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Smart weapons promise to provide leap ahead capability with regard to accuracy and 

engagement range for medium and large caliber projectiles. One of the most critical 

components of a smart weapon system is its sensor suite that provides position, 

orientation, and velocity information as the projectile flies down range so that effective 

control action can be taken in flight. Great strides have been made in creating very 

small and rugged Inertial Measurement Units (IMU) using MEMS accelerometers and 

vibrating gyroscopes. However, all IMU systems operate by integrating accelerometer 

and gyroscope measurements. Thus, they must be initialized at launch to produce 

sufficiently accurate position and orientation data. Due to inherent uncertainty in shot-

to-shot launch conditions, for gun launched projectiles, initial conditions cannot be 

adequately specified by the firing platform like it can with aircraft and missiles. 

Currently, there is no adequate method to initialize IMU sensor suites on gun launched 

munitions. 



 

 

 

This thesis investigates a novel concept for determining the full state of a projectile 

near the muzzle of the gun. The methodology relies on the gun system inducing a 

known spatially varying magnetic field in the vicinity of the muzzle of the gun. Using 

readings from a cluster of magnetometers embedded within the projectile, the full state 

of the projectile is determined by solving a nonlinear set of equations.  
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INITIAL STATE ESTIMATION FOR A GUN LAUNCHED 
PROJECTILE IN A SPATIALLY VARYING MAGNETIC 

FIELD 
 
 

1. INTRODUCTION 
 

1.1. Outline 

Gun launched projectiles provide a significant challenge for the problem of 

navigation. Unlike aircrafts and missiles, whose initial conditions can be specified by 

the firing platform, the initial conditions for gun launched projectiles cannot be 

adequately specified, due to the inherent uncertainty in shot-to-shot launching 

conditions.   

 

Smart weapons or Precision Guided Munitions are weapons that can be aimed or 

directed against a single target, relying on their own guidance systems. One of the 

most critical components of a smart weapon system is its sensor suite that provides 

position, orientation, and velocity information as the projectile flies down range so 

that effective control action can be taken in flight. Great strides have been made in 

creating very small and rugged Inertial Measurement Units (IMU) using MEMS 
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accelerometers and vibrating gyroscopes. However, all IMU systems operate by 

integrating accelerometer and gyroscope measurements. Thus, they must be initialized 

at launch to produce sufficiently accurate position and orientation data. Currently, 

there is no adequate method to initialize IMU sensor suites on gun launched 

munitions. 

 

This thesis investigates a novel concept for determining the full state of a projectile 

near the muzzle of the gun. The methodology relies on the gun system inducing a 

known spatially varying magnetic field in the vicinity of the muzzle of the gun. Using 

readings from a cluster of magnetometers embedded within the projectile, the full state 

of the projectile is determined by solving a nonlinear set of equations. 

 

1.2. Organization of the Thesis 

Chapter 2 provides the background of this thesis. It briefly explains the motivation 

behind the initial state estimation problem. Chapter 3 describes the mathematical 

model of the system and develops the relationship between sensor readings and the 

projectile state. Chapter 4 presents the results of the MATLAB simulation for various 

different conditions. Chapter 5 discusses the results of the simulations and presents the 

scope for future work in the initial state estimation problem.  
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2. BACKGROUND 

 

2.1. Smart Weapon Systems 

Smart Weapons or Precision Guided Munitions provide a leap-ahead capability in 

terms of accuracy and engagement range for medium and large caliber projectiles. 

They are weapons that can be aimed at a target based on their own guidance systems. 

Smart weapons can be launched from aircrafts, ships, submarines, land vehicles or 

even by individual soldiers on ground [6]. 

 

Typically, smart weapons have two components – the Guidance Unit and the Control 

Unit. The guidance unit consists of a sensor which senses energy originating from the 

source or target destination. The control unit controls the flight of the projectile from 

the source to the target.   

 

2.2. Inertial Navigation for Smart Weapons 

Inertial navigation is the most accepted solution for guidance of smart weapons in 

military navigation applications, since it does not need any external aid or references. 

It can work anywhere and can operate autonomous, without using antennas or 

producing signatures. Thus, it can not be disturbed or manipulated by external sources.  
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However, errors in inertial navigation grow with time and inertial navigation sensors 

require a significant calibration effort before operation. It has been shown that a 

combination of GPS receivers and IMU sensors can be used to determine accurate 

position, velocity and attitude information of a projectile in flight, if the pre-launch 

calibration of IMU sensors is done accurately [10]. But, the initialization of inertial 

navigation sensors can not be done before launch, since the launch shock changes 

sensor errors unpredictably. Thus, inertial sensor calibration has to be done in flight 

[9]. 

