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Task Management (TM) refers to the function in which the human operator

manages his/her available sensory and mental resources in a dynamic, complex, safety-

critical environment in order to accomplish the multiple tasks competing for a limited

quantity of attention. There is reason to believe that the level of automation on the

commercial aircraft flight deck may effect TM, however to date there has been little

research that directly addresses this effect. Thus, the primary objective of this study was

to begin evaluating the relationship between TM of commercial airline pilots and the

level of automation on the flight deck by determining how automation affects the

frequency of Task Prioritization errors as reported in Aviation Safety Reporting System

(ASRS) incident reports. The secondary objective of this study was to create a

methodology that modeled an effective way to use ASRS incident report data in an

inferential analysis.

Two samples of ASRS incident reports were compared. The first sample was

composed of 210 incident reports submitted by pilots flying advanced technology aircraft

and the second sample was composed of 210 incident reports submitted by pilots flying

traditional technology aircraft. To help avoid confounding effects, the two samples were

further divided into three sub-samples each made up of 70 reports submitted during a

specified time period: 1988-1989, 1990-1991, and 1992-1993. Each incident report was

analyzed using an incident analysis form designed specifically for this study. This form

allowed the analyst to classify the incident report as either containing a Task

Prioritization error or not based on the narrative of the report.

Redacted for Privacy



Twenty-eight incident reports from the advanced technology sample and 15 from 

the traditional technology sample were classified as containing Task Prioritization errors. 

Using the Chi Square (x2) test and a significance level of 0.05, this difference was found 

to be statistically significant. 
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The Effect of Automation on the Frequency of Task Prioritization
 
Errors on Commercial Aircraft Flight Decks:
 

An ASRS Incident Report Study
 

1. INTRODUCTION 

1.1 Problem Statement 

In recent years there has been a growing awareness of human factors issues 

associated with the increased presence of automated systems on modern commercial 

aircraft flight decks. As flight deck automation becomes more sophisticated, it is able to 

perform many of the tasks previously performed by the pilots and the pilot's role 

becomes more like that of a manager. With this shift in the pilot's role, new strategies 

must be developed for the pilots to successfully perform their tasks. In order to do this, 

the effect that automation has on pilot performance must be understood. 

Technology has improved aircraft performance and reliability and by doing so has 

made significant contributions to both safety and the efficiency of operations. Despite 

this, there are still concerns about replacing the human functioning with automated 

systems because "it appears that the modern systems may be at the same time 

eliminating and producing errors; that certain types of errors are reduced, and others are 

enabled" (Wiener, 1989, p. 97). Enabling errors include both creating the possibility for 

new errors that did not exist previously and increasing the frequency of errors that 

already existed. Work focusing on these errors should not be to determine whether the 

traditional technology or the advanced technology produces the most errors overall, but 

rather to understand the errors that will be encountered in the new aircraft and how they 

may be successfully controlled. 

While there is no comprehensive listing of the errors enabled by the advanced 

technology, there are a number of ideas about what they may be. For example, there is 

speculation that errors in Task Management may be enabled by the advanced technology. 
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Task Management (TM) refers to the function in which the human operator 

manages his/her available sensory and mental resources in a dynamic, complex, safety-

critical environment in order to accomplish the multiple tasks competing for a limited 

quantity of attention. Flightcrews' must perform TM on the commercial flight deck 

because they do not possess the necessary resources to simultaneously execute all the 

tasks that demand their attention. The flightcrew must therefore prioritize the tasks in the 

order of most to least important and then allocate their resources according to this 

prioritization. In a dynamic system, the state of each task demanding attention 

continuously changes and as this occurs so too may change the relative urgency with 

which each task must be completed. Thus, the flightcrew must continuously perform the 

function of TM in order to maintain awareness of the changes in the state of the system 

and make the necessary revisions to the Task Prioritization. Flightcrews generally 

perform TM quite well as evidenced by the number of successful flights that occur each 

day. However, sometimes TM is not performed as effectively and the results can range 

from minor operational deviations to fatal accidents. Errors in TM can often be traced 

back to misprioritization. When a human operator misprioritizes tasks, I call this a Task 

Prioritization error. 

There are several reasons why it has been speculated that TM errors may be 

enabled by the advanced technology. First, there are a greater number of tasks to be 

performed in the automated aircraft. All the flight control tasks found in the traditional 

technology aircraft must still be performed in the advanced technology aircraft but, in 

addition to these tasks, there are now tasks associated with communicating with and 

managing the automation. Adding tasks to the queue of tasks demanding attention 

increases the demands on the flightcrew. While the automation provides additional 

external resources for the flightcrew to utilize, these resources must be managed which 

increases demands on the function of TM. Second, the same resources may be 

overloaded in the automated aircraft. Some of the demands added by automation require 

1 In this study I have not differentiated between the roles of the individual pilots but instead have 
considered the human function at the level of the flightcrew. In this sense, the flightcrew in a 2-person 
flight deck has twice as many (human) resources available and twice as many resources to manage than 
does an individual pilot. Thus. I will refer to the human component as 'flightcrew' throughout this study. 
See Palmer. Hutchins. Ritter, & vanCleemput (1993) for a similar approach. 
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the cognitive processing resources that are already taxed in the traditional technology 

aircraft. Because of this, more prioritization may be required because more tasks are 

demanding the same resources. And third, some of the advanced systems, such as the 

Flight Management System (FMS), may inappropriately draw the attention of the 

flightcrew away from more critical tasks. 

Because my interest lies in TM as it occurs in real flight operations, I ideally 

would like to collect the data from real flight operations. However, this method is often 

impractical. A viable alternative to viewing actual line operations is the use of incident 

reports submitted by pilots, such as those submitted to the Aviation Safety Reporting 

System (ASRS). ASRS incident reports are submitted voluntarily by aviation operations 

personnel (e.g., pilots, Air Traffic Controllers, flight attendants, ground personnel) and 

contain a description of a situation occurring in flight operations that the reporter believes 

has safety implications. With each report providing a description of an event that 

occurred in operations, they can be used as a practical way to view actual line operations 

from a pilot's perspective. 

In the past due to the nature of the data, ASRS incident reports have been used 

primarily for descriptive analyses. In this study, however, it would be more useful to 

conduct an inferential analysis. Such an analysis may be conducted by carefully 

constructing a research question and choosing an appropriate statistical test. Because few 

researchers have taken this approach, there are not many examples of effective inferential 

analysis using ASRS incident report data. 

1.2 Research Objectives 

The flightcrew's function of TM on the commercial flight deck is an important 

part of flight operations, and committing errors in TM can have severe consequences. 

There is reason to believe that the level of automation may affect TM, however to date 

there has been little research that directly addresses this effect. Thus, the primary 

objective of this study was to begin evaluating the relationship between TM of 
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commercial airline pilots and the level of automation on the flight deck by determining 

how automation affects the frequency of Task Prioritization errors as reported in Aviation 

Safety Reporting System (ASRS) incident reports. 

Because ASRS incident reports are primarily used for descriptive analyses, a 

methodology for conducting a good statistical comparison analysis is lacking. Therefore, 

the secondary objective of this study was to create a methodology that models an 

effective way to use ASRS incident report data in an inferential analysis. 

1.3 Overview of Thesis 

The following is an overview of the remaining portions of this thesis. 

Chapter 2 reviews the literature important to understanding how the level of 

automation present on the commercial flight deck could affect TM. First, flight deck 

automation and some of the issues that have been raised about it will be discussed. From 

this, it is evident that some basic concepts of human cognitive processing capabilities and 

limitations are important to understanding the flightcrew's performance on the flight 

deck, so the relevant research done in the area of attention addressing this will be 

presented. It is also important to understand how the flightcrew assesses a situation. 

Therefore, the concept of schema from cognitive science studies is presented to provide a 

valuable insight in how this may be done in a complex environment such as the 

commercial flight deck. Given these basic cognitive processing concepts, I will review 

some of the aviation human factors research concerned specifically with how a flightcrew 

manages tasks on the flight deck. Lastly, I will draw upon all these concepts to address 

the question: why would the level of automation on the flight deck affect task 

management? 

Chapter 3 then presents a review of the literature responsible for the design of this 

study. This chapter first presents a description of the Aviation Safety Reporting System 

(ASRS) and its incident reports. Next, several valuable descriptive studies that have been 
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performed using ASRS incident reports will be reviewed to illustrate the type of work 

and the findings that ASRS incident studies have yielded in the past. 

Chapter 4 describes the methodology used in this study. This chapter describes 

the precautions taken to ensure that the study used a representative data sample and made 

a fair comparison between the advanced and traditional technology populations. It also 

includes a description of the analysis tool used to analyze the incident reports. 

Chapter 5 presents the results of this study and includes the calculations that have 

been performed. Chapter 6 provides a discussion of the results and their relation to the 

objectives of this study and some concluding remarks. Following the conclusion are the 

bibliography and several appendices. 
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2. LITERATURE REVIEW PART I - ISSUES OF TASK 
MANAGEMENT 

2.1 Flight Deck Automation Issues 

In a general sense, today's commercial air carrier fleets are composed of two types 

of aircraft: advanced technology and traditional technology. The advanced technology 

aircraft incorporate a number of sophisticated automated systems that have the ability to 

perform tasks that in the past have been performed exclusively by the human pilots. 

These systems include such devices as the advanced autopilot, the Flight Management 

System (FMS), electronic instrument displays, and warning and alerting systems. 

Traditional technology aircraft are defined as lacking these types of automated systems. 

The presence of both types of aircraft in commercial fleets gives us a unique opportunity 

to compare them in present day operations. 

2.1.1 Flight Management System 

The Flight Management System (FMS) is one of the most novel devices on the 

advanced technology flight deck. The FMS is a highly integrated system that 

communicates with the pilot as well as other aircraft systems to perform a number of 

functions. Brief descriptions of some of these functions are presented in Table 2.1. The 

flightcrew interacts with the FMS via the Control and Display Unit (CDU) by entering 

information via the keypad and viewing the information displayed on the screen (see 

Figure 2.1). 

Because of the FMS's complexity and relative novelty, it has received a lot of 

attention as a possible source for new errors. Recently, there have been a number of 

aviation human factors studies conducted that were specifically concerned with the effect 

the FMS has on the flightcrew's performance (Eldredge, Mangold, & Dodd, 1992; Sarter 

& Woods, 1992; Sailer, 1991). 
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TABLE 2.1 Brief description of some of the functions performed by the FMS. 

Function Description 

Navigation Determination of position, velocity and wind. 
Performance Trajectory determination, definition of guidance and 

control targets, flight path predictions. Time and fuel 
at destination. 

Guidance Error determination, steering and control command 
generation. 

Electronic Instrument Computation of map and situation data for display. 
System 

Control and Display Unit Processing of keystrokes, flight plan construction, 
(CDU) and presentation of performance and flight plan data. 

