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1 General introduction

This dissertation consists of two applied studies, which are focused on semipara-

metric methods. The �rst essay investigates the applicability of the smooth back-

�tting estimator (SBE) to statistical analysis of residential energy consumption via

nonparametric regression. The methodology utilized in this study extends nonpara-

metric additive regression via local linear smooth back�tting to categorical variables.

This paper attempts to establish the relationship between energy demand and resi-

dential building attributes, demographic characteristics and behavioral variables using

the Residential Energy Consumption Survey 2005 microdata. The computational al-

gorithm developed in the �rst paper is then utilized in the second essay in a di¤erent

setting. The second essay incorporates additivity restrictions into semiparametric

stochastic frontier estimation. This study uses local linear smooth back�tting with

categorical variables as a pilot estimator in the context of semiparametric stochastic

frontier estimation of Fan et al. (1996), which is utilized to analyze e¢ ciency of power

generating units in the U.S. Both essays deal with current energy issues, and both

studies employ nonparametric estimation procedures to analyze them.

The conventional methods used for analyzing residential energy consumption are

econometric modeling and engineering simulations. The �rst paper suggests an econo-

metric approach that can be utilized in combination with simulation results. A com-

mon weakness of previously used econometric models is a very high likelihood that

any suggested parametric relationships will be misspeci�ed. Nonparametric model-

ing does not have this drawback. Its �exibility allows for uncovering more complex

relationships between energy use and the explanatory variables than can possibly be

achieved by parametric models.

Traditionally, building simulation models overestimated the e¤ects of energy e¢ -

ciency measures when compared to actual "as-built" observed savings. While focusing

on technical e¢ ciency, they do not account for behavioral or market e¤ects. The mag-

nitude of behavioral or market e¤ects may have a substantial in�uence on the �nal

energy savings resulting from implementation of various energy conservation measures

and programs. Moreover, variability in behavioral aspects and user characteristics ap-

pears to have a signi�cant impact on total energy consumption. Inaccurate estimates

of energy consumption and potential savings also impact investment decisions. The

existing modeling literature, whether it relies on parametric speci�cations or engi-
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neering simulation, does not accommodate inclusion of a behavioral component. The

�rst paper attempts to bridge that gap and investigate the applicability of additive

nonparametric regression to this task.

The second essay is also related to energy, but it is focused on the e¢ ciency of

power generation. The issues of energy security, reducing reliance on fossil fuels and

reducing the carbon footprint have gained increased attention in recent literature.

The feasibility of su¢ ciently meeting the growth in energy demand with renewable

resources is still under discussion. Meanwhile, fossil fuels remain the dominant source

of power generation in the United States. Current energy plans envision construc-

tion of additional coal plants, which is not consistent with the environmental goals

that are gaining high visibility as a result of the ongoing research by various gov-

ernment and private institutions. This begs the question of whether coal plants are

chosen as the most e¢ cient technology among fossil-fueled power generation units.

As such, the second essay analyzes e¢ ciency of existing generation capacity with a

focus on fossil fuels. We use categorical variables to account for di¤erent types of

power generation cycles. In the context of frontier estimation, categorical variables

are traditionally handled parametrically. This paper contributes to the existing fron-

tier analysis literature by including kernel smoothing of the categorical variables as

part of the estimation procedure and using smooth back�tting as a pilot estimator

within the frontier estimation framework developed by Fan et al. (1996). If results

are plausible, they can be used as a benchmark case to compare e¢ ciency of the

existing power-generating capacity under di¤erent policy scenarios aimed at curb-

ing emissions and changing the manner in which the power generating industry is

currently operating.
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2 Smooth back�tting estimation of natural gas consumption based

on Residential Energy Consumption Survey microdata
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2.1 Introduction

There are three main approaches to residential energy demand analysis: engineer-

ing, socio-psychological and econometric. The engineering approach relies on simulat-

ing di¤erent types of building energy use within an engineering modeling framework

such as Energy Plus, DOE-2 and the like, Crawley et al. (2004). These building

energy simulation tools construct demand projections by performing hourly energy

simulations of buildings, air-handling systems, and equipment based on building and

weather characteristics and an assumed operation schedule. The second approach

evaluates the impact of institutions, beliefs and group in�uences on the long-term

trends in energy use. The econometric approach links energy use to prices of energy

products and their substitutes, as well as household income, demographic character-

istics and features of the occupied buildings. This essay �ts into the third category

exploring the behavioral aspects of energy consumption at the micro level.

Detailed studies of energy use at the household level using microeconomic data

were conducted by Baker et al. (1989), Schmalensee and Stoker (1999), Halvorsen

and Larsen (2001), Yatchew and No (2001), Nesbakken (2001) and Larsen and Nes-

bakken (2004), Garcia-Cerruti (2000), Holtedahl and Joutz (2004), Kamerschen and

Porter(2004) and Narayan and Smyth (2005) to name a few. The reviewed economet-

ric studies all estimate energy demand functions; however, the explanatory variables

employed by these studies di¤er. These studies can generally be categorized into two

groups. The �rst group includes economic variables such as fuel prices and income

level, as well as climate information. The second group of studies incorporates addi-

tional household and demographic characteristics of the dwelling into the model. An

extensive overview of econometric analysis of residential energy demand predating

the above-listed research is included in Madlener (1996).

The focus of this study is residential natural gas (NG) demand. Space heating is

the single largest end use of energy in residential buildings, and furnaces fueled by

natural gas are the primary source of residential heating. Natural gas also provides

fuel for residential water heating, cooking, clothes drying, and other miscellaneous

uses. In terms of on-site energy use measured in British thermal units (Btu), in 2006

the Energy Information Administration (EIA) estimated that natural gas supplied
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approximately 65% of 4.4 quadrillion Btu delivered for residential space heating,

and approximately 68% of total residential site energy for water heating (DOE/EIA-

0383,2009). The primary substitute for natural gas in residential homes is electricity

(i.e., electric furnaces, heat-pumps, electric water heaters, etc.).

The majority of econometric research on electricity and natural gas consumption

relies on a fully speci�ed parametric functional relationship between energy use and

its conditioning variables. As a result there is the potential for severe misspeci�cation

of the proposed econometric models. Also, the categorical variables, which are typi-

cally present in residential microdata, are usually treated either by including dummy

variables or via sub-sample regression. For example, for treatment of educational

level, geographical location of the home, ownership of the main dwelling and number

of household members see Labandeira et al. (2004, 2006). Nonparametric modeling is

robust to functional form misspeci�cation. Its �exibility allows for uncovering more

complex relationships between energy use and conditioning variables than can be

possibly achieved by parametric models.

In this essay we adopt additive nonparametric modeling for energy consumption,

which would be estimated using the smooth back�tting procedure of Mammen et

al. (1999). This procedure achieves convergence rates equal to that of univariate

models thus bypassing the curse of dimensionality. In addition, recognizing that

both continuous and categorical variables impact energy demand, this application of

back�tting procedure incorporates the kernel smoothing methods of Racine and Li

(2003) and Racine et al. (2004) for categorical variables.

The smooth back�tting approach adopted in this essay is di¤erent from classical

back�tting of Buja et al. (1989). The latter estimator is not e¢ cient according to

the "oracle e¢ ciency" criteria put forth by Linton and Nielsen (1995), which means

obtaining a directional regression estimator that is asymptotically the same as the

estimator for which all other directions were known. It was shown by Opsomer

and Ruppert (1997) and Opsomer (2000) that back�tting does not reach this oracle

e¢ ciency bound. Furthermore, the classical back�tting estimator is not known to be

asymptotically normal.

Smooth back�tting is oracle e¢ cient. Moreover, it has the intuitive geometrical

interpretation of a projection of the data onto the space of additive functions. Smooth

back�tting possesses a high degree of implementational appeal as its iterative equa-

tions rely on the estimates of univariate regressions for each covariate, as well as
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univariate and bivariate densities only. The theoretical properties of the estimator

were also derived in Mammen et al. (1999) who showed the conditions for conver-

gence and uniqueness of the estimator. In addition, smooth back�tting is capable

of satisfactorily accommodating covariates with signi�cant degrees of correlation as

demonstrated by Nielsen and Sperlich (2005).

The data for this research comes from the Residential Energy Consumption Survey

designed by the US Department of Energy�s Energy Information Administration.

The microdata obtained from the 2005 survey covers energy consumption for several

major fuel types and includes information on household characteristics, standard

demographics, dwelling characteristics, as well as information about televisions and

other media devices, personal computers and peripherals, Energy Star labeling, energy

e¢ cient lighting, window glazing, window replacement, and thermostat usage. The

2005 survey also incorporates questions on behavioral aspects of energy use. This

analysis contributes to existing literature by analyzing and quantifying behavioral

impacts on residential energy consumption.

The essay is organized into �ve sections. A brief description of the local linear

smooth back�tting estimator (SBE) for continuous variables is presented in Section

2.2. Section 2.3 contains the extension of the local linear smooth back�tting estimator

to mixed variables. Section 2.4 includes an explanation of the bandwidth selection

procedure. Section 2.5 describes the results of the empirical analysis. Charts for

regression results in each direction, as well as the list of variables with category labels

for unordered and ordered discrete variables are included in Appendix A.

2.2 Smooth back�tting for continuous data

The regression model considered here is of the following form:

E(Y jX1 = x1; :::; Xd = xd) = m0 +

dX
j=1

mj (xj)

where (Y;X1; :::; Xd) is a random vector in Rd+1 and we assume that there is a random
sample fyi; xi1:::; xidgni=1 of (Y;X1:::; Xd), m0 is an unknown scalar parameter, mj (xj)

is a su¢ ciently smooth function for all j, and �j is the �rst order derivative ofmj (xj).

Also, for identi�cation purposes, E (mj (xj)) = 0.
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Let Kh (xij � xj) = 1
h
K
�xij�xj

h

�
be a kernel function such that

R
K (�) d� = 1,R

�K (�) d� = 0,
R
�2K (�) d� = 1. Bandwidth is de�ned as h = h(n) such that

h ! 0 and nh ! 1 as n ! 1; and conditions B(1), B(2�)-B(4�) of Mammen et al.
(1999) are met. The back�tting estimator is obtained by minimizing the following

objective function

Z nX
i=1

"
yi �m0 �

dX
j=1

mj(xj)�
dX
j=1

�j(xj) (xij � xj)
#2
�

dY
j=1

Kh (xij � xj) dx

The minimization is done with respect to m0; m1...md and all �rst derivatives �j(xj).

Let

bpj(xj) = n�1 nX
i=1

Kh (xij � xj) ; bpjj(xj) = n�1 nX
i=1

Kh (xij � xj) (xij � xj) ;

bpjjj (xj) = n�1 nX
i=1

Kh (xij � xj) (xij � xj) (xij � xj) ;

bpjk(xj; xk) = n�1 nX
i=1

Kh (xij � xj)Kh (xik � xk) ;

bpkjk(xj; xk) = n�1 nX
i=1

Kh (xij � xj)Kh (xik � xk) (xik � xk) ;

bpjkjk(xj; xk) = n�1 nX
i=1

Kh (xij � xj)Kh (xik � xk) (xij � xj) (xik � xk) ;

Let

A =

n�1
nP
i=1

Kh (xij � xj) yi

bpj(xj) �
dX
k 6=j

Z emk(xk)
bpjk(xj; xk)bpj(xj) dxk

�
dX
k 6=j

Z e�k(xk)bpkjk(xj; xk)bpj(xj) dxk � fm0(xj);

B =

n�1
nP
i=1

Kh (xij � xj) (xj �Xij) yi

bpjj(xj) �
dX
k 6=j

Z fmk(xk)
bpjjk(xj; xk)bpjj(xj) dxk

�
dX
k 6=j

Z e�k(xk)bpjkjk(xj; xk)bpjj(xj) dxk � fm0(x)
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C =
bpjj(xj)bpj(xj) ; D =

bpjjj (xj)bpjj(xj)
The smooth back�tting estimates of fm0; fmj and e�j are obtained by iteratively

solving the two equations below for each regressor j = 1; :::; d

fmj(xj) = A� e�j(xj)C; e�j(xj) = A�B
C �D

As a consequence of imposing normalization condition, fm0 = n
�1

nP
i=1

yi:

A detailed discussion establishing the asymptotic properties of the smooth back-

�tting estimator for the case of only continuous regressors is presented in Mammen

et al. (1999). Their �nal result is summarized as the convergence in distribution that

holds for any x1; :::xd with compact support:

n2=5

0BB@
em1(x1)�m1(x1) + vn;1

...emd(xd)�md(xd) + vn;d

1CCA d��! N

2664
0BB@
c2h�1(x1)

...

c2h�d(xd)

1CCA ; diag f�j(xj)gdj=1
3775 ;

�j(xj) =

R
u2K(u)du

2

�
mj

00(xj)�
Z
m00
j (xj)pj(xj)dxj

�
;

vn;j =

Z
mj(xj)Kh(xj � u)pj(u)du dxj;

�j(xj) = c
�1
h ck�

2
j(xj)=pj(xj);

with ck =
R
K(u)2du; ch is a constant such that n1=5h ! ch. Second derivative of

mj(xj) is represented bymj
00(xj); pj(u) is the marginal density, and �2j(xj) = var[Y �

m(x)jXj = xj] can be consistently estimated from the residuals e"i = yi � em(xi);
i = 1:::n:

n2=5 (em(x)�m(x)) d��! N

(
c2h

dX
j=1

�j(xj);
dX
j=1

�j(xj)

)
;

where em(x) is a smooth back�tting estimator of m(x) = m0 +
dP
j=1

mj (xj) de�ned as

em(x) = fm0 +
dP
j=1

fmj (xj) :
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2.3 Smooth back�tting estimator for mixed data

In a wide variety of applications, especially dealing with microdata, one of the

essential features of a regression estimator is its capability to accommodate continu-

ous and categorical conditioning variables. Traditional approaches for estimating the

categorical components have relied either on introducing these variables parametri-

cally or implementing a frequency-based estimation. The major drawback of the �rst

approach is a loss of �exibility induced by a fully nonparametric framework, as well

as high likelihood of misspeci�cation. The weakness of the second method stems from

the requirement to divide the data into cells corresponding to the values taken by the

discrete variables. This necessitates fairly large sample size in order for each cell to

contain a reasonable amount of data as described in Li and Racine (2007).

