Co) > 1. (The eigenvalues are in [-6.26,8.50] and

p(.) > 1.9992).

In both cases the implication is of instability and

second-order non-stationarity by propositions A5.1 and

A5.4. This being so and the minimized 1L (See section

4.4.1) being significant at a= 0.01, further analyses

were done to check into the goodness of fit of the

compartments of the model. Since one of the conditions

for existence and convergence of moments (Prop A5.6) is

the same as the condition for stability which is

violated, by proposition A5.6 second moment diverges.

There is a possibility of this happening because the

variances were estimated by using only the diagonal of
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the E[x(n)x'(n)] matrix, covariances not being available

in the data. By doing so the number of equations used

in the estimation of the parameters is reduced and in

turn the number of constraints on the parameters is also

reduced thus leading to 'mis-estimation'. An

hypothetical numerical example will now be given to show

how this can occur.

4.4.2.1 AN HYPOTHETICAL NUMERICAL EXAMPLE.

For the time being consider only a two

compartment system. Let

A =

Then

cC,j011 1-CC2

AzA+ psp) =
1 -0e1) +

cx1( 1 01i)
ms 1 ad

CY 2
ri

(3;

( 1 - e ( p,o, + (5t

( 1 oe,) ( 1 az) + pip. C141Cez+ (51 0. czi crz)_p:
ce.+ (3.(a, (1 a) ( 012) 48,p, as 1 _a) _p;

CC, ( 1 -"It) -* (61 ex,( 1 -a)-(q, (1-cf)a+(311,

The second-moment matrix is symmetric, so that only its

lower triangle is needed to investigate the stability of
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the second moment equation. In this case the matrices H

and K of section A5.2.3.1 will be

H=

[1 0 0 0
0 1 0 0 1, K=
0 0 0 1

Then

1 0 0

0 1 0

0 1 0

0 0 1

( 1 -Oe + f5. 2(1 -tx,)a,720,(ez.

[

Ci124- (ES;

ii(A0A-1-pop)K= ce,( 1 -cf,) - g,t (1 -or) (1 -c0+a,cci-2p,f3z a',( 1 -a) -(3.

ce,z+Pa 2xe (1 -ce)-+S
, z

For this matrix, the characteristic equation is

( 1+A+ bt +132 ))* + (A+g- +1131 +132" ) X- ( +13"A ) =0 ,

...(4.4)

where Zs.= det(A) = ( + ocz) and b = p, pz.)

If only the variances are used in estimation then

this 3x3 matrix is replaced by the following 2x2 matrix

[ ( 1 -(201. + cca, +

cc:-+§i (1-a)i +

The charateristic equation for this new matrix is
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X7-"' 2A+ aL -2aq+ tf3,2+ (3: ))++ ( Lzs. +2=epad+ ( 1-2(xd r2. + ( 1-2cez )(e; ) =0 ,

(4.5)

where a = ( ot,+ cr2) .

Suppose oi.,=0.1, (3,=0.3, and (32=0.5. Then

for the above 3x3 matrix the characteristic equation

(4.4) becomes

- 2.83 X2 + 2.621X - 0.791 = 0,

and the eigenvalues are: - 0.00416, >2=

0.00208+10.786410, X3r. 0.00208 -10.786410. Ia21 = 1X51

= 0.786413. The spectral radius is within the unit

circle.

For the same values of the parameters the 2x2

matrix has the following characteristic equation (4.5)

- 1.79X+ 0.784 = 0,

and the eigenvalues are: X,= 1.02548, and

Thus the spectral radius is greater than one.

X,= 0.7645.

This example is for a two-compartment system. If

all the equations available are not used from the

second-moment matrix there is a possibility of finding
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parameter values for which the system diverges. In the

7-compartment system if only seven equations

(corresponding to the variances available in the data)

are used instead of 28, a similar possibility exists.

In fact, this is probably what is happening in the

stability analysis.

4.4.3 STATISTICAL ANALYSES.

4.4.3.1 FIRST-MOMENTS.

WEIGHTED LEAST SQUARES --- The traditional approach is

to assume independent Gaussian errors and use the

classical one-way analysis of variance. The results for

this are given in Table 8(Ia). The null and alternative

hypotheses are given in equation (A7.1).

The F-test gives F = 4.61 (F. < 76,0j0

=3.12, k = 7, N=91, cc = 0.01) which is significant,

resulting in the rejection of the null hypothesis. To

look deeper into which set(s) (if any) of errors might

be the cause of this all pairwise comparisons of means

were done using Fisher LSD (Least Significant
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Difference) test (See Table 8(Ic)). The means for

compartments 2 and 6 are significantly different at a,

0.05 from means for compartments 1, 3, 4, and 5.

Next the assumption for independence of all

observations was relaxed, and Link and Wallace analysis

of variance based on ranges was done as described above.

The computed test statistic K = 1.016. This is critical

at a= 0.01 (K,,,k;a. = 0.79, n=13, k=7, a,= 0.01), so

that again the null hypothesis is rejected. Multiple

comparisons were done and results are given in table

8(IIb).

After this the assumption of normality was

dropped and Friedman's two-way analysis of variance

based on ranks was done. The null hypothesis concerns

distributions (not means) as in (4.2). ik= 25.68 was

obtained, which is significant ( K,;,1,.= 16.81, k = 7, cc=

0.01). Thus the errors in all the compartments do not

all have the same distributions. Wilcoxon and Wilcox

multiple comparison procedure was used to do all

pairwise comparisons. It turns out that the

distribution of errors in compartment 2 is significantly

different from the distributions in compartments 1, 3,

4, 5, and 7 as seen from Table 8(IIIb).
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-2 Ln LIKELIHOOD --- The results were similar as for

the weighted least squares and given in Table 9.

4.4.3.2 SECOND-MOMENTS.

WEIGHTED LEAST SQUARES --- Again the three types of

analyses were done. The traditional ANOVA and multiple

comparisons rejected the null hypothesis (A7.1) (F

11.48 > F (< F 6,0;c4 = 3.12, k = 7, N = 91, cc =

0.01)) and give three mutually exclusive subsets of

compartment error means (Table 10(Ic)):

( )72., , > ( Re , Res , )7e.,3cz; ) > ( Re4)

Link and Wallace analysis also rejected the null

hypothesis (K = 1.817 > K = 0.79, n=13, k = 7, m

0.01). Pairwise comparisons yielded the same subsets as

before.

Friedman's analysis showed differences in

distributions ('c,' = 44.60 > le
IcA;ot.

= 16.81, k = 7, cc

=0.01). Wilcoxon and Wilcox test gave three subsets of

compartments:

{ (1,2,3,5), (1,2,5,6,7), (4)}.
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These results will be discussed in chapter

-2 Ln LIKELIHOOD --- The results here were similar to

the results for weighted least squares (See table 11).

4.4.4 BIOLOGICAL INTERPRETATION OF THESE RESULTS.

It was shown above that for the estimated

parameter values the model mean is marginally stable.

Stability of the second moment is a function of the

squares of the deterministic parts of the parameters and

the variances of the parametric noise. Because of the

parametric noise the model is a variable structure

system (actually structurally unstable system) with

random variation in the structure. As the estimated

variances of the noises have large values in the model

the distribution of recirculating lymphocytes is

unstable. Comparing lymphocyte populations in any

compartment there is a big difference in the estimated

number of cells and the experimental quantity. For the

mean, compartment # 2 (spleen) appears to be the main

source of error, while for the variance (standard

deviation) compartment #s 3 (LT) and 4 (LN-a) may be the
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main cause. There will be a more detailed discussion in

chapter 5.
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Table 8

STATISTICAL ANALYSES
DISCRETE-TIME MODEL; FIRST MOMENTS
WEIGHTED LEAST SQUARES ESTIMATION

I(a): CLASSICAL ANOVA

Source SS df

Total 2406.73 90

Between 596.58 6

Within 1810.15 84

I(c): FISHER LSD TEST
3.04 . o.os

LSD = {
at

4.84 ,,,, oot

MS

99.429
21.549

F

4.61**

1(b): COMPARTMENT
ERROR MEANS

X.= 2.62
Re: = -4.92
g.,= 2.42

= 1.16
Rtc= 0.92
3(e,-= -3.79
ii., = -2.30
.e..= -0.93

5*-
5(t, 3ce, 5( Xe

R,31 1.27 1.51 2.40 4.72* 6.21** 7.34**

1,41 0.24 1.13 3.46* 4.94** 6.08**

3itv:
0.89 3.22* 4.71* 5.84**

Rt 2.32 3.81* 4.95**

ie
1.49 2.62

1.13

II(a): LINK-WALLACE ANOVA
Ranges: R, = 2.026, R, = 10.897, R, = 21.125, R4 = 10.173, R. = 6.494,

R, = 18.418, = 24.853, Rao = 7.344, .1f.k = 93.986

From tables (n=13, k=7): Kam.,
= i0.66 a:=0.05

0.79 a..=0.01

K (15)1R° - 1.016**
XR:

II(b): LINK-WALLACE MULTIPLE

D -

COMPARISONS

4./
,r11

1Z m.o.os

Res- 4,

1.51 2.40 4.72
0.24 1.13 3.46

0.89 3.22
2.32

7c.e4

6.21*
4.94*
4.71
3.81
1.49

Xts

7.34*
6.08*
5.84*
4.95*
2.62
1.13

n

'`fie,

R4

-

ire`;

ge.4

1.27

I

;

III(a): FRIEDMAN TEST III(b): WILCOXON & WLICOX TEST
(32.5 0C=0.05

Compartment Sum of From tables: 0,0. = I38.0 4C=0.01

Ranks
5 7 1 4 6 2

1 59 (63) (62) (59) (58) (34) (24)

2 24

3 64 3 (64) 1 2 5 6 30 40**

4 58 5 (63) 1 4 5 29 39**

5 63 7 (62)1 3 4 28 38**

6 34 1 (59)1 1 25 35*

7 62 4 (58)1 24 34*

6 (34)1
10

t= 25.68**

* indicates significance at oc.= 0.05

** indicates significance at a.= 0.01



Table 9

STATISTICAL ANALYSES
DISCRETE-TIME MODEL; FIRST MOMENTS

- 2 In LIKELIHOOD ESTIMATION

I(a): CLASSICAL ANOVA

Source SS df MS F

Total 2401.64 90
Between 586.35 6 97.725 4.52**
Within 1815.29 84 21.611

I(c):

(t.5
X.
Xtr

141

1-4
XGG

FISHER LSD TEST
3,0s

LSD =1,1..s5 0,.,c

XI.., Xts 54.

1.24 1.49 2.38
0.25 1.14

0.88

0.os
0.01

7( el.

4.76*
3.52*
3.27*
2.38

5f'4 YCi

6.15** 7.25**
4.91** 6.01**
4.65* 5.76**
3.77* 4.88**
1.39 2.49

1.10

126

I(b): COMPARTMENT
ERROR MEANS

= 0.03
74. r. -4.85
iies= 2.40

X45= 1.16
Rer= 0.91

= -3.714
= -2.36

R..= -0.92

II(a): LINK-WALLACE ANOVA
Ranges: R, = 1.399, Ri = 10.839, R, = 21.213, R4 = 10.13, Rs =

/3, = 18.328, R, = 25.094, Rao = 7.252, ?FR,- = 93.490

From tables (n=13, k =7): K =10.66 at,=0.05

0.79 a.=0.01

K ="19's°7° = 1.008**
2.-Rz

II(b): LINK-WALLACE MULTIPLE COMPARISONS

= 4<,,,k;44. 7.1Z-; - 45,17; ctet: 0705:

3r:e.,. 7,es Xe, 54.1 Xtc ;Zs,.

R,51 1.24 1.49 2.38 4.76* 6.15** 7.25**
0.25 1.14 3.52* 4.91** 6.011*

Res 0.88 3.27* 4.65* 5.761*

ks,1 2.38 3.77* 4.881*

74;! 1.39 2.49
1.10

III(a): FRIEDMAN TEST

Compartment Sum of
Ranks

III(b): WILCOXON & WLICOX TEST
(32.5 a.=0.05

From tables: DWW = .08.0 4=0.01

1 5 7 1 4 6 2

1 59 1 (63) (62) (59) (58) (34) (24)

2 24
3 64 3 (64): 1 2 5 6 30 40**

4 58 5 (63)1 1 4 5 29 39**

5 63 7 (62)1 3 4 28 38**

6 34 1 (59)1 1 25 35*

7 62 4 (58)1 24 34*

6 (34): 10

25.68**

* indicates significance at m= 0.05
** indicates significance at a= 0.01



Table 10

STATISTICAL ANALYSES
DISCRETE-TIME MODEL; SECOND MOMENTS
WEIGHTED LEAST SQUARES ESTIMATION

I(a):

Source
Total

Between
Within

CLASSICAL ANOVA

SS
24605104.63
11060488.70
13544615.93

df
90
6

84

MS

1843414.78
161245.43

11.43**

I(c) FISHER LSD TEST:

LSD1263.02_
oc.o.os

-09 Za oot

ti es 4 e. es

127

I(b): COMPARTMENT
ERROR MEANS

ke, = 2.71
= 489.11

cce, = 491.06
ite42: -623.48
54.3.2-. 45.25

= 10.59
kat = - 29.05
5Ze 2: 55.17

x.s, 1

Ike. 1

Te, i

1.95 445.81**
443.86**

480.47**
478.52**
34.66

488.35**
486.40**
42.54
7.88

520.12**
518.16**
74.30
39.65
31.76

1114.54**TM::
634.08**
626.19**

Y-e., 594.43**

II(a) LINK-WALLACE ANOVA:
Ranges: R,= 6.082, Rs= 1605.47, R,= 635.4, R,= 1162.638, Rs= 89.711,

= 1481.1, R, = 2977.6, Ru., = 1114.545, 1FR,: = 7976.001

From tables (n=13, k=7): K = 1.0.66 m=0.05
0.79 a. =0.01

K = ON R.60 - 1.817**

II(b) LINK-WALLACE MULTIPLE COMPARISONS:

K MR, 1404.4;35 ex= 0.0s
D

484.6V5

9e.
5** Re, "es

Ire
5

: 1.95 445.81*
,

443.86*

'gas
'ices I

Tte, !

III(a): FRIEDMAN TEST

Compartment Sum of
Ranks

480.47*
478.52*
34.66

488.35*
486.40*
42.54
7.88

520.12* 1114.54*
518.16* 1112.59*
74.30 668.73*
39.65 634.08*
31.76 626.19*

594.43*

III(b): WILCOXON & WLICOX TEST
(32.5 a,=0.05

From tables: D = -08.0 m=0.01

2 5 1 6
1 50 1 (72) (58) (50) (44)
2 72
3 82 3 (82): 10 24 32 38**
4 17 2 (72)1 14 22 28
5 58 5 (58)1 8 14
6 44 1 (50): 6

7 41 6 (44):
7 (41)1

ei:= 45.33**

* indicates significance at oc= 0.05
** indicates significance at a.= 0.01

7 4

(41) (17)

41** 65**
31 55**
17 41**
9 33*
3 27

24
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Table 11

STATISTICAL ANALYSES
DISCRETE-TIME MODEL; SECOND MOMENTS

-2 in LIKELIHOOD ESTIMATION

I(a): CLASSICAL ANOVA I(b): COMPARTMENT
ERROR MEANS

Source SS df MS
Total 24709644.73 90

Between 11064369.39 6 1844061.56 11.35**
Within 13645275.34 84 162443.75

I(c) FISHER LSD TEST:

265.99 ce'o's
LSD =/410.18 ot-=

= 2.71
= 489.20

xea=
491.12

cc = -623.54
Rec= 45.25

= 13.54
;ea, = - 31.54
xQ = 55.32

I it, its, 7 it, 51e, 74.4

it); 1.92 445.87** 477.58** 488.41** 504.17** 1114.67**
_
itt. !

443.95** 475.65** 486.49** 502.25** 1112.74**

Lell
31.70 42.54

10.83
58.30
26.59

668.79**
7.!

66;76:Z:7.1,1 15.76
7e,1 610.49**

II(a) LINK-WALLACE ANOVA:
Ranges: R,= 6.082, Piz= 1604.89, R,= 653.2, R4= 1162.648, Rs= 89.788,

R, = 1462.3, R, = 3009.1,
/10,7 = 1114.667, .11ER,: = 7988.007

From tables (n=13, k=7): K4,,,,,, = 40.66 M=0.05
10.79 m=0.01

03) Rc; )
K = - 1.814 **

II(b) LINK-WALLACE MULTIPLE COMPARISONS:

D - MR; Nos. s4s et.o-os
.425 a - 0.01

Tie, Tees

1.92 445.87*

Via.{
443.95*

Yes

C'es
xet
irce4

Tte, 744

477.58*
475.65*
31.70

488.41*
486.49*
42.54
10.83

504.17* 1114.67*
502.25* 1112.74*
58.30 668.79*
26.59 637.09*
15.76 626.25*

610.49*

III(a): FRIEDMAN TEST III(b): WILCOXON & WLICOX TEST
132.5 0c. =0.05

Compartment Sum of From tables: Ds,,, = 138.0 m=0.01
Ranks

2 5 1 6 7 4
1 50 (72) (58) (50) (44) (41) (17)
2 72
3 82 3 (82)1 10 24 32 38** 41** 65**
4 17 2 (72)1 14 22 28 31 55**
5 58 5 (58): 8 14 17 41**
6 44 1 (50): 6 9 33*
7 41 6 (44): 3 27

7 (41): 24
';,:= 45.33**

* indicates significance at m = 0.05
** indicates significance at cc= 0.01
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4.5 ESTIMATION OF PARAMETERS IN THE CONTINUOUS-TIME

MODEL.

