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Small Unmanned Aircraft Systems (sUASs) equipped with optical sensors are capable
of remotely sensing landscapes and wildlife at spatial and temporal resolutions that were
previously inaccessible due to technical and budgetary limitations. Conventional remote
sensing and photogrammetric workflows can be applied to the resulting high resolution im-
agery to facilitate new types of scientific inquiry. This dissertation explores three novel ap-
plications using low-cost consumer grade and commercial grade sensors onboard an sUAS.

The first application uses a quadcopter equipped with a consumer grade camera to de-
tect Swiss needle cast disease (SNC) in Douglas-fir stands in western Oregon. Swiss needle
cast is a non-fatal foliar disease in Douglas-fir that reduces annual growth and stumpage
value. Conventional detection methods rely on manned aerial detection surveys that are
tedious. However, sUAS technologies offer a potential alternative. The presented method
fuses sUAS technology with Structure from Motion, automatic stem segmentation and bi-
nomial classification with generalized additive models. Four 1.6 ha sites containing more
than 3500 Douglas-fir trees were surveyed with a sUAS. Visibly infected trees were dis-
tinguished from not visibly infected trees with much greater than random chance (kappa
> 0.4) at the four sites surveyed. Near-infrared (NIR) information was not pertinent to
successful SNC detection, vastly simplifying the operational complexity of future surveys.
The method described in this chapter facilitates mapping of individual Douglas-fir trees
infected with SNC in the mountains of western Oregon.



The second application of sUAS technology expands upon the first by adding a nar-
rowband multispectral camera (NMC), additional survey sites, and surveys in different
years and months. The effectiveness of narrowband multispectral cameras for assessing
vegetation condition has been heavily researched, but the application to Swiss needle cast
detection in an industrial forest has not been previously described. Eight 1.6 ha sites en-
compassing more than 6000 trees were surveyed with a consumer grade camera and a NMC
in 2015 and 2016. SNC detection reliability tended to be better with the NMC (kappa dif-
ference > 0.10) than the consumer grade camera when surveys were conducted in fully
sunny conditions, but the differences were negligible in cloudy conditions. Summer imag-
ing with the NMC yielded highly variable results in comparison to the more stable spring
surveys and suggests that summer surveys are not operationally plausible. Detection sur-
veys of the same sites in two different years revealed higher-than-expected levels of disease
status change between years. Employing stricter probability thresholds on the classifica-
tion rules reduced detected change from > 200 trees/site to < 50 trees/site at the cost of
creating a third class of trees having an uncertain disease status. There was no evidence
that foliage retention related to classified diseased status although additional study is rec-
ommended due to the limited inferential power afforded by the small sample size (n <

28). Many regulatory, technical, and computational hurdles must be overcome before large
scale implementation of the method can be attempted.

The third application uses the integrated camera on a DJI Phantom 3 sUAS to conduct
photogrammetric measurements of baleen whale morphology, which is an indication of
whale health. UAS photogrammetry has been previously explored and shown to produce
accurate measurements, but methods between surveys vary widely, indicating a need for
standardization. We imaged 89 gray and six blue whales with a Phantom 3 sUAS. Whales
were measured within the images and scaled to metric units using barometric altitude. Lin-
ear mixed models with error terms for flight and date were used to to correct scaling error.
Post-correction estimates of 1 m calibration object contained 0.17 m less error and 0.25 m
less bias than no correction. Total propagated uncertainty analysis was used to examine
error contributions from scaling and image measurement (digitization) to determine that
digitization accounted for 97% of total variance. Additionally, we present a new body size



metric termed Body Area Index (BAI). BAI is scale-invariant and is independent of body
length (R2 = 0.11), enabling robust comparisons of body size within and among popu-
lations, and over time. Along with this study we present a three-program analysis suite
that measures baleen whales and applies scale corrections to produce 11 morphometric
attributes from UAS imagery. The photogrammetric method presented and associated soft-
ware facilitate efficient and standardized analysis of any whales that meet the assumption
of a parabolic shape.

Environmental remote sensing with sUAS can produce survey data at very high de-
tail (i.e., tree-level) and provide high measurement precision without the use of high-cost
sensors. However, regulatory limitations within the United States National Airspace com-
bined with the low-endurance of most multirotor sUASs limits efficient use to small areas,
or one or two whale sightings. sUAS survey data is of such high resolution that data stor-
age and management because burdensome even when survey areas are small. Furthermore,
low-cost sUAS systems suffer from reliability challenges and steep learning curves that
can heavily limit technology accessibility. In spite of the tradeoffs relative to manned sur-
veys, sUAS remote sensing provides researchers with unprecedented access to data of high
temporal and spatial resolution at low costs without putting human lives into the air.
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1 Introduction

Small Unmanned Aircraft Systems (sUAS) technology has veritably exploded (Watts
et al., 2012) since budget-strapped ecologists first fitted low-cost autopilot systems onto
remote-control airframe chasses (Koh and Wich, 2012; Wing et al., 2013, 2014). Do-it-
yourself (DIY) systems like those employed by Koh and Wich (2012) are surprisingly
sophisticated, and are capable of producing georeferenced orthomosaics of a landscape
at very high resolutions (< 3 cm) when equipped with a low-cost camera (Wing et al.,
2014). DIY solutions are especially well-suited for carrying non-standard sensors that are
common place in remote sensing applications research (Zarco-Tejada et al., 2012; Candiago
et al., 2015; Patrick et al., 2017). Paralleling the evolution of low-cost DIY systems is
the rapidly evolving low-cost commercial (i.e., “prosumer”) sUAS segment. The low-cost
commercial segment is characterized by turn-key systems that are capable of pre-planned
autonomous flights or fly-by-wire manual control (Wing et al., 2014), integrated gimbal
stabilized camera systems, and have endurances (i.e., flight times) of approximately 20
minutes (González-Jorge et al., 2017). DJI is presently the dominant player in this industry
with their Phantom series sUASs (González-Jorge et al., 2017), although 3DR solo has
been employed to similar effect (Bedell et al., 2017). Small UASs from both manufacturers
typically cost less than $2,000 USD, although more sophisticated (and expensive) systems
are available (González-Jorge et al., 2017).

Small UASs are increasingly accessible to the research community, especially in the
United States where recent changes in regulations have opened class “G” airspace to li-
censed sUAS operators (Pomfret, 2016; FAA, 2016). Small UASs are uniquely suited to
the research community because the relatively small scope of efficient utilization (Wing
et al., 2014; Martinelli et al., 2015; Tang and Shao, 2015) is typically well within the spa-
tial extent of a research plot. More importantly, sUASs give the researcher direct control
of the timing of flights and specific parameters related to flight, specifically velocity and
altitude (Wing et al., 2014).
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Two of the environmental remote sensing fields that stand to benefit sUAS technology
are agricultural remote sensing and, by extension forestry and wildlife remote sensing. The
commonality between these two fields are that subjects of interest tend to be in remote lo-
cations with study areas that are described in hectares or even square kilometers (e.g. extent
of Swiss Needle Cast in Oregon (Kanaskie et al., 2007) or humpback whale populations
in the Pacific (Christiansen et al., 2016)), and the subject of interest trends to have both a
spatial and a temporal component that limits static viewing (e.g. elk survey (Otten et al.,
1993)) that ultimately makes pre-planned surveys (e.g. bridge surveys (Gillins et al., 2016))
difficult to implement.

However, utilizing sUAS technology for remote sensing is a complex endeavor (Wing
et al., 2014; Hugenholtz et al., 2016; Carbonneau and Dietrich, 2017) that requires skills in
mission planning, diagnosing electrical anomalies, and equipment configuration. Further-
more, there are additional components such as pilot training, maintenance, record keeping,
and numerous safety considerations that contribute to complexity. As such, sUAS technol-
ogy is not appropriate for every situation. Large scale employment requires careful consid-
eration of not just the science questions, but also the limitations imposed by the equipment
and the operational environment (Hayhurst et al., 2016). This dissertation examines the
efficacy of sUAS remote sensing methods in the context of Swiss Needle cast detection, a
foliar disease in Douglas-fir, and accurate measurement of baleen whale body condition.

Agricultural and forest remote sensing for disease detection is becoming an increasingly
studied area of interest (Everitt et al., 1999; Franke and Menz, 2007; Martinelli et al., 2015).
The interest stems from the economic ramifications of diseases on cash crops (e.g. hazelnut
blight (Olsen, 2002)) and forests (e.g. emerald ash borer (Poland and McCullough, 2006)).
Furthermore, understanding of the timing and extent of diseases that affect vegetation may
inform future management practices in the face of global climate change (Millar et al.,
2007; Sturrock et al., 2011). Historically, disease detection surveys have used manned
aircraft (Johnson and Wittwer, 2008). However, these types of surveys tend to be ‘dull,
dirty, and dangerous’ and thus present a potential niche for sUAS remote sensing (Watts
et al., 2012). Small UAS technology is already being adopted by researchers investigating
foliar diseases in plants and trees.
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Calderón et al. (2013) used a hyperspectral scanner and thermal sensor onboard a sUAS
to assess Verticillium wilt severity levels on olives. They found a positive relationship
(R2 = 0.83) between disease severity and the Crop Water Stress Index derived from sensor
data. Albetis et al. (2017) employed a sUAS equipped with a multispectral camera to detect
Flavescence dorée in grapes and found that successful detection was possible when using
a combination of spectral and biophysical predictors. Patrick et al. (2017) investigated the
feasibility of detecting tomato spot wilt on peanuts using a multispectral sensor onboard a
sUAS. They found strong correlations between field observations and vegetation indices,
and further concluded that a normalized differenced vegetation index using the red and red
edge bands resulted in the most successful detection. However, the aforementioned studies
were executed in easily accessed agricultural fields and orchards. Expanding these types of
surveys to remote and mountainous forest settings like those found in the western United
States adds additional challenges, especially in the context of the requirements of sUASs
to be in line of sight (between aircraft and pilot) and fly no higher than 120 m AGL (FAA,
2016). Few studies have employed sUASs in the context of more natural forest settings
(Koh and Wich, 2012; Wallace et al., 2016), and none of those have investigated foliar
disease detection. Equally understudied is the application of sUAS remote sensing, and by
extension sUAS photogrammetry, to studying baleen whale morphometrics.

Morphometric comparison of baleen whale body condition, across individuals and over
time can reveal reproductive state, offspring growth rates, energetic capacity, body size
demographic structure, and incidents of compromised health due to injury (Lockyer, 1986;
Perryman and Lynn, 2002; Lockyer, 2007; Christiansen et al., 2016). Biologists have been
measuring whales using photogrammetric methods since the 1980’s (Klimley and Brown,
1983). The subject has been explored heavily in the subsequent decades (Dawson et al.,
1995; Perryman and Lynn, 2002; Fearnbach et al., 2011). However, timing aerial surveys
to coordinate with sea conditions, cloud conditions and optimal imaging conditions can
be challenging, especially on migratory species such as gray whales (Perryman and Lynn,
2002).

More recently whale biologists have employed sUASs to measure whale morphology
from the convenience of a boat. Durban et al. (2015) imaged killer whales with a DIY
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sUAS and estimated measurement bias to be 0.05 m with a standard deviation of 0.29
m. Following this study, Christiansen et al. (2016) conducted a much broader sUAS mea-
surement campaign on humpback whales using a Splashdrone. Over 200 individuals were
imaged and measured, and after thorough sensitivity analysis of error within and between
images, it was determined that error did not prohibit precise body condition measurement.
However, the method was highly dependent on coincidental imaging of both the reference
object and the whale to ensure accurate image scaling.

Christiansen et al. (2016) and Durban et al. (2015) used different calibration methods
and different whale measurement methods, highlighting a need for standardizing methods.
Furthermore, a clearer presentation of methods and a more specific investigation into mea-
surement error is needed to provide instruction to impending swarm of whale biologists
who will use these techniques.

While seemingly divergent, these two topics provide a setting to explore the breadth of
potential offered by sUAS systems within the broader field of environmental remote sens-
ing. Swiss needle cast (SNC) disease presents an interesting case study for investigating the
efficacy of sUAS disease detection surveys in natural setting because it affects a large pop-
ulation of Douglas-fir in the Oregon Coast range (Ritóková et al., 2016). Similarly, remote
sensing of baleen whale morphometrics presents an interesting case study for investigating
the metric accuracy of photogrammetry from low-cost sUASs in a dynamic oceanic setting.

The goal of this dissertation is to investigate the efficacy of using small unmanned
aircraft systems to conduct remote sensing surveys in complex environmental conditions
ranging from oceans to forested mountains using consumer grade, DIY and commercial
equipment. The specific objectives are to: examine the efficacy of conducting SNC disease
detection surveys with a sUAS, (2) determine if SNC detection accuracy varies by season,
sensor and year, and (3) develop a method for conducting accurate morphometric analysis
on baleen whales using a low-cost commercial sUAS. Objectives 1 – 3 of the dissertation
are addressed in Chapters 2 – 4, respectively.
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2 Individual Tree Disease Detection using a sUAS and a Consumer-grade

Camera: A Case Study on Swiss Needle Cast Disease in Douglas-fir

Jonathan D. Burnett
Dave Shaw, Ben Smith, Michael G. Wing

Submitted to Forest Science

2.1 Abstract

A growing number of studies have investigated UAS remote sensing as a means of de-
tecting foliar diseases in trees with a focus on cash crops in agricultural settings. In this
study, a color camera and a near-infrared (NIR) converted camera were mounted on a UAS
to image Douglas-fir stands infected with Swiss needle cast (SNC) disease at four sites
in the mountains of northwest Oregon. The conventional method of SNC detection is via
human interpreter onboard a manned aircraft with results at the acre-level. The aim of this
study was to present a method for detecting and mapping SNC at the tree-level and com-
pare disease detection reliability and accuracy among 36 different classification models for
each site. Classification models were constructed from nine different spectral band com-
binations, some of which included NIR, and four different classification algorithms: ran-
domForest, generalized additive models, generalized linear models (GAM), and stochastic
gradient boosted machines. Kappa coefficients were > 0.58 for the best performing model
at each site and positive predictive values for the best models were all > 0.70, indicating
strong evidence of reliable and reasonably accurate SNC detection. No singular classifica-
tion model emerged as the best, although GAM models were the most consistently reliable
with the 22 of the 36 GAM models having kappa coefficients not significantly different
from the best model at each site. Kappa coefficients of models that included NIR were
not significantly different from those not including NIR, suggesting that NIR cameras may



6

not be necessary for SNC detection. Infection counts and tree-level disease maps were
subsequently produced for each site to demonstrate the potential utility of the method for
informing management operations. Several recommendations for broader implementation
of method were identified, to include the need for beyond-line-of-site UAS operations and
high endurance aircraft.

2.2 Introduction

Swiss needle cast (SNC) is a foliar disease in Douglas-fir caused by the native fungi
Phaeocryptopus gaeumannii (Hansen et al., 2000). SNC has been intensifying in Oregon’s
Coast Range since the 1980’s (Black et al., 2010; Ritóková et al., 2016). The disease is
of special concern to the region and the state of Oregon because Douglas-fir (Pseudotsuga

menziesii) is the major lumber producing species in the state (Brandt et al., 2006), and con-
tributes heavily to the State’s $12.7 billion annual industrial forest output (OFRI, 2012).
SNC causes premature leaf abscission that reduces annual growth increment and can ac-
cumulate to end-of-rotation volume losses as high as 50% (Manter et al., 2000; Maguire
et al., 2002). These projected volume losses lead to significant reductions in stand net
present value (Kimberley et al., 2010). The dominant management strategy is to imple-
ment loss mitigation strategies such as stand conversion or thinning treatments that favor
non-susceptible tree species such as hemlock or western redcedar (Shaw et al., 2011; Zhao
et al., 2015).

The conventional method of mapping SNC is by aerial detection survey (ADS) using
trained observers in an aircraft who map disease severity across western Oregon (MacLean
and MacKinnon, 1996; Kanaskie et al., 2007; Johnson and Wittwer, 2008). A major ad-
vantage to ADS is the ability to immediately apply expert knowledge across a broad area
and rapidly derive actionable products that describe disease extent and severity. However,
SNC intensity in an area must sufficiently high for observers to detect from high altitude
(> 400 m) while moving at velocities in excess of 130+ kph. Also, the spatial accuracy
of results are at the sub-hectare level and not sufficient for individual tree assessments that
are better suited for stand-level decision making. Furthermore, the spring phenology of
the disease signature aligns with Oregon’s rainy season which can limit manned flights and



7

create poor canopy illumination for SNC detection. The use of small Unmanned Aircraft
Systems (sUAS) offers a potential solution to these limitations by removing humans from
the aircraft, providing operational flexibility to operate in conditions where a manned sur-
vey is not possible, conducting near canopy observations (120 m above ground level), and
collecting data that are compatible for using supervised classification with modern machine
learning algorithms (MLAs) to determine if individual trees contain visible signs of SNC
infection.

A UAS equipped with a consumer-grade digital camera and flying lower than 120 m
above ground level (AGL) can produce images with 2.5 cm ground sampling distance
(GSD) (Wing et al., 2013). The images can be used individually for conventional photo
interpretation and if there are enough overlapping images they can be compiled into a
single georeferenced orthomosaic and digital surface model using Structure from Motion
(SfM) (Verhoeven, 2011). Orthomosaics, especially when produced from linear sensors
calibrated to surface reflectance, can be used in conventional remote sensing workflows
that can attribute a classification (e.g. diseased/non-diseased) to pixels or objects using
supervised classification (Laliberte and Rango, 2009; Liaw et al., 2002; Lillesand et al.,
2014). The ability to use supervised classification methods for SNC detection has the po-
tential to reduce analysis time and reduce error by allowing a trained interpreter to use their
expertise to classify hundreds of training trees as diseased or non-diseased and extrapolate
those training observations to subsequently classify tens of thousands or potentially even
millions of trees. Furthermore, it is possible to add near-infrared cameras (NIR) to sUAS
(Verhoeven, 2010). The addition of NIR has been shown to significantly improve the de-
tection of foliar disturbance in trees and plants (Franke and Menz, 2007; Sankaran et al.,
2010; Eitel et al., 2011).

Machine learning algorithms (MLAs) have been increasingly used in environmental
remote sensing classification applications (Moisen et al., 2006; Rodriguez-Galiano et al.,
2012; Lary et al., 2016; Gilbertson et al., 2017). MLAs relax the underlying assumptions
of conventional parametric classifiers such as maximum likelihood, kmeans, or logistic re-
gression classifiers to potentially improve classification accuracy at the cost of substantially
increased computational time (Liaw et al., 2002; Wood, 2017). Furthermore, modern per-
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sonal computing power has evolved such that a supercomputer is not necessary to utilize
MLAs in many applications; for example, we used a used a Lenovo P50 Thinkpad Laptop
for this study.

Classification of environmental remote sensing data frequently makes use of vegeta-
tion indices (VIs). VIs can simplify data complexity by reducing the number of explana-
tory variables through transformations, and can be related to a physiological plant compo-
nent. The most commonly used VI is the normalized difference vegetation index (NDVI)
(Carlson and Ripley, 1997). NDVI has been used to assess leaf chlorophyll content and
greenness for numerous applications (Yoder and Waring, 1994; Carlson and Ripley, 1997;
Zarco-Tejada et al., 2012). However, NDVI is derived from red and NIR data, the latter of
which requires a specialized sensor. (Verhoeven, 2011). A similar and newer VI is the tri-
angular greenness index (TGI) proposed by Hunt et al. (2011). TGI is similarly a measure
of greenness, but has been shown to be sensitive to varying chlorophyll content in leaves,
even when high leaf area results in saturated NDVI. In addition, TGI does not require a
specialized NIR camera.