Table adapted from Billings (1996). 
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FIGURE 2.1 An example of a FMS CDU in an advanced technology aircraft. 
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2.1.2 Errors enabled by automation 

While there is little doubt that technology has made significant contributions to 

both the safety and efficiency of operations, there are still concerns about replacing the 

human functioning with automated systems. With the introduction of automated 

systems, some flightcrew errors that had been a problem in the past have been 

significantly reduced (or eliminated). An example of this is the ability of the automated 

systems to track a precise heading with minimal deviations from the desired path in 

situations that pilots flying manually may err. 

On the other hand, this functional change may also create the opportunity for 

errors that had not been possible in the past, or increase the chance of previously 

existing errors to occur; Wiener (1989) has referred to this as "enabling" errors. An 

example of a type of error that has been enabled is gross navigational deviations due to 

data entry errors. It was a gross navigational error of this type that contributed to the 

American Airlines flight 965 accident near Cali, Colombia. Aeronautica Civil, the 

aircraft accident investigating board of the Republic of Colombia, determined that 

during the approach into the airport in Cali, Colombia, the flightcrew "selected and 

executed a direct course to the identifier in the mistaken belief that R was Rozo as it 

was identified on the approach chart. The pilots could not know without verification 

with the EHSI [Electronic Horizontal Situation Indicator] display or considerable 

calculation that instead of selecting Rozo, they had selected the Romeo beacon, located 

near Bogota, some 132 miles east-northeast of Cali" (Aeronautica Civil of the Republic 

of Colombia, 1997, p. 41). With the Romeo beacon programmed into the FMS, the 

airplane departed from its inbound course to Cali and flew east toward Bogota. When 

the flightcrew realized that they were off-course, they turned right to return to the 

extended centerline of the runway at Cali. At this point however, a direct course to the 

Cali airport led the aircraft into high mountainous terrain and shortly after their turn the 

aircraft impacted the side of a mountain. It would be highly unlikely that a gross 

navigational error such as this could occur without the automated systems. 
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Work focusing on these errors should not be to determine whether the traditional 

technology or the advanced technology produces the most errors overall, but rather to 

understand the errors that will be encountered in the new aircraft and how they may be 

successfully controlled. 

At this time there is no comprehensive listing of what the errors enabled by the 

advanced technology flight deck are, but there are a number of ideas about what they 

may be. Funk et al. (in review) have compiled a list of 92 issues about automation on 

the flight deck from a broad range of sources including accident reports, incident report 

studies, surveys, and scientific experiments. To determine which of these issues should 

be valid concerns, they compiled a database of both supporting and contradictory 

evidence that addresses these issues. They found that many of the automation issues 

require further investigation to determine if they are indeed problems with which the 

aviation community should be concerned. This listing contains a diversity of issues 

including such things as problems arising because of either a lack of or excessive 

confidence that the pilots have in the automation, difficulties of transitioning between 

aircraft with different levels of automation, and the effect that the design of the 

automation has on the flightcrew's performance. 

The theoretical concepts presented in the following two sections, Attention and 

Schema Theory, are related to human performance. These concepts will be used in a 

later section to hypothesize the relationship between automation on the commercial 

flight deck and Task Management (TM). 

2.2 Attention 

Some basic concepts of human cognitive processing capabilities and limitations 

are important to understanding the flightcrew's performance on the flight deck. The 

relevant psychology research done in the area of attention addressing this will be 

presented. 
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Though most people have an intuitive sense of what attention is, a good 

definition is difficult to find. Wickens (1984) has described the notion of attention as an 

"inferred underlying commodity, of limited availability, that enables performance of a 

task" (p. 67). In addition to the difficulty in finding a good definition, attention can be 

thought of both as the mechanism by which mental processing is concentrated 

(Kahneman, 1973), and as the concentrated mental processing itself (Eysenck & Keane, 

1990). Here, I will refer to attention in the sense of the mental processing itself rather 

than as the mechanism. 

2.2.1 Dual-Task Paradigms 

Much of the research that has been conducted to investigate attention has used 

the dual-task paradigm. The dual-task paradigm is the method in which a primary task 

and a secondary task are performed simultaneously. As the task parameters (i.e., task 

difficulty or instructions as to how much attention the subject should try to allocateto 

each task) are modified, the subject's performance on the tasks are measured. The 

subject's performance on the secondary task is then used as a gauge of how much 

attention the primary task is consuming. 

One such study using the dual-task paradigm was conducted by North (1977). In 

this study, subjects were instructed to perform a digit processing task and a tracking task 

at the same time. The digit processing task difficulty was varied as the subject's 

performance on both tasks was measured. The results of this study were interesting in 

that North found that even though the task parameters of the primary task were 

modified, the performance of secondary task was unchanged. 

2.2.2 Performance-Resource Function and Performance Operating 
Characteristic 

The Performance-Resource Function (PRF) is used to characterize how the 

amount of attention (i.e., resource) allocated to a task affects the quality of performance 

(Norman & Bobrow, 1975). The PRF can be used to illustrate two types of processing 
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limitations that humans experience when performing a task. The first type of processing 

limitation is caused by the task being data-limited. A task is data-limited when it is not 

possible to improve the performance of a task beyond a certain point due to the quality of 

the data (see Figure 2.2). The second type of processing limitation is caused by the task 

being resource-limited. A task is considered resource-limited when the performance of 

the task changes as resources are added or taken away (see Figure 2.2). 

I Resource Limited 
I--- Data Limited .1 

Resources Invested 100% 

Graph adapted from Wickens (1984). 

FIGURE 2.2 Hypothetical Performance-Resource Function (PRF). Single task 
performance is at point S. 

The Performance Operating Characteristic (POC) shown in Figure 2.3 has been 

developed to describe the extent to which two tasks can be performed together while the 

processing system is working at full capacity (Norman & Bobrow, 1975). The shape of 

the curve is determined by the amount of improvement that can be gained in one task by 

sacrificing the performance of the second task (Navon & Gopher, 1979). 
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Curve A 
Curve B 

Quality of Performance - Task B 

Graph adapted from Wickens (1984). 

FIGURE 2.3 Performance Operating Characteristic (POC). Curve A and Curve B each 
represents different pairs of tasks being performed simultaneously. 

2.2.3 Single Resource Theory 

Single Resource Theory posits that the human processing system is composed of 

one reservoir of undifferentiated resource (Wickens, 1984). It is able to describe our 

ability to perform multiple tasks simultaneously by asserting that attentioncan be 

allocated in graded quantity between separate activities. However, there are some 

problems with this view because it is unable to adequately account for some of the 

phenomena observed in dual-task studies. 

Wickens (1984) has pointed out four such phenomena that Single Resource 

Theory cannot account for: difficulty insensitivity, perfect time-sharing, structural 

alteration effects, and uncoupling of difficulty and structure. Difficulty insensitivity 

refers to instances in which increases in demand or difficulty of a primary task can fail to 

influence the performance of a secondary task. Perfect time-sharing refers to instances 

when two moderately difficult tasks can be performed concurrently as well as they can be 

performed separately. Structural alteration effects refer to the situation in which the 

difficulty of the two tasks is held constant yet the amount of interference between the two 

tasks is increased by changing the processing structure (for example, changing the 
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modality of a stimulus). Uncoupling of difficulty and structure refers to the situation in 

which two tasks of differing difficulty are each paired with a third task, and of these two 

tasks, it is the easier that interferes with the third task the most. While the first two of 

these phenomenon, difficulty insensitivity and perfect time-sharing, could be accounted 

for by assuming that the tasks involved possess very large data-limited regions, Wickens 

(1984) points out that it is doubtful that the tasks in the examples he has cited contained a 

large enough data-limited region to account for the phenomenon. 

2.2.4 Multiple Resource Theory 

The Multiple Resource Theory postulates that "there is more than one commodity 

within the human processing system that may be assigned resource-like properties 

(allocation, flexibility, sharing)" (Wickens, 1984, p. 78). Wickens (1980) has suggested 

that resources within the human processing system can be defined by a three-dimensional 

metric (see Figure 2.4). The first type of resource is defined by theway the processing is 

coded. This means that processing that is coded spatially requires a different resource 

than processing that is coded verbally. The second type of resource is defined by the 

processing stage. Wickens proposes that the perceptual encoding and central processing 

stages require resources that are functionally separate from the resources required by 

responding stage of processing. The third type of resource is defined by the stimulus and 

response modality. For each modality, such as visual and auditory, a functionally 

separate resource is required. Wickens points out that this remains the case even when 

peripheral interference (i.e., the physical constraints on processing) can be eliminated. 

The Multiple Resource Theory, like the Single Resource Theory, is able to 

account for the human's ability to perform multiple tasks simultaneously. In addition, 

Wickens (1984) has shown that it can also account for the four phenomena described 

above for which the Single Resource Theory could not. Difficulty insensitivity can be 

explained by assuming that the resources required by the two tasks do not overlap. In 

this way, the resources used by the primary task would not affect the capacity of 

resources available to the secondary task and therefore the difficulty of the first task 

would have no effect on the performance of the secondary task. This same argument 
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applies to the problem of perfect time-sharing. Perfect time-sharing would be possible 

when the resources required for each task to be performed did not overlap. 

4- PROCESSING STAGES -10. 

Perceptual Central 
Encoding Processing Responding 

lirN 
Manual RESPONSES 

Visual Verbal 

Auditory 

Spatial

"N. 
CODES 

41k 

Figure adapted from Wickens (1984). 

FIGURE 2.4 Three-dimensional metric proposed by Wickens (1984) that defines the 
resources within the human processing system. 

Structural alteration effects would be expected due to the nature of Multiple 

Resource Theory. The processing structure is made up of several reservoirs, each having 

a maximum capacity. By structuring the tasks so that they both useoverlapping 

processing resources, the interference between the tasks would occur once the capacity of 

the shared resources was exceeded. 

Uncoupling of difficulty and structure can be explained by assuming that the 

easier of the two tasks and the third task each rely on the same resources while the more 

difficult of the two tasks and the third task rely on separate resources. In this way the 

easier and third task would generate more interference between one another than the 

more difficult task that is not competing for the same resource. 
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2.3 Schema Theory 

Schema Theory is important in understanding human performance and Task 

Management (TM) in two ways. First, Schema Theory suggests a method for how the 

flightcrew may assess the state of the system. The assessment of the system allows the 

flightcrew to know what tasks must be prioritized and the attributes of the tasks necessary 

for prioritizing the relative importance among multiple tasks. Second, it is able to 

provide insight into the reason why attention may be inappropriately drawn toward some 

tasks. A general description of the theory is presented here. 