4.5.1 FIRST-MOMENTS.

Since (3.35) is a system of 7 ordinary

differential equations, it can be solved numerically

using standard procedures. However, it is a stiff

system so that instead of the usual fourth-order

Runge-Kutta, Treanor's method (Treanor, 1966; Lomax &

Bailey, 1967) was used for integration. For better

efficiency a variable step-size was used. This in

conjunction with Powell's technique mentioned earlier

(in section 2.3 and 4.2) was used to optimize the

estimates A using (A6.1) and (A6.3). The minimized cost

functions were min Q u(A) = 3.50 and min Q (A) = 5.90.

These min Q.(.) values again represent minimized sample

variances as before. They are dimensionless because the

weights used were the experimental variances which

measure deviations in the radiolabel in any compartment

as a percentage of the total injected label.

4.5.2 SECOND-MOMENTS.
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Equation (3.36) is also a system of ordinary

differential equations. Since none of the covariances

are available in the experimental data, only the

diagonal of the matrix P(t) was used, taking all the

off-diagonal elements to be zero (a not wholly correct

assumption even for this model). After some algebra

(3.36) becomes

where

Pd (t) = Ad P
4

(t)

P (t) = diag(P(t)),

...(4.6)

and

-2a,+ b2;,-.

2 cx.i+ Az,:) cb btl.

(-24%3+ 4) s1
A = 141-

ct () I: ce4+ p..20 2.

( 2 + A ) 3#

2 ( -2 a6-1- 4) di?

For in A,A, the estimates a,: obtained from (3.35)

were used. Again Treanor's method for integration and

Powell's technique for optimization with criteria (A6.1)

and (A6.3) were used. The minimized cost functions were

min Q 2(6 ) = 40377.94 and min. Q (6 ) = 16.35. Thesep

are dimensionless ratios and can be seen as minimized

sample variances.
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The estimated values and residual errors for both first

and second moments are presented in Tables 12 to 15 as

weighted least squares and -2 In likelihood estimates.

In all of these four tables the columns are the

compartments in order and the rows the time instants.

The estimated parameter values are tabulated in Table

16.
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Table 12

THE CONTINUOUS MODEL
WEIGHTED LEAST SQUARES ESTIMATION

FIRST MOMENTS

Time;
1

#1

ESTIMATED VALUES AT OBSERVATION INSTANTS
(% activity per compartment)

COMPARTMENT NUMBER

#2 #3 #4 #5 #6 #7

0; .0000E+00 .0000E+00 .0000E+00 .0000E+00 .0000E+00 .0000E+00 .1000E+03
11 .3322E+00 .3809E+01 .2154E+01 .3350E+00 .3142E+00 .4393E+02 .4913E+02
21 .5808E+00 .6684E+01 .3794E+01 .5927E+00 .5535E+00 .4227E+02 .4552E+02
5' .1220E+01 .1420E+02 .8148E+01 .1290E+01 .1190E+01 .3561E+02 .3834E+02

10 .2004E+01 .2377E+02 .1390E+02 .2252E+01 .2033E+01 .2697E+02 .2907E+02
30 .3156E+01 .4075E+02 .2601E+02 .4649E+01 .3835E+01 .1036E+02 .1124E+02
60 .2934E+01 .4354E+02 .3222E+02 .6639E+01 .4816E+01 .4694E+01 .5159E+01
150 .1762E+01 .3557E+02 .3921E+02 .1083E+02 .6099E+01 .3099E+01 .3427E+01
360 .1019E+01 .2338E+02 .4569E+02 .1730E+02 .7686E+01 .2337E+01 .2586E+01
540 .8656E+00 .1903E+02 .4710E+02 .2019E+02 .8387E+01 .2102E+01 .2326E+01
720 .8104E+00 .1721E+02 .4726E+02 .2164E+02 .8831E+01 .2014E+01 .2229E+01
900 .7910E+00 .1651E+02 .4706E+02 .2229E+02 .9148E+01 .1985E+01 .2197E+01
1080 .7851E+00 .1627E+02 .4682E+02 .2255E+02 .9396E+01 .1977E+01 .2188E+01
1440 .7836E+00 .1618E+02 .4647E+02 .2263E+02 .9764E+01 .1976E+01 .2187E+01

THE MATRIX OF RESIDUAL ERRORS
(% activity per compartment)

COMPARTMENT NUMBER

Time #1 #2

1; .8178E+00-.1519E+01
2; .5692E+00-.4394E+01
5: .1398E+00-.3638E+01

#3 #4 #5 #6

.1705E+02-.1050E+00-.1542E+00-.8430E+01-

.1258E+02-.3027E+00-.3435E+00-.2195E+01-

.1091E+02 .2301E+00-.2297E+00-.7984E+01

#7

.7656E+01

.8930E+01

.5699E+00
101-.3944E+00-.4257E+01 .7008E+01 .8678E+00 .2665E+00-.4002E+01 .5107E+00
30 -.1356E+01-.1817E+01- .2815E+00 .3621E+01 .1335E+01-.1898E+01 .3963E+00
60 - .6741E +00 - .4129E +01 - .4479E+00 .6481E+01 .2784E+01- .2194E +01 - .1819E+01
150 .4684E+00- .3262E +01 - .2748E +01 .3556E+01 .1721E+01-.3690E+00 .6328E+00
360 .3113E+00-.2065E+01 .6717E+00-.6482E+00 .1074E+01-.7419E-02 .6636E+00
5401 .3744E+00-.1125E+01 .1142E+01-.1713E+01 .7426E+00-.2519E+00 .7337E+00
720: .1360E+01 .1927E+01-.5049E+01 .9129E+00 .1029E+01-.3541E+00 .1806E+00
9001-.8103E-01-.1654E+01 .4057E+00 .2075E+00 .1516E+00 .3522E-01 .9329E+00

1080; .2249E+00-.7881E+00 .3976E+00 .4968E+00-.4762E+00-.1168E+00 .2718E+00
14401-.5358E-01-.6962E+00 .3041E+01-.1553E+01-.1634E+01 .5432E-01 .8530E+00
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Table 13

THE CONTINUOUS MODEL
-2 LN LIKELIHOOD ESTIMATION

FIRST MOMENTS

ESTIMATED VALUES AT OBSERVATION INSTANTS
(% activity per compartment)

COMPARTMENT NUMBER

Time #1 #2 #3 #4 #5 #6 #7

0 .0000E+00 .0000E+00 .0000E+00 .0000E+00 .0000E+00 .0000E+00 .1000E+03
1 .3286E+00 .3751E+01 .2144E+01 .3350E+00 .3131E+00 .4412E+02 .4901E+02
2 .5737E+00 .6574E+01 .3771E+01 .5920E+00 .5510E+00 .4254E+02 .4540E+02
5 .1205E+01 .1397E+02 .8096E+01 .1288E+01 .1184E+01 .3593E+02 .3833E+02

10 .1983E+01 .2342E+02 .1383E+02 .2251E+01 .2026E+01 .2732E+02 .2917E+02
30 .3140E+01 .4042E+02 .2599E+02 .4657E+01 .3838E+01 .1058E+02 .1138E+02
60 .2928E+01 .4344E+02 .3224E+02 .6647E+01 .4826E+01 .4749E+01 .5171E+01

150 .1751E+01 .3569E+02 .3916E+02 .1080E+02 .6098E+01 .3100E+01 .3398E+01
360 .1009E+01 .2357E+02 .4560E+02 .1723E+02 .7677E+01 .2346E+01 .2572E+01
540 .8569E+00 .1916E+02 .4704E+02 .2013E+02 .8382E+01 .2109E+01 .2314E+01
720 .8016E+00 .1730E+02 .4723E+02 .2160E+02 .8830E+01 .2019E+01 .2215E+01
900 .7817E+00 .1657E+02 .4705E+02 .2227E+02 .9151E+01 .1989E+01 .2182E+01

1080 .7754E+00 .1630E+02 .4681E+02 .2255E+02 .9402E+01 .1980E+01 .2172E+01
1440 .7736E+00 .1619E+02 .4646E+02 .2264E+02 .9774E+01 .1978E+01 .2170E+01

Time

1

2% .1096E+02
10
30
60

150

360
540
720
900

1080
1440

THE MATRIX OF RESIDUAL ERRORS
(% activity per compartment)

COMPARTMENT NUMBER

#1 #2 #3 #4 #5 #6

.8214E+00-.1461E+01 . 1706E+ 02 - .1050E +00 - .1531E +00 - .8620E +01 -

.5763E+00-.4284E+01 .1260E+02-.3020E+00-.3410E+00-.2461E+01-

.1547E+00-.3406E+01 .2321E+00-.2240E+00-.8300E+01
-.3730E+00-.3911E+01 .7079E+01 .8695E+00 .2737E+00-.4346E+01
-.1340E+01-.1495E+01- .2580E+00 .3613E+01 .1332E+01-.2117E+01
-.6682E+00-.4027E+01- .4711E+00 .6473E+01 .2774E+01- .2249E +01 -
.4787E+00-.3379E+01- .2699E+01 .3586E+01 .1722E+01-.3703E+00
.3213E+00-.2251E+01 .7613E+00-.5762E+00 .1083E+01-.1577E-01
.3831E+00-.1264E+01 .1198E+01-.1650E+01 .7478E+00-.2593E+00
.1368E+01 .1840E+01-.5022E+01 .9541E+00 .1030E+01-.3594E+00

-.7171E-01-.1705E+01 .4183E+00 .2282E+00 .1486E+00 .3140E-01
.2346E+00-.8195E+00 .4053E+00 .5030E+00-.4818E+00-.1197E+00

-.4360E-01-.7135E+00 .3051E+01-.1559E+01-.1644E+01 .5187E-01

#7

.7539E+01

.8807E+01

.5787E+00

.4067E+00

.2641E+00

.1831E+01

.6619E+00

.6775E+00

.7463E+00

.1947E+00

.9484E+00

.2880E+00

.8698E+00
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Table 14

THE CONTINUOUS MODEL
WEIGHTED LEAST SQUARES ESTIMATION

SECOND MOMENTS

ESTIMATED VALUES AT OBSERVATION INSTANTS
(% activity per compartment)**2

COMPARTMENT NUMBER

Time #1 #2 #3 #4 #5 #6 #7

0 .0000E+00 .0000E+00 .0000E+00 .0000E+00 .0000E+00 .0000E+00 .1000E+05
.1468E+00 .1918E+02 .6099E+01 .1703E+00 .1296E+00 .3132E+04 .3888E+04

2 .2037E+00 .2667E+02 .8494E+01 .2789E+00 .1806E+00 .1269E+04 .1512E+04
5 .2372E+00 .3126E+02 .1002E+02 .5092E+00 .2134E+00 .7501E+02 .8936E+02

10 .2381E+00 .3177E+02 .1031E+02 .8505E+00 .2201E+00 .1063E+01 .1407E+01
30 .2334E+00 .3271E+02 .1115E+02 .2153E+01 .2404E+00 .4129E+00 .6373E+00
60 .2266E+00 .3418E+02 .1254E+02 .3976E+01 .2743E+00 .4311E+00 .6654E+00
150 .2075E+00 .3898E+02 .1782E+02 .9060E+01 .4074E+00 .4911E+00 .7580E+00
360 .1701E+00 .5297E+02 .4035E+02 .2429E+02 .1022E+01 .6671E+00 .1030E+01
540 .1451E+00 .6889E+02 .8113E+02 .4950E+02 .2243E+01 .8702E+00 .1343E+01
720 .1257E+00 .8961E+02 .1629E+03 .9960E+02 .4919E+01 .1139E+01 .1759E+01
900 .1115E+00 .1166E+03 .3269E+03 .2000E+03 .1078E+02 .1500E+01 .2316E+01

1080 .1023E+00 .1517E+03 .6556E+03 .4011E+03 .2360E+02 .1994E+01 .3077E+01
1440 .9926E-01 .2570E+03 .2635E+04 .1612E+04 .1132E+03 .3699E+01 .5710E+01

THE MATRIX OF RESIDUAL ERRORS
(% activity per compartment)**2

COMPARTMENT NUMBER

Time;

1

2

#1 #2

.1220E+01-.1074E+02

.1163E+01-.1860E+02

#3 #4 #5 #6 #7

.3702E+03-.1143E+00-.1026E+00-.1834E+04-.2144E+04

.2675E+03-.1877E+00-.1316E+00 .3755E+03-.1696E+03
5 .1853E+01 .8722E+02 .3922E+03 .2303E+01 .9359E+00 .7337E+03 .1448E+04

10 .2548E+01 .3854E+03 .4348E+03 .9473E+01 .5569E+01 .5503E+03 .9021E+03
30 .3483E+01 .1513E+04 .6529E+03 .6844E+02 .2716E+02 .7272E+02 .1434E+03
60 .5131E+01 .1550E+04 .9990E+03 .1703E+03 .5779E+02 .6179E+01 .1181E+02
150 .6430E+01 .1017E+04 .1312E+04 .2006E+03 .6260E+02 .7222E+01 .1650E+02
360 .1743E+01 .4104E+03 .2111E+04 .2551E+03 .7698E+02 .4802E+01 .9648E+01
540, .1695E+01 .2654E+03 .2249E+04 .3070E+03 .8275E+02 .2620E+01 .8291E+01
720: .6072E+01 .2879E+03 .1623E+04 .4197E+03 .9304E+02 .1725E+01 .4363E+01
900: .5082E+00 .1146E+03 .1931E+04 .3088E+03 .7592E+02 .2710E+01 .8327E+01
1080; .1168E+01 .9166E+02 .1575E+04 .1365E+03 .5645E+02 .1634E+01 .3311E+01
1440; .4561E+00-.1676E+02-.1806E+03-.1165E+04-.4598E+02 .5661E+00 .3954E+01
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Table 15

THE CONTINUOUS MODEL
-2 LN LIKELIHOOD ESTIMATION

SECOND MOMENTS

ESTIMATED VALUES AT OBSERVATION INSTANTS

(% activity per compartment)**2

COMPARTMENT NUMBER

Time #1 #2 #3 #4 #5 #6 #7

0 .0000E+00 .0000E+00 .0000E+00 .0000E+00 .0000E+00 .0000E+00 .1000E+05

1 .1447E+00 .1872E+02 .6079E+01 .1711E+00 .1296E+00 .3160E+04 .3891E+04

2 .2011E+00 .2603E+02 .8467E+01 .2797E+00 .1806E+00 .1285E+04 .1514E+04

5 .2354E+00 .3052E+02 .9993E+01 .5087E+00 .2135E+00 .7611E+02 .8962E+02
10 .2386E+00 .3102E+02 .1028E+02 .8473E+00 .2201E+00 .1061E+01 .1386E+01

30 .2431E+00 .3195E+02 .1112E+02 .2141E+01 .2403E+00 .3982E+00 .6108E+00

60 .2499E+00 .3340E+02 .1250E+02 .3955E+01 .2741E+00 .4163E+00 .6386E+00

150 .2715E+00 .3816E+02 .1776E+02 .9031E+01 .4066E+00 .4757E+00 .7297E+00

360 .3300E+00 .5206E+02 .4022E+02 .2427E+02 .1017E+01 .6502E+00 .9973E+00

540 .3905E+00 .6795E+02 .8087E+02 .4946E+02 .2226E+01 .8517E+00 .7306E+07

720 .4627E+00 .8869E+02 .1624E+03 .9954E+02 .4869E+01 .1119E+01 .1717E+01

900 .5492E+00 .1158E+03 .3259E+03 .1998E+03 .1064E+02 .1479E+01 .2268E+01
1080 .6531E+00 .1511E+03 .6536E+03 .4009E+03 .2325E+02 .1970E+01 .3023E+01
1440 .9302E+00 .2579E+03 .2627E+04 .1612E+04 .1109E+03 .3672E+01 .5633E+01

THE MATRIX OF RESIDUAL ERRORS
(% activity per compartment)**2

COMPARTMENT NUMBER

Time;

11

21

#1 #2

.1222E+01-.1027E+02

.1165E+01-.1796E+02

#3 #4 #5 #6 #7

.3702E+03-.1151E+00-.1026E+00-.1862E+04-.2146E+04

.2675E+03-.1885E+00-.1316E+00 .3594E+03-.1715E+03
51 .1854E+01 .8796E+02 .3922E+03 .2304E+01 .9358E+00 .7326E+03 .1447E+04

101 .2547E+01 .3861E+03 .4349E+03 .9476E+01 .5569E+01 .5503E+03 .9021E+03

301 .3473E+01 .1513E+04 .6530E+03 .6845E+02 .2716E+02 .7274E+02 .1435E+03

601 .5108E+01 .1551E+04 .9991E+03 .1703E+03 .5779E+02 .6194E+01 .1184E+02

1501 .6365E+01 .1017E+04 .1312E+04 .2006E+03 .6260E+02 .7237E+01 .1653E+02

360' .1583E+01 .4113E+03 .2111E+04 .2551E+03 .7699E+02 .4819E+01 .9681E+01

540 .1450E+01 .2663E+03 .2249E+04 .3071E+03 .8277E+02 .2638E+01 .8328E+01

720 .5735E+01 .2888E+03 .1623E+04 .4198E+03 .9309E+02 .1745E+01 .4405E+01

900 .7047E-01 .1154E+03 .1932E+04 .3089E+03 .7606E+02 .2731E+01 .8375E+01

1080 .6170E+00 .9218E+02 .1577E+04 .1367E+03 .5680E+02 .1657E+01 .3365E+01

1440 -.3746E+00-.1763E+02-.1728E+03-.1164E+04-.4375E+02 .5931E+00 .4031E+01
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Table 16

ESTIMATED PARAMETERS VALUES FOR THE CONTINUOUS MODEL

WLS = Weighted Least Squares estimation
-2LL = -2 Ln Likelihood estimation

Deterministic Parts of Multiplicative Parameters:

4, 4L, dl a" as
I 1 1 1

WLS 1 .15153E-01 .54293E-02 .83882E-02 .62028E-01 .16602E-02
:

1

1

i :

-2LL 1 .15061E-01 .53688E-02 .81857E-02 .61058E-01 .16398E-02
: :

1

1 1-

at 3+ cLa
WLS .34949E-01 .39357E-02 .54088E-02 .10552E-02 .50949E-02

-2LL .34769E-01 .38872E-02 .54093E-02 .10401E-02 .50769E-02
1 1

a".
WLS i .20624E+01 .18631E+01 .19760E+01:

-2LL .20247E+01 .18455E+01 .19572E +01

Standard Deviations of the Multiplicative Noises:

C51,

WLS .17103E +00 .13483E +00.13483E+00 .84741E-01 .90577E-04 .80389E-01

-2LL .17603E+00 .13340E+00 .84503E-01 .12462E-03 .80116E-01

P4

WLS i .86367E-02 .17341E+011
1

-2LL .58245E-02 .17234E+011



137

4.5.3 STABILITY.

WEIGHTED LEAST SQUARES:

First-moment --- A is a compartmental matrix whose

column sums are zero and thus its spectral radius

is zero (Propositions A2.5 and A2.6 and the system

being closed). Subroutine HQR from EISPACK

yielded the same result.