 

Inertial navigation is based on inertial sensors. There are many types of inertial 

sensors for use with smart weapons, such as accelerometers, gyroscopes, 

magnetometers and inertial measurement unit sensors [2]. Accelerometers measure the 

acceleration of a point relative to the ground. Gyroscopes measure the angular velocity 

vector of the projectile with respect to the ground. Magnetometers measure the dot 

product between the magnetic field vector and the sensitive axis of the magnetometer 

at a particular point. They do not measure any rigid projectile model states directly, 

and require processing to obtain useful sensor feedback data. The Inertial 

Measurement Unit Sensors are multi-sensors that utilize three orthogonal 

accelerometers and three orthogonal gyroscopes. They use projectile kinematic 

differential equations to obtain state estimates. However, since estimates are obtained 
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by a numerical solution of a nonlinear differential equation, the initial conditions must 

be supplied to the sensor.  

 

Magnetometer sensors have been used in navigation since centuries.  Advances in 

technology have led to solid state electronic compasses, based on the original 

magnetic compasses used by sailors. Electronic compasses offer many advantages 

over conventional needle type or gimballed magnetic compasses, such as shock and 

vibration resistance, electronic compensation for stray field effects, and direct 

interface to electronic navigation systems [3]. They can be used to sense the strength 

and direction of magnetic field generated not only from the Earth, but also from 

permanent magnets, magnetized magnets, and fields generated form electric currents. 

Thus, magnetic sensors are being used with many navigation control systems.  
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3. INITIAL STATE ESTIMATION 
 

This chapter suggests a solution to the problem of initial state estimation. It describes 

the rigid body model for a projectile and develops the equations of motion for a 

magnetometer sensor system. It then suggests a solution to the initial state estimation 

problem using the Enhanced Newton Method and Nonlinear Regression.  

 

3.1. Rigid Body Model of Projectile 

The definition of the position and orientation of a 6 Degree Of Freedom (DOF) 

projectile with sensors is aided by three main reference frames defined as follows 

• I-frame: The ground is used as an inertial reference frame. It is fixed to the surface 

of earth and situated such that II JI
��

− are in the plane of ground and IK
�

 

points down. 

• B-frame: The body frame is located at the projectile mass center. It is fixed such 

that BI
�

 points out of the nose of the projectile and BB KJ
��

−  form a right 

handed system.  

• S-frame: The sensor frame is fixed on the rigid body and aligned with a sensor. 

The sensor frame is defined such that the outputs of the ith sensor are along 

SiSiSi KJI
���

,, .  
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Figure 3.1 shows the geometry of a projectile with respect to these three reference 

frames. Inertial Frame is fixed to surface of the earth, Body Frame is centered at the 

Center of Gravity of the projectile and Sensor Frame is centered at the Center of 

Gravity of the sensor, which is placed on the projectile. 

 

 

Figure 3.1: Projectile Geometry with respect to Inertial, Body and Sensor Reference 
Frames 

 

The rigid body model of a projectile can be defined by using components of the 

position vector of mass center in inertial reference frame ( zyx ,, ) and body orientation 

Euler angles ( ψθφ ,, ). Figure 3.2 shows the geometry of the projectile with respect to 
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orientation of the projectile in the inertial frame, with Euler roll (φ ), pitch (θ ) and 

yaw (ψ ) angles.  

 

Figure 3.2: Euler Angle Geometry of a Projectile with respect to Inertial Frame 
 

3.2. Reference Frame Relationships 

The Inertial Reference Frame and Body Reference Frame are related by a sequence of 

three single-axis Body Fixed Rotations. Starting with the Inertial frame and rotating 

through angle ψ  about axis IK
�

 generates Intermediate Frame 1. Rotating this frame 

through an angle θ  about the axis 1J
�

 generates the No Roll Frame (NR). Rotating NR 

φ
 

 

φ

ψ

IK
�

IJ
�

II
�
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through an angle φ  about the axis NRI
�

 generates the Body Frame (B). These rotations 

can be expressed mathematically as shown in equations (3.2.1) – (3.2.3). 