A few existing studies have used UAS remote sensing approaches to investigate foliar
disease in tree plantations. Garcia-Ruiz et al. (2013) used MLAs in conjunction with mul-
tispectral imagery collected from a small UAS to detect Huanglongbing in crowns of a
citrus tree plantation. This study is particularly pertinent to ours because Huanglongbing
can produce a chlorotic response in infected leaves, similar to that of Douglas-fir leaves in-
fected with SNC, however, the multispectral camera employed is much more expensive and
specialized than consumer-grade cameras. Calderón et al. (2013) employed UAS equipped
with a highly sophisticated hyperspectral scanner to conduct early detection and severity
assessment of Verticillium wilt in two olive orchards and found that wilt could be reliability
detected at the crown level. Their findings highlight the extent of disease detection that is
possible with UAS although the method was applied to a limited setting (i.e., two olive
plantations), and required a specialized sensor that is too expensive to be readily accessible
to many research or forest management entities.
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2.2.1 Objectives

Our study investigated the efficacy and reliability of detecting SNC presence in Oregon
coast Douglas-fir trees with a sUAS remote sensing technique. Tree-level disease detection
methods are understudied and applying such a technique in combination with a low-cost
UAS equipped with a low-cost consumer-grade camera in a mountainous industrialized
setting is a unique approach that may be of interest to the research and commercial forestry
communities alike. The primary goals of our study are to present a methodology that
produces SNC detection maps for surveyed areas and conceptually explore the concept of
broader implementation. The specific objectives to accomplish our goal are to: (1) examine
whether trees can be classified as diseased or non-diseased with better than random chance,
(2) discern if the use of a NIR camera significantly improves classification reliability, (3)
determine whether physiologically meaningful VIs improve classification reliability, and
(4) compare SNC detection reliability among two different MLAs and two different GLM
implementations using nine different model specifications to examine the effect of classifi-
cation model on detection reliability.

2.3 Methods

2.3.1 Study Area

Four 1.6-ha study sites were selected from areas in the Swiss Needle Cast Coopera-
tive plot network (Ritóková et al., 2014). Criteria for site selection was based on prior
knowledge of SNC presence, coverage from an existing Federal Aviation Administration
Certificate of Authorization (COA) and the ability to maintain line of sight (LOS) to an
unmanned aircraft flying 120 m AGL. Sites contained Douglas-fir cohorts ranging between
7 and 40 years of age and an elevation gradient between 2 and 100 m. Overhead images
of the sites provide a sense of each site’s vegetative condition as well as a visual context of
each site’s location (Figure 2.1). The Norton site was distinct from the other sites because
it was a common garden planted for a USFS Douglas-fir seedling movement trial and was
known to contain Rhabdocline spp., a lethal needle cast disease that produces phenotypic
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responses (e.g. needle senescence in spring) similar to SNC (Stone, 1987; Hansen et al.,
2000). We did not consider the confounding influence of Rhabdocline spp. a concern
because it is unlikely a quantitative classifier could discern the difference between such
similar disease signatures and the presence of Rhabdocline spp. would be of extreme inter-
est to a forest manager because it is a known mortality agent. The survey was conducted
in May 2015 to correspond with the phenological response of Douglas-fir to SNC infection
(Manter et al., 2000) as well as the annual SNC ADS.

2.3.2 Equipment

The UAS selected for this study was a TurboAce Matrix quadcopter (Appendix Figure
A.1) valued at $5000 USD with a motor-to-motor span of 800 mm and an all-up weight of 3
kg, including the battery, camera, and two-axis gimbal. The UAS was equipped with a Pix-
hawk autopilot capable of conducting GPS navigated flight. The sensor used for this study
was a gimbal-stabilized Sony Nex 5T camera ($750 USD) equipped with a 20-mm focal
length lens for collecting visible light in the red (R), green (G), and blue (B) wavelengths.
An identical camera was converted to be sensitive to NIR wavelengths (Verhoeven, 2010).
This resulted in a camera that was sensitive to G, R, and NIR wavelengths. The combi-
nation of the two cameras allowed the collection of imagery containing R, G, B and NIR
data. Two cameras were used in tandem because the G and R channels on the converted
camera are polluted by NIR (Verhoeven, 2010), thus confounding subsequent derivation of
VIs and the accurate estimation of R, G, and B importance on reliable SNC detection.

Flights were planned on a ground control station (GCS) laptop running Mission Planner
software (Oborne, 2015). Mission Planner estimates GPS navigation points along a grid
to ensure previously specified overlap/sidelap can be achieved based on UAS altitude, and
the following camera parameters: firing interval, focal length, sensor size in metric units,
and number of pixels on the sensor. We used overlap and sidelap settings at both 80% to
ensure there were enough images to conduct an SfM reconstruction of the scene (Agisoft,
2013). Flights were conducted at 120 m above ground level (AGL), resulting in images
with 2.5 cm ground sampling distance (GSD), where GSD is the horizontal projected pixel
area across the earth’s surface (McGlone, 2013). Two flights were conducted per site within
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15 minutes of one another to minimize sun-angle change because only one camera could
be flown at a time.

Four to six 1 m x 1 m iron cross ground control points (GCPs) were placed at each study
site to facilitate georeferencing of the final orthomosaics. The number of GCPs was limited
by forest openings, road locations, and the total area that could be covered while ensuring
visual LOS to the UAS. Two 0.6 x 0.6 m drywall panels painted with titanium dioxide and
having a reflectance of 90% were placed in the imaging area of each site for calibrating
all imagery to a common standard. All flight operations were conducted under Certificate
of Authorization 2014-WSA-212-COA and were in accordance with all applicable Federal
and State regulations. The specific timing of flights was scheduled to take place within +/- 1
hour of solar noon to minimize the effect of sun shading (McGlone, 2013); however, equip-
ment malfunctions and rain showers delayed surveys at N02 and N154 to approximately
1500 local time. Flights were limited to either fully sunny conditions or fully cloudy to
ensure consistent solar radiance during the surveys.

2.3.3 Processing and Analysis

The analysis of the imagery required the development of a three-stage workflow to
extract the information necessary to conduct tree-level disease classification from UAS
imagery. The primary components of the workflow are illustrated in Appendix Figure A.2.
The following summary will only describe the most pertinent elements.

2.3.4 Stage 1: Pre-processing

Pre-processing in the context of this study comprised the steps and sub-routines re-
quired to produce initial data from UAS images for follow-on processing and analysis.
This stage converted the raw image data into a multi-band ortho-rectified mosaic (OM) and
digital surface model (DSM) that facilitated the creation of geographically explicit vec-
tor data used for subsequent disease classification and diseased tree mapping. Raw image
processing was a multi-step process to convert the raw Sony demosaicked 12-bit intensity
images into a three-color band (RGB) JPEG format image using Adobe Photoshop (Knoll
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et al., 2015). We used Photoshop because it contains lens distortion and chromatic aberra-
tion correction models for the specific lens and camera model used in this study, and will
subsequently apply corrections to all images. Photoshop also facilitates manual hotspot
correction (Pixel, 2011) and tuning of exposure (i.e., gain) to maintain consistency among
all images.

We created a custom linear profile to prevent the software from applying the sRGB
linear gamma function (Gasparini and Schettini, 2004) when converting to JPEG format.
An 8-bit JPEG format was chosen over 16-bit TIFF format to reduce memory usage and
processing time in Photoscan and to reduce disk storage requirements for the thousands
of images collected over the course of this study. Empirical comparison of linear images
processed using the method described in Verhoeven (2010) was compared to our method
with a qualitative (i.e., visual) comparison of histograms for ten images from one site and
was determined to be similar enough to justify the use of linear profile JPEG format images.
Processed images were geotagged using the autopilot flight log and existing functionality
in Mission Planner software.

Mosaic Processing combines the geotagged images into an OM containing R, G, B,
and NIR grids using SfM. SfM is analogous to conventional soft-copy photogrammetry,
but uses a multi-view stereo approach that is based on computer vision algorithms to iden-
tify conjugate points. Conjugate points are used to geometrically reconstruct a scene in
3D space and subsequently produce both a DSM and OM (Westoby et al., 2012). We used
Photoscan (Pasumansky, 2017) for SfM processing due to the customizability and general
acceptance in environmental sciences (Fonstad et al., 2013; Holman et al., 2016). Photo-
scan processing generally followed the method outlined in UNAVCO’s tutorial (Shervals
and Dietrich, 2016). Because collection of R, G, B, and NIR requires separate instruments,
SfM processing was conducted individually for each site and camera type (i.e., NIR and
RGB). Hereafter RGB, will refer to the composited color data produced by the visible light
and individual color band grids will be referenced using the appropriate letter acronym.

The RGB dataset was georeferenced using the GCPs. The NIR OM was registered to
and composited with the RGB OM using the ’georeferencing’ and ’composite’ functional-
ity in ArcGIS (ESRI, 2016). Color distortion and reduced resolution made georeferencing
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the NIR data directly challenging. The four-band composite was calibrated to a common
reflectance standard using the empirical line calibration method (Smith and Milton, 1999)
implemented into a custom script constructed in MATLAB (Mathworks, 2016). The re-
flectance standards were (1) the two 90% reflective panels described earlier and (2) shad-
ows between trees (i.e., 0% reflectance). Two VIs, NDVI and TGI were derived from the
R, G, B, and NIR data in the OMs to determine if physiologically meaningfully indices
improved classification reliability or simplified classification model specification to one or
two variables. The first three principal components (PC1 – PC3) of R, G, and B were
subsequently derived from the calibrated composite. Principal components were derived
because the inherent collinearity of these variables can confound model fitting. The final
results were the following individual spectral data rasters representing the spectral vari-
ables that were used in the subsequent classification models: ’R’, ’G’, ’B’, ’NIR’, ’TGI’,
’NDVI’, ’PC1’, ’PC2’, and ’PC3’.

2.3.5 Stage 2: Post-processing

Tree Segmentation began with the creation of a relative-height (i.e., normalized) canopy
height model (created in FUSION) in conjunction with both the SfM-derived DSM and a
10-m digital elevation model (DEM) sourced from the National Elevation Dataset (Gesch
et al., 2002). Individual tree positions and circular crown areas were segmented from the
CHM using FUSION CanopyMaxima (McGaughey, 2017) with the default parameteriza-
tion. CanopyMaxima was chosen for the tree segmentation process because it has been
shown to effectively extract dominant and co-dominant Douglas-fir trees from LiDAR sur-
face models (Popescu and Wynne, 2004; Apostol et al., 2016) and it produces a geographi-
cally explicit tree list. Appendix Figure A.3 illustrates this process for site N02. Segmented
tree points and crown areas were clipped to the site with a buffer to prevent half-trees and
minimize the erroneous commission of trees resulting from edge effects. Segmentation
commission errors were manually filtered in ArcGIS and omission errors were resolved by
manually adding points and crown areas. Three hundred were randomly selected without
replacement from the population of segmented trees for each site for the purpose of classi-
fication model training. Three hundred trees were selected to ensure there were sufficient
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observations to train models having five covariates without overfitting.
Segmented training trees were classified using photo interpretation of a 2.5 cm GSD

OM for each site with the assistance of a trained ADS interpreter. The classification criteria
included four levels (i.e., classes): no visible sign of infection (NVSI), visible sign of
infection (VSI), weak visible sign of infection (WVSI), and Other (Figure 2.2). The first
three categories are intuitive while Other accounts for non-Douglas-fir trees, dead trees (i.e.,
no leaves) and trees that cannot be readily categorized within the previous three classes. A
convention using ‘diseased’ and ‘non-diseased’ was not appropriate because Douglas-fir
trees have been shown to be infected with SNC without a visible response. Figure 2.2
illustrates the classification criteria for the scheme. Classification results were attributed
to each training tree. Despite having four initial classes, we filtered out all training data
that was not classified as NVSI or VSI to ensure training observations were pure, thus
minimizing model confusion. Nested classification schemes or multinomial classification
models were not used for this study due to the increased sample sizes required for robust
model development, the added challenges associated with accounting for uncertainty, and
because the primary study question was associated with a simple binomial response of
VSI/NVSI (i.e., diseased or non-diseased).

2.3.6 Stage 3: Model Fitting and Site Disease Classification

Spectral information was ascribed to each tree by averaging data from each spectral
raster described previously within the crown area of each tree at each site. Spectral data
were aggregated at the crown level because a pixel-level approach as applied in (Calderón
et al., 2013) was not computationally feasible for the number of trees in our study nor
is it realistic for broader implementation. Spectral data rasters were first resampled from
native 2.5 cm GSD to 10 cm GSD to minimize processing time and memory utilization
space without grossly over generalizing within crown variation. The 10 cm GSD was
chosen to ensure > 20 pixels fall within the area of each tree crown area. Non-vegetated
pixels (e.g. roads and shadows) were masked out of the spectral data rasters using NDVI
thresholding. Mean intensity (i.e., digital number) by spectral variable within each crown
area was subsequently estimated and attributed to the associated tree.
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2.3.7 Classification Models

The training data were used to construct binomial classification models for each site.
Independent models were fitted to each site because local environmental conditions at each
site were not consistent enough to justify fitting one model to all the data. We used four dif-
ferent supervised classification algorithms (Table 2.1), where generalized additive models
(GAM) and generalized linear models (GLM) classified using parametric logistic regres-
sion methods with the commensurate underlying assumptions, and RandomForest (RF) and
stochastic gradient boosted machine (GBM) were MLAs that conducted binomial classi-
fication using non-parametric methods with the primary assumption that covariates were
not strongly correlated. These classification algorithms were selected for use in this study
because they have been previously used in environmental remote sensing classification ap-
plications (Moisen et al., 2006; Prospere et al., 2014; Lopatin et al., 2016; Gilbertson et al.,
2017). For clarity of the subsequent description, model parameterization refers to the non-
varying components unique to each classification algorithm, and model specification refers
to the combination of response and predictor variables used during model training. Per-
tinent parametrization variables and source references for each algorithm also appear in
Table 2.1.

2.3.8 Model Specification and Parameterization

The values associated with parametrization variables were optimized to achieve the
maximum Cohen’s kappa coefficient (Congalton, 1991), hereafter referred to as kappa.
Optimization occurs internally during model fitting and was conducted using the Caret
package (Kuhn and Johnson, 2013; Kuhn, 2016) implemented in R (R Core Team, 2017).
Caret constructs classification models from multiple combinations of parameters and sub-
sequently discerns the combination resulting in the highest kappa. Kappa was chosen be-
cause it is a measure of reliability that estimates the proportion of agreement to observed
response beyond agreement that is possible by chance alone (Sim and Wright, 2005); where
chance in this study was determined by the proportion of VSI and NVSI trees within the
training data. A kappa > 0 was indicative of a classifier that classified at better than random
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guess and a kappa = 1 was a perfect classifier. Kappa scores > 0.4 were considered reliable
(Landis and Koch, 1977; Viera et al., 2005).

Nine different model specifications (Table 2.2) were identified to explicitly examine the
effect of predictor combinations on classification reliability, where the predictors were the
spectral variables described previously. Hereafter, the specifications in Table 2.2 will be
referenced as S1, ..., S9.

There were notable differences among the selected classification algorithms, both in
terms of function and in terms of parameterization, however, these were not the focus
of this study. As such, we describe the relationship between the response and predictor
variables for a given classifier using the general model form (Eq: 2.1).

yas ∼ β 0as
+β 1as

(x1as
)+ ...+β ias

(xias
) (2.1)

Where a is the classification algorithm (Table 2.1), s is the predictor specification (Table
2.2), i is ith predictor and i = 1,. . . , n when n is equal to the number of predictors in
specification s, yasis the binomial response of classification (i.e., NVSI or VSI), β 0as

is the
intercept, and β ias

is a coefficient or function that relates predictor xias to the response.

2.3.9 Model Fitting

All combinations of classification algorithms and model specifications were fit to train-
ing data for each site, resulting in 144 classification models that are hereafter referred to as
classifiers. Classifiers were evaluated using k-fold repeated cross-validation (CV) routines
because CV is as effective as data-splitting without a reduction in inferential power (Harrell
et al., 1996). Advanced spatial cross validation techniques such as spatial leave-one-out or
(Le Rest et al., 2014) or spatial blocking (Roberts et al., 2017) were not employed because
they were not implemented in the statistical analytical package we utilized; however, we
did not expect CI estimates to be overly optimistic because there was no intent to extrapo-
late results beyond the spatial extent of each site. The caret package was used to conduct 30
repetitions of 10-fold CV for each classification algorithm, model specification, and model
parameterization combination for each site to estimate mean kappa, and Positive Predictive
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Value (PPV) statistics for each fitted model. PPV is the probability that any tree predicted
to contain VSI truly contains VSI and was used to compare how well each classifier de-
tected VSI (i.e., SNC). We opted to do 30 repetitions of the k-fold CV because variance
and bias have been shown to level off by 30 and more repetitions were computationally
inefficient (Vanwinckelen and Blockeel, 2015). 95% CIs of kappa and PPV were derived
from the 2.5% and 97.5% percentiles of the k-fold repeats. Using CIs to compare per-
formance among models was appropriate because we ensured that repeated k-folds were
identical for all models by using seeded randomizers (Vanwinckelen and Blockeel, 2015).
Producing CIs by bootstrapping on k-fold repeats like Tong et al. (2012) was considered,
but was determined to be too computationally expensive and produced similar intervals to
the quantiles of repeats, albeit slightly less symmetric. The kappa coefficient cannot be
compared across fitted models due to variations in individual classifier performance that
change mkappa, so we calculated a proportion of kappa (i.e., pkappa) by dividing kappa by
maximum possible kappa (mkappa) (Sim and Wright, 2005).

2.3.10 Model Selection and Site-level Classification

Classifier combinations by site were quantitatively compared using the pkappa scores
(reliability) and PPV scores (accuracy) to discern the best classifier for each site. PPV
and Kappa The best classifier for each site was selected based on the highest minimum
threshold that bounded the estimated pkappa score. The best classification model for each
site was applied to the full population of segmented trees to assess VSI/NVSI for the entire
site. Lastly, a spatial cluster analysis was conducted on the final results using the Density-
based spatial clustering of applications with noise (Birant and Kut, 2007) implemented in
R under the ‘dbscan’ package (Hahsler et al., 2017). The purpose of the cluster analysis
was to group the VSI trees into generalized areas that might be used for guiding future
management activities.
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2.4 Results

A comparison of pkappa among classifiers within and between sites (Figure 2.3) sug-
gested that there was not a single ‘best’ classifier, classification algorithm, or specification.
The red bar indicates the best performer for each site, as defined by the classifier that had
the highest lower confidence threshold. The best classifier and associated mean kappa
with corresponding upper and lower CI for N02, N154, Norton and T01, were GAM + S4
(.57,.60,55), RF+S3 (.58,.60,.55), GBM+S2 (.86,.88,.83 and RF+S2 (.65,.68,.62), respec-
tively. The blue bar indicates the confidence interval for the best performer at each site.
The poorest performing classifiers were those based on S8 and S9; since pkappa for S8
was significantly lower than the best performer for 13/16 comparisons and pkappa for S9
was significantly lower than the best performer in all comparisons. The least consistent
classifier was based on the GBM algorithm with 28/36 pkappa significantly lower than the
best. Site specific pkappa was highly variable. The classifiers based on the parametric clas-
sification algorithms of GLM and GAM were the most consistent with 20/36 and 22/36,
respectively, of classifiers producing pkappa scores not significantly different from the best
performer. GAM + S3 and GAM + S5 were the only classifiers not significantly different
from the best classifier at all sites, and of these, GAM + S5 was the most parsimonious.
Subsequent results focus on the GAM + S2 classifier because there was no evidence that
GAM + S2 differently from GAM + S3 or GAM + S5, it was more parsimonious, it did not
include transformed predictors, and did not include any NIR predictors.