Alternative procedures, such as smooth estimation of joint distributions and smooth

regression for discrete data, are based on kernel estimation proposed by Aitchison and

Aitken (1976). This latter method received attention in the recent literature as kernel

smoothing methods have been gaining popularity. Li and Racine (2003) proposed a

re�ned nonparametric kernel approach for estimating an unknown distribution de�ned

over mixed discrete and continuous variables. Nonparametric estimation of regres-

sion functions was investigated by Racine and Li (2004), where speci�c smoothing

techniques were considered for treatment of ordered and unordered categorical data.

Structure of the proposed estimator is similar to that of Nadaraya-Watson local con-

stant estimator, but with a di¤erent kernel employed for smoothing discrete variables.

Li and Racine (2004) expanded the regression framework further by constructing a

local linear nonparametric estimator for mixed data and investigating the theoretical

properties of cross-validated bandwidth selection. In addition, they derived the rate of

convergence of the cross-validated bandwidths and established asymptotic normality

of the resulting nonparametric regression estimator. These results provide a founda-

tion for incorporating categorical regressors into the local linear smooth back�tting

estimator (SBE) and using least squares cross-validation to select bandwidth for both

continuous and categorical regressors.

Let xj, j = 1; :::; d, denote continuous regressors and xt, t = 1; :::T denote the

categorical variables. Discrete xit, i = 1; :::n, takes values f0; 1; 2; :::; ct � 1g. For
the local linear regression estimator Li and Racine (2004) propose using a variation
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of the Aitchison and Aitken (1976) kernel de�ned as

L(xit; xt; �t) =

(
1, if xit = xt
�t; if xit 6= xt

t = 1; :::T:

This weight function does not add up to one, which cannot support the interpretation

of marginal density pt(xt) estimated by bpt(xt) = n�1
nP
i=1

L (xit; xt; �t) as a proper

density. It has been shown by Li and Racine (2004) that it is not the kernel shape,

but rather the selection of the bandwidth parameter that has critical impact on the

quality of resulting estimates. Therefore, to accommodate interpretation of weighting

functions in smooth back�tting estimation as densities, another option is to use the

kernel shape suggested by Aitchison and Aitken (1976) for the distribution estimation,

namely

L(xit; xt; �t) =

(
1� �t, if xit = xt
�t= (ct � 1) ; if xit 6= xt

t = 1; :::T

for unordered categorical regressors: The range of �t is [0; (ct � 1) =ct]. This weight
function adds up to one. When �t assumes its upper value of (ct � 1) =ct, the kernel
becomes L(xit; xt; �t) = 1=ct regardless of whether Xit = xt or not. The resulting

density estimator becomes unrelated to xt thus smoothing it out. Alternatively, it is

possible to use the weighting function that does not add up to one along with the

normalization p = pt(xt)=
P
pt(xt). For ordered categorical variable xt the kernel of

Li and Racine (2004)

L(xit; xt; �t) =

(
1, if xit = xt
�t
jxit�xtj; if xit 6= xt

is utilized along with the above-mentioned normalization. The range of �t for ordered

variables is [0,1]. If �t takes its upper value the kernel becomes a uniform weight

function. If �t = 0; the kernel turns into an indicator function. An alternative is to

use the kernel

L(xit; xt; �t) =

(
1� �t, if jxit � xtj = 0
1��t
2
�t
jxit�xtj; if jxit � xtj � 1

;

where xt is a categorical variable and xit, i = 1; :::n, takes values f0; 1; 2; :::; ct � 1g,



11

as proposed by Wang and van Ryzin (1981).

The multivariate discrete data kernel is de�ned as
TQ
t=1

L(xit; xt; �t), with joint

density of discrete variables being estimated by bp(x1; :::xT ) = n�1 nP
i=1

TQ
t=1

L(xit; xt; �t).

The multivariate kernel for mixed data is

W (xij; xj; h; xit; xt; �t) =
nX
i=1

dY
j=1

Kh (xij � xj)
TY
t=1

L(xit; xt; �t):

The local linear estimator for continuous and discrete data suggested by Li and Racine

(2004) has the following structure:

bs(x) =

" bm(x)b�(x)
#
=

"
nX
i=1

W (xij; xj; h; xit; xt; �t)

 
1 (xij � xj)

(xij � xj) (xij � xj)2

!#�1

�
nX
i=1

W (xij; xj; h; xit; xt; �t)

 
1

(xij � xj)

!
yi;

where s(x) = (m(x); �(x)0)0, �(x) = r�(x) = [@m(x)=@x1; ::::@m(x)=@xd]0. The par-
tial derivative is taken only with respect to continuous variables. This estimator

has the local constant shape for the discrete variables and local linear shape for the

continuous variables.

The local linear smooth back�tting estimator for mixed continuous and categorical

data is a projection of the local linear estimator for mixed regressors onto the space of

additive functions. The mixed data local linear smooth back�tting estimator em�(x)

is de�ned as the argument that minimizes the following objective function

Z nX
i=1

"
yi �m0 �

dX
j=1

mj(xj)�
TX
t=1

mt(xt)�
dX
j=1

�j (xij � xj)
#2

�
dY
j=1

Kh (xij � xj)
TY
t=1

L(xit; xt; �t)dx;

where the categorical regressors are indexed by t. Derivation of the �rst order con-

ditions for this setting follows the same logic as for the continuous regressors, where

the minimization is performed over m0;mj(xj)and mt(xt) while preserving mean zero

restriction, and over �j(xj) for the continuous components only.
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Using similar notation as before

fmj(xj) =

n�1
nP
i=1

Kh (xij � xj) yi

bpj(xj) �
dX
k 6=j

Z fmk(xk)
bpjk(xj; xk)bpj(xj) dxk

�
TX
t=1

Z fmt(xt)
bpjt(xj; xt)bpj(xj) dxt �

dX
k 6=j

Z e�k(xk)bpkjk(xj; xk)bpj(xj) dxk

�fm0(x)� e�j(xj)bpjj(xj)bpj(xj) ;

fmj(xj) =

n�1
nP
i=1

Kh (xij � xj) (xij � xj) yi

bpjj(xj) �
dX
k 6=j

Z fmk(xk)
bpjjk(xj; xk)bpjj(xj) dxk

�
TX
t=1

Z fmt(xt)
bpjjt(xj; xt)bpjj(xj) dxt �

dX
k 6=j

Z e�k(xk)bpjkjk(xj; xk)bpjj(xj) dxk

�fm0(x)� e�j(xj)bpjjj (xj)bpjj(xj) ;
where fm0(x) is the same as in continuous SBE setting. The iterative equations

are shown below:

fm�
j(xj) = A�

TX
t6=j

Z fmt(xt)
bpjt(xj; xt)bpj(xj) dxt � e��j(xj)C

= A� � e��j(xj)C

fm�
j(xj) = B �

TX
t6=j

Z fmt(xt)
bpjjt(xj; xt)bpjj(xj) dxt � e��j(xj)D

= B� � e��j(xj)D
e��j(xj) =

A� �B�
C �D :
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Iterative equation for discrete regressors xt, t = 1; :::; T is

fm�
t (xt) =

nP
i=1

L (xit; xt; �t)yi

bpt(xt) �
dX
j=1

Z fmj(xj)
bpjt(xj; xt)bpt(xt) dxj � fm0(x)

�
TX
k 6=t

Z fmk(xk)
bpkt(xk; xt)bpt(xt) dxk �

dX
j=1

Z e�j(xj)bpjjt(xj; xt)bpt(xt) dxj:

The last four equations jointly with the zero-mean condition describe the solution.

Analogously to the continuous regressor densitiesbpt(xt) = n�1 nP
i=1

L (xit; xt; �t);

bpjt(xj; xt) = n�1 nP
i=1

Kh (xij � xj) L (xit; xt; �t);

bpjjt(xj; xt) = n�1 nP
i=1

Kh (xij � xj) L (xit; xt; �t) (xij � xj) :

The algorithm for computation is as follows:

1. Compute the univariate bpj(xj); bpt(xt) for all regressors xj and xt; j = 1; :::d; and
t = 1; :::T ; compute bpjj(xj); bpjjj (xj) only for continuous components. Compute
bivariate densities.

2. Compute univariate unrestricted cmt(xt) = (
nP
i=1

L (xit; xt; �t)yi)�bpt(xt) for all
discrete variables and pairs (bmj(xj);b�j(xj)) for all continuous data. Save the
results as variables mold and �old.

3. Set the number of smooth back�tting iteration iter to 1.

(a) For j = 1 compute expressions A�, B�, C, D. Obtain fm�
j(xj) and e��j(xj),

save asmnew and �new. Repeat this step for the rest of continuous variables

j = 2; :::d. To compute expressions A� and B�, use updated values from

mnew and �new for k < j. If k > j; use corresponding values from mold and

�old.

(b) Perform computation for discrete variables in a similar manner, with the

conditional mean of categorical xk in A being taken only over unique cat-

egories of xk.
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4. De�ne a convergence criteria for all j as

nP
i=1

h
m̂new
j (xj)�gmold

j (xj)
i2

nP
i=1

h gmold
j (xj)

i2
+�

< �:

5. Set iter = iter + 1, Set mold =mnew and �old=�new; then go to step 3a. Iterate

steps 3a through 5 until the convergence criteria is met.

If
R c
pj;kj;k(xj; xk)dxk =

cpjj;k(xj) does not hold, it is necessary to include the norming
for fm�

j(xj) such that
gm�;n
j (xj) = fm�

j(xj)�
R fm�

j(xj)bpj(xj)dxj after every iterative step
for each j = 1; :::T: When the value of overall sum m0 +

dP
j=1

mj(xj) +
TP
t=1

mt(xt) is

the primary point of interest, this normalization could be omitted as suggested in

Mammen et al. (1999).

2.4 Bandwidth selection

Several di¤erent methods for selecting bandwidths for SBE estimation were an-

alyzed recently. Mammen and Park (2005) introduced a bandwidth selection method

for smooth back�tting based on minimizing penalized sum of squares residuals. They

also compared two additional plug-in methods for local linear SBE. It was suggested

that the penalized sum of squared residuals was asymptotically equivalent to cross-

validation since this holds true for the classical nonparametric regression as in Hardle

et al. (1988).

Leave-one-out least squares cross-validation is recommended for bandwidth selec-

tion by Nielsen and Sperlich (2005). It has an implementation advantage for local

linear smooth back�tting if the underlying relationship is additive. In this case the

cross-validation procedure can be simpli�ed since the SB estimator has additively

separable bias and variance. Bandwidth selection is based on minimizing mean-

integrated squared error MSE(h1; :::hd; �1; :::�d) =
R
E [em(x)�m(x)]2 p(x)dx: Due

to separability of bias and variance, the mean-integrated squared error for overall

regression can be de�ned as

MSE(h1; :::hd; �1; :::�d) =
d+TX
j=1

MSEj(xj);

whereMSEj(xj) is mean-integrated squared error for each regression directionmj(xj).