Second-moment --- Since B have not been estimated

from complete information that could have been

available to obtain better estimates, it was not

thought worthwhile to find the stability of the

second moments (particularly when the Q-values

were so high as seen in section 4.5.1). As for

the discrete model instead of 28 equations only 7

were used in estimation for the same reason as

before. One would expect problems similar to the

ones in the variance estimation in the discrete

case to arise here also.

-2 Ln LIKELIHOOD:

First-moment --- Spectral radius of A, p(A) = 0
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Second-moment --- as for Weighted Least Squares

above.

The minimized Qt = 40377.94 (as in

sections 4.5.2) is significant at a = 0.01.

Further analyses were done to check into the

goodness of fit of the model. These are discussed

in the next section.

4.5.4 STATISTICAL ANALYSES.

4.5.4.1 FIRST-MOMENTS.

WEIGHTED LEAST SQUARES --- The traditional approach is

to assume independent Gaussian errors and do the

classical one-way analysis of variance. The results for

this are given in table 17(Ia). The null and

alternative hypotheses are the same as (A7.1). The

F-test gives F = 4.77 (F1,_,,N,;,,(. < F4,40;0(, =3.12, k = 7,

N=91, a,= 0.01) which is significant, resulting in the

rejection of the null hypothesis (A7.1). To look deeper
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into which set(s) (if any) of errors might be the cause

of this all pairwise comparisons of means were done

using Fisher LSD (Least Significant Difference) test

(See table 17(bc)). There are three mutually exclusive

subsets with significantly different (at a= 0.05) means

(X, ) > (X X i,2 X ) > (i X ).eie71/2 ez. l e,S

Just as for the discrete case, next the

assumption for independence was relaxed and Link and

Wallace analysis of variance based on ranges was done.

The test statistic K = 1.166. This is critical at a=

0.01 = 0.79, n=13, k=7), so that again the null

hypothesis (A7.1) is rejected. Results of multiple

comparisons are in table 17(IIb).

After this the assumption of normality was

eliminated and Friedman's two-way analysis of variance

based on ranks was done and hypothesis (4.2) tested.

= 26.74 was obtained, which is significant (lek =

16.81, k = 7, cx. = 0.01). Thus the errors in all the

compartments do not all have the same distributions.

Wilcoxon and Wilcox multiple comparison procedure was

used to do all pairwise comparisons. It turns out that

the distribution of errors in compartments 2 and 3 are
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significantly different from one another, but in almost

all compartments though the distributions are different

they are "quite close". (See Table 17(IIIb))

-2 Ln LIKELIHOOD --- The results were similar and are

given in table 18.

4.5.4.2 SECOND-MOMENTS.

WEIGHTED LEAST SQUARES --- Again the three types of

analyses were done. The traditional ANOVA and multiple

comparisons rejected the null hypothesis (A7.1) (F =

6.81 > F < F6364); 0( = 3.12, k = 7, N = 91, cc =
-

0.01) and give three mutually exclusive subsets of

compartment error means:

5F4 > iez) >
4

Xes ,
4

, Xe7)

Link and Wallace analysis also rejected the

(A7.1) null hypothesis (K = 1.166 > = 0.79, n=13,

k = 7, cc = 0.01). Pairwise comparisons yielded two

mutually subsets:.
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(X,) > (R XXXXi)42 e7 el es- l el Q
4

Friedman's analysis showed differences in

distributions (t = 25.12 > IC:,;.(..= 16.81, k = 7, oc,

=0.01). Wilcoxon and Wilcox test showed differences in

distributions without giving any mutually exclusive

subsets. (See table 19)

-2 Ln LIKELIHOOD --- The results here were similar to

those above (See table 20).

4.5.5 BIOLOGICAL INTERPRETATION OF THESE RESULTS.

This model is also unstable because of the

estimated values of the variances. For the mean value,

the main source of error lies in compartments 2 and 3,

while for the variance it is in compartments 1 and 3.

More discussion will follow in the next chapter.
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Table 17

STATISTICAL ANALYSES
CONTINUOUS-TIME MODEL; FIRST MOMENTS
WEIGHTED LEAST SQUARES ESTIMATION

I(a): CLASSICAL ANOVA

Source SS df
Total 1168.42 90

Between 297.10 6

Within 871.32 84

I(c): FISHER LSD TEST
(2.m o.. o.as

LSD = 3.34 06. o o'

MS

49.52
10.37

F

4.77**

I(b): COMPARTMENT
ERROR MEANS

X.,= 0.13
5-1,,= -2.11

iZes= 3.44
5-,...= 0.93
Rt..= 0.48
"Re,= -2.13
Xt. = -0.97
3 = -3.39

5iey

xe4

xes

xel

ft,

2.51*

acs

2.95*
0.45

Re,

3.31*
0.80
0.35

N.*

4.41**
1.90
1.45
1.11

142

5.55**
3.04*
2.59*
2.24*
1.14

544

5.57**
3.06*
2.61*
2.26*
1.16
0.02

II(a): LINK-WALLACE ANOVA
Ranges: R, = 2.716, R. =

R. = 8.484, R. =

From tables (n=13, k=7):

6.321,
9.863,

=

R, = 22.099, R4
R,50 = 5.569,

1.0.66 a =0.05
0.79 a:=0.01

=

:01,

8.194, R.
= 62.095

= 4.418,

II(b): LINK-WALLACE

K . 5:R
D = ^." ' '

n

I-I
xt'

1

rc1 2.51*
= '

Res,
$;ti,

744:
ite, i

03)1260
K 1.169**

ie*

4.41**
1.90
1.45

gou

5.55**
3.04*
2.59*
2.24*
1.14

74

5.57**
3.06*
2.61*
2.26*
1.16
0.02

= =
5:12z

MULTIPLE COMPARISONS

{3AS3 a=0.05
= 3 773 a ,`

'e X2, ,

2.95* 3.31*
0.45 0.80

0.35

III(a): FRIEDMAN TEST III(b): WILCOXON & WLICOX TEST
r32.5 a =0.05

Compartment Sum of From tables: Dww;, = t38.0 a:=0.01

Ranks
4 5 7 1 6 2

1 54 1 (63) (58) (58) (54) (32) (27)

2 27

3 72 3 (72); 9 14 14 18 40** 45**

4 63 4 (63): 5 5 9 31 36*

5 58 5 (58)1 0 4 26 31

6 32 7 (58)1 4 26 31

7 58 1 (54)1 22 27

6 (32)1 5

::= 26.74**

* indicates significance at a = 0.05
** indicates significance at m = 0.01
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STATISTICAL ANALYSES
CONTINUOUS-TIME MODEL; FIRST MOMENTS

-2 In LIKELIHOOD ESTIMATION

I(a): CLASSICAL ANOVA

Source SS df MS
Total 1175.06 90

Between 304.05 6 50.67
Within 871.01 84 10.37

143

I(b): COMPARTMENT
ERROR MEANS

F

lee 7:: -C2).074.89**

ii::: 1!!).44

I(c): FISHER LSD TEST vie = -2.24
%,4= -0.96

.2.11 a.o.or
LSD =43.54 cc...," ,.. = -3.40E-02

}1 2.52*

re%

2.99*
0.46

.41

3.33*
0.80
0.34

3-44

4.43**
1.91
1.45
1.11

Rea At,

5.54** 5.71**
3.01* 3.18*
2.55* 2.72*
2.21* 2.38*

ic, 1.10 1.28
0.17

II(a): LINK-WALLACE ANOVA
Ranges: R, = 2.708, Ra = 6.124, R, = 22.082, R4 = 8.123, R, = 4.418,

R, = 8.672, = 9.755, Na, = 5.709, lEk = 61.882

From tables (n=13, k=7): = i0.66 oc=0.05

0.79 m=0.01

K = (11)R6"' - 1.199**

II(b): LINK-WALLACE MULTIPLE COMPARISONS

0 = K MR 13,42 at= 0or
"," '

n
= 3461 m.o.ot

Te__
"'

Sler Ct.., e, qe. Vec

)744

Yft

74
iie, i

TI42. I

2.52 2.99
0.46

3.33*
0.80
0.34

III(a): FRIEDMAN TEST

Compartment Sum of
Ranks

4.43** 5.54** 5.71**
1.91 3.01* 3.18*
1.45 2.55* 2.72*
1.11 2.21* 2.38*

1.10 1.28
0.17

III(b): WILCOXON & WLICOX TEST
1.32.5 m=0.05

From tables: D im= 38.0 0. =0.01

4 5 7 1 6 2

1 54 1 (63) (58) (58) (54) (31) (28)

2 28 1

3 72 3 (72)1 9 14 14 18 41** 44**

4 63 4 (63)1 5 5 9 32 35*
5 58 5 (58)1 0 4 27 30

6 31 7 (58)1 4 27 30

7 58 1 (54): 23 26

6 (31)1 4

Kr 26.74**

* indicates significance at cc= 0.05
** indicates significance at a.= 0.01
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Table 19

STATISTICAL ANALYSES
CONTINUOUS-TIME MODEL; SECOND MOMENTS

WEIQHTED LEAST SQUARES ESTIMATION

I(a): CLASSICAL ANOVA

Source SS df MS F

I(b): COMPARTMENT
ERROR MEANS

Total 37372983.54 90 = 2.57
Between 12291293.97. 6 048548.99 6.86** 44.= 436.65
Within 25081689.57 84 298591.54 z,, = 1056.69

R.4 = 54.84
itc= 37.92

I(c): FISHER LSD TEST 1.4= - 5.71

0.0s xe, - 19.02
LSD 4554.<12.570.49 ze. = 228.86

Xet 7ce, r3 xtt

xe31

xeti

T414
Xes

3744

620.04** 1001.85**
381.81*

1018.77**
398.73*
16.92

II(a): LINK-WALLACE ANOVA
Ranges: R, = 5.974, R, =

R, = 2567.7, R, =

From tables (n=13, k=7):

K =65)R-6° - 1.162**
X.R;.

1037.67**
417.63*

M20

7e,

1054.12**
434.08*
52.26
35.35
16.45

1062.40**
4g:g*

43.63
24.73
8.28

1568.6,
3591.,

=

R3 = 2429.6, R,
R60 = 1062.40,

10.66 a =0.05
(0.79 a=0.01

= 1584.7, R., =
IsT_Iic = 11886.59

139.02,

II(b): LINK-WALLACE MULTIPLE COMPARISONS

D = K^" .SRz to5.41-3 cz 0.es

422. 539 a- °°'

'ie.

Xe:
4

)14.1

71e,

620.04**

544

1001.85**
381.81*

1018.77**
398.73*
16.92

1037.67**
417.63*
35.82
18.90

7e,

1054.12**
434.08*
52.26
35.35
16.45

III(a): FRIEDMAN TEST

Compartment Sum of
U Ranks

xet

1062.40**
442.36*
60.55
43.63
24.73
8.28

III(b): WILCOXON & WLICOX TEST
(32.5 a=0.05

From tables: 1_38.0 a=0.01

12 4 7 5 6

1 29 1 (63) (56) (48) (45) (44)
2 63

3 79 3 (79)1 16 23 31 34* 35*
4 56 2 (63)1 7 15 18 19

5 45 4 (56); 8 11 12

6 44 7 (48): 3 4

7 48 5 (45)1 1

6 (44)1
25.12**

* indicates significance at a= 0.05
** indicates significance at dit.= 0.01

(29)

50**
34*
27
19
16
15



1(a):

Source
Total

Between
Within

I(c):

1

;

Ye. : 620.38** 1002.59** 1019.41**
_: 382.21* 399.03*

T`e+
16.82

yes:
Xe..7
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Table 20

STATISTICAL ANALYSES
CONTINUOUS-TIME MODEL; SECOND MOMENTS

-2 In LIKELIHOOD ESTIMATION

CLASSICAL ANOVA

SS df MS F

1(b): COMPARTMENT
ERROR MEANS

37499418.50 90 = 2.37

12335760.64 6 2055960.14 6.86** Fre, = 437.17
25163657.64 84 299567.35 T*5 = 1057.55

= 54.96

FISHER LSD TEST
ktr=

=
38.14

- 9.18

358.5o a. o.os
fie* = 18.59

LSD s71,4t c.= 228.51

ie.
C"e4

ge/ X[ Xes

Tw,

II(a): LINK-WALLACE ANOVA
Ranges: R, = 6.740, R, = 1568.96, R5

1038.96**
418.58*

1055.18**
434.80*

1066.73 **
446.35*

36.37 52.59 64.14
19.55 35.77 47.32

16.22 27.77
11.55

= 2421.8, R4 = 1583.8, Rs= 136.84,
R, = 2594.6, R! = 3593., Rao = 1066.727, XR, = 11905.740

From tables (n=13, k=7): = 1,(0):g al:(0)51

K - (13)kcc":' 1.165**
Z.R.z

II(b): LINK-WALLACE MULTIPLE COMPARISONS

D "s- 1.604-445
02.5.505 oc ("*°'

5,,1

4,

76.'1

Xet

620.38*

7.e.4

1002.59*
382.21

1Zes-

1019.41*
399.03
16.82

1038.96*
418.58
36.37
19.55

1055.18*
434.80
52.59
35.77
16.22

1066.73*
446.35
64.14
47.32
27.77
11.55

III(a): FRIEDMAN TEST III(b): WILCOXON & WLICOX TEST
S32.5

Compartment Sum of From tables: D = 08.0
Il Ranks

a =0.05
. :0.01

: 2 4 7 5 6 1

1 29 1 (63) (56) (48) (45) (44) (29)

2 63

3 79 3 (79)1 16 23 31 34* 35* 50**

4 56 2 (63): 7 15 18 19 34*

5 45 4 (56)1 8 11 12 27

6 44 7 (48): 3 4 19

7 48 5 (45)1 1 16

6 (44)1 15

1Z= 25.12**
It

* indicates significance at a= 0.05

** indicates significance at a= 0.01
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CHAPTER 5

CONCLUSION

5.0 INTRODUCTORY REMARKS.

In the previous chapters we have discussed

discrete and continuous models and their estimation,

bilinear time series, difference equations with random

slope and intercept, diffusions, etc. Both the

processes generated in chapter 3 and estimated in

chapter 4 are Markov, and random walks (e.g., the Markov

chain of the discrete model) converge to diffusions (of

the continuous model) under certain conditions. The

question still remains how are the two models, discrete

and continuous, related.

Considering only the discrete model:

statisticians tend to look at time series as made up of

seasonal effects, trends, and other 'irregular'
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fluctuations. On the other hand, engineers see the same

thing as having a transient and a steady state

component. Probably, the two approaches are equivalent.

This thesis has been from the latter point of view

(e.g., with respect to asymptotic stationarity).

5.1 RELATIONSHIP BETWEEN DISCRETE AND CONTINUOUS MODELS.

This work has been an attempt to model a

population of lymphocytes, the recirculating lymphocyte

pool, portions of which are subjected to seven different

environments, the compartments. For the moment assume

that it is a homogeneous population, the justification

for this being that RLP is overwhelmingly T-cells.

There is a distinct growth rate in each environment.

Thus the population can be modeled by a 7-state Markov

chain. In discrete time, products of stochastic

matrices and, in continuous time, random evolutions may

be viewed as representing such a population dynamics.

The relationship of discrete and continuous

multiplicative processes is discussed in Appendix 1.

Other points of view are discussed below.
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5.1.1 CONVERGENCE OF THE DISCRETE TO THE CONTINUOUS

MODEL.

Stochastic differential equations are formal

expressions for stochastic integral equations, so that

the interpretation of the former depends on that of the

related latter equations. Stochastic integrals can be

defined in different ways, two of which are touched on

in Appendix 4, which may be referred to for more

details, if needed. Up to now, in this thesis, only Ito

type stochastic differential equations have been used.