 

 
1

1

1

cos sin 0

sin cos 0

0 0 1

I

I

I

I I

J J

K K

ψ ψ
ψ ψ

� � � �� �
� � � �� �= −� 	 � 	� �
� � � �� �
 ��  � 

� �

� �

� �
 (3.2.1) 

 
1

1

1

cos 0 sin

0 1 0

sin 0 cos

NR

NR

NR

I I

J J

K K

θ θ

θ θ

� � � �−� �
� � � �� �=� 	 � 	� �
� � � �� �
 ��  � 

� �

� �

� �
 (3.2.2) 

 

1 0 0

0 cos sin

0 sin cos

B NR

B NR

B NR

I I

J J

K K

φ φ
φ φ

� � � �� �
� � � �� �=� 	 � 	� �
� � � �� �−
 ��  � 

� �

� �

� �
 (3.2.3) 

 

The three equations can be combined together to generate the equation for the 

transformation between the Inertial Frame and the Body Frame shown in equation 

(3.2.4) 

 

 [ ]
B I I

B I B I

B I I

I I Ic c c s s

J s s c c s s s s c c s c J T J

c s c s s c s s s c c cK K K

θ ϕ θ ϕ θ

φ θ ϕ φ ψ φ θ ϕ φ ϕ φ θ

φ θ ϕ φ ψ φ θ ϕ φ ψ φ θ

� � � � � �� �−
� � � � � �� � � � � �= − + =� �� 	 � 	� �

� �� � � �� �+ −
 � � �� � � ��  
 � � 

� � �

� � �

� � �
 (3.2.4) 
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Similarly, the transformation between the Body Frame and Sensor Frame is given by 

equation (3.2.5) 

 [ ]
�
�


��
	

�

�
�
�

��
�

�

=

�
�


��
	

�

�
�
�

��
�

�

B

B

B

Si

Si

Si

Si

K

J

I

T

K

J

I

�

�

�

�

�

�

 (3.2.5) 

 

3.3. Projectile State Variables 

A rigid projectile has six degrees of freedom. Since each degree of freedom generates 

a second order differential equation, the model requires 12 state variables. The full 

state of the projectile is given by equation (3.3.1). 

 

x

y

z

u

v

w

p

q

r

φ
θ
ψ

ξ

� �
� �
� �
� �
� �
� �
� �
� �
� �= � 	
� �
� �
� �
� �
� �
� �
� �
� �
� 

�
  (3.3.1) 

where, 

zyx ,,   = Components of position vector of the mass center in an inertial frame. 



 

 

11 

ψθφ ,,  = Euler roll, pitch and yaw angles. 

, ,u v w   = Components of velocity vector of the mass center in an inertial frame. 

rqp ,,  = Components of angular velocity of the system in the body reference frame. 

 

The velocity vector definition for a rigid body is given in equations (3.3.2) and (3.3.3).  

 

 /CG I I I IV xI yJ zK= + +
� � � �

� � �  (3.3.2) 

 /CG I B B BV uI vJ wK= + +
� � � �

 (3.3.3) 

Comparing, equations (3.3.2) and equation (3.3.3) using equation (3.2.4), we can write 

equation (3.3.4) 

              

c c s s c c s c s c s sx u

y c s s s s c c c s s s c v

z ws s c c c

θ ψ φ θ ψ φ ψ φ θ ψ φ ψ

θ ψ φ θ ψ φ ψ φ θ ψ φ ψ

θ φ θ φ θ

� �− +
� �� � � �

� � � �� �= + −� 	 � 	� �
� � � �� ��  � −� �


 �

�

�

�

 (3.3.4) 

Similarly the definition of angular velocity for a rigid body is given by equations 

(3.3.5) and (3.3.6). 

 / 1B I I NRK J Iω ψ θ φ= + +
� � �� � ��  (3.3.5) 

 /B I B B BpI qJ rKω = + +
� � ��

 (3.3.6) 

Comparing equations (3.3.5) and (3.3.6) using equation (3.2.4), we can write equation 

(3.3.7) 
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1

0

0 / /

s t c t p

c s q

rs c c c

φ φ θ φ θ
θ φ φ
ψ

φ θ φ θ

� �
� � � �� �
� � � �� �= −� 	 � 	� �� � � �� �� �  � �
 �

�

�

�

 (3.3.7) 

Equations (3.3.4) and (3.3.7) are the Kinematic Differential Equations of the 

projectile.  