"A schema is a structured cluster of concepts" (Eysenck & Keane, 1990, p. 275) 

that consists of relations between variable slots. The variable slots may be filled with 

concepts or other schemata, while the relations describe how the slots are connected. 

This notion can also be described in the language of artificial intelligence as a frame 

containing nodes and links (Winston, 1992). Schema represent generic knowledge that 

can be applied to a specific situation. "Within schema theory, the process of 

interpretation is guided by the principle that every perceived event must be mapped 

against some schema, and that all aspects of the schema must be compatible with the 

perceived information" (Adams, Tenny, & Pew, 1991, p. 17). This results in two types of 

processing. First, the data-driven, bottom-up type of processing occurs in which the 

system (e.g., a human) tries to fit a schema to the incoming stimuli. In this process the 

system attempts to explain the data by activating the appropriate schema. Second, the 

schema/hypothesis-driven, top-down processing occurs as the system looks for data to fill 

the slots of the currently active schema. This type of processing allows the system to 

anticipate the type of data that it could receive which leads to directing "attention and 

exploratory movements to particular aspects of the environment" (Adams, Tenny, & Pew, 

1991, p. 18). It is thought that both types of processing may occur simultaneously to 

assure that the currently active schema is the most appropriate schema to be using 

(Adams, Tenny, & Pew, 1991). 

Yates developed the ideas related to schema further by focusing on the content of 

awareness. Yates (1985) has argued that awareness is the result of a process of 
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hypothesis generation based on one's past experiences to find an explanation for the 

incoming stimuli. A proposition that follows from Yates' (1985) work is "that attention 

will naturally be drawn to aspects of a scene that defy explanation within their currently 

active model of the environment" (Adams, Tenny, & Pew, 1991, p. 20). 

2.4 Task Management 

The general concepts of attention allocation and schema activation have laid the 

foundation to understanding the applied concept of Task Management (TM). But, it is 

important to bear in mind that the theories described above have been based primarily on 

studies in which the tasks to be performed overlap completely in time and are processed 

in parallel with each task allocated a share of attention. On the commercial flight deck, 

however, many of the tasks that require the flightcrew's attention cannot be performed 

simultaneously so the flightcrew must determine the order in which they will perform the 

tasks. The concept of TM has been developed to address the issue of allocating attention 

in such an environment (Adams, Tenny, & Pew, 1991). 

TM refers to the function in which the human operator manages his/her available 

sensory and mental resources in a dynamic, complex, safety-critical environment in order 

to accomplish the multiple tasks competing for a limited quantity of attention. This 

function includes task initiation, monitoring, task prioritization, resource allocation, and 

task termination (Funk, 1991). Flightcrews must perform TM on the commercial flight 

deck because they do not possess the necessary resources to simultaneously execute all 

the tasks that demand their attention. The flightcrew must therefore prioritize the tasks in 

the order of most to least important and then allocate their resources according to this 

prioritization. In a dynamic system, the state of each task demanding attention 

continuously changes and as this occurs so too may change the relative urgency with 

which each task must be completed. Thus, the flightcrew must continuously perform the 

function of TM in order to maintain awareness of the changes in the state of the system 

and make the necessary revisions to the task prioritization. 
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While recently there have been several studies that have begun to look at TM on 

the commercial flight deck (Latorella, 1996; Rogers, 1996; Chou, Madhaven, & Funk, 

1995), none of these studies has specifically addressed the relationship between TM and 

automation. There has been speculation that the level of automation on the flight deck 

may affect TM, in fact, one of the 92 automation issues identified by Funk et al. (in 

review) mentioned earlier concerns TM: 

issue167: The use of automation may make task management more 
difficult for flightcrews, possibly leading to unsafe conditions. 

The reasons behind this speculation will be covered in a later section of this chapter. 

2.5 Task Prioritization Errors 

TM can be investigated by looking at the errors that flightcrews commit in 

prioritizing the tasks demanding attention. To do this it must be assumed that there is a 

"right" way and a "wrong" way to prioritize and that the ultimate prioritization of a 

flightcrew can be (at least partially) determined by observing the choice of tasks 

performed. Because the flightcrew is limited by the quantity of attention that they have 

available to distribute across the tasks they perform, they must manage tasks in such a 

way that higher priority tasks are allocated the available attention before lower priority 

tasks. If the flightcrew does not allocate his/her attention in this way, it is said that a 

Task Prioritization error is committed. Specifically, a Task Prioritization error is when 

the flightcrew gives their attention to a lower priority task to the detriment of a higher 

priority task. As the TM becomes more difficult, it is expected that the frequency of Task 

Prioritization errors would increase. 

The prioritization strategy taught to every novice pilot is aviate, navigate, 

communicate, and manage systems. The tasks in the aviate category are concerned with 

using the flight systems and controls to fly the plane. The tasks in the navigate category 

are those concerned with planning the route and high-level route changes. The tasks in 
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the communicate category are concerned with explicit communication with systems on 

the ground, between the flightcrew, with the cabin crew, with the company, and with the 

passengers. The tasks in the manage systems category are those concerned with assuring 

that the systems are operating normally and are capable of performing the functions 

necessary for the aviate tasks. Intuitively this rule of thumb makes sense. For example, 

it is easy to agree with the idea that keeping the plane in the air (i.e., aviate) is more 

important than making sure it is headed in the desired direction (i.e., navigate). 

2.5.1 Attention and Task Prioritization Errors 

The nature of TM, and therefore Task Prioritization errors, is related directly to 

attention. In TM, the tasks are prioritized and then resources are allocated to the tasks 

according to that plan. This allocation of resources would include attention allocation 

By thinking of Task Prioritization in this way, it becomes apparent that it is 

related to Funk et al. (in review) issue102: 

issue102: The attentional demands of pilot-automation interaction may 
significantly interfere with performance of safety-critical tasks. 

The relationship between this issue and Task Prioritization adds credence to the notion 

that Task Prioritization errors may present problems with which the aviation community 

should be concerned and therefore warrants further investigation. 

2.5.2 Consequences of Task Prioritization Errors 

Task prioritization errors can have disastrous consequences as evidenced by 

several accidents at least partially attributed to Task Prioritization errors. The following 

are two accidents in which the accident investigating board determined that 

misprioritization played a key role in the accident.2 

2 Accident investigations are highly detailed and intensive analyses conducted by experts concerning the 
circumstances involved in an aircraft accident. The final product of an investigation is an accident report in 
which the investigating board presents a set of findings, and the conclusions they have drawn, including the 
probable cause of the accident and other factors that may have contributed. 
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The first example is the often cited L-1011 Florida Everglades accident. On 

December 29, 1972, an Eastern Air Lines Lockheed L-1011 aircraft crashed 

approximately 18 miles west-northwest of Miami International Airport destroying the 

aircraft and killing 99 people on board. The National Transportation Safety Board 

(NTSB) determined that the probable cause of this accident was the flightcrew's failure 

to monitor the flight instruments during the final 4 minutes of the flight. Preoccupation 

with a malfunctioning nose landing gear position indicating system distracted the 

flightcrew's attention away from the instruments and allowed the descent to go unnoticed 

(NTSB, 1973). This would be considered a Task Prioritization error because the lower 

priority task of troubleshooting the malfunctioning landing gear indication (i.e., a manage 

systems task) was allocated attention while the higher priority task of maintaining the 

aircraft's altitude (i.e., an aviate task) was not allocated appropriate attention. 

The second example is the Indian Airlines A320 accident in Bangalore, India. On 

April 14, 1990, an Indian Airlines Airbus A320 aircraft crashed just short of the runway 

at the Bangalore airport destroying the aircraft and killing 90 people on board. The 

investigators determined that the probable cause of the accident was the failure of the 

pilots to realize the gravity of the situation and immediately apply thrust. The pilots 

spent the final seconds of the flight trying to understand why the plane was in idle/open 

descent mode rather than taking appropriate action to avoid impact with the ground 

(Ministry of Civil Aviation, India, 1990). Again, the flightcrew committed a Task 

Prioritization error by allocating attention to the lower priority task of trying to 

understand the reason the automation was in a particular mode (i.e., a manage systems 

task) while the higher priority task of correcting the aircraft's descent (i.e., an aviate task) 

was not allocated appropriate attention. 

Both of these accidents illustrate the disastrous consequences Task Prioritization 

errors can have. The Lockheed L-1011 is a traditional technology aircraft while the 

Airbus A320 is an advanced technology aircraft. These two accidents were chosen to 

illustrate two things: one, Task Prioritization errors occur in both advanced and 
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traditional technology aircraft types; and two, the consequences of a Task Prioritization 

error can be equally fatal regardless of the aircraft type. 

2.6 Why Automation May Affect Task Prioritization 

An increasing number of accidents and incidents can be attributed to TM errors 

(e.g. Chou, Madhaven, & Funk, 1995). It has been speculated that higher levels of 

automation may make TM more difficult for flightcrews. There are several reasons 

behind this speculation. 

2.6.1 Increase in the number of tasks 

As pointed out by Rogers (1996), "it is expected as systems become more 

intelligent and complex, and more tasks and automated resources must be managed, 

flightcrew TM load will increase" (p. 239). All the flight control tasks found in the 

traditional technology aircraft must still be performed in the advanced technology aircraft 

but, in addition to these tasks, there are now tasks associated with communicating with 

and managing the automation. Adding tasks to the queue of tasks demanding attention 

increases the demands on the flightcrew. While the automation provides additional 

external resources for the flightcrew to utilize, these resources must be managed which 

increases demands on the function of TM. Prioritizing the tasks becomes more time 

consuming and effortful as more tasks that demand attention are added to the queue. 

2.6.2 Overloading the same resources 

Multiple Resource Theory predicts that when tasks are spread over several 

resources a human's overall processing capacity is effectively increased. On the other 

hand, when tasks require overlapping resources the capacity of one particular resource 

must be shared; the capacity of an individual resource is much smaller than that of the 

overall resources available in the processing system. This comes into play for the 

advanced technology flight deck in at least two ways. First, some of the demands added 
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by automation require the cognitive processing resources that are already taxed in the 

traditional technology aircraft. For example, in the advanced technology aircraft "there is 

more information to be gathered and processed to ascertain the state of the aircraft and its 

automation" (Billings, 1996). Because of this, more prioritization is required because 

more tasks are demanding the same resource. This may cause prioritization to be more 

difficult in advanced technology aircraft. 

Second, although probably to a lesser extent than cognitive processing, the input 

modality may affect the Task Prioritization in advanced aircraft. The monitoring tasks 

themselves on the advanced technology aircraft have changed from what they are in the 

traditional technology aircraft. In the traditional technology aircraft, visual, auditory and 

tactile sensations each play a large role in delivering information to the pilot. However, 

in the advanced technology aircraft, much of the information is received through the 

visual modality. The affect may be that the visual modality is overloaded and the tasks 

demanding attention must be prioritized to greater extent in order to share the visual 

resource. 

