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There are numerous techniques for improving the mixing of fuel and

oxidant species. However, many of these methods cannot be applied to combustion

systems due to material limitations. A means of mixing the reacting species without

physically invading the flow stream is therefore desired.

In this work, induced electromagnetic forces known as Lorentz forces are

considered as a means of enhancing the combustion of co-flowing reactant streams. To

evaluate the effect of various parameters on the mixing process, a non-dimensional

description is derived and used to develop a numerical model. Numerical experiments are

performed based on a three level Box-Behnken design in which the dimensionless Lorentz
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The Lorentz force parameter has a large effect on the mixing process. The

Reynolds number has a minor effect on mixing, and the Euler number has a negligible

effect. Confirmation of these results through experimental work is needed. Approaches

that could be used to verify these results experimentally are outlined, and the construction

and testing of a burner suitable for further experiments on Lorentz mixing is described.
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NOMENCLATURE 

B Magnetic flux density vector.
 
Cn Concentration of species n.
 
Co Inlet concentration.
 
cp Specific heat.
 
D Diameter of electrodes.
 
Dn++n Binary diffusion coefficient.
 
Dp Width of flow channel.
 
D t Turbulent diffusion coefficient.
 
E Electric field vector.
 
Eu. Euler number.
 
e Unit vectors.
 
f Body force vector.
 
Fr. Froude number.
 
g Gravitational force vector.
 
i Number of nodes for flow development.
 
I Entrance length for flow development.
 
J Current density vector.
 
k, Turbulent thermal conductivity.
 
1 Reference distance for turbulence model. 
Le	 Lewis number. 
P	 Pressure. 
q	 Quantity of charge. 

Position vector. 
Re.	 Reynolds number. 
Rh	 Hartman number. 
RH	 Magnetic pressure number. 
R,	 Magnetic number. 
t	 Time. 
to	 Time when predicted values are made. 
u, u	 X-component of velocity. 
U ref	 Reference velocity. 
v, v	 Y-component of velocity. 

Voltage (scalar potential). 
x, y, z	 Cartesian coordinates. 
zo	 Distance from origin to center of ideal charged spheres. 

Pressure solution variable. 
8 Radius of ideal charged sphere. 
8t Time step used for diffusion computations. 
AP Pressure drop. 
At Time step used in for fluid flow computations. 
A V Voltage drop. 
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Electrical conductivity of fluid.
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Advanced Numerical Modeling of the
 

Lorentz Mixing Process
 

BACKGROUND
 

Combustion of hydrocarbon fuels has applications in almost every aspect of our 

lives. The chemical reactions of the combustion process can take place with fuels either 

premixed or non-premixed. Premixed combustion is limited primarily by chemical reaction 

rates while non-premixed combustion is limited by molecular diffusion of the fuel and 

oxidizer species. In addition, premixing of fuel and oxidant usually results in cleaner 

combustion. However, not all applications are suited for premixed combustion. 

Combustion of volatile fuels, for example, can result in dangerous conditions and 

premixing is avoided. It is desired to enhance the combustion of diffusion flames under 

such circumstances. Mixing of the fuel and oxidant species at the time of combustion is a 

difficult task. Many techniques for improving the mixing (e.g. placing an object in the 

flow stream to promote turbulence) cannot be easily applied to combustion systems due to 

material limitations. It is therefore desired to develop a means of mixing the reacting 

species without physically invading the flow stream. It is the goal of this project to 

evaluate the use of Lorentz forces to enhance the combustion of co-flowing reactant 

streams. 

Previous Work 

Pattee and Peterson (1993) investigated a new technique for enhancing bulk 

mixing in planar diffusion flames. A voltage was applied across electrodes to create an 

electric current through a flame sheet. A uniform magnetic field was applied and, due to 

the orientation of the fields, a Lorentz force was induced. Their work consisted of 
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comparing theoretical predictions of the lateral velocity experienced by the flame sheet 

with high-speed video images of experimental flames. This work provided the motivation 

for investigating the Lorentz mixing process. 

Thompson (1994) performed numerical simulations of alkali seeded diffusion 

flames subjected to Lorentz forces. His model used a predictor-corrector scheme to solve 

for the flow field of an incompressible, isothermal gas. Many assumptions about the field 

strengths were used and results of viscous effects were not shown. 

Motivation 

The experimental work of Pattee and Peterson and the CFD modeling of 

Thompson formed a starting point for the present work on the subject of Lorentz mixing. 

Pattee and Peterson demonstrated the important ability to create appreciable Lorentz 

Forces in the laboratory and Thompson demonstrated the usefulness of CFD solutions as a 

visualization tool. 

The computational model developed by Thompson enabled visualization of the 

effect of a time-varying Lorentz force on a fluid flow. The effect of varying such 

parameters as fluid properties, flow velocities, and the force magnitude could be visualized 

in a relatively short amount of time. Although various physical constants were variable, 

the effect of any changes were not easy to describe in terms of typical fluid dynamic 

parameters. In order to distinguish the effect of different parameters, it would be useful to 

solve the governing equations in a non-dimensional form. 

The current work began with the development of a CFD code that solved the 

governing equations in non-dimensional form. This allows for a direct comparison of 

viscous, inertial, gravitational, and Lorentz forces. The Lorentz force term used in 

numerical simulations was derived using electrostatic principles. It was then expressed in 
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terms of the electrode diameter used in actual applications by performing finite element 

solutions of the electric potential. The CFD code developed was then used to study the 

effect of various force ratios. 

A slot burner which was based on previous designs (Pattee and Pererson, 1993, 

Wolfard and Parker, 1949) was fabricated. It produced a smooth, laminar flame sheet 

which is ideal for studying the Lorentz mixing process. Alternate methods for introducing 

seed species were also tested. It was determined that the method of seeding the 

combustion gases used by Pattee and Peterson was more feasible for continuous 

operation. Experiments which could be used to determine the effectiveness of the Lorentz 

mixing process are surveyed as an outline of possible future work. 
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this research and Dr. H. A. Pattee for her mentoring and friendship. Also, many thanks go 
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and review they gave. 
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THEORETICAL DEVELOPMENT 

The physical laws which govern the motion of fluids and the propagation of 

electromagnetic waves have been well established. The assumptions of constant fluid 

density, temperature, and viscosity and low electromagnetic oscillation frequency are used 

to describe the relevant governing equations from which a computer model is made. The 

solution of the governing equations is simplified by performing dimensional analysis which 

clarifies the physical meaning of each term in the governing equations. Finally, the 

physical laws are used to derive the force that arises due to the interactions of charged 

particles within the fluid. The force is expressed in a form which is general and can be 

further described based on the specific application at hand. 

Conservation Equations 

The equations used to describe fluid flow are those of conservation of mass and 

momentum. For a viscous, incompressible fluid, these equations are (Nunn, 1989): 

a U a V+ a = v 

a2u 

W + ax + ay p ax p axe ay2 p 
au a(u2) a(iv) lap fi 

av a(uv) a(v2) 1 aP qa2v a2v) +.1i 
at

+ 
ax 

+ 
ay Tay + p ax2 ay2 p 

Complete modeling of Lorentz forces in combustion flames also requires an 

equation describing the conservation of energy. Appreciable Lorentz forces can be 

created in gases which have a very high electrical conductivities. The conductivity of a 

gas is a strong function of its temperature and can be increased by the introduction of a 
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seed species (Angrist, 1982). Since the seed species will only be present at elevated 

temperatures within the combustion zone, the conductivity of the flame will only be 

appreciable in this region. We may therefore localize the Lorentz force by defining a 

narrow region of the flow in which the seed species is present. This allows us to solve for 

the conservation of chemical species rather than the conservation of energy and to focus 

solely on the fluid dynamic interactions which are vital to the mixing process. For a binary 

mixture, this equation is (Incopera and De Witt, 1990): 

acn a(ucn) a(vc) (a2c. a2cn)+ + ax2 ay2 (3)at ax aY 

The inclusion of electromagnetic effects requires the equations of 

electromagnetism to also be solved. These are known as Maxwell's equations (Lorrain, et 

al., 1988): 

qV E = 
4rceo 

V x E = aas 

V B = 0 

(V x B) = ptaJ +110E0T 

We can neglect the time variations in the fields if the current density is the 

dominant term in the right-hand side of Eq. (7) (Pattee et. al., 1996). Substituting cE for 

J and noting that the magnitude of the electric field can be expressed as a harmonic 

function, Eq. (7) becomes: 

(V x B) = ptocr sin (o)t)E + co goc, cos (tot)E (8) 
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Comparing the absolute magnitudes of the two terms on the right hand side of Eq. (8), it is 

clear that the current density will be the dominant term provided that: 

aco « (9) 

For a plasma with an electrical conductivity on the order of 100 mho/m, a/E. is on 

the order of 1010 to 1012 radians per second. This implies that the time variation in the 

fields may be neglected for oscillation frequencies below 108 Hz. This precludes the much 

more complex solution of the complete Maxwell equations. 

Lorentz forces are the desired electromagnetic effect. A Lorentz force arises from 

the interaction of electric and magnetic fields with charged particles. When a fluid with an 

electric charge density pci and current density J flows through a region containing an 

electric field E and a magnetic flux density B, a force results (Lorrain et. al., 1988): 

f=pqE+JxB (10) 

The first term on the right hand side represents an electrostatic component 

experienced by all charges irrespective of motion. The second term represents the 

dynamic component experienced by all moving charges in a region occupying a magnetic 

field. As mentioned previously, it is a reasonable approximation to use only the applied 

fields in Eq. (10) for low frequencies. 

Again expressing the current density in terms of an applied current aE and an 

induced current aV x B , the Lorentz force may be expressed as: 

f=pqE+[aE+a(VxB)] xB (11) 

In typical applications with applied electric fields, the applied current will be several orders 

of magnitude greater than the induced current. Under these conditions, Eq. (11) may be 
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simplified to: 

f = + (crE x B) (12) 

From the geometry of Fig. 3.6, the electrostatic component of the force is perpendicular to 

the computational plane and will be neglected. Note also that if the applied magnetic field 

is aligned parallel to the y-axis, then on the computational plane Eq. (12) becomes: 

f = crEB (13) 

Unlike a gravitational force, typically a constant that is considered either present or absent, 

the Lorentz force requires a more elaborate description to account for spatial and 

temporal variations in the fields. 

Dimensional Analysis 

Dimensional analysis is used to ensure dimensional homogeneity, to ensure 

geometric and kinematic similarity, and to uncover the physical meaning of governing 

equations. The relevant variables are the fluid velocity, fluid properties, pressure, and 

electromagnetic field parameters. To employ the Buckingham Pi method (Welty et al, 

1984), it is proposed that the fluid velocity is a function of the other variables. Selecting 

a core group of (p,a,zo,co), the following dimensionless groups can be readily formed: 

Group 1: (P,a,zo, co) + u [0.)11 = u+ (14a) 

[Group 2: (p, a, zo, 0)) + = 1.1+ (14b) 
zo 

°) 

Group 3: (p, a, zo, co) + P = P+ (14c)
p 4 co 2 
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v+Group 4: (P,su ,zo, co) + AV a 002 (14d)
p -4; (03 

2
 

Group 5: (P,a,z0,03) + B ilap = B+ (14e) 

Group 6: (p, a, z0, co) + x [1:] = x+ (14f) 

Group 7: (p, a, zo, co) + t [co -t] = t+ (14g) 

Similar to groups 1 and 6, two groups can be formed for the y-components of 

velocity and position, respectively. In terms of the inlet concentration of seed species in 

the combustion zone, Co, a non-dimensional species concentration is defined as: 

[cc:01 (15) 

It is useful to define a reference velocity based on the frequency of the Lorentz force and 

the distance from the tip of the electrode to the equipotential plane (Pattee, et al 1996): 

Urej = 03 Zo (16) 

Dropping the + superscripts and substituting Eqs. (14)-(16) into Eqs. (1)-(3), the 

following non-dimensional forms of the conservation equations can be obtained: 

aU aV (17) 

zo .fxau a(742) ±a(u- AP aP (18a)ax2 ay ur2ef_at + ax ay P r2ef (-21 P U ref zo 

av a(u v) a(v2) AF'+ + [ ," 11 a2 +32vi +[z° (18b)
at ax ay p Uref ay ±Lp CI ref zo ay- J P-U2ref 
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ax a(u xn) a(v xn) a2x,z) (19)
at ax ay Le) - ax 2 aY2 

The bracketed terms of Eq. (18) represent ratios of forces. They are the Euler 

number, Reynolds number, and another term, H. The Euler and Reynolds numbers 

represent the ratios of pressure and viscous forces to inertial forces, respectively. This 

other term represents the ratio of body forces to inertial forces. For the special case of 

gravity, this term is known as the Froude number. The Froude number represents the 

ratio of inertial to gravitational forces. For the geometry chosen, the x-component of 

force is the Lorentz force and this number represents the ratio of Lorentz forces to inertial 

forces. 

p Uref Zo
Eu. Re. 