 

3.4. Magnetometer Sensor Readings 

Near the muzzle of the gun, it is assumed that a magnetic field is generated that is a 

function of the spatial position of the sensor. It is most easily defined in the ground 

frame (I-frame).  

 IAOzIAOyIAOxA KreJreIree
�������

)()()( →→→ ++=  (3.4.1) 

where, Ae
�

 is the magnetic field at point A in space.   

The magnetic field experienced by a magnetometer moving in space is given by 

IiiiizIiiiyiIiiixiAOSiSi KzyxeJzyxeIzyxeree
������

),,(),,(),,()( ++== →  (3.4.2) 

For an ideal magnetometer, the components of the magnetic field are recorded in the 

iS  reference frame.  

 SiiiiziSiiiiyiSiiiixiSi KzyxmJzyxmIzyxme
����

),,(),,(),,( ++=  (3.4.3) 

Equating expressions of Sie
�

 from equations (3.4.2) and (3.4.3) in frame iS  yields 
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Like all sensors, real magnetometers experience errors such as noise, bias, cross axis 

sensitivity and scale factor. Thus a real magnetometer output takes the form 
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Which, from equation (3.4.4) is equivalent to 
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And, 
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We shall now generate an expression for 
•

BT . From equation (3.2.4), we have  

 [ ] [ ]
B I I B

T

B B I I B B

B I I B

I I I I

J T J J T J

K K K K
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 (3.4.9) 

Also, note that 
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B

I

KTJTIT
dt

Id ���
�

•••
++= 131211  

IBIBIB
B

I

KTJTIT
dt

Jd ���
�

•••
++= 232221  

IBIBIB
B

I

KTJTIT
dt

Kd ���
�

•••
++= 333231  

 [ ]

I

B

I BI
TB

B I B B B

I I B
B

dI

dt
I I

dJ
T J T T J

dt
K K

dK

dt

• •

� �
� �
� � � � � �
� � � � � �� � � � � �� � � �

� = =� 	 � 	 � 	� � � �
 � 
 �� � � � � �
� � � �� � �  � 

� �
� �� 

�

� �

�
� �

� �
�

 (3.4.10) 

Using the frame derivative relationship,  
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Therefore, 
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Equating expressions (3.4.10) and (3.4.14), 
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Since xie , yie  and zie are functions of quantities xi, yi and zi, 
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The position of the ith magnetometer is related to the mass center position by the 

following equation 
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 (3.4.20) 

where, 

 IIICGO KzJyIxr
���� ++=→  

 BiBiBiiCG KWLJBLISLr
���� ∆+∆+∆=→  

 

Taking a derivative of this expression yields 
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Using rotational kinematic equation (3.3.4) and equation (3.4.15) we get 
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Re-expressing the ideal magnetometer equations, 
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  (3.4.24) 

Substituting equation (3.4.23) into equation (3.4.24), 
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(3.4.25) 

Thus the full state of the rigid projectile is contained in the magnetometer and 

magnetometer derivative expressions.  

The translational velocity components ( wvu ,, ) and the angular rate components 

( rqp ,, ) are present in the time derivatives of the magnetometer readings. Thus, in 

order for the translational velocity components to be contained in 
•

xim , 
•

yim and 
•

zim the 

magnetic field around the muzzle of the gun must be spatially varying. If the magnetic 

field is constant in the area around the gun muzzle, then the matrix EJ  is zero and the 

dependence of  
•

xim , 
•

yim and 
•

zim on u , v  and w  is eliminated.  However, the angular 

rate components p , q  and r  appear twice; once with the magnetic field component 

having a spatially varying nature, and once without it. Thus p , q  and r  are present in    

•

xim , 
•

yim and 
•

zim even when the magnetic field is spatially constant.  
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3.5. Projectile Initial State Estimation  

A spatially varying and known magnetic field is set up near the gun muzzle. This 

magnetic field is sampled by the magnetometers that pass through the field.  It is 

assumed that an array of magnetometers mounted on the projectile records a finite 

sample of measurements in the area around the muzzle of the gun. The problem is split 

into two parts – estimating the first six states of the projectile, and then using 

Projectile Kinematic Equations to find the last six states.  

 

3.5.1. Enhanced Newton’s Method 

To solve the first part of this problem, consider the magnetometer equation given in 

equation (3.4.23).  Given the magnetometer data at some time, and an estimate of the 

states, the residual of these equations is computed. 
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where mxf , myf , mzf , are the equation residuals.  If N  tri-axial magnetometers are 

mounted on the projectile, the residual vector is defined in the following manner.  