One way of looking at the discrete model is as an

Euler's approximation (neglect the additive noise for

the time being)

x(n+1) = x(n) +
N
A x(n) + ZB.x(n) b-10,1 (n)

...(5.1)

of the homologous continuous equation

(S) dx(t) = A x(t)dt + dW (t) ...(5.2)

t 6 [0,-c]

where

N = # steps in [0,t],
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n = # of the present step making

distance from zero nt /N,

(S) denotes Stratonovich representation.

Convergence of (5.1) to (5.2) has been discussed in

literature (Rumelin, 1982; Clark & Cameron, 1980; Clark,

1985). The rate of convergence depends on the structure

of B , i.e., whether they are commutative or not. In

the non-commutative case

Eix(t) - x(N)r- = 0(1/N) , ...(5.3)

while in the commutative case

Elx(t) x(N)I2 = 0(1/N2) .

(Pardoux & Talay, 1985; Thm 2.7 on p.36). In view of

this, the discrete model (without the additive noise)

converges to a continuous equation having Stratonovich

form. This can be converted to the Ito form as noted

above. Thus the relation between the parameters of the

discrete model and those of the continuous model is such

that: i) the coefficients, Bz, of the stochastic

(integral) term are the same as for the difference

equation, and ii) the coefficients, Pie (superscript



for Continuous),

150

in the non-stochastic term are

functions of the deterministic coefficients, A°,

(superscript for Discrete) and a correction term based

on

During simulation, pseudo-random number

generators are used instead of Wiener processes. The

convergence of (5.1) using such replacement processes is

discussed in Janssen (19824),and indeed there may be

problems.

5.1.2 EMBEDDING.

For a hypothetical observer of the physiological

process, (5.1) generates a Markov product of stochastic

matrices induced by a Markov random evolution in (5.2).

Looking at the respective mean processes:

and

E[A(n+1)] = (I + E[x(n)] = AD E[x(n)]

...(5.5)

E[X(01 = A E[x(t)] = At E[x(t)] ...(5.6)
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The matrices A
D

and A
c

, for closed compartmental

systems, are related by (Eisenfeld, 1979)

A = exp(A ) ...(5.7)

Similar results are presented in Appendix 1 for

multiplicative processes. But we know from Kingman

(1962) that a Markov chain that can be expressed by

(5.7) is embeddable in a continuous process. Thus the

mean discrete process can be embedded in the mean

continuous process.

5.1.3 INVARIANCE OF MEASURE OF GROWTH RATE?

In the long run some measure of growth rate that

is invariant under the two representations is desired

(because the same physical process is being modeled

differently). Cohen (1979) has shown that for a single

population exposed to different environments and obeying

(5.1) and (5.2) growth rates, X,, >,0, defined as follows

are the same under certain assumptions

In Xc = lim L E[ln Mt(t)] ...(5.8)
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In = lim MD(n)], ...(5.9)
n

where scalars MC(t) and MD(n) are thought of as

population sizes respectively at time t in the

continuous case and at instant n in the discrete case.

The present study can be seen as a multitype

population in the Cohen sense (many populations exposed

to many different environments simultaneously) and (5.8)

and (5.9) must be modified by replacing scalars M4 and

M by some scalar functions of A and A
V

respectively.

Such functions could be the norms iiA41) and liell of

the respective matrices. If these are used then in

general,

5.1.4 ARE THE PARAMETERS RELATED?

...(5.10)

It is possible to relate the deterministic

portion of the discrete and continuous models through

relationships discussed in sections 5.1.1 and 5.1.2.
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A = exp(A c
) = I + A` +
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...(5.11)

The sample paths generated by (5.1) and (5.2) cannot

really be compared because even when they assume equal

values at certain time instants, they obey different

probability laws in between these instants

5.2 THE RESIDUAL ERRORS & THEIR STATISTICAL ANALYSIS

There are seven compartments with 13 residuals in

each. Thus in effect these residuals have a

multivariate distribution with 7 variables each with 13

sample points. In order to check the Gaussianity of the

residuals instead of using the mutivariate distribution,

a univariate test was done for convenience. All the 91

residuals were treated as being generated by a single

population and their skewness and kurtosis tested for

significance by procedures described in section 4.3.6.

The results are presented in Table 21. All the

residuals are non-Gaussian based on these tests except

for those in second moments for the discrete case in

which case the results of the Friedman test show
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existence of at least two different distributions. This

is a contradiction, so that in this case also it would

be assumed that the errors are not Gaussian. This would

be expected physically since the number of cells cannot

be negative which implies that the distribution of

residual errors will have a finite lower limit.

Physiologically, recirculation in all the organs cannot

be independent. Thus the usual assumptions of

independence and normality do not hold. Robustness of

the F-test is also in question because the data is based

on only 5 rats for the most part. (See section A7.6 for

comparison of parametric and non-parametric tests).

Thus the Friedman test is the most appropriate test.

Use of other (e.g. parametric) techniques is not only

out of place, it leads to wrong conclusions. Three

types of analyses were done here to demonstrate this.

Even with relaxation of the independence assumption in

the classical ANOVA and the use of Link-Wallace test

leads to wrong conclusions, because it is difficult to

state categorically how closely the distributions of

residuals in each compartment (with size 13)

approximates a Gaussian distribution.
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Table 21

(a) RESULTS OF THE SKEWNESS TEST

WLS = Weighted Least Squares estimation
-2LL = -2 Ln Likelihood estimation

(VALUES OF THE COEFFICIENT OF SKEWNESS)

1

, WLS I -2LL 1

I
1

1 i I

DISCRETE: I

1

1 1

1st Moments; -1.18"; -1.19**1
2nd Moments; -0.69"; -0.72**I

I :

1

$

CONTINUOUS: 1 I

1

1

1st Moments; 1.50**I 1.49**I
2nd Moments; 0.36 1

0.34 I

1

1

1

(b) RESULTS OF THE KURTOSIS TEST

(VALUES OF KURTOSIS)

1

i WLS -2LL 1

1

1
:

I

I

1DISCRETE: 1 1

I

1st Moments; 5.22**: 5.38";
2nd Moments; 3.51 I 3.62 I

I I 1

1
I

CONTINUOUS: : 1 1

1st Moments; 7.04**1 7.00**1
2nd Moments: 4.09* I 4.12* I

I

1

: :

* denotes significance at 440C, = 0.05
** denotes significance at OG = 0.01
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5.3 BIOLOGICAL INTERPRETATION OF THE RESULTS OF THE

ANALYSES IN CHAPTER 4.

5.3.1 THE DISCRETE MODEL.

Stability: Like every closed discrete

(stochastic) system the mean number of lymphocytes in

the different compartments are in marginal equilibrium

(spectral radius of A, p(71) = 1). Since no births and

deaths are assumed (conservation of matter) a slight

disturbance can cause the estimated mean values to

oscillate. For the estimated values of the noise

variances (or standard deviations) the system moves away

from equilibrium (see section 4.4.2).

To investigate this situation, the analyses

mentioned above were done to see how well the model fits

the given data and which compartment(s), if any,

contributed most to the discrepancy. It is expected

that for a model that fits the data closely, the

residual errors should not be significantly different

from zero and be more or less symmetrically distribed

around it for very small errors. With increasing size

of errors there will be increasing asymmetry in the

distribution with a positive skew. It turned out that
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in both weighted least squares and -2 In likelihood

estimations, the Friedman's two-way analysis of variance

rejected the null hypothesis that the residuals in all

the compartments are from the same populations.

Multiple comparisons divided the compartments into the

following subsets:

1st moments: [(1,3,4,5,6,7),(2,6)}

2nd moments: {(1,2,3,5),(1,2,5,6,7),(4,6,7)}.

As seen in Table 21, the distribution of the residual

errors in the first moment has a negative skew. Most of

the points in the subset (2,6) are negative, while those

in the subset (1,3,4,5,6,7) are more symmetrically

distributed and are more likely to contain the zero

point. Compartment # 6 being in both subsets has a

distribution of lymphocytes that is similar to one

subset in some respects and to the other subset in other

respects. Thus the more likely source of, or at least

of greater part of the discrepancy seems to be

compartment 11 2 (spleen). For the size of residual

errors refer to Tables 4 and 5.
.11

Similarly the residuals in variances (actually

the 2nd moments) are being pulled to the positive side

by those in compartment # 3 (other tissues) and toward
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the negative side by those in compartment # 4 (LN-a).

Since LN-a drain the 'other tissues', any error in the

model of compartment # 3 also shows up in compartment #

4.

Thus to get a model which approximates the

real-world system more closely it would seem necessary

to improve the equations for the spleen and the 'other

tissues'.

5.3.2 THE CONTINUOUS MODEL.

Stability: Like every closed compartmental system

the mean number of lymphocytes in the different

compartments are in marginal equilibrium (spectral

radius of A, p(A) = 0). Just as in the discrete case

the system model being conservative will tend to

oscillate on a slight perturbation caused by the

parametric noise. Again for the estimated noise

variances the system model will move away from

equilibrium.

Analyses of residual errors from both weighted

least squares and -2 in likelihood estimations yielded

the same results. The Friedman test again rejected the
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null hypothesis that the residuals in all compartments

are drawn from the same populations. Multiple

comparisons gave the following compartment subsets:

1st moments: {(1,3,4,5,7),(1,4,5,6,7),(1,2,5,6 7)1

2nd moments: t(2,3,4,7),(2,4,5,6,7),(1,4,5,6,7)1.

Using reasoning similar to that for the discrete model,

here also the residuals for the means are being pulled

to the positive side by errors in compartment # 3 (Other

tissues) and to the negative side by those in

compartment # 2 (the spleen), but the errors in # 3 are

far bigger resulting in the positive skew in Table 21.

In the case of the residuals in variances (2nd moments)

one might expect compartments # 1 and # 3 to be the main

source of distortion.

Thus it is suggested that equations for the bone

marrow (compartment # 1), spleen (IF 2), and the other

tissue (/F 3) need to be improved.

5.4 VALIDITY OF THE MODELS.

It has just been seen that there is a lack of fit

between the data and the models. Does this mean that
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the models are not valid?

5.4.1 ARE THE MODELS VALID ?

Validity was mentioned earlier also (in section

4.3). It was defined as: a model is considered VALID if

its performance in terms of its output is similar to

that of the relevant real-world system when the same

inputs are applied to both. Validity holds only over a

certain range of parameters and only for the specific

function/process the model was designed for. Borrowing

ideas from psychometrics, different types of validity

can be looked at. Two types will be defined: content

validity and construct validity.

Content validity is the type of validity that can

be established through a rational analysis of the

structure of the model. It's determination is based on

individual, subjective judgement. If a model is

logically consistent based on the real system it has

content validity. The author audaciously enough claims

fairly high degree of content validity for the models

developed in chapter 3. It was not just a matter of

fitting any odd curve to the data, in which case content

validity would be zero. The models were developed by
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more or less thorough logical physico-physiological

analysis, but the approximations introduced to model

only a specific, selected function of the real system

together with the assumptions to simplify the model

structure attenuate the validity.

Construct validity is the degree to which the

model mimics the theoretical function or process that it

was designed to mimic. Hopes for construct validity for

the models in this study are dashed by significance of

Aa .z

),c,- in all Friedman tests. This means that the following

alternative conclusions may be drawn: i) the experiment

being modeled was flawed, ii) the reasoning used in

developing the models was at least partially wrong or

incomplete and should be revised, or iii) the equations

are totally invalid for the process.

If the equations were incorrect for the

particular process to be modeled they would have to be

replaced, but content validity here advises against

that. For the experiment being flawed, there will be a

mention of flaws in the available data, and for

partially incomplete reasoning there will be a

discussion about the contribution of violation of

assumptions that were made and of the estimation

algorithms used.
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5.4.2 DATA.

The sparsity of data was discussed in more detail

previously in section 4.1. Primarily means and

variances are available with some values missing. No

covariances are available (This is also because of the

nature of the experiment: since rats are sacrificed at

each time point; it is impossible to obtain longitudinal

data over time).

5.4.3 VIOLATION OF ASSUMPTIONS.

Throughout this study many assumptions were made

to simplify the model and the analyses. Many of these

are violated in real life.

i) Homogeneity of organs --- it was assumed that

many organs (e.g. LN) were structurally and

physiologically the same so that they could be

lumped together as a single compartment.

ii) Independence of events --- The body is a whole

of mutually interacting systems, even small

pertubations in different regions though seemingly

independent may not be so. (This assumption was

made when lumping compartments.)

iii) Gaussianity --- it was shown above (section
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5.2.7) that the residual errors are not Gaussian.

This implies that the stochastic processes that were

involved in the difference (the experimental state

and the estimated state) are non-Gaussian.

iv) Stationarity --- In order to test if the

distribution of residuals changes over time,

Friedman test was performed on the transposed matrix

of residuals (interchanged rows and columns), taking

time as the treatment variable and compartments as

the independent variable. By so doing, n and k

interchange values in formula (A7.2) and the rest of

the procedure is as described before. Testing thus

reveals (see Table 22) that only 2nd moments in

continuous case show significance (at oc= 0.01). We

must qualify all statements made about our models

with the phrase "over the period of observation".

v) There are births and deaths. Births can be

neglected for the labelled cells; death (about 2%

daily) cannot be. To be very precise what we have

modeled is distribution of radioactivity (the

tracer) and not that of the cells themselves. Also,

over long time some label is lost from the cells.

vi) Assumptions in compartmental analysis are

violated. e.g. indistinguishable particles,

well-mixed compartments, and same probability of
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transition.

vii) Existence of different types of immunities

was assumed. Also it was assumed that they remain

constant. This may not be a very valid assumption

(see section 1.2).

viii) To be very precise distribution of the

radiolabel was modeled here, and not that of the

cells. The latter was modeled only in so far as the

label was not lost, and births and deaths did not

occur.
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Table 22

FR1EDNAN TEST FOR STATIONAAITY

AILS Weighted tenet Square. estimation
.2L -2 Ln Likelihood estimation

Discrete Model, 1st Moments, WLS
II Discrete Model, 1st Moments, -2LL

III Discrete Model, 2nd Moments, VLS
IV Discrete Model, 2nd Moments, -2LL
V Continuous Model, 1st Moments, WLS

VI Continuous Model, 1st Moments, -2LL
VII Continuous Model, 2nd Moments, WLS

VIII Continuous Model, 2nd Moments, -2LL

I II III

Time Sum of Time Sum of Time Sum of
instant Ranks instant Ranks Instant Ranks

1 48 1 48 1 26
2 38 2 38 2 46
3 39 3 38 3 55
4 45 4 45 4 555 48 5 48 5 55
6 45 6 45 6 52
7 55 7 55 7 59
8 55 8 55 8 59
9 55 9 55 9 5310 56 10 56 10 51
11 52 11 52 11 43
12 50 12 50 12 44
13 51 13 52 13 35

l,:r. 4.01 i:. 4.26 * 11.27

IV V VI

Time Sum of Time Sum of Time Sum ofinstant Ranks instant Ranks instant Ranks

26 1 47 47
2 46 2 36 2 36
3 55 3 42 3 42
4 59 4 41 4 42
5 55 5 47 5 47
6 52 6 42 6 41
7

8
59
59

7
8

56
55

7

8
56
55

9 53 9 56 9 56
10 51 10 58 10 58
11 43 11 55 11 54
12 44 12 48 t2 49
13 35 13 54 13 54

4:0 11.27 ie. 5.80 *.:'.. 5.69

VII

Time
instant

1

2

Sum of
Ranks

19
23

VIII

Time
instant

Sum of
Ranks

19
24

3 50 3 50
4 57 4 57
5 61 5 61
6 64 6 64
7 69 7 69
8 65 8 65
9 60 9 60

10 65 10 65
11 54 11 54
12 38 12 37

13 12

42.934 i(r. 42.67"

SUMMART OF THE TEST STATISTICS
(Values of II)

1 WIS 1 -2LL
1

DISCRETE:
1st Moments: 4.01 1 4.26
2nd Momental

coxvimuous: I

1st moments:

11.27

5.80

1

:

11.27

5.69
2nd Moments: 42.931 42.67

denotes significance at a= 0.05
denotes significance at s.. 0.01
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5.4.4 ALGORITHMS USED.

Because nonlinear optimization computation was

performed it is impossible to say if the minima reached

on the error surfaces were global or local. Convergence

properties of the weighted least squares and the -2 in

likelihood procedures used were not studied.

Parameter estimation procedures used here can be

considerably improved on.

5.5 SUGGESTIONS.

i) In the experiment that has been modeled here

obtaining temporally sequential data is not possible.

It would be useful to have raw data available for each

organism rather than mixed data or only the summary of

descriptive statistics. Also more data is needed - --

just 13 data points is not enough and though it becomes

expensive and time consuming more rats are also needed

(just 4 or 5 at each time point are hardly sufficient).

ii) In the estimation and simulation non-Gaussian

distribution should be used (any non-negative

distribution, e.g. lognormal or positive gamma

distribution). Physically, this is reasonable because
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the process cannot have negative values.

iii) It is known that in real-life situations

within a certain range the coefficient of variation

(ratio of standard deviation to the mean = 640 remains

more or less constant. In many cases, organisms have

been reported to have a particular coefficient of

variation over a certain range, sometimes of other

parameters, (e.g. coefficient of variation relative to

height or length of an organism over a certain age, in

particular the growing period). This has sometimes been

used to check the validity of data obtained from

experiments (Snedecor & Cochran, 1968). It may be

useful in modeling also, to check if the model mimics

the data.

iv) Recurrence properties of the models developed

here were not studied. It would be interesting to look

at the mean residence times and mean recurrence times

for the compartments. The residence times could be

compared with "delay times" in the compartments.

v) The continuous model should also have an

additive noise term to account for random variations

between organisms.

vi) A death term should be included. 2%
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lymphocytes die daily and are disposed of by the liver.