U r2ef 

(20) 

U2 Zo 
FFrri, = ref Ill , 2go zo = P uref 

Substituting Eqs. (20) into Eqs. (18), yields the final form of the non-dimensional x and y 

momentum equations: 

a(ua-3,0 = Eur-4-LM(e+ 4411 (21a) 

5(v2) a2vav ao4 OP F i(ax2 52v) ±[ii (21b)
at 1- ax ay ay LRei ay2 LFrJ 

Eqs. (21), along with Eqs. (17) and (19), are the final forms of the governing equations 

which are solved numerically. For all computations the Froude number is taken to be 

zero. This reduces the number of dimensionless numbers of interest to three and 

highlights the effects of the parameter R. 
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The term II, is different from previous non-dimensional parameters used to 

describe electromagnetic effects (Cramer and Pal, 1973): 

1.10-1B2 Magnetic Pr essure
Magnetic Pressure Number, RH = 

pU2 Dynamic Pressure 

Magnetic Force
Hartman Number, Rh =BL (22) 

P- Viscous Force 

Magnetic Force
Magnetic Number, 12, =B( 

pU Inertial Force 

The primary difference between the dimensionless numbers of Eqs. (20) and (22) is the 

use of the unique reference velocity, o)zo. The term II, most closely resembles the 

Magnetic Number, the major difference being that the Lorentz force is a function of both 

the electric and magnetic fields, rather than a magnetic field alone. 
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NUMERICAL IMPLEMENTATION 

The first step in investigating the effect of an externally applied Lorentz force on 

flow behavior is to develop an adequate description of the force which captures the spatial 

and temporal variations that distinguish it from traditional body forces. After this is 

accomplished, the formulation for the force is implemented into a computer model. Flow 

simulations are performed to investigate the effect of varying different parameters. The 

numerical solution techniques used in CFD depend greatly on the type of flow being 

modeled. The computer model developed here is for an internal, incompressible, 

isothermal, viscous flow of a binary mixture. The SIMPLE method, a well-known 

solution algorithm, is used with up winding on a staggered grid to solve for the flow field 

variables. Fick's law is used to compute the concentrations of the mixture. 

Description of the Lorentz Force 

The most common physical means of introducing a Lorentz force to a fluid is by 

applying a voltage across electrodes that are positioned in or near the flow stream and 

applying a properly oriented magnetic field. Neglecting variations in the electrical 

conductivity of the fluid, the resulting electric field will primarily depend on the charge 

distribution on the electrode surfaces. It would be useful to relate the electric field to 

physical parameters such as electrode diameter, applied voltage, and physical geometry. 

To accomplish this, an analytical expression for the electric field is derived. This 

expression is then correlated with the results of finite element (FE) solutions. The 

resultant correlation can then be used to estimate the value of electric field for a given 

electrode configuration (specified electrode diameter and electrode separation) without 

requiring the solution of the Maxwell equations. 
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For increased values of the applied voltage, there will be an increased surface 

charge density near the tips of the electrodes. Since the charge density is greatest near the 

tips of the electrodes, the analysis is simplified by approximating the tips of the electrodes 

as uniformly charged spheres. From Coulomb's Law of electrostatics, the potential field 

for a single charged sphere is (Lorrain et. al., 1988): 

1 qV(r) (23)" 47t80 I r r0 1 

Figure 3.1 Replace electrodes with ideal charged spheres 

Idealizing the electrodes as small charged spheres of radius 8, carrying charges of +q and 

-q, the total scalar potential field is found directly by applying the principle of 

superposition to Eq. (23). If each sphere is centered on the z-axis a distance zo from the 

origin of a right-handed coordinate system, as depicted in Figure 3.1, the potential field is: 

V(x,y,z)= (24)
47rso 1x2 +y2 ±+y2+ + (Z Z0)2 ZO )211,c2 
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The electric field is readily obtained by taking the gradient of Eq. (24): 

x 
.5 1.51ey

[ (x2+y2+0+zo2) 

E(x,y,z)= + Y y 
1.5 

ey (25) 
(x2_9,2±(z+z0)2) 

.5 

(x2+y2+(z---z0)2) 

(z+zo) (Z-Z0) 
A-

(x2+y2+(z+:0)2) 
1.5 (x4y24<02) 

_ 

By inspection, this electric field satisfies Eq. (5) for the condition of a constant 

magnetic field. Eqs. (24) and (25) cannot be evaluated because the charge of the idealized 

sphere is not yet known. However, the magnitude of the charge can be obtained by taking 

the difference between the values of the scalar potential at the surfaces of each sphere and 

equating it to the applied voltage: 

A V= V(0, 0, zo 8) V(0, 0, z0 + 8) (26) 

Evaluating Eq. (26) with Eq. (24) and solving for the quantity of charge, 

8(2z0q = AV 47rso (27)L 4(z0 J 

The electric field can now be calculated by substituting Eq. (27) into Eq. (25). If we focus 

our attention on the equipotential (x,y) plane, the electric field is reduced to a single 

component parallel to the z-axis: 

zo8(2z 8) F
E(x,y, 0) = (28) 

(x2+y2+.,F;) I L 2(z0617 8)1e; 
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The right hand side of Eq. (28) is the familiar expression for the electric field 

between two infinite, flat, parallel plates separated by a distance of 2(zo-8) (Lorrain et. al., 

1988), multiplied by a spatial scaling factor. Eq. (28) is plotted in Figure 3.2 for a fixed 

distance between spheres of 2 cm and varying values of S. As is expected, the 

parallel-plate solution is approached as S increases. 

The above expressions for the scalar potential and the electric field are valid for 

static conditions with the assumption of a uniform, glow discharge. The model is not valid 

for an arc discharge. If a variable, rather than a constant, voltage is applied across the 

electrodes, the fields will have some variations in the regions near the electrode surfaces 

due to varying charge distributions. As mentioned previously, the induced fields may be 

neglected for low frequencies. 

0 

0.6 
... parallel-plate solution 

Eq. (28) 
0.4 

0.2 

001 0.02 0.09 0.04 0.05 0.06 0.07 0.00 0.09 01 

Radius of charged sphere (m) 

Figure 3.2 Comparison of electric field for an 
infmite parallel-plate capacitor with Eq. (28). 
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Eq. (22) provides a simple way to estimate the electric field, and thus the Lorentz 

force, without solving the Maxwell equations. The only unknown quantity is the radius of 

the charged sphere, 6. In order to incorporate Eq. (28) into Eq. (21a), a functional 

relationship between the diameters of the idealized spheres and actual electrodes is 

needed. Finite element (FE) solutions of the scalar potential and electric field were 

performed on the equipotential plane described by Eq. (28) for a specified distance 

between electrodes of 2 cm and varying electrode diameters. 

The FE solutions were performed for the scalar potential using the program 

UCODE3 (Akay, 1990) with four-sided elements. The program required an input file 

which defined the FE mesh, the equation being solved, and the boundary conditions. For a 

static electric field, the scalar potential obeys Laplace's equation: 

V2 V= 0 (29) 

Since the scalar potential and the electric fields are symmetric about the z-axis, solution of 

Laplace's equation reduces to a 2-D problem. Symmetry boundary conditions were used 

between electrodes along the z-axis. The elements defining the electrodes were defined to 

be held at fixed potentials and the side boundaries were defined to have constant 

derivatives. The potential along the upper boundary was set to zero - a condition which is 

true only at an infinite distance away from the electrodes. The use of this boundary 

condition required an extended grid in order to prevent biasing of the solution. 
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electrode 

Figure 3.3 FE mesh and lines of constant electric field. 

Electrodes with diameters ranging from 2 mm to 8 mm were used. After 

performing several solutions, it was determined that the inclusion of electrode lengths of 

more than two diameters had a negligible effect on the solution in the region of interest. 

Physically this is appropriate since almost all of the charge will collect near the tips of the 

electrodes. Values of the electric field were computed by the program as the gradient of 

the solution over the FE mesh and written to an output file. Solutions were performed for 

electrodes with both round and pointed tips and a fixed separation of 2 cm. The FE mesh 

and solution are shown in Figure 3.3. The dark shading near the tips represents regions of 

high and low potential and the electric field contours represent a stronger field where they 

are more dense. 
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The solutions of the electric field were plotted against Eq. (28) and the values of 6 

were adjusted to give the best fit for each electrode diameter. This is illustrated in Figure 

3.4 for the case of 3 mm electrodes. 

3000 

o Round electrode FE solution 
2500 -xc Eq. (28) with 6 = 1.85 mm 

x Pointed electrode FE solution 

2000 
-.-. Eq. (28) with 6 = 1.62 mm 

1500 

1000 

500 

oo 
0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05 

Radial distance from origin (m) 

Figure 3.4 Comparison of Eq. (28) with 3 mm FE solution. 

In actual applications, electrodes are often made to have sharply pointed tips. This 

is done in an effort to collect the largest amount of charge which increases the field 

strength and promotes conduction through the fluid. Over time, the electrode surfaces 

become worn and must be re-sharpened. Considering both round and pointed electrodes, 
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the fitted values of 6 were then plotted against the electrode diameters to obtain a 

functional relationship. The results are shown graphically in Figure 3.5. 

10 

9	 o Round electrodes
 

x Pointed electrodes
 

... Fitted curve
 
7 

6
 

5 

4 

3 

(26) = (0.82) D+ (0.98 mm) 
2 

2	 3 4 5 6 7 9 to 

Diameter of electrode (mm) 

Figure 3.5 Correlation of ideal sphere diameter with electrode diameter 
used in FE solutions for a fixed distance between electrodes of 2 cm. 

The correlation of Figure 3.5 and Eq. (28) was then used to compute the 

magnitude of the Lorentz force over the computational plane. This calculation was done 

and the resulting values were stored in an input file used for the CFD simulations. In 

general, this procedure can be done in two steps. The first step is to create a suitable FE 

mesh and compute the values of the electric field on the equipotential plane. The second 

sten is to correlate the electrode diameters to 6 by comparing the results of S with Eq. (28) 
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to the FE solution. This allows obtaining the electric field distribution for any pair of 

electrodes separated by a fixed distance. 

Computational Domain 

The region of interest is defined according to the position of the electrodes used to 

induce Lorentz forces and the flame sheet these forces act upon. The computational plane 

coincides with the equipotential plane located midway between the electrodes. The flame 

sheet lies parallel to the dashed line of Fig. 3.6. 

Figure 3.6 Computational domain defined as equipotential plane between electrodes. 
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A staggered grid was used for the solution of the non-dimensional momentum 

equation, Eqs. (21). The use of a staggered grid facilitates the use of up winding schemes 

for computing flux terms and numerical derivatives. Rather than defining the values of u, 

v , and P at coincident grid points (Fig. 3.7a), use was made of continuity and momentum 

cells. Continuity cells are centered about points where scalar quantities (pressure, 

divergence, concentration, etc.) are defined (Fig. 3.7b). Momentum cells are centered 

about points where the components of the velocity vector are defined. These two types of 

cells are offset by a half node in both the x and y directions. Figure 3.8 shows how 

continuity and momentum cells are arranged. 

1. 

i,j+1 i+1,j+1 
isj+1 
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a 

Figure 3.7 (a) Normal grid with all variables defined at the same (i,j) grid 
points and (b) Staggered grid with scalar variables defined at (i,j) grid points and 

vector components defined on cell faces centered about (i,j) grid points. 
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(i,j) grid point 
of continuity cell 

(i,j) grid point of 
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continuity 

x-momentum 

y-momentum 
(i,j) gridpoint of 
y-momentum cell 

Figure 3.8 Staggering of continuity and momentum cells. 

The advantage of the staggered grid becomes readily apparent when computing 

scalar quantities such as divergence. A centered difference approximation can be used to 

calculate the velocity gradients over the entire flow field. For example, the discrete 

divergence of velocity at the point (i,j), from Figure 3.7b, is: 

Uii 11;_ii Vii Vii-i(V V)ii - + (30)Ay 

Computing this quantity for the grid of Figure 3.7a would require using special difference 

approximations along the boundaries. This is because centered difference expressions 

require (i;j ± 1) terms to compute their value. 