 { }mF F=  (3.5.2) 
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where, 
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The goal of the estimation procedure is to find the state vector 

[ ]X x y z φ θ ψ=  such that mF  is sufficiently close to zero.  A nonlinear 

least squares procedure is used for this purpose where a merit function defined below 

is minimized. 

 WFFJ T

2

1=  (3.5.3) 

Note that W  is a positive definite symmetric matrix.  To minimize the merit function, 

it is approximated as a quadratic function in the initial projectile state vector. 
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where,  
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And, 
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(3.5.7) 

Solving for X  to force 
X

J

∂
∂
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 (3.5.8) 

Since our nonlinear equations are not perfectly modeled by a quadratic, we iteratively 

perform this operation until convergence. 
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 (3.5.9) 

Furthermore, the nonlinear equations can be so poorly modeled by a quadratic that a 

new point may actually generate a higher value of cost. To get around this, we use the  

Enhanced Newton’s Method, where we alter the pure Newton’s Method with a line 

search scalar parameter. 
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where, iα  is a line search parameter and the term 
12

2

i

J J

X X

−
� �∂ ∂� �

� 	� �∂ ∂� 
 �
 gives the search 

direction.   

 

The line search parameter is determined by a back stepping procedure in which iα  is 

assumed to be 1, at each iteration, to compute the next state. This new state is used to 

calculate the new cost function 1J . If 01 JJ β≤ , then 1=iα  is accepted and the 
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process is repeated. On the other hand, if 01 JJ β> , then iα is set to ki /α , and 2J  is 

computed. If 02 JJ β≤ then 1=iα  is accepted and the process is repeated.  

 

3.5.2. Non Linear Regression 

To solve the second part of the problem, we find the derivatives of the estimates of the 

first six states using Non Linear Regression, and use the Projectile Kinematic 

Equations to find the translational and angular velocity components of the state.  

 

For finding the derivative of an estimated state, consider its estimate over several 

instances of time. For example, let us consider the estimate of state x over p instances 

of time. That is, the state vector 1 2[ ]px x x�  corresponds to time instants 

1 2[ ]pt t t� . We assume that the data is fit to an mth order polynomial, such that 

the following equations hold. 
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This can be written in matrix form as follows 
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Let, 
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The equation can be rewritten as 

 BA X=  (3.5.12) 

Equation (3.5.12) can be solved for the vector A to find the coefficients of the 

nonlinear equations. Since B is a rectangular matrix, we will have to use the Least 

Mean Square solution of equation (3.5.12) to solve for A. 
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Once the curve through a state is found, we can find its derivative as follows 
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 (3.5.13) 

States , ,u v w  can be found by using derivatives of estimates of states , ,x y z  and the 

Projectile Kinematic Equation (3.3.4). Similarly, states , ,p q r can be found by using 

the derivatives of estimated states , ,φ θ ψ  and Projectile Kinematic Equation (3.3.6).    
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4. IMPLEMENTATION AND RESULTS 
 

Having suggested the solution to the Initial State Estimation problem, we now provide 

the empirical verification of the hypothesis. This chapter presents the results of the 

simulations and trade studies performed for different sensor geometries and magnetic 

fields. The simulations were performed using MATLABv7.0.4.  

 

4.1. Experimental Setup and Procedure 

In order to estimate the initial state of the projectile, magnetometer array sensor data 

has to be obtained. According to the methodology described in Chapter 3, sensor data 

for each sensor in the array is required over a period of time. The period of time over 

which this data is obtained, should be chosen carefully. It should be short enough to 

ensure linear variation of data, but long enough to generate enough number of samples 

for finding state derivatives.  

 

For example, figure 4.1 shows the variation of sensor readings of a single 

magnetometer with time. We would like to select a sequence of as many points from 

this data set, as possible; since a greater number of points would generate more 

accurate state derivative estimates. However, if we pick the complete data set, 

nonlinearities in the data would prevent us from estimating state derivatives 
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accurately. Thus, we pick the data points enclosed by the red rectangle in the figure, to 

select a period which is almost linear and generates enough data points.  

Figure 4.1: Selection of a data burst of a nonlinear sequence of magnetometer data 

 

After an appropriate selection of magnetometer data is made, the first six states of the 

projectile are estimated at each data point, using the Enhanced Newton’s Method as 

described in Section 3.5.1.  