2.6.3 FMS draws attention away from other tasks 

The complexity of the FMS has the notorious reputation of being an "attention 

sink" (Williams, Tham, & Wickens, 1992). When the FMS fails to behave as expected, 

the flightcrew's attention can be drawn away from the highest priority tasks required for 

flying the aircraft. Two factors contribute to the ability of the FMS to draw the 

flightcrew's attention. First, because of the nature of the FMS the flightcrew cannot 

proceed with any other tasks until they either satisfy its needs or they turn it off. If pilots 

have an incentive to keep the FMS on, then they must correct the problem before their 

attention can be turned elsewhere. 

Second, when the FMS fails to behave as expected the flightcrew's attention is 

drawn toward it as suggested by schema theory. As the functioning of the FMS defies 

explanation within the currently active schema, attention will be directed toward finding 
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a better fitting schema. This phenomenon is sometimes referred to as 'novel pop out' 

(Johnston, Hawley, Plewe, Elliot, & DeWitt, 1990). 

2.7 Primary Research Objective 

Based on previous work in flight deck automation and the issues involved in TM, 

there appears to be a relationship between these two things. The primary objective of this 

study is to begin evaluating the relationship between the level of automation on the flight 

deck and attention allocation of commercial airline pilots by determining how automation 

affects the frequency of Task Prioritization errors as reported in ASRS incident reports. 
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3. LITERATURE REVIEW PART II - ASRS INCIDENT REPORT
 
STUDIES 

3.1 ASRS Incident Reports 

The Aviation Safety Reporting System (ASRS) was created as a means to collect 

reports of situations that compromise safety so that strategies to prevent these situations 

from becoming accidents could be created (Chappell, 1994). These reports are called 

"incident reports" and are submitted voluntarily by aviation operations personnel with 

first-hand knowledge of the situation. Each report contains basic information about the 

aircraft involved and a description in the author's own words of the situation they have 

participated in or witnessed in which they believe safety has been compromised. Once 

processed by the ASRS, analysts remove any information that could identify the reporter 

and add the anonymous report to the database. 

An example of an ASRS incident report is given in Figure 3.1. The abbreviations 

used can make the report difficult to understand so Figure 3.2 presents a more readable 

translation of this example. 

Accession Number: 92507 

Synopsis
 
ACR MLG ALT DEVIATION EXCURSION FROM CLRNC ALT. REPORTER SAYS FMA
 
CHANGED FLT MODE AND ALT SELECT BY ITSELF.
 

Narrative 
THE F/O WAS FLYING THE ACFT. WE HAD BEEN ISSUED SEVERAL VECTORS AND TURNS 
BY ATC FOR FLOW CTL INTO CHICAGO O'HARE. I WAS ON THE P/A EXPLAINING THE 
ENRTE DELAY TO THE PAX WHEN I NOTICED THE FMA HAD CHANGED FROM "PERF 
CRUISE" TO "PERF DSCNT," AND THE ALT SELECT HAD CHANGED FROM 35000 TO 33000'. I 
ASKED THE F/O IF WE HAD BEEN CLRED TO FL330. HE SAID NO. THE ACFT ALT WAS 34600' 
WHEN I NOTICED THE PROB. THE DSCNT WAS STOPPED AT 34500'. I DON'T KNOW WHY 
THE AUTOPLT ENTERED A DSCNT MODE. AN ALT WARNING DIDN'T OCCUR BECAUSE THE 
ALT SELECT HAD CHANGED ALSO. I SUSPECT A PWR SURGE IN THE ELECTRICAL SYS 
MAY HAVE CAUSED THE PROB. I HAVE EXPERIENCED THIS PROB IN THE PAST WITH THE 
MLG FLT GUIDANCE SYS WHEN A HYD PUMP IS TURNED FROM LOW TO HIGH. 

FIGURE 3.1 Synopsis and Narrative of ASRS Incident Report #92507. 
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Accession Number: 92507 

Synopsis
 
A medium-large transport aircraft used by an air carrier committed an altitude deviation. The aircraft made
 
an excursion from the clearance altitude. The reporter says that the Flight Mode Annunciator (FMA)
 
changed flight mode and altitude select by itself.
 

Narrative 
The first officer was flying the aircraft. We had been issued several vectors and turns by Air Traffic Control 
to control the flow of traffic into Chicago O'Hare International Airport. I was on the public address 
explaining the enroute delay to the passengers when I noticed the FMA had changed from "PERF CRUISE" 
to "PERF DSCNT," and the altitude select had changed from 35000 to 33000 feet. I asked the first officer if 
we had been cleared to a flight level of 33000 feet He said no. The aircraft's altitude was 34600 feet when I 
noticed the problem. The descent was stopped at 34500 feet. I don't know why the autopilot entereda 
descent mode. An altitude warning didn't occur because the altitude select had changed also. I suspecta 
power surge in the electrical system may have caused the problem. I have experienced this problem in the 
past with the medium-large aircraft flight guidance system when a hydraulic pump is turned from low to 
high. 

FIGURE 3.2 Readable translation of Synopsis and Narrative of ASRS Incident Report 
#92507. 

3.1.1 Strengths of ASRS Incident Reports 

One of the strengths of ASRS incident reports is that they provide researchers 

with a practical alternative to collecting data from actual line operations. The ASRS 

incident reports contain descriptions of real line operations by individuals involved in 

aviation operations. These descriptions can be used to learn more about the operations. 

Supporting evidence for the idea that ASRS incident reports provide a good 

representation of actual problems on the commercial flight deck is the similarity of 

proportions of occurrences by phase of flight between ASRS incident reports and aircraft 

accidents. Figure 3.3 shows that the ordering of instances by phase of flight of both 

ASRS incident reports and accidents is the same: terminal, initial, and cruise. While the 

proportions between ASRS incident reports and accidents are similar, they are not the 

same. The cause of this disparity may be attributed to the ground proximity in cruise. In 

cruise, the aircraft is far enough from the ground to allow the flightcrew time to recover 

from an unsafe condition before it is able to escalate from an incident into an accident. 

This would account for the lesser proportion of aircraft accidents found in cruise. 
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ASRS Incident Reports by Flight Phase 

Total number of ASRS incident reports = 21,550* 

Takeoff 
Initial Phases 
Initial Climb Climb Cruise 

Terminal 
Descent 

Phases 
Approach Landing 

Number of 
Incidents 2139 1100 3619 3970 4584 3681 2457 

% of Total 9.9% 5.1% 16.8% 18.4% 21.3% 17.1% 11.4% 

TOTALS 31.8% 18.4% 49.8% 

*These data are based on the incident reports submitted by air carriers available in the ASRS 
Aeroknowledge CD-ROM database (DOS Version Release 96-1). The categories listed are the ones that 
correspond to those available in the accident data, thus this is not an exhaustive listing of all categories 
available in ASRS incident reports. 

Accidents by Flight Phase 

Total number of accidents = 576** 

Initial Phases Terminal PhasesCruiseTakeoff Initial Climb Climb Descent Approach Landing 
Number of 

81 56 42 27 37 199 125Accidents
 
% of Total 14.3% 9.9% 7.4% 4.8% 6.5% 35.1% 22.0%
 

TOTALS 31.6% 4.8% 63.7% 

**These data are based on Boeing Commercial Airplane Group (1997). Statisticalsummary of commercial 
jet airplane accidents, worldwide operations, 1959-1996, and exclude load, taxiing, and unload which 
account for 1.7% of all accidents. 

FIGURE 3.3 Comparison of incidents (ASRS) and accidents by flight phase. These 
data are based on commercial air carriers and exclude military and general aviation. 

Diehl (1991) further supports the idea that incidents provide a good representation 

of actual problems on the commercial flight deck with his discussion of accident 

generation. He has shown that in the aviation environment the rate of occurrence of some 

types of incidents is proportional to their accident rate. As an example of this, Diehl 

(1991) discusses the findings of the TWA B727 Berryville, Virginia accident 

investigation (NTSB, 1975). During this investigation, it was found that before this 
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accident occurred many other pilots had been involved in similar situations which 

"except for luck, better weather, or lower mountains, would have resulted in the same 

type of catastrophe that befell this hapless TWA crew" (Diehl, 1991, p. 99). The FAA 

took this finding very seriously. In response, they established an incident reporting 

system that was "intended to identify unsafe operating conditions in order that they can 

be corrected before an accident occurs" (NTSB, 1975, p. 40). This reporting system 

eventually evolved into ASRS (Diehl, 1991). 

3.1.2 Limitations of ASRS Incident Reports 

While ASRS incident reports are a very valuable resource, several limitations of 

this type of data must be considered when interpreting the results of an ASRS based 

study. First, the collection of ASRS incident reports is a nonrandom sample of errors 

occurring in aviation operations. One cannot necessarily assume that the collection of 

ASRS incident reports have the same characteristics as the population of all errors 

committed in aviation operations (Chappell, 1994). 

Second, the ASRS incident reports reflect reporting biases. The reporters 

submitting the incident reports are influenced by external motivators. These motivators 

could affect the validity and/or choice of information presented in the report. A few 

examples of possible motivators are ensuring immunity from penalization for error, a 

personal agenda, and unintentional personal bias (Williams, Tham, & Wickens, 1992). 

3.2 Incident Report Studies 

3.2.1 Descriptive Incident Report Studies 

In the past, the ASRS has been primarily used by the aviation research community 

to conduct descriptive studies (Chappell, 1994). These descriptive analyses have been 

very valuable in yielding important information about line operations. For example, 

Williams, Tham, & Wickens (1992) conducted an ASRS study in which they reviewed 
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two areas, failures in TM and failures in geographic orientation. They analyzed 158 

reports related to TM and 100 reports related to geographic orientation. The result was a 

list of factors that they believed played a contributory role in each of these areas. 

Palmer, Hutchins, Ritter, & vanCleemput (1993) performed another ASRS study. 

In this study, they analyzed 50 reports from traditional technology aircraft and 50 reports 

from advanced technology aircraft using a one page coding form to allow analysts to 

describe the reports in terms of the factors that were present in the incident. From this 

analysis, they constructed a descriptive framework of the flight deck as a single 

information processing system and used it to describe the error-tolerant properties of the 

system and why breakdowns occur. This study resulted in a number of recommendations 

for correcting the problems that were identified. 

3.2.2 Inferential Incident Report Studies 

While descriptive studies are the most common way to use the ASRS incident 

reports, they are not the only way. Inferential analyses may be conducted by carefully 

constructing a research question and then choosing an appropriate statistical test. There 

are very few statistical tests that are appropriate because it generally cannot be assumed 

that the incident data are normally distributed. One inferential statistic that does not rely 

on such an assumption is the Chi Square (x2) test. The x2 test can be used to determine if 

two or more incident types differ in the proportions of reports falling into various 

classifications, but to do this both the incident types and their classifications must be 

mutually exclusive. This can be accomplished by carefully constructing a research 

question (Chappell, 1994). 