The up winding method used to calculate the fluxing terms of Eqs. (19) and (21) 

also takes advantage of the staggered grid. For this method, the fluxing velocity 

components are taken as the average values of the velocity on the faces of the momentum 

cell. For a positive fluxing velocity component, the velocity component in the center of 

the previous cell is used as the fluxed component. For a negative fluxing component, the 
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velocity component in the center of the next cell is used as the fluxed component. This is 

illustrated in Figure 3.9 for the terms of the X-momentum equation. The values used in 

the Y-momentum equation are obtained similarly. 

(ij) X-Momentum Cell 

vi_i vTop 
v 

\ 

uLeft uRight--41 --- --0---.. 4-- 4-0 
Iii_i J Uij Uin j 

- f 
vBottom 

Figure 3.9 Velocities used to compute flux terms of X-momentum equation. 

For example, the fluxing quantities for the x-momentum equation are computed as: 

1uuLeft= 2 [(uLeft + abs(uLeft)) - u,_14+ (uLeft abs(uLeft)) . uy] 

1uuRight= 2 [(uRight + abs(uRight)) uji + (uRight abs(uRight) ui+i j] 

(31a) 

uvTop= 1 [(vTop + abs(vTop)) + (vTop abs(vTop)) u,.,÷1]
2 

1uvBottom= 2 [( vBottom + abs(vBottom) + ( vBottom abs(vBottom)) uij] 
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From which the fluxing derivatives are taken as: 

a(uu) uuRight uuLell 
dr dr 

(31b) 

a(uv) uvTop uvBottom 
dY dy 

A similar procedure is used for the y-momentum equation. Notice that for the cross 

terms, (uv) and (vu), averaged values of the fluxed quantity are used because they best 

represent the values of the momentum cell. 

Fluid Flow 

The Semi-Implicit Method for Pressure-Linked Equations (SIMPLE) was used to 

solve Eqs. (21) for the flow field variables u, v, and P (Anderson, 1995). "Semi-Implicit" 

stems from a combination of explicit and implicit solution techniques. It is logical and 

straightforward when solving the momentum equations numerically to march the velocity 

components using an explicit solution method. The difficulty that arises is ensuring mass 

conservation. An equation derived from mass conservation can be solved implicitly which 

not only yields a correction for the explicit velocity prediction, but also solves for the 

pressure. 

The method begins by assuming that the values of the pressure field are known. 

The next step is to predict values of the velocity components based on the assumed 

pressure field using the purely explicit form: 

t 

Uti:1At = litid + At - 1(P211- + -gll) + Ili sin (t) At - Eu,,(?-P- ) (32a)
Re. ax2 ay2 

,./ 
La y 

_ 
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t
 
t+At t A A
 

v = v if -I- L.11 (0±ailj +Frd At Eu.(?-r)t (32b) 
iJ
 

Since these are only predicted values and not the actual values of the velocity components, 

substitution of Eqs. (32) into the continuity equation, Eq. (17), will not produce the 

desired value of zero. However, if we were to adjust the predicted velocity values the 

right amount, then the new, corrected values would in fact satisfy Eq. (17). That is, 

a(u+u-) a(v+v.)
 

ax +
 ay ' (33) 

If we can find the values of u* and v*, then we can satisfy Eq. (33). This can be done by 

making the rationalization that if we had used the correct value of pressure (P+P*) in Eqs. 

(32), then we could have satisfied Eq. (17). Defining the pressure correction in terms of a 

solution variable, p, as P' =13 /At and including it into Eqs. (32), 

utr 
1+At = Uti ± At - +Q:11-) +II I sin (t) At Eu. (34a)

Rew ax2 ay2 

It a(p+
1 a2v a2 
v vi At + Fr. At Eu. (34b)

Rew ax2 ay2 ay 

Eqs. (34) are the corrected velocities that are to satisfy continuity. Notice the difference 

between Eqs. (34) and Eqs. (32) are the velocity corrections: 

u* = (35a) 
ax
 

v* = Euw (35b) 
ay
 

An equation for the solution variable is obtained by substituting Eqs. (35) into Eq. (33): 
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a213 a213 (vv)t 
(36) 

a.2 ay2 Eu. 

This is Poisson's equation for 13, which is an elliptic equation and can be solved implicitly 

using a Thomas algorithm. In the computer program generated here, the 13 equation is 

solved semi-implicitly using a point-to-point method. The t superscript on the divergence 

notes that this value is to be calculated with the predicted value of the velocity at the 

current time step. 

Traditionally, the SIMPLE method has been used to obtain steady-state solutions 

of the velocity and pressure fields. The general procedure by which this is done may be 

expanded to obtain the solution of transient flow behavior. This is done by iterating on 

the divergence within each time step until it is below a specified tolerance. 

Species Diffusion 

The magnitude of the Lorentz force given by Eq. (28) is directly proportional to 

the conductivity of the fluid. The conductivity of most gases is very low at combustion 

temperatures and there are relatively few ionized species present. One method of 

overcoming this is to introduce a seed species, such as an alkali metal. Conductivities of 

seeded flames are several orders of magnitude greater than those of unseeded flames. 

Since the seed species will only be present at elevated temperatures over a narrow region 

defined by the combustion zone. Flow simulations were done with an inlet species 

concentration of 1.0 over the first three nodes above the midplane in the y-direction and 

zero at all other nodes. The concentration was then able to diffuse out into the bulk of the 

flow. This had the effect of localizing the Lorentz force to a region resembling the 

combustion zone. 
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The non-dimensional diffusion equation was solved purely explicitly by writing it in 

the following form: 

.,zot .{ Dn. (a2x ,_a2x)t uto ( )t vt.. ( ax1t 1vii (37)(.0 . c ax2 ay 2 ) ii \ ax av)
ij i., 

The time step used to solve the diffusion equation, St, was smaller than the time step used 

to solve for the flow field variables, At. Thus, for each time step of the flow field solution, 

the values of the species concentration were progressed a number of smaller time steps. 

This assumes that the values of the flow field variables do not change appreciably between 

the times to and to + At. 

Turbulence 

The rate at which species diffusion takes place is limited by molecular diffusion. 

The aim of applying a Lorentz force to the flow is to increase the mixing, to induce 

turbulence in the flow field. A turbulent diffusion coefficient was calculated using a 

Baldwin -Lomax turbulence model (Baldwin and Lomax, 1978). This model uses the local 

vorticity to determine turbulent coefficients. As with most turbulence models, several 

empirical constants are used which depend on the type of flow being considered. A 

turbulent viscosity is defined over two regions: 

010 inner Y :-C.Ycrossover 1 
(38a) 

GOouter Y ?Y crossover 

In this expression, y is the distance from the edge boundary and y.,...ver is defined as the 

value of y where (1).u,, becomes greater than ([1,),, The inner and outer viscosities are 

defined by the following relations: 
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1 

(tit) inner P /2 
(38b) 

(-1t)outer = K- Ccp Fwake Kkleb 

The definition of the inner viscosity incorporates both the distance to the wall boundary 

and a vorticity because it is expected to reflect the value of the viscosity within a boundary 

layer. The outer viscosity uses only a vorticity because it is far from any wall boundaries 

and well outside of the boundary layer. 

Various values for the constants Ccp and Cideb have been used. The numbers used 

depend on which flow regime is being modeled. In the present work, the suggested values 

for incompressible flow of cp=1.2 and Cideb=0.65 are used (He and Walker, 1995). In this 

model, K=0.0168, A.+=26.0, k is the thermal conductivity, and the other constants are 

defined as: 

F(y) Eylcol[l exp(Y] 

1911 exp (4-:)] 
Fwake --== minimum of (XJT. Finax) and (cw'w2rm"1"12)

Finax 

4 pw'rwY 

Y Ll. Y. = y where F(y) has its maximum (38c) 

1v12 u2 +v2 

Fkleb =[1 5.5(c}',Y) 6] 

Using the Prandtl and Lewis numbers, the turbulent thermal conductivity and 

diffusion coefficient can be obtained from the above relations. The apparent viscosity and 

diffusivity are then taken as the sum of the laminar and turbulent values. 

kt gt Cp Le
Dt (39)p CpPr 

http:Cideb=0.65
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The turbulent viscosity has a value nearly equal to the laminar viscosity, and is greatest 

near the wall boundaries. Similarly, the turbulent part of the apparent diffusion coefficient 

is nearly equal to the laminar part. From Eqs. (39), the contours of Figures 3.10 and 3.11 

show qualitatively the increase of both turbulent coefficients. 

Figure 3.10 Contours of turbulent viscosity with a maximum 
value of 9.1e-4 occuring nearest the channel walls. 

WM. 

Figure 3.11 Contours of turbulent viscosity within the channel.
 
Maximum value shown of 1.0e-6 occurs nearest the channel walls.
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NUMERICAL RESULTS 

A numerical solution's ability to model the governing equations must be evaluated 

before its results can be used to make accurate statements regarding the outcome of any 

simulations. Whenever possible, the first step in evaluating the suitability of a numerical 

solution is to compare its results to exact solutions. Unfortunately, exact solutions are not 

always known. Under such circumstances, it is useful to compare a simplified model to 

the solution of the correspondingly simplified governing equations, which may be known. 

This is the present case. There are no exact solutions for flow subjected to Lorentz forces 

so the model is compared to the exact solution for the flow between two infinite flat 

plates, also known as Poiseuelle flow. Numerical results are then obtained for more 

complex flows. The accuracy of these results is estimated by monitoring how well the 

solution obeys the laws of mass conservation. The results of flow simulations are used to 

form a factorial design of experiments from which insight into the significant flow 

parameters can be drawn. 

Code Validation 

The partial differential form of the momentum equations makes exact solutions 

difficult, if not impossible, for many engineering problems. Couette and Poiseuelle flow 

are two special cases in which these equations are greatly simplified into ordinary 

differential equations and exact solutions are possible. Both of these can be generalized as 

flow between infinite flat plates. Couette flow is where a fluid at rest between two flat 

plates is brought into motion by the movement of one of the plates as a result of a no-slip 

boundary condition. Poiseuelle flow is where a fluid flows between two flat plates due to 

a pressure gradient and results in a parabolic velocity profile. The known solution of 

Poiseuelle flow is used to validate the computer model developed in the previous chapter. 
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The parabolic velocity profile characteristic of a Poiseuelle-type channel flow was 

used to validate the computer model presented in Chapter 3. Figure 4.1 shows the 

streamwise velocity profile from the numerical solution plotted against the analytically 

calculated parabolic profile. These two profiles are in excellent agreement, differing by 

1.98% near the wall boundary and 0.23% at the center of the channel. 

1.2 

2 

74 a a 
analytic solution 

X numerical solution 

0.6 
E 

0.4 
0z 

0.2 

2 4 6 S 10 12 14 16 16 20 

Nodes Across Channel (Walls are at nodes 0 and 21) 

Figure 4.1 Comparison of analytic and numerical solution. 

The entrance length of the developing flow was compared to theoretical 

predictions. From an order of magnitude analysis, the entrance length can be expressed in 

terms of the plate separation, Dp, and the Reynolds number (Bejan, 1995). 

I CD, Re (40) 
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Bejan gives the value of the constant C as 0.01 and reports values obtained by Sparrow 

and Schlicting of 0.026 and 0.04, respectively. Using evenly spaced nodes and noting that 

there are ny momentum cells in the transverse direction, Eq. (40) can be expressed in 

terms of the number of momentum cells in the streamwise direction as: 

i Cny Re (41) 

Figure 4.2 shows the developing velocity profiles for a Re=10 flow with ny=51. The 

velocity profile is fully developed after approximately 11 nodes. This corresponds to a 

value of 0.039 for the constant C, which is in agreement with the predicted values. 

M 

-ID 2D SD 4D SD 

Nodes Across Channel 

Figure 4.2 Developing velocity profiles for a flow with Re=10 and Eu=1. 
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The input conditions used to model the Lorentz forces were to have two inlets, 

one for both fuel and oxidant with a wall separating them. The resulting pressure contours 

are shown below in Figure 4.3 and developing velocity profiles in Figure 4.4. 

Along Center of Channel 

5 1D 15 ZO 

Nodes Downstream Nodes Downstream 

Figure 4.3 Non-dimensional pressure drop vs. downstream distance for 
dual inlet flow over (a) developing region and (b) full length of channel. 

A check on the total mass flow rate and the divergence of the fluid velocity was 

done for transient and turbulent flow simulations since the analytical solution of Poiseuelle 

flow is valid only for a steady-state, laminar flow. The numerical solutions showed a 

slight drop in the mass flow rate with distance down the channel. Almost the entire drop 

occurred at the inlet with a change of less than 0.01%. 
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Figure 4.4 Developing velocity profiles for dual inlet flow. 

