
 1 

Supplemental Material for “Urbanization causes increased cloud-base height and 
decreased fog in coastal southern California”  
 
Description of data 
Airfield stratus frequency records 
 Cloud observations at airfields are generally hourly. Overhead cloud-base height is recorded 
when clouds are present to obscure at least 5/8 of the sky. Although cloud-base height data do 
exist for some stations prior to 1948, we begin our analysis in 1948 because only a few airfields 
have data prior to 1948 and documented inconsistencies in observational methods prior to that 
year have been found to cause inaccuracies in cloud-frequency records [Karl and Steurer, 1990]. 
In the early-mid 1990s, inconsistencies were again introduced at many airfields in the United 
States when the National Weather Service (NWS) and Federal Aviation Administration switched 
from human to automated observations of cloud cover, but this switch does not appear to have 
caused inhomogeneity in records of low stratus clouds [Dai et al., 2006], which are the subject of 
this study. Further, the meteorological stations at 8 of the 24 airfields considered in this study are 
maintained by the United States Military, which has not switched to automated cloud monitoring 
[Dai et al., 2006]. We see no evidence of methods-related shifts in the 1990s among the non-
military airfields in our dataset. 
 
 For each hour, we considered the cloud-base height observation closest to the top of the hour 
and within 15 minutes of the top of the hour. If there were two observations equally spaced from 
the top of the hour (e.g., 06:55 and 07:05), we considered the observation with the lower cloud-
base height. We filled single-hour data gaps in the hourly cloud-base height observations based 
on the cloud-base height observations for the neighboring hours. As a first step, we empirically 
determined the probability that the missing observation was of stratus cloud (cloud base ≤ 1000 
m), non-stratus cloud (cloud base > 1000 m), or clear sky. We determined these probabilities 
based on a sampling of all other instances from the airfield’s record when cloud-height data 
existed for the same three hours of day, the Julian day was within 10 days of the Julian day with 
the missing value, and both neighboring observations matched the missing hour’s neighboring 
observations in terms of whether those observations were of stratus, non-stratus, or clear sky. 
After empirically calculating the probability that the missing hour fell into each of the three 
observation classes, we reclassified the missing hour as one of the three cloud classes based on a 
probability-weighted random number. If the assigned class was stratus cloud or non-stratus 
cloud, we next estimated the height of the cloud base from the empirical linear relationship 
between the cloud-base heights of the neighboring hours and the cloud-base heights for the hour 
of interest. Occurrences of single-hour gap fills were rare, averaging ~1.6% among the 24 
airports, with a maximum of 5.05% for Gillespie Field and a minimum of 0.04% for Los Angeles 
International Airport and Lindbergh Field. 
 
 Even though we ultimately consider cloud-height observations for four hours (07:00, 10:00, 
13:00, 16:00 Pacific Standard Time), we occasionally filled missing monthly cloud-frequency 
values for these hours using data from other hours. We initially calculated monthly cloud 
frequencies for each of the 24 hours, giving 24 annual records of stratus frequency (one for each 
hour) for a given month at a given airfield. For a given month, if annual value x was missing 
from one of the four key hours listed above, we searched the other 23 hours for annual records 
that (1) contained annual value x, (2) had at least 20 years of overlapping data with the annual 
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record with missing value, and (3) correlated well (r > 0.7) with the annual record with the 
missing value. If any of the 23 alternate records fit these three criteria, the missing value x was 
replaced with a linearly adjusted value from the record that correlated most strongly with the 
record of interest. This was rarely necessary, averaging <1% of hours across all airfields and was 
never necessary at 13 airfields. This gap filling was most common (6.8% of hours) at San 
Nicolas Island (NSI) due to often missing (~25%) values at 16:00, which were nearly always 
filled using the record from 15:00. We next averaged across the five months for each hour so we 
had an annual record for each of the 24 hours representing stratus frequency during all of May–
September. We repeated the gap-filling step described immediately above for each of the four 
hours of interest, which was only necessary for 2 airfields, and only for one year at each airfield. 
We averaged across the four hours of interest to calculate a single annual record representing 
May–September. 
 