3.3 Secondary Research Objective 

A methodology that could produce statistically significant findings (albeit with 

several caveats regarding the ASRS population) would be valuable. The secondary 
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objective of this study was to create a methodology that models an effective way to use 

ASRS incident report data in an inferential analysis. 
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4. METHODS 

4.1 Introduction 

The objectives of this study were met by carefully constructing a study to ensure 

that a fair comparison was made between the advanced and traditional technology 

populations. To accomplish this, representative data samples were drawn from an ASRS 

incident report database and analyzed using an analysis tool constructed specifically for 

this study. 

4.2 Sample Size Determination 

Two samples of ASRS incident reports were compared in this study to determine 

if level of automation on the commercial aircraft flight deck affected the frequency of 

Task Prioritization errors. The first sample was composed of 210 incident reports 

submitted by pilots flying advanced technology aircraft and the second sample was 

composed of 210 incident reports submitted by pilots flying traditional technology 

aircraft. In total, 420 incident reports were analyzed. 

The possibility exists that the effect of the level of technology of the aircraft could 

be confounded with differences in experience level because the advanced aircraft are 

comparatively new to commercial air carriers' fleets. To help avoid this confounding 

effect, the two samples were divided into three sub-samples each made up of 70 reports 

submitted during a specified time period: 1988-1989, 1990-1991, and 1992-1993. These 

submission periods were based on the availability of incident reports with narratives in 

the CD-ROM database used. 

The sample sizes were determined by performing a power analysis. In a power 

analysis, the significance level, the desired power of the statistical test, and the effect size 

is used to calculate the sample size appropriate to efficiently conducting a 

methodologically sound study. The significance level, a, is "the standard of proof that 
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the phenomenon exists, or the risk of mistakenly rejecting the null hypothesis" (Cohen, 

1988, p. 4). "The power of a statistical test is the probability that it will yield statistically 

significant results" (Cohen, 1988, p. 1). The effect size is "the degree to which the 

phenomenon is present in the population, or the degree to which the null hypothesis is 

false" (Cohen, 1988, p. 9). A statistical test becomes more powerful (i.e., able to detect a 

smaller effect size) as the sample size is increased. 

The power analysis was conducted using the following values: power = 0.803, 

significance level of a = 0.05, and the effect size index ofw = 0.20. It was determined 

that a sample size of 196 incident reports was required to reject the null hypothesis, or in 

other words, conclude that there is a significant difference between the frequencies found 

in the two samples. Because each sample was to be divided into 3 sub-samples 

(196/3 = 65.333), the sample size was rounded up to 210 (210/3 = 70). 

A second power analysis was performed to determine if the sub-sample size of 70 

was adequate. With the power = 0.80, significance level of a = 0.05, and the effect size 

index = 0.40, it was determined that a sub-sample size of 49 incident reports was required 

to reject the null hypothesis. Because 70 is greater than 49, the sub-sample size of 70 was 

determined to be adequate. 

It should be noted that the two power analyses conducted each used a different 

effect size index. The effect size index for each of the power analyses was chosen 

specifically for the effect that was to be detected. For the two aircraft technology type 

samples, I wanted to detect the smallest effect size without the sample size becoming 

prohibitively large. If a difference between the frequency rates of Task Prioritization 

errors between the two technology types existed, I wanted to detect it. The effect size 

index of 0.20 (loosely referred to as a 'medium-small' effect) was chosen for these 

samples. For the submission period sub-samples, I was interested only in detecting an 

effect of submission period that was large enough to significantly confound the effect of 

aircraft technology. It was not necessary to detect as small an effect for the sub-samples 

as was required for the aircraft technology type samples. Thus, I chose to use an effect 

3 When conducting a power analysis, it is a convention to set the power at 0.80 (Cohen, 1988). 
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size index of 0.40 (loosely referred to as a 'medium-large' effect) for the submission 

period sub-samples. 

4.3 Report Selection Criteria 

The ASRS incident reports used in this study were collected using the ASRS 

Aeroknowledge CD-ROM database (DOS Version Release 96-1). Homogeneity between 

samples is very important for statistical comparison studies. In an effort to collect 

homogenous samples, the sample populations4 were constrained so that the level of 

automation (i.e., aircraft technology type) and the submission period were the only two 

differences between the samples. For example, all the reports from both the advanced 

technology and the traditional technology samples were constrained to reports submitted 

by a member of the flightcrew flying a two-person commercial air carrier aircraft in 

which the aircraft was classified as a medium-large transport, large transport or widebody 

transport aircraft (see Table 4.1). 

Another parameter that was held constant was phase of flight. Based on the fact 

that over half of all commercial hull loss accidents (Boeing, 1997) and that approximately 

50% of incidents reported to ASRS by commercial air carrier pilots occur during the 

terminal phases of flight (see Figure 3.2 in previous chapter), these phases of flight were 

considered a good place to look for errors. Thus, all reports analyzed occurred during the 

descent or approach phase of flight. 

All population parameters used to collect the incident report samples are shown in 

Table 4.1. 

4 The term population is used here to denote the population of reports that meet the parameters defined. 
This usage of the term should not be confused with the population of all ASRS incident reports. or the 
population of all errors committed by flightcrews. 
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TABLE 4.1(a) Common population parameters for incident report samples. 

Parameter Value Definition 

Personnel 
number PI P1 was the first person coded with a sequence 

number; denoted the reporter. 

Personnel Role FLIGHT CREW The reporter was part of a flightcrew during the 
incident. 

Personnel The reporter was affiliated with an air carrier. 
AffiliationAffiliation 
Aircraft 
Handle Al Al was the first aircraft coded with a sequence 

number; in this case, the aircraft P1 was flying. 

Aircraft Type 
MED_LARGE TRANSPORT 

or LARGE 
E_BODY 

RANSPORT 
or WIDE 

The gross takeoff weight range was: 60,001 to 
150,000 lbs. or 150,001 to 300,000 lbs. or over 
300,000 lbs. 

Crew Size 2 There were two flightcrew members on the 
aircraft, excluding observers and check airmen. 

Operator 
Organization AIR CARRIER The aircraft organization's principle mode of 

operation was air carrier (i.e., airline operator). 

Flight Phase APPROACH or DESCENT The aircraft was in the approach or descent phase 
of flight during reported occurrence. 

TABLE 4.1(b) Differentiating values for Aircraft Technology parameter for incident 
report samples. 

Aircraft 
Value DefinitionTechnology 

CRT, HUD, and other advanced displays wereAdvanced EFIS OR_HUD 
installed on aircraft or FMS/FMC and INS wereTechnology or INTEdRATED_NAV 
installed on the aircraft.
 
No advanced technology equipment was installed
Traditional 

NOT_ADVANCED on the aircraft.Technology 

4.4 Report Selection Methodology 

To ensure that the sample was representative of the population, the reports were 

collected from the database in the following way. First, the six populations (i.e., the two 

aircraft technology populations each divided into three submission periods) were 

compiled from the database based on the population parameters described above. 

Second, based on the total number of reports in each of the six populations 70 random 

numbers for each sample were generated to determine which of the reports would be 
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included in the sample. This allowed the samples to be drawn randomly without 

replacement. Third, the appropriate reports were then tagged and downloaded into a 

word processing document. Fourth, all information related to the report except for the 

ASRS number, the synopsis, and the narrative was removed. This was done so that the 

analyst would be unable to use this information to identify the report during analysis. 

Any information in the synopsis or the narrative that identified the report was not 

removed because the deletions would have left the report incomplete. 

4.5 Analysis Tool 

An incident analysis form was developed specifically for use in this project. This 

form allowed the analyst to classify the ASRS incident reports as either containing a Task 

Prioritization error or not based on the description given in the narrative of the report. 

Using the form, the analyst identified the tasks that were being performed during the 

incident period reported. Prioritization was evaluated by identifying whether the active 

tasks were related to the task categories of aviate, navigate, communicate, manage 

systems, or non-flight related tasks. If a task of lower priority was active while a task of 

higher priority that required resources was not active, the report was classified as 

containing a Task Prioritization error. An example of a blank analysis form is provided 

in Figure 4.1. 

The incident analysis form contained a listing of all tasks that must be performed 

during the descent and approach phases of flight (see Figure 4.1). The task listing used 

was based on a functional analysis of a generic commercial air transport mission (Alter & 

Regal, 1992). These tasks were organized into four categories and the priority of the task 

was determined by the category to which it belonged (where 1 is highest and 5 is lowest): 

(1) Aviate, (2) Navigate, (3) Communicate, (4) Manage Systems, and (5) Non-Flight 

Related. There was no priority hierarchy within a category; it was assumed that all tasks 

that fell in a particular category were of the same priority. Each listed task was defined 

not only as performing the task itself, but also as maintaining awareness of the task's 
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Incident Report Analysis Form 
Accession #: 

Synopsis: 

Descent/Approach Tasks: (check appropriate boxes and include explanatory comments 
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1. AVIATE TASKS _ 
1.1 Control/monitor aircraft configuration 

1.2 Control/monitor attitude 

1.3 Control/monitor lateral profile 

1.4 Contro/monitor speed 

1.5 Control/monitor vertical profile 

1.6 Maintain clearances and restrictions 

1.7 Maintain separation with traffic, terrain 

0 

Cl 

0 0Cl
1:100
Cl'0:U 

C 
.--­ti75 

U!U ............ .._.......... 

........... 

----­
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2. NAVIGATE TASKS 

2.1 Determine mode of lat/lon navigation 

2.2 Maintain awareness of temporal profile 

2.3 Modify routefor weather, traffic, hazards 

2.4 Plan approach 
... 

2.5 Program route in FMS 

2.6 Set navigational radios 

.... 

... 

U 
0 
U 
CI 
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0,0!U 
CI 1 ID : 0 

;0 0 CI 
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0 00,0!0 
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... 
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3. COMMUNICATE TASKS 

3.1 Communicate with ATC 

3.2 Communicate with cabin crew 

3.3 Communicate with company 

3.4 Communicate with flightcrew 

3.5 Communicate with passengers 

3.6 Tune communication radios 

3.7 Uplink/ downlink information 

3.8 Receive ATIS 

0 
ID 

0 
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U 
0 
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.......... 