This would damp out the marginal instability.

vii) Estimation using more data should give

better parameter estimates. But if there is still some

discrepancy and it is because of compartments 2 and 3 in

the discrete case and compartments 1, 2, and 3 in the

continuous case (as in section 5.3) then the following

modifications in equations would be advised.

BONE MARROW (Compartment II 1): Waugh et.al.

(1984) have presented an analysis of the physical

factors involved in reticulocyte egress from bone

marrow and the active nature of leukocyte egress.

Factors discussed there (e.g. viscosity of WBC

cytoplasm, pore size in marrow, viscosity of

surrounding fluid, WBC membrane properties) may be

incorporated in the continuous model.

SPLEEN (Compartment If 2): Hammond (1975)

modeled lymphocyte circulation in the spleen. An

overall model of the spleen based on his data may be

used to modify the equations here in both discrete

and continuous cases.

OTHER TISSUES (Compartment # 3): This

compartment includes lymphoid tissues as liver, gut,
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and peyer's patches and miscellaneous non-lymphoid

tissues (e.g. skin). This is a heterogeneous group

in all respects (structurally and functionally). It

may be better to divide this either into two

sub-compartments consisting of lymphoid tissues and

non-lymphoid tissues or into three sub-compartments

comprising non-lymphoid tissue, liver, and gut and

peyer's patches. In the latter division it would be

possible to include the 3 separate functions of the

liver related to recirculation, namely, a) genuine

recirculation (from blood to liver to coeliac LN,

thoracic duct and back to blood), b) intravascular

pooling (similar to lungs resulting in a rapid

initial response, and iii) accumulation of dying and

dead cells.

Ford's data does not include the non-lymphoid

sub-compartment. No variances are available and

means have only been deduced from his data for this

sub-compartment. Thus least amount of information is

available about it and when lumped with other organs

again creates a compartment with strangely mixed and

incomplete information (relative to other

compartments). It is logical that compartment 3 is,a

bad fit in both discrete and continuous cases.
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5.6 CONCLUSIONS.

Models of different functions of the immune

system are available. Some of them were discussed in

section 1.3. One of the ways in which the different

functions interact is through recirculating lymphocytes

(section 2.1.6 and 2.1 in general). The present project

was an attempt to model the distribution of

recirculating lymphocytes. Best available published

data (section 2.2) was used as the basis for the model,

but it was not sufficient. For this and other reasons

discussed in section 5.4 the model did not fit the data.

It would be worthwhile to obtain more data and

try to estimate the parameters using the same models.

If it still does not fit, then changing it structurally

as suggested in section 5.5.(vii) would be indicated.

It would also be useful to include another noise term:

the process of observation causes distortion in the

system and should be taken into account.

So far as analyses are concerned first the

Friedman test (with very few assumptions) should be done

and the gaussianity of the data for analysis checked

(using skewness, kurtosis tests or Kolmogorov-Smirnov

test) and then more restrictive test done.
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The models presented here are just a first step.

A great deal of work still needs to be done to obtain

models which approximate the real-world system more

closely.
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APPENDIX 1

MULTIPLICATIVE PROCESSES.

(Birkhoff & Varga, 1958)

A real square matrix P=[pL.i] is called

NONNEGATIVE (P > ()) iff 0,Vi,j. Similarly, a real

square matrix Q=[qz,i ] is called ESSENTIALLY NONNEGATIVE

iff 0,i5kj. A discrete multiplicative process with

a finite number n of "states" is a system of difference

equations

x((r +1) = ±p- x.(r) i = 1,... ...(A1.1)

where P ]) %;: O. A continuous multiplicative

process is any system of ordinary differential equations

i., (t) = x (t) = 1,...,n ...(A1.2)

where Q (=[qzi ]) is essentially nonnegative. These

processes are supplemented by the conditions



or

U
= 1 j = 1,...,n ...(A1.3)

= 0 j = 1,...,n ...(A1.4)
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respectively. A nonnegative matrix satisfying (A1.3) is

called a column STOCHASTIC matrix. Some important

properties of such matrices follow (Birkhoff & Varga,

1958).

LEMMA A1.1. The matrix Q defines a continuous

Markov process (A1.2) and (A1.4) iff P = exp(Qt) defines

a discrete Markov process (A1.1) and (A1.3) for any t >

0.

PROPOSITION A1.1. Any essentially nonnegative

and irreducible matrix Q has a unique strictly positive

eigenvector cp , with real simple eigenvalue

Moreover, Xi> Re{ >%1 for any other eigenvalue Xzof Q.

PROPOSITION A1.2. Any irreducible, nonnegative

matrix P has a unique strictly positive eigenvector cp ,

with positive simple eigenvalue L=/1,A,. Moreover,

--3% 1/-0 for any other eigenvalue /k.1,v: of P, and any

nonnegative eigenvector is a scalar multiple of cp.

COROLLARY A1.1. The spectral radius of any
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nonnegative irreducible matrix P is L in proposition

A1.2; the spectral prenorm (Max of real parts of k) of

any essentially nonnegative irreducible matrix Q is M in

proposition 1.1. The spectral radius of exp(Qt) is

exp(Mt), if t > 0.
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APPENDIX 2

RESULTS ON LINEAR TIME-INVARIANT COMPARTMENTAL SYSTEMS.

Some results on the nonnegativity, boundedness,

connectivity, stability and identifiability of linear

time-invariant (LTI) compartmental systems follow. For

more details see the references cited.

A2.1 NONNEGATIVITY AND BOUNDEDNESS

PROPOSITION A2.1. (Birkhoff & Varga, 1958) A is

essentially nonnegative iff exp(tA) > 0, t>0.

PROPOSITION A2.2. (Birkhoff & Varga, 1958)

Exp(tA) > 0 for V t > 0 iff A is irreducible and

essentially nonnegative.

PROPOSITION A2.3. (Hearon, 1963) x(t) > 0,

V t > 0 iff 0 (ij) in matrix A, while for x(t)

< 00 it is necessary that O.
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These three propositions ensure the nonnegativity

and the third the boundedness of the solution of (1.5).

A2.2 CONNECTIVITY

PROPOSITION A2.4. (Lancaster, 1969) A

compartmental system (matrix A) is strongly connected

iff the system matrix A is irreducible.

A2.3 EIGENVALUES OF A (STABILITY OF THE SYSTEM).

Knowledge of the eigenvalues of the system matrix

is important in deducing the stability of the system.

Some related results follow.

PROPOSITION A2.5. (Anderson, 1983) The real part

of any eigenvalue of A is nonpositive. Moreover, A has

no purely imaginary eigenvalue.

PROPOSITION A2.6. (Anderson, 1983) If A is a

constant square matrix with column sums (or row sums)

all equal to X , then X is an eigenvalue of A.

Moreover, if A > 0, then X is its spectral radius.

PROPOSITION A2.7. (Jacquez, 1972) A zero
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eigenvalue occurs if, i) the system is closed, or ii)

the system has a trap in it.

A2.4 IDENTIFIABILITY.

If the following are known: i) the system output

function, ii) the number of compartments, iii) the

connectivity of the system (i.e., which ai.4 are zero),

iv) the initial conditions, and v) the inputs, then the

model is IDENTIFIABLE if all its a,.j (i4J) can be

uniquely determined as positive values from ideal or

error-free data.

PROPOSITION A2.8. (Anderson, 1983) In order that

a set of input-output data identify all a6 it is

necessary that i) all compartments be input reachable,

and ii) all compartments possessing at least one path

leaving them (including excretions) must be output

reachable.

Anderson (1983) also gives several other

necessary and sufficient conditions for identifiability.
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APPENDIX 3

RESULTS ON LINEAR TIME-VARIANT COMPARTMENTAL SYSTEMS

PROPOSITION A3.1. (Mazanov, 1976) The solution

of (1.6) is stable if

(t) (t) i=1,...,n; V t
j=1

...(A3.1)

The solution remains stable if time-delays are

introduced into the intercompartmental transfers.

PROPOSITION A3.2. (Mulholland & Keener, 1974)

1. (Nonnegativity) If x,.(t) is a solution of

(1.6) with xi.(0) > 0 for each i = 1,2,...,n then

xi,(t) > 0 for all t > O.

2. Suppose with A(t) T-periodic (that is, with

period T) and u(t) = 0, (1.6) has no nontrivial

periodic solution. Then with u(t) > 0 and

T-periodic, (1.6) has a unique T-periodic solution.
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3. Suppose in (1.6) ui.(t) = 0, V i and

aii(t) - > 0 ...(A3.2)
jt

i = 1,...,n and 0, Vi J.

If x,:(t) is a solution of this system with xi(0) > 0,

i = 1,2,...,n, then

±x.(t) < exp(-gt) ilx,(0) ...(A3.3)

4. Consider (1.6) with T-periodic A(t) and

u(t), and A(t) diagonally dominant in the sense of

(A3.2). Then the system (1.6) has a unique

T-periodic solution to which all other solutions

converge asymptotically.
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APPENDIX 4

STOCHASTIC DIFFERENTIAL EQUATIONS

A4.I REPRESENTATION OF STOCHASTIC DIFFERENTIAL

EQUATIONS (Arnold, 1974).

Stochastic differential equations are formal

expressions for stochastic integral equations, so that

the interpretation of the former depends on that of the

related latter equations. Stochastic integrals can be

defined in different ways, two of which will be touched

on now. Consider the integral

Let

../G(s,145)dWs .

to

t < . = t,

be a partition of (to,t). Define

...(A4.1)
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= MG( )

in I

where t- 4 't 4;1: tc. Then in the quadratic-mean limit

t

1.0(s,Ws)dWs = qm-lim Sp, ,

where

= max (

and the location of -cc can be expressed as

-Cc = (1-a)tp:_, +

0 <= a 4 1, i=1,2,...,n

If a = 0, the integral in (A4.1) is referred to as the

Ito integral, while if a = 1/2 it is referred to as

Stratonovich's integral. Rules of ordinary calculus can

be formally used for Stratonovich equations, but

special calculus is required for Ito equations. The Ito

and Stratonovich forms can be transformed into each

other. If the Stratonovich equation is written as (S in

parentheses indicating Stratonovich representation)

(S) dx* = f(t,x*) dt + G(t,xt.) dWt , .(A4.2)
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then the corresponding Ito equation is (parenthetical I

for Ito form)

m

(I) dxt = (f(t,xt)+(1/2) S -Z.(Gx(t,x+)..iG(t,xt)ki )dt

+ G(t,x0dWt

where the n-vector (G),).,1 is the j-th column of the nxm

matrix G1=[aGesi/axi,]

A4.2 MOMENTS OF LINEAR STOCHASTIC DIFFERENTIAL

EQUATIONS.

The moments of the solution of (3.31) must

satisfy the following result.

PROPOSITION A4.1. For the solution of (3.31),

under the assumption that EiclI <co, c = xt ,

i) E[xt] = mt is the unique solution of

Mt = A(t) mt + a(t), mt = Ec

ii) E[xt t
x'] = P(t) is the unique nonnegative symmetric

solution of



P(t) = A(t)P(t) + P(t)A1(t) + a(t)N

mta' + (13,:(t)P(t)B'c(t) +

Bi(t)Mtbl(t) b(:(t)N.B::(t) +

bi(t)tq,(t))

with initial value P(to) = Ecc' .
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Proof. See theorem 8.5.5 in Arnold (1974).

A4.3 SMALL PERTURBATIONS IN DYNAMICAL SYSTEMS.

The following proposition applies to the

continuous-time model (see section 3.6).

PROPOSITION A4.2. Let the components of

vector-function f(x,y) have continuous, bounded first

and second partial derivatives throughout the whole

space. Assume that the process 1.t with values in /Ar has

piecewise continuous trajectories with probability one

and fulfills the strong mixing condition with

coefficient '2(s) such that

.0

fs[2(s)] ds < 00
0



and

sup Elf(x, t)j < M < 00 .

x,t

206

Then as E. 0 the process (of deviations)

t
(6"))/4T converges weakly on the interval [0, to

co
a Gauss-1,garkov process 3t which satisfies the system of

linear stochastic differential equations

d = A(x (9 ) 51. dt + die ...(A4.6)

where W
t

is a Wiener process and A(x,G) is a square

matrix such that

A(x,D) = r'3f,:(x,$)/

where fz(x,9) and xj are the i th and j-th elements of

f(x,0) and x respectively.

Proof. The proposition is stated without proof

as a theorem in Marchuk

Venttsel & Freidlin (1979).

al (1986) who quote

A4.4 SDE's AS DIFFUSIONS AND THE QUALITATIVE THEORY OF
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SDE.

Under proper assumptions (Thm 9.3.1 of Arnold,

1974) SDE's can be thought of as diffusions. Autonomous

SDE's can always be taken as homogeneous diffusions.

Recent interest in the long-term behavior of stochastic

systems has motivated development of a qualitative

theory of SDE corresponding to the one for ODE. The

qualitative theory of ODE (deterministic) deals with

concepts like invariant sets, critical and periodic

points, limit sets, recursive ideas (like

recurrent/transient points), stability theory, etc. The

corresponding theory for SDE deals with similar ideas

(Arnold & Kliemann, 1983). There have been attempts at

relating the properties of SDE's and their associated

control equations (obtained by replacing noises with

controls) (Brockett, 1976; Arnold & Kliemann, 1981).

For recurrence and transience properties of diffusions

see Bhattacharya (1978). He also discusses positive

recurrence. Ferrante & Koch (1985) have examples of the

use of Lyapunov functions to investigate qualitative

properties of diffusion models, particularly in the

two-dimensional case.
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APPENDIX 5

BILINEAR TIME SERIES

Interest in real data has recently been reflected

in an increased interest in robust methods (Martin,

1981; Preston, 1981; Franke, et.al., 1984) and

irregularly observed data and/or missing observations

(Jones, 1980; Jones, 1981; Dunsmuir, 1981; Parzen,

1984). Modeling using nonlinear time series is also

receiving more attention now as is evident from

Priestley (1981), who devotes one chapter (chapter 11)

to nonstationarity and nonlinearity in his book. Other

references include: Priestley (1980) and Haggan, Heravi,

& Priestley (1984) who discuss state-dependent models,

and Tjostheim (1986) and Pourahmadi (1986) who discusses

doubly stochastic models. Recently there has also been

a conference on nonlinear time series (Franke, Hardie, &

Martin, 1984).

Bilinear systems are nonlinear and yet in some
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respects resemble linear systems. They have been

studied in the control and systems literature and many

good references are available (Mohler, 1973; Bruni,

DiPillo, & Koch, 1974; Mohler & Kolodziej, 1980a; Mohler

& Kolodziej,1980b). Their application to biology and

economics has been the subject of conferences, Mohler &

Ruberti (1972), Ruberti & Mohler (1975), and Mohler &

Ruberti (1978). More recently a class of bilinear time

series models has been studied primarily in

econometrics. Such models have the form of

x(n+1) = Ax(n) + E:13-,x(n)E(n-j) + CE(n+1) ,

3=0 J
...(A5.1)

where

x(n) = state at instant n

A = constant AR coefficient

133 = constant mixed coefficients

C = constant MA coefficients

E(n) = noise

Granger & Anderson (1978) have discussed special

homogeneous models of this type. Subba Rao (1981) found

conditions for stationarity and discussed the problem of

maximum likelihood estimation for a model of specified
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order. Bhaskara Rao, Subba Rao, & Walker (1983)

presented results on a multivariate strictly stationary

process. More recently Subba Rao & Gabr (1984) have

surveyed the area in their monograph, the first half of

which is devoted to bispectral analysis and the second

half to bilinear time series analysis. The latter,

discussion includes Volterra series expansion, Markov

representation, existence of bilinear time series,

conditions of stationarity and invertibility,

dete,mination of order of the series, and estimation of

the series. A model closely related to (A5.1) occurs in

the literature under the name of random coefficient

autoregressive model. The structure is

el
x(n) = 21{A + 3(n) }x(n -i) + E(n)

Lzti

where

...(A5.2)

x(n), A, E(n) are as for (3.14). p(n) are also

noises.

In (A5.2) {x(n)} is in effect a two-process bilinear

time series.

Annals of Economic and Social Measurement (Vol.

2(4), 1973) devoted a special issue to time-varying

parameters and included Rosenberg (1973) and three
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sections dealing with i) random coefficient models, ii)

systematic (non-random) variation models, and iii)

Kalman filter models. Andel (1976) worked with scalar

random coefficient autoregressive models and derived

conditions of second-order stationarity. Spjotvoll

(1977) surveyed the area, discussed estimating means and

covariance matrices of the coefficients, and also

statistical inference in finite samples. Nicholls &

Quinn (1980) and Quinn & Nicholls (1981) discussed

estimation of such models using least-squares and

maximum likelihood estimates and studied their

asymptotic properties. Nicholls & Quinn (1982) also

have a monograph which surveys stability, stationarity,

least squares and maximum likelihood estimation and the

related asymptotic properties. Johnson (1977; 1980)

provides annotated bibliographies for stochastic

parameter regression which mainly deal with

econometrics.

The general random coefficient autoregressive

model of order m can be written as (Nicholls & Quinn,

1982)

x(n) = + L(n)}x(n-i) + CE(n) ...(A5.3)

where the variables are defined as the corresponding
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variables in (A5.2).