PPV was > 0.7 for all classifiers except those based on S8 and S9. PPV for the best
classifiers ranged from 0.79 (N02) and 0.92 (Norton) and provided a measure of confidence
that most trees classified as VSI were truly exhibiting VSI, regardless of site. The classi-
fiers resulting in the highest PPVs did not always correspond with the classifiers having
the highest pkappa because individual models were optimized to kappa and while related,
the two metrics represented different components of classification performance. The es-
timated PPV for GAM + S2 classifier was never significantly different from the PPV of
the best classifier at any site. We recognize that binomial classification results can also be
described with receiver operating characteristic (ROC) curves, negative predictive perfor-
mance, specificity, sensitivity and accuracy; however, these metrics all relate to PPV and
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Kappa and we felt that presenting this information would provide unnecessary detail for
our intended audience impede the presentation of results.

Variables of importance were compared for the best performing classifier at each site
(Figure 2.4). There was no evidence to suggest that classifier reliability was improved by
including NIR explicitly or indirectly (i.e., NDVI) based on the following results: (1) three
of four of the sites selected a best model that did not include a NIR specification (Figure
2.4), (2) there was no evidence that S3 performs any worse than the model specifications
containing NIR (Figure 2.3), and (3) models based on NDVI (derived from NIR) consis-
tently produced the least reliable classifications (Figure 2.3).

The number of trees classified as VSI for each site was estimated by applying the classi-
fier based on the GAM + S2 classifier to the population of trees. Minimum and maximum
likely SNC incidence rates were estimated based on the false positive rate. VSI rates of
SNC range from 23% (T01 minimum) to 35% (N02 maximum) (Table 2.3). The number of
trees classified as VSI ranged from 195 (T01) – 418 (N02). Maps of VSI trees (represented
by triangles) show evidence of spatial clustering (Figure 2.5). Statistically significant spa-
tial clustering was detected at all four sites with the number of clusters ranging from 7
(T01) to 14 (N02) and appear as polygons in the supporting maps (Figure 2.5).

2.5 Discussion

2.5.1 Classification Reliability

Despite the use of identical cameras, SNC detection reliability varied widely among
classifiers and among sites. However, the best classifiers for each site, as well as the GAM
+ S2 classifier, produced kappa scores well above the 0.4 threshold that has been previ-
ously established as a metric for an acceptable classifier (Landis and Koch, 1977; Viera
et al., 2005). SNC detection was most reliable at the Norton site; likely because many of
the trees at the Norton site were exhibiting strong visible signs of infection from Rhabdo-

cline spp. as well as SNC (Wilhelmi, 2016). The best classifier for the remaining sites were
comparatively less reliable, likely because these were mature stands and variation of SNC
phenology in mature crowns tended to be highly variable ranging from not visible, to sub-
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tle chlorosis and crown thinning, to highly chlorotic with a near-total loss of upper canopy
foliage (Mulvey et al., 2013). While needle retention varies with height in the crown (Shaw
et al., 2014) and greater needle retention in the lower crown could make overall assessment
challenging. These irregularities can increase the likelihood of errors in the training data
(i.e., misclassification) or result in poor spectral separation between VSI and NVSI classes
that produce models that are unable to distinguish between the two classes. Furthermore,
the disease is not systemic so needles are infected individually. This can result in partial-
crown damage (Mulvey et al., 2013) that may not be detectable when the spectral response
is effectively attenuated by averaging spectral information across the crown area. A possi-
ble mitigation for this problem is pixel-level classification as was employed in Garcia-Ruiz
et al. (2013) but the method is computationally intensive on 10 cm resolution imagery and
may not be feasible for large area surveys.

The true positive rate of the best classifier at each site was > 0.75 and represented
the probability that a tree classified as diseased was truly diseased. We can interpret the
PPV as a type of certainty. Medical sciences use PPV and negative predictive value (true
negative rate) to assess the validity of diagnostic tests (Parikh et al., 2008; Hajian-Tilaki,
2013). For example, the best performing classifier at site N02 detected 559 VSI trees.
The PPV of the classifier was 0.76 to 0.80 (Table 2.3) and indicates that we expect 428 to
445 of these trees to be truly VSI. These results show that even at the worst performing
site we have gleaned increased understanding about the intensity of the SNC at a level of
detail not previously explored in literature. Furthermore, these tree counts could be used in
conjunction with growth and yield modeling (Maguire et al., 2002) to determine if species
conversion (Shaw et al., 2011; Zhao et al., 2015) is an economically viable alternative.
Given the definition used for creating the VSI class, it is likely the presented method is
most effective at detecting the most severely diseased trees, and is therefore most useful
in assessing stands where soil conditions, climate and stand condition create a high risk
scenario for SNC infestation.
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2.5.2 Classifier Selection and NIR Importance

Examination of nine different model specifications (Table 2.2) and four different clas-
sification algorithms (Table 2.1) did not yield a superior combination (i.e., classifier), al-
though classifiers based on S8 and S9 were clearly the poorest performing. The poor perfor-
mance of S8 and S9 indicates that neither chlorophyll content (TGI) or greenness (NDVI)
adequately describe the variation in spectral signature between diseased and non-diseased
crowns. The inadequacy may also be a function of the broad bandwidth of the camera
color channels that ultimately may prevent detection of disease-related signatures the in
green and red absorption bands (Clark and Lister, 1975; Nelson, 1983). The best classifier
tended to change among sites, likely due to changes in light physics such as bidirectional
reflectance. This remains a major source of uncontrolled error in UAS surveys (Rasmussen
et al., 2016). Neither of the MLAs performed significantly better than the GAM or GLM
classifiers. It is possible that restricting the RF and GBM models to 1000 trees was limiting
to classification performance, however, more trees would have made the models compu-
tationally unwieldy, especially the GBM models. MLAs tend to be superior in situations
where there are many predictors and the observation data do not conform to the underlying
assumptions of parametric classifiers (Lopatin et al., 2016). MLAs may be suited to SNC
detection when additional non-spectral predictors (e.g. dbh, aspect or precipitation) are
included. While the results do not provide a conclusive decision on whether to incorporate
MLAs for SNC detection we believe there is compelling evidence to recommend continued
use of GAM classification algorithms.

Classifiers using NIR did not improve classification reliability or detection certainty
above what was possible from models based on the most parsimonious specification (e.g.

S2). The lack of NIR importance in any of the classifiers is likely associated with the
wide sensitivity range of the converted camera (Verhoeven, 2011). Additionally, inconsis-
tent NIR performance for foliar disturbance detection has been reported in previous stud-
ies (Sankaran et al., 2010). While our results do not support the use of a converted NIR
consumer-grade camera for SNC detection, the value of a NIR sensor should not be negated
without additional field trials using a narrow-band NIR sensor such as the MicaSense Red-
Edge (Patrick et al., 2017).
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2.5.3 Disease Mapping

The primary objective of this study was to produce a map of individual trees that exhib-
ited signs of SNC for each site. We used the GAM + S2 classifier to classify the population
of trees for each site (Figure 2.5). Our rationale for the use of this classifier was described
in the results section. The robust classification reliability and detection accuracy evalua-
tion provided evidence that the SNC counts (Table 2.3) were not simply a random guess
and thus can provide meaningful insight about SNC intensity across each site, despite the
varied reliability among sites. The individual tree-level results facilitated the use of spatial
clustering to identify areas containing high densities of infected trees. (Figure 2.5). These
maps can be subsequently used to prioritize management operations.

2.5.4 Future Investigation

While our study presents a compelling method to detect SNC at the individual tree-
level, we still lack understanding about: (1) detection consistency over time, (2) whether
reliability and detection accuracy can be improved with a commercial grade sensor (e.g.

MicaSense RedEdge), (3) if the methods employed facilitate reliable SNC detection during
seasons (e.g. summer) when weather conditions are not limiting, (4) the quantitative rela-
tionship between needle retention and spectral signature, and (5) the functional relationship
between needle retention and projected growth loss. Furthermore, there were limitations
that prevent immediate implementation at a statewide scale. The data collected for this
study took four field days to collect and months of preparation and processing that is sim-
ilar to the effort required to fly the entire SNC aerial detection survey. The ability to fly
beyond LOS and above 120 m (e.g. 500 m to produce the 10 cm GSD orthomosaics used in
this study) would go a long way to improving efficiency. It is likely that a ScanEagle UAS
(Moreland et al., 2015) or something of similar capability would be necessary to efficiently
employ our methods over a large spatial extent. The other efficiency challenge that remains
is producing a singular model for the entire survey area rather than developing specific
models for each sub-area. This is only possible with strong control of the light physics
(e.g. cloud cover, sun angle, calibrated surface reflectance, bi-directional reflectance func-
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tion (Roujean et al., 1992) and the creation of a large (5000+ individuals) training network
across the known infection area. Areas with significant mixed conifer components would
also require species-level classification. Solutions to the aforementioned efficiency limita-
tions and additional scientific inquiry into the outstanding knowledge gaps will be essential
before these methods can be efficiently employed on a large scale.

2.6 Conclusion

Our results suugest that low-cost UAS remote sensing methods combined with logistic
regression from generalized additive models can reliably detect (i.e., better than random
chance) SNC in individual coast Douglas-fir trees at the four sites we examined in west-
ern Oregon. Classifiers based on RF, GBM, GAM, and GLM algorithms can detect SNC
with similar levels of accuracy, although classification reliability was highly variable de-
pending on model specification and site. Classification models specified with R, G, and B
covariates were as reliable as those based on NIR, NDVI, or TGI, indicating that complex
data transformations and the added cost of a NIR camera was unwarranted. SNC infection
maps can be produced at the individual-tree level and these results can be combined with
a spatial cluster analysis to map focus areas to potentially increase the efficiency of field
activities. While there are many limitations to implementation at a statewide scale, this
novel study showed that SNC detection with a sUAS at the individual-tree scale is possi-
ble in smaller areas. This capability can provide decision making products related to SNC
infection intensity at a level of detail that has not previously been available.
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2.7 Figures

Figure 2.1: Study site map displaying the four sites selected for SNC disease detection.
Names appear above the respective sites. Areas are approximately 1.6 ha and contain
between 800 and 1300 individual Douglas-fir trees.
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Figure 2.2: Classification training scheme depicting the criteria used to assign a class to
any given training tree. Trees classified as having visible signs of infection (VSI) tended
to exhibit signs of reduced leaf retention and yellowing of leaves. Trees having no visible
signs of infection (NVSI) tended to have a full crown with little evidence of bare branches.
Non-species, dead, and trees exhibiting unusual color and/or morphology were classified as
’Other’ to keep the VSI and NVSI classes as distinct as possible. Trees classified as having
weakly visible signs of infection (WVSI) tended to exhibit the coloration associated with
SNC infection but no evidence of significantly reduced leaf area.
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Figure 2.3: Estimated pkappa and PPV confidence intervals (CIs) for all combinations of
site and classifier. The red bar indicates which model was best as determined by the highest
lower pkappa CI and the blue bar is the CI for the best classifier at each site. The red bars
on the PPV graph correspond to the best performing classifier based on the pkappa metric.
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Figure 2.4: Variables of importance for best classifier identified for each site. None of
the models contained explicit NDVI or near-infrared (NIR) predictors. Three of the four
sites indicated strong influence from green reflectance (e.g. green and triangular greenness
index). Flat lines indicate a predictor that is present in the specification but was unimportant
for classification. Specification refers to the combination of explanatory variables used to
fit the classification model. The different specifications are described in Table 2.2.
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Figure 2.5: Maps of SNC detection results based on the GAM + S2 classifier for each site.
These maps illustrate the ability to detect individual trees exhibiting visible signs of Swiss
Needle Cast infection (i.e., VSI) and the utilization of spatial clustering to focus field or
management operations in areas of higher intensity. Clusters are areas where VSI trees
tended to be clustered and represent potential focus areas for management operations
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2.8 Tables

Table 2.1: Algorithms used for developing supervised classification models. The tuning
parameters are used during model parameterization. The parameters containing a variable
(v) are parameters that are optimized by iterative modeling functionality provided within
the ’caret’ package (Kuhn, 2016).

MLA Tuning Parameters Reference
RandomForest (RF) # tree = 2000, mtry=v Breiman (2001)
Generalized Linear Models (GLM)
Generalized Additive Model (GAM method=REML Hastie and Tibshirani (1990)
Stochastic Gradient Boosted Machine
(GBM)

# tree = v, interaction
depth = v, shrinkage =
v, min # obs = v

Friedman (2002)

Table 2.2: Nine different model specifications and the associated spectral explanatory vari-
ables.

Specification Explanatory Variables
S1 G, R, B, IR
S2 G, R, B
S3 PC1, PC2, PC3, TGI, NDVI
S4 PC1, PC2, PC3
S5 PC1, PC2, PC3,NDVI
S6 PC1, PC2, PC3, TGI
S7 PCI, TGI, NDVI
S8 TGI
S9 NDVI
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Table 2.3: Classification results for each site using specification 2 (S2) and the GAM clas-
sification algorithm. The ’Trees’ column describes the number of Douglas-fir trees in the
study site. Positive predictive value (PPV) is an assessment of the true positive rate and 1-
PPV is an estimate of the false positive rate. VSI is the number of trees classified as having
visible signs of infection for each site. VSI lower and VSI upper are VSI multiplied by the
respective PPV lower/upper metric. For example, the best classifier for T01 detected 224
VSI trees, however, our bootstrapped PPV interval indicates that there are between 195 and
200 VSI trees. The VSI Rate (%) for each site is based on the VSI lower and indicates the
severity of infection at each site.

Site Trees Training
Trees

PPV
Lower

PPV
Upper

VSI VSI
Lower

VSI
Upper

VSI
Rate
(%
min)

N02 1265 300 0.76 0.80 559 428 445 33.8
N154 931 300 0.82 0.84 306 251 257 26.9
Norton 1245 300 0.92 0.95 462 427 437 34.2
T01 847 300 0.87 0.89 224 195 200 23.1
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3.1 Abstract

Swiss needle cast is a non-fatal foliar disease in Douglas-fir that reduces annual growth
and stumpage value. Conventional detection methods rely on manned aerial detection sur-
veys that are tedious, but modern revolutions in sUAS technology offer a potential alterna-
tive. Remotely sensing Swiss needle cast disease with a consumer grade camera onboard
a sUAS has been shown to be reliable at four survey sites. The present study expands the
scope to a total of eight sites imaged over two years and two seasons and includes a paired
comparison between a multispectral camera and a consumer grade camera. Distinguishing
between visibly diseased trees and those not visibly diseased was reliable at sites surveyed
with the multispectral camera in May 2016 (kappa > 0.4) and paired detection surveys with
a consumer grade camera produced similar results at all but two sites. Findings suggest that
remotely sensed sUAS detection of Swiss needle cast is reliable under cloudy conditions,
especially when using NDVI information derived from a narrowband multispectral camera.
Additionally, summer surveys were less reliable and accurate than spring surveys and thus
are not likely to be effective for Swiss needle cast detection. There was no evidence that
foliage retention relates to classified diseased status of trees although, additional study is
recommended due to the limited sample size (n < 28). Many regulatory, technical, and
computational hurdles must be overcome before large scale implementation can be consid-
ered.
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3.2 Introduction

Remotely sensing foliar disease with unmanned aircraft systems (UASs) has become
increasingly prevalent (Garcia-Ruiz et al., 2013; Calderón et al., 2013; Dash et al., 2017;
Patrick et al., 2017). UASs are uniquely adapted to this type of application because survey
altitude and frequency can be customized to achieve the spatial and temporal resolution
necessary to observe the desired phenomenon (Feng et al., 2015; Candiago et al., 2015).
Small UAS technology is accessible to budget-strapped land managers and ecologists via
the availability of low cost remote control (RC) aircraft parts, and affordable autopilot
systems that can be assembled into a functional sUAS. (Koh and Wich, 2012). Inexpensive
(< $1000) consumer-grade cameras can be integrated on UASs to keep costs low and the
resulting imagery can be analyzed with conventional remote sensing workflows to detect
a specific foliar phenomenon with acceptable reliability (Feng et al., 2015; Hunt et al.,
2011; Martinelli et al., 2015). The sophistication of these low-cost systems can be further
enhanced by deploying consumer-grade cameras modified to collect near-infrared (NIR)
light to better isolate vegetative condition (Verhoeven, 2012; Rasmussen et al., 2016).

Our previous study (Burnett et al., 2017) applied the aforementioned innovations to an
investigation of Swiss needle cast (SNC) disease detection using a low-cost sUAS equipped
with a low-cost color and a low cost NIR camera. SNC (Phaeocryptopus gaeumanni) is
a foliar disease endemic to Oregon’s coast Douglas-fir (Hansen et al. 2000). SNC causes
premature leaf senescence that can reduce annual growth increment, leading to end-of-
rotation volume losses as high as 50% (Manter et al., 2000; Maguire et al., 2002). The
phenology of SNC is such that aerial and field detection occurs in the spring time when
infected needles become chlorotic and eventually abscise (Kanaskie et al., 2007; Ritóková
et al., 2016). SNC was detectable at the tree-level with acceptable accuracy at the four
sites surveyed using a consumer-grade color camera (Burnett et al., 2017). These results
were presented with the caveat that investigation should be expanded to more sites and
multiple time periods to demonstrate consistency. We also recommended experimenting
with a narrowband multispectral camera (NMC) before discounting the potential advantage
of collecting NIR imagery.

Narrowband multispectral cameras have the potential to improve the sensitivity of foliar
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disease detection surveys over consumer-grade sensors because a properly tuned camera,
such as the MicaSense RedEdge (Patrick et al., 2017) or the Tetracam Mini (Candiago
et al., 2015), is sensitive to the spectral wavelengths associated with maximal chlorophyll
absorption (red and blue) and reflectance (green and NIR) (Clark and Lister, 1975; Nelson,
1983). It is this characteristic that has made Landsat imagery so effective for regional
vegetation change surveys (Hilker et al., 2009; Kennedy et al., 2010). Furthermore, the NIR
band on NMC tends to be tuned to a narrow region of the NIR spectrum that is just outside
the red edge (Horler et al., 1983) rather than the broad region collected by a converted NIR
sensor (Verhoeven et al., 2009).