 Stratus-cloud base height records generally have a vertical resolution of 30.48 m (100 ft) 
[NWS, 1998]. To account for uncertainty that this introduced to cloud-base height measurements, 
we produced 1000 alternate hourly records of cloud-base height at each airfield, where each 
hourly record was perturbed by adding a random value selected from a uniform distribution in 
the range of ±15.24 m (50 ft). We then calculated an alternate annual record of May–September 
stratus frequency for each airfield from each of the 1000 alternate hourly records. We calculated 
each airfield’s May–September stratus frequency record as the average of the 1000 alternate 
records. In correlation and trend analyses, we conducted these analyses for each of the 1000 
alternate records. All significance values and confidence bounds shown in the article are 
representative of at least 95% of the alternate records such that they reflect uncertainty caused by 
the limited vertical resolution of cloud-height measurements. 
 
 We repeated the above methods to develop airfield-specific records for lower stratus clouds, 
where cloud-base heights are considered within various vertical slices between the surface and 
1000 m. We also repeated the above methods to develop records of average stratus-cloud base 
height for each airfield. 
 
Sub-regional stratus frequency records 
 We standardized all annual time series within a sub-region to have a mean of zero and 
standard deviation of one during the common period of 1973 through 2014. We averaged the 
1000 sets of standardized time series across airfields within each sub-region, producing 1000 
alternate stratus-frequency records for each sub-region. The spread among the 1000 alternate 
sub-regional records represents error caused by limited vertical resolution of the cloud-base 
height measurements (Er). 
 
 We next accounted for error in each sub-regional record caused by missing airfield data (Em). 
For years when a sub-region has a missing value for at least one airfield, uncertainty in the sub-
regional mean is introduced. For each year with at least one missing airfield value in a sub-
region, we identified the airfields with valid values and evaluated the representativeness of that 
subset by regressing the true regional mean time series against an alternate sub-regional time 
series representing only the sub-set of airfields. Greater uncertainty is indicated by greater spread 
among residuals. For each sub-region and year with a missing airfield stratus-frequency value, 
we calculated the standard deviation among residuals for each of the 1000 alternate annual 
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records, found the average of these values, and considered the 95% error bound to be within 
±2.042 standard deviations of the sub-regional stratus-frequency value (2.042 from the Student’s 
t-distribution for 30 degrees of freedom for p = 0.05). So, if a given sub-region’s standard 
deviation of the residuals for a year was 0.1, then the error for that year is 0.2042 standardized 
stratus-frequency units. The 1000 records of annual Em for each sub-region were added to the 
1000 records of that sub-region’s Er to represent error caused by missing airfield data and error 
due to limited vertical resolution of cloud-base height measurements. Finally, a sub-regional 
mean record was calculated as the average of the 1000 alternate sub-regional records, including 
both error terms. 
 
 For evaluation of sub-regional trends, we converted standardized sub-regional values back 
into absolute stratus-frequency values by adding back in the mean and variance of the raw 
airfield-specific stratus-frequency records within each sub-region. 
 
Regional stratus frequency record for correlation analyses 
 We calculated the coastal southern California (CSCA) regional record as the average of the 
sub-regional records for the three mainland sub-regions: Santa Barbara, Los Angeles, and San 
Diego. For our analyses of correlation between stratus frequency and large-scale climate 
variability, we removed linear trends from stratus-frequency and climate records to ensure that 
correlations are not confounded by common trends that are potentially unrelated mechanistically. 
We first detrended individual airfield stratus-frequency records during 1960–2014, as this is the 
period of overlap with the San Diego-Miramar radiosonde record. To do this, we detrended each 
of the 1000 alternate records for each airfield (to preserve Er) and then averaged across airfields 
within a sub-region to get 1000 detrended sub-regional averages. We then added the 1000 
records of Em for each sub-region to the 1000 detrended records to incorporate error in the sub-
regional mean due to missing airfield data. We detrended each of the 1000 records one more 
time to remove trends caused by addition of Em. Then we averaged the 1000 sets of detrended 
records across the three mainland sub-regions to develop 1000 detrended records of CSCA 
regionally averaged stratus frequency during 1960–2014. This method was repeated to also 
produce detrended regional records for 1979–2014 for correlation analysis with the reanalysis 
climate dataset that begins in 1979. This procedure was repeated to represent stratus frequency 
within various altitude classes. The procedure was also repeated to calculate a regional record of 
stratus-cloud base height variability during 1960–2014, which was used as a proxy for variability 
in the altitude of condensation. 
 