 

After the first six states are estimated at each time instant over the period of data burst, 

the next six states are determined using Nonlinear Regression, as described in Section 

3.5.2.  
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Thus, an estimate of the full state is obtained by starting from magnetometer sensor 

readings. 

 

4.2. State Estimation Without Sensor Noise  

When there is no sensor noise, that is, each magnetometer in the sensor array measures 

the magnetic field accurately, the methodology works extremely well. The following 

sections show the results for a magnetic field generated by a current flowing through a 

a  bar magnet and a rectangular current carrying loop. 

 

4.2.1. Bar Magnet Magnetic Field 

This section presents the results of state estimation when the projectile is traveling in a 

magnetic field generated by a bar magnet placed on the top of the muzzle of the 

launching gun. The magnetic field readings are obtained over 25 time steps by a 

sensor array having five magnetometers placed randomly on the projectile. The 

average of the final error over the 25 time steps is found to be 42.88 10 %−×  of the 

actual values. The graphical results are as shown in figures 4.2 and 4.3.  
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Figure 4.2: Estimates of first six states for Bar Magnet magnetic field 



 

 

30 

 

��� � ��� � ��� � ��� �

�	��

�

���

��������

��������

��������

��������

��������

Time Axis

V
ar

ia
tio

n 
of

 u
State no 7

������	�����	��	�����

����� ����	�����	��	�����

��� � ��� � ��� � ��� �

�	��

�

���

���

��

���

����

����

����

���

Time Axis

V
ar

ia
tio

n 
of

 w

State no 9

������	�����	��	�����

����� ����	�����	��	�����

��� � ��� � ��� � ��� �

�	��

�

�����

����

�����

����

�����

����

�����

����

Time Axis

V
ar

ia
tio

n 
of

 q

State no 11

������	�����	��	�����

����� ����	�����	��	�����

��� � ��� � ��� � ��� �

�	��

�

����

����

���

���

����

����

����

���

���

Time Axis

V
ar

ia
tio

n 
of

 v

State no 8

������	�����	��	�����

����� ����	�����	��	�����

��� � ��� � ��� � ��� �

�	��

�

�����

�����

�����

�����

�����

�����

��������

��������

Time Axis

V
ar

ia
tio

n 
of

 p

State no 10

������	�����	��	�����

����� ����	�����	��	�����

��� � ��� � ��� � ��� �

�	��

�

�����

���

����

����

�����

�

�����

Time Axis

V
ar

ia
tio

n 
of

 r

State no 12

������	�����	��	�����

����� ����	�����	��	�����

 

 

Figure 4.3:  Estimates of last six states for Bar Magnet magnetic field  
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4.2.2. Rectangular Loop Magnetic Field 

This section presents the results of state estimation when the projectile is traveling in a 

magnetic field generated by current flowing through a 5cm by 3cm rectangular loop 

conductor, coiled around the muzzle of the launching gun. The magnetic field readings 

are obtained over 25 time steps by a sensor array having five magnetometers placed 

randomly on the projectile. The average of the final error over the 25 time steps is 

again found to be 42.88 10 %−× . The graphical results are as shown in figure 4.4.  
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Figure 4.4: Estimates of the projectile states for Rectangular Loop magnetic field 
 
 
Thus, both bar magnet and rectangular loop generated fields show exactly same results 

when sensor data is perfect.  

 

4.3. State Estimation with Sensor Noise 

When sensor noise is present estimation of projectile state is dependent upon the 

percentage of noise present in the sensor readings. This section presents the results of 

state estimation with rectangular loop and bar magnet generated magnetic fields when 

sensor noise is present.  

 

4.3.1. Bar Magnet Magnetic Field 

The estimation error is directly dependent on the amount of noise added to the sensor 

readings. This section presents the estimation results for a projectile traveling in a 
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magnetic field generated by a bar magnet placed on the top of the muzzle of the 

launching gun. The magnetic field readings are obtained over 25 time steps by a 

sensor array having five triaxial magnetometers placed in a ring around the projectile.  