A major advantage of employing NMC is the ability to derive vegetation indices (VIs)
that relate to physiological conditions of the plant (or tree) in question. The most ubiquitous
VI is the normalized differenced vegetation index (NDVI; Rouse et al. 1974). NDVI has
been shown to be strongly correlated to green leaf biomass (Tucker, 1979), photosyntheti-
cally active radiation absorption (Huemmrich and Goward, 1997), leaf area index (Gitelson,
2004), and chlorophyll content (Hunt et al., 2011). The enhanced vegetation index (EVI)
is an enhancement on NDVI that is less sensitive to saturation in canopies with high leaf
area indices (Gao et al., 2000). The triangular greenness index (TGI) was developed by
Hunt et al. (2011) as an alternative to NDVI. It is similarly associated with chlorophyll
content, but does not require NIR information nor does it saturate in canopies with high
leaf area. Plant senescence reflective index (PSRI) was shown to be strongly sensitive to
leaf senescence (Gamon et al., 1995), which is a key sign of SNC. Small UASs have em-
ployed NMCs and associated VIs to reliably detect Verticillium wilt in olives (Calderón
et al., 2013), tomato spot wilt in peanuts (Patrick et al., 2017), and Flavescence doree in
grapevines (Albetis et al., 2017).

There appears to be little prior work investigating time-series or broad area (i.e., multi-
ple sites, thousands of plants, or trees, etc.,) sUAS foliar disease surveys plants of species.
This is likely due to the challenge of calibrating aerial imagery and accounting for poten-
tial confounding effects caused by lens vignetting, bi-directional reflectance, atmospheric
absorption, shading and topographic effects (Smith and Milton, 1999; Gao et al., 2009),
some of which have been shown to severely limit the extrapolation of sUAS survey results



35

in certain conditions (Rasmussen et al., 2016).
The presented study incorporates the findings of our previous SNC detection study

(Burnett et al., 2017) and vastly expands the scope of that work in terms of space and time.
We conducted 22 SNC disease detection surveys across eight sites using a custom-built
sUAS equipped with both a consumer-grade camera and NMC. Presently no studies exist to
evaluate the efficacy of using a sUAS equipped with a narrowband multispectral camera to
detect foliar disease in Douglas-fir or any commercial timber species. The objectives of our
study were to (1) determine if SNC detection surveys with a NMC were more accurate and
reliable than those conducted with a consumer grade camera, (2) evaluate the reliability of
between year change detection at the site-level and tree-level, (3) investigate the plausibility
of conducting summer SNC detection surveys with sUAS, and (4) examine the relationship
between field-based foliage retention estimates and disease status as determined by remote
sensing.

3.3 Methods

3.3.1 Study Area

The study area was comprised of eight 1.6-ha study sites. General stand condition
and species composition of each site are summarized in Table 3.1. Six of the study sites,
S1W, S1E, S2W, S2E, S2S, and S3W, were selected from areas in the Swiss Needle Cast
Cooperative plot network (Ritóková et al., 2014). S1W and S3W corresponded with N02
and N154 from our earlier investigation (Burnett et al., 2017). Sites were chosen based on
known SNC presence, the ability to maintain visual line of site between pilot and UAS,
and containment within previously approved flight areas as specified in Federal Aviation
Administration (FAA) Certificate of Authorization (COA) number 2014-WSA-212-COA.

3.3.2 Equipment

The sUAS selected for this study was a Tarot 650 quadcopter with a motor-to-motor
span of 650 mm and an all-up weight of 3 kg, including the battery, gimbal, and sensors.
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Data imaged in 2015 used a Sony Nex camera described in Burnett et al. (2017). The 2016
surveys incorporated a Sony A5100 24.3 MP camera with 20 mm lens to collect color im-
agery in broadband red, green and blue wavelengths. We did not deploy the NIR converted
Nex camera from our previous study because previous findings suggested that NIR did not
significantly improve SNC detection and thus did not warrant the added operational com-
plexity (Burnett et al., 2017). 2016 surveys also utilized a Micasense RedEdge NMC. The
RedEdge weighs 180 grams and has five spectral bands, blue, (B) green (G), red (R), red
edge (RE), and near-infrared (NIR), centered over 475, 560, 668, 717 and 840 nm, respec-
tively. B, G, R and NIR are approximately centered over Landsat 7 bands 1 – 4 (Chander
et al., 2009), respectively. RedEdge integration was intuitive due to the included GPS for
geotagging and an onboard intervalometer for automatic camera triggering. The A5100
and RedEdge sensors were mounted side-by-side to ensure both were exposed to the same
lighting conditions and nadir-pointing was ensured by mounting the assembly to a two-axis
gimbal.

The sUAS was equipped with a Pixhawk autopilot capable of conducting GPS navi-
gated flight. Flights were planned on a ground control station (GCS) laptop running Mis-
sion Planner software (Oborne, 2015). Mission Planner estimated GPS navigation points
along a grid to ensure a specified overlap and sidelap of imagery based on the following
camera parameters: firing interval, focal length, sensor size in metric units, and number
of pixels on the sensor. Overlap and sidelap were both set to 80% to ensure there were
enough images to conduct a geometrically accurate reconstruction of the scene for each
site (Agisoft, 2013). Flights were conducted at 120 m above ground level (AGL) resulting
in image pixels with a ground sampling distance (GSD) of 2 cm and 8 cm for the A5100
and RedEdge cameras.

3.3.3 Field Operations

Four to six 0.2 m x 0.3 m iron cross ground control points (GCPs) were placed at each
study site to facilitate georeferencing of the final orthomosaics. The number of GCPs was
limited by forest openings, road locations, and the total area that could be covered while
ensuring visual LOS to the sUAS. GCP positions were surveyed with a TOPCON GR3 RTK



37

global positioning system. Positions were differentially corrected with OPUS corrections
during postprocessing. Two 0.6 x 0.6 m drywall panels painted with titanium dioxide and
having a reflectance of 90% were placed in the imaging area of each site for calibrating all
imagery to a common standard. A 60% reflectance calibration panel was imaged with the
RedEdge before and after each flight in accordance with the manufacturer’s protocol. All
flight operations were conducted under the guidelines specified in the COA and were also
in accordance with all applicable Federal and State regulations.

The site-level details of surveys in terms of month, year and camera used are specified
in Table 3.1. Flights took place within +/- 1 hour of solar noon to minimize the effect of
sun shading (McGlone, 2013). Exceptions to this were 2015 S1E, S1W, S2W, S2S, S2E as
well as 2016 S2E and S3N due to technical difficulties. Lighting conditions were limited
to either fully sunny conditions or fully cloudy to ensure consistent solar radiance during
the surveys (Table 3.1). The sites surveyed in August (Table 3.1) were flown with a 3DR
Solo equipped with a custom gimbal and the RedEdge camera. Missions were planned
with Mission Planner as described previously. No other sensor was flown in August. Trees
climbed and evaluated for foliage retention were mapped with a Nikon Nivo total station
during the August surveys.

3.3.4 Spectral Data Processing

Sony A5100 images from each survey were stitched into a single orthomosaic (OM)
with Agisoft Photoscan. A digital surface model (DSM) was also created during this pro-
cess. Photoscan processing followed the workflow described by Shervals and Dietrich
(2016). Sony Nex images collected in 2015 were processed in an identical manner. DSMs
were exported at 2.5 cm GSD and OMs were exported at 10 cm because 10 cm is the ap-
proximate GSD of the RedEdge OMs and was shown to be an effective resolution for SNC
detection (Burnett et al., 2017). OMs were registered to GCPs during Photoscan process-
ing.

Orthomosaics (OMs) were produced from the RedEdge images at each site using Mi-
caSense’s proprietary ATLAS web-based software. OMs for each site were registered to
the reference image indicated in Table 3.1 using the image-to-image registration function-
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ality in ArcGIS 10.3. RedEdge, A5100 and Nex OMs were subsequently calibrated with
the empirical line method (Smith et al. 1999) using a custom Matlab (Mathworks, 2016)
program. ELMs were fitted to the 90% reflective targets described previously and shad-
ows between trees (assuming arbitrary 0.01% reflectance). Although RedEdge data was
calibrated to surface reflectance during ATLAS processing, we used the ELM method to
calibrate to the same spectral references as the Sony camera images to minimize system-
atic differences between OMs. OMs were decomposited into individual spectral grids (5
for RedEdge and 3 for Nex and A5100). Spectral grids listed in Table 3.2 were derived
from the RedEdge spectral grids following calibration.

The remainder of processing occurred in the R programming environment (R Core
Team, 2017). Digital surface models (DSMs) created from the reference surveys for each
site (Table 3.1) were used to conduct individual tree segmentation using the method de-
scribed in Burnett et al. (2017). Segmented trees provided a geospatially explicit crown
area for each tree and a tree list for each site. Spectral data were associated with individual
crown areas using the method previously described in Burnett et al. (2017). We randomly
selected 300 trees from each site’s tree list for classification model training. Three hundred
trees were evaluated to ensure that classification models would not be overfitted when mod-
els contain many covariates. Each tree was classified as having either ‘no visible sign of
infection’ (NVSI) or ‘visible sign of infection’ (VSI) using the criteria and visual interpre-
tation method described in (Burnett et al., 2017). Trees were not classified simply diseased
and non-diseased because Wilhelmi (2016) determined that trees could be infected with
SNC without producing a visible response. We segmented one tree list and classified one
set of 300 trees for each site under the assumption that tree inventory and disease status did
not change from 2015 to 2016 or from May 2016 to August 2016.

3.3.5 Classification Model Development

The generalize additive model (GAM) implemented in R under the ‘mgcv’ package
(Wood, 2017) was used within the caret environment (Kuhn and Johnson, 2013; Kuhn,
2016) to develop binomial classification models from each site’s training datasets using the
spectral covariate combinations specified in Table 3.3. Models were subsequently applied
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to the entire population of trees at each site to estimate the number of diseased (VSI) and
non-diseased (NVSI) trees. The general form of the GAM model appears in equation 3.1.
GAM was selected for this study because it was determined to be the most consistently
reliable classification algorithm at all sites in our previous study (Burnett et al. 2017). For
conciseness, any given specification 1 – 9 will be referred to as S1 – S9. Hereafter, the
classification model resulting from the combination of the GAM classification algorithm
and a given specification will be referred to as a classifier.

g(E (yi)) = β 0 + f1 (x1)+ fp (xp) (3.1)

Where i = 1, ...,n trees, g is the log link function, y is the response 0 = NVSI and 1 =
VSI, β 0is the intercept, f1, ..., fp are the thin-plate spline smoothing functions relating each
respective predictor (p) to the response variable, and x1,...,xp is mean spectral intensity of
predictor (p) over the crown area of tree i.

We selected Cohen’s Kappa coefficient (hereafter, kappa) and Positive Predictive Value
(PPV) to assess and compare classification reliability and disease detection accuracy (Con-
galton, 1991; Parikh et al., 2008; Hajian-Tilaki, 2013) between classifiers in the compar-
isons described below. PPV and kappa best capture the intent of this study because kappa
describes how well a classifier discriminates between VSI and NVSI and PPV is an esti-
mate of how many trees classified as VSI are truly VSI.

3.3.6 Multispectral Camera Performance

We compared classifiers developed from several covariate specifications (Table 3.3) in
terms of Kappa and PPV to discern an optimal classifier for RedEdge camera data using
the imagery collected in May 2016. We defined an optimal classifier as one that achieved
a kappa > 0.4, PPV > 0.7, and was not significantly different from the best performing
classifier at each site. Once identified, we used the optimal classifier for the remainder
of the RedEdge performance comparisons. The optimal classifier for the Sony Nex was
identified in Burnett et al. (2017) and equivocal to the GAM + S1 classifier (Table 3.3).
We assumed that the optimal classifier for the Sony A5100 camera was identical given the
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similarities between cameras.
Camera selection has implications on the cost and effectiveness of our method, and is

especially pertinent in the context of operational implementation. To evaluate differences
in both classification reliability and SNC detection accuracy, we conducted coincidental
imaging with both the Sony A5100 camera and RedEdge NMC at six sites in 2016 (Table
3.1). Derived OMs were classified using the optimal classifier respective to each camera
and results were compared using kappa and PPV.

Seasonal variation in SNC detectability was expected due to the phenology of Douglas-
fir response to SNC. The premature senescence signature of SNC is evident in the spring,
but fully masked by current-year leaf flush by late May or early June. However, the spring
timing of the visible SNC signature coincides with western Oregon’s rainy season. This can
be disruptive to sUAS surveys (Burnett et al., 2017). Oregon’s summers tend to be rain free
with longer periods of high angle sun and, thus, present more optimal survey conditions
than spring. We investigated SNC detectability during summer (i.e., August) by comparing
classification results between RedEdge NMC detection surveys conducted in both May and
August 2016 at three different sites (Table 3.1).

3.3.7 Detection Consistency between Years

An effective SNC detection method should produce similar results between repeat sur-
veys of the same sites when crown condition between surveys is relatively unchanged.
Although some change is expected due to annual variation in weather patterns, only trees
that have signatures near the boundaries between diseased and non-diseased classes would
be expected to exhibit a change response between years because minor changes in foliage
retention and foliage color may alter a given tree’s position relative to the boundary. We
tested consistency of our method by comparing classification results of detection surveys
conducted with consumer-grade cameras in May 2015 and May 2016 (Table 3.1). Site-level
consistency was evaluated with kappa and PPV scores. Individual tree consistency within
a site was evaluated by comparing classified disease status of the same tree in both years.
Due to the binomial classification method we used, there were four possible outcomes: VSI

to NVSI, NVSI to VSI, VSI to VSI and NVSI to NVSI, with the former two outcomes being



41

potentially undesirable results and the latter two providing evidence of stability (i.e., no
change). While camera models differed slightly between years, we assumed that sensor-
induced differences were minimal because imagery was collected in linear RAW format
(Verhoeven 2011) using identical lenses, and resulting OMs were calibrated to the same
reflectance standard.

We expected that some sites would exhibit higher levels of change than can reasonably
be attributed to SNC because none of the classifiers in our previous study were perfectly
reliable (i.e., kappa < 1). Moreover, different trees may be erroneously classified in repeat
surveys due to variation in spectral response data between surveys. Probabilities associated
with specific classes can be tuned in binomial classification models to improve the certainty
of results (Harrell, 2015). We examined the effect of tuning classification probabilities by
applying the following rule set to effectively create three different classes for each year: >
75% VSI probability = VSI, < 25% VSI probability = NVSI and 25% - 75% VSI probabil-
ity = Unknown. Individual tree change between 2015 and 2016 surveys for the four sites
(Table 3.1) was evaluated at the tree level. Each tree was assigned 1 of 9 possible classes,
five of which are associated with a change from or to an uncertain status. The remaining
four classes are, VSI to NVSI, NVSI to VSI, VSI to VSI, and NVSI to NVSI, where the first
two classes are undesirable on a landscape where no change is expected and the latter two
classes represent no detectable change.

3.3.8 Detected Status and Foliage Retention

Surveys from sites 1W, S2W, and S3W in 2015 covered experimental plots installed
by the Swiss Needle Cast Cooperative (Ritóková et al., 2014).Ten trees on each plot were
climbed in 2015 and manually evaluated for SNC disease status estimating needle retention
in terms of years at the lower, middle, and upper crown of selected trees (Ritóková et al.,
2014). We used the stem map constructed in August 2016 to form a spatial relationship be-
tween the VSI probability of any given tree as determined by the 2015 detection survey re-
sults and the estimated mean foliage retention of the mid-canopy of climbed trees. Results
were plotted for visual trend assessment and a Pearson correlation coefficient (Mukaka,
2012) was calculated to quantify agreement between foliage retention and VSI probability.
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3.4 Results

3.4.1 Multispectral Camera Comparisons

No singular model specification resulted in a clearly superior classifier at any of the sites
(Figure 3.1). More than 95% of the training trees at S2E were classified as VSI. Classifiers
based training sets with such high prevalence are not effective for discrimination so S2E
was dropped from the study. Classifiers based on S4 and S7 were the only classifiers that
were not significantly different from the best performing classifier for each site. S4 and S7
are differentiated only by the inclusion of NDVI (S4) and EVI (S7). S4 was selected as the
optimal classifier for the remainder of this analysis due to the ubiquitous nature of NDVI in
sUAS remote sensing. Classification and SNC detection reliability was above acceptable
levels for all sites except S2W, however the CIs of kappa and PPV at these sites did include
the minimum thresholds (kappa = 0.4, accuracy= 0.7).

The comparison of optimal classifiers between RedEdge and Sony A5100 cameras at
the six sites imaged in 2016 (Figure 3.2) revealed evidence that datasets from both cam-
eras provided similar discriminatory capability and detection accuracy. The two exceptions
were comparisons at sites S3N and S3W where Red Edge discriminatory ability was sub-
stantially better than the A5100, although in terms of detection accuracy, Red Edge was
only superior at S3N.

Comparison of classification performance between datasets collected with the RedEdge
NMC in May and August of 2016 revealed evidence of substantially lower classification
reliability (Figure 3.3a) and detection accuracy (Figure 3.3b) in summer. At S2S the clas-
sification reliability was scantly more reliable than a random guess with Kappa scores near
zero. S1W was the sole exception with performance being similar (but still poorer in Au-
gust) between the two months. In addition, reliability was similar between sites in May
with kappa scores all near 0.5 but very dissimilar in August.
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3.4.2 Detection Consistency between Years

The ability of classification models to reliably distinguish VSI from NVSI trees with
imagery collected from consumer grade cameras at four different sites varied greatly be-
tween years and sites (Figure 3.4). 2016 reliability was better at S1E and S1W, and worse
at S2W and S3W. A comparison of accuracy yielded similar trends, although differences
tended to be lower in magnitude.

Adjusting probability thresholds associated with VSI/NVSI increased sensitivity of the
classifiers to detect SNC at all sites in 2015 and 2016 (Figure 3.5a). The effect of changing
class probability thresholds substantially reduced the number of trees detected as VSI (New
VSI) at all sites in both years when compared to the number of trees detected as VSI with
the default classification (Default) probability thresholds (Figure 3.5b). However, applying
the adjusted classification thresholds notably reduced the number of undesirable changes
detected between 2015 and 2016 at the four sites surveyed (Figure 3.6).

3.4.3 Detected Status and Foliage Retention

A qualitative comparison of foliage retention data from climbed trees to classification
results from the A5100 imagery collected at S1W, S3W and S2S in 2015 revealed a rel-
atively poor agreement (Figure 3.7a, b, c). Classification at S1W resulted in the most
agreement between foliage retention estimates and disease status with six out of eight trees
agreeing. Agreement at S3W (3.7b) and S2S (3.7c) was much worse with ratios of 4/8 and
2/8 trees, respectively. All trees at S2S had foliage retentions < 3 years but only two of the
trees were classified as VSI. Comparing foliage retention to the underlying classification
probabilities for each tree (Figure 3.8) did not yield evidence of a quantifiable relationship
(R2 < 0.01).

3.5 Discussion

The individual tree-detection method rapidly estimated the disease status of nearly 6000
indvidiual Douglas-fir trees across eight sites. Our results corroborated those from Burnett
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et al. (2017) that accurate tree-level SNC detection is possible and that visibly affected trees
(VSI) can be distinguished from those that appear unaffected (NVSI) with substantially bet-
ter than random chance. The novelty of the present work is in the scope of inquiry afforded
by conducting surveys at eight distinct sites although two sites were effectively removed
from this analysis because they were so heavily diseased that training data representing
diseased and non-diseased classes could not be produced.