Surface temperature records 
 Monthly means of daily minimum and maximum temperature (Tmin and Tmax, respectively) 
grids for 1948–2014 were accessed from the latest version of the Parameter-elevation 
Regressions on Independent Slopes Model (PRISM) dataset (PRISM group, Oregon State 
University, prism.nacse.org [Daly et al., 2004]). PRISM grids have ~4 km geographic resolution. 
Temperature records were averaged across the 25 PRISM grid cells (5x5) centered over each 
airfield because this area roughly represents the area within a ~10 km radius of each airfield 
(same area for which urban cover is considered). The larger area around each airfield is 
considered in the temperature analysis because, although the cloud-height data represent cloud 
conditions immediately above the airfields, cloud conditions above the airfields are presumably 
influenced by the meteorological conditions of the greater surrounding area. The PRISM dataset 
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is developed using temperature data from the airfields in this study and many more weather 
stations in the region, and has been carefully quality controlled to remove erroneous data and 
correct for temporal inconsistencies. Because the PRISM temperature data for the two Islands 
airfields is not representative of the greater region surrounding the islands (ocean), we used a 
combination of PRISM temperature data and reanalysis temperature data for these airfields. For 
1979–2014 reanalysis temperature data, we used NASA’s Modern-Era Retrospective Analysis 
for Research and Applications (MERRA) dataset [Rienecker et al., 2011]. For 1948–1978 we 
used the reanalysis dataset developed by the National Center for Environmental 
Protection/National Center for Atmospheric Research (NCEP/NCAR) [Kalnay et al., 1996], 
accessed from the Earth System Research Laboratory (ESRL) Physical Sciences Division (PSD) 
at www.esrl.noaa.gov/psd. For each Islands airfield, we extracted May–September mean 
temperature data using bilinear interpolation and we then calibrated the NCEP/NCAR records to 
match the mean and variance of the MERRA records during the overlapping period of 1979–
2014. For each 5x5 set of PRISM grid cells centered over each Islands airfield, we replaced the 
outer 16 PRISM temperatures with reanalysis temperatures. 
 
 Although the monthly PRISM Tmin and Tmax records are not accompanied by estimates of 
uncertainty, we can account for measurement uncertainty of the temperature records upon which 
PRISM is based. According to NWS [1998], Automated Surface Observing System temperature 
sensors have a root mean squared error of 0.5°C and a maximum error of ±1°C. We 
conservatively assumed that this error is uniformly distributed within ±1°C. Simulating 106 153-
day seasons (length of May–September) with a daily uniformly distributed error of ±1.0°C, the 
resultant errors in the seasonal mean value are normally distributed and have a standard deviation 
of 0.047°C. In all analyses that incorporate Tmin and Tmax trends, we consider 1000 alternate 
records of seasonally averaged Tmin and Tmax, each with errors added to the annual values that are 
drawn from a normal distribution with a mean of zero and a standard deviation of 0.047°C. 
 
Reanalysis climate data 
 All correlation analyses reported in the article that involve gridded reanalysis climate data 
are conducted using NASA’s MERRA dataset. MERRA is a three-dimensional reanalysis 
product with geographic resolution ranging from 0.5° to 1.25°, vertical resolution of 25 hPa from 
the surface to 700 hPa, vertical resolution of 50 hPa between 700 and 100 hPa, and temporal 
coverage of 1979–present. We utilized monthly and daily MERRA data for our analyses. Among 
the variables evaluated was the lower-tropospheric stability (LTS), calculated from daily data as 
potential air temperature (θ) at 850 hPa (θ850) minus potential air temperature at the near-surface 
(θ2m), following Iacobellis et al., [2009] and Iacobellis and Cayan [2013]. Potential temperature 
is the theoretical temperature of an air parcel if forced to a standard reference pressure P0, in this 
case 1000 hPa. Potential temperature is calculated as θ = T(P0/P)κ [Bolton, 1980], where T is air 
temperature of the parcel in degrees Kelvin, P is air pressure of the parcel in hPa, and κ is the 
Poisson constant, [κ = 0.2854(1-0.24rv)], where rv is the water vapor mixing ratio. LTS has also 
been calculated previously using θ at 700 hPa rather than 850 hPa [e.g., Wood and Bretherton, 
2006]. We used both approaches in our analyses but only report those using θ850 because LTS 
calculated with θ850 correlated more strongly with CSCA stratus frequency and inversion 
strength. 
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 In addition, sea-surface temperature (SST) data were accessed for Figure S6a. The National 
Ocean and Atmospheric Administration (NOAA) extended SST version 3 dataset [Smith et al., 
2008] has temporal coverage of 1854–2014, geographic resolution of 2°, and was accessed from 
the NOAA ESRL PSD (www.esrl.noaa.gov/psd/data/gridded/data.noaa.ersst.html). Additionally, 
Figure S6a includes 2 m air temperature data from the European Centre for Midrange Weather 
Forecasting (ECMWF), accessed from http://apps.ecmwf.int/datasets/. For temporal 
completeness, we merged the ECMWF-ERA 40 product (which covers 1958–2001) with the 
ECMWF-Interim product (1979–2013), both available with 0.5° geographic resolution. We 
combined these products by calculating the annual time series shown in Figure S6a for each 
product and calibrating the ERA 40 record to have the same mean and variance as the Interim 
product during the overlapping period of 1979–2001. 
 