Thus, the cross-validation problem of minimizing CV =
nP
i=1

[yi � em�i(x)]
2
; where
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em�i(x) is the leave-one-out estimator with observation (yi; xi) excluded from the com-

putation, can be separated. It reduces to performing an optimal bandwidth search for

each directional regression sequentially. Nielsen and Sperlich (2005) suggest taking

starting bandwidths h1; :::hd that undersmooth for each direction and running the

initial SBE estimation. Then the cross-validation criteria is minimized with respect

to hj only, where hj is the bandwidth for direction j, by using a one-dimensional grid

search. Bandwidths for all other directions are kept at their starting values. This

is repeated for each direction j individually. It is not necessary to use leave-one-out

estimators for all other directions mk(xk); k 6= j, while searching for the optimal

bandwidth for the estimation of mj(xj). In addition, all fmk(xk) do not need to be

estimated at their optimal bandwidth. As shown by Mammen and Park (2005), this

procedure results in bandwidths that are optimal for the estimation of the overall

regression. If the primary focus of the estimation is accuracy of each single addi-

tive component, Mammen and Park (2005) suggest using plug-in bandwidths that

minimize average weighted squared error (ASE) for each direction de�ned as

ASEj(xj) = n
�1

nX
i=1

w�ij (xj)
�fmj(xj)� em�i

j (xj)
�2
;

where em�i
j (xj) is the leave-one-out estimator of mj(xj) and wj is a weight function.

This essay adopts a simpler method for bandwidth selection. Since smooth back-

�tting requires computing the unrestricted regression estimates, as well as univariate

and bivariate densities for continuous and categorical data, we use four di¤erent band-

width selection routines. To estimate densities for categorical variables we use the

cross-validation method of Li and Racine (2007), where the bandwidth � is chosen

separately for each regressor to minimize

CVp(�) =
X
xc2Sc

[bp (xc)]2 � 2n�2 nX
i=1

nX
v 6=i

L�;iv;

where L�;iv is the previously de�ned kernel with observation v = i excluded from the

computation, Sc = f0; :::ct � 1g is the support of xc and c is the category index. For
unrestricted regression estimation for categorical variables, the cross-validation of Li
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and Racine (2007) is employed. Bandwidth is chosen to minimize

CVreg(�) = n
�1

nX
i=1

[yi � cmj
�i(xj)]

2

for each j, where cmj
�i(xj) is the leave-one-out Nadaraya-Watson estimator of mj(xj)

de�ned as cmj
�i(xj) =

nP
v 6=i
yv L�;iv

,
nP
v 6=i
L�;iv For continuous variables the rule-of-

thumb bandwidth selection was used both for estimation of unrestricted univariate

regression, as well as densities. Namely, the bandwidth for regression estimation was

selected as

hregj = n�1=5

8<:s22p� (max(xj)�min(xj)) �
"
1

n

nX
i=1

�bb3 + bb4xj + 0:5bb5x2j�2
#�19=;

1=5

;

where b3; b4 and b5 are estimates of coe¢ cients in regressing the dependent variable

y on �1 + �2xj + �3(0:5x
2
j) + �4(

1
6
x3j) + �5(

1
24
x4j), and s

2 is estimated in a usual

manner based on the residual estimates of this regression. The bandwidth for density

estimation was computed as hdensj = (n�1=5) � 1:01a (2
p
�)
�1=5

; and a = q75(xj) �
q25(xj); where q75 and q25 are upper and lower quartiles of xj; correspondingly.

2.5 Results and analysis

Upon close examination of the Residential Energy Consumption survey (RECS)

questions and microdata for 2005, it became apparent that it would be an extremely

complex task to cover all the end fuel uses for all fuel types included in the survey. The

decision was made to investigate the applicability of smooth back�tting by isolating

natural gas usage and related variables. The regressand is natural gas usage in British

thermal units (Btu). There are 31 regressors that enter the model additively, 8

of which are continuous variables, 14 are unordered categorical variables and the

remaining 9 are ordered categorical variables. A complete list of variables is included

in Appendix A. Categories for each variable with corresponding regressor values are

listed there as well. Individual crossvalidated bandwidth values were computed for

each regressor. Initially the model was to include 44 categorical variables, but cross-

validation produced the bandwidth values equal to the upper bound of (ct � 1) =ct for
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13 of the categorical variables. As mentioned in the bandwidth selection discussion,

when the bandwidth takes this upper value it implies that the regressor is irrelevant

and, if included, it will e¤ectively be smoothed out. So these 13 variables were

excluded from the analysis.

The charts with regression values for each direction are shown in Appendix A. Each

regression direction is labeled accordingly. The �rst 8 directions represent continuous

variables. The remaining variables are categorical. For categorical variables there

are no values corresponding to the intervals between each threshold. The lines are

included only for simplicity of illustration. Individual bandwidth was used for each

of the directions.

Direction 1, heating degree days, seems to correctly represent the increase in nat-

ural gas intensity as the number of heating degree days goes up. Heating degree days

are a characterization of weather. It is worth noting that RECS microdataset has

sanitized data for heating and cooling degree days to prevent identi�cation of survey

respondents or speci�c buildings out of the reported sample. Even with the sanitized

data the overall pattern of dependency is reasonable. Annual heating degree-days

(HDD) are a measure of how cold a building location is relative to the base tempera-

ture. The daily HDD is the numerical di¤erence between a day�s average temperature

and 65 degrees, if the average temperature is less than 65. Otherwise it is zero. An-

nual HDD is the sum of the daily HDD for the year. If the thermal integrity (e.g.

insulation levels) of the building is known, it is possible to assess heating require-

ments from this information. The suggested pattern follows the engineering results

that building heating requirements are not linear with respect to temperature. There-

fore, natural gas use for heating will also have non-linear dependency on temperature.

Although this pattern of dependency is well-known from engineering studies, the pri-

mary reason for including this variable is to analyze impact of other factors on energy

demand, while controlling for weather.

Direction 2, the cooling degree days, also contains sanitized data. Although this

may impact the quality of results to some extent, the pattern of dependency ob-

served here is consistent with engineering studies and suggests a non-linear decrease

in natural gas usage as the number of cooling degree days goes up.

Direction 3 shows the dependency between NG intensity and the total square

footage of the house. The suggested relationship is linear over the range of square

footage where the most observations are concentrated. So the natural gas demand
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grows linearly for households between 900 and 6000 sq.ft. Consumption plateaus after

8000 sq.ft.; however, this occurrence should not be given much emphasis as there are

very few points in this range.

Direction 4 represents the e¤ect of the electricity price on demand. Electricity is

the primary NG substitute in residential buildings. As expected, the correlation is

positive. Increases in electricity prices encourage switching to NG as the primary fuel

for the household.

Direction 5 illustrates own price e¤ect. As expected, the correlation is negative

and NG price increases result in reductions of NG consumption.

Direction 6 contains data on the temperature setting during the day in winter

when someone is home. Natural gas intensity in this direction seems to misrepresent

the direction of dependency. The mean of regressor 6 corresponds to the temperature

setting of 70F. While there is a positive correlation between temperature setting and

energy consumption for the range between 55 and 65 degrees, there is no reasonable

explanation why natural gas consumption drops for the ranges from 65 to 80, when

the opposite should be observed.

The same can be said about the direction 7, which represents the temperature

setting during the day in winter when no one is home. The mean for this regressor

is 65F. The base temperature for heating is 65F, so thermostats set to the mean

temperature would mean no additional heating is required on a 0 HDD. Thus, it

is not clear why direction 7 would indicate a drop in the natural gas consumption

while the temperature setting is going up. It might be bene�cial to replace these two

variables with one that would represent the di¤erence between temperature setting

when someone is home and temperature setting when someone is not home. The

higher the delta, the less energy is consumed while the building is not occupied.

There is also an additional factor that leads to misrepresentation of the relationship

for this covariate. All temperature settings data is self-reported. In fact, studies have

found that persons often report lower-than-actual thermostat settings, even when

they know that their settings are being recorded as shown by Lutzenhiser (1993).

No actual readings of the thermostat are taken. As saving energy becomes a more

widely-publicized topic, respondents understate heating temperature settings, as well

as misreport the way programmable thermostats are used, to fall within the range they

perceive as socially acceptable. On the other hand, data on natural gas consumption

comes directly from the bill and re�ects actual consumption levels. Therefore, even
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restructuring the variable may not produce a desirable result using existing data.

Direction 8 represents association between the level of natural gas intensity and

temperature during the sleeping hours in winter. As the setting goes up from 50 to

70F so does the NG consumption. The slight drop in the gas usage around that point

is unexpected. The concern with temperature setting being self-reported is pertinent

here as well, as the owners tend to misreport lowering the thermostat settings. So

the houses that are set at much higher temperatures, but underreport to be closer in

line with culturally-accepted 65-70F level, will drive the result for this average level

much higher than what it should be. The estimated natural gas consumption will be

in�ated for the misreported temperature and underestimated for the higher temper-

ature intervals that would otherwise correspond to that actual heating requirement.

This makes the results to the right of the anchor level appear lower than at the av-

erage setting, thus erroneously suggesting negative correlation over this interval of

temperatures.

The next group of variables, 9 through 22, are categorical unordered variables. The

main concerns with including these variables into the smooth back�tting algorithm

was the potential violation of the mean-zero assumption for each direction to meet

the identi�cation conditions. Nevertheless, the overall results are reasonable.

Direction 9 contains information on the exterior wall construction material. All

other things held equal, the change of the wall type variable leads to the expected

change in the NG intensity. The lowest NG consumption is shown for stucco, concrete

block and stone. By stucco, residents usually refer to either the synthetic cladding

that is applied over polystyrene panels, which provide extra insulation, or to cement

plaster (lime sand and Portland cement). If installed properly, the latter seals the

house, but not as thoroughly as synthetic systems. Concrete block and stone will

serve as thermal mass storage, slowing down heat loss. The highest NG consumption

is shown for houses with aluminium/vinyl/steel siding or wood shingles. This is

consistent not only with the properties of each material and construction methods

associated with it, but also with the vintage of the homes that would have these

materials installed. In turn, there is a strong correlation between house vintage and

quality of wall insulation.

Direction 10, heated garage, produced reasonable results. Category 0 corresponds

to the house with no garage. Category 1 represents the houses where there is a garage,

but it is not heated. Attached garage provides additional bu¤er between the heated
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part of the house and the environment, thus slowing down heat loss. The results

suggest that heating the garage will increase natural gas consumption by up to 14

kBtu. Complete interpretation of this increase also depends on whether garage space

is included in the total square footage of the house or not. Also, this regressor is

picking up additional e¤ects impacting NG use. Absence of a garage is more typical

of older neighborhoods with lower housing prices. They often share similar quality of

construction, amount of insulation and level of equipment. Therefore, fairly high NG

intensity for houses with no garage is not an unexpected result.

Direction 11 identi�es the relationship between the NG intensity and ownership

of the house. The result is reasonable as the owned houses have lower energy con-

sumption as compared to rented (the middle) and occupied without payment (the

highest). The di¤erence between three categories is around 4kBtu, with delta be-

tween the second and the third category being over 1 kBtu. This is consistent with

previously documented results of the Caravan Opinion Research Corporation (ORC)

surveys. These surveys showed a higher willingness to invest in the energy-saving

solutions and high overall concern about the energy e¢ ciency of the residential struc-

ture being more typical for the landlords than the renters. There is also a di¤erence

in investment decisions associated with primary dwellings versus rentals or additional

houses used by relatives or friends without rent payment.

Direction 12 shows the pattern of association between the NG intensity and type

of fuel used by burners for cooking on the stove. The peak value is observed for

the household equipped with piped natural gas for cooking. There is no di¤erence

between using some other fuel (category 0) and bottled propane (category 2). On

one hand, these two categories could be combined. On the other hand, residents

usually refer to both types of fuel (propane and natural gas) generally as gas, so it is

worth keeping for clari�cation. There is a 4 kBtu reduction if the household is using

electricity for cooking burners, which is a reasonable result. This result can also be

partially attributed to multicollinearity in data, namely if the household has piped

natural gas then it is expected that burners would use NG, but so would the water

heaters, clothes dryer and potentially other systems.