3.5.1 Multispectral Camera Performance

Inclusion of NIR information in the form of NDVI consistently increased classification
reliability and detection accuracy with the RedEdge NMC. Additionally, the inclusion of
less commonly employed VIs, such as PSRI (S5), or TGI (S6) did not appear to improve
reliability or accuracy over NDVI. The improved reliability and accuracy resulting from
using NDVI contrasts with Burnett et al. (2017) who found that NIR in any form (to in-
clude NDVI) did not improve classification reliability with a consumer grade camera (Sony
Nex). Direct comparisons between classifications of paired datasets collected simultane-
ously with the RedEdge and consumer grade camera (Sony A5100) suggest that a NMC
can potentially improve reliability and to a lesser extent SNC detection accuracy. It is likely
that the combination of utilizing the RedEdge NMC and inclusion of NDVI for classifica-
tion increased the ability to discriminate between vegetative conditions because spectral
bandwidths are narrower and centered on spectral wavelengths that are associated with
plant physiological phenomenon (Tucker, 1979). Anecdotally, the RedEdge was easy to
integrate into the sUAS owing to the integrated GPS and intuitive programming interface.

Summer surveys are likely to be less accurate or reliable as the conventional spring
surveys. While the supporting dataset was small, the inconsistent performance of August
detection surveys suggests that further investigation into feasibility of using the RedEdge
NMC for summer detection of SNC is not warranted. Furthermore, August surveys expe-
rience an increased risk of being confounded by foliar responses to other damage agents,
such as spruce budworm (Brubaker and Greene, 1979; MacLean and MacKinnon, 1996).
The relatively small difference in both classification reliability and detection accuracy be-
tween May and August at S1W may indicate that the NDVI-based classifier was detecting
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distinctly different time invariant structural features (Candiago et al., 2015) between NVSI
and VSI trees rather than the subtle ephemeral signature resulting from the combination
of moderate needle retention and chlorotic needles. It is plausible that structural features
like foliage retention (i.e., leaf area index) may appear time invariant in stands where SNC
infestation is so severe that numerous trees were averaging less than one year of needle
retention.

3.5.2 Detection Consistency between Years

SNC detection with a consumer grade camera resulted in highly variable results be-
tween years and is suggestive of variable canopy conditions between years or the presence
of confounding influences that shrouded observation of true canopy condition. It is un-
likely that cameras produced the variations because they used the same lens, were flown
at approximately the same altitude, were recording in raw format, and were calibrated to
the same reflectance sources. Varied lighting conditions may be the culprit. Surveys at
S1E and S1W produced similar results (in terms of reliability and accuracy) and both sites
were imaged in cloudy conditions in 2015 and 2016 (Table 3.1). In contrast S2W and S3W
surveys were imaged in cloudy conditions in 2015 and sunny conditions in 2016. Imag-
ing in sunny conditions increases the confounding influence of uncorrected bi-directional
reflectance (Rasmussen et al., 2016) and we observed many instances of crown shading.
Imaging in sunny conditions also requires adjusting camera aperture and shutter speed to
prevent sensor saturation. Furthermore, S2W and S3W are on a northwest facing aspect
that further amplified topographic shading even at solar noon.

The number of trees changing status could be substantially reduced by tightening prob-
ability thresholds (Figure 3.5). The cost of employing this strategy to mitigate unnecessary
change is the incidental creation of a third class containing trees of unknown classifica-
tion. A cursory visual assessment of the S1W 2015 survey suggests a possible relationship
between a tree receiving an ‘unknown’ status and visibly yellow crowns with little to no
visible reductions in foliage retention. This type of tree would amount to a tree classi-
fied as weakly visible signs of infection (WVSI) in Burnett et al. (2017). It is likely that
employing a multinomial classification strategy (Congalton, 1991; Goodchild, 1994) using
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the four classes defined in Burnett et al. (2017) would reduce the need to employ tightened
probability thresholds. However, a multinomial classification model is much more complex
and it may be that machine learning algorithms are better suited than GAM for handling
the complex and possibly non-linear relationships (Lary et al., 2016).

3.5.3 Challenges to Large Scale Implementation

This study was heavily constrained by the same operational and regulatory limitations
described in Burnett et al. (2017), most notably the requirement to fly under 120 m above
ground level and to maintain visual line of sight on the aircraft severely impacted efficiency
by reducing survey areas to < 10 acres in all but one location). To expand the presented
methods across larger areas would require not only a bigger aircraft capable of flying for
multiple hours but also a substantial revision of the methods. Future investigations related
to broad-area implementation of our method should focus on (1) improving computational
efficiency by using an object-oriented tree crown segmentation method (e.g. Strîmbu and
Strîmbu (2015)), (2) establishing an efficient observation network for collecting training
points, (3) improving understanding of the link between tree spectral response to SNC
infection and tree physiological condition (4) identifying the detection window within the
spring period that maximizes detection likelihood, (5) investigating optimal multinomial
classifiers, and (6) examining the efficacy of employing our method over a large area now
that FAA Part 107 (FAA, 2016) offers waivers to conduct beyond line of sight operations
at altitudes greater than 120 m above ground level.

3.6 Conclusion

The Swiss needle cast detection method rapidly estimated the disease status of nearly
6000 indvidiual Douglas-fir trees across eight sites. SNC was detected accurately (PPV
> 0.7) and trees having visible signs of infection were reliably distinguished from those
that do not with sufficient reliability (kappa > 0.4) when using either the Sony A5100/Nex
camera or the RedEdge NMC. However, the RedEdge consistently produced the most ac-
curate SNC detection. Despite the RedEdge’s increased sensitivity, summer SNC detection
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surveys do not appear feasible. Moreover, there was evidence that changing lighting con-
ditions between surveys confounded accurate SNC detection. As such, we recommend
imaging under clouds to minimize the effect (Rasmussen et al., 2016). We expect that the
methods employed would be more broadly applicable to other foliar diseases where causal
agents of premature leaf senesce can be easily separated by appropriate survey timing, such
as oak wilt disease (Everitt et al., 1999) and even sudden oak death (Meentemeyer et al.,
2004). Several technical, computational, and regulatory challenges must be overcome be-
fore large scale implementation of our method should be attempted.
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3.7 Figures

Figure 3.1: Comparison of the (a) Kappa coefficient and (b) Positive Predictive Value
(PPV) for the nine different Generalized Additive Model (GAM) classification model spec-
ifications for each of the six sites imaged with the RedEdge multispectral camera in May
of 2016.
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Figure 3.2: Between sensor comparison of the (a) Kappa coefficient and (b) Positive Pre-
dictive Value (PPV) for SNC disease classification of the six sites imaged with both the
Sony A5100 camera and the RedEdge multispectral camera in 2016. Bars represent the
95% confidence intervals around the mean estimate.
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Figure 3.3: Comparison of the (a) Kappa coefficient and (b) Positive Predictive Value
(PPV) for SNC disease classification of the three sites imaged with the RedEdge multispec-
tral camera in both May and August of the year 2016. Bars represent the 95% confidence
intervals around the mean estimate. Note that S2S May results are from the Sony Nex im-
agery collected in 2015 because S2S was not imaged with the RedEdge in May 2016 due
to radio range limitations.
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Figure 3.4: Between year comparison of the Kappa coefficient and Positive Predictive
Value (PPV) for SNC disease classification of the four sites imaged in both 2015 and 2016.
2015 data are results from analysis on imagery collected with the Sony Nex camera and the
2016 data are results from the analysis on imagery collected with the Sony A5100 camera.
Bars represent the 95% confidence intervals around the mean estimate.
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Figure 3.5: Between year comparison of both (a) sensitivity and (b) # of VSI trees per site in
the context of the default classification scheme and the adjusted threshold method described
in the methods section. Plot headings are the site names corresponding to the four sites
evaluated with the between year comparison in Figure 5. Default refers to the sensitivity
of the classifier for a given site and sensor using the default probability threshold of >50%
= VSI and < 50% = no visible signs of infection (NVSI). The 25% threshold refers to the
specificity achieved by adjusting the visible signs of infection (VSI) classification threshold
to those trees having a > 75% likelihood of being VSI and the NVSI classification threshold
to those trees having a <= 25% of being VSI. Old VSI is the number of trees per site that
were estimated to be VSI using the default probability threshold and the new VSI is the
number of trees per site estimated to be VSI using the 25% probability threshold.
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Figure 3.6: Classification change between 2015 and 2016 at each of the four sites imaged in
both years. ’Change’ refers to the number of trees that changed classification between years
and ’No Change’ refers to the number of trees that did not change classification between
years. These results depict a method for reducing the frequency of potentially undesirable
’Change’ occurrences by only selecting classification results of high certainty at the cost
of adding a third class (not shown) of trees where change status is unknown because they
fall outside the 25% thresholds for visible signs of infection (VSI) and no visible signs of
infection (NVSI). Site name is annotated at the head of each plot. A graphical depiction of
these results for site S2W appears in Appendix Figure A.4. ’25% Threshold’ and ’Default’
are described in the caption for Figure 6.
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Figure 3.7: Map of trees classified as having visible signs of infection (VSI) compared to
the estimated mid-crown average foliage retention (FR) of climbed trees (blue icons). The
included table is a summarization of the comparison. FR < 3 refers to trees estimated as
having fewer than three years of foliage retention. The ’Detection’ heading is the number
of climbed trees at each site that were classified as VSI.
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Figure 3.8: The relationship between the probability that a climbed tree exhibits visible
signs of infection (VSI) and average mid-crown foliage retention of each climbed tree de-
picted in Figure 3.7. Point colors denote the site associated with a specific observation.
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3.8 Tables

Table 3.1: General stand age by site and site-specific accounting of survey month and year
as well as camera employed. Stands were primarly mature (M) although one stand was
primarily comprised of saplings (S). Species indicates the dominant species on site. Most
sites were dominant in Douglas-fir (DF) but a few sites contained large pockets of mixed
alder (MA). The single mixed conifer (MC) site contained hemlock. Cloudy (Cldy) and
sunny (Sun) indicate the lighting conditions at the time of the survey. Asterisks (*) indicate
the dataset at each site that was used as the reference for image-to-image registration as
well as the digital surface model used for individual tree segmentation. The year of the
survey, month of the survey and camera used during the survey is denoted in the table cells
directly under the cell labeled ’Year - Month - Camera’.

Sites: S1W S1E S2W S2S S2E S3W S3E S3N
Stand Age: M M M M M M S M
Species: DF DF DF MA MA MC DF DF
Year - Month - Camera - - - - - - - -
2015 - May - Nex Cldy* Cldy* Cldy* Cldy* - Sun - -
2016 - May - A5100 Cldy Cldy Sun - Sun* Sun* Sun* Sun*
2016 - May - RedEdge Cldy Cldy Sun - Sun Sun Sun Sun
2016 - August - RedEdge Sun - - Sun - Sun - -
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Table 3.2: Spectral grids used for covariates in classification models. Asterisk (*) indicates
the spectral grids available from orthomosaics derived from Sony Nex and Sony A5100
imagery.

Spectral Grid Derivation Reference
Red* (R) Direct Observation -
Green* (G) Direct Observation -
Blue* (B) Direct Observation -
Near-infrared (NIR) Direct Observation -
1st Principal Component of RGB (PC1) Principal component analysis Venables and Ripley (2013)
2nd Principal Component of RGB
(PC2)

Principal component analysis Venables and Ripley (2013)

3rd Principal Component of RGB
(PC3)

Principal component analysis Venables and Ripley (2013)

Normalized Difference Vegetation In-
dex (NDVI)

(NIR - R) / (NIR + R) Rouse et al. (1974)

Triangular Greenness Index (TGI) - 0.5*((668-475)*(R - G)-(668-560)*(R - B)) Hunt et al. (2011)
Enhanced Vegetation Index (EVI) 2.5 * (NIR - R) / (NIR + 6 * R - 7.5 * B + 1) Huete et al. (2002)
Plant Senescence Reflection Index
(PSRI)

R - G / NIR Gamon et al. (1995)



58

Table 3.3: Specification combinations evaluated with the GAM classification algorithm.
Covariate sources are described in Table 3.2.

Specification Covariates
1 B, G, R
2 B, G, R, NIR
3 PC1, PC2, PC3
4 PC1, PC2, PC3, NDVI
5 PC1, PC2, PC3, PSRI
6 PC1, PC2, PC3, TGI
7 PC1, PC2, PC3, EVI
8 PC1, PSRI, NDVI, TGI
9 PC1, PSRI, EVI, TGI
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4.1 Abstract

Small Unmanned Aircraft Systems (sUASs) are fostering novel approaches to marine
mammal research, including baleen whale photogrammetry, by providing new observa-
tional perspectives. We collected vertical images of 89 gray and 6 blue whales using a
commercially available sUAS to examine the precision and accuracy of image-based mor-
phometry. Moreover, measurements from 192 images of a 1 m calibration object were
used to examine variants of a scaling correction model. Results indicate that a linear mixed
model including an error term for flight and date contained 0.17 m less error and 0.25 m
less bias than no correction. We used the propagation uncertainty law to examine error
contributions from scaling and image measurement (digitization) to determine that digiti-
zation accounted for 97% of total variance. Additionally, we present a new body size metric
termed Body Area Index (BAI). BAI is scale-invariant and is independent of body length
(R2 = 0.11), enabling robust comparisons of body size within and among populations, and
over time. With this study we present a three-program analysis suite that measures baleen
whales and applies scale corrections to produce 11 morphometric attributes from sUAS
imagery. The program is freely available to the community and is expected to improve
processing efficiency and analytical continuity.
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4.2 Introduction

Across the animal kingdom, ecologists develop and analyze various metrics to gauge
response to environmental and anthropogenic change. A key measure of physiological
health and response is animal body condition assessed through morphometrics. Morpho-
metrics are the numerical expression of animal morphological characteristics that facilitate
evidenced-based quantitative analysis of individual and population trends (Stower et al.,
1960). Baleen whale morphometrics can be examined at an individual level to describe en-
ergy stores and reproductive capacity, and also at a population level to describe pervasive
influences on population health and viability. Typically, larger individuals are considered to
be in a better health state due to increased capacity for energy storage (Clutton-Brock and
Sheldon, 2010; Christiansen et al., 2016). Baleen whales (Mysticetes) are long-lived, cap-
ital breeders that rely on energy stores to support reproductive and migratory life-history
stages. Therefore, morphometric comparison of baleen whale body condition, across in-
dividuals and over time can reveal reproductive state, offspring growth rates, energetic ca-
pacity, body size demographic structure, and incidents of compromised health due to injury
(Lockyer, 1986; Perryman and Lynn, 2002; Lockyer, 2007; Christiansen et al., 2016). Syn-
optic data on prey availability, ecosystem state, and acute impacts, such as entanglements
or vessel strike, coupled with body condition data can reveal important data on response
levels and recovery rates.

Measurements that facilitate morphometric analysis can be generally categorized as
direct or indirect. Direct measurement of non-captive subjects typically involves destruc-
tive sampling such as whaling, or samples of opportunity such as stranding events (Norris,
1961; Forrester et al., 1980; Finley and Darling, 1990). These direct measurements tend
to be the most accurate method as morphological parameters can be directly recorded us-
ing a measuring device. As such, the major source of potential error is attributed to the
individual measurer. However, there are significant caveats to this approach including the
ethics and feasibility of acquiring dead animals, along with small sample sizes and limited
possibilities of individual re-measurement to discern changes in body condition. Con-
versely, photogrammetric morphometric acquisition methods use geometric principles to
estimate parameters based on a scaling reference. This method provides a means of non-
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invasive data collection, the potential for collecting larger sample sizes, and the ability
to re-measure individuals. However, indirect methods are estimated rather than directly
measured and thus are subject to more sources of error such as ranging error, individual
measurement error, and pixel mixing.

Photogrammetry dates to 1829 and has been defined as "... the science or art of obtain-
ing reliable measurements by means of photographs" (Konecny, 1985; McGlone, 2013).
Reliable or precise photogrammetric measurements are possible when certain physical pa-
rameters relating to the camera(s) are known. While a limited number of photogrammetric
techniques can be applied to a single image (e.g., single photo resection), stereo photogram-
metry and 3D reconstruction relies on multiple, overlapping images of a scene acquired
using either a moving camera (e.g., on an aircraft) or multiple cameras offset by a known
baseline distance. Camera viewing geometries can range from highly oblique to nadir (i.e.,
direct overhead viewing). These viewing geometries can be achieved via camera placement
on a boat deck, a crow’s nest, or on an aircraft. The multi-camera method has been used
to estimate lengths of hammerhead sharks (Klimley and Brown, 1983), bowhead whales
(Cubbage and Calambokidis, 1987), and sperm whales (Dawson et al., 1995). Single im-
age methods pioneered by Whitehead and Payne (1981) are more common and have been
used to estimate morphometry of southern right whales (Best and Rüther, 1992), dolphins
(Perryman and Lynn, 1993), gray whales (Perryman and Lynn, 2002), sperm whales (Ja-
quet, 2006), killer whales (Fearnbach et al., 2011), and whale sharks (Rohner et al., 2011).

Several sources of uncertainty can influence the precision and accuracy of morphomet-
ric measurements from photogrammetry. These sources have been previously documented
(Perryman and Lynn, 2002; Jaquet, 2006; Fearnbach et al., 2011; Christiansen et al., 2016),
and include: body flex, non-horizontal body position, light refraction on submerged body,
deviations in camera roll, pitch (i.e., pointing angle) and yaw as well as errors in reported
range (e.g., distance from camera to whale). Jaquet (2006) used a wooden plank of known
length to create a regression model for the purpose of scaling altitude dependent pixel
length measurements to real world units while simultaneously calibrating out ranging error
and inherent error sources in the camera and lens system. These errors were determined
to be negligible based on the low coefficient of variation (CV) of repeated measurements.
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Jaquet (2006) also examined effects off angular error and determined that a camera position
that deviated by 10 degrees off perpendicular resulted in < 2.5% underestimation of fluke
width. Perryman and Lynn (2002) and Fearnbach et al. (2011) minimized the influence of
uncertainty from body flex, body attitude, body submersion and camera tilt by filtering out
images where these sources were evident to a substantial degree.

Cetacean photogrammetry was traditionally conducted via time and resource consum-
ing manned aerial surveys, which can be cost prohibitive thus limiting repeated flights.
However, recent technological advances have resulted in the affordable miniaturization of
aircraft and camera systems culminating in the advent of small unmanned aircraft systems
(sUAS) technology (Wing et al., 2013) in the early 2000s. The advent and accessibility
of sUAS technology makes photogrammetric measurement of cetaceans more accessible,
safe, cost-effective and repeatable.

Durban et al. (2015) demonstrated a single camera vertical photogrammetry method for
measuring killer whales using a hexacopter equipped with a 25 mm focal length consumer
grade camera. Christiansen et al. (2016) applied a similar method to assess the body com-
position of hundreds of humpback whales with a low-cost Splashdrone. They concluded
that resulting measurements appeared to be robust to error within and between images,
however, accurate image scaling required the scaling object (a ship) to be in close proxim-
ity to the whale. These two studies represent the beginning of a new era for baleen whale
research driven by the increased accessibility offered by low cost sUASs.

The multitude of methods for assessing whale morphology and the coming tide of sUAS
data that will result from ubiquitous application of low-cost minimal risk systems such as
the Splashdrones and DJI Phantom sUASs, create a clear need to develop a standardized
and repeatable method of conducting photogrammetric surveys and subsequent morphome-
tric analyses. Furthermore, clearer field methodology needs to be presented to ensure that
the broader community with access to low-cost aerial survey equipment ensures the safety
of their personnel and the subject of interest, but also that data is collected in a manner that
ensures reliable inferences can be achieved.