Radiosonde data and temperature-inversion calculations 
 The primary radiosonde record used was from San Diego-Miramar (NKX). Radiosonde data 
were accessed from www.esrl.noaa.gov/raobs/ and quality controlled as part of a previous 
research campaign [Iacobellis et al., 2009]. As in Iacobellis and Cayan [2013] and Iacobellis et 
al. [2009], we do not consider radiosonde data prior to 1960 due to data uncertainties and 
irregular launch times. Launch times considered in this study occur daily at 04:00 and 16:00 
Pacific Standard Time. 
 
 For each measurement considered, we evaluated the temperature profile for the presence of a 
temperature inversion. As in Iacobellis and Cayan [2013] and Iacobellis et al. [2009], we only 
consider “subsidence inversions” and exclude “radiation inversions” in our investigation of the 
connection between inversion characteristics and stratus occurrence. Radiation inversions begin 
warming with altitude immediately from the surface, which should generally inhibit stratus cloud 
formation, but subsidence inversions occur above the surface and therefore cap a cooler marine 
boundary layer (MBL). We only consider subsidence inversions with an inversion top below 700 
hPa, as inversions higher than this are not related to the MBL. In cases when a subsidence 
inversion was present, we recorded the altitude and temperature of the top and bottom of the 
inversion. Inversion strength was simply defined as top temperature minus bottom temperature. 
In the absence of a subsidence inversion, an inversion strength of 0°C is assigned. If there was a 
radiation inversion and a subsidence inversion present, the subsidence inversion was still 
considered. If there were multiple smaller inversions within a larger inversion, the larger 
inversion was the only one considered. 
 
 For each inversion variable (inversion strength, top height, top temperature, bottom height, 
bottom temperature) as well as the percent of measurements when the inversion base was ≥800 
m above sea level, we developed an annual time series for each of the two launch times 
considered, averaging across all days within May–September each year to calculate an annual 
value. The two annual records (for the two launch times) for each variable were then 
standardized and averaged together to create one record. For the evaluations of interannual 
correlation with stratus frequency, we detrended radiosonde records for each launch time before 
standardizing and averaging.  
 
 In addition to measurement of inversion characteristics at NKX, we evaluated 850 hPa air 
temperature (T850) records at NKX, San Nicolas Island (NSI), and Point Mugu Naval Field 
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(NTD) (Fig. S6b). While measurements at NSI and NTD were far too inconsistent in terms of 
timing and vertical resolution for long term monitoring of inversion characteristics at these 
airfields, the T850 measurement is a standard radiosonde measurement that has been made 
consistently at these airfields. Additionally, T850 does not experience much diurnal variability at 
these airfields, allowing for use of data from alternate launch times to represent T850. For each 
airfield, we developed an annual record of T850 for the early morning, considering the range of 
hours from 01:00 to 07:00, and the late afternoon, considering the hours from 13:00 to 19:00. In 
cases when two measurements were made within one of these time windows on the same day, 
we only considered the measurement made closer to the standard 04:00 or 16:00 launch time. In 
the annual averaging, we calculated an annually averaged value for each time window as long as 
there were at least 5 days per month during May–September with data. While this is a small 
minimum required sample size, the strong agreement among the records in Figure S6b suggests 
that not much accuracy was compromised. In cases when an annual value was available for one 
time window but not both, we linearly adjusted the available value to replace the missing value. 
Finally, we averaged the annual records for the two time windows together to develop one record 
of annual May–September T850 for each airfield. 
 