Direction 13 contains information on the fuel used by the dryer. NG dryer (cat-

egory 1) is associated with highest NG consumption. Presence of electrical dryer

is associated with lower NG consumption by about 13 kBtu. No-dryer households

(category 0) have the lowest level of gas consumption. The overall di¤erence between
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households with NG dryers and no dryers reaches approximately 20 kBtu, but that

result could be another manifestation of multicollinearity in the data. Households

without dryers are more typical for older neighborhoods with lower housing prices,

lower construction quality and lower thermal integrity, as well as lower probability

of any retro�ts and energy-saving solutions being implemented over the duration of

occupancy.

Direction 14 shows the dependency between the NG use and the type of secondary

heating equipment installed in the house. Typical secondary heating equipment in-

cludes central warm-air furnace with ducts (category 1), steam/hot water system with

radiators/convectors in each room or pipes in the �oor or walls (category 2), built-in

�oor/wall pipeless furnace (category 3), built-in room heater (category 4) and wood

cooking stove used to heat the house (category 5). Cases of no secondary equipment

are included as a category with value 0. The result for this category is intuitive as

the households with no secondary equipment will have all the heating load provided

by the main equipment. Since the RECS microdataset was �ltered to keep only ob-

servations with piped natural gas, also intuitive is the result that houses equipped

with natural gas intake are more likely to use natural gas as their primary heating

fuel. Central warm-air furnace with ducts implies more e¢ cient heat delivery system,

therefore reduction of the NG consumption for category 1 is also an expected result.

The resulting increase in NG consumption that occurs when the built-in room

heaters provide secondary heat is unexpected. This option includes separate in-room

heaters burning oil, kerosene or gas, with the �rst two fuels being a more widely

spread option. It is possible that this result is correlated with thermal integrity of

the dwelling, as built-in room heaters are more typical for older houses with lower

insulation and construction quality.

Direction 15 describes the relationship between NG consumption and the controls

installed in the house. There seems to be no di¤erence in NG consumption if there

is a programmable (category 1) or non-programmable (category 0) thermostat in the

house. These two categories are associated with increased NG demand. The result for

category 3 is counterintuitive as it suggests that absence of thermostat is characterized

by a signi�cant reduction in NG consumption. Both the direction of change and the

magnitude of 16 kBtu are counterintuitive. The explanation might be that absence

of thermostat is dictated by warm climate zone and is an indicator of a non-heated

dwelling or very little heating is needed. Although the sample was �ltered out to
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retain only the residential buildings that are heated, houses that are in need of very

little heating and may not be equipped with thermostats are included in the sample.

Behavioral information is contained in directions 16 and 17, which deal with

programming thermostat to lower temperature for heat setting at night and, cor-

respondingly, when no one is home. The result is counterintuitive as it suggests that

programming the thermostat to lower temperature automatically is associated with

higher NG use. Neither the direction of change, nor magnitude (3 kBtu) are intuitive.

Direction 17 also produced a counterintuitive pattern. It indicates that the highest

NG consumption is for the houses with thermostats preprogrammed to lower setting

when no one is home during the day. Then it drops by about 1 kBtu for the houses that

have no thermostats, and drops down even further for houses where the temperature is

not lowered. For detailed analysis of these two variables more re�ned data is needed.

To separate out the behavioral impact, it is necessary to also account for climate.

Thermal integrity of the building usually is strongly correlated with the climate. In

turn, in more severe climate conditions, where NG intensities are the highest, the

inhabitants are more likely to adjust thermostats up or down from the base setting.

Direction 18 covers the types of fuels used by the primary heating systems. As

expected, NG as primary heating fuel (category 1) would result in the highest NG

intensity. If the heating degree days data were not sanitized, it would have been

possible to approximately identify the climate zone associated with a particular set

of observations. There is a strong dependency between the climate zone and choice

of fuel for heating that could impact this result. The lowest NG usage is for the

houses heated with kerosene or fuel oil. Natural gas consumption for houses that

use electricity as primary fuel goes up by 15 kBtu. This could be explained by the

fact that some houses with piped natural gas available use electric-source equipment

as their primary heating system. The latter use NG for auxiliary heat. Therefore,

in this particular case, NG would be used complimentary to electricity. A similar

explanation is valid for increase in NG use by 10 kBtu for dwellings using wood and

solar energy as a primary heating fuel.

Correlation between the type of heating equipment providing the heat and NG

usage is depicted on the graph for direction 19. The lowest NG usage is suggested

where portable electric heaters are used to provide most of the heat (category 9). If

the heating load can be met with the portable electric heaters, this would indicate

that only very little heating is needed and piped NG is used for water heating and
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cooking only. Similar explanation is valid for heating stoves burning wood (cate-

gory 7), portable kerosene heaters (category 10) and cooking stoves used for heating

(category 11). The suggestion of highest NG consumption being characteristic of

houses with steam/hot water system and radiators/convectors in each room (cate-

gory 1) is reasonable. High level of NG consumption shown in the graph is expected

as this heating system choice impacts natural gas intensity through water-heating

requirement, but it is also a manifestation of the climate zone and age/vintage of the

house. NG consumption decreases for houses where heat pump is used as a primary

equipment, but it is still higher than any other category. This result can also be

explained by complimentary use of NG for the auxiliary system that usually turns on

as temperatures fall below certain level as electric heat pump becomes less e¢ cient at

very cold temperatures. Relatively low NG consumption, according to the regression

results, is associated with using central warm-air furnace system with ducts to indi-

vidual rooms. Considering that this is one of the more e¢ cient heating distribution

systems, this is an expected result. Properly designed duct systems have a signi�-

cant impact on how much heat is lost during delivery. The newest houses have ducts

located in the air-conditioned and heated spaces, which results in even more e¢ cient

distribution of heat, thus reducing NG intensity. In addition, this is a manifestation

of multicollinearity between the house age, quality of construction/insulation and

income level of the household.

Results for regressor 20 represents the type of fuel used to heat water for washing

or bathing. As expected, if the primary water heating fuel is NG, its consumption is

higher than for other fuels. The overall di¤erence is 24 kBtu.

Direction 21 is of a particular interest as it provides some insight on the rela-

tionship between the method of how NG is billed and its consumption level. If the

household sees the full bill and pays it all, it seems to suggest the lowest result among

all categories. Paying the utility bill in full corresponds to category 0. The consump-

tion increases signi�cantly, on the order of 16 kBtu, if all of the payment gets included

in rent (category 1) or the household faces only a portion of the total bill for rented

dwelling(category 2). This increase could be attributed to di¤erences in willingness to

pay for various technology options or invest in energy e¢ ciency between the renters

and the owners residing in the house. The result also suggests the di¤erence in NG

consumption due to the signal of NG prices not reaching the consumer, or a behav-

ioral di¤erence due to the �paid for�attitude of the consumer that pays a lump sum
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irrespective of the actual usage. Such a result is consistent with currently ongoing

research on residential energy-e¢ ciency.

Direction 22 picks up the di¤erence in the natural gas intensity due to someone

staying at home the whole day verses the house being unoccupied during working

hours. The delta of 1.5 kBtu is straightforward to interpret as it shows a clear NG

intensity decrease for unoccupied house.

The next set of variables, 23 through 31, were treated as ordered categorical

regressors. As suggested by the results, some of them could have been treated as

continuous variables. Moreover, several directional regressions show rather smooth

change, which may be suggestive of the particular type of a parametric relationship.

Direction 23 characterizes the impact from the number of stories in the building.

The lowest NG consumption is for the one-story building, followed by the split level

house and two-story structure. The highest level is for the three-story dwellings.

As the number of stories increases, the structure design tends to change towards

narrower buildings. This leads to a much higher exchange surface, which explains

higher NG intensity for buildings in this category. It is necessary to note that all

apartment complexes were excluded from the sample. The results cover only single-

family detached housing units.

Direction 24 produced rather interesting result. Category 3, where the entire base-

ment is heated during winter shows highest NG consumption. The second highest

demand for NG is shown for the houses that have a basement but do not heat any

portion of it (category 1). It is followed by the houses where there is a basement and

portion of it is heated. This result appears counterintuitive, but may have reason-

able explanation. Unheated basements are typical for older houses with un�nished

basements. If a portion of it is heated, it is likely that the thermal integrity of the

basement has been improved. The di¤erence between these two categories is 2 kBtu.

This directional result could be di¤erent if the regressor is restructured as a binary

versus ordered categorical variable, such that it does not attempt to account for a

particular portion of the basement which measurement is not de�ned. Also, if the

retro�t information were available, it would be possible to analyze its correlation with

the vintage of the house.

Direction 25 describes the portion of the attic that is warm, and the results are

reasonable. It suggests a linear relationship between the fraction of attic that is

heated and NG consumption. The di¤erence between a house with no attic versus a
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house with an unheated attic is approximately 4 kBtu. Usually no attic implies a �at

roof with not much room for insulation. Just the presence of an attic has a favorable

e¤ect, as it provides a bu¤er zone slowing down the heat loss in addition to allowing

better insulation. This is followed by the partially heated attic with increase in NG

demand by about 8 kBtu. The highest NG consumption is shown for fully heated

attic, which would be expected.

Regression results for direction 26, house vintage, are reasonable. There highest

NG consumption is shown for category 0 that represents houses built before 1940.

NG demand decreases for the houses built in the 1940�s by about 10 kBtu, which is

followed by the 1950�s vintage. There is an increase in the NG consumption of housing

built between 1960 and 1969 up from the level shown for 1950 vintage by 5 kBtu, which

may be attributable to changes in construction practices. For houses built between

1970 and 1989 the NG consumption decreases by 8 kBTU, which corresponds to

improvements in thermal integrity. This trend reverses for dwellings built after 1990,

which can be attributed to several factors. First and foremost this is the period

when houses with high ceilings gained popularity. In addition, this market trend

was accompanied by a shift in the design away from standard rectangular houses to

designs with less conventional angles and additional coves. The latter contributes to

lower overall energy-e¢ ciency of the house and the e¤ect is reinforced by the ceiling

height leading to even more drastic e¢ ciency loss.

Variable 27, which describes the number of thermostats in the house (from 0 to

6), produced a rather interesting result. The drop in the NG consumption between

the category with no thermostat and one thermostat by 1 kBtu is reasonable. Then

the consumption increases by 17 kBtu for houses with 2 thermostats. The highest

level is registered for 3-thermostat houses leading the previous group by about 2

kBtu. This could be explained by the fact that this variable contains redundant

information as number of thermostats is linked to the house size. In addition, the

number of thermostats might be a representation of ine¢ cient heating system with

individual dial in each room in older houses. For each additional thermostat after 3

the consumption drops.

Direction 28 recovers the dependency between number of rooms not heated during

the winter and the NG demand. No particular pattern of dependency can be derived

from these results. On the surface it would seem likely that this variable should have

inverse impact on NG consumption, as more rooms that are unheated in winter would
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imply that less NG should be consumed. However, any unheated space that is not

zoned appropriately can contribute to the heating load of a house.

Direction 29 analyzes the building shell component heat load contributions by

looking at the windows with various glazing and insulating characteristics. The left

side of the chart shows the increase in the natural gas consumption across �rst three

categories (single-paned glass, double-paned glass and double-paned glass with low-

E coating). This result is somewhat counterintuitive as it would be expected that

number of window panes (e.g. single-paned versus double-paned) should be negatively

correlated with energy demand, as improved windows have higher energy e¢ ciency.

One possible explanation might be the size di¤erence between older single-paned

windows and newer double-paned. There is a trend to increase size of windows or

incorporate additional windows when retro�ts are implemented. Also, newer houses

tend to have higher number of windows, which would also increase heat loss and

result in the higher NG consumption. In addition, this can also be a¤ected by the

climate. Unfortunately the information on window quantity and sizes is not available

to test either one of the assertions. Climate information is not included either. NG

consumption goes down for categories with triple-pane glass (category 3) and triple-

pane glass with low-E coatings (category 4 and 5), which is expected.

Direction 30 describes the relationship between NG consumption and number of

people living in the house. The result is reasonable considering that NG demand

would likely increase with each consecutive inhabitant. The magnitude of change is

also reasonable, as marginal change decreases with each consecutive occupant. Gas

consumption drops by 3 kBtu as the number of inhabitants grows from 5 to 7, sug-

gesting that results could plateau out after a certain number of residents representing

economies of scale in NG usage �a reasonable result considering that heating require-

ments would not change with each consecutive inhabitant and natural gas consump-

tion associated with water heating, cooking and dryer use would go up at a smaller

rate.