Design of Experiments 

To characterize the results of numerical simulations, a statistical design and 

analysis of experiments (DOE) was used to evaluate the effectiveness of the mixing 

process with respect to the Euler number, Reynolds number, and the new non-dimensional 

parameter Hp Since the nature of the mixing process was undetermined, a three level 

design was selected to detect any quadratic or non-linear behavior. It is difficult to 

perform a standard 3k (k factors at 3 levels) factorial design because of the large number 

of runs that must be performed. In order to reduce the number of runs required, a 

Box-Behnken (Box et al., 1960) design was used. In addition to requiring a smaller 

number of runs, this design also lends itself well to fitting higher-order quantitative models 

to experimental data (Mohr et al., 1995). 
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The response variable selected to determine the effect of the three factors was the 

scalar mixedness parameter (Smith et al., 1995) defined by 

A L x( 1 X)dA
M (42)

(S,, xdA) . (L ( 1 -JociA) 

In this expression, Xis the scalar mole fraction of a single species of a binary mixture and 

A is the area of interest. Eq. (42) may be interpreted by examining the integrand of the 

numerator under two conditions: (1) when only one species is present and (2) when equal 

amounts of both species are present. This function, X(1-X), is equal to zero for the 

former case and the mixedness is undefined. This can be interpreted as no mixing. The 

maximum value of the function occurs when Xis equal to one half and the mixedness is 

unity. Although Mreduces to unity whenever Xis constant over all of dA, this only has 

any physical meaning when there are equal amounts of species A and B present at all 

locations within dA. Thus, the mixedness parameter describes the relative amount of 

mixing between two species in a binary system and ranges in value between 0 and 1. 

n, Re Eu 

+ 0 10 0.5 

o 5 15 1.0 

- 10 20 1.5 

Table 1. Levels of factors used in numerical simulations 
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The three non-dimensional parameters Hi, Re, and Eu were used to evaluate the 

mixedness parameter described above. The values used in the factorial design are 

summarized in Table 1, with 0 corresponding the nominal value and + / - corresponding to 

the values bracketing the nominal value. Completion of the design required a total of 15 

simulation runs. 

Numerical Results 

The numerical model of an incompressible gas flow subjected to Lorentz forces 

developed in the first part of this project was used to compute the scalar mixedness 

parameter defined above. Each simulation began with the same concentration of the seed 

species and was carried out the same distance in computational time. Contours of the 

species concentration are shown in Figure 4.5 for the different levels of Reynolds number 

and the maximum applied Lorentz force. 

The results of the numerical computations are shown in the main effects and 

interactions plots of Figures 4.6 and 4.7, respectively. There are three points plotted for 

each factor. The three points represent the mean value of the mixedness parameter for all 

simulations performed with the value of the corresponding factor set at the high, low, and 

nominal value. The interactions plot has a format similar to the main effects plot, except 

that the interaction with a second factor is shown with lines which are labeled with the 

level of that factor. The scale of the vertical axis still represents the average level of 

mixedness parameter. 

From the Figures 4.6 and 4.7, it appears that the mixedness is increased with 

increasing values of the non-dimensional parameter, 1-1,, which represents the ratio of 

Lorentz forces to inertial forces. The mixedness also seems to increase with increasing 

Reynolds number. This is generally expected with higher Reynolds numbers. However, it 

is usually due to higher velocities. In the present case, increasing Reynolds numbers 
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would more often be associated with lower values of viscosity or high oscillation 

frequencies. It was surprising not to see some increase in mixedness with decreasing 

Euler numbers because a lower Euler number would seem to provide a less constrained 

flow and promote diffusion. 

Re = 10 

Re = 15 

Re = 20 

Figure 4.5 Species concentration for flows with Eu=1 andfil =10 
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Figure 4.6 Main effects plot for non-dimensional flow parameters. 
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Figure 4.7 Interactions plot for non-dimensional flow parameters. 
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APPLICATIONS
 

After performing numerical simulations, it was desired to design and build a burner 

which could be used to investigate the Lorentz mixing process. A design team was 

formed to construct a prototype burner and the design was then evaluated based on 

functional and material performance. A redesigned was then done to improve both of 

these characteristics. The design of system components is outlined and two methods for 

seeding the reactant gasses were tested. It was found that using an aqueous solution 

produced conductivities three orders of magnitude higher than dry, non-solution methods. 

Finally, prospective experimental approaches for determining the effectiveness of the 

applied Lorentz forces are presented and their likeliness is evaluated based on known and 

expected constraints. 

Burner Design 

The layout of the burner was based on a previous design (Wolfard and Parker, 

1949) that used a slotted configuration to produce a laminar flame sheet. A burner used in 

previous Lorentz mixing experiments (Pattee and Peterson, 1993) was also based on this 

same design. It used a quartz material to insulate electrodes mounted on the burner, and 

was observed to wear heavily near the reaction zone. The primary concern in designing a 

burner to use in Lorentz mixing experiments is the environment in which the burner must 

operate. Not only are there concerns about durability, but the material selection is limited 

by the presence of electromagnetic fields. Since there were no benchmark data available 

to use as design targets, it was determined that a prototype burner would be constructed 

based on the main design requirements. Evaluation of the prototype burner was 

performed by repeated use over a range of operating conditions. After modifications were 

determined, a final burner was built and tested. 
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The primary design requirement was to produce a laminar flame sheet. The 

burner material also had to operate in a high temperature environment. Electrodes 

mounted on or near the burner had to be insulated from each other to prevent a short 

circuit through the burner material, which would preclude establishment of a current 

through the flame sheet. Other design requirements were to have the burner produce 

uniform flow of gases upon exiting the main flow channels, to eliminate extraneous 

reactions, to allow a clear view of the reaction zone, and to be able to adjust the position 

of the electrodes. 

Two undergraduate mechanical engineering students performing a senior project 

formed a design team to build a prototype burner. The design team performed a materials 

search and employed a total quality management (TQM) approach based on the 

engineering requirements outlined above. Based on available material properties and the 

expected operating environment, zirconia (ZrO2) was selected. This ceramic material is 

available in rigid board form, has a very low electrical conductivity, a high operating 

temperature, and a porosity of 70%. With the exception of the high porosity, all of these 

properties were acceptable in terms of the design requirements outlined above. 

Five 5.0 x 3.7 x 2.0 cm blocks (Figure 5.1) were precision machined by the 

manufacturer (Zircar, Inc.) to form four parallel flow channels. The inner two channels 

were for the reacting gases, while the exterior two gases were for a nitrogen shroud. The 

blocks were aligned to form the flow channels and were bonded together with a zirconia 

based cement for a matched coefficient of thermal expansion. This configuration allowed 

the first bonded seam to be placed 2 cm below the reaction zone to ensure the integrity of 

the joints. Since the material had a high porosity, a thin layer of cement was also coated 

on its surfaces to prevent diffusion of gas through the material. 
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Figure 5.1 Machined ceramic block used to form flow channels. 

The main flow channel assembly was mounted on a 10.0 x 7.0 x 2.5 cm aluminum 

base. Each flow channel received gas flow from three 3.5 mm diameter ports in the 

bottom of the base. Attached to the base were four aluminum plates which served as both 

a stand and housing for tubing connections. A drawing of the assembled burner is shown 

in Figure 5.2. 
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Figure 5.2 Drawing of assembled prototype burner. 

Testing of the burner was done with flow rates ranging from 3 to 6 L/min. These 

corresponded to fluid velocities of 0.3 to 1.5 m/s, respectively. At lower values of the 

flow rate, the flow appeared to be laminar. However, at medium to high flow rates, the 

flame became turbulent and a clearly defined flame sheet was not visible. In addition, the 

coating of the burner with cementing material resulted in small irregularities of its surfaces. 

This caused the flame to attach preferentially to one side of the burner and inhibited the 

presence of a flame sheet. At higher flow rates the flame would detach from the burner 

completely, blow off would occur, and combustion would cease. After repeated use, 

minute cracks developed through the inner channel walls of the ceramic material. With the 

low flow velocities being considered, the possibility of premixing of the reactant streams 

prior to the exit plane increased. The flaws in the prototype burner were used as 

guideposts in preparing the final design. 
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Redesigned Burner 

The failure of the high temperature ceramic material required a complete re-design 

of the flow channel assembly. It was determined that machined stainless steel would be 

used. This would provide for both a durable material and a smooth, uniform surface for 

the flame to attach to. The design consisted of a main flow channel for the reacting gases 

with a surrounding channel to provide a shroud from the room air. To avoid the creation 

of large vortices, 20 gauge stainless sheet (-4.2 mm thick) was used to form the boundary 

between the fuel and oxidizer gases. Three 3.6 x 7.6 cm sheets were used for the main 

flow channels. These were held in place by two rectangular sides with 0.050 in (-1.3 mm) 

slots machined on their inner surfaces. The main flow channel assembly was formed by 

TIG welding the sheets to the sides (Figure 5.3). 

Top View 

TTG welds machined slots 

Figure 5.3 Flow channel assembly. 
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To aid in producing uniform flow, the gases entered the flow channels through 

1.27 mm diameter guide veins which were drilled into the base of the burner (Figure 5.4). 

The base also had veins for the shroud gasses which flowed between the outside of the 

burner and an exterior duct. Gases entered through inlet ports, flowed through the guide 

veins and into the burner. 

oxidizer in
 

oxidizer out shroud out
 

Figure 5.4 Base with guide veins and gas inlet ports. 

The electrodes were mounted on the sides of the burner. To eliminate the problem 

of a short-circuit through the burner material, a 1 mm thick ceramic plate was cemented 

between the electrode mount and the burner with a high-temperature epoxy. The 

electrode mount is a two part design (Figure 5.5) which consists of a fixed U-shaped 

section mounted on the burner and an arm which is able to slide within and be locked with 

a set screw. The head of the slider arm has a sleeve that holds an electrode and the 

electrode is locked in place by tightening a set screw. 
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A surrounding shroud was formed from aluminum sheet. To minimize the total 

flow rate of shroud gas, the duct was tapered in from the base and extended up towards 

the burner exit with a constant area to aid in maintaining a laminar flow from the burner 

exit. The total cross-sectional area that the shroud gasses flowed through was 2.72 cm2 at 

the burner exit. The shroud and reactant gas flow rates were adjusted to match the 

velocities at the burner exit. The assembled burner is shown in Figure 5.6. 

set 
screwselectrode
 

mount
 

burner 

ceramic 
insulator 

Figure 5.5 Two part adjustable electrode mount and assembly. 
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Figure 5.6 Burner with and without shroud. 

The new burner performed well over a wide range of operating conditions. At 

extremely high flow rates, the flame sheet became turbulent, but over the flow rates being 

considered it was smooth and laminar. 

Figure 5.7 Laminar flame sheet. 
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The final burner did well in meeting the design requirements. The problem of 

flame detachment was not observed with the machined stainless steel design and there 

were no apparent signs of wear after testing. The only deficiency, in terms of design 

requirements, is that the electrode mounts do not give a clear view of the flame sheet near 

the electrodes (Figure 5.7). This could be easily remedied by machining the heads of the 

electrode mounts down and relocating the set screw which holds the electrode on the side. 

Seeding System 

Group IA elements, Cs in particular, have been found to increase the electrical 

conductivity of gases by two to three orders of magnitude (Angrist, 1983). Seeding of 

materials into a flow stream can be done in many ways and is a common technique for 

flow visualization (Hancock and Lucht, 1995; Smith et. al., 1995). Group IA elements are 

most commonly found in crystalline form as salts. Although there are many ways of 

introducing the seed particles into the flow stream, there are only two forms in which a 

crystalline salt can be used: as a solid powder and as a liquid solution. The conductivity 

of seeded gases has a very strong temperature dependence. This made the former more 

attractive because it would avoid introducing water into the flame. 

NaCl was used to test different designs for introducing the dry salt into the flow 

stream. The seed was first introduced into the flame in the form of a fine powder. The 

NaC1 was held in a vertical tube. Air entered through the bottom of the tube, rose through 

the powder, and exited above carrying small amounts of salt with it. Attempts were made 

to correlate the amount of salt carried by the gas to the flow rate of the gas. This type of 

a fluidized bed configuration exhibits very nonlinear behavior and made calibration 

difficult. The mass of salt carried by the issuing gas was correlated to the gas flow rate, 

but a functional relationship could not be made due to variations from run to run. These 

variations could be attributed to residual buildup of seed material within the fuel/oxidizer 

piping system. 
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With this seeding system, currents carried by a hydrogen/air flame sheet were 

approximately 8µA and 50 p.A for NaC1 and CsCI, respectively, which translated to an 

electrical resistance on the order of Megaohms. The current produced was five to six 

orders of magnitude less than that needed to create useful Lorentz forces. The current did 

not increase with increased amounts of seed material. It became apparent that the salt 

introduced into the flame was burning, rather than ionizing, and there was an insufficient 

number of charge carriers available to carry electrical current. 