 For all radiosonde-based records, we recalculated 1000 alternate records in an attempt to 
account for measurement uncertainties in temperature and geopotential height. Radiosonde 
equipment has evolved over the years and documentation of equipment changes and how these 
changes affected measurement uncertainties in the lower troposphere is limited. We used the 
limited information available to develop a conservative representation of measurement error for 
the study period (1960–2014). According to Appendix C of the Federal Meteorological 
Handbook No. 3: Rawinsonde and Pibal Observations (http://www.ofcm.gov/fmh3/pdf/11-app-
c.pdf), NKX uses a VIZ-B2 radiosonde made by Sippican, Inc. This is a relatively old model that 
most radiosonde deployment sites have migrated away from, but information appears to be not 
readily available as to when this model came about and what other models may have been used 
during our study period. According the Sippican website, both versions of the VIS-B2 
radiosondes have a measurement uncertainty with a standard deviation (σ) of 0.2°C 
(http://www.sippican.com). We cannot be sure how measurement uncertainty has varied in the 
past so we conservatively assume a long-term uncertainty four times larger than the modern 
uncertainty (σ = 0.4°C [variance = 0.16 when σ = 0.4 and variance = 0.04 when σ = 0.2]). The 
Sippican documentation does not provide estimates of the uncertainties for altitude, but the 
WMO Report on Instruments and Observing Methods 
(www.wmo.int/pages/prog/www/IMOP/publications/IOM-80/CatalogRadiosond.pdf) indicates 
in Table 10 that the Sippican radiosonde had an uncertainty of σ = 4m at 500 hPa. Uncertainties 
in geopotential height are accumulated with altitude so the geopotential height uncertainty should 
be less within the pressure range that we were interested in (generally >850 hPa). The estimate of 
σ = 4m is based on soundings from recent years (post-1998), but an analysis of radiosonde data 
from 1975 indicates similar uncertainties in geopotential height (Table 6 in Schwartz and Govett, 
1992). In that analysis, distributions of geopotential height errors within various pressure levels 
indicate that σ = 4.8m between the surface and 850 hPa and σ = 3.6m between 850 and 700 hPa. 
We conservatively assume an uncertainty of σ = 5m in our analyses. We incorporate the 
uncertainties in temperature and geopotential height by creating 1000 alternate sets of raw 
radiosonde measurements, converting these into 1000 alternate sets of inversion strength and 
inversion base height, and then aggregating these to 1000 alternate records of May–September 
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averages. We also calculate 1000 alternate records of May–September mean temperature at 
various pressure levels within the atmospheric profile for the analysis of how stratus frequency 
relates to temperature throughout the profile. 
 
Land cover data 
 We evaluated changes in urban land area within 10 km of each airfield by relating a modern 
land cover dataset to a historic dataset. For the modern case, we used the 2011 National Land 
Cover Database (NLCD) [Jin et al., 2013]. This dataset has 30 m geographic resolution across 
the continental United States and classifies land-cover type for each grid cell. We considered all 
areas classified by the NLCD as “Developed” to be urban area. Notably, the 10 km radius 
surrounding the airfield at Imperial Beach (NRS) includes part of Mexico, which is not included 
in the NLCD. For this region, we used the 500 m MODIS v5.1 global land cover dataset for 2012 
[Friedl et al., 2010]. For the historic case, we followed the methods of Syphard et al. [2011] and 
based our estimates of urban cover on a spatially continuous estimate of national household 
density, based on census data from 1950 [Hammer et al., 2004]. Like Syphard et al., we assigned 
an urban classification to any location estimated by Hammer et al. to have a housing density of at 
least 128 housing units per km2. We used nearest neighbor resampling to transfer the shapefile 
data from Hammer et al. to the 30 m NLCD grid. We have reasonably high confidence in the 
ability of the Hammer et al. dataset to represent CSCA urban area because Syphard et al. found 
strong correspondence between the 2001 NLCD urban cover and urban cover derived from the 
Hammer et al. dataset for year 2000 in San Diego County. In this region, the total fractional 
urban cover was within 0.01 for the two datasets and urban/non-urban classifications were in 
agreement for over 90% of the 30 m grid cells. The total fractional urban cover derived from the 
Hammer et al. dataset was slightly high, likely because the lower spatial resolution of the census 
data caused some green spaces within urban areas to be classified as urban. We partially address 
this by not allowing areas to be classified as urban in the 1950 dataset if they were not classified 
as urban in either of the NLCD datasets from 1992 [Vogelmann et al., 2001] or 2011. 
 