Some properties of this structure will now be

presented. Assumptions made during the theoretical

analyses are followed by expressions for the solution

and the first two moments, conditions for stability and

stationarity, and conditions for existence and

convergence of the second moment. Then follow

properties of estimators for bilinear time series.

A5.1 ASSUMPTIONS.

The following assumptions will be made in the

rest of the chapter concerning the discrete-time model

(reference to equation 3.9 or to equation A5.3).

i) i = 1,...,m are constant px p matrices,

ii) n = 0,1,2,...I, i = 1,...,m are i.i.d.

sequences of pxp matrices such that E[ pz(n)] = 0 and

E ( n ) 16i,( n ) ] = Cry. represents Kronecker product

of two matrices, being defined such that the ij-th

block of the product AOB is

B].. = B

where A and B are matrices.
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iii) Ig(n), n = 0,1,2,-1, is an i.i.d. sequence

of p-variate random vector with E[E(n)] = 0 and

ELE-(n)E1(n)] = G.

iv) {/5,;(n)} and { ez(n)} are independent of one

another.

The model as given in (3.9) is used here, and is quite

similar to (A5.3) with the same assumptions. Since it

is of first order (m = 1) the subscripts will be

ommitted in (A5.3). Repeating,

x(n+1) = Ax(n) + 16(n)x(n) + CE(n+1) ...(3.9)

will be used in the rest of this appendix. In (3.9) A

is a stochastic matrix (in the sense of Appendix 1) and

13(n) a closed compartmental matrix.

45.2 RECURSIVE EXPRESSIONS FOR THE SOLUTION AND THE

FIRST TWO MOMENTS.

A5.2.1 THE SOLUTION.

Equation (3.9) in itself is a one-step recursion. For
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k-steps the expression is

k-I

x(n+k) =I1(A + p(n+k-j-1))x(n) +
..)=0

i

EITT(A + (3(n+k-j-1))CE(n+k-i-1) +

CE(n+k) ...(A5.4)

where (A(j)) = A(0).A(1)...A(k)

and for n-steps (i.e. the solution):

x(n) =17(A + p(n-j-1))x(0) +
3=0

-
:EIT1(A +18(n-j-1))CE(n-i-1)

Ce(n), ...(A5.5)

x(0) being the initial condition.

A5.2.2 FIRST MOMENTS.



From (3.9), taking expectations:

E[x(n+k)] = A E[x(n+k-1)]

= A
k

E[x(n)]

A5.2.3 SECOND MOMENTS.

A5.2.3.1 VARIANCE.

From (3.9)
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...(A5.6)

...(A5.7)

x(n+1)1C(n+1) = Ax(n)x'(n)A' + p(n)x(n)xi (n) p' (n)

+ Ce(n+1)e'(n+1)C' +

E[x(n+1)x1(n+1)] = AE[x(n)x'(n)]A'

+ E[p(n)x(n)x'(n)p'(n)]

+ CE[e(n+1) 61(n+1)]C'

vec E[x(i+1)V(n+1)] = (A4DA + E[1:3(n)®18(n)]).

vec E[x(rOx'(n)] + (COC).vec E[e(n+1)e(n+1)]

vec E[x(n+1)x'(n 1)7 = (A ®A + Cp).vec E[x(n)x'(n)]

+ (CgC).vec G,
...(A5.8)
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where the vec operator transforms a matrix into a column

vector by stacking its column. If

A = [ct c, ... or

ci being the i-th column of A, then

vec A = [c, , cz, Cr]

The transposition, ', applies only to ci and not to

their elements.

The variance-covariance matrix, E[x(n)x'(n)],

being symmetric only the elements in its lower (or

upper) triangle need to be considered to examine

properties like stability. Thus instead of the vec

operator the vech operator can be used. This operator

stacks the columns of the lower triangular portion

(including the diagonal) of a symmetric matrix. The vec

and vech operators are related :

vech A= H vec A and vec A= K vech A

where if A is mxm, then vec A is exl, vech A is
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m(m+1)/2 x 1, H is m(m+1)/2 x m4, and K is ma

xm(m+1)/2. Expressed in terms of vech (A5.8) becomes

vech E[x(n+1)x (n+1)] = H(A4DA + Co)K.vech E[x(n)x'(n)]

+ H(COC)K.vech G,

...(A5.9)

A5.2.3.2 MIXED SECOND MOMENTS.

x(n+k)x'(n) = TI(A + p(n+k-j-1))x(n)x1(n) +
)=0

k-a

TI(A + (n+k-j-1)Ce(n+k-i-1)x'(n)

+ CE(n+k)x'(n)

E[x(n+k)xl(n)] = E[TT(A + p(n+k-j-1))x(n)x'(n)]

= Ak E[x(n)x'(n)] ...(A5.10)

It is of interest to investigate the conditions

under which the solution of (3.9) (or (A5.3)) tends to

an equilibrium independently of the initial conditions

as t 00 (stability), changes in the distribution
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properties of parameters with time (stationarity),

existence of moments, and recurrence properties.

A5.3 STABILITY.

Stability can be thought of as the property of

reaching an equilibrium independently of the initial

conditions. It is known that discrete systems are

stable if the system matrix has eigenvalues inside the

unit circle. This is more precisely stated below.

DEFINITION. {x(n), n eal generated by (3.9) is

said to be stable if

lim E[x(n)Ix(0)] = ci < 00
n-

and

- CO

lim E[x(n)xi(n-s)ix(°)] = ca < 00
00

for fixed s = 0,1,2,... where ci , c2 are constants not

depending on the initial value x(0).

PROPOSITION A5.1. The solution {x(n), ne 2} of

(3.9) is stable iff p(A ®A + < 1.

Proof. Given in Conlisk (1974) for a similar

model. Here p(A) = spectral radius of A. Nicholls &

Quinn (1982) have a similar condition. Spectral radius,
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being maximum modulus of eigenvalues of a matrix has

implications for stability of the matrix. In discrete

case the system is stable when the spectral radius is

less than unity. This means that all other eigenvalues

are less than one. In proposition A5.1 the spectral

radius of (A ®A + CA) is being considered. This matrix

is composed of two second order terms, one of which

depends on the deterministic portion of the transfer

paramete.s and the other on the random portion. Thus

stability is a function of the system matrix and the

second moment of the multiplicative noise.

A5.4 SECOND-ORDER STATIONARITY.

Stationarity refers to the time-invariance of the

distribution of a random variable. It is sometimes

easier to consider time-invariance of the first two

moments only. This is called second-order stationarity.

For the particular model, (3.9), considered here, the

k2ovdriance is a function of the variance and as such

second-order stationarity can be stated preCisely in

terms of mean and variance only.

DEFINITION. The process {x(n), neZ} generated

by (3.9) is second-order stationary iff
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i) the mean /Ai= E[x(n)], n 0 is a constant,

ii) Var[x(n)], n > 0 is a constant, and

iii) the covariance Er(x(n)-/u,)(x(m)-/u,)], 0 m

< n depends only on the interval (n-m).

LEMMA A5.1. If Var[x(n)] is a constant, then the

covariance E[(x(n)-",)(x(m)-/-)T] is only a function of

the time interval (n-m), 0 < m < n.

Proof. Obvious from (A5.10).

COROLLARY A5.1. If the mean, E[x(n)], and

variance, E[x(n)xl(n)], are,constants, then {x(n)} from

(3.9) is second-order stationary.

Proof. Obvious from Lemma A5.1 and the

definition of second-order stationarity.

PROPOSITION A5.2. (Existence) Let assumptions

i)-iv) in section A5.1 hold. For a asymptotically

second-order stationary solution {x(n),n E Z } of (3.9)

to exist it is necessary and sufficient that p(A1DA +

C
P

) < 1. This solution is given by

x(n) = :.(TT(A + t8(n-j71)))CE(n-i-1) + Ce(n)
3 =o

. . . ( A5.1 1 )

Proof. Can be derived as an extension of results
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in Miller (1968). Also see Nicholls & Quinn (1982).

PROPOSITION A5.3. (Uniqueness) Let assumptions

i)-iv) in section A5.1 hold. If a second-order

asymptotically stationary solution {x(n), n E at } to

(3.9) exists and p(A0A + co) < 1, then this solution is

unique.

Nicholls & Quinn (1981; 1982) give many obvious

results on the stationary values of first and second

moments for singly-infinite stationarity (i.e. for

eZ) and many results similar on doubly-infinite

stationarity (n62). Pharr & Tran (1981) carry the same

result for a bilinear process (their Theorem 2.2). From

(A5.11) it appears that like a linear time series, (3.9)

can be expressed as a 'moving average' process, in this

case a 'two-process moving average process'.

A5.5 RELATION BETWEEN STABILITY AND SECOND-ORDER

STATIONARITY.

The question is when the solution of time series

in (3.9) tends to an equilibrium, do the distribution

properties of the series change. The conditions for

stability and second-order stationarity are the same so
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they must be related. Intuitively, their definitions

focus on the same concept from different points of view,

stability emphasizing independence from initial

conditions and second-order asymptotic stationarity

constancy of the final values. The following

proposition addresses this issue.

PROPOSITION A5.11. Let assumptions i)-iv)

(section A5.1) hold. If {x(n), n e Z.} is a stable

solution of (3.9) then there exists a second-order

stationary solution {x*(n)} to (3.9) such that for fixed

lim Er.(x(n) - x*(n))1x(0)] = 0,

and lim EE(x(n)-x*(n))(x(n-s)-x*(n-s))eix(0)] = 0.
ft -O. 00

Proof. See Nicholls & Quinn (1982)

A5.6 STRICT STATIONARITY.

DEFINITION. The stochastic process {x(n), neZ}

generated by (3.9) is said to be strictly stationary if

its finite-dimensional distributions are invariant under

time displacements, that is, for t,:+t [te,T],
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F (x(1),...,x(n)) = F (x(1),...,x(n)).
t ,.,,t

F stands for distribution function.

Pham & Tran (1981) and Quinn (1982) present

conditions for strict stationarity of {x(n)} generated

by a bilinear model. The former give conditions similar

to the ones mentioned above for a second-order process,

while the latter obtains a strictly stationary ergodic

solution to a first-order bilinear process if

E{1n1A+A(n)1} < 0 and only if Eiln1A+(n)11 G 0.

It must be cautioned that all the results

presented here refer to asymptotic stationarity.

PROPOSITION A5.5. Suppose assumptions i)-iv)

(section A5.1) hold. If a unique second-order

stationary solution {x(n), n 6 14E } exists to (3.9), then

it is also strictly stationary and ergodic.

Proof. See Nicholls & Quinn(1982).

A5.7 EXISTENCE AND CONVERGENCE OF MOMENTS.

Granger & Anderson (1978) mention in passing that
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all moments may not exist in the models that they have

studied. In his paper, Tong (1981) states as corollary

1 that "for a non-trivial Markov bilinear process not

all moments exist". For sufficiently large n, the n-th

and higher order moments do not exist. If the (2i+2)th

moment exists then the (2i+1)th moment also exists (i =

1,2,...). (Tong, 1981)

PROPOSITION A5.6. If, for the process ix(n), n

6 Z4or 21 } in (3.9)

i) assumptions i)-iv) hold,

ii) p(AeA + co) < 1,

then Ew[x(n)x1(n)] exists

and 1 E[x(n)x'(n)Ix(0)] - E Ix(n)x'(n)] 1 = 0(:), as

n 4-00 for some 1? < 1. w refers to a stationary

measure.

Proof. See Thm 4 of Feigin & Tweedie (1985).

A5.8 ASYMPTOTIC PROPERTIES OF ESTIMATORS FOR THE

DISCRETE MODEL.

A5.8.1 LEAST-SQUARES ESTIMATORS.
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Pham & Tran (1981) have discussed this in

relation to first-order bilinear time series

x(n) = ax(n-1) + b (n- 1)x(n -1) + E(n). ...(A5.12)

They discuss invertibility of (A5.12), defining it as:

the process {x(n)} is invertible if E(nix(0)) -

E(n) converges to zero in some sense as n-e.00,

regardless of x(0). They find {x(n)} from (A5.12)

invertible or not according as Ibl is strictly less or

strictly greater than exp[-E[1n)x(n)1).

Invertibility is closely related to parameter

estimation. In the standard least squares method the

sum of squares of 'errors', i.e. e18(n:x(0)) is

minimized on some given set 8 to obtain parameter

estimates 0= (a,b) 6 63. 9 indicates dependence on a

guessed parameter set

Under the invertibility condition Pham & Tran

minimize

Vn(i) .
n ;=.1

...(A5.13)

They find (their Thm 4.1) that the least squares

estimator Kn) thus defined is strongly consistent.
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For the random coefficient autoregressive models

Nicholls & Quinn (1980; 1982) present results on strong

consistency and distribution of estimates for scalar

version of (A5.3). Under strict stationarity they show

that k = [A, 62 P- ] converges almost surely to k =[ A,
16" 6

e
Y E ] if E[x4(n)] < oo and if E[xs(n)] < 00 theA

112_

distribution of N (k - k) converges to a normal

distribution with mean zero and a complicated covariance

matrix (N being the total number of sample points).

Nicholls & Quinn (1982) give a similar result in the

multivariate case under similar conditions.

A5.8.2 MAXIMUM LIKELIHOOD ESTIMATORS.

Quinn & Nicholls (1981) and Nicholls & Quinn

(1982) also discuss maximum likelihood estimation for

scalar random coefficient autoregression. They assume

strict stationarity and

EE(i4(n)] < oo and F.1:1(n)] <cc, i = 1 n.9...7

and also appropriate bounds on covariances. In this way

it can be shown that iL ;;/i: ) converges almost

surely to 6 = (A, 1:/e ). Under the same conditions
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Vz
N (9 - 0) converges to a normal distribution with zero

mean.

Nicholls & Quinn (1982) while stating the

algorithm to estimate parameters in the multivariate

case, conjecture that here also the estimates "will be

strongly consistent and satisfy a central limit

theorem".
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APPENDIX 6

MINIMIZING CRITERIA

The expression for weighted least squares cost

function is:

Q a(0) C(xi.o(i) ,ci))2.

N j.1 Cci)

qTZ(x.(j)X(j))t F:(j)(xo(j)i(j)) ,

...(A6.1)

where

Q a.(9) = Chi-squared function to be minimized

as a function of the parameter set

being estimated,

x(j) = State at instant j (% activity),

e(j) = Variance at instant j,

r(j) = Covariance matrix from observations

at instant j (variances on the

diagonal and zero off-diagonal),
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= Parameter set; A for the first-moment

equations, and (Cts,G) for the second-

moment equations,

k = number of compartments (= 7),

n = number of observations per compartment

(= 13),

N = total number of observations

(= nk = 91),

cap denotes Estimate,

subscript i denotes Compartment i,

subscript 0 denotes Observation.

The analog of the Pearson -goodness-of-fit statistic

is N*(Qle(0)). Thus to check the significance, it is

more appropriate to use this statistic rather than Qi(9).

In the case of maximum likelihood estimation the

residual errors are assumed independent so that if

f.(.l.) is the density of these errors then the

likelihood function Lm(9) is

L4(9) = fi(x(1),...,x(j)lx(0))

n

= TI fl (x(i) lx(0)) = 717 f, (x,(i)fx,(0))
C=1 vrt=1

...(A6.2)
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Logically a nonnegative asymmetric distribution (e.g.,

lognormal or gamma) should be used for f.(.1.) in

(A6.2). For the case of lognormal density function the

maximum likelihood estimation equations are given in

Cohen (1951). Alternately, assuming lognormal

distribution the data can be transformed to a Gaussian

distribution and the usual procedure as given below

used. The mean (p.,(j)) and variance (Cr;1,(j)) for the

transformed Gaussian distribution would be

4

/1';,(j) = (1/2) ln[
cx_P-"aP

]

C
and de(j) = in[oixt,01

x%(j)

For convenience, even though known to be invalid

here, an underlying Gaussian distribution is assumed (as

is usually done). Then (A6.2) is

(x.n X,165.
L (9) = 1\(27C6,..:(i)) exp(

V4i)cz.)
ma

Taking the logarithms,

n kkin L (9) = -
n ln(270 6o(i)
2 2 L 1,1.1

k (X,,,66) ;Z,(i.))1

t=1 mr.1 62'40

Let



1N(0) = - -1n(210

n k
+

ma

Q (9) = 1,4(0)

n k
frIrt c 26,,/

mo
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... (A6.3)

The 1N(9) in (A6.3) is minimized using Powell's

technique as mentioned earlier.
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APPENDIX 7

RELEVANT STATISTICAL TESTS

Descriptions of the various tests are given in

Appendix 7. Three types of statistical analyses were

done: the classical one-way analysis of variance, Link

and Wallace analysis of variance and Friedman's two-way

analysis of variance. The three are compared in the

appendix. Multiple comparisons that were done are also

discussed. Terms used in the statistical literature are

given in parenthesis in the description of the tests.

A7.1 THE CLASSICAL ONE-WAY ANALYSIS OF VARIANCE (ANOVA).

Assumptions:

In this procedure it is assumed that: i) observations

within and between all compartments (random samples) are

independent, and ii) the observations are from normally

distributed populations with equal population variances.
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How these assumptions affect the validity of the

procedure is discussed below.

Hypotheses:

Because of the assumption ii), (11.2) can be written

in terms of population meanst,c.

H. /4.A. =
z

= . = ta; (null)

Hi : All " are not equal (alternative)

...(A7.1)

Procedure: See any standard textbook of

statistics for details. The calculations may be

summarized in the form of a table as follows:

Source 1 SS df MS F

Total 1 SS3 df3

Between groups SS df, MS SS F =MS /MS

Within groups ,

1 SSz dfa MSx=5S2/df,

where

Source refers to the source of the variance.