The seed was then introduced as an aqueous solution with the hope that the large 

numbers of ions would offset the reduced flame temperatures. This was done by 

atomizing the solution with an airbrush in a small mixing chamber (Figure 5.8). The air 

flow driving the brush's venturi created a mist and carried the salt into the flame. An air 

supply that bypassed the airbrush was added to increase the flow of air above the brushes 

liming value of 4.3 L/min. The additional flow of air also delivered larger quantities of the 

mist into the flame. 

Air/mist out 

spray mist
 

Air
 
in
 

CsCl(aq)
Bypass Air 

Figure 5.8 Schematic of seeding chamber. 
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The resulting currents were on the order of 10 mA, approximately three orders of 

magnitude higher than those created with the introduction of dry seed material. The 

desirable effect of increased currents was offset by limited operating times before the seed 

material would condense and clog the flow of air through the straightening veins in the 

base. While this was an improvement, the currents were still lower than required. 

Seeding the gases with an aqueous solution proved more effective than seeding in powder 

form. However, spraying the solution made it difficult to operate the burner for extended 

periods due to solid condensation of salt within the flow passages. Modification of the 

fuel delivery system to avoid small openings would likely eliminate this problem. 

Design Summary 

The stainless steel flow channel and electrode mounts were practical designs which 

could be used in further experimental work with minor modification. The flow channel 

delivered the desired laminar flow for a wide range of gas flow rates, as compared to the 

prototype burner. The adjustable electrode mounts proved to be versatile enough to 

accommodate the use of different fuel types, since density variations of different fuels 

result in different location of the flame sheet. To enhance the visibility of the flame sheet, 

the heads of the electrode mounts could be machined down by approximately 40%. 

The weakest design point of the newly constructed burner were the guide veins 

used to deliver the reactant gases to the flow channel. While producing a more uniform 

inlet velocity to the flow channel than the inlet ports of the prototype burner, the guide 

veins proved not to be a practical feature. For extended operating times and reduced 

maintenance, the previous design of Pattee and Peterson appears to be more promising. In 

this design the seeded gas entered the flow channel directly from a large mixing chamber. 
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Proposed Experiments 

Selection of quantitative variables which form a hypothesis from which the 

scientific method can be employed is the first step in planing an experimental endeavor. 

There are two variables which could be used to quantify the Lorentz mixing process. 

First, there is the scalar mixedness parameter described in Chapter 4. This variable can be 

used to evaluate the fluid dynamic aspects of the mixing process. Second is the flame 

temperature. This variable can be used to evaluate not only how well the reactant species 

are mixed, but also the additional energy released due to the application of the external 

forces. The two variables, mixedness and flame temperature, can be measured by two 

different experimental approaches. 

The scalar mixedness parameter is a subjective variable. Its value is based upon 

the definition of an area or region of interest. This type of variable can be measured by a 

popular flow visualization technique, planar laser-induced fluorescence (PLIF) (Yang, 

1989). PLIF has been used to determine combustion efficiencies by detecting the presence 

of OH radicals, as well as for visualizing fluid flow behavior (Arnold et al., 1990; 

Reichardt et al., 1995; Vandsburger et al., 1988). 

Planar Laser Sheet 

imaging 
systemoptics 

Figure 5.9 Schematic of PLIF experiment. 
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The basic principle behind both of these applications is that a laser is used to produce a 

wavelength of light which is known to cause a molecule present in the gas to fluoresce. 

The fluorescing molecule can be present either as a seed species or a combustion product. 

A schematic of the PLIF technique is demonstrated in Figure 5.9. 

The PLIF technique would be an ideal method of visualizing flow behavior. The 

limitation of this technique for the application of Lorentz mixing is that combustion gases 

would be the required media due to the high temperature dependence of the gases 

electrical conductivity. For combustion flames, acetone has proved to be a good seed 

material (Smith et al., 1995; Lozano et al., 1994). The drawback of PLIF is the expensive 

equipment required. For example, a Nd:YAG laser with a frequency quadrupling crystal 

used to excite acetone costs tens of thousands of dollars. The optical imaging system 

required is an addition expense which makes this seemingly attractive technique somewhat 

less appealing. 

Flame temperatures can be measured either by thermocouple probes (Pollock, 

1984) or optical imaging systems (Pattee and Peterson, 1992; Bertagnotti et al., 1995). 

Thermocouple probes offer a cost effective method although there are difficulties in 

dealing with highly corrosive environments and accounting for radiation and conductive 

losses. Fortunately these problems are well known. Optical imaging systems using 

infrared (IR) spectra can also be used (Qian and Saito, 1995). This type of system can be 

purchased commercially for approximately ten thousand dollars. 

Both optical temperature measurements using IR and PLIF imaging are subjective 

in nature. PLIF measurements can only be compared when they image the same physical 

area, while IR temperature measurements depend on the properties (emissivities) of the 

fluid and background source. Advances in modern imaging systems include devices that 

can detect or approximate needed emissivity values, which allows for fast and accurate 

temperature measurements. 
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SUMMARY 

Previous work on the use of Lorentz forces provided the basic motivation for 

developing a CFD tool that could be used to compute the effectiveness of the mixing 

process. The model was created by direct application of the governing equations of fluid 

flow. The estimation of the electric field and magnitude of the Lorentz force was a key 

part of this model. Unique non-dimensional parameters were introduced and an effort was 

made to compare their relative effects on fluid flows. 

The CFD model was validated by comparing its results for simplified cases to 

exact analytical answers. A 3k Box-Behnken design of experiments was used to determine 

the factors which had a significant effect on the mixing process. The DOE was done using 

limited ranges of the factors in an effort to keep the size of the computational grid small 

and the time required for computation short. The non-dimensional Lorentz force 

parameter H was shown to have the largest effect on the mixing process. The Reynolds 

number also displayed a positive effect, while the Euler number did not seem to affect the 

flow significantly. Further exploration of the effects of these factors should be done over 

wider ranges to gain a better understanding of their effect on flow behavior. 

Finally, a burner that produced a laminar diffusion flame sheet was constructed and 

tested. Several important components of the burner were described, including a method 

for introducing a seed species into one of the reactant streams. Using CsC1 as a seed 

material, currents on the order of 10 mA were observed to be carried by the flame sheet. 

This corresponded to a gas conductivity of approximately 10' mho, which is about 3 

orders of magnitude lower than what is required for appreciable Lorentz forces. An 

improved seeded gas delivery system could help to lower the resistance by reducing the 

amount of water entering the reaction zone and allowing extended operating times. 
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Two experimental approaches for evaluating the Lorentz mixing process were 

evaluated. PLIF measurements could be used to measure the scalar mixedness. This 

method requires a laser that produces a frequency which is know to excite a species 

present in the flow field. Data collection also requires a sophisticated imaging system. 

Flame temperature measurements can be done using thermocouple probes or IR imaging 

systems. Both flame temperature and mixedness measurements have difficulties which 

affect accuracy. It is not only important to consider the variable to be measured by a 

given experimental approach, but also how measurements are to be interpreted and how 

inaccuracies are to be accounted for. The ultimate choice of an experimental path should 

involve weighing the equipment costs and the known disadvantages against the expected 

results. 

Future work in this area would be to modify the existing seeding and fuel delivery 

systems to increase the conductivity of the reacting gases. If that is done, an appropriate 

experimental approach could be implemented and experiments could be performed. 

Improvements to the existing computer code could be made to optimize its performance, 

thus requiring shorter lengths of time to perform simulations. 
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ELECTRODE PROBLEM: LAPLACE EQN. 
-1 476 429 0 1 1 0 01 

34 
1 14 1 -0.012 0.001 -0.012 0.05 0.2 
15 28 1 -0.0115 0.001 -0.0115 0.05 0.2 
29 42 1 -0.011 0.001 -0.011 0.05 0.2 
43 56 1 -0.0105774 0.0009063 -0.0105774 0.05 0.19 
57 70 1 -0.0102929 0.0007071 -0.0102929 0.05 0.18 
71 84 1 -0.0100937 0.0004226 -0.0100937 0.05 0.18 
85 98 1 -0.01 0.0 -0.01 0.05 0.17 
99 112 1 -0.0095 0.0 -0.0095 0.05 0.17 
113 126 1 -0.0085 0.0 -0.0085 0.05 0.17 
127 140 1 -0.0075 0.0 -0.0075 0.05 0.17 
141 154 1 -0.0065 0.0 -0.0065 0.05 0.17 
155 168 1 -0.0055 0.0 -0.0055 0.05 0.17 
169 182 1 -0.0045 0.0 -0.0045 0.05 0.17 
183 196 1 -0.0035 0.0 -0.0035 0.05 0.17 
197 210 1 -0.0025 0.0 -0.0025 0.05 0.17 
211 224 1 -0.0015 0.0 -0.0015 0.05 0.17 
225 238 1 -0.0005 0.0 -0.0005 0.05 0.17 
239 252 1 0.0005 0.0 0.0005 0.05 0.17 
253 266 1 0.0015 0.0 0.0015 0.05 0.17 
267 280 1 0.0025 0.0 0.0025 0.05 0.17 
281 294 1 0.0035 0.0 0.0035 0.05 0.17 
295 308 1 0.0045 0.0 0.0045 0.05 0.17 
309 322 1 0.0055 0.0 0.0055 0.05 0.17 
323 336 1 0.0065 0.0 0.0065 0.05 0.17 
337 350 1 0.0075 0.0 0.0075 0.05 0.17 
351 364 1 0.0085 0.0 0.0085 0.05 0.17 
365 378 1 0.0095 0.0 0.0095 0.05 0.17 
379 392 1 0.01 0.0 0.01 0.05 0.17 
393 406 1 0.0100937 0.0004226 0.0100937 0.05 0.18 
407 420 1 0.0102929 0.0007071 0.0102929 0.05 0.18 
421 434 1 0.0105774 0.0009063 0.0105774 0.05 0.19 
435 448 1 0.011 0.001 0.011 0.05 0.2 
449 462 1 0.0115 0.001 0.0115 0.05 0.2 
463 476 1 0.012 0.001 0.012 0.05 0.2 
1 

-1.-1.0.0.0.0.0.0. 
13 

1 417 13 14 4 2 1 15 16 2 1 
2 418 13 14 4 2 1 16 173 2 
3 419 13 14 4 2 1 17 18 4 3 
4 420 13 14 4 2 1 18 19 5 4 
5 421 13 14 4 2 1 19 20 6 5 
6 422 13 14 4 2 1 20 21 7 6 
7 423 13 14 4 2 1 21 22 8 7 
8 424 13 14 4 2 1 22 23 9 8 
9 425 13 14 4 2 1 23 24 10 9 
10 426 13 1442 1 24 25 11 10 

11 427 13 14 4 2 1 25 26 12 1 I 

12 428 13 14 4 2 1 26 27 13 12 

13 429 13 14 4 2 1 27 28 14 13 

0 
2 
1 85 14 100 
379 463 14 -100 
0 
END 
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program profile
 
implicit none
 
integer nnx,nny
 
parameter(nnx=100,nnr--42)
 
integer ny,i,j,D
 
real * 8 dx,dy,u,x,y,ulN,vlN,Pin
 
dimension u(1 amx,0:rmy),u1N(03my),v1N(1 my),
 

# Pin(Onny),x(0:nnx),y(0:nny) 

print*,"1",D 
ny=r my-1
 

dy=1.0/float(ny)
 
dx=dy
 
do 4 j134,D
 

uIN(D+22 + j)=1.0*( 1.0 - ( ( (float(j)+0.5)/float(D) )**2.0)) 
uIN(D+1 + j)=1.0*( 1.0 - ( ( (float(j)+0.5)/float(D) )**2.0)) 

4 continue 
do 5 

u1N(D+21 - j)=1.0*( 1.0 - ( ( (float(j)+0.5)/float(D) )**2.0)) 
uIN(D - j )=1.0*( 1.0 - ( ( (float(j)+0.5)/float(D) )**2.0)) 