Direction 31 links the income level with the natural gas consumption of the house-

hold. It can be concluded that due to the number of categories this variable should

be treated as continuous. Initially there is a slight drop in NG intensity as the income

grows from less than $2500 to approximately $25,000. As income grows, an increase

in NG consumption is observed. Categories 11 through 18 correspond to the income

interval from $45,000 to $85,000. Income at these levels would at least be partially
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linked to the type of the house, quality of construction, level of insulation and types

of equipment serving the household and this would likely be another representation

of the multicollinearity in the data. This increase is followed by a drop in NG con-

sumption for income categories in excess of $85,000. It can be attributed not only to

the direct e¤ect due to change in willingness to invest in the energy-e¢ cient solutions,

but also a change in level of education, environmental considerations, as well as the

shift in the initial quality of occupied homes.

2.6 Conclusion

This essay employs an econometric approach to analyzing natural gas consump-

tion intensity of residential buildings that can be used in combination with simulations

for describing the impact of various household and structure attributes on energy de-

mand. The econometric approach employed uses a local linear smooth back�tting

estimator, which is extended to include categorical variables. Satisfactory results

were obtained for the majority of the covariates and the estimation technique was

able to accommodate a correlated set of mixed data.

Nonparametric regression estimation revealed patterns of dependency that could

not have been achieved by parametric analysis. Some of the results were suggestive of

particular parametric relationships. However, these relationships were only sustained

over a portion of the regressor range, as the overall result has the appearance of several

superpositioned parametric associations depending on what interval of the regressor

support is considered.

This analysis could be extended by combining smooth back�tting regression with

stochastic frontier estimation via the method suggested by Fan, Li and Weersink

(1996) and, more importantly, by using generalized pro�le likelihood framework of

Severini and Wong (1992). The comparison can be done across residential buildings

or groups of residential building based on the ranked e¢ ciency score. The regression

portion of the analysis would provide the ability to interpret the e¢ ciency scores from

the energy management stand point as a combination of e¢ ciency scores along with

each directional regression result allows further investigation of possible causes. This

approach could also provide information on the selection of building technologies and

engineering and behavioral solutions that could potentially improve the level of energy

intensity of residential buildings. One of the issues with using the suggested approach
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is to clearly understand how a production frontier can be de�ned within the context

of natural gas usage by residential buildings. If it was possible to isolate only the

information that is related to heating, then the thermostat setting could be used as a

proxy for the output. The e¢ ciency of maintaining the dwelling at that temperature

while all other inputs, attributes and characteristics vary could be compared through

ranking. Clusters of houses with similar ranking would provide an insight into what

primary features, behavioral characteristics, and house attributes impact the ability

to maintain residential buildings at a set temperature.

The bene�t of the current analysis is three-fold. The main result, which is the

directional impact of each covariate, can be utilized for in-sample prediction to ap-

proximate energy demand of a residential building whose characteristics are described

by the regressors used in this analysis, but a certain combination of their particular

values does not exist in the real world. The only caution is that the best estimates

are for the interior of the intervals where the regressors take values. The closer the

values are to the end-points of the regressor range, the less accurate are the results.

The second bene�t is the information on how natural gas demand might change

once a particular characteristic or attribute is altered. For continuous variables the

local linear framework applied in this essay produces the values of the slope at each

observation as part of the estimation procedure. As far as the categorical variables

are concerned, the slope estimates are not calculated as part of the procedure, but

they can be easily computed by comparing change in the natural gas usage while

moving from one category to another for each of the regressors. For example, results

on wall construction material suggest that the natural gas consumption goes down

by about 8 kBtu for houses with composite (shingle) siding versus houses with vinyl

siding. Properly installed stucco siding may reduce the gas consumption even further

(by about 10 kBtu). Jointly with the cost estimates of such improvements this results

can be used as a quick tool for bene�t-cost analysis of residential upgrades and retro�ts

under a �xed budget.

The third and the most obvious result follows along the lines of the previously

discussed bene�t, but with a very particular implication. It shapes the message

that changing, for example, the thermostat temperature setting several degrees up

or down while holding everything else �xed has a very tangible e¤ect on natural gas

usage and related household energy expenditures. Another behavioral result is the

relationship between natural gas consumption and billing method. Seeing the full
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bill and paying it in full corresponds to the lowest energy consumption level. The

consumption increases signi�cantly if a household faces only portion of the bill, or

if the full payment is included in rent and the actual consumer never sees either

the amount of natural gas consumed, or associated monthly expenditures. The link

is obvious, the link is measurable, and the result is produced by a nonparametric

estimation procedure without imposing a particular speci�cation on the shape of

that relationship.

The primary objective of this analysis was to investigate the applicability of a par-

ticular nonparametric methodology to quantifying the impact of behavioral variables

using econometric methods. Behavioral aspects of energy usage are largely treated by

traditional parametric models as an unobservable e¤ect. If good-quality microdata

is available on behavioral aspects of energy usage, it is possible to extend this non-

parametric analysis to a larger number of regressors and encompass the relationship

between behavioral changes and energy usage at a more re�ned level.
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3 Semiparametric estimation of stochastic production frontier with

additivity constraints
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3.1 Introduction

This paper analyses the e¢ ciency of fossil-fueled power generation units. The

topic of interest is changes in power generation e¢ ciency that could result from the

currently debated emission-reduction policies. The objective of this paper is to estab-

lish a benchmark for such comparisons by estimating and ranking e¢ ciency scores of

existing generation units.

This study is di¤erent from previously published research as it contains an applica-

tion of a semiparametric stochastic frontier model with the introduction of an additiv-

ity constraint on the production function of electricity generation. This methodology

uses a fully-de�ned estimator and results in a completely operational procedure for

frontier estimation. The method is applicable to the semiparametric setting where

the distribution of the error term is speci�ed and the additive separability of the

production function is an appropriate assumption. Here we adopt the error term

speci�cation of Fan et al. (1996) with an additivity constraint accommodated by

following the methodology of Mammen et al. (1999). The asymptotic properties of

this combined estimator have not been established in this paper, but the theoret-

ical properties of the estimator de�ned by Fan et al. (1996) have been derived in

Martins-Filho and Yao (2009). The asymptotic behavior of smooth back�tting was

established in Mammen et al. (1999).

The additivity in the model proposed here is accommodated using smooth back�t-

ting estimation, which is di¤erent from the classical back�tting of Buja et al. (1989).

The latter estimator is not e¢ cient according to the "oracle e¢ ciency" criterion put

forth by Linton and Nielsen (1995), which means obtaining a directional regression

estimator that is asymptotically the same as the estimator when all other directions

are known. It was shown by Opsomer and Ruppert (1997) and Opsomer (2000) that

back�tting does not reach this oracle e¢ ciency bound. Furthermore, the classical

back�tting estimator is not known to be asymptotically normal.

Smooth back�tting is oracle e¢ cient and has the intuitive geometrical interpre-

tation of a projection of the data onto the space of additive functions. Smooth

back�tting possesses a high degree of implementational appeal as its iterative equa-

tions rely on the estimation of univariate regressions for each covariate, as well as
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univariate and bivariate densities only. In addition, smooth back�tting is capable

of satisfactorily accommodating covariates with a signi�cant degree of correlation as

demonstrated by Nielsen and Sperlich (2005).

This essay is organized as follows. Section 3.2 provides a brief summary of the

recent studies analyzing e¢ ciency of power generation, as well as a review of the

literature dealing with the econometric estimation of production frontiers. Section

3.3 explains the model under consideration and provides a description of the estimator.

It also contains the discussion of bandwidth choice for smooth back�tting estimation

of the conditional mean. Section 3.4 presents an e¢ ciency study using the data on

energy output, �xed operation and maintenance (O&M) cost, variable O&M cost, and

fuel cost of 394 power-generating units in the U.S. A summary of the computational

algorithm is included as well. Section 3.5 contains the results and an outline for future

research.

3.2 Literature overview

E¢ ciency of the electricity generating industry has been a focus of multiple stud-

ies. Nelson (1984), Baltagi and Gri¢ n (1988) and Callan (1991) analyzed productivity

change in the electric utility industry. Emissions were not included as bad outputs,

but the cost data re�ected the input cost associated with pollution controls. McDon-

nell (1991) estimated a translog cost model with various fuels using a cross-section

of 82 privately owned utilities for the year 1987. Results of this study emphasized

high substitutability between gas and coal. Kleit and Terrell (2001) explored the po-

tential production e¢ ciency gains and associated cost reduction for 78 steam plants.

Hiebert (2002) investigated the operating cost e¢ ciency of generating plants from

1988 through 1997. The results showed that average operating e¢ ciency increased in

those states that were undergoing a transition to retail competition.

The recent research by Pasurka (2003) characterized the relationship between

changes in SO2 emissions, technical e¢ ciency, changes in the output mix and input

growth. Their results suggested a strong dependency between the changes in the

output mix and changes in SO2 emissions. Dorfman and Atkinson (2005) analyzed

productivity and e¢ ciency in the presence of undesirable inputs. They utilized a para-

metric approach to estimate the shadow prices, technical e¢ ciency and productivity

changes for a panel of 43 privately-owned electric utilities.
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Previous literature that deals with e¢ ciency in the context of frontier estimation

has evolved in two main directions: deterministic and econometric. The deterministic

estimation of frontiers is represented by approaches such as Data Envelopment Analy-

sis based on the work of Farrell (1957) with extensions to the method described in

Seiford and Thrall (1990), and Free Disposable Hull de�ned by Deprins et al. (1984).

The econometric approach was �rst introduced by Aigner et al. (1977), Meeusen

and van den Broeck (1977), and Battese and Corra (1977), and it relies on a full

parametric speci�cation of the production function, as well as the probability density

function of the error term. Although the econometric approach allowed incorporating

a stochastic component into the model, the assumptions on the production function

and error term were extremely limiting. This work was later continued by Greene

(1990), who extended the model by relaxing the assumption of the one-sided dis-

turbance being distributed as truncated normal and using the more �exible Gamma

distribution. Fan et al. (1996) removed the parametric restrictions on the production

function, but kept the same distributional assumptions on the error term compo-

nents as Aigner et al. (1977). Fan et al. (1996) assumed that a one-sided error,

representing technical ine¢ ciency, was an independent identically-distributed (IID)

normal random variable, truncated at zero. The component that represented statis-

tical noise was assumed to be a two-sided IID normally distributed error. Although

a semiparametric estimation methodology was developed and the resulting estimator

fully de�ned, no asymptotic properties were established. Some of the recent frontier

estimation studies such Henderson and Simar (2005) and Kumbhakar et al. (2007)

have proposed fully nonparametric stochastic frontier techniques based on local lin-

ear least squares regression and local maximum likelihood. The �rst study relied on

panel data; the second study used cross-sectional data. The most recent analysis by

Kumbhakar et al. (2009) used the two-step procedure to jointly analyze technology

choice and technical e¢ ciency with application to organic and conventional farming.

This essay addresses the topic �rst discussed in this section - e¢ ciency and pro-

ductivity of the power generation across several types of units. The approach utilized

here is econometric frontier estimation, thus the paper takes the e¢ ciency analysis

in the second direction mentioned above. The semiparametric model of Fan et al.

(1996) is used as a foundation for this analysis, but our model takes it a step fur-

ther by incorporating an additivity restriction on the production function. This is

handled nonparametrically, relying on the smooth back�tting framework of Mammen
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et al. (1999). The inclusion of categorical variables to account for the di¤erences in

the generation cycle was motivated by the technology choice discussed jointly with

technical e¢ ciency in the latest study by Kumbhakar et al. (2009). Usually this is

handled parametrically or using the frequency approach. The procedure employed

here is di¤erent as it includes kernel smoothing of the categorical variables inside of

the smooth back�tting estimation. To summarize, this paper extends the work of

Fan et al. (1996) to incorporate some of the advances in nonparametric estimation

and results in a fully operational estimation procedure with a straight-forward algo-

rithm, which is capable of nonparametrically handling categorical variables to model

the production function, and applies this estimator to estimating e¢ ciency of power

generation, the topic that has been widely discussed in the e¢ ciency literature since

the 1960�s.

3.3 Model

This section contains the description of the semiparametric model and an overview

of the proposed estimation approach. The semiparametric stochastic production fron-

tier model considered in this analysis is similar to Fan et al. (1996), but the production

function is restricted to be additively separable, namely:

yi = g (xi) + "i ; "i = �i � ui,
where ui is a one-sided error term representing technical ine¢ ciency distributed as a

normal truncated at zero with expected value �u and variance �
2
u, and �i is a two-

sided error term distributed as normal IID with zero mean and variance �2v. The

single output production function here is denoted as y � g(x), where x is the vector
of inputs. Further, we impose additivity on the production function, i.e. g (xi) =

m0+
dP
j=1

mj (xj) : The stochastic frontier for this model is de�ned as SFi = g (xi)+�i.