SS = Sum of Squares of deviations

from the relevant mean,

df = Degrees of Freedom,

MS = Mean Sum of squares (= SS/df),
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a measure of relevant sample

variance,

F = the test statistic, having

F-distribution when the samples

are Gaussian,

SS3 = SS, + SS,,

df3 = df, +

In this table groups refer to the compartments of this

study. The F-test is used to decide if the null

hypothesis is to be rejected. Since the F-test compares

the sample variance between the compartments (groups)

with the sample variance within the compartments

(groups), the rejection occurs only when the former is

significantly different from the latter in which case it

can no longer be claimed that variance between groups

was because of chance.

A7.2 LINK AND WALLACE ANALYSIS OF VARIANCE.

For our model it seems a bit far-fetched to

assume the independence of all observations. The

observations in different compartments and at different

times are correlated. Thus a two-way analysis of
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variance would be better. It could also detect any

interaction between compartments and time, which

intuitively seems evident to occur because of homing

properties of lymphocytes. Here there is only one

observation per cell (i.e., in a compartment at a time

instant). In such a case a rapid test of analysis of

variance according to Link and Wallace may be used

(Sachs, 1984).

Assumptions:

It is assumed that individual samples in the

compartments (groups) have an approximately normal

distribution, identical variances, and the same sizes.

Hypotheses:

Same as for the classical ANOVA.

H0 : /44, = IAA& = = /.47. (null)

: Not all are equal (alternative)

...(A7.1)

Procedure: The k ranges Ri of individual

compartments (groups) and the range of means Rao are

used. Ho is rejected in favor of HI, whenever

K = n Ra)
>

MR;
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Special tables are available for the critical values of

the test statistic K.

Here ranges serve as measures of variance of the

samples, and the test is intuitively based on

principle similar to the one for classical ANOVA. Here

R07:) serves as a measure for between compartment sample

variance and ER,:/n as that for within compartment

sample variance. If the former is too big compared to

the latter the difference could be statistically

significant (i.e., may not be because of chance). Not

much is known of the sampling distributions of ranges.

For the purposes of this test approximation of the

distribution of range when considered a linear function

of sample variance and other details of derivation are

given in Kurtz, et.al. (1965).

A7.3 THE FRIEDMAN TEST (DOUBLE PARTITIONING WITH

SINGLE OBSERVATION PER CELL).

The Friedman test (or Friedman two way analysis

of variance) is a non-parameteric analog of the

classical (or parameteric) two-way analysis of variance

and is used to compare several correlated samples
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(Sachs, 1984) with respect to their central tendency.

Assumptions:

It is assumed that the samples have continuous

distribution functions, Ft: .

Hypotheses:

H : Fi = F2 = . = F.. (null). .0 7-

: All Fi are not equal (alternative)

...(4.2)

Procedure: The comparison is done between k

compartments (treatments) with n time instants of

measurement (individuals/samples) each. n rank orders

are obtained by assigning a rank from 1 to k to every

compartment (treatment). Thus the ranks, 11.i , of the

data are represented in the following tabular form:

Compartments
(Treatments) Row sums

1 2

1 R,, ... Rsk k(k+1)/2
2

Time .

liz. R2 ... RA, k(k +1 )/2

.

Instants . .

(Individuals).
n lin, li,2 ... Rnic k(k+1)/2

Col.Sums 11, RL ... Rk nk(k+1)/2
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Thus the mean of the column sums is n(k+1)/2. If the

sum of squares of column sums around this mean (denoted

S) is found it can serve as a measure of between

compartment (treatment) sample variance. As a measure

of within compartment sample variance, the total sum of

squares of deviations around the average rank (denoted

s ) is used. It turns out to be

s
t

= nk(k -1)/12 .

The test statistic is computed by, a linear function

of S, 11)=- (n-1)S/s. After some algebra it becomes

12
- 3n(k+1)

K nk(k+i)
...(A7.2)

The exact distribution of such a statistic for ranks is

not known. For large k and large samples (n > 7), by

comparing moments Gibbons (1985) approximates it by the

/e- distribution with k-1 degrees of freedom. (For

details see Gibbons, 1985.) Tables are available for the

critical values of K
for small n.

Corresponding to the table for the calculation of

F-statistic in classical ANOVA (as in section A7.1),

here usually only column number and column sums are
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tabulated and the statistic calculated from these.

Other variables (n, k) in (A7.2) are known.

A7.4 MULTIPLE COMPARISONS.

When the null hypothesis is rejected we do not

know distributions in which compartments (samples)

differ and in which they do not. Multiple comparisons,

however, are used to investigate this. Comparisons

which were used with each of the above tests are

described below.

A7.4.1 FISHER LSD (LEAST SIGNIFICANT DIFFERENCE) TEST.

This was used when H, was rejected in the one-way

ANOVA. It is a modified t-statistic, the critical value

being

2 2.

LSD = t s
z

14-Kia, CI-rot n error 1,14 -k;
...(A7.3)

This is used to check the significance of all (k-1)k/2

pairwise comparisons.

The procedure used here is to arrange the



240

compartment means by order of magnitude

m, > m1

and then form the table

r112. M
3

M

ml d,, d,5 d,7

m z d23 dzd2}9

0

Mg d67.

Here the differences,

d.. = - mJ . , i < j, i=1,..,6, j=2,... .

are compared with LSD from (A7.3) at particular

significance level. From this table it can be decided

which means, cm. f form subsets in which the elements do

not differ significantly from one another. These

subsets may have nonzero intersection.

A7.4.2 LINK-WALLACE MULTIPLE COMPARISONS (Sachs, 1984).

Using the critical value of K (from sectionnk AL

A7.2) pairwise comparisons of all the compartment means

are done with the mean difference D . They are
Lwicc
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significant at confidence level (1---c4x100% if they

exceed

k),;,, Rti
Lvv; ot,

...(A7.4)

Here also the compartment (treatment) means are arranged

just as for the Fisher LSD test above, but instead of

using LSD,, Dew. used. The differences, d'

(= m` -m.), have a similar interpretation as above.

17.4.3 WILCOXON & WILCOX TEST (Sachs, 1984).

This corresponds to the Friedman test. Again k

compartments (treatments) with n observation time

instants (replications) each are compared. Every

compartment (treatment) is assigned a rank from 1 to k,

so that n rank orders result. The ranks of individual

samples are added; their differences are compared with

the value of the critical difference. If the tabulated

critical value is exceeded (or attained) then the

compartment samples (treatments) come from different

statistical populations (or distributions). If the

computed difference falls below the tabulated D
W;ct

, the

difference can still be regarded as accidental.
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Here, the column rank sums are first ordered by

magnitude

> rz > > r;

and then a table similar to the one for the FiSher-LSD

test is formed with rt: in place of Int:. The differences,

, are now

d, = - , i < j, i=1,..,6, j=2,...,7.

A7.5 TESTS FOR DEPARTURE FROM GAUSSIANITY.

Some statistical tests to check Gaussianity will

be described now. Various tests are available. Here

tests for skewness and kurtosis are used.

Test of Skewness. Let m
3

and m 2 denote,

respectively, the third and second central moments of

the sample. The coefficient of skewness, g , is

vz
g m3 /(m2) ...(A7.5)
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The sampling distribution of g1 is approximately

Gaussian (sample size, N > 150) with zero mean and

variance 6/N, if the sample is Gaussian (Patel & Read,

1982). For N between 25 and 200 critical values for g

have been tabulated for tests at 95% and 99% confidence

levels. (See Pearson & Hartley, 1966)

Test for Kurtosis. Let m 4
denote the fourth

central moment of the sample. Then the kurtosis of the

sample, gz, is given by

g = m4 /m? - 3 ...(A7.6)

For a normal sample, if the size is very large, has a

Gaussian sampling distribution with zero mean and

variance 24/N (Patel & Read, 1982). The critical values

of gz are available in tables. (See Pearson & Hartley,

1966)

A7.6 CHOICE OF PARAMETRIC VS. NONPARAMETRIC TESTS

If statistical tests are evaluated in terms of
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power and robustness (power being "sensitivity to change

in the specific factors tested" and robustness being

"insensitivity to changes, of a magnitude likely to

occur in practice, in extraneous factors".), parametric

tests (e.g. classical ANOVA) are derived to be powerful

for an assumed specific probability distribution. But,

unless their assumptions are met, there is a yielding in

robustness and such tests may not even be valid. Thus

robustness is of great concern. Unlike these,

nonparametric tests (e.g. Friedman test) are inherently

robust because they are based on very general

assumptions. Where comparison studies have been made

-nonparametric tests are frequently almost as powerful as

their parametric counterparts, especially for small

samples (Gibbons, 1985), and therefore may be considered

more desirable whenever there is any doubt about

assumptions. For this reason decisions made from

nonparametric tests have been given preference in this

study. A summary of the results of all the tests is

given in Table 23
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Table 23

SUMMARY OF STATISTICAL TESTS

WLS = Weighted Least Squares estimation
-2LL = -2 Ln Likelihood estimation

I. CLASSICAL ANALYSIS OF VARIANCE
(Values of F)

WLS ' , -2LL ,

.

1 1 1

DISCRETE: I

1

, 1

1st Moments: 4.61**1 4.52**:
2nd Moments; 11.43**I 11.35**I

1 1
1

CONTINUOUS: : .
.

1st Moments; 4.77**I 4.89**:
2nd Moments: 6.86**I 6.86";

I
1 I

II. LINK-WALLACE ANALYSIS OF VARIANCE
(Values of K)

WLS -2LL 1

1

DISCRETE: :

1st Moments; 1.016**: 1.008**I
2nd Moments; 1.817**1 1.814**I

CONTINUOUS: 1

1st Moments: 1.169**I 1.199**:

2nd Moments: 1.162**1 1.165**I

III. THE FRIEDMAN TEST
(Values of 4 )

WLS ,

, -2LL 1

,

1
;

DISCRETE: 1

1

1

1st Moments 25.68"; 25.68**I
2nd Moments 45.33**: 45.33";

CONTINUOUS:
1st Moments 26.74**: 26.60";
2nd Moments 25.12"; 25.12**1

* denotes significance at a.= 0.05

** denotes significance at a= 0.01
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APPENDIX 8

A BRIEF REVIEW OF THE IMMUNE SYSTEM

This appendix briefly reviews the immune system.

As mentioned in section 1.2 there are different types of

immunity. These include those that are nonspecific (or

innate) and those that are specific (or acquired)

(Guyton, 1976). Both of these types of immunity may be

either humoral or cellular. There is a continuous

interaction between all these different mechanisms as

shown in figure 11, where the broken lines indicate
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reactions influenced by T-cells.

Figure 11. Simplified scheme showing
interactions between natural and
acquired immunities (Roitt, 1980)

This appendix will be concerned only with

acquired immunity, the existence of all the other

defense mechanisms and their interactions being assumed.

These may to a degree contribute to the "noise" due to

uncertainty in the models presented in this thesis.

A8.1 LYMPHOCYTES.
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Acquired immunity is based on the existence and

proper functioning of certain cells which are called

lymphocytes and are a type of leukocytes (white blood

cells) (Guyton,1976). There are two types of

lymphocytes which have been named T-cells and B-cells.

In mammals both cells originate in the bone marrow as

stem cells and are processed in different places. The

stem cells which are processed in the thymus are called

T-cells or T-lymphocytes, while those processed

independent of the thymus are called B-cells or

B-lymphocytes. It has been difficult to pinpoint this

thymus-independent processing region(s) and different

authors have speculated about different areas of gut

associated lymphoid tissue. In the fetus it is the

liver and in the adults it may be bone marrow

(McConnell, Munro, & Waldman, 1981) and/or spleen

(Sprent, 1977) or hematopoietic tissue (see Kincade &

Moore, 1977, pp 134-136 for details). For a recent view

on more detailed classification of lymphocytes see

Petrov (1984).

A8.2 ORGANS OF THE IMMUNE SYSTEM.

The immune system functions in concert with the
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reticulo-endothelial system and is distributed

throughout the body in the form of discrete,

strategically placed lymphoid organs, some of which

comprise the primary lymphoid tissue and the rest the

secondary lymphoid tissue. Primary lymphoid tissue is

that where lymphocytes are produced and processed (at a

basic level), namely, bone marrow and thymus. The rest

of the lymphoid tissue (where lymphocytes are further

processed) is called secondary, namely, spleen, lymph

nodes (LN), gut associated lymphoid tissue (GALT),

bronchial associated lymphoid tissue (BALT), etc. The

distribution of the lymphoid system is shown in figure

12.

Figure 12. The immune system
(Roitt, 1985)
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For details of the structure and functions of the

individual organs see any standard textbook on anatomy,

physiology, or histology.

A8.3 THE IMMUNE RESPONSE.

The immune response (i.e. the reaction

foreign invasion) can be divided into three phases:

i) Initial phase --- the events between entry of

antigen and its presentation to antigen receptors on

the lymphocytes,

ii) Central phase --- the interactions between

different subpopulations of lymphocytes, and

iii) Effector phase --- when the antigen is the

target of destruction.

These phases are illustrated in figure 13. Virgin

lymphocytes become activated or sensitized when they

come into contact with an antigen and differentiate

further into either memory cells or effector cells (T-

or B- depending on what they were as virgin
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lymphocytes).

Soefo Mho.. atl PIp0uCt
M. or

loctfr T .f 1Oolor

141104OPOsit

'Igen 110.1n MVO ...on
Ceti LO-474121.00 4tw.t t am 8 .ls.
Sonfoonsfo of T and B me, Colts .11
ONO°, of Is

Figure 13. The three phases of an

immune response (McConnell, et.al.,

1981).

A8.4 EFFECTOR LYMPHOCYTES.

T-lymphocytes have been found to respond to four

different types of reactions (Roitt,1980):

i) mixed lymphocyte reaction (T-helper or TA),

ii) allograft cytotoxicity (T-cytotoxic or Tk),

iii) carrier-specific hyperactivity (Td), and
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iv) a potential suppressor function (1-suppressor or

15 ).

The T-helper cells, when they recognize and respond to

an antigen, help 8-lymphocytes specific for the antigen

to develop into antibody-forming cells. The

hypersensitivity reaction is initiated by an antigen,

which may be associated with or processed by a

macrophage, combining with the receptors on the surface

of appropriate T-memory cells. This transforms into a

large blast cell and undergoes mitosis. A proportion of

these stimulated T-cells release a number of soluble

factors (including lymphokines) which mediate the

ensuing hypersensitivity response, while some others

develop cytotoxic powers. A class of T -cells can

suppress the activity of 8-lymphocytes and also other

T-lymphocytes.

The functioning of T-cells depends probably on

receptors bound to their membranes. In B-cells the

existence of membrane-bound antibodies is known and they

are also released into the blood. Thus B-lymphocytes

are responsible for the humoral immune response and the

T-lymphocytes for a significant part of the

cell-mediated immune response.

Although many believe that there is no
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T-independent humoral response in humans, others assume

two types of B-cells, one of which depends on T-cell

cooperation for activation and the other does not

(Roitt, 1980). Both of these types of cells release

antibodies or immunoglobulins (IgG, IgA, IgM, IgD, and

IgE) having different properties (proportions in the

body, molecular weights, number of basic tetra-peptide

units, valency for antigen-binding, etc). For details

see Roitt (1980), Fudenberg, et. al. (1978),

Benacerraf & Unanue (1979), or any other standard book

on the fundamentals of immunology. Some books dealing

entirely with the structure and function of the lymphoid

system are: Rusznyak et.al. (1967), Yoffey & Courtice

(1970), Elves (1972), Trnka & Cahill (1980), and Gowans

(1980). A concise summary of white blood cells is given

in Boggs & Winkelstein (1984).

A8.5 PRIMARY AND SECONDARY RESPONSES.

On first exposure to an antigen the events

mentioned in figure 13 above occur. This is called the

primary immune response. On subsequent exposure to the

same antigen the response involves memory cells and is

much quicker and amplified. This is refered to as the
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secondary response.

These responses apply to both' B- and T-cells .

It is important that the responses are based on the

selective, expansion and suppression of different clones

of antigen-specific T- and B-lymphocytes. The main

factors currently thought to modulate the immune

response are summarized in figure 14.

N.047_,OlbCk ,t-AwaJq. e

Figure 14. Regulation of the immune
response. TA = T-helper cell;

T5 = T-suppressor cell.

(Roitt,1980)
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APPENDIX 9

MATHEMATICAL MODELS IN IMMUNOLOGY & BIOMEDICINE.

Models of some aspects of the immune system are

presented below.

A9.1 THE HUMORAL IMMUNE RESPONSE.

Historically, Hege & Cole (1966) presented the

first relevant model relating the changes in circulating

antibody with the number of antibody-producing cells.

The models that have been published since then can be

divided into the following categories. Most of the

models below are discussed in detail in Merrill (1980),

and Mohler, Bruni, & Gandolfi (1980). Some of them are

more recent. Most models are based on clonal selection

theory.

1. Discrete Affinity
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The basic B-cell model (Mohler et.al., 1980) is:

X=

XI

X3

X4

Xr

= Ax + (b,v, vi) x, + b3 v5 x5 +c4

rcc
0

0 2cc

b = 0 , b2 = 0 b =
0 0

0

-c
C

-A, 0 0 0 0

0 -1/-cL 0 0 0

A =
,,

ex ac' -1/23 c 0

0 0 0 - ( c+1/t.4) 0

0 0 0 No -Vt.5

where

population concentration

+0 u.