5 continue 
uIN(0)=(-1.0)*uIN(1) 
u1N(nny/2)=(-0.5)*(u1N((nny/2)+1)+u1N((nny/2)-1)) 
u1N(nny)=(-1.0) *uN(ny) 

do 20 i:),nrix
 
x(i) float(i)-float(nnx/4))*(dx)
 
do 10 j4),nny
 

y(j)=(float(j)-(float(nny)/2.0))*(dy)
 
if (i.GT.0) u(ij)=uIN(j)
 
if (j.GT.0) vIN(j)=0.0
 
Pin(j)=1.0
 

10 continue 
20 continue 

open(unit=22,file="XX2.dat")
 
open(unit=33,file="1UX2.dat")
 
rewind(22)
 
rewind(33)
 

C ***** WRITING X,Y,Z FILE 'iX.dat' FOR PLOT3D FORMAT ***** 
WRITE(22,*)nnx,nny+1,1 
WRITE(22,*)(((X(I),I=1,nnx),J,nny)) 
WRITE(22,*)(0Y(J),1=1,tmx),J0,nny)) 
WRITE(22,*)(((1.0,I=1,nnx),J41,nny)) 
REWIND(22) 
CLOSE(22) 

C ***** WRITING Q FILE 'iQ.dat' FOR PLOT3D FORMAT ***** 
WRITE(33,*)mucnny+1,1 
WRITE(33,*)0.00125,1.57,1,1 
WRITE(33,*)(((u(i,j),I=1,nnx),J4I,nny)) 
WRITE(33,*)(((1.0,I=1,nnx),J41,nny)) 
WRITE(33,*)(((1.0,1=1,nnx),J,nny)) 
WRITE(33,*)(((1.0,1=-1,nnx),J,nny)) 
WRITE(33,*)(((1.0,1=1,nnx),J=0,nny)) 
REWIND(33) 
CLOSE(33) 
open(unit=44,fi1e='profile.dat)
 
rewind(44)
 
write(44,*)(Pin(j).j.nny)
 



60 

write(44,*)(uIN(j),j,nny)
 
write(44,*)(vIN(j),j= I ,nny)
 
rewind(44)
 
close(44)
 

do 30 j4,nny 
print*,uIN(j) 

30 continue 
end 
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* *** *4. 4. * * * * * * * * * * * * * * * ***I.* * * 4, * * *4. * * * .1. .1. * *4. * * 4. 

C Program: CFD1.f 
C Author: Michael Hager 
C Date: December 10, 1996 
C Description: This program solves for the velocity and pressure fields 
C of 2-D incompressible flow subjected to a time varying 
C Lorentz force in the entrance region between infinite, 
C flat, parallel plates using the SIMPLER algorithm 
***************************************************************************** 

program CFD1 
implicit none 
integer nnx,nny 
parameter(rmx=100,nny=42) 
integer k, 1, m, nx, ny ,NT,nCYCLES,nHOOPS,iv,jv,numout 
real*8 u,v,P,uProv,vProv,Pprov,uOLD,vOLD,B,Div,status,x,y, 

# dx.dy,dt,Re,t,acc,goodDiv,maxDiv,maxU,maxV,Fmag,worstv. 
# uIN,v1N,Pin,c,Dcs,mu,mut,Dfl,LF,Mix,Eu,rho,rads,Zo,FXON 
dimension u( 1 xinx,0:ruly), uProv(13.mx,0:nny). 

# v(0:nnx-I , I xmy), vProv(0:nnx-1,131ny), 
# uOLD(13mx,Oniny),vOLD(0 3111X-1,17my), 
# P(O:nnx-1,03my), Pprov(0:nnx-1,0:nny), 
# B(O:rmx-1,0:nny), Div(0:nnx-1,03my), 
# Fmag(Oxinx,Omny),u1N(O:nny),v1N(13my), 
# Pin(03.my).c(03mx-1,03.my),Dft(1 =IX- 1,1 mny-1). 
# Re(1:nnx-1,1:rmy-1),x(0:nnx),y(0:nny) 

open(unit=3,file="cnvrg.dat") 
rewind(3) 
open(unit=9,file="mix.dat") 
rewind(9) 

C INITIALIZE VARIABLES 
nx=nnx-2 

print*."Enter NT: " 
read*.NT 
nCYCLES=32 
nHOOPS=100 
print*,"Enter the magnitude of the force: " 
read*,LF 
acc=1.0D-3 
goodDiv=1.0D-1 
maxU=0.0 
maxV 0.0 
t41.0 
call initit(nnx,nny.ny,nCYCLES,nHOOPS,x,y,dx,dy,dt,rads,Zo, 

u,v,P,uProv,vProv,Pprov,uOLD,vOLD,B,Div,rho. 
Fmag,u1N,v1N,Pin,c,Dcs,Re,mu,mut,Dft,LF,Eu) 

call boundary(nnx.nny,nx,ny,u.v,P.uIN,vIN.Pin) 
do 3001c=1,NT 
open(unit=2,file="field.dat") 
open(unit=4,file="div.dat") 
rewind(2) 
rewind(4) 
worstv0.0 
numout) 
status = (float(k)/float(NT))*100.0 
FXON=0.0 
if (k.GT.1) FXON=1.0 

http:read*.NT
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C MARCH SOLUTION THROUGH TIME 
do 200 1=1.nCYCLES 
do 100 m=1.nHOOPS 
t=t+dt 
call BLT(nrucnny,nx,ny,u,v,Re,mut,l,nCYCLES. 

Dft,mu,rho,dx,dy,x,y,rads,Zo) 
call diffusion( nnx, nny ,nx,ny,u,v,c,dx,dy,dt,Dcs,Dft,m) 

C CALCULATE PROVISIONAL VALUES FOR THE CURRENT TIME STEP 
call predict(runc.nny,nx,ny,clx,dy,dt,t,Re,Eu, 

u,v,P,uProv,vProv,Pprov,Fmag,c,FXON)
 
call boundary( nnx, nny, nx, ny ,uProv,vProv,Pprov,uIN,vlN,Pin)
 
call update( nnx ,nny,u,v,P,uProv,vProv,Pprov)
 
call divergence(nnx,nny,nx,ny,Div,u,v,dx,dy,maxDiv)
 

C MAKE CORRECTIONS TO PROVISIONAL VALUES WHILE DIVERGENCE IS LARGE 
do 90 while(maxDiv.GT.goodDiv)
 

call SOR (nnx,nny,nx,ny,B,acc,dx,dy,Div)
 
call correct(nnx,nny,nx,ny,u,v,P,uProv,vProv,
 

Pprov,B,dx,dy,dt,maxU,maxV)
 
call boundary (nnx,nny,nx,ny,u,v,P,ulN,vIN,Pin)
 
call divergence( nnx, nny, nx, ny ,Div,uProv,vProv,dx,dy,maxDiv)
 

90 continue 
100 continue 

C WRITE OUT TRANSIENT SOLUTION AFTER DIVERGENCE IS ACCEPTABLE 
call output(nnx,nny,nx,ny,t,u,v,P,c,mut,k,NT) 
numout=numout+1 
write(4,*)1c,l,m,maxDiv,maxU,maxV 

200 continue 
call mixedness(nnx,nny,nx,ny,Mix,c,dx,dy) 
call checkmass(nnx,nny,nx,ny,u,NT) 
print*,status," % complete" 
call converge(nnx.nny,nx,ny,u,v,uOLD,vOLD,worstv,ivjv) 
write(3,*)"worstv = ",worsts, 
# " (i,j)= (",iv,","jv,") numout="mumout
 
write(9,*)"Mixedness = ",Mix
 
rewind(2)
 
rewind(4)
 
close(2)
 
close(4)
 

300 continue 
close(3) 
close(9) 

900 end 

***************************************************************************** 

C END MAIN PROGRAM 
***************************************************************************** 

subroutine initit( nnx, nny, ny, nCYCLES ,nHOOPS,x,y,dx,dy,dt,w,Zo.
 
u,v,P,uProv,vProv,Pprov,uOLD.vOLD,B,Div,rho.
 
Fmagu1N,v1N,Pin,c,Dcs,Re.mu.mut,Dft,LF.Eu)
 

implicit none
 
real*8 PI
 
parameter(PI=3.14159265359)
 
integer rmx,nny,ny,i,j,nCYCLES,nHOOPS
 
real*8 cLx.cly,dt,u,v,P,uProv,vProv,Pprov,uOLD,vOLD,
 

# B,Div,Re,f,rho,x,y,z,Fmag,maxf,Zo,u1N,v1N,Pin,
 
# w,c,Dcs,mu.mut,Dft,LF,Eu.ReI
 
dimension u(13mx.0:nny).uProv(Imnx.0mny),u1N(Omny).
 

v(Omnx-1,1:rmy),vProv(Omnx-1,13my),vIN(1 mny),
 
uOLD(1:nnx.0:rmy).vOLD(0:nnx-1.1:nny).
 

http:Fmagu1N,v1N,Pin,c,Dcs,Re.mu.mut,Dft,LF.Eu
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# P(03mx-1,0:nny),Pprov(0/mx-1,03my),Pin(Omny).
 
# B(0:nnx-1.0:nny),Div(0amx-1,0mny).
 
# Fmag(0:nnx,03my),x(03mx),y(0zmy).
 
# c(Omnx-1,03my),Dft(1 7111X-1,1mny-1),
 
# Re(1 1,1:rmy-1),mut(1 , I mu- I )
 

maxf9.0
 
f=60.0
 
w=2.0*Prf
 
dy---1.0/(float(ny))
 
dx=dy
 
dt=2.0*PI/(float(nCYCLES)*float(nHOOPS))
 
print*,"Enter the Reynolds #: "
 
read *.ReI
 
print*,"Enter the Euler #: "
 
read*,Eu
 
Zo4/.011
 
z=1.0
 
Dcs3.684D-4)/(w*0.00948847)
 
rho 0.1707
 
mu=(rho*Zo*(w*Zo)* *2.0)/ReI
 
open(unit=24,flle=profile.dat)
 
rewind(24)
 
read(24,*)(Pin(j),j,nny)
 
read(24,*)(u1N(j),nny)
 
read(24,*)(AN(j).j=1,nny)
 
rewind(24)
 
close(24)
 

do 20 i(,),nnx
 
x(i)=(float(i)-float(rmx/4))*(cix)
 
do 10 j',),nny
 
y(j)=(float(j)-(float(nny)/2.0))*(dy)
 
if (i.GT.0) then
 

u(ii)=11131(j)
 
uProv(i,j)=u(i,j)
 
uOLD(i,j).0
 
if (i.LT.nnx) then
 

C MAKE SURE THIS LINE MATCHES THE SAME LINE IN difsnbc SUBROUTINE 
if( (j.GT.19).AND.(j.LT.23) )then 
c(i,j)=1.0 

else 

endif 
endif
 

endif
 
if ( (i.LT.nnx).AND.(j.GT.0) ) then
 

v(i.j)=vIN(j)
 
vProv(i,j)=v(i,j)
 
vOLD(i,j).0
 
if ( (i.GT.0).AND.(j.LT.nny) ) then
 
Dft(i,j)41.0
 
mut(i,j).0
 
Re(i,j)=ReI
 

endif
 
endif
 
if (i.LT.nnx) then
 

P(i,j)=Pin(j)
 
Pprov(i.j)=P(i.j)
 
B(i.j)41.0
 

http:j.GT.19).AND.(j.LT.23
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Div(i,j)=0.0
 
endif
 
Fmag(i,j)=LF/((x(i)**2.0+y(j)**2.0+z**2.0)**1.5)
 
if (Fmag(i,j).GT.max0 maxf=Fmag(i,j)
 

10 continue 
20 continue 

return
 
end
 

***************************************************************************** 

subroutine boundary(rmx,nny,nx,ny,u,v,P,u1N,vIN,Pin)
 
implicit none
 
integer nrix,nny,nx,ny,i,j
 
real*8 u,v,P,uIN,vIN,Pin
 
dimension u(1:mix,0:nny),v(0:nnx-1,1:nny),P(0:nnx-1,0:nny),
 

# ulN(0:nny),v1N(1:nny),Pin(0:nny) 

C FIXED INLET AND MIRRORED EXIT BOUNDARY CONDITIONS FOR VELOCITIES 
C MIRRORED INLET AND EXTRAPOLATED EXIT BOUNDARY CONDITIONS FOR PRESSURE 

do 10 j=0,ny+1 

u(1j)=111N(l)
 
u(nx+2,D=u(nx,j)
 
P(0 j) = Pin(j)
 
P(nx+1,D= 2.0*P(nxj)-P(nx-1,j)
 