0:0:U 
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.._0.0,0
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' 00.0.0 
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4. MANAGE SYSTEM TASKS 

4.1 Manage/correct system faults 

4.2 Monitor aircraft subsystems la 
.... 

U 
, 0 

0 
5. NON-FLIGHT RELATED TASKS 

5.1 0 CI 

Critical Period: 

Task Prioritization: Was a Task Prioritization error committed? (circle one) YES NO 
If YES, list the tasks involved in the prioritization error: 

FIGURE 4.1 Blank Incident Report Analysis Form. 
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status. For example, the task '1.5 Control/monitor vertical profile' included controlling 

the vertical profile either manually or using the autopilot and monitoring the status of the 

vertical profile. 

To illustrate how the analysis form was filled out, consider incident report #92507 

that was discussed in Chapter 3 (see Figure 3.1) and its corresponding analysis form (see 
Figure 4.2). 

Associated with each task listed on the form were three sets of boxes that were 

marked to highlight the parameters that were considered in the analysis. When any of the 

boxes were marked for a given task, the analyst entered an excerpt or short summary 

upon which the judgment to mark the box had been based in the column called 'Related 

Excerpt/Comment.' 

Starting on the left, the first set of boxes, 'Reported Tasks,' were used to indicate 

all of the tasks that were reported as being performed during the block of time described 

in the incident. This set of boxes was used to give a rough summary of all tasks that the 

reporter had described. The analyst marked the 'explicitly stated' box if the reporter 

specifically mentioned the task in the narrative of the report. For example, given the 

following statement from incident report #92507: 

"WE HAD BEEN ISSUED SEVERAL VECTORS AND TURNS BY 
ATC FOR FLOW CTL INTO CHICAGO O'HARE." 

The analyst would mark the 'explicitly stated' box for the Task 3.1 'Communicate with 

ATC' and include the excerpt 'ISSUED SEVERAL VECTORS AND TURNS BY 

ATC.' Reading on from this statement, it is implied, though not explicitly stated, that the 

flightcrew began to carry out these requests given by the ATC. 

"WE HAD BEEN ISSUED SEVERAL VECTORS AND TURNS BY 
ATC FOR FLOW CTL INTO CHICAGO O'HARE. I WAS ON THE P/A 
EXPLAINING THE ENRTE DELAY TO THE PAX..." 



36 

Incident Report Analysis Form 
Accession #: 92507 

Synopsis: ACR MLG ALT DEVIATION EXCURSION FROM CLRNC ALT. REPORTER SAYS FMA CHANGED FLT MODE AND 
ALT SELECT BY ITSELF 

Descent/Approach Tasks: (check appropriate boxes and include explanatory comments 
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FIGURE 4.2 Incident Report Analysis Form completed for ASRS Incident Report 
#92507.
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The analyst would mark the 'strongly implied' box for the Task 1.3 'Control/monitor 

lateral profile' and again include the excerpt 'ISSUED SEVERAL VECTORS AND 

TURNS BY ATC.' 

The next box, 'ACTIVE TASKS during CRITICAL PERIOD,' was marked when 

the task was active during the critical period of the incident. The critical period consisted 

of all the events that took place between the time that the "desired state" was defined and 

the time that the flightcrew became aware that the desired state was not or would not be 

met (i.e., a deviation occurred). The analyst entered the critical period in the appropriate 

space at the bottom of the form. In incident report #92507, the critical period was "given 

clearance altitude" to "I noticed the problem." This would indicate that the critical period 

included all tasks that occurred between the point that the desired state of maintaining the 

cleared altitude was declared and the point that the flightcrew realized that they had 

overshot this altitude. In this report, the clearance for their desired altitude had been 

given before the window of time described in this incident report so all the tasks 

described up to the point that the captain noticed the problem were considered active 

tasks. 

The last set of boxes, 'STATUS during CRITICAL PERIOD,' were marked if the 

task was active during the critical period (i.e., had been marked 'ACTIVE TASKS during 

CRITICAL PERIOD'). The 'Unknown' box was marked when the analyst was unable to 

discern the task's status from the narrative. For example, it cannot be determined from 

this narrative if the public address system was working correctly and that the passengers 

actually heard the captain's announcement. In this case the analyst would mark Task 3.5 

`Communicate with passengers' as status 'Unknown.' 

The 'Satisfactory' box was marked when the desired state of the task had and/or 

would be achieved given the current trend of activities. For example, given the following 

statement: 

"...I ASKED THE F/O IF WE HAD BEEN CLRED TO FL330. HE SAID 
NO..." 
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The analyst would mark the 'Satisfactory' box for the Task 3.4 'Communicate with 

flightcrew'. The first officer and the captain effectively communicated this information. 

The 'Unsatisfactory' box was marked when the reporter stated in the narrative 

that the desired state of the task had not and/or would not be achieved given the current 

trend of activities. For example, given the following statement: 

"...THE ALT SELECT HAD CHANGED FROM 35000 TO 33000'. I 
ASKED THE F/O IF WE HAD BEEN CLRED TO FL330. HE SAID NO. 
THE ACFT ALT WAS 34600' WHEN I NOTICED THE PROB..." 

The analyst would mark the 'Unsatisfactory' box for the Task 1.6 'Maintain clearances 

and restrictions.' In this example, the desired altitude was 35,000 feet yet the altitude of 

the aircraft was 34,600 feet, a discrepancy of 400 feet. 

Once all the appropriate boxes were marked on the analysis form, the incident 

report was classified as to whether a Task Prioritization error was committed by circling 

`yes' or 'no.' The classification was determined by using the following rule: 

If the status of a higher priority task is unsatisfactory and it is not active 
AND a lower priority task is active, then the incident report is classified as 
"TP error occurred" (otherwise it is classified as "no TP error occurred"). 

When a report was classified as containing a Task Prioritization error then the 

tasks involved in this error were listed in the space provided at the bottom of the analysis 

form. In incident report #92507, Task 1.6 'Maintain clearances and restrictions' was not 

active and unsatisfactory while the lower priority tasks 3.4 'Communicate with 

flightcrew' and 3.5 'Communicate with passengers' were active, thus this incident report 

was classified as containing a Task Prioritization error and these tasks were listed at the 

bottom of the form. 
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4.6 Application of the Analysis Tool 

Each incident report was analyzed using the incident report analysis form 

described above. To minimize bias during the analysis, the two samples (including the 

three sub-samples within each) were randomly mixed and the sample to which each 

incident report belonged was not specified until all analyses were complete. After all 

reports had been analyzed, the reports were sorted and the data summarized. 

4.7 Statistical Analysis 

The objective of this study was to determine if there was a significant difference 

between the frequency of Task Prioritization errors in advanced technology and 

traditional technology aircraft, or as stated in terms of a null and alternate hypothesis: 

NULL HYPOTHESIS (HO): There is no significant difference between the number of 
incident reports from advanced technology aircraft in which a Task Prioritization 
error occurred and the number of incident reports from traditional technology 
aircraft in which a Task Prioritization error occurred. 
ALTERNATE HYPOTHESIS (H1): There is a significant difference. 

The Chi Square (x2) test was chosen to test these hypotheses. This statistical test 

allowed me to determine if there was a real difference between the two samples and not 

simply a difference that could be attributed to sampling error. The x2 test has several 

requirements, and as Table 4.2 shows, all were met in this study. 

The requirements of the statistical binomial test were closely met and thus the 

binomial test was also considered for use in this study. The binomial test is appropriate 

for studies with data in which there are only two possible outcomes, for example either 

containing a Task Prioritization error or not. This test computes exact probabilities and 

allows the analyst to perform directional tests. In this study however, it could not be used 

because the sample size was far too large. When using the binomial test, the 

computations become quite cumbersome for sample sizes greater than 25 (Sharp, 1979). 
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TABLE 4.2 Meeting x2 Test Requirements 

? Test Requirements How Requirements Were Met In This Study 

Nominal Data The data consisted of incident reports classified as either 
containing a Task Prioritization error or not. 

One Or More Categories There were two categories: classified as either 
containing a Task Prioritization error or not. 

Independent Observations Each incident report represented an independent 
observation. 

Adequate Sample Size (i.e., The sample size was 210. 
Greater Than Five) 

Simple Random Sample The samples were drawn randomly without replacement 
Data In Frequency Form The frequency of phenomenon was determined by 

counting the number of reports from each sample that 
were classified as containing a Task Prioritization error 
and the number of reports that were not classified as 
containing a Task Prioritization error. 

All Observations Used All the observations were used. 
Two Tailed Test Only A directional (i.e., two tailed) test was not required, in 

this study it was only important to determine whether or 
not a statistically significant difference existed. 

Table adapted from Sharp (1979). 

The next step in this study was to determine if the time period in which the report 

was submitted had an effect on the frequency of Task Prioritization errors. For the 

advanced technology aircraft sample, this was stated in terms of the following null and 

alternate hypotheses: 

NULL HYPOTHESIS (HO): There is no significant difference in the number of
 
incident reports in which a Task Prioritization error occurred among the three sub-

samples of the advanced technology aircraft sample.
 
ALTERNATE HYPOTHESIS (H1): There is a significant difference.
 

These hypotheses were tested using the x2 test for the same reasons that it was 

used for the first set of hypotheses tested in this study. Similarly for the traditional 

technology sample, the x2 test was used to test the following null and alternate 

hypotheses: 

NULL HYPOTHESIS (HO): There is no significant difference in the number of
 
incident reports in which a Task Prioritization error occurred among the three sub-

samples of the traditional technology aircraft sample.
 
ALTERNATE HYPOTHESIS (H1): There is a significant difference.
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5. RESULTS 

5.1 Advanced versus Traditional Technology 

5.1.1 Overall Effect of Technology 

Of the 420 incidents reports analyzed, 43 (10.2%) were classified as containing 

Task Prioritization errors. Of these, 28 were from the advanced technology sample and 

15 were from the traditional technology sample (see Table 5.1). 

TABLE 5.1 Summary of the frequencies of Task Prioritization errors. 

Task Prioritization Error Frequency 

Submission Period Advanced 
Technology 

Traditional 
Technology 

Total Errors by 
Submission Period 

1988-1989 13 7 20 
1990-1991 11 5 16 
1992-1993 4 3 7 

Total Errors by 
Aircraft Technology 28 15 

The Chi Square (x2) test was used to determine if the difference between the 28 

Task Prioritization errors found in advanced technology incident reports and the 15 Task 

Prioritization errors in traditional technology aircraft was statistically significant. 

The x2 test was performed in three steps: first, the expected values were 

calculated; second, the x2 calculation itself was performed; and third, the x2 value was 

compared to a predetermined Critical Value. The first step in performing the x2 test was 

to determine the hypothetical frequency of the phenomenon that would be expected if the 

null hypothesis were true. In this study, the expected value was calculated based on the 

observed frequencies of Task Prioritization errors found in the data. This was found for 

each of the two samples by calculating the ratio of the product of row totals and column 

totals to the grand total. For example, consider the expected value for the number of 

advanced technology reports classified as containing a Task Prioritization error. This 
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was found by multiplying the total number of reports classified as having a Task 

Prioritization error (i.e., 43) by the total number of reports in the advanced technology 

aircraft sample (i.e., 210) and dividing this number by the grand total (i.e., 420). These 

calculations are shown in Table 5.2. 