Random external shocks that in�uence e¢ ciency of the production unit, but are

outside its control, are represented by �i. Variable ui captures technical ine¢ ciency

due to the factors that are within the control of a production unit. It allows a �rm to

be ine¢ cient relative to its maximum possible level of output given by its stochastic

frontier, which already accounts for the e¤ect of external random factors outside the

�rm�s control.

The distribution of the composite error term, derived as the sum of a normal and



35

truncated normal random variables, was �rst given in Weinstein (1964):

f"i("i) =
2p

2� (�2u + �
2
v)
exp

�
� 1
2

"2i
(�2u + �

2
v)

�"
1�

Z "i
�u

�v(�2u+�2v)
1=2

�1
� (�) d�

#

=
2

�
�
�"i
�

��
1� �

�
"i�

�

��
;

where � = �u
�v
, �2 = �2u + �

2
v; � (�)�standard normal density function and � (�) is

a standard normal distribution function. After the appropriate transformation, the

conditional density of y is de�ned as
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The natural choice of an estimation procedure is maximum likelihood. The con-

ditional log-likelihood function is

~L = ln fy1:::ynjx (y1:::ynjx)

=
n
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2
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with unknown components g (xi) ; � and �2: Assuming that the solutions are on the

interior, �rst order conditions are derived by taking the derivatives with respect to

the unknown parameters and setting them equal to zero. Due to the non-linearity of

the �rst order conditions (FOC), a closed form solution cannot be obtained. Since the

unknown g (xi) is present in the FOC, direct estimation of the parameters �2 and � is

not operational, even if a concentrated maximum likelihood estimation is attempted.

Since the conditional expectation of yi given xi cannot be separated from g (xi) ;

it is suggested to replace this function in the FOC by g (xi) = E(yijxi) + �u, where
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�u =
p
2p
�
�u =

p
2��q
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. The resulting FOC is of the form
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Using the fact that the second term in the �rst FOC equals zero, Fan et al. (1996) ob-

tained ~�2 = 1
n

Pn
i=1 (yi � (E(yijxi)� �u))

2 : Substituting �u =
p
2��q

�(1+�2)
resulted in a

quadratic equation ax2 + bx + c = 0, where a = �
�
1� 2�2

�(1+�2)

�
;

b = � 2�
p
2q

�(1+�2)
1
n

Pn
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n

Pn
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2 : It was sug-

gested that since b = Op
�
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�
; the parameter �2 can be estimated by
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:

As suggested in Fan et al. (1996) the estimation of E(yijxi) is done using a non-
parametric regression. The additivity constraint on the production function allows

utilizing the smooth back�tting approach of Mammen et al. (1999). The regression

model considered here for estimating the conditional expectation of yi is of the form

E(yjx1 ; :::; xd) = m0 +
dP
j=1

mj (xj), where (y; x1:::; xd) is a random vector in Rd+1 and

we assume that there is a random sample fyi; xi1:::; xidgni=1 of (y; x1:::; xd), m0 is an

unknown scalar parameter, mj (xj) is a su¢ ciently smooth function for all j, and �j is

the �rst order derivative of mj (xj). Also for identi�cation purposes, E (mj (xj)) = 0.

Let Kh (xij � xj) = 1
h
K
�xij�xj

h

�
be a kernel function such that

R
K (�) d� = 1,

and
R
�K (�) d� = 0. h = h(n) is a bandwidth such that h ! 0 and nh ! 1 as

n ! 1; and conditions B(1), B(2�)-B(4�) of Mammen et al. (1999) are met. For
categorical variables, the kernel shape suggested by Aitchison and Aitken (1976) for
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the distribution estimation

L(xit; xt; �t) =

(
1� �t, if xit = xt

�t= (ct � 1) ; if xit 6= xt
t = 1; :::; T

is used for unordered categorical regressor: The overview of the estimator here relies

on the discussion in the �rst essay.

The multivariate discrete data kernel is de�ned as
TQ
t=1

L(xit; xt; �t), with joint

density of discrete variables being estimated by bp(x1 ; :::; xd) = n�1 nP
i=1

TQ
t=1

L(xit; xt; �t).

The multivariate kernel for mixed data is

W (xij; xj; h; xit; xt; �t) =

nX
i=1

dY
j=1

Kh (xij � xj)
TY
t=1

L(xit; xt; �t):

The local linear smooth back�tting estimator for mixed continuous and categorical

data is a projection of the local linear estimator for mixed regressors onto the space of

additive functions. The mixed data local linear smooth back�tting estimator em�(x)

is de�ned as the argument that minimizes the following objective function

Z nX
i=1

"
yi �m0 �

dX
j=1

mj(xj)�
TX
t=1

mt(xt)�
dX
j=1

�j (xij � xj)
#2

�
dY
j=1

Kh (xij � xj)
TY
t=1

L(xit; xt; �t)dx;

The minimization is done with respect to m0;m1; :::;md, and all �rst derivatives

�j(xj). The marginal and bivariate densities here are de�ned in the same manner as

shown in the �rst essay. For continuous regressors let

bpj(xj) = n�1
nX
i=1

Kh (xij � xj) ; bpjj(xj) = n�1 nX
i=1

Kh (xij � xj) (xij � xj) ;

bpjjj (xj) = n�1
nX
i=1

Kh (xij � xj) (xij � xj) (xij � xj) ;
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bpjk(xj; xk) = n�1 nX
i=1

Kh (xij � xj)Kh (xik � xk) ;

bpkjk(xj; xk) = n�1 nX
i=1

Kh (xij � xj)Kh (xik � xk) (xik � xk) ;

bpjkjk(xj; xk) = n�1 nX
i=1

Kh (xij � xj)Kh (xik � xk) (xij � xj) (xik � xk) ;

For marginal densities of categorical variables and joint densities for mixed data let

bpt(xt) = n�1 nX
i=1

L (xit; xt; �t);

bpjt(xj; xt) = n�1 nX
i=1

Kh (xij � xj) L (xit; xt; �t);

bpjjt(xj; xt) = n�1 nX
i=1

Kh (xij � xj) L (xit; xt; �t) (xij � xj)

Using similar notation as in the �rst essay

fm�
j(xj) = A�

TX
t6=j

Z fmt(xt)
bpjt(xj; xt)bpj(xj) dxt � e��j(xj)C

= A� � e��j(xj)C;
fm�
j(xj) = B �

TX
t6=j

Z fmt(xt)
bpjjt(xj; xt)bpjj(xj) dxt � e��j(xj)D

= B� � e��j(xj)D;e��j(xj) =
A� �B�
C �D :

The smooth back�tting estimates of fm0; fmj and e�j for continuous variables are
obtained by iteratively solving the two equations below for each regressor j = 1; :::d

fm�
j(xj) = A

� � e��j(xj)C; e��j(xj) = A� �B�
C �D



39

The iterative equation for discrete regressors xt, t = 1; :::; T is

fm�
t (xt) =

n�1
nP
i=1

L (xit; xt; �t)yi

bpt(xt) �
dX
j=1

Z fmj(xj)
bpjt(xj; xt)bpt(xt) dxj � fm0(x)

�
TX
k 6=t

Z fmk(xk)
bpkt(xk; xt)bpt(xt) dxk �

dX
j=1

Z e�j(xj)bpjjt(xj; xt)bpt(xt) dxj:

where fm0 = n
�1

nP
i=1

Yi.

Once the estimates are obtained for the intercept and each direction, the con-

ditional mean is estimated as eE(yijxi) = fm0 +
dP
j=1

fmj (xj) : The estimator for �2 is

de�ned as e�2 = 1
n

Pn
i=1(yi� eE(yijxi))2r
1� 2�2

�(1+�2)

, which is then substituted into the original log-

likelihood function ~L. The concentrated log-likelihood is maximized with respect

to the single parameter �. Then the frontier production function is estimated aseg (xi) = eE(yijxi) + e� = eE(yijxi) + p
2e�e�r

�
�
1+�̂

2
� ; which means shifting up the "average"

production function by the expected value of the ine¢ ciency term. The individual ex-

pected ine¢ ciency score for a particular observation is calculated in the same manner

as in Jondrow et al. (1982), i.e.

eE(uj") = �e�2ue�2ve�2
�1=2 24 �

�e"e�=e��
1� �

�e"e�=e�� � e"
e�e�
35 ;

where estimates e�u and e�v are obtained from e� = e�u=e�v and e�2 = e�2u + e�2v . In
this context, the �rm-speci�c ine¢ ciency score eE(uj") represents how far the �rm is

operating below its own frontier due to the speci�c factors that lie within the �rm�s

control. The technical e¢ ciency index can be estimated as]TEI = yi=fSF i; where fSF i
estimates a �rm-speci�c stochastic frontier. The latter is de�ned as SFi = g (xi)+�i.

3.3.1 Bandwidth selection

Several di¤erent methods for selecting bandwidths for SBE estimation were an-

alyzed recently. Mammen and Park (2005) introduced a bandwidth selection method



40

for smooth back�tting based on minimizing the penalized sum of squared residuals.

They also compared two additional plug-in methods for the local linear SBE. More-

over, it was suggested that the penalized sum of squared residuals was asymptotically

equivalent to cross-validation since this holds true for the classical nonparametric

regression as in Härdle et al. (1988).

Leave-one-out least squares cross-validation is recommended for bandwidth se-

lection by Nielsen and Sperlich (2005). It has a particular implementational ad-

vantage for local linear smooth back�tting if the underlying relationship is addi-

tive, since in this case the SB estimator has additively separable bias and vari-

ance. Bandwidth selection is based on minimizing the mean-integrated squared error

MSE(h1; :::hd; �1; :::�d) =
R
E [em(x)�m(x)]2 p(x)dx: Due to the separability of bias

and variance, the mean-integrated squared error for overall regression can be de�ned

as

MSE(h1; :::hd; �1; :::�d) =
d+TX
j=1

MSEj(xj);

where MSEj(xj) is the mean-integrated squared error for each regression direction

mj(xj). Thus the cross-validation problem of minimizing CV =
nP
i=1

[yi � em�i(x)]
2
;

where em�i(x) is the leave-one-out estimator with observation (yi; xi) left out of the

computation, can be separated. It reduces to performing optimal bandwidth search

for each directional regression sequentially. Nielsen and Sperlich (2005) suggest taking

starting bandwidths h1; :::; hd that undersmooth for each direction and run initial SBE

estimation. Then while using one-dimensional grid search to minimize the cross-

validation criteria with respect to hj only, the bandwidth for direction j, bandwidths

for all other directions are kept at their starting values. This is repeated for each

direction j individually. It is noted that not only it is unnecessary to use leave-

one-out estimators for all other directions mk(xk); k 6=j, while searching for optimal
bandwidth for estimation of mj(xj), but also all fmk(xk) do not need to be estimated

at their optimal bandwidth. As shown by Mammen and Park (2005), this procedure

results in bandwidths that are optimal for the estimation of the overall regression. If

the primary focus of the estimation is accuracy of each single additive component,

they suggest using plug-in bandwidths that minimize average weighted squared error
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(ASE) for each direction de�ned as

ASEj(xj) = n
�1

nX
i=1

w�ij (xj)
�fmj(xj)� em�i

j (xj)
�2
;

where em�i
j (xj) is the leave-one-out estimator of mj(xj) and wj is a weight function.

This paper adopts a simpler method for bandwidth selection. Since smooth back-

�tting requires computing the unrestricted regression estimates, as well as univariate

and bivariate densities for continuous and categorical data, we use four di¤erent band-

width selection routines. To estimate densities for categorical variables we use the

cross-validation method of Li and Racine (2007), where the bandwidth � is chosen

separately for each regressor to minimize

CVp(�) =
X
xc2Sc

[bp (xc)]2 � 2n�2 nX
i=1

nX
v 6=i

L�;iv

where L�;iv is the previously de�ned kernel with observation v = i excluded from the

computation, Sc = f0; :::ct � 1g is the support of xc and c is the category index. For
unrestricted regression estimation for categorical variables, the cross-validation of Li

and Racine (2007) is employed. Bandwidth is chosen to minimize

CVreg(�) = n
�1

nX
i=1

[yi � cmj
�i(xj)]

2

for each j, where cmj
�i(xj) is the leave-one-out Nadaraya-Watson estimator of mj(xj)

de�ned as cmj
�i(xj) =

nP
v 6=i

yv L�;iv

nP
v 6=i

L�;iv

. For continuous variables the rule-of-thumb band-

width selection was used both for estimation of unrestricted univariate regression, as

well as densities. Namely, the bandwidth for regression estimation was selected as

hregj = n�1=5

8<:s22p� (max(xj)�min(xj)) �
"
1

n

nX
i=1

�bb3 + bb4xj + 0:5bb5x2j�2
#�19=;

1=5

;

where b3; b4 and b5 are estimates of coe¢ cients in regressing the dependent variable

y on �1 + �2xj + �3(0:5x
2
j) + �4(

1
6
x3j) + �5(

1
24
x4j), and s

2 is estimated in the usual

manner based on the residual estimates of this regression. The bandwidth for density
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estimation was computed as hdensj = (n�1=5) � 1:01a (2
p
�)
�1=5

; and a = q75(xj) �
q25(xj); where q75 and q25 are upper and lower quartiles of xj correspondingly.