10 continue 
do 15j=1,ny+1
 

v(0,j)=AN(j)
 
v(nx+1,j)=v(nx,j)
 

15 continue 
C NO-SLIP WALL BOUNDARY CONDITIONS FOR VELOCIIIES 
C MIRRORED WALL BOUNDARY CONDITIONS FOR PRESSURE 

do 20 i=0,nx+2 
if (i.GT.0) then
 
u(i3O)-u(i,1)
 
u(i,ny+1)=-u(i,ny)
 

endif
 
20 continue
 

do 25 i=0,nx+1
 
v(i,1)=0.0
 
v(i,ny+1)=0.0
 
P(i3O) = P(i,1)
 
P(i,ny+1) = P(i,ny)
 

25 continue 

return
 
end
 

************************************************************************* 

subroutine diffusion( nnx, nny, nx ,ny,u,v,c,dx,dy,dt,Dcs,Dft,HOOP)
 
implicit none
 
integer nnx,nny,rix,ny,i,j,tstep,nstep,HOOP,x,y
 
real*8 u,v,c,dx,dy,dt,Dft,Dcs,cOLD,cNEW,m,A,ddt,cOUT,
 

# uAVG,vAVG 
dimension u(1:nnx,0:nny),v(0:nnx-1,1:nny),c(0:nnx-1,0:nny),
 

# Dft(1:nn.x-1,1:imy-1),x(1:nnx-1),y(1:nny-1),
 
# cOUT(0:nnx-1,0:nny)
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A=(dx/dy)**2.0
 
nstep=100
 
ddt=dt/nstep
 
do 30 tstep=1,nstep
 

call difsnbc(nnx,nny,nx,ny,c)
 
do 20 i=1,nx
 

do 10 j=1,ny
 
uAVG = (u(ij)+u(i+1,j)Y2.0
 
vAVG = (u(i,j)-Fu(ij+1)Y2.0
 
cOLIc(ij)
 
m=((Dcs-i-Dft(ij)) /(dx*clx))
 

*( (c(i+1,j)-2.0*c(ij)+c(i-1,j))
 
+ A*(c(i,j+1)-2.0*c(i,j)+c(ij-1)) )
 

* - ( uAVE*(c(i+1j)-c(i-lj)Yclx
 
+vAVE*(c(ij+1)-c(ij-1)Ydy )
 

cNEW=cOLD + m*ddt
 
if (cNEW.LT.0.0) cNEW=0.0
 
if (cNEW.GT.1.0) cNEW=1.0
 
cOUT(i,j)=cNEW
 
if (cOUT(ij).LT.1.0D-6) cOUT(ij)=0.0
 
c(ij)=cNEW
 

10 continue 
20 continue 
30 continue 

do 35j=1,rmy-1 

Y(1)=.1 

35 continue
 
do 36 i=1,nnx-1
 

x(i)=i
 
36 continue
 

if (HOOP.EQ.50) then
 
open(unit=22,file="fxX.dat")
 
open(unit=33,file="fx.dat")
 
rewind(22)
 
rewind(33)
 

C ***** WRITING X,Y,Z FIE 'iX.dat' FOR PLOT3D FORMAT ***** 
WRITE(22,*)nnx-1,nny-1,1 
WRITE(22,*X((x(i),1=1,mix-1),J=1,1111Y-1)) 
WRITE(22,*X(((1),1=1,nnx-1),J=1,1my-1)) 
WRITE(22,*X((1.0,I=1,imx-1),J=1,nny-1)) 
REWIND(22) 
CLOSE(22) 

C WRITING Q FILE 'iQ.dat' FOR PLOT3D FORMAT ***" 
WRITE(33,*)mix-1,rmy-1,1 
WRITE(33,*)0.00125,1.57,1,1 
WRITE(33,*X((cOUT(i,j),I=1,nnx-1),J=1,nnY-l)) 
WRITE(33,* X((u(i ,j),1=1,nnx-1 ),J=1 ,nny- )) 
WRITE(33,*X((v(i,j),1=1,nnx-1),J=1,1n1Y-1))
 
WRITE(33,* XOft(i,j),I=1,nnx-1),J=1,nnY-1))
 
WRITE(33,*X((1.0,I=1,nnx-1),J=1,nny-1))
 
REWIND(33)
 
CLOSE(33)
 
endif
 

return
 
end
 

************************************************************************* 

subroutine difsnbc(nnx,nny,nx,ny,c) 

http:HOOP.EQ.50
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implicit none
 
integer nnx,nny,nx.ny.i,j
 
real*8 c
 
dimension c(0:nnx-1,03my)
 

C INLET BOUNDARY CONDITION 
do 10 j=1,ny 

if( (j.GT.19).AND.(j.LT.23) )then 
c(0 j) =1.0 

else 
c(0 j) 

endif 
10 continue 

C EXIT BOUNDARY CONDITION 
do 20 j=1,ny 

c(nnx-1,j)=2.0*c(nx,j)-c(nx-1,j) 
20 continue 
c SIDE (WALL) BOUNDARY CONDITIONS 

do 30 i=1,nnx-1 

c(i,nny)=c(i,ny)
 
30 continue
 

return
 
end
 

************************************************************************* 

subroutine predict(rmx,nny,nx,ny,dx,dy,dt,t,Re.Eu. 
u,v,P4Prov,vProv,Pprov,Fmag.c.IXON)
 

implicit none
 
integer nrix,nny,nx,ny,ij
 
real*8 dx.dy,dt,Re,Eu,t,Fmag,c,FXON,
 
# u.v,P,uProv.vProv,Pprov,
 
# dPdx, dPdy,
 
# d2udx2, d2udy2, d2vdx2, d2vdy2, Sx,Sy,
 
# uLeftX, uRightX, vTopX, vBottomX.
 
# uuLeft, uuRight, uvTop, uvBottom,
 
# uLeftY, uRightY, vTopY, vBottomY,
 
# vvTop, vvBottom, uvLeft, uvRight,
 
# duudx, duvdy, duvdx, dvvdy
 
dimension u(1 ainx,07my), uProv(lzmx,Oainy).
 

# v(0 mnx-1,1 any), vProv(0:nnx-1,1 xmy).
 
# P(0:nnx-1,0amy), Pprov(0:nnx-1,07my),
 
# Fmag(0mnx,0:nny),c(03mx-1,0:nny),
 
# Re(1:nnx-1,1:nny-1)
 

C SOLVE FOR X VELOCITY COMPONENT 
do 20 i=2,nx+1 

do 10 j=1,ny 
C ASSIGN OLD TIME STEP VALUE OF PRESSURE TO PROVISIONAL VALUE 

Pprov(i,j) = P(i,j) 
C CALCULATE FLUX TERMS AND DERIVATIVES FOR X-MOMENTUM EQUATION 

uLeftX = ( u(i,j)+u(i-I.j) )/2.0 
uRightX = ( u(i+1.j)+u(i,j) )/2.0 
vTopX = ( v(i-l.j+1)+v(i,j+1) )/2.0 
vBottomX = ( v(i-1,j)+v(i.j) )/2.0 
uuLeft = ((uLeftX + dabs(uLeftX))/2.0)*u(i-1,j) 

+((uLeftX - dabs(uLeftX))/2.0)*u(i.j)
 
uuRight = ((uRightX + dabs(uRightX))/2.0)*u(i,j)
 

+((uRightX - dabs(uRi2htX))/2.0)*u(i+1,j)
 

http:predict(rmx,nny,nx,ny,dx,dy,dt,t,Re.Eu
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uvTop = ( vTopX + dabs(vTopX) )/2.0 *u(i,j)
 
+( vTopX - dabs(vTopX) )/2.0 *u(i,j+1)
 

uvBottom = ( vBottomX + dabs(vBottomX) )/2.0 *u(ij-1)
 
+( vBottomX - dabs(vBottomX) )/2.0 *u(ij)
 

duudx = ( uuRight-uuLeft )/dx
 
duvdy = ( uvTop-uvBottom )/dy
 
dPdx = ( P(i.j)-P(i-lj) )/dx
 
d2udx2 = ( u(i+1,j)-2.0*u(ij)+u(i-Lj) )/(dx*cLx)
 
d2udy2 = ( u(i,j+ I )-2.0*u(i,p+u(i,j-1) )/(dy*dy)
 
Sx1.0/Re(i,j))*(d2udx2+d2udy2) - duudx - duvdy
 
uProv(i,j) = u(ij) + dt*( Sx - Eu*dPcbc )
 

10 continue
 
20 continue
 

C SOLVE FOR Y VELOCITY COMPONENT 
do 40 i=1nx 

do 30 j=2,ny 
C ASSIGN OLD TIME STEP VALUE OF PRESSURE TO PROVISIONAL VALUE 

Pprov(i,j) = P(i,j) 
C	 CALCULATE FLUX TERMS AND DERIVATIVES FOR Y-MOMENTUM EQUATION 

uLeftY = ( u(i,j)+u(i,j-1) )/2.0 
uRightY = ( u(i+1,)+u(i+1,j-1) )/2.0 
vTopY = ( v(i,j)+v(i,j+1) )/2.0 
vBottomY = ( v(i,j)+v(i,j-1) )/2.0 
vvTop = ((vTopY + dabs(vTopY))/2.0)* v(ij) 

+((vTopY - dabs(vTopY))/2.0)* v(i,j+1)
 
vvBottom = ((vBottomY + dabs(vBottomY))/2.0)*v(i,j-1)
 

+((vBottomY - dabs(vBottomY))/2.0)*v(i,j)
 
uvLeft = ((uLeftY + dabs(uLeftY))/2.0)*v(i-1,j)
 

+((uLeftY - dabs(uLeftY))/2.0)*v(i.j)
 
uvRight = ((uRightY + dabs(uRightY))/2.0)*v(i,j)
 

+((uRightY - dabs(uRig,htY))/2.0)*v(i+1,j)
 
duvdx = ( uvRight-uvLeft )/dx
 
dvvdy = ( vvTop-vvBottom )/dy
 

dPdy = ( P(i,j)-P(i,j-1) )/dy 

d2vdx2 = ( v(i+1,j)-2.0*v(ij)+v(i-1 j) )/(dx*dx)
 
d2vdy2 = ( v(i,j+1)-2.0*v(i,j)+v(i,j-1) )/(dy*dy)
 

Sys (1.0/Re(i,j))*(d2vdx2+d2vdy2)-duvdx-dvvdy )
 
vProv(i,j) = v(i,j) +
 

dt*(Sy - Eu*ciPdy +
 
FXON*c(i,j)*Fmag(i,j)*Dsin(0) 

30 continue 
40 continue 

do 60 i=1.nx
 
do 50 j=1,ny
 

Pprov(i,j)=P(i,j) 
50 continue 
60 continue 

return
 
end
 

***************************************************************************** 

subroutine correct(nnx.nny,nx,ny,u,v.P.uProv.vProv,
 
Pprov.B.dx,dy.dt.maxll.maxV)
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implicit none 
integer nnx,nny,nx,ny,i,j 
real *8 u,uProv,v.vProv,P,Pprov,B4OcbcdBdy,dx,dy,dt,maxU,maxV 
dimension u(13mx,03my), uProv(13mx,0:rmy). 