The goals of the presented study were to (1) establish methods for conducting accu-
rate and repeatable sUAS photogrammetric surveys that do not require scaling objects to
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be co-located with the survey subject, (2) thoroughly evaluate sources for measurement
uncertainty, (3) examine strategies to reduce measurement uncertainty, (4) develop stan-
dardized methods for extracting whale morphometrics from vertical sUAS imagery,and (5)
disseminate these methods in the form of freely-available MATLAB and R scripts. We
developed these methods with vertical sUAS imagery of Eastern North Pacific gray whales
(Eschrichtius robustus) foraging off the coast of Oregon, USA and pygmy blue whales
(Balaenoptera musculus brevicauda) foraging in the South Taranaki Bight of New Zealand.
We collected the commonly accepted morphometrics for evaluating whale body condition
(e.g., length and width: Perryman and Lynn 2002) and incorporated additional width mea-
surements at percentages of total length similar to the method presented by Christiansen
et al. (2016). In addition, we introduce a length normalized surface area index that we refer
to as body area index (BAI) that allows comparison of body size among whales similar to
body mass index (BMI) in humans.

4.3 Methods

4.3.1 Study Area and Collection Methods

Small UAS overflights of blue whales occurred in the South Taranaki Bight region of
New Zealand during the January-February period of 2016 as part of a larger project to
describe the ecology of this population (Torres, 2013). Field methods were thoroughly
documented in Torres et al. (2017). Six blue whales were imaged over four separate flights
during this period. Small UAS overflights of gray whales occurred off the Oregon Coast,
USA during the August – October period of 2016; 89 gray whales were imaged over 43
flights. The primary survey equipment for this study was a DJI Phantom 3 Pro sUAS. The
camera has a 3.61 mm focal length and a pixel pitch of 0.0015 mm. Manual flight control
of the aircraft was through the included remote control. Small UAS configuration and real-
time camera output were available through an Apple IPAD Mini tablet ground station that
was operating the DJI Go application.

The Phantom 3 Pro sUAS was chosen because the system is robust to cross winds even
when traveling at 40 kph, pilot training is intuitive, and the aircraft can safely initialize
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on a moving platform (e.g., boat). The Phantom 3 camera has low distortion compared to
other similarly sized cameras (e.g., GoPro), is stabilized by a 3-axis brushless gimbal, is
capable of 4K video output, and can transmit a high definition real-time video sample to
the pilot/observer. The video contains altitude and geolocation metadata recorded at 1 hz
and camera directional pointing is controlled via remote control.

The sUAS was navigated such that the surfacing whales were centered in the camera
field of view at altitudes between 25 m and 40 m above sea level (ASL) with a flight
duration of < 10 min. A calibration object of known length was centered in the frame and
imaged from 10 m to 40 m during takeoff and landing for all flights similar to the method
described in Durban et al. (2015), although they used a boat. Object lengths were 4.40
m and 1.00 m for the blue and gray whale flights, respectively. The product of the aerial
survey is a 4k video of individual whales and calibration objects. Video format was chosen
instead of still images because individual frames were high resolution (e.g., 8 mp) and
video increased the likelihood of capturing a whale in an ideal presentation. In addition,
video facilitates a behavioral analysis to support a future study.

4.3.2 Body Area Index

Christiansen et al. (2016) demonstrated that intraseasonal body condition changes in
humpback whales can be assessed with a body condition index (BCI). BCI captures width
variation along the length of the whale by segmenting trapezoids along percentiles of body
length and using sums of trapezoids to estimate flat dorsal surface area. Although BCI
offers an approximation of surface area, we developed a more complete estimate of the
flat dorsal surface area of a whale than trapezoid sums, by assuming a parabolic shape for
approximately 40% of a whale’s total length and combining the area under parabolas repre-
senting each side of a whale (Fig 4.1). We chose a parabolic model because it appeared to
fit the ’average’ whale well and the model provided a least-squares optimized fit that added
objectivity to the subjectivity of clicking points to delineate the edge of the whale body.
Furthermore, parabolic models have been successfully used to evaluate body condition in
large-bodied mammals such as cows (Halachmi et al., 2008, 2013).

We evaluated the parabolic shape of each whale by orienting each image along a hori-
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zontal axis in pixel space from rostrum to tail where length was along the x-axis and width
was along the y-axis. Eleven points were placed on the outline of each whale side between
15% and 65% of length at approximately 5% intervals. Parabolas were independently fit to
each side, due to a lack of symmetry caused by mild variation in body presentation (e.g.,
curvature). Parabolas were fit to the points using Eq. 4.1.

BW i = β 0 +β 1(WL2
i )+ ε i (4.1)

Where BWi is width at WLi, where WLi is length in units of pixels (p) at the ith per-
centage of WL. The goodness of parabolic fit was also evaluated between 10% and 70% to
determine if more area could be included without compromising the quality of the model.
Models were evaluated using R2 and p-values. Surface area was estimated from the fitted
parabolas using Eq. 4.2.

SAp =

(∫ WL20%

WL60%

(Eq.4.1s1)dx
)
+

(∫ WL20%

WL60%

(Eq.4.1s2)dx
)

(4.2)

Where SAp is the surface area in p between 20% and 60% of WL and Eq. 4.1s1 and Eq.
4.1s2 are parabolic models for side 1 and side 2, respectively.

A length normalized BCI was appropriate for our study because it facilitated body
condition comparison among individuals and between observations of the same individual
in the same way that body mass index (BMI) is used to compare body condition among
humans (Flegal et al., 2012). BMI = mass(kg)/height2 (Gallagher et al., 1996); to emulate
this we used surface area as a surrogate for body mass and estimated body area index (BAI)
using Eq. 4.3.

BAI =
SAp

(0.4∗ WLp)
2 ∗100 (4.3)

Where SAp is the estimated surface area of the whale in units of p, WLp is the estimated
length of the whale and Eq. 4.1s1 and Eq. 4.1s2 represent the parabolic models fit for side 1
and side 2 of the whale, respectively. The length was multiplied by 0.4 because surface area
was only captured across 40% of WL. The multiple of 100 keeps the index > 1 for most
whales. There were two advantages to the proposed BAI metric. A unit-less index has
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the benefit of being scale invariant and is not influenced by scaling errors that may arise
during photogrammetry efforts, as described later. Also, as a length normalized index,
BAI can be used to compare size of an individual between two time periods, size between
two individuals, size relative to the larger population, and size relative to an established
standard. Furthermore, a mean BAI for a population can be estimated from β 1 in Eq. 4.4.

SAi ∗100 = β 1((WLi ∗0.4)2)+ ε i (4.4)

Where SAi is the SA of whale i, WLi is the length of whale i, ε i is error, and the intercept
is zero to ensure SA is zero when WL = 0. Mean BAI (mBAI) = β 1 and is the mBAI for
the population of whales used to train the model.

We developed five simulated change scenarios to examine the sensitivity of BAI to
change at the population and individual level. We established a desired change sensitiv-
ity threshold at 10% because 10% is the low-end range of gray whale seasonal change
observed by Rice and Wolman (1971). We simulated changes by applying the respective
changes in WL and SA specified in Table 4.1 to the raw (i.e., uncorrected) morphometric
data. The simulation scenarios were intended to represent biologically meaningful change
events. BAI1 is the unchanged scenario representing the current BAI of the whale. BAI
estimates for each scenario and whale were analyzed for significant differences (p < 0.05
level) using a pairwise Bonferonni adjusted t-test of BAIs with the ’pairwise.t.test’ function
in R. Population sensitivity significance was assessed by comparing differences in mBAI
using the SE of β 1 in the fitted models for each of the simulations.

4.3.3 Photogrammetric Method

We employed a vertical image photogrammetric method that used camera to subject
distance (i.e., range) to scale images from pixels to meters, similar to a previous method
(Jaquet, 2006; Fearnbach et al., 2011). Aircraft altitude above sea level (ASL) was used as
a surrogate for range with the assumption that images were captured at nadir, the subject
was imaged at the sea surface and ASL was zero at sea level. Morphometric attributes were
measured in pixels in each of the whale images using the Whale Measurements program
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developed in MATLAB (MATLAB and Image Processing Toolbox Release 2016b, The
MathWorks, Inc., Natick, Massachusetts, United States). Pixel lengths were converted to
metric lengths via ground sampling distance (GSD) using Eq. 4.5.

GSDi = dc ∗ (H
′
i + εhi)/ fc (4.5)

Where GSDi was the ground projected horizontal surface distance represented by one
side of a square image pixel (Comer et al., 1998), and H

′
i was the ASL of the sUAS at the ith

observation. dc was the physical dimension of one side of a square pixel on the sensor chip
in units of mm (i.e., pixel pitch) and fc was focal length in units of mm; both parameters
were fixed and specific to camera c. The term εhi is the bias in ASL at the ith observation
and accounts for the likelihood that aircraft barometer was zeroed above sea level. Figure
4.2 is a graphical depiction of these parameters.

Once GSD was calculated, objects were scaled from a pixel length measurement to a
metric length estimate with Eq. 4.6.

L′ki = (GSDi )∗OLp
ki (4.6)

Where H
′
ki was the scaled length of object k at observation i, GSDi was calculated for

observation i, and OLp
ki was the pixel length of object k at the ith observation.

4.3.4 Sources of Uncertainty in Photogrammetric Measurements

The primary sources of uncertainty in measurement estimates derived from vertical
imagery (i.e., nadir-pointing) are those related to the assumption of zero camera tilt, the
uncertainty in the above ground level (AGL) flying height (and, hence, the image scale),
and the uncertainty in the analyst digitization of the whale on the imagery (Dolan et al.,
1978). Tilt uncertainty is the degree of uncertainty of the true pointing angle of the cam-
era when the camera was assumed to be pointing nadir. Camera tilt was excluded from
this analysis after five aircraft initializations on a level surface resulted in < 3◦ of tilt er-
ror, which is under the conventional threshold warranting explicit correction (Philpot and
Philipson, 2012; US Army Corps of Engineers, 2015). Ranging uncertainty in the context
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of this study refers to the uncertainty associated with estimating true sUAS AGL (H
′
). H

′

is the only variable required for estimating GSD (Eq 4.5) and ultimately scaling images.
Several factors contribute to ranging uncertainty and include: wind-driven changes in local
barometric pressure, ocean swells, zeroing aircraft altitude above sea level (e.g., ship deck),
imaging a subsurface whale and imprecision inherent in low-cost barometric sensors. We
define analyst digitization uncertainty as the uncertainty associated with estimating true
object length in image space. Based on this definition, there are two primary drivers of dig-
itization uncertainty: (1) the deviation from the assumption that the object being measured
is flat level and perfectly orthogonal to the camera and (2) the uncertainty associated with
an analyst manually measuring an object on an image.

4.3.5 Mitigating the Influence of Uncertainty Sources with Linear Modeling

A commonly employed ranging (e.g., altitude) correction model and requires an object
of known length (e.g., calibration object) to calculate what we refer to as empirical GSD
(eGSD)(Jaquet, 2006). eGSD is calculated by dividing known calibration object length
(OL) in meters by estimated calibration object length and calculates the ASL (H

′
) from

which the object must have been imaged based on the geometric relationship between fixed
camera parameters (e.g., fc) and OLp in image space (i.e., length in pixels). The correction
model accounts for systematic error in ranging that results from zeroing the barometric
altimeter above sea level and from an altimeter that exhibits bias. We calculated eGSD and
regressed it against observed ASL (H

′
i ) using Eq. 4.7 to estimate a corrected GSD (cGSD)

using the ’lm’ function in R.

cGSDi = B0 +B1(H ′i)+ ε i (4.7)

The cGSDs estimated from this model can be considered unbiased and observations
from multiple flights and days can be aggregated to increase sample size and thus power,
when certain underlying assumptions are met. In addition to the conventional assumptions
associated with linear modeling (e.g., independent and normal distribution of observations),
Eq. 4.7 assumes (1) that the altimeter was always zeroed to the same height above sea level,
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(2) local environmental barometric pressure did not change over the duration of the flight
and (3) the pixel length measurements used to calculate eGSD were unbiased and precise.
Violations of assumptions 1 and 2 lead to bias in the resulting GSD estimates.

Error in Eq. 4.7 may not be completely random due to unique conditions associated
with range estimation for each individual flight per day (abbreviated as ’Date-Flight’), such
as different take off locations, wind conditions, and ocean swell. We examined the possi-
bility of a ’Date-Flight’ effect on the relationship between GSD and altitude to determine if
calibration should be performed on a per-day and flight basis. Calibration data were nested
by ’Date-Flight’ and repeated measures analysis of variance (ANOVA) (Girden, 1992; We-
infurt, 2000) with an error term for ’Date-Flight’ was conducted on the raw calibration
observation data to examine the effect of both altitude on the ’Date-Flight’ grouping on
GSD.

To account for the possibility that ’Date-Flight’ has a significant effect on GSD, we
modified Eq. 4.7 to be a linear mixed model (LMM) that includes a ’Date-Flight’ error
term (Eq. 4.8), using the ’lmer’ function in the lme4 package in R (De Boeck et al., 2011;
Bates et al., 2014).

cGSDi j = (B0 +u0 j)+(B1 +u1 j)
(

H
′
i j

)
+ ε i j (4.8)

Where cGSD is estimated at H
′
i j for the ith observation in ’Date-Flight’ group j. u0 j is

a random effect to account for changing intercept (i.e., bias) by ’Date-Flight’ and u1 j is a
random effect accounting for changing slope (e.g., barometric instability) for each ’Date-
Flight’ group.

Eq. 4.7 and Eq. 4.8 are both sensitive to violations of the assumption that OL mea-
surements are accurate. Since digitization error is one of the primary error sources in
photogrammetric measurements, it is highly likely that this assumption is violated in most
instances. The geometric relationship between H

′
and OLp is such that log10 transformed

pixel length decreases as log10 transformed H
′
increases. Any deviation from 1:1 linearity

suggests the presence of digitization error. We smoothed OLp by estimating the mean pixel
length of the calibration object at a given H

′
using the linear regression in Eq. 4.9.
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log10(OLp
i ) = (B0)+(B1)∗ log10

(
H
′
i

)
+ ε i (4.9)

This model is appropriate for estimating OLp if no substantial deviations from assump-
tions 1 and 2 described previously are evident. If these assumptions are violated, then a
modified model form that includes a ’Date-Flight’ error term is necessary. To account for
this possibility we created linear mixed model specified in Eq. 4.10

log10(OLp
i j) = (B0 j +u0 j)+(B1 j +u1 j)∗ log10

(
H
′
i j

)
+ ε i j (4.10)

When OL is unstable, smoothed OLP from Eq. 4.9 and Eq. 4.10 can be subsequently
used to estimate eGSD used in the linear regression Eq. 4.7 and Eq. 4.8, respectively. Eq.
4.11 and Eq. 4.12 were created to reflect the use of smoothed OLP to estimate eGSD for the
purpose of performance comparison. Eq. 4.11 and Eq. 4.12 are parameterized identically
to Eq. 4.7 and Eq. 4.8.

cGSDi = B0 +B1(H ′i)+ ε i (4.11)

cGSDi j = (B0 +u0 j)+(B1 +u1 j)
(

H
′
i j

)
+ ε i j (4.12)

4.3.6 Evaluation of Linear Model Corrections with Calibration Data

The linear models were applied to the calibration data in different combinations to fa-
cilitate comparison of estimated mean OL (Eq. 4.3) among the five correction methods
specified in Table 4.2. The precision of mean estimated length was assessed using mean
root mean squared error (Eq. 4.13) and bias. Coefficient of variation (CV) was calculated
to assess relative measurement variation by correction method. 95% confidence intervals
(CIs) were determined for all estimates using 2.5% and 97.5% quantiles from a nonpara-
metric bootstrap of n = 1000 replicates. Non-parametric bootstrapping has been shown to
be an effective estimator of standard error when sample sizes are small and true variance is
unknown (Efron and Tibshirani, 1986). CIs for M2 through M5 included GSD model pre-
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diction uncertainty. Eq. 4.7 and Eq. 4.9 used a SE derived from the bootstrapping method
described in Davison and Hinkley (1997) in conjunction with the ’boot’ function in R Carl-
son and Ripley (1997) and the LMMs (Eq. 4.8, Eq. 4.10,Eq. 4.11 and Eq. 4.12) used
’predictinterval’ function within ’merTools’ (Knowles et al., 2016; Knowles and Frederick,
2016). The CIs for the LMMs do not account for the variance associated with the random
error term (e.g., ’Date-Flight’). CIs were used in conjunction with an ANOVA to discern
difference of mean OL among correction methods.

mRMSEs =
∑

ms
i=1

√
(∑

ns
i=1 (xsi j−xt)

2)
ns j

ms
(4.13)

Where mRMSEs is the mean RMSE for the sth correction method, ms is the number
of flights for a given method s, ns j is the number of observations within a given correction
method and ’Date-Flight’ ( j), xi j is the ith observation for a given method and jth ’Date-
Flight’ and, xt is the true length of object t. The linear models were evaluated for substantial
departures of the assumptions of constant variance and symmetric error distribution using
residual plots.

4.3.7 Comparison of Linear Model Corrections on Whale Morphometrics

The purpose of the linear corrections was to ultimately to improve the precision and
accuracy of whale morphometric measurements. The performance of a given correction
method with the calibration data was expected to be a good indication of how the cor-
rection method would estimate any given morphometric attribute when applied to actual
whale measurements. The GSD correction models (Eq. 4.7, Eq. 4.8, Eq. 4.11 and Eq.
4.12) trained in the correction methods in Table 4.2 were applied to the whale observation
data to estimate cGSD. The means of scaled morphometric attributes were calculated for
each whale. True morphometric attribute length was unknown, so the five GSD correction
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methods were evaluated with CV, CIs and graphically with boxplots. CIs were calculated
using the nonparametric bootstrapping method previously described. The linear models
were evaluated for substantial departures of the assumptions of constant variance and sym-
metric error distribution using residual plots.

4.3.8 Sensitivity Analysis

As ranging error (e.g., AGL altitude) and analyst digitization error (e.g., pixel length
measurements) are two of the largest sources of uncertainty in vertical photogrammetric
measurement estimates, we examined the relative impact of each of these components on
object length estimates in the calibration data for both the blue and gray whale data sets.
We conducted a sensitivity analysis using the special law of propagation of variance to es-
timate total propagated uncertainty when estimating object length using Eq. 4.5 and Eq.
4.6, assuming H

′
and OLP are independent (Ghilani, 2011). Total propagated uncertainty

was evaluated using Eq. 4.14. We estimated total propagated uncertainty at 15 and 40
m because approximately 95% of the imaging of the calibration objects occurred within
this altitude range and these two extremes were expected to illuminate potential altitude-
dependent trends in individual parameter influence on total uncertainty. Direct estimation
of σ was not possible because Eq. 4.14 must be evaluated at a fixed altitude and the cali-
bration objects were imaged across a range of altitudes. The variance of H

′
was determined

using the SE of the predictor in Eq. 4.11 and the variance of OLP was determined using
the SE of the predictor in Eq. 4.9. LMMs (Eq. 4.10 and Eq. 4.12 were not used due a
dependence on ’Date-Flight’. Eq. 4.11 was chosen for estimating H

′
variance because it

was expected to be less influenced by variability within OLp measurements.