 

The sensor readings are corrupted by zero mean, white gaussean noise which is 

approximately 410 %− of the sensor readings. This is found to be the highest level of 

noise that this system could tolerate, within reasonable error bounds. The average of 

the final error over the 25 time steps is found to be 0.05% , which is considerably 

higher than the no noise case. The graphical results are as shown in figure 4.5.  
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Figure 4.5: Estimates of Projectile States with 410 %− sensor noise with Bar Magnet 
magnetic field

 
 

 

4.3.2. Rectangular Loop Magnetic Field 

 
This section presents the estimation results for a projectile traveling in a magnetic field 

generated by current flowing through a 5cm by 3cm rectangular loop conductor, coiled 

around the muzzle of the launching gun. The magnetic field readings are obtained over 

25 time steps by a sensor array having 11 rings, each having 36 magnetometers, 
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placed around the projectile, and 3 rings, each having 24 magnetometers, embedded 

inside the projectile.  

 

The sensor readings are corrupted by zero mean, white gaussean noise which is 

approximately 0.1% of the sensor readings. This is found to be the highest level of 

noise that this geometry could tolerate, within reasonable error bounds. The average of 

the final error over the 30 time steps is approximately found to be 0.05% . Thus, the 

estimate results for a square loop generated magnetic field are considerably better than 

those for a bar magnet generated field in the case of noisy sensor readings. The 

graphical results are as shown in figure 4.5.  
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Figure 4.6 Estimates of Projectile States with 0.1% sensor noise with Rectangular 

Loop magnetic field  
 

 

Since rectangular loop magnetic field generates better state estimates as compared to 

bar magnet magnetic field, we will use the rectangular loop magnetic field for all 

results henceforth, unless specified. The magnetic field readings will be obtained from 

a sensor array having 11 rings, each having 36 triaxial magnetometers, placed around 

the projectile, and 3 rings, each having 24 triaxial magnetometers, embedded inside 

the projectile.  
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4.4. Trade Studies 

This section describes how the accuracy of the estimation varies according to changes 

in various factors such as, noise levels, period of data burst, and sensor geometry. 

Since the rectangular loop performs better in noisy conditions, the trade studies are 

performed using the rectangular loop magnetic field. 

 

4.4.1. Variation of Error with Sensor Noise Level 

The estimation accuracy decreases as sensor noise levels are increased. The final error 

of estimation increases linearly with sensor noise. This can be seen from Figure 4.7, 

which shows the average of the final error over 25 time instants for several noise 

levels. The final error plotted is also calculated as a percentage of the actual state 

readings. Noise is measured as a percentage of exact magnetometer sensor data.  
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Figure 4.7: Variation of Error in Estimate with Sensor Noise 
 

 
Since the error variation at low noise levels is not very clear from the figure, Figure 

4.8 has been included to show the steady increase of the error with noise percentage at 

extremely low noise levels. 
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Figure 4.8: Variation of Error in Estimation of State Vales at Low Noise Levels 
 

4.4.2. Variation of Error with Data Burst Period 

Data burst period plays a very important role in determining the accuracy of the state 

estimate. The period of data burst required is dependent upon the sensor noise levels. 

In low noise conditions, a lower data burst period gives a more accurate result than a 

high period, since increasing the number of time steps also increases the nonlinearities 

in the sensor readings and state values. However, at high noise levels, a longer period 

of data burst works better since estimation of the last six states by using nonlinear 

regression (described in section 3.5.2) is more accurate with higher number of data 

points. Fitting a curve through the first six states also acts as a crude form of filtering 
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out the noise, and this filtering effect overshadows the ill-effects of nonlinearities to a 

certain extent.  

 

This can be seen more clearly from a comparison of figures 4.9 and 4.10. Figure 4.9 

shows the variation of final error with respect to data burst period in the case of 

magnetometer readings corrupted by 0.03% noise. Figure 4.10 shows the same results 

for sensor readings without any noise. It can be seen from the two figures that while 

the error falls in the first case, it increases steadily in the second. 
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Figure 4.9: Variation of Final Error with Data Burst Length with magnetometer 
readings corrupted by 0.03% Noise 
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It can be seen from Figure 4.9 that as the number of data points is increased, the final 

error in estimation decreases. This fall in the error is almost quadratic. However, after 

data burst length of 25, the error begins to increase again. This is because after this 

point the positive effects of the crude filtering described earlier can no longer 

overshadow the effects of increasing nonlinearities in the data.  
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Figure 4.10: Variation of Final Error with Data Burst Length with accurate 
magnetometer sensor readings 
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The results in Figure 4.10 are in a total contrast to those in Figure 4.9. When there is 

no sensor noise, the final error increases steadily with the number of data points, 

because there is no effect of filtering, since no sensor noise is present.   