TABLE 5.2 Calculating the expected values from the observed frequencies of Task 
Prioritization errors. 

Observed Frequencies 
Report Type Error No Error row totals 

Advanced Technology 28 182 210 

Traditional Technology 15 195 210 

1column totals 43 I 377 
Grand total = 420 

Expected Values 
Report Type Error No Error 

43 x 210 377 x 210
Advanced Technology 21.5 188.5

420 210 
43 x 210 377 x 210

Traditional Technology 21.5 188.5
420 210 

After the expected values were found, the x2 value was calculated using the 

following equation and substituting in the appropriate values: 

Expected Value)2X2 E (Observed Frequency

Expected Value
 

X2 = (28 21.5)2 + (15 21.5)2 + (182 188.5)2 + (195 188.5)2 

21.5 21.5 188.5 188.5 

X2 = 4.379 

The final step is to compare the x2 value found in the previous step to the Critical 

Value. The Critical Value is "the value of a test statistic at or beyond which we will 
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reject Ho [Null Hypothesis]" (Howell, 1989, p. 150). The Critical Value is based on the 

degrees of freedom of the test and the significance level that has been selected by the 

analyst. The degrees of freedom (df) was found using the following equation: 

Degrees of Freedom = df = (Number of Rows 1) x (Number of Columns 1) 

df = (2 1) x (2 1)
 
df = 1
 

A significance level of a = 0.05 was selected. At this significance level the null 

hypothesis can be rejected with a 95% confidence level or, alternatively stated, there is 

only a 5% chance that a Type I error (i.e., rejecting the null hypothesis when it is true) 

would be made. 

Looking in a x2 Table of Critical Values it is found that at 1 degree of freedom 

and a significance level of a = 0.05, the Critical Value is 3.84 (Howell, 1989, p. 329). 

Because the x2 value of 4.379 is greater than the Critical Value of 3.84, the null 

hypothesis can be rejected with a 95% confidence level. 

A Microsoft Excel function called TRITEST" was used as a secondary means 

determine significance with the x2 test. CRITEST returns the p-value of the test. The 

p-value is the precise level at which the null hypothesis can be rejected. CHITEST 

returned 0.036 meaning that the null hypothesis can be rejected with a 96.4% confidence 

level. This result corroborates the hand calculations. 

5.1.2 Effect of Technology by Submission Period 

The x2 test was used next to compare the frequency difference between advanced 

technology and traditional technology aircraft by submission period. For each of the 

three submission periods, the difference between the technology types was not 

statistically significant (p-value > 0.10). 
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5.2 Incident Report Submission Period 

The two samples were divided into three sub-samples each made up of 70 reports 

submitted during a specified time period: 1988-1989, 1990-1991, and 1992-1993. The 

Task Prioritization error frequencies by submission period were summarized in Table 

5.1. 

5.2.1 Overall Effect of Submission Period 

The data for each submission period from both the advanced technology and the 

traditional technology aircraft were combined. The x2 test was used to determine if the 

differences between the submission periods were significant. The x2 value was 6.891 at 2 

degrees of freedom with a p-value of 0.032. Using a significance level of a = 0.05, it was 

concluded that the null hypothesis could be rejected and thus this difference was 

statistically significant. 

Further x2 tests to compare the difference between pairs of submission dates were 

conducted using the combined data from both the advanced technology and traditional 

technology aircraft samples. The results of these tests are given in Table 5.3. 

TABLE 5.3 Results of x2 tests for comparing pairs of submission dates using data 
combined from both the advanced technology and traditional technology aircraft samples. 

Degree s of
Submission Periods Tested Chi Square Value p-Value

Freedom 
1988-1989 vs. 1990-1991 0.510 1 0.475 
1990-1991 vs. 1992-1993 3.837 1 0.050 
1988-1989 vs. 1992-1993 6.927 1 0.008 
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5.2.2 Effect of Submission Period on Advanced Technology Sample 

The data from the advanced technology aircraft only was used, and the x2 value was 

calculated to compare the three submission periods. The x2 value was 5.522 at 2 degrees 

of freedom with a p-value of 0.063. This would be significant at a = 0.10. 

Additional x2 tests were also conducted using the advanced technology sample 

data to compare the differences between pairs of submission dates (see Table 5.4). 

TABLE 5.4 Results of x2 tests for comparing pairs of submission dates using data from 
the advanced technology aircraft sample. 

Periods TestedFpmSubmission Chi Square Value 
Freedom Value 

1988-1989 vs. 1990-1991 0.201 1 0.654 
1990-1991 vs. 1992-1993 3.658 1 0.056 
1988-1989 vs. 1992-1993 5.423 1 0.020 

5.2.3 Effect of Submission Period on Traditional Technology Sample 

The same approach taken in analyzing the advanced technology sample frequency 

data by submission period was used to analyze the traditional technology data. The result 

was not statistically significant (p-value = 0.423). 

5.3 Tasks Involved 

Further analysis was conducted to determine if a pattern could be found related to 

the tasks involved in the Task Prioritization errors found. To do this, the tasks involved 

in the reports with Task Prioritization errors were summarized by computing the raw 

number of times a task was involved in a Task Prioritization error (see Table 5.5). 
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Next, the tasks with the largest raw difference between the number of times they 

were involved in Task Prioritization errors in advanced technology aircraft reports and 

the traditional technology reports were identified. The tasks found to have the greatest 

difference (excluding Task 2.5 "Program route in FMS" which could not occur in the 

traditional technology aircraft) were Task 3.2 "Communicate with cabin crew" and Task 

3.3 "Communicate with company." For these tasks, the X2 test was used to determine if 

these differences were statistically significant. For both tasks, it was found that the 

difference was not statistically significant (respectively, p-value = 0.370 and p-value = 

0.313). 

TABLE 5.5 Summary of the tasks involved in Task Prioritization errors for advanced 
technology and traditional technology samples. Asterisks (*) have been placed next to 
the tasks with the greatest difference between occurrences in the two aircraft technology 
types. 

Involvement Frequency 

Tasks Advanced 
Technology 

Traditional 
Technology 

2.1 Determine mode of lat/lon navigation 0 0 
2.2 Maintain awareness of temporal profile 0 0 
2.3 Modify route for weather, traffic, hazards 1 0 
2.4 Plan approach 4 2 

2.5 Program route in FMS 12 0 
2.6 Set navigational radios 1 1 

3.1 Communicate with ATC 5 2 
3.2 Communicate with cabin crew 7 2 

3.3 Communicate with company 5 1 * 

3.4 Communicate with flightcrew 8 7 

3.5 Communicate with passengers 2 0 
3.6 Tune communication radios 2 0 
3.7 Uplink/ downlink information 0 0 
3.8 Receive ATIS 1 3 

4.1 Manage/correct system faults 2 _.. 1 

4.2 Monitor aircraft subsystems 2 3 

5.1 Non-flight Related Tasks (various) 3 1 
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6. DISCUSSION 

6.1 Primary Objective 

The primary objective of this study was to begin evaluating the relationship 

between TM of commercial airline pilots and the level of automation on the flight deck 

by determining how automation affects the frequency of Task Prioritization errors as 

reported in ASRS incident reports. I found that Task Prioritization errors occurred in 

both advanced technology and traditional technology aircraft, and that overall there was a 

statistically significant difference between the number of reports classified as containing 

a Task Prioritization error in the advanced and traditional technology aircraft. This 

difference in the frequency of Task Prioritization errors suggests that TM may be more 

difficult in the advanced technology aircraft. 

I cannot unequivocally state that the difference was caused by the nature of the 

design of the automation because this is confounded by the novelty of the advanced 

aircraft in air carrier fleets. In an attempt to better understand the effect of aircraft 

technology type, I looked more closely at the difference by submission period between 

the advanced technology and traditional technology samples. However, I found that the 

difference by submission period between aircraft technology types was not statistically 

significant. Why would this be the case? I believe the answer lies in the power of the 

statistical test. For the overall test in which the three submission periods' frequency data 

were combined for the two technology types, the power of the test was such that a 

medium-small effect could be detected. For the tests conducted by submission period, 

however, the power of the test was such that a medium-large effect could be detected. 

This difference in effect size detection was due to the difference in sample size. In the 

population of ASRS incident reports, the actual effect that I was trying to detect was 

smaller than medium-large and therefore the test by submission period lacked the 

appropriate power to detect it. To determine if there was a significant difference between 

aircraft technology in each submission period, the sub-sample size would have to be 

increased. 
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I also looked at the effect of submission period on Task Prioritization errors. By 

separating the two samples into three equal sub-samples based on submission period, a 

decrease in the frequency of Task Prioritization errors in both the advanced technology 

sample and the traditional technology sample over time became apparent. This 

difference was statistically significant for the advanced technology sample; however, it 

was not statistically significant for the traditional technology sample. These data are 

consistent with the idea that industry experience with the advanced technology aircraft 

played a role in the differences in the frequency of Task Prioritization errors, but this 

cannot be stated conclusively. It may be the case that improved pilot training programs, 

or any number of other factors could have contributed to this reduction in Task 

Prioritization errors and that this reduction may have occurred in all aircraft, regardless of 

their level of technology. Further research is required to determine if the novelty of the 

advanced aircraft indeed played the critical role in creating the difference of frequency in 

Task Prioritization errors between the two aircraft technology types. 

When evaluating the results of this study, one must bear in mind the limitations of 

ASRS incident report data. The samples used in this study were drawn from a 

nonrandom sample of events occurring in aviation operations and the ASRS incident 

reports themselves reflect reporting biases. What can be said with confidence, however, 

is that Task Prioritization errors do exist in actual line operations and their existence 

warrants thoughtful consideration. This study shed some light on one factor, automation 

on the commercial flight deck, which may effect the frequency of these errors. 

6.2 Secondary Objective 

The secondary objective of this study was to create an effective methodology for 

using ASRS incident reports for inferential analysis. By carefully constructing a research 

question and choosing an appropriate statistical test, an inferential analysis was 

conducted on the data collected. In this study statistically significant results were 
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derived, supporting the notion that ASRS incident reports can be effectively used both for 

descriptive analyses and for inferential analyses. 

By using ASRS data, I took advantage of several of the strengths of this type of 

data. First, the reports were able to provide a practical alternative to collecting data from 

the jumpseat of a commercial aircraft. The situations described in the narratives of the 

reports represented situations that had occurred in line operations which gave this study 

ecological validity and avoided the possibility that the effect found was an artifact of a 

laboratory experiment. Second, the large number of incident reports available made it 

possible to construct a study with a large enough power to detect a medium-small effect. 