3.3.2 Estimation Algorithm

The estimation procedure can be subdivided into two major parts. The �rst part

has to deal with the estimation of the conditional mean via smooth back�tting. Once

the estimates of the intercept fm0; directional regressions fmj (xj) for each j = 1; :::d,

as well as �rst derivatives e�j(xj) are obtained, the �rst two components are passed
into the second part of the procedure that estimates e�2 and substitutes it into the
likelihood function. At this point the numerical optimization is applied in GAUSS to

optimize the likelihood with respect to the remaining parameter �:

The step-by-step algorithm for computation is as follows:

1. Compute the rule of thumb bandwidth for all regression and density estimation

as suggested in the previous section.

2. Compute the univariate bpj(xj); bpjj(xj); bpjjj (xj) for all regressors xj j = 1; :::d:
3. Compute bivariate expressions bpjk(xj; xk); bpkjk(xj; xk); bpjjk(xj; xk) and bpjkjk(xj; xk):
4. Compute univariate unrestricted estimates for pairs (bmj(xj);b�j(xj)) for each
regressor. Save the results as variables mold and �old.

5. Set the number of smooth back�tting iteration iter to 1.

(a) For j = 1 compute expressions A, B, C, D. Obtain fmj(xj) and e�j(xj), save
as mnew and �new. Repeat this step for the rest of continuous variables

j = 2; :::d. To compute expressions A and B, use updated values from

mnew and �new for k < j. If k > j; use corresponding values from mold and

�old.

(b) De�ne a convergence criteria for all j as

nP
i=1

h
m̂new
j (xj)�gmold

j (xj)
i2

nP
i=1

h gmold
j (xj)

i2
+�

< �:

6. Set mold =mnew and �old=�new: Set iter = iter+ 1, go to step 5a. Repeat steps

5 and 6 until the convergence criteria is met.
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7. Estimate the conditional expectation as eE(yijxi) = fm0 +
dP
j=1

fmj (xj) :

8. Substitute e�2 = 1
n

Pn
i=1(yi� eE(yijxi))2r
1� 2�2

�(1+�2)

into the original log-likelihood and maximize

it with respect to �. Since the closed form solution is not available, the numerical

optimization should be used.

9. Compute production function estimates, e¢ ciency scores and technical ine¢ -

ciency index as explained above.

3.4 Results and analysis

This research examines power generation from the standpoint of e¢ ciency of

existing generating capacity, which is operated based on the least-cost provision.

Emissions are not treated as a bad output, but rather pollution control cost is included

as part of the input cost. Data for this study includes �xed operation and maintenance

(O&M) cost, variable O&M cost, fuel cost and type of the cycle for 394 generating

units as covariates. This information comes from the PROMOD, the electric market

simulation package that contains 2008 power generation database.

There are three major categories of generators considered in this study: combined

cycle, combustion turbine and steam turbine. Combined cycle is represented by 143

units. There are 115 observations for the combustion turbines and 136 data points

for the steam turbines. The last category is subdivided into three subsections to

re�ect the di¤erences in the fuel used. The following number of observations fall into

each subgroup: coal �73, gas �24, other �39. Thus one categorical variable with

seven groups re�ects the di¤erence in the fuel and cycle type. Fuel cost is used as a

proxy for fuel quantity under the assumption that within any category all units face

the same input prices, while the di¤erences between categories are captured by the

categorical regressor. Output is de�ned as MWh of unit generation in 2008, which

ranges anywhere from 1000 MWh to 15 million MWh.

Before introducing the results of the estimation, it is informative to plot the initial

inputs against the output. Figure 1 contains the graph of electricity output against

�xed O&M cost. Figure 2 suggests a linear relationship between variable costs and

output, as would be expected. Figure 3 shows electricity generation plotted against
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the fuel cost. Figure 4 shows the output ranges for each of the categories, which

account for the cycle type and fuel type. Category 0 is combined cycle, and category

1 represents gas combustion turbines. The last three groups are all steam turbines,

but they use di¤erent fuels, thus category 2 is coal-�red, category 3 uses natural gas,

category 4 runs on "other" fuel, which includes biomass and heavy fuel oil.
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Figure 1. Electricity output versus �xed O&M cost:
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Figure 2. Electricity output versus variable O&M cost
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Figure 3. Electricity output versus fuel cost
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Figure 4. Electricity output versus cycle type

The �rst part of the estimation, the smooth back�tting procedure, requires band-

width selection to compute univariate and bivariate densities, as well as unrestricted

regression estimates. The bandwidth values for density estimation are 1341.57, 2440.69,

11878.97 and 0.025 for each of the covariates. The regression estimation bandwidth

values are 4055.89, 10587.26, 44993.5 and 0.0184 correspondingly.

First the overall result is included for the whole sample, then the estimates are

broken down by the turbine and fuel type. This is done with the understanding that
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even though the overall estimation is performed for the whole sample, the e¢ ciency

should be compared in the context of individual frontiers corresponding to each of

the categories. Each of the continuous variables have two plots included. The �rst

plot contains directional estimates for all points of evaluation. The second plot shows

a subset of the �rst plot, but zooms in on the bottom left quadrant of the larger plot

to better illustrate the relationship for moderate levels of production away from the

boundary region. It is worth noting that the estimation on the boundaries of the plot

is less accurate than on its interior, as the closer the observations are to the endpoints,

the fewer observations are contained on the boundary side for weighting. Therefore,

the patterns of dependency appearing at the edges of the evaluation sample generally

lack credibility and should not be given emphasis in the analysis. Note that negative

values appear on the Y axis because only the directional regression estimates fmj (xj)

are presented without the adjustment for the scalar parameter fm0:
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Figure 5. Smooth back�tting estimates for direction 1, �xed O&M cost
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Figure 6. Smooth back�tting estimates for direction 2, variable O&M cost
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SBE direction 3
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Figure 7. Smooth back�tting estimates for direction 3, fuel cost
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Figure 8. Smooth back�tting estimates for cycle type

Once the estimates are broken down by fuel and turbine type, the plots more

closely resemble traditionally obtained frontier estimates. The �rst group of graphs,

Figure 9, corresponds to the combined generation cycle. Figure 10 is for the second

group, which is combustion turbine. The third group has three subgroups to re�ect

di¤erences in the fuel type. They are included in Figures 11.1 - 11.3.
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Figure 9. Smooth back�tting estimates for combined cycle
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Figure 10. Smooth back�tting estimates for combustion turbine
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Figure 11.1. Smooth back�tting estimates for steam turbine, coal
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Figure 11.2. Smooth back�tting estimates for steam turbine, gas



49

(0.95)

(0.90)

(0.85)

(0.80)

(0.75)

(0.70)

(0.65)

(0.60)

(0.55)

(0.50)

- 0.50 1.00 1.50 2.00 2.50 3.00 3.50

Th
ou

sa
nd

s

Thousands

(0.95)

(0.90)

(0.85)

(0.80)

(0.75)

(0.70)

(0.65)

(0.60)

(0.55)

(0.50)

- 0.50 1.00 1.50 2.00 2.50 3.00 3.50

Thousand $

M
W

H
*1

0^
6

(1.60)

(1.40)

(1.20)

(1.00)

(0.80)

(0.60)

(0.40)

(0.20)

-

- 5.00 10.00 15.00 20.00 25.00

Thousand $

M
W

H
*1

0^
6

Figure 11.3. Smooth back�tting estimates for steam turbine, other

Based on the smooth back�tting estimates and the expression for variance shown

in step 8 of the computational algorithm, the log-likelihood maximization via CML

package in GAUSS 9.0 returned 2.0792 as the estimate for �. Optimization was

performed several times using di¤erent starting points. The estimate that produced

the highest likelihood function value was selected as the �nal result. Estimate e�2
equals 33,124,692. Estimates for e�2u and e�2v are obtained from e� = e�u=e�v and e�2 =e�2u + e�2v and equal 26,901,863 and 6,222,829.5 correspondingly.
Unit-speci�c ine¢ ciency estimates eE(uj") ranged from 381.05 to 33074.41 with

the mean and median being equal to 3883.34 and 3366.836 correspondingly. The

25th percentile is 2396.84, and the 75th percentile is 4538.75. The mode estimates

ranged from 0 to 33074.41 with a mean of 3301.01 and median of 2947.18. The

25th percentile is 1379.47, and 75th percentile is 4403.69. Nonparametric density for

unit-speci�c ine¢ ciencies is presented on Figure 12.
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Figure 12. Nonparametric density for unit-speci�c ine¢ ciency

The technical e¢ ciency index (TEI) for the whole sample ranged from 0.0005 to

0.9305. The two highest e¢ ciency scores belong to large scale combined cycle units.
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The lowest scores are for small combustion turbines fueled by gas and a rather small

combined cycle plant. The mean e¢ ciency score is 0.14, the median is equal to 0.07.

The 25th and 75th percentiles are 0.0143 and 0.20 correspondingly. Nonparametric

density estimates for the scores are depicted on Figure 13.

-0.2 0 0.2 0.4 0.6 0.8 1

Figure 13. Nonparametric density estimates for technical e¢ ciency

There are four observations with the highest TEI index, corresponding to the most

e¢ cient production units. For this group, the estimates for unit-speci�c ine¢ ciency

range from 381.05 to 1,611.51 and are the lowest across the sample. Mode estimates

equal 0 for all four points. Technical e¢ ciency indexes range from 0.73 to 0.93. Four

top observations correspond to the combined cycle generation.

There are twelve observations with the most negative e"i ranging from -40,725 to

-10,686. They correspond to the highest unit-speci�c ine¢ ciency estimates ranging

from 8,679.85 to 33,074.41. With the exception of a small combined cycle plant, the

rest of the observations in this group correspond to coal-fueled steam turbines. The

mode estimates for these units also ranged from 8679 to 33,074 coming very close to

the estimates of expected unit-speci�c ine¢ ciency.

There are nine observations for which estimates of e"i are above zero and the mode
of the conditional distribution of the ine¢ ciency term equals zero. Estimates of the

unit-speci�c ine¢ ciency scores range from 381.05 to 1,788.59.

The results of this analysis were grouped by fuel type. Figure 14 depicts the

relationship between technical e¢ ciency index estimates and type of generating unit.

As before, this variable is broken down into the following categories: 0-combined cycle,

1 - gas-fueled combustion turbine , 2 - coal-fueled steam turbine, 3 - gas-�red steam

generator and 4 - steam turbines using heavy fuel oil. Figure 15 shows unit-speci�c
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ine¢ ciency by type of generating unit.
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Figure 14. Scatter plot of TEI against the cycle types
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Figure 15. Scatter plot of unit-speci�c ine¢ ciency

The output of the combined cycle generators ranges from 2205 to over 8 million

MWh. Speci�c ine¢ ciency scores for this group of generating units range from 381.05

to 15,921.51 with mean 4,255.75 and median of 4,126.56. The 25th percentile is

3,510.00 and 75th percentile equals 4,712.85. Mode estimates for the conditional

distribution of ine¢ ciency given composite error term range from 0 to 15,921.51 with

a mean of 3,979.21 and median of 3,922.60. The 25th and 75th percentiles equal

3,142.62 and 4,600.00 correspondingly. The technical e¢ ciency index for this type of

generation ranged from 0.00074 to 0.93 with a mean of 0.21. The median TEI for

combined cycle is 0.16, with the 25th and 75th percentile being equal to 0.08 and 0.29

respectively.

Estimates of eE(uj") for gas-fueled combustion turbines ranged from 1,716.89 to

3,317.18 with the 25th and 75th percentile estimated at 2,151.91 and 2,615.39 cor-
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respondingly. The mean and median equal 2,403.91 and 2,344.39 respectively. The

technical e¢ ciency index ranges from 0.0005 to 0.11. The mean is 0.02 and median is

0.013. The mode of the conditional distribution of ui varies between 0 and 2,877.91.

The 25th and 75th percentiles equal 876.38 and 1,782.02 correspondingly. The mean

is 1,340.38 and median is 1,276.89.