1 0
0

0 = 0I C5.
0

0,

of ICC

(immunocompetent cells) with surface receptors

having association constant or affinity k for Ag,

xz = pop. conc. of short-lived plasma cells,

x3 = pop. conc. of free "Ab-sites",

x = pop. conc, of immune complexes,

xs = Ag. cone.

-CL = mean lifetime of x, i

u, (t) = rate of generation of new ICC (from bone

marrow),

= p5 (1 - 2p4 ), = kxs, v3
1." P-51:4

ps = probability that Ag stimulates a cell,

= probability that an ICC differentiates into a
'01

plasma cell,



oC= plasma cell Ab-production rate,

cis= ICC Ab-production rate,

c, kc
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dissociation, association rate

coefficients, respectively, of immune complexes

ua(t) = inoculation rate of Ag.

u eRz function as additive control, VE fl as

multiplicative control. Existence and uniqueness of

the solution of this bilinear structure and its

reachability properties have been studied. Mohler &

Hsu (1978) followed with a compartmental model using

blood, spleen, lymph, and lymph nodes as compartments

and each compartment with four states as ICC, plasma

cells, Ab, and Ag. Other similar models include

those of Bell (1970, 1971a, 1971b). Waite & Hyer

(1986) have developed a model for T-cell independent

response incorporating persistent signalling

mechanism and auto-catalysis (auto-regulation of the

response by B-cells) for termination of the response.

2. Continuous Affinity (Bruni, et.al., 1975a, 1975b,

1978)

Here instead of assuming discrete constant values for

the Ag-receptor association constant it is assumed to

have any value in some interval (k, ,k2).
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3. Network Models (Jerne, 1973, 1976; Richter, 1974,

1978; Hoffmann, 1975, 1978)

Jerne introduced the concept of interclonal

interaction to take into account the antigenic nature

of antibody molecules. Richter developed the

mathematical model based on the following possible

sequence of reactions (adapted from Merrill, 1980)

1. low-level response:
stimulates

Ai,/ levels below threshold for Ab2 stimulation,

2. low-zone tolerance: as..21124.AbiIli!..-Ab2

Ab2 inhibits Abl-Ag combination,

3. normal response:
Ag-S-ti--3.-sAbi stun Ab2.2112'..Ab3

Ab3 eliminates Ab2 inhibition of Abi-Ag combination,

4. high-zone tolerance: Avall!!...Abi-1112ab21V12..-Ab
stun Ab

Ab4 eliminates Ab3, response appears as in low-zone tolerance.

Hoffmann expanded the model to include T-suppressor

cells which produce a monovalent "blocking" substance

instead of antibodies (Ab's) and are faster reacting

than B-cells. Recently Fey & Eichmann (1985)

described suppressive regulation between polyclonally

activated normal and immune T-cells using this

approach.

4. Threshold models

Waltman & Butz (1977) consider delays in the response

by generating delays from threshold conditions (as in

epidemic models).
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5. T-B cellular/multicellular interactions

Mohler et.al. (1978), Marchuk (1979a), and

Asachenkov & Marchuk (1979) have described some

interactions. A recent model is that of Kaufman,

Urbain, & Thomas (1985) who first use Boolean

functions to develop a model of Ag, B,

interaction and then translate it to homologous

continuous differential equations and replace logic

variables by sigmoidal functions.

6. Stochastic models

Jilek (1971a, 1971b) and Jilek & Sterzl (1971) base

their models on the probability of contact between a

cell (through appropriate Ab receptor) and an antigen

(Ag).

7. Other models

,Dibrov et.al. (1977a, 1977b) and Merrill (1977,

1980) have described the cyclic behavior of the

response. Gunther & Hoffmann (1982) have discussed

the IgM-IgG switchover.

A9.2 CYTOTOXICITY



260

There have been some attempts at modeling the

cell-mediated immune response also. Two types of

cytotoxicity are described below.

A9.2.1 CYTOTOXICITY DUE TO T-CELLS.

Garay & Lefever (1978) and Lefever (1980) have

tried to model the cytotoxic T-lymphocyte (CTL) activity

on tumor cells. They view the response to occur in the

following chronological order:

i) Hidden cancer: a clone of cells arises from

a transformed cell and multiplies freely.

Presence of this proliferation is not yet

recognized by the body.

ii) Recognition: T-cells detect the antigenic

neoplastic cells and come back to lymphoid organs

to induce clone proliferation of the relevant

effector cells,

iii) Immune response: the effector T-cells

reach tumor by vascular system (i.e. migration)

and may trigger a complex series of phenomena

(e.g. activation and infiltration of tumor by

other effector cells), and

iv) Suppression: Production of T -cells and
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their complexes with other mechanisms form

blocking agents to inhibit the immune response.

The events in iii) are illustrated in figure 15.

5-10 min

minutes to h0una.99P1'..0

hunting lethal hitting

CTL recycles

disintegration

Figure 15. The steps in a cytotoxic
T lymphocyte (CTL) attack on a
target cell. (Macken & Perelson,
1985)

The reaction is thought to have Michaelis-Menten

kinetics (similar to that of enzymes) and it is assumed

to occur in a multicompartment system as follows:

X + Y XY Y + P

The equations derived are as follows:

ax
(1- t9 x) x - xy +a2

at ar

(xy-z)
at

x = k1X/k2, y = Y/Et, z =Z/Et
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8 .= klEs/X, 0= ka/kIN, p= k2 /A, /(A= D/A,

Et = Y + Z,

ki, ka constant,

X, Y, Z = # cells of diameter a in a box,

(X = Target cells, Y = Effector cells, and

Z = Complex X-Y),

N = max # cells the tumor mass could contain,

A = replication constant,

D = Diffusion coefficient of free effector

cells (which are the only ones which

may diffuse).

Steady-state properties of this model have been

investigated, conditions of tumor rejection obtained and

checked against experimental data. Perelson and Macken

(1984) have also presented a deterministic model of the

same phenomena. Stochastic models of cell-mediated

cytotoxicity include those for lethal-hitting, target

cell disintegration, and CTL frequency (Perelson &

Macken, 1984; Macken & Perelson, 1985).

A9.2.2 CYTOTOXICITY DUE TO NATURAL KILLER CELLS.

Merrill (1981a, 1983) suggests the following

model for natural killer (NK) cells, which are
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considered to be "large granular lymphocytes". It is

assumed that no T-cells are present and there is no

Ab-dependent cytotoxicity. The following assumptions

were made:

i) NK cells appear at a constant rate s from

there source in the bone marrow,

ii) maturation rate of pre-NK to NK cells is an

increasing function of interferon concentration,

iii) NK cells produce interferon when on

contact with a tumor, and interferon concentration

is spatially nearly homogeneous,

iv) Tumor growth is affected by interferon

present and the rate of cytotoxicity of NK cells,

and

v) Other mechanisms do not change.

The model presented is:

dt
s1 - k, x, x3 - kz x,

d
cl xt ' = k,x,x3 - k3x2 + klx,

- X
3cat

CI X4

at 3

x ) - k'x x - g x
z/ 4 1 z 31

1 3' 4



st , sa. , kf , k1t, k2, kl, k3 k se) O-
P 4 Y

gr(OIX4)

62( 0 1X4

> 0;
xL

'2(x3,0) =

= Ce((2,0) = 0;

= 652( 0 = 0;

> 0;

(0 /
X 31 X4 ) =

3

-84 -3 "aegC
0' > 0; and -5 > 0;

><3 axl -2)

X,(0), x2(0), x3(0), x4(0) 0

,0) = 0;
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1
= Pre-NK cells

= "Mature" NK cells

x
3

= Interferon

x4 = Tumor cells

Existence, uniqueness, and stability of the solutions of

this system of equations have been studied and the

conditions for elimination of the tumor found.

A9.3 INTERACTION OF TUMOR CELLS AND CELLS OF THE IMMUNE

SYSTEM.

This interaction has already been mentioned under
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cytotoxicity (Garay & Lefever, 1978; Lefever & Garay,

1978; Lefever, 1980; Merrill, 1981a; Merrill, 1983).

Tumor escape has been discussed by Grossmann & Berke

(1980), De Boer & Hogeweg (1985) and Michelson (1986)

and the role of macrophage-T cell interaction by De Boer

et.al. (1985). Many papers do not specify the cells of

the immune system that are involved and in this way

implicate T-cells, NK cells, macrophages, and any as yet

unidentified cell population in defense against the

tumor (DeLisi & Rescigno, 1977; Rescigno & DeLisi, 1977;

Merrill, 1979; Albert, Freedman & Perelson, 1980).

A9.4 MODELS OF OTHER IMMUNE PHENOMENA.

Models of diverse immune phenomena have been

proposed. A small random sampling follows. Fowler

(1981) discusses delays in immune responses, Klein,

Sterzl, & Dolezal (1983) B-cell differentiation, and

Klein, Hraba, & Dolezal (1983) use tolerance to

investigate B-cell replacement. Merrill (1981b) has a

model for control and activation of the complement

system. Pilz & Tautu (1984) have studied instabilities

in the stem cell system, while, Blumenson (1975) and

McFarland & Van der Vaart (1985) worked on the
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granulocyte system, and Rittgen (1983) on the

hematopoietic system. Lauffenberger & Kennedy (1983)

have presented a model of distributed inflammation.

A9.5 DISEASE.

In pathological states there is a deviation in

immune functioning (either heightening or depression).

Thus it is important to consider disease models together

with immune models. Models of carcinogenesis have been

reviewed by Whittemore & Keller (1978) and those in

oncology by Whittemore (1977) and Newton (1980). Many

models of disease (e.g. hepatic lesions and viral

diseases), epidemiology, and estimation of disease state

are given in Marchuk (1973), Marchuk (1983), and Marchuk

& Belykh (1983).
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APPENDIX 10

GLOSSARY OF TERMS USED IN IMMUNOLOGY

This glossary covers most of the immunological

terms used in this thesis. Some of the terms may have

more than one definition; the definitions given here are

the ones pertinent to this project. For more details

see any textbook on fundamentals of immunology or any

medical dictionary (Some of the definitions here are

from the Dorland's Illustrated Medical Dictionary).

ANTIBODY (Ab) An immunoglobulin molecule that has a

specific amino acid sequence by virtue of which it

interacts only with the antigen which induced its

synthesis. (For details see Roitt, 1980)

ANTIGEN (Ag) --- Any substance which is capable, under

appropriate conditions, of inducing an adaptive immune

response. Ag's may be soluble, such as toxins, or

particulate, e.g. bacteria.
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B-CELL --- An avian bursa-derived cell. By analogy a

non-thymus derived lymphocyte in non-avian species.

B-LYMPHOCYTE B-cell.

BALT --- Bronchial Associated Lymphoid Tissue.

BLAST CELLS --- A large lymphocyte or other immunocyte

containing a nucleus with loosely packed chromatin, a

large nucleolus, and a large amount of cytoplasm with

numerous polyribosomes.

BM --- Bone Marrow.

CAPILLARY --- The minute vessel connecting an arteriole

and a venule. Its walls act as semi-permeable membranes

for the interchange of blood and tissue fluid.

CARCINOGENESIS --- Production of carcinoma (malignant

new growth).

CELL MEDIATED IMMUNITY --- Acquired immunity in which

the participation of T lymphocytes and macrophages is

predominant.
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CLN --- Coeliac Lymph Node.

CLONAL SELECTION THEORY --- The theory of Ab synthesis

proposed by Burnet which predicts that the individual

carries a complement of clones of lymphoid cells capable

of reacting with all possible determinants. (See Roitt,

1980).

CMI --- Cell Mediated Immunity.

COMPLEMENT --- A complex series of enzymatic proteins

occuring in normal serum that interact to combine with

Ag-Ab complex, producing lysis when the Ag is an intact

cell. It comprises 11 discrete p.oteins or 9

functioning components symbolized C1 through C9, with C1

being divided into subcomponents C1q, C1r, and C1s.

(See Roitt, 1980)

CYTOTOXICITY -- The quality of being capable of

producing a specific toxic action upon cells of special

organs.

DISEASE --- A definite morbid process having a

characteristic train of symptoms; may affect whole or
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part of the body; its etiology, pathology, and prognosis

may be known or unknown.

ECOTAXOPATHY --- An abnormality in the migration pattern

of lymphocytes.

EFFECTOR CELL --- A cell mounting an immune response as

a reaction to an Ag; usually a T-cell capable of

mediating cytotoxicity.

ERYTHROCYTE --- Red blood cell (RBC).

GALT --- Gut Associated Lymphoid Tissue.

HEMATOPOIETIC --- Pertaining to or affecting the

formation of blood cells.

HEMODYNAMICS --- Study of the movements of the blood and

of the forces concerned therein.

HEV --- High Endothelial Venules.

HUMORAL IMMUNITY --- Acquired immunity in which the role

of circulating Ab's (from B lymphocytes) is predominant.
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HYPERSENSITIVITY (REACTION) --- A state of altered

reactivity in which the body reacts with an exaggerated

response to an Ag. There are 4 types of such a

reaction. (See Roitt, 1980)

IMMUNE SYSTEM --- The system that defends the body

against pathogens.

IMMUNOLOGY --- The study of an organism's response to an

antigenic challenge, recognition of self from non-self,

and all biological, serological, and physico-chemical

aspects of the immune phenomena.

ISOANTIGEN --- An Ag that exists in alternative forms in

a species and can elicit a reaction in a member of the

same species.

LABEL --- A radioactive isotope introduced into tissue

to identify the role of the normal element in

metabolism.

LAF --- Lymphocyte Activating Factor.

LCF --- Lymphocyte Chemotactic Factor.
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LEUKOCYTE --- White blood cell (WBC).

LH --- Left Heart.

LIF --- Leukocyte Inhibition Factor.

LN --- Lymph Node(s).

LT --- Lymphotoxin. Here has also been used for

Lymphoid Tissue. The use is clear from the context.

Ly SYSTEM --- The system of differentiating Ag's present

on thymocytes and peripheral T-cells.

LYMPH NODE --- Lymphoid tissue involved in secondary

processing of lymphocytes.

LYMPHOBLAST --- The immature, nucleolated precursor of

the mature lymphocyte.

LYMPHOCYTE --- A mononuclear leukocyte 7 -20 p in

diameter (in humans), with a deeply staining nucleus;

chiefly a product of lymphoid tissue.

LYMPHOCYTOPENIA --- A reduction in the number of
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circulating lymphocytes.

LYMPHOCYTOSIS --- An excess in the number of circulating

lymphocytes.

LYMPHOID SYSTEM --- Lymphatic vessels and lymphoid

tissue considered collectively.

LYMPHOKINE --- A general term for soluble protein

mediators (other than Ab) released by sensitized

lymphocytes on contact with Ag and believed to play a

role in macrophage activation, lymphocyte

transformation, and CMI.

MACROPHAGE --- A phagocytic mononuclear cell that

derives from bone marrow monocytes and subserves

accesory roles in CMI.

MAF --- Macrophage Activating Factor. Also an acronym

for Macrophage Aggregation Factor.

MCF --- Macrophage Chamotactic Factor.

MIF --- Macrophage migration inhibitory Factor.
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MIFIF MIF Inhibition Factor.

MIGRATION --- Movement of WBC through vessel walls.

MLN --- Mesenteric Lymph Node.

MONOCYTE --- A mononuclear phagocytic leukocyte, 13-15 p

in diameter.

MONONUCLEAR CELL A cell having a single nucleus.

MUCOSA --- A mucous membrane.

OEL --- Other Efferent Lymphatics.

ONCOLOGY --- The study of tumors.

OT --- Other Tissues.

PHAGOCYTE --- Any cell that ingests microorganisms or

other cells and foreign particles.

PHYSIOLOGY --- The science which treats of the functions

of the living organism and its parts, and the physical

and chemical factors and processes involved.
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PLASMA CELL --- A fully differentiated Ab-synthesizing

cell which is derived from a B lymphocyte.

POLYMORPHS Polymorphonuclear leukocytes.

POLYMORPHONUCLEAR LEUKOCYTE --- A WBC having a nucleus

deeply lobed or so divided that it appears to be

multiple.

PP --- Peyer's Patches.

RBC --- Red Blood Cell.

RECEPTORS --- A specific chemical grouping on the

surface of an immunocompetent cell with the capability

of combing specifically with an Ag.

RECIRCULATING LYMPHOCYTE ---A lymphocyte that circulates

from blood to lymph to blood over and over again. Such

cells are long-lived, most likely memory cells, and are

primarily T-cells.

RECIRCULATING LYMPHOCYTE POOL --- The portion of the

lymphdcyte population that recirculates.
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RED BLOOD CELL --- The blood cell involved in oxygen

transport; has red color because of hemoglobin.

RH --- Right Heart.

SCLN --- Subcutaneous Lymph Node(s).

STEM CELLS --- Generalized mother cells whose

descendents specialize, often in different directions.

T-CELL T lymphocyte.

T LYMPHOCYTE --- A thymus derived cell that participates

in a variety of CMI reactions.

TD --- Thoracic Duct.

TDL --- Thoracic Duct Lymphocyte(s).

TMIF --- Tumor cell Migration Inhibition Factor.

TRACEE --- The element that the tracer identifies.

TRACER --- Label.
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TRAPPING --- Lymphocyte retention in an antigenically

stimulated LN.

VASCULAR ENDOTHELIUM --- Epithelial cells lining the

cavities of blood vessels.

WBC White Blood Cell.

WHITE BLOOD CELL --- One of the several types of cells

involved in the defense of the body and having

characteristic morphological and histological features.