6.3 Conclusion and Recommendations 

While Task Prioritization errors occur in both advanced technology and 

traditional technology aircraft, these errors occur more frequently in the advanced 

technology aircraft. The increased frequency of Task Prioritization errors suggests that 

TM may be more difficult in advanced technology aircraft. The submission period effect 

suggests that there is a downward trend in Task Prioritization errors in advanced 

technology aircraft. 

Based on these conclusions, there are two recommendations that I would like to 

make. First, I recommend that further research be conducted to differentiate the effect of 

automation due to the nature of its design and the effect of automation based on its 

novelty in air carrier fleets. One way this could be accomplished is by analyzing 

additional submission periods and adding these data to the results presented here. The 

results of such a study could also be used to determine if the overall downward trend of 

Task Prioritization errors that appeared in this study continues. 

Second, I recommend that when designing a training program for pilots of 

advanced technology aircraft that this information be disseminated to the pilots. The 

information could raise the awareness of pilot's susceptibility to Task Prioritization errors 
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in advanced technology aircraft. It is possible that a heightened awareness could 

counteract this susceptibility. 
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Appendix A: Glossary
 

The glossary includes terms and abbreviations used throughout the thesis.
 

Air Traffic Control = A system used to monitor and direct air traffic. 

Alternate Hypothesis (Hi) = as related to a statistical test - "The hypothesis that is 
adopted when Ho [Null Hypothesis] is rejected. Usually the same as the research 
hypothesis [i.e., the hypothesis the experiment was designed to investigate]" (Howell, 
1985, p. 149). 

ASRS see Aviation Safety Reporting System 

ATC see Air Traffic Control 

Aviation Safety Reporting System = A voluntary, confidential incident reporting system 
managed by NASA for the FAA. 

CDU see Control and Display Unit 

Control and Display Unit (CDU) = A device consisting of a display screen and a 
keyboard which allows the pilot to interact with the FMS. 

Chi Square (x2) = A statistical test "used to determine whether there is a significant 
difference between the expected frequencies and the observed frequencies in one or more 
categories" (Sharp, p. 181). 

Critical Period = All the events that take place between the time that the "desired state" 
was defined and the time that the flightcrew became aware that the desired state was not or 
would not be met given the current trend of activities. 

Critical Value = as related to a statistical test - "the value of a test statistic at or beyond 
which we will reject Ho" (Howell, 1989, p. 150). 

Descriptive Analysis = An analysis of data in which the set of data in the sample is 
described. Often descriptive statistical methods such as mean, medium, and range are used 
in this type of analysis. 

Effect Size = as related to a statistical test - "the degree to which the phenomenon is 
present in the population" or "the degree to which the null hypothesis is false" (Cohen, pp. 
9-10). 
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Expected Value = as related to a statistical test - The number of occurrences that would 
be expected if the null hypothesis was true. The expected value is derived from "the 
average value calculated for a statistic over an infinite number of samples" (Howell, p. 62). 

FAA see Federal Aviation Administration 

Federal Aviation Administration = The body of the U.S. government with primary 
responsibility for safety in civil aviation. 

Flight Management System (FMS) = An advanced technology aircraft system used to 
perform a number of functions such as: determination of position, velocity and wind, 
trajectory determination, and computation of map and situation data for display. The FMS 
communicates with other avionics systems on the aircraft as well as with the pilot via the 
Control and Display Unit (CDU). 

FMS see Flight Management System 

Homogeneity = as related to statistical samples - All the parameters of the samples to be 
compared are the same except for the variables in which the analyst is interested. 

Inertial Navigation System (INS) = A system on the aircraft that keeps track of its 
movement in the three spatial axes. 

Inferential Analysis = An analysis of data in which methods are used to draw 
conclusions about the whole population based on a sample of that population. A common 
inferential statistical method used for such an analysis is the Chi Square (x2) test. 

INS see Inertial Navigation System 

Large Transport = Commercial aircraft are differentiated by arbitrary gross takeoff 
weight ranges. Large transport aircraft have a gross takeoff weight range of 150,001 to 
300,000 lbs. 

Medium-Large Transport = Commercial aircraft are differentiated by arbitrary gross 
takeoff weight ranges. Medium-large transport aircraft have a gross takeoff weight range of 
60,001 to 150,000 lbs. 

National Transportation and Safety Board (NTSB) = The agency responsible for 
investigating civil aviation accidents occurring in the U.S. and for providing U.S. 
Accredited Representatives to non-U.S. accident investigating boards when necessary. The 
NTSB also is responsible for issuing safety recommendations to the FAA aimed at 
preventing future accidents. 

NTSB see National Transportation and Safety Board 
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Nominal Data = Data in which numbers are used to distinguish among objects. For 
example, an object is classified as a '1' if the phenomenon exists and classified as a '2' if 
the phenomenon does not exist. The numbers are not used for ordering the objects and the 
intervals between the numbers are not meaningful. 

Null Hypothesis (Ho) = as related to a statistical test - "The statistical hypothesis tested 
by the statistical procedure. Usually a hypothesis of no difference or of no relationship" 
(Howell, 1985, p. 144). 

Power = as related to a statistical test - "The probability that the test will yield 
statistically significant results" (Cohen, 1988, p. 1). The power is determined by the 
statistical test used, the sample size, and the effect size to be detected. A standard 
convention is to set the power to 0.80, which denotes an 80% chance that the test will yield 
statistically significant results. 

Significance Level = as related to a statistical test - "The standard of proof that the 
phenomenon exists, or the risk of mistakenly rejecting the null hypothesis" (Cohen, 1988, 
p. 4). 

Task Management (TM) = The function in which the human operator manages his/her 
available sensory and mental resources in a dynamic, complex, safety-critical environment 
in order to accomplish the multiple tasks competing for a limited quantity of attention. 

Task Prioritization Error = A type of TM error in which the human operator 
misprioritizes the tasks to be performed. 

TM see Task Management 

Type I error = as related to a statistical test - Occurs when the null hypothesis is rejected 
when it is true. 

Type II error = as related to a statistical test - Occurs when the null hypothesis is not 
rejected when it is false. 

Widebody Transport = Commercial aircraft are differentiated by arbitrary gross takeoff 
weight ranges. Widebody transport aircraft have a gross takeoff weight range of anything 
over 300,000 lbs. 
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Appendix B: ASRS Incident Report Samples 

Each sub-sample is composed of 70 ASRS Incident Reports randomly chosen without 
replacement from the total reports submitted in the appropriate time period that met the 
population parameters described in Table 4.1. The reports are listed by their ASRS
accession number. 

Sub-Sample of Traditional Technology Reports: 1988-1989
 
There were a total of 528 reports from traditional technology aircraft submitted in 1988 and 1989.
 

81222 88193 100086 113719 125807 
81617 88219 100796 115990 125845 
81801 88224 104037 116244 127316 
81940 88307 104744 117048 127493 
82048 90110 104858 117167 127900 
82059 90360 105173 117198 128634 
82491 90628 105248 117395 128853 
82770 90644 105667 118178 129276 
84116 92435 106358 120009 129411 
84790 95887 106439 120411 130372 
84894 98616 107565 120428 130744 
84984 98883 109829 122089 130893 
86711 99498 109856 123326 131532 
86967 99813 113638 125493 132100 

Sub-Sample of Traditional Technology Reports: 1990-1991
 
There were a total of 628 reports from traditional technology aircraft submitted in 1990 and 1991.
 

136649 147250 165703 175627 188220 
137401 148684 166588 175659 189142 
137721 148927 167336 175733 189690 
138162 153477 167676 175772 190180 
138655 156185 167813 177042 190616 
139723 157038 169639 178094 190989 
140177 159911 169924 179729 191039 
140498 160314 170300 179807 192035 
141490 161024 181971171136 192839 
142316 161818 171884 182353 194152 
144473 163352 173051 182436 196447 
145239 163791 173340 184987 196627 
145245 164350 174467 186506 197365 
146466 164501 175211 186532 197432 
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Sub-Sample of Traditional Technology Reports: 1992-1993 
There were a total of 478 reports from traditional technology aircraft submitted in 1992 and 1993. 

198353 207203 219487 237390 246252 
198388 207284 220650 237947 247076 
198938 208080 222178 239629 247600 
199965 209498 222905 240589 247639 
200803 209868 224640 240792 248001 
201445 210234 240949226934 248448 
202238 210671 229062 241812 248728 
202491 210678 229455 243141 249864 
202728 211410 231964 243275 250768 
203269 213286 232676 243853 251453 
203357 216038 233685 244247 253220 
203935 217103 236509 244448 253725 
206547 217283 237221 244544 253763 
207085 219383 237241 245041 256183 

Sub-Sample of Advanced Technology Reports: 1988-1989 
There were a total of 489 reports from advanced technology aircraft submitted in 1988 and 1989. 

80482 90859 101423 111759 124169 
81303 91425 101462 112142 124641 
81559 91811 101607 112293 125395 
81969 92106 106051 112745 125486 
82202 92507 106566 113574 125761 
83555 93803 108885 115112 126173 
84781 95089 109432 115619 127203 
85157 96184 110502 117145 128009 
85170 96533 110569 118434 129253 
86887 96787 110586 119740 129470 
88353 99260 110593 121576 129501 
88706 99620 110898 121749 129622 
88976 100618 111196 124072 130700 
89875 101335 111490 124108 130973 
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Sub-Sample of Advanced Technology Reports: 1990-1991
 
There were a total of 789 reports from advanced technology aircraft submitted in 1990 and 1991.
 

133702 146026 169279 179717 188019 
134267 146918 169519 180669 188205 
134903 147561 169533 181421 188583 
135948 148721 169557 181530 189426 
136799 149918 170238 182391 189664 
137454 152370 170282 183653 190642 
138178 153748 170508 183696 191157 
140270 156758 170820 185071 191573 
142369 162087 185165172204 191629 
143474 162485 172451 185585 193696 
143616 164998 172596 186388 195077 
143876 165672 187052177458 196409 
144367 167492 179046 187405 197311 
145076 168743 179661 187921 197363 

Sub-Sample of Advanced Technology Reports: 1992-1993 
There were a total of 837 reports from advanced technology aircraft submitted in 1992 and 1993. 

198895 214637 224908 234699 245327 
200015 216140 224965 235856 247484 
201029 216617 236067225315 250641 
201714 217197 225730 237132 251083 
202757 218490 227317 238246 251602 
207252 218531 227644 238399 251949 
208115 218667 227692 238611 252685 
210140 218771 227825 239324 252974 
210587 219832 230962 242363 253435 
210807 221121 231461 242789 254092 
211961 221890 233213 244579 254105 
213659 222283 233680 244978 254544 
214015 223672 233905 244994 258555 
214182 224291 234324 245283 258563 