Steam turbines across all fuel types (coal, gas and other) range in TEI from 0.001

to 0.73. The average TEI for steam turbines is 0.17, while the median is equal to

0.08. The 25th and 75th percentiles are 0.26 and 0.26 correspondingly. Unit-speci�c

ine¢ ciency scores for this category varied between 573.29 and 33,074.41 with a mean

and median of 4,742.74 and 4,097.72 correspondingly. The bottom and top quartiles

are 2,470.02 and 5,336.59. Mode estimates came to be close to the estimates of

conditional distribution of ui and ranged between 0 and 33,074.41. The mean is

4,245.80 and the median equals 3,887.91. The 25th percentile is 1,518.52 and the 75th

percentile is 5,279.13.

Coal fueled steam turbines seem to have the highest unit-speci�c ine¢ ciency scores

out of the group. The mean value of technical ine¢ ciency score is 6,366.25, the median

is 5,181.09. Minimum and maximum values are 573.30 and 33,074.41 correspondingly.

The 25th percentile is 4,228.56 and the 75th percentile is 5,814.81. The average tech-

nical e¢ ciency index for this category is 0.27 and the median is 0.22. The estimates

range from 0.013 to 0.92. Estimates of the mode for the conditional distribution of

ine¢ ciency given the composite error term are not very di¤erent from the expected

individual technical ine¢ ciency.

Steam turbines that fueled by gas have signi�cantly lower individual ine¢ ciency

scores than the coal-�red turbines. The mean is 3,839.70 and median is 3,534.02.

The estimates vary between 2,156.89 and 7,911.41 with the 25th and 75th percentiles

equaling 2,899.89 and 4,240.57 respectively. Again, the estimates of the mode for

the conditional distribution of ui given "i are similar to the unit-speci�c technical

ine¢ ciency scores. The technical e¢ ciency index varies between 0.005 and 0.30. The

mean TEI for this category is 0.10,and the median is 0.09.

The last category of steam turbines, those that use other fuel, has the lowest

estimates of unit-speci�c ine¢ ciency scores across all steam-driven generators. The

mean is 2,457.02, and the median is 2,228.68 with the estimates varying in the interval

between 1,786.92 and 3,533.65. The technical e¢ ciency index for this group ranges

between 0.0006 and 0.0957 with mean being equal to 0.027 and the median estimated
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at 0.0085. Mode estimates for the conditional distribution of ui range between 0 and

3,174.32, the 25th percentile equals 545.29 and the 75th percentile equals 1,506.72.

The mean and median are 1,461.75 and 1,040.96 respectively.

Overall, gas-fueled turbines, turbines fueled by "other" fuel and combustion tur-

bines have the lowest unit-speci�c ine¢ ciency scores among all the groups. They also

had the lowest TEI indices across all groups. Out of the high TEI units, average for

the coal �red turbines is close to the average TEI for the combined cycle turbines.

But the average and median unit-speci�c ine¢ ciency scores are lower for the com-

bined cycle generators by 2,110.49 and 1,054.53 respectively.Con�dence intervals for

the unit-speci�c ine¢ ciency estimates are depicted in Figure 16. Con�dence intervals

(CI) were constructed based on Greene (2006). CI is not interpreted by Greene (2006)

as true con�dence interval, but rather as a range that includes 100(1 � �)% of the

conditional distribution of ui given "i, where � is a signi�cance level. Also, one-way

hypothesis testing for unit-speci�c e¢ ciency scores is discussed in Bera and Sharma

(1999). The 95% con�dence limits are computed as

LBi = ��i + �
���1[1� (1� �

2
)�(

��i
��
)];

UBi = ��i + �
���1[1� �

2
�(
��i
��
)]

where LBi and UBi are lower and upper bound respectively, ��i = �"i�2=(1 + �2)
and �� = ��=(1 + �2) .
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Figure 16. 95% Con�dence intervals for unit-speci�c ine¢ ciency scores

This comparison within the limitations of available data and applied estimation

procedure suggests that coal steam turbines have higher average unit-speci�c ine¢ -

ciency scores than the combustion cycle, while their TEI estimates are close. The

remaining three turbines have smaller unit-speci�c ine¢ ciency scores, but their tech-

nical e¢ ciency indexes are low as well. It is worth noting that discussion of the power

generation e¢ ciency in the present study should only be viewed in the context of

limitations of the imposed assumptions, utilized estimation procedure and available

data.

3.5 Conclusion

This essay attempted to analyze e¢ ciency of generating units by establishing

a benchmark ranking, which would be used in the future to study changes in pro-

ductivity and e¢ ciency under di¤erent emission mitigation scenarios. We analyzed

a model that combines a semiparametric stochastic frontier estimation with additive

restriction on the production function. Categorical variable accounting for the vari-

ability in cycle and fuel type was treated in the context of kernel smoothing, which is
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di¤erent from traditionally used frequency approach. Discussion of empirical results

concluded the analysis.

Fairly �exible estimation procedure utilized here generated results consistent with

engineering �ndings that natural gas combined cycle generation is more e¢ cient than

combustion or steam-turbines in the context of economic productivity and e¢ ciency

measurement. E¢ ciency scores here have di¤erent interpretation from the engineer-

ing de�nition of e¢ ciency. The latter one is based on the heat rate of a generator

and indicates how e¢ ciently a generator converts energy from burning fuel into the

electricity. E¢ ciency scores studied in the context of frontier estimation have di¤er-

ent interpretation. They represent overall proximity to the production frontier when

all other inputs and costs are taken into the account. Therefore it contains informa-

tion on how well a production units transform all inputs into the �nal output. In

addition, stochastic frontier incorporates the external shocks that are beyond control

of the generating unit. Firm-speci�c ine¢ ciency scores derived in this context allow

production unit to be ine¢ cient relative to its maximum possible level of output given

by its stochastic frontier, which already accounts for the e¤ect of external random

factors outside the control that are not observed directly.
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4 General conclusion

This research focused on applying semiparametric methods to analyze both the

demand for natural gas in the residential housing sector and e¢ ciency of electricity

generation. The �rst essay investigated the relationship between natural gas de-

mand and characteristics of the dwelling, demographic characteristics of occupants

and behavioral variables. The existing modeling literature, whether it relies on para-

metric speci�cations or engineering simulation, does not accommodate inclusion of a

behavioral component. This essay attempts to bridge that gap and investigate the

applicability of additive nonparametric regression to this task. The results of this

analysis can be used for three primary purposes. The �rst one is an in-sample predic-

tion for approximating energy demand of a residential building whose characteristics

are described by the regressors in this analysis, but a certain combination of their par-

ticular values does not exist in the real world. The second potential application is for

bene�t-cost analysis of residential upgrades and retro�ts under a �xed budget, since

the results of this study contain information on how natural gas consumption might

change once a particular characteristic or attribute is altered. The third purpose is to

establish a relationship between natural gas consumption and changes in behavior of

occupants. Although information on behavioral variables is generally limited, results

of the analysis identify what information would be helpful to further research.

The second essay studies the e¢ ciency of power generation for �ve types of gen-

erating units: combined cycle, combustion turbine and three kinds of steam turbine.

This study is di¤erent from previously published research as it contains an application

of a semiparametric stochastic frontier model with the introduction of an additivity

constraint on the production function of electricity generation. The semiparametric

model of Fan et al. (1996) is used as a foundation for this analysis, but this model

takes it a step further by incorporating an additivity restriction on the production

function. This is handled nonparametrically relying on the smooth back�tting frame-

work of Mammen et al. (1999). In addition, the methodology includes kernel smooth-

ing of the categorical variables inside of the smooth back�tting estimation. This essay

incorporates some of the advances in non-parametric estimation and results in a fully

operational estimation procedure with a straight-forward algorithm, which is capable

of nonparametrically handling categorical variables to model the production function

and analyze e¢ ciency in the context of stochastic frontiers.
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Appendix A. Charts for directional regression results

Figure A.1 Heating degree days: base=65, 01 to 12-2005

Figure A.2 Cooling degree days: base=65, 01 to 12-2005
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Figure A.3 Total house area

Figure A.4 Price of electricity, cents/KWh
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Figure A.5 Price of natural gas, cents*10/Btu

Figure A.6 Setting during the winter day when someone is home
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Figure A.7 Setting during the winter day when no one is home

Figure A.8 Setting during sleeping hours in winter
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Figure A.9 Exterior wall construction material

0 Indescribable

1 Brick

2 Wood

3 Siding (Aluminum, vinyl, or steel)

4 Stucco

5 Composition (Shingle)

6 Stone

7 Concrete or concrete block

8 Glass

9 Other
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Figure A.10 Is the garage heated

0 No garage

1 Not heated

2 Yes
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Figure A.11 Dwelling owned or rented

0 Own

1 Rent

2 Occupied w/out payment
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Figure A.12 Fuel used by cooking burners

0 Some other fuel

1 Natural gas from underground pipes,

2 Propane (bottled gas), or

3 Electricity
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Figure A.13 Fuel used by clothes dryer

0 No dryer

1 Natural gas from underground pipes,

2 Propane (bottled gas), or

3 Electricity,
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Figure A.14 Combined all secondary heating equipment

0 No secondary heating equipment

1 Central warm-air furnace with ducts to individual rooms other

than a heat pump

2 Steam/hot water system with radiators/convectors in each

room or pipes in the �oor or walls

3 Built-in �oor/wall pipeless furnace

4 Built-in room heater burning gas, oil, or kerosene

5 Cooking stove used for heating and cooking
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Figure A.15 Is the thermostat programmable

0 No

1 Yes

2 No thermostat
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Figure A.16 Programmable thermostat lowers heat at night

0 No

1 Yes

2 No thermostat or not programmable
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Figure A.17 Programmable therm lowers heat during the day

0 No

1 Yes

2 No thermostat or not programmable
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Figure A.18 Main fuel used for heating home

0 Propane (bottled gas)

1 Natural gas from underground pipes

2 Fuel oil

3 Kerosene

4 Electricity

5 Wood

7 Solar
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Figure A.19 Type of heating equipment providing the heat

0 No heating equipment used

1 Steam/Hot water system with radiators/convectors in each

room or pipes in the �oor or walls

2 Heat pump

3 Central warm-air furnace with ducts to individual rooms other

than a heat pump

4 Built-in electric units in each room installed in walls, ceiling,

baseboard, or �oor

5 Built-in �oor/wall pipeless furnace

6 Built-in room heater burning gas, oil, or kerosene

7 Heating stove burning wood, coal, or coke

8 Fireplace

9 Portable electric heaters

10 Portable kerosene heaters

11 Cooking stove that is used for heating and cooking
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Figure A.20 Natural gas used for water heating

0 No

1 Yes
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Figure A.21 How natural gas is paid

0 HH pays all

1 All in Rent/Fee

2 Some paid, some included in rent

3 Other
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Figure A.22 Is someone at home all day on a typical weekday

0 No

1 Yes
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Figure A.23 Reported stories in housing unit

0 One story

1 Two stories

2 Three stories

3 Four or more

4 Split level

5 Other
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Figure A.24 Basement/crawl space heated

0 no basement

1 none

2 part

3 all
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Figure A.25 How much of the attic is warm

0 no attic

1 none

2 part

3 all
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Figure A.26 Year home built

0 BEFORE 1940

1 1940-49

2 1950-59

3 1960-69

4 1970-79

5 1980-84

6 1985-89

7 1990-94

8 1995-99

9 2000-02

10 2003

11 2004

12 2005
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Figure A.27 How many thermostats overall
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Figure A.28 Number of rooms not heated last winter
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Figure A.29 Type of window glass

0 Single-pane glass

1 Double-pane glass

2 Double-pane glass with Low-E coating

3 Triple-pane glass

4 and 5 Triple-pane glass with Low-E coatings
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Figure A.30 Number of occupants (0=none, up to 10)
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Figure A.31 Total combined income in the past 12 months

0 Less than $2,500

1 $2,500 to $4,999

2 $5,000 to $7,499

3 $7,500 to $9,999

4 $10,000 to $14,999

5 $15,000 to $19,999

6 $20,000 to $24,999

7 $25,000 to $29,999

8 $30,000 to $34,999

9 $35,000 to $39,999

10 $40,000 to $44,999

11 $45,000 to $49,999

12 $50,000 to $54,999

13 $55,000 to $59,999

14 $60,000 to $64,999

15 $65,000 to $69,999

16 $70,000 to $74,999

17 $75,000 to $79,999
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18 $80,000 to $84,999

19 $85,000 to $89,999

20 $90,000 to $94,999

21 $95,000 to $99,999

22 $100,000 to $119,999

23 $120,000 or more