 

4.4.3. Variation of Error with Number of Magnetometers 

The number of magnetometers and the arrangement of sensors on the projectile also 

have an effect on the accuracy of the state estimate when sensor data is noisy. This is 

because certain geometries generate a better signal to noise ratio compared to others. 

In general, increasing the number of magnetometers in the sensor array leads to an 

increase in accuracy of the method. This can be seen more clearly from Figure 4.11, 

which shows the results for the state estimation with approximately 0.03% sensor 

noise.  
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Figure 4.11: Variation of Final Error with Number of Magnetometer Sensors 
 
 

Figure 4.11 presents the results for sensor geometry with ‘n’ rings, each having ‘m’ 

triaxial magnetometers fixed symmetrically on the projectile. The results show that as 

the number of rings (n) is increased, the error decreases. Also, increasing the number 

of magnetometers per ring (m) causes the error to decrease steadily.  
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5. CONCLUSION 
 
 
This chapter discusses the results presented in Chapter 4 and the utility of the 

magnetometer sensor system for estimating initial state of gun launched projectiles. It 

also presents the further improvements that can be made to the design and scope for 

future work related to this system. 

 

5.1. Discussion of the Results 

The results shown in Chapter 4 indicate that the suggested solution to the initial state 

estimation problem works very well for a no noise case, irrespective of the sensor 

geometry, number of magnetometers and the magnetic field used. However, the results 

show a clear dependence on these design parameters when sensor noise in increased.  

 

As the noise percentage of sensor readings is increased, the behavior of the system 

changes with the magnetic field used for the estimation. While a bar magnet generated 

magnetic field system can not withstand sensor noise higher than 0.0001%, the 

maximum sensor noise that the system can withstand with a rectangular loop 

generated field is approximately 0.1%. The rectangular loop magnetic field, thus, 

gives us practically usable results, since magnetometer sensors are known to be very 

accurate and noise levels are not expected to exceed this value.  
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The difference in the results for the two kinds of magnetic fields can be attributed to 

the spatial variation the fields. Figures 5.1-5.3 and 5.4-5.6 show the spatial variation of 

the bar magnet and square loop generated fields. It can be seen from the figures that 

the spatial variation of the square loop field is much more than the spatial variation of 

the bar magnet field. Thus, it can be concluded that the spatial variation of the 

magnetic field in which the projectile travels plays a very important role in the 

accuracy of the estimate.  
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Figure 5.1: Plot of Magnetic Field generated by a Bar Magnet 
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Figure 5.2: Plot of Magnetic Field generated by a Rectangular Loop   

 

The number of magnetometers used, and the sensor geometry also have an effect on 

the estimation as sensor noise increases. This is because specific arrangements of the 

sensors on the projectile body help in canceling out the effects of sensor noise, and 

increasing the Signal to Noise Ratio (SNR). However, the magnetometer geometry 

that ensures good results at 0.1% sensor noise for a rectangular loop magnetic field 

does not seem to be practically realizable. This is because the number of 

magnetometers (468) is too high for a practical realization. 
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Moreover, apart from the sensor noise levels, the results of the estimation are highly 

dependent upon the data burst period and the number of sensors also. It is interesting 

to see how noise level affects the period of data burst required for an accurate 

estimate. In high noise cases, most of the error in estimation comes from the error in 

the last six states, and this can be overcome by using a larger data burst period. 

However, as can be seen from the results shown in Figure 4.9, errors due to 

nonlinearities start to set in if the data burst period is increased beyond a certain 

length.   

 

5.2. Scope for Future Work 

Most of the error in the state estimation process comes from the use of nonlinear 

regression in estimating the last six states from the first six states. Thus, the estimation 

accuracy can be improved by using more accurate signal processing algorithms for 

finding the derivative of the estimates of the first six states.  

 

The effects of magnetic field properties on the estimate can be further investigated and 

magnetic fields that generate more accurate estimates can be found. Also, by studying 

the effects of sensor arrangements on signal to noise ratio, practically realizable sensor 

geometries, with fewer magnetometers, that give better state estimates could be found.  
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More methods to estimate subsets of the state vector could also be investigated. For 

example, a subset of the sensor suite could be switched on and off, estimating a part of 

the state vector each time, and finally the results could be combined to obtain a 

quicker and more accurate estimate of the complete state. A magnetometer sensor 

array could also be combined with other types of sensors such as accelerometers and 

gyroscopes to investigate the improvements in speed and accuracy of estimation. 
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