# v(0:nnx-1,1:nny), vProv(03mx-1,13my), 
# P(0ainx-1,0:nny), Pprov(0:rmx-1,0:nny). 
# B(0:nnx-1,0:rmy) 

maxU=10 
maxV.0 

C SOLVE FOR PRESSURE OVER i=1,nx AND j=1,ny 
do 20 i=1,nx 
do 10 j=1,ny 

P(i,j) = Pprov(ij) + B(i,j)/dt 
Pprov(i,j)=P(i,j) 

10 continue 
20 continue 

C SOLVE FOR v OVER i=1,nx AND j=2,ny 
do 40 i=1,nx 
do 30 j=2,ny 

dBdy = ( B(i,j)-B(i,j-1) ) /dy 
v(i,j) = vProv(i,j) - dBdy 
vProv(ij)=v(ij) 
if ( v(ij).GT.maxV ) maxV=v(i,j) 

30 continue 
40 continue 

C SOLVE FOR u OVER i=2,nx+1 AND j=1,ny 
do 60 i=2,nx+1 
do 50 j=1,ny 

dBdx = ( B(i,j)-B(i-1,j) Ydx 
u(i,j) = uProv(i,j) - dBdx 
uProv(i,j)=u(ij) 
if ( u(ij).GT.maxU ) maxU=u(i j) 

50 continue 
60 continue 

return 
end 

***************************************************************************** 

subroutine divergence(nnx,nny,nx,ny,Div,u,v,dx,dy,maxDiv) 
implicit none 
integer nnx,nny,nx,ny,ij 
real*8 Div,u,v,dx,dy,maxDiv,dudx,dvdy 
dimension Div(0:rmx-1,0:nriy),u(1 annx,Omny).v(Oamx-1,1:nny) 

maxDiv=10 
C CALCULATE DIVERGENCE OVER NODES 1.nx AND 1,ny 

do 20 i=1,nx 
do 10 j=1,ny 

dudx = ( u(i+1,j)-u(i,j) )/dx 
dvdy = ( v(i,j+1)-v(i,j) )/dy 
Div(i,j) = dudx + dvdy 
if dabs( Div(i.j) ).GT.maxDiv ) maxDiv=dabs( Div(i,j) ) 

10 continue 
20 continue 
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return 
end 

***************************************************************************** 

subroutine SOR(nnx,nny,nx,ny,f,acc,dx,dy,C)
 
implicit none
 
integer rinx,nny,nx,ny,i,j,n1,n2,dn,m1,m2,dm,iter,count
 
real *8 f,acc,dx,dy,C,
 
# absError,error,A,fOld,fNew,w,direction
 
dimension f(0:nnx-1,0 ziny),C(0:rmx-1,0:nny)
 

acc=acc
 
A=(dx/dy)**2.0
 

absError=1.0
 
error1.0
 
iter = 0
 
direction = 1.0
 

C RESET SOLUTIONN VARIABLE TO ZERO TO BEGIN SOLUTION 
do 2 i:),nx+1 
do 1 j7.1,ny+1 

f(i,j)41.0 
1 continue 
2 continue 

counta 
C ITERATE ON SOLUTION UNTIL VALUES DONT CHANGE 

do 30 while ( (absError.GT.acc) )
 
count=count+1
 
absError1.0
 

C CHANGE DIRECTION EACH ITERATION FROM 
C FORWARD.BACKWARD TO BACKWARD,FORWARD 

if (direction.EQ.1) then
 
n1=1
 
n2=-nx
 
dn=1
 
ml=ny
 
m2=1
 
dm=- I
 

else
 
nl=nx
 
n2=1
 
do =-1
 

m1=1
 
m2=ny
 
dm=1
 

endif 
C CALCULATE VALUES OF BETA OVER NODES Lnx AND Lny 

do 20 i=n1,n2.dn 
do 10 j.--ml,m2.dm
 

iter = iter +1
 
fOld = f(i,j)
 
fNew = ( (f(i+1.j)+f(i-1,j) ) +
 

A*( f(i.j+1)+f(i.j-1) ) - dx*dx*C(i.j) )/ 
( 2.0*(1.0+A))
 

fNew = w*fNew + (1.0-w) *fO1d
 
error=dabs( (fNew-fOld)/fNew )
 
if ( error.GT.absError ) absError = error
 
f(i.j) = fNew
 

http:j.--ml,m2.dm
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C APPLY FIXED INLET AND ZERO DERIVATIVE EXIT B.C.'s 
C Pin is fixed => Bin; dudx4 at exit => d2Bdx2 

if ( i.EQ.1 ) gi-1,j) = 0.0 
if ( i.EQ.nx ) gi+i,j)= 2.0*f(i,j) - f(i-1,j) 

10 continue 
C APPLY MIRRORED BOUNDARY CONDITIONS AT WALLS 

gi3O) = gi,l) 
gi,ny+1) = f(i.ny) 

20 continue 
direction-1.0)* *(1.0*iter) 
if (count.GT.25000) then 
absError-41.0 
print*,'maxed out' 

endif 
30 continue 

return 
end 

***************************************************************************** 

subroutine output( nnx ,nny,nx,ny,t,u,v,P,c,mut,k,NT) 
implicit none 
integer nnx,nny,nx,ny,i,j,k,NT 
real *8 t,u,v,P,uVal,vVal,x,y,c,mut 
dimension u(1mrix,Omny),v(Omnx-1,13my), 

P(Omnx-1,0mny),c(Omnx-1,03my), 
mut(lmnx-1,1mny-1) 

if (k.EQ.NT) then 
C WRITE OUT SOLUTION VALUES OVER NODES 1,nx AND 1,ny 

do 20 i=1.nx 
x=float(i) 
do 10 j=1,ny 

y=float(j)
 
uVal=( u(i.j)+u(i+1.j) )/2.0
 
vVal v(i,j)+v(i,j+1) )/2.0
 
write(2,*)x,y,t,uVal,vVa1,P(i.j),c(i,j),mut(ij)
 

10 continue 
20 continue 

endif 
return 
end 

***************************************************************************** 

subroutine update(nnx,nny,u,v,P,uProv,vProv,Pprov) 
implicit none 
integer nnx,nny.i,j 
real *8 u,v,P,uProv,vProv,Pprov 
dimension u(1:nnx,Omny).uProv(1:nnx.0:riny). 

v(0:nnx- 1 .1:nny).vProv(0:nnx-1.1:nny), 
P(Omnx-1,0mny),Pprov(Omnx-1,0:nny) 

do 15 i=1.nnx 
do 10 j41,nny 
u(i.j)=uProv(i,j) 

10 continue 
15 continue 
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do 25 i4),rmix-1
 
do 20 j=1,nny
 

v(i,j)=vProv(i,j)
 
20 continue
 
25 continue
 

do 35 if,),nnx-1
 
do 30 j:),nny
 

P(i,j)=Pprov(i,j)
 
30 continue
 
35 continue
 

return
 
end
 

***************************************************************************** 

subroutine converge(nnx,rmy,nx,ny,u,v,uOLD.vOLD,worstv,iv,jv)
 
implicit none
 
integer nnx,nny,nx.ny.i.j.iv.jv
 
real*8 u,v,uOLD,vOLD,worstv,testv
 
dimension u(13mx,Ozmy), v(03mx-1,1:nny),
 

uOLD(1:nnx,03my),vOLD(O:nnx-1,13my) 

do 20 i=1.nx
 
do 10 j=1.ny
 

if (u(i,j).NE.0.0) then
 
testv=( u(ij)-uOLD(i,j) )/u(i,j)
 

elseif (uOLD(i.D.NE.0.0) then
 
testv=( uOLD(i,j)-u(ij) )/uOLD(i,j)
 

endif
 
if (testv.GT.worstv) then
 
worstv=testv 

jv=
endif
 
if (v(i,j).NE.0.0) then
 

testv=( v(i,j)-vOLD(ij) )/v(i,j)
 
elseif (vOLD(i,j).NE.0.0) then
 

testv- vOLD(i,j)-v(i,j) )/vOLD(i,j)
 
endif
 
if (testv.GT.worstv) then
 
worstv=testv 

endif
 
uOLD(i.j)=u(i,j)
 
vOLD(i,j)=v(i,j)
 

10 continue 
20 continue 

return
 
end
 

***************************************************************************** 

subroutine checic.mass(nnx,nny,nx.ny.u.NT)
 
implicit none
 
integer nnx,nny,nx,ny,i.j.NT
 
real*8 u.mdot.rho
 

http:nnx,nny,nx,ny,i.j.NT
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dimension u(1:nnx,0:rmy),mdot(101) 

rho=1.0
 
do 5 i=1,nx
 
mdot(i)1.0
 

5 continue
 

do 20 i=1.nx
 
do 10 j=1,ny
 

mdot(i)=mdot(i)+rho*u(i,j)
 
10 continue
 
20 continue
 

open(unit=62,fi1e=tmdot.daf)
 
rewind(62)
 
do 30 i=1.nx
 

write(62.*)NT,i,mdot(i) 
30 continue
 

rewind(62)
 
close(62)
 

return
 
end
 

***************************************************************************** 

subroutine mixedness (nnx,nny,nx,ny,Mix,c,dx,dy)
 
implicit none
 
integer nnx.nny,i,j,nx,ny
 
real *8 c,Mix,dx,dy
 
real *8 A,sum0,suml,sum2,numer,denoml,denom2
 
dimension c(03mx-1,0:nny)
 

Mix O.0
 
A=nx*ny*dx*dy
 
numer 0.0
 
denom141.0
 
denom2 0.0
 
do 20 i=1,nx
 
sum0=0.0
 
sum131.0
 
sum2=0.0
 
do 10 j=1,ny
 

sum° = sum° + c(i.j) *( 1.0-c(i.j) ) *dy
 
suml = suml + c(i,j) *dy
 
sum2 = sum2 + ( 1.0-c(i.j) )*dy
 

10 continue
 
numer = numer + sumO*dx
 
denoml = denoml + suml*cLx
 
denom2 = denom2 + sum2*dx
 

20 continue 

Mix = (A *numer) /(denoml *denom2) 

return
 
end
 

************************************************************************* 

Subroutine BLT(nnx.nny.nx.ny.u.v.Re.mut.step.nCYCLES. 
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6 

Dft,mu.rho.dx.dy,x.y.rads.Zo)
 
implicit none
 
integer nnx,nny,i,j,nx,ny,step.nCYCLES
 
real*8 u,v,Re,mut,Dft,mu,rho,dx,dy,x,y,rads,Zo,
 
# Ccp,Ckleb,Cwake,Ap,Icsmall.Kbig,w,mutinner,mutouter,l, 
# rhowall,shearvvall,muwall,Ymax,Fmax,Udiff,Fwake,Fwake2, 
# Fkleb,F,Flocal,yPlus,Pr,Le,umax,vmax 
dimension u(13mx,Omny).v(03mx-1.13my),
 
# Re(1 xinx-1.1auty-1),mut(1=-1,13my-1),
 
# Dft(13trix-1,1:nny-1),x(Oxinx),y(0:nny)
 

Pr = 0.91
 
Le = 1.0
 
Ap = 26.0
 
Ccp = 1.2
 
Ckleb = 0.65
 
Cwake = 0.25
 
ksmall = 0.4
 
Kbig = 0.0168
 

do 10. i= 1.nx
 
rhowall = rho
 
muwall = mu
 
shearwall = mu*0.25*( u(i,2)+u(i,ny-1) )
 

C Find Ymax and Fmax in the transverse direction. 
Ymax = (ny/2)*dy + dy/2.0 
Fmax = 0.0 
umax = 0.0 
vmax = 0.0 
do 6 j = 1,ny 
if (u(i,j).GT.umax) umax = u(i,j)
 
if (v(i,j).GT.vmax) vmax = v(i.j)
 
yplus = (rhowall*shearwall*Dabs(y(j)))**0.5 / muwall
 
w = ( ( ( u(i,j+1)-u(i,j) )/dy
 

# - ( v(i+1.j)-v(i.j) )/dx )**2.0)**0.5
 
Flocal = y(j) *w*(1.0 - Dexp(-yplus/Ap))
 
if (Flocal.GT.Fmax) Ymax = y(j)
 
if (Flocal.GT.Fmax) Fmax = Flocal
 
continue
 
do 8, j= 1.ny
 

C *** First find mutinner *** 
yplus = (rhowall*shearwall*Dabs(y(j)))**0.5 / muwall 
1= ksmall * y(j) * (1.0 - Dexp(-yplus / Ap)) 
w = ( ( ( u(i.j+1)-u(i,j) Ydy 

# - ( v(i+1,j)-v(i,j) )/dx )**2)**0.5
 
mutinner = rho*I*1*w
 

C *** Now find mutouter *** 
Udiff = (umax**2 + vmax**2)**0.5 
F = y(j)*w*(1.0-Dexp(-yplus/Ap)) 
Fwake = Ymax*Fmax 
Fwake2 = (Cwake*Ymax*Udiff**2)/Fmax 
if (Fwake2.LT.Fwake) Fwake = Fwake2 
Fkleb = (1+5.5*(Ck1eb*y(j)/Ymax)**6)**(-1) 
mutouter = Kbig*Ccp*Fwake*Fkleb 

C *** Now find mut *** 
if (mutouter.LT.mutinner) then 

mut(i.j) = mutouter 
else 

mut(i.j) = mutinner 
endif 
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Re(i,j)=Re(i,j)+mut(i,j)/(rho*Zo*(rads*Zo)* *2.0) 
C *** Now find the new turbulent diffusion coefficient **** 

Dft(i,j) = Le *mut(i,j) /(Pr *rho) 
C *** done with Loop Iteration *** 
8 continue 
10 continue 

C *** Fill in last column of variables so output can be viewed on same grid *** 
do 60 j=1,ny 

mut(nrix-1,j)=mut(nx,j) 
Dft(nnx-1,j)=Dft(nx,j) 
Re(nnx-1 j)=Re(nxj) 

60 continue 

return
 
end
 