σOL′ =±

√(
l
fc
∗dc

)2

∗σ2
H ′

+

(
H ′

fc
∗dc

)2

∗σ2
OLp (4.14)

Where, σOL′ is the standard uncertainty of the estimated object length, σ2
H ′

is the square
of the standard deviation of ASL and σ2

OLp is the square of the standard deviation of the
number of pixels.
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4.3.9 Image Extraction

The basis for measurement of individual whales in this study was the nadir pointing 4K
video taken during sUAS flight. For each whale sighting, five full-resolution frames were
extracted from the video using the ’snapshot’ functionality in VLC Media Player (Version
2.2.4) following the pertinent recommendations of the error mitigation strategies described
above. Five calibration images were also extracted during both take-off and landing of each
flight. Effort was made to ensure the survey objective was centered, in focus, and that the
full range of the altitude gradient was represented within the set of 10 images per flight.

4.3.10 Image Analysis

We developed a three-program analytical framework for photogrammetric morphome-
tric analysis for the purposes of minimizing sources of analytical error and standardizing
morphology measurements across multiple analysts and images. The first program is titled
Whale Calibration Object Measurement and was developed in MATLAB for the purpose
of standardizing the measurement of calibration objects as well as the pertinent outputs
that facilitate mitigating the effects of uncertainty through linear modeling. The program
prompts the user for the following inputs related to the sUAS camera, calibration object and
specific flight: fc, dc, sighting number, flight number, date, object name, known OL in mm,
observe H

′
, and height difference between sUAS initialization location and the calibration

object (parameterized as εhi in Eq. 4.5). The user is guided through an interactive measur-
ing process and a summary table is produced that includes the prompted inputs, OLp, and
GSD (as calculated from Eq. 4.5).

The second program, titled Whale Measurements, was also developed in MATLAB, for
the purpose of standardizing the measurement of morphometric attributes in vertical whale
images collected from sUAS, and standardizing the output measurements for subsequent
scaling and error assessment in a third program described later. The program interactively
requests an input image, and guides the user through several processes in the following
sequence: (1) prompts user for details pertinent to the specific camera, date, flight, sighting
and individual whale, (2) crops the image to the subject of interest, (3) aligns the whale
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lengthwise across a horizontal axis with an origin of 0,0 to simplify calculations, (4) guides
the user through a series of measurements to collect the morphometric attributes specified
in Table 4.3, (5) prompts the user for flight ASL (H

′
) and the vertical difference between

sUAS initialization location and sea level parameterized as εhi in Eq. 4.5) and (6) outputs
a table of results and an image (e.g., Fig 4.1) containing the subject with an overlay of
pertinent metrics.

The third program, titled Whale Quantitative Analysis, was developed in R 3.3.1 (R
Core Team, 2017) to process the summary tables produced in the first two programs to
provide measurement data and error estimates. This program queries the user for direc-
tories that contain the summary tables produced in the previous two programs. Data are
automatically grouped by date, flight and sighting under the assumption that all data shares
a common calibration object and camera. The program builds the GSD correction models
from the calibration data and applies the corrections to both the calibration data and whale
morphometric data to create the five GSD correction methods in Table 4.2 for each whale.
Summary tables of the calibration data include RMSE, bias, CIs, CVs and the estimates
of total propagated uncertainty (Eq. 4.14) grouped by correction method. Summary tables
of each whale and associated morphometric measurements include the estimated scaled
value, CIs and CVs. The results presented below are based primarily on data collected
during sUAS survey of 89 gray whales in Oregon, USA collected in 2016 and also include
results from the data collected during sUAS survey of 6 pygmy blue whales in New Zealand
collected in 2016.

4.4 Results

4.4.1 Gray Whale Calibration Object Correction Method Comparisons

Image measurements of the 1 m calibration object were examined in the context of
the GSD correction methods. The blue whale calibration data were similarly analyzed
but the results were excluded from this manuscript to economize space since the trends
were largely similar. Data were filtered due to high variability (CV > 15%) of estimated
scaled object length. Twenty-two of the 193 observations were removed due to uncorrected
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estimated lengths > 1.97 SDs (t, = 0.025,d f = 192) from the mean of all measurements.
The linear models used for the GSD correction methods (Table 4.2) were visually eval-

uated for violations of non-constant variance and non-random error using plots of predicted
vs residuals. Eq. 4.7 and Eq. 4.11 residuals displayed structural trends that indicate a vio-
lation of the assumption of error non-heteroscedasticity. Non-heteroscedasticity indicators
were not visible in the LMMs (Eq. 4.8 and Eq. 4.12) residuals which suggests ’Date-Flight’
grouping accounted for the non-random error.

The effect of a ’Date-Flight’ grouping of calibration data was examined to determine
if a per-flight imaging of the calibration object was necessary. A ’Date-Flight’ group-
ing conceptually accounts for systematic variances in altitude that ultimately increase un-
certainty in GSD and subsequent scaled-length estimates. Results of the repeated mea-
sures ANOVA indicated a significant effect of ’Date-Flight’ on GSD at the p < 0.05 level
[F(1,39) = 2.93 ∗ 1031, p < 0.0001]. Mean Squared Error of ’Date-Flight’ accounted for
approximately 27% of the overall variance in GSD. The remaining variance in GSD

was attributed to altitude which was 73% of the variance in GSD at the p < 0.05 level
[F(1,132) = 2.64∗1032, p < 0.0001]. These results suggest that it is appropriate to include
’Date-Flight’ as a random error term in the linear model correction of GSD as reflected in
Eq. 4.8. The same per-flight variance can be expected to influence the pixel length smooth-
ing model (Eq. 4.9), justifying the inclusion of the ’Date-Flight’ term in Eq. 4.10. These
results suggest that a GSD correction including ’Date-Flight’ as an explicit error term is
appropriate (e.g., M3 and M5).

Results of the calibration object correction methods listed are presented in Fig 4.3.
Tabulated results that include mRMSE, bias, CV, CIs and estimated mean OL appear in
Appendix Table A.1.

Measurement error (RMSE) and bias (over/under estimation) were the primary metrics
for examining model performance among the five alternatives in Table 4.2. M1 (uncor-
rected) resulted in the largest RMSE and bias of the five alternatives. The inclusion of the
’Date-Flight’ term reduced RMSE in M5 and M3 compared to M4 and M3, respectively.
CV and CIs of M2 – M5 were larger than M1 due to model-induced uncertainty. CIs for
M4 and M5 were narrower than those for M2 and M3 as a result of the improved predicted
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performance when using smoothed OLp estimates for calculating eGSD. Fig 4.3b further
corroborates the improved estimation performance of including ’Date-Flight’ error term by
the absence of the skew evident in the M2 and M4 observations. M5 has the lowest RMSE
and bias of the alternatives as a result of accounting for pixel length variation when esti-
mating the eGSD used to train the model as well as accounting for the ’Date-Flight’ effect.
Operationally, these results suggest that per-flight systematic sources of uncertainty (e.g.,
initialization height, swell, etc.) influenced ASL (H

′
) estimation at a level of significance

that warrants continuing per-flight imaging of a calibration object.

4.4.2 Comparison of Correction Methods on Gray Whale Measurements

Whale morphometric attribute estimates (Table 4.3) based on the five correction meth-
ods in Table 4.2 displayed similar trends as calibration object results above. Figure 4.4a
shows estimated WL by correction method for 9 of the 89 whales imaged. Appendix Table
A.2 displays the CV and mean of WL for these whales. The no-correction (i.e., uncor-
rected) method (M1) estimated a longer WL for 6 of the 9 gray whales depicted in Figure
4.4a, which was consistent with the relationship between M1 and the M2-M5 in the cali-
bration data. The CV of the WLs for these six whales was < 5%. However, for Whale 1,
Whale 4 and Whale 5, WL in M3 was greater than WL in M4. This break in the trend was
attributed to high CV (> 5%) which was indicative of a significant and uncorrected digiti-
zation and/or ranging error. M1 WLs for these three whales were not significantly different
from M5. In contrast, the M1 WLs for the other six whales was always greater than M5.
This trend was consistent with the relationship between M1 and M5 in the calibration ob-
ject data and provides evidence that M5 was appropriately correcting the morphometric
estimates.

4.4.3 Gray Whale Morphometric Measurement Correction Method Compar-

isons

An identical analysis on the six blue whales surveyed in New Zealand was conducted
to demonstrate the applicability of the software tools to another baleen whale species. WL
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estimates of each whale for the five correction methods appear in Figure 4.4b. Methods
M2-M5 produced effectively identical WL estimates for each whale indicating a consistent
zeroing of the aircraft altitude and very little discernible bias in the digitization process
among whales and flights. These results further corroborate the evidence that M5 produces
accurate results even when ’Date-Flight’ influences are negligible. Eight individuals are
depicted in Figure 4.4b because Whale 2 and Whale 4 were duplicates of Whale 1 and
Whale 3, respectively. Whale 1 M1 WL is 18.77 m and Whale 3 M1 WL is 18.20 m,
similarly, Whale 2 M1 estimated length is 18.33 m and whale 4 M1 is 19.33 m. Differences
were significant (p < .05) and just outside of the 95% confidence intervals. These whales
were imaged over two flights and the results were kept separate to illustrate the how a small
number of image observations (n < 4) can produce measurements with low variation that
contain undetectable bias and a false sense of certainty, reinforcing the need to analyze a
minimum of five good frames (or images) per whale.

4.4.4 Total Propagated Uncertainty

The results of the total propagated uncertainty analysis appear in Table 4. As has been
observed in the previous results, the gray whale data was more variable than the blue whale
data. We attribute this difference in variability to two key differences: (1) blue whales
tended to be centered and fully elongated in the images more frequently than gray whales,
likely due to behavioral differences between species (foraging gray whales are more bendy
than blue whales at the surface), and (2) the calibration reference used during the blue
whale study was an object on the vessel at water-level that was less susceptible to pitching
and yawing from ocean swells than the 1 m board used for the gray whale study. The
relative contribution of σ2

H ′
was lower than σOL

′
for both gray whale and blue whale data

which indicates that the barometric altimeter used to estimate H
′

is linear and relatively
stable. The large OLP values were a result of digitization error that was a function of
user error during the digitization process and poor quality images (e.g., glare, off-center
imaging). The variability in OLp was clearly discernible in the Pixel length vs altitude plot
(Appendix Figure A.5). If bias in H

′
had not been corrected from Eq. 4.7, σ2

H ′
would have

been more influential at 15 m than 40 m due to the fact that the influence of σ2
H ′

increases
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as bias/H
′
increases.

4.4.5 BAI assessment

The parabolic models used to derive surface area for the BAI calculation were examined
using adjusted R2 and visual analysis of the agreement between each parabola and the side
of the whale. R2 values ranged from 0.29 to 0.98 with no observable relationship between
poor R2 and a particular side or particular whale. Poor R2 was associated with poor whale
edge visibility that frequently led to erroneous point placement and tended to increase the
uncertainty of a whale’s BAI (e.g., wide Whale 5 CI vs narrow Whale 9 CI). BAI is scale
invariant and thus unaffected by uncertainty associated with ranging error, so a comparison
among correction methods was unnecessary. BAI allows comparisons among and between
populations so it is important that BAI provide a size metric that is independent of WL. To
evaluate independence we calculated Pearson correlation coefficients between both WL and
SA, and WL and BAI and determined BAI (R2 = 0.11) was substantially more independent
of WL than SA (R2 = 0.11).

We examined the sensitivity of BAI to detecting a 10% change in individual whale size
using the change simulation scenarios in Table 4.1. Difference was assessed with a pairwise
t-test comparison (Table A.1). The estimated BAIs by whale and scenario (for the 9 whales
in Figure 4.4) appear in Figure A.6.

Individual BAI change from BAI1 to BAI2, BAI3, BAI4 and BAI5 was discernible in
62.2%, 28.1%, 28.1% and 27.0% of the 89 whales, respectively. Despite the inconsistent
performance of BAI for detecting individual change, using SA directly to discern change
from SA1 to SA3, SA4 and SA5 was only successful for 17% of the whales. SA2 was not
evaluated because SA does not change. The pairwise comparisons in Table 4.5 and Table
4.6 examine how well change scenarios can be discerned from one another. The generally
poorer performance in SA alone was likely the result of the added uncertainty from scaling
(e.g., GSD error). However, the one case where SA was superior to BAI was distinguishing
SA4 from SA5, which was more frequently discernable than BAI4 from BAI5. In terms
of BAI, these two scenarios produced nearly identical BAIs but very different SAs. These
results suggest that using BAI to detect 10% change in individual whale size may not be
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reliable but will likely perform better than using SA directly. However, the fact that SA
could adequately capture the simulated difference between BAI4 and BAI5 suggests that
the SA metric should not be eliminated from evaluation when examining individual trends.

However, BAI appeared to perform well when examining change at the population level
(Figure 4.5 and Appendix Figure A.6). mBAI’s (red line Figure 4.5) of scenarios BAI2
– BAI4 were distinguishable from the mBAI of BAI1, although the large SEs obscured
individual whale changes across the scenarios. The increased sensitivity at the population
level was a function of discriminatory power offered by the larger sample size (e.g., n =
89).

4.5 Discussion

Results indicated that accounting for ranging error with some type of calibration object
is imperative. Uncorrected object lengths contained substantial bias (Figure 4.3) that ex-
ceeded the bias reported of the calibration object reported in Durban et al. (2015), although
their method used a much longer calibration object that was more robust to confounding
scaling through movement on sea surface, and the precision of the barometric altimeter
was likely superior to that of the DJI Phantom. The results from the M5 estimates com-
pared to the other four correction methods further suggest that smoothing pixel lengths of
the calibration object prior to creating the GSD correction model resulted in less erroneous
estimates of scaled length. While there were instances where M5 estimates of WL were
not significantly different from WL estimates in M1, these exceptions tended to be associ-
ated with high levels of variability in the observations. High variability in the observations
was likely a function of non-strict adherence to the optimal imaging recommendations pre-
sented by Christiansen et al. (2016) (e.g., whale not centered in the camera during flight)
but could potentially be overcome by substantially increasing the number of video frames
or images analyzed for each whale.

The analysis of total propagated uncertainty showed that digitization error remained the
largest source of uncontrolled error, further corroborating the need for more observations
per whale and ensuring images are of high quality. Our uncertainty analysis also showed
the importance of correcting for bias in altitude estimates with a calibration object. These
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findings lead us to recommend that surveys should be conducted at the highest reasonable
altitude to minimize the bias/altitude ratio when bias in altitude cannot be corrected from
a calibration object.

We condensed our recommendations in the form of a ’uncertainty mitigation proto-
col’ as a convenience for what we believe will be a rapidly growing community of whale
photogrammetrists. This protocol is not specific to our study or even whales, but rather,
is broadly applicable to any study where the subject is a surfacing animal and the survey
aircraft is a sUAS with a nadir pointing camera.

4.5.1 Uncertainty Mitigation Protocol

1. Power-up (i.e., initialize) the sUAS from the same location on the watercraft every
time to minimize influence of random error in ranging uncertainty.

2. Measure the vertical distance between power–up location and water level and add
that distance to reported altitudes to account for bias in ranging caused by initializing
above sea level (Durban et al., 2015).

3. To the extent feasible, image over flat water in non-windy and swelly conditions to
minimize ranging uncertainty.

4. Only measure images/frames where the whale is at water surface, fully elongated
with no curvature (Perryman and Lynn, 1993; Fearnbach et al., 2011; Christiansen
et al., 2016) to minimize digitization error.

5. Measure 5+ images of the same subject from each flight to evaluate variation.

6. Keep subject centered in the camera to minimize error associated with lens distortion
and scale non-uniformity induced by camera tilt error.

7. Image a calibration object every flight. Object should rigid and be located as close
to sea level and be as long as possible. Longer objects are more robust to uncertainty
induced by imaging in swelly conditions.



83

8. Image from the highest safe and legal altitude that ensures adequate level of detail,
to minimize the influence of altitude bias on scaling error.

9. Apply a GSD correction model like that in Eq. 4.12 that accounts for flight-level
altitude variances.

The final objective of this study was to develop and present a length-independent body
condition metric, which we term Body Area Index (BAI), to facilitate comparison of whale
body condition over time, among and between populations. We demonstrated that BAI was
more independent of WL than SA and that population level changes were detected well
below the 10% threshold we established. The scale invariant property of BAI is especially
valuable in surveys where scaling error cannot be controlled with a calibration object as
was evidenced by the increased sensitivity of BAI to detecting change in body size over
that of using SA directly. The results of the individual BAI change sensitivity analysis
were inconclusive because change could be detected in some whales and not others. We
attributed this inconsistency to high within whale BAI variability relative to the low sample
size (e.g., five images per whale).

When individual change detection is necessary, we recommend conducting multiple
flights over the same whale and performing a power analysis to determine how many ob-
servations (e.g., images/frames) will be necessary to discern change at the desired level of
sensitivity. Several useful characteristics of BAI are demonstrated in Figure 6. For exam-
ple, in scenario 1, Whale 10 is clearly larger than the others with a mBAI of 56 and a length
of 13.5 m. Conversely, Whales 2 and 4 have a similar length (12.6 m), but both have a
mBAI of 34. Based on this large difference, we can infer that Whales 2 and 4 likely have
reduced fat reserves relative to Whale 10. The status of calves can be similarly evaluated.
Many of the whales < 10 m in length have mBAIs equal to or higher than the population
mean (red line) suggesting that these surveyed calves have slightly elevated fat reserves
compared to the population.

A potential limitation to BAI is the underlying assumption of a parabolic shape that is
used to estimate surface area. Pregnant or severely emaciated whales may present forms
that deviate from that of a parabola. Additional investigation is necessary to discern the
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appropriateness of the method on those individuals. The method presented here would
potentially be improved upon by incorporating convex hull algorithms (Barber et al., 1996)
or automatic segmentation algorithms (Misimi et al., 2008))

4.6 Conclusion

This study presented a length-normalized body size index (BAI) to facilitate compari-
son among individuals and populations and can be used to describe population size change
trends. We examined the effectiveness of models used to correct error in scale image mea-
surement and determined the most precise and accurate model was a LMM containing a
’Date-Flight’ error term and regressed on eGSD values that were derived from smoothed
pixel length estimates. We subsequently determined that analytical digitization error was
the largest source of uncertainty in scaled measurement estimates and developed an ’Un-
certainty Mitigation Protocol’ to help future studies avoid controllable sources of uncer-
tainty. We also developed a three-program analytical suite for obtaining 11 morphometric
attributes of free-swimming baleen whales from vertical sUAS imagery. Our findings sug-
gest that sUAS photogrammetry from a DJI Phantom 3 Pro is a precise method to assess
baleen whale body size when there are sufficient observations of an individual whale and
uncertainty from ranging error can be controlled by imaging an object of known length
every flight. Future studies will determine the broader applicability of our provided frame-
work, but believe similar results can be achieved on any species exhibiting similar morpho-
logical characteristics as gray and blue whales. We expect that future studies will focus on
automatic whale edge delineation in images and further investigate the applicability of BAI
for ecological inference.
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4.7 Figures

Figure 4.1: Output image from Whale Measurements program displaying the morphome-
tric attributes that were measured, including fluke width (FW) and whale length (WL).
Parabolas fit by Eq. 4.1 are also depicted. OW is the ’optimized width’ estimated by the
points on the parabolas nearest to the end points of interpreter defined manual width.
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Figure 4.2: A graphical depiction of the pertinent parameters used to estimate scaled object
lengths from measurements. GSD = ground sampling distance (i.e., ground distance of one
pixel), dc = pixel pitch, H

′
= altitude, and fc = focal length.
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Figure 4.3: Estimated object lengths of the five correction methods listed in Table 4.2. (a)
is a bar plot of mean estimated lengths and error bars are 95% nonparametric bootstrapped
CIs. The dashed horizontal line is actual object length and (b) boxplot of estimated lengths
for individual observations. Method 1 (M1) is the uncorrected method.
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Figure 4.4: Estimated WL for each of the five GSD correction methods (Table 4.2 for each
of nine arbitrarily selected gray whales (a) and each of the six blue whales imaged (b).
Measurements for eight whales appear in Figure 4.4b because Whale 1 and Whale 2 are
the same individual imaged over two flights; the same is true for Whale 3 and Whale 4.
Bars are the 95% bootstrapped confidence intervals.
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Figure 4.5: Relationship between body area index (BAI) and estimated whale length (WL)
for the gray whales (n = 89), ordered by the five change scenarios listed in Table 4.1.
Headings denote the scenario number. The red dashed line is estimated mean BAI (mBAI)
for the scenario and is derived from the slope term in Eq. 4.4. Error bars are the 95% CIs
around the BAI for each whale. Points missing bars have insufficient observations to derive
a CI.
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4.8 Tables

Table 4.1: Simulated change scenarios devised to discern how changing whale length (WL)
and surface area (SA) influence body area index (BAI) estimates.

Scenario WL SA
BAI1 Unchanged Unchanged
BAI2 +10% Unchanged
BAI3 Unchanged +10%
BAI4 Unchanged -10%
BAI5 +10% +10%
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Table 4.2: Different correction methods examined for estimating GSD and eGSD using the
regression models developed previously. eGSD describes how eGSD was calculated for
the purpose of training the model listed under the GSD column and applies strictly to the
calibration object estimates. GSD describes the GSD estimation method being used in Eq.
4.6 to estimate scaled length and is applicable in the context of both the calibration data
and the whale morphometric measurement data.

Method eGSD cGSD
M1 NA Eq. 4.5
M2 OL÷OLP Eq. 4.7
M3 OL÷OLP Eq. 4.8
M4 OL÷ Eq. 4.9 Eq. 4.11
M5 OL÷ Eq. 4.10 Eq. 4.12

Table 4.3: The morphometric attributes produced by the analytical programs and their
descriptions.

Parameter Description
WL Whale length —rostrum to notch in tail
MW Manual width —manual measurement of width at widest point
OW Optimized width —width at point on parabola nearest MW
FW Tail width —tip to tip fluke width
W20 Width at 20% of WL from rostrum
W30 Width at 30% of WL from rostrum
W40 Width at 40% of WL from rostrum
W50 Width at 50% of WL from rostrum
W60 Width at 60% of WL from rostrum
SA Surface area between 20% and 60% of WL
BAI Body Area Index
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Table 4.4: Results of the total propagated uncertainty analysis, and supporting input param-
eters for Eq. 4.14 in context to estimating the length of the calibration object (OL) from
vertical imagery. Heading names refer to the respective data set (e.g., Gray = gray whale;
Blue = blue whale) and numbers in the headings represent the altitude (e.g. 15 and 40 m)
at which total propagated uncertainty was evaluated. Actual object length is abbreviated as
OL

′
. % Uncertainty is Total Uncertainty / OL

′
.

Parameter Gray 15 Gray 40 Blue 15 Blue 40
H
′
(m) 15 40 15 40

OLp 164.2 69.7 701.2 238.8
σOLp 51.5 19.4 37.5 12.9
σH ′ 0.15 0.15 0.14 0.14

σ2
OLp 99% 99% 97% 97%

σ2
H ′

1% 1% 3% 3%
OL

′
(m) 1 1 4.41 4.41

Total Uncertainty (m) 0.29 0.32 0.24 0.21
% Uncertainty 29% 32% 5% 5%
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Table 4.5: Comparison of body area index (BAI) for all five change scenarios in Table
4.1 using Bonferonni adjusted pairwise t-test. Percentages are the ratio of the 89 whales
that exhibited a significant change (p < 0.05 at 95% significance) when comparing the BAI
computed in the respective change scenario specified in the column heading to the BAI
computed in the change scenario specified in the row name.

BAI1 BAI2 BAI3 BAI4
BAI2 65.2% NA NA NA
BAI3 28.1% 77.5% NA NA
BAI4 28.1% 13.5% 70.8% NA
BAI5 27.0% 19.1% 70.8% 0.0%
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Table 4.6: Comparison of surface area (SA) for all five change scenarios in Table 4.1

SA1 SA2 SA3 SA4
SA2 NA NA NA NA
SA3 16.9% 16.9% NA NA
SA4 16.9% 16.9% 59.6% NA
SA5 16.9% 16.9% 70.8% 59.6%
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5 Discussion

The overarching goal of this dissertation was to explore the efficacy of remote sensing
surveys with sUAS in complex, dynamic environments, and highlight the unique potential
these instruments offer to conducting scientific inquiry. Chapter 2 presented a novel method
to detect Swiss Needle Cast disease using a Generalized Additive Model to classify survey
data collected with an sUAS equipped with a consumer grade camera. Chapter 3 investi-
gated the efficacy of the presented SNC detection method in context to surveys conducted
with both a consumer grade and commercial camera, as well as surveys conducted in two
different months and in two different years. Chapter 4 introduced an error minimization
strategy and standardized method for conducting low-cost sUAS photogrammetric survey
and morphometric analysis of blue and gray whales. The three chapters combined present a
robust assessment of sUAS remote sensing methods in remote and dynamic environments.
The disease detection and morphometric analysis methods presented here are novel to their
respective subfields within environmental remote sensing and demonstrate the unique ca-
pability of sUAS.

The primary objectives of Chapter 2 were to: (1) examine whether trees can be classi-
fied as diseased or non-diseased with better than random chance, (2) discern if the use of a
NIR camera significantly improves classification reliability, (3) determine whether physio-
logically meaningful VIs improve classification reliability, and (4) compare SNC detection
reliability among two different MLAs and two different GLM implementations using nine
different model specifications to examine the effect of classification model on detection re-
liability. The individual-tree SNC detection method in Chapter 2 demonstrated the ability
to reliability (kappa > 0.4) distinguish visibly diseased from non-visibly diseased trees, and
specify the diseased status of a given tree accurately (PPV > 0.7). The added complexity
and cost of flying a second NIR camera was determined to be unnecessary because NIR
spectral information did not improve reliability or detection accuracy. Moreover, the inclu-
sion of vegetation indices relating to crown structure (NDVI) and chlorophyll content (TGI)
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did not improve the accuracy or reliability of detection surveys. The inability of NIR and
VIs to improve detection was attributed to noisy background added by the broadband sen-
sitivity of the consumer grade cameras employed in the study. Finally, the algorithm used
for detection had significant implications on detection reliability and accuracy depending
on the covariates specified. However, the generalized additive model using simple, un-
transformed, visible spectral information was the most consistently reliable across the four
sites (kappa > 0.4). The presented individual-tree SNC detection method was heavily de-
pendent on accurate training data and tended to perform best in homogenous Douglas-fir
stands. Extension of the method to other forest types, especially mixed species forests, or
types with a wide age-class distribution, requires further investigation.

The primary objectives of Chapter 3 were to: (1) determine if SNC detection surveys
with a multispectral camera were more accurate and reliable than those conducted with a
consumer grade camera, (2) evaluate the reliability of between year change detection at
the site-level and tree-level, (3) investigate the plausibility of conducting summer SNC de-
tection surveys with sUAS, and (4) examine the relationship between field-based foliage
retention estimates and disease status as determined by remote sensing. The addition of
the multispectral did not improve results significantly improve the reliability or accuracy
of SNC detectability at all sites. Results were similar between the consumer grade camera
and the multispectral camera at most sites. However, the multispectral camera facilitated
improved SNC detectability on sites where confounding influences of perspective effects
(i.e., bi-directional reflectance) were apparent. Between year change detection was heavily
influenced by external factors such as changing lighting condition, and resulted in several
hundred trees changing disease status between years at each of the four sites. However,
employing more strict classification thresholds utilizing the underlying individual-tree dis-
ease status probabilities resulted in very few trees changing status. Findings suggest that
summer surveys are not plausible, likely due to spring leaf flush and lighting conditions
masking the evidence of reduced needle retention in infected crowns. There was no evi-
dence of a relationship between foliage retention and individual-tree probability of disease
status revealed no evidence of a relationship. Lighting conditions heavily influenced de-
tection reliability, but the effect can be minimized by using a narrowband multispectral
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camera and enforcing tighter classification probability thresholds. The primary contribu-
tions of this study are the corroboration of the effectiveness of the individual-tree SNC
detection method over an expanded scope that includes two sensors, two survey years and
more sites. This findings of this study also provide recommendations regarding the survey
timing as well as optimal lighting conditions and sensors.

The primary objectives of Chapter 4 were to (1) establish methods for conducting accu-
rate and repeatable UAS photogrammetric surveys that do not require scaling objects to be
co-located with the survey subject, (2) thoroughly evaluate sources for measurement uncer-
tainty, (3) examine strategies to reduce measurement uncertainty, (4) develop standardized
methods for extracting whale morphometrics from vertical sUAS imagery, (5) introduce
a length normalized surface area measure that is robust to scaling error, and (6) dissemi-
nate these methods in the form of freely-available MATLAB and R scripts. The method
presented demonstrated the ability to make precise and accurate estimates of an object’s
length when linear mixed models were employed to correct altitude induced bias when
scaling pixel measurements to metric units. The sensitivity analysis revealed that measure-
ment error, resulting from poor image quality and subjectivity during image measurement,
was the largest contributor to total uncertainty. A mitigation protocol was devised from
recommendations existing within available literature and experience from conducting pho-
togrammetry operations on an ocean-going vessel. The standardized method for extracting
morphometrics was presented in the form of a program that reduced enumerator fatigue,
minimized opportunities for transcription error, and standardized whale measurements by
guiding the analyst through measurements. The normalized body surface area measure,
labeled body area index (BAI), was shown to be scale invariant (and thus robust to scaling
errors), and independent (R2 = 0.11) of body length. BAI provided a means of comparing
whale body condition within (i.e., over time) and between individuals and was shown to be
more sensitive to detecting changes in body condition than surface area alone.

Image quality and resulting morphometric measurements in this study were heavily
influenced by the choice to use 4K video and by measuring images of whales that were off-
center or bending. These factors combined with the non-stationary nature of gray whales
substantially reduced measurement precision. The primary outputs of this research are (1)
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a new morphometric attribute, BAI, that is similar to BMI in humans and provides a similar
level of comparability among whales, (2) a software suite that standardizes morphometric
measurements, and (3) an uncertainty mitigation protocol that provides guidelines to the
broader community for how to minimize error induced during survey operations.

Despite the generally positive findings from all three studies, there is room to improve
the methods employed to produce more useful results. The SNC detection study would
benefit from an image-based crown canopy segmentation method that better captures the
unique shape of each crown and better ensures that corresponding spectral information
is included in the disease detection assessment. Furthermore, the method would benefit
from additional study on the functional relationship between SNC detectability and the
combination of crown color and crown structure. This information could be combined with
customized multispectral cameras to better isolate light spectra that relate to detectability.
In context to the baleen whale study, results could be improved by using full resolution still
images rather than frames from the 4K video. Furthermore, employing the error mitigation
protocol during future data collections would likely improve the precision of the resulting
measurements. Finally, the method could be vastly improved in terms of efficiency and
objectivity by utilizing automatic segmentation methods to delineate whales within the
images.

5.1 Conclusions

Environmental remote sensing with sUAS was shown to produce detailed and accurate
survey results in remote and dynamic environments. The innovative individual-tree Swiss
needle cast detection method demonstrated the power of sUAS surveys to accurately de-
tect diseased trees and reliably distinguish visibly infected trees from non-visibly infected
trees. This information can be presented in the form of a map to guide management ac-
tivity or be used to conduct economic analyses to inform species conversion decisions The
photogrammetric survey of baleen whale morphometrics revealed the potential to conduct
precise morphometric analysis in a repeatable fashion on two different baleen whale species
with a low-cost commercial sUAS. This information can be used to assess population dy-
namics over time and in response to environmental phenomenon. The standardized method
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presented in the form of guidelines and analytical software offers guidance to the rapidly
growing field of baleen whale photogrammetrists. The standardization method benefits the
broader community by providing a free analytical tool that improves efficiency and perhaps
more importantly, increase the transferability of data between studies.

In addition to the successes of the sUAS remote sensing methods employed in the the
Swiss needle cast and baleen whale case studies, these studies revealed a several challenges
related to environmental remote sensing with sUAS. Regulatory limitations that limit flights
to a 120 m AGL ceiling and horizontal distances between pilot and aircraft to visual line of
sight restrict efficient utilization. Furthermore, the limited endurance of multirotor sUASs
(e.g., < 30 minutes) further impedes efficiency such that surveys are limited in scope in
terms of area covered or number of whales imaged in a single flight. However, within
the United States regulations are relaxing to allow limited waivers to some of the regula-
tory restrictions which will vastly improve efficiency when surveys employ high endurance
(e.g., fixed-wing) UASs. Equipment reliability, pilot and analyst expertise will likely con-
tinue to plague operations but many will view the trade-offs compared to manned flights as
acceptable because sUAS operations have a near-zero chance of endangering human lives.

Small UAS technology will continue to develop and become more accessible to sci-
entists conducting environmental remote sensing. The rapidly increasing sophistication of
low-cost consumer systems will drive new innovations in environmental remote sensing.
Future studies will benefit from beyond line of sight UAS operations and long-endurance
aircraft to test the efficacy of the methods presented here on a scale that truly compares
with what is currently possible with manned aircraft.
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A Supporting Tables and Figures

Figure A.1: Matrix sUAS in-flight with Sony NEX 5T camera.
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Figure A.2: Processing workflow diagram depicting three general data processing stages
(i.e., pre-processing, post-processing, and analysis and production), steps and pertinent
sub-routines. Arrows depict functional relationships between outputs and inputs. The three
stages are broken down into steps that contain subroutines represented by the smaller rect-
angles within a column. The general flow is down the column and left to right.
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Figure A.3: Tree and crown segmentation workflow diagram depicts the differences be-
tween DSM and DEM data that allow relative-height CHM creation and subsequent crown
segmentation with the CanopyMaxima function implemented in USFS FUSION. Site N02
data was used for this example. Note that the majority of the trees were segmented and
crown areas are reasonable for most trees although some crown areas are vastly under or
over estimated.
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Figure A.4: Visualization of the detected status changes of individual trees at site S1W
between 2015 and 2016.’Uncertain’ is in reference to trees whose change status is uncertain
due to the tuning of the classification probability algorithm. Trees with a high probability
of exhibiting no visible sign of SNC infection (NVSI) are denoted with a circle and trees
with high probability of exhibiting visible signs of SNC infection (VSI) are denoted as
triangles. Colors refer to the years trees were surveyed. Overlapping symbols indicate
a status change between years. Potentially undesirable status changes were indicated by
overlapping circles and triangles. Squares indicate an uncertain status during a survey year.
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Figure A.5: The relationship between object length in pixels and altitude (a) depicting a
wide variation in object length around a single altitude when altitude was not corrected for
bias. The relationship between altitude and empirical ground sampling distance (eGSD)
(b) shows the wide range in eGSDs observed from a single altitude when altitude bias is
uncorrected.
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Figure A.6: Mean estimated body area index (BAI) for the entire population of gray whales
(n = 89) in the context of each of the simulated whale length and surface area change
scenarios specified in Table 4.1.
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Figure A.7: Estimated body area index (BAI) for the five simulated change scenarios de-
scribed in Table 4.1 for the nine gray whales examined in Figure 4.4a.
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Table A.1: Mean estimated calibration object length and supporting metrics resulting from
each of the scaling error correction methods described in Table 4.2. mRMSE is the mean of
the root mean squared errors Eq 4.4 across all the flights contributing to the estimate of the
mean, CV% is the coefficient of variation in units of percentage. Mean.lwr and Mean.upr
designate the lower and upper bounds of the 95% confidence intervals on the mean.

Method Mean (m) Mean.lwr Mean.upr mRMSE CV (%) Bias (m)
M1 1.25 1.11 1.39 0.34 14.91 0.25
M2 1.1 0.69 1.65 0.26 16.21 9.6∗10−2

M3 1.04 0.63 1.53 0.17 19.88 3.5∗10−2

M4 1.06 0.93 1.21 0.25 16 6.3∗10−2

M5 1.02 0.79 1.28 0.17 17.56 1.9∗10−2
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Table A.2: Results of the five correction methods listed in Table 4.2 for analysis of the nine
whales identified in Figure 4.4. Whale Length (WL) mean is the mean estimated WL and
WL coefficient of variation (CV) is the CV of the individual observations that contributed
to the mean.

Whale Method WL Mean WL CV Whale Method WL Mean WL CV
1 1 11.66 9.03 5 3 12.37 5.8
2 1 12.47 5.99 6 3 9.03 5.1
3 1 8.34 3.39 7 3 10.8 1.75
4 1 12.53 3.26 8 3 7.72 0.61
5 1 10.94 6.26 9 3 9.85 1.69
6 1 11.09 4.73 1 4 9.6 9.14
7 1 11.34 1.57 2 4 10.3 6
8 1 9.51 0.97 3 4 6.87 3.59
9 1 11.31 1.67 4 4 10.31 3.49
1 2 9.85 9.16 5 4 9 6.17
2 2 10.58 6.01 6 4 9.15 4.73
3 2 7.05 3.61 7 4 9.34 1.66
4 2 10.59 3.52 8 4 7.84 0.99
5 2 9.24 6.16 9 4 9.34 1.7
6 2 9.39 4.73 1 5 11.92 9.47
7 2 9.6 1.67 2 5 10.97 5.97
8 2 8.05 0.99 3 5 7.31 3.57
9 2 9.59 1.7 4 5 12.16 3.95
1 3 14.55 9.85 5 5 10.6 5.99
2 3 11.3 6.02 6 5 9.02 5
3 3 7.56 3.46 7 5 10.33 1.75
5 3 14.21 4.34 8 5 7.75 0.99

9 5 9.68 1.67
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B Index of Acronyms
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Acronym Explanation
ADS Aerial Detection Survey
AGL Above Ground Level
ASL Above Sea Level

B Blue
BAI Body Area Index
BCI Body Condition Index

cGSD Corrected Ground Sampling Distance
CIs Confidence Intervals

COA Certificate of Authorization
CV Coefficient of Variation

DEM Digital Elevation Model
DF Douglas-fir

DSM Digital Surface Model
eGSD Empirical Ground Sampling Distance

G Green
GCPs Ground Control Points
GPS Global Positioning System
GSD Ground Sampling Distance
JPEG Joint Photographic Experts Group
LOS Line of Sight
MA Mixed Alder

NDVI Normalized Difference Vegetation Index
NIR Near-infrared

NMC Narrowband Multispectral Camera
NVSI No Visible Signs of Infection
OM Orthomosaic
PC Principal Component

PSRI Plant Senescence Reflectance Index
R Red

RGB Mosaiced Red, Green, and Blue
RMSE Root Mean Squared Error
RTK Real-time Kinematic
SNC Swiss needle cast
sUAS Small Unmanned Aircraft System
TGI Triangular Greenness Index
VI Vegetation Index

VSI Visible Signs of Infection