 The Hammer et al. dataset also does not cover Mexico and we know of no mid-1900s urban 
cover dataset for Mexico. We therefore georeferenced and digitized a United States Air Force 
Map of the greater San Diego area in 1950 that outlines urban areas and includes northern Baja 
California, Mexico (http://historicalcharts.noaa.gov/jpgs/0404-0004-250-4-1950.jpg). According 
to this map, northern Baja California was largely unurbanized in 1950; 3.07 km2 of the urbanized 
portion of Tijuana fell within the 10 km radius surrounding NRS, accounting for <1% of the area 
within this radius (314.15 km2) and 10.1% of the total 1950 urbanized area. The Hammer et al. 
dataset also does not contain data for the Islands sub-region. We assumed 0% urban cover for 
San Nicolas in 1950 because this site was mainly developed after 1950. For San Clemente, we 
assume a 1950 urban fraction of one half of the urban fraction in 2011 (0.014). Urban coverage 
at these sites is so small that assumptions of 1950s urban cover contribute only minimal 
uncertainty to the absolute change in urban coverage at these sites. 
 
 In accounting for uncertainty, we assume all uncertainties in our calculation of change in 
urban cover during 1950–2011 to be due to errors in the census-based estimates of urban cover in 
1950. There is certainly error in the NLCD as well, but NLCD error is undoubtedly minimal 
compared to the error in the census-based estimates and a formal accounting of NLCD urban-
cover accuracy has thus far not been published. There has also been no formal accounting of the 
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uncertainties in census-based urban estimates for CSCA, but this is possible under the 
assumption that NLCD is truth [e.g., Syphard et al., 2011]. Like Syphard et al., we quantified 
uncertainty by comparing census-based estimates in urban density throughout CSCA in 2000 to 
those calculated from the 2001 NLCD [Homer et al., 2007]. We gridded CSCA to a resolution of 
17.73 km2 such that grid cells have an area approximately equal to the circles with 10 km radii 
surrounding each airfield. Considering the 60 grid cells within 50 km of the coast that are 
composed of at least 50% mainland area, the estimates of the fraction of urban land area made 
from the two datasets agree very well (r = 0.98). Regressing census-based urban area against 
NLCD-based urban area, the residuals have a normal distribution with a root mean squared error 
(RMSE) of 0.0592 and a maximum absolute error of 0.2417. We produced 1000 alternate 
estimates of 1950 urban land fraction for each mainland airfield where each census-based 
estimate was permuted by adding a random number selected from a normal distribution with a 
mean of zero, a standard deviation of 0.0592, and a maximum possible absolute value of 0.25. 
We converted these urban land fraction values to total urban fraction (including ocean) by 
multiplying by total land (urban and non-urban) fraction. 
 
Modeled climate projections 
 For Figure S6c, we utilized modeled monthly climate projections developed as part of the 
fifth phase of the Coupled Model Intercomparison Project (CMIP5) and assessed for the 
Intergovernmental Panel on Climate Change Fifth Assessment Report (IPCC AR5). Data were 
accessed from the CMIP5 Program for Climate Model Diagnostics and Intercomparison 
(PCMDI) at http://cmip-pcmdi.llnl.gov/cmip5/. We used CMIP5 data from the historical scenario 
for years 1900–2005 and the representative concentration pathway (RCP) 8.5 scenario for 2006–
2100. RCP 8.5 is an emissions scenario in which anthropogenic radiative forcing reaches 8.5 
Wm-2 by 2100 [Moss et al., 2010; van Vuuren et al., 2011]. In our CMIP5 analysis, we evaluated 
LTS, 700 hPa specific humidity, and 700 hPa vertical velocity. For each variable, we considered 
all models for which the necessary data were available for both the historical and RCP 8.5 
scenarios. Because models have differing geographic resolutions, we bilinearly interpolated all 
model projections to a common grid of 1°. We then calculated annual time series for each 
variable of interest by averaging across May–September monthly values within the geographic 
box of interest (15–35°N, 110–120°W). We converted annual time series for each model as 
anomalies relative to that model’s mean value during 1960–2005 to normalize for model biases 
in mean climatological conditions. For each model, we averaged across all available model runs, 
as a given model was often run multiple times for the same climate scenario, but with differing 
initial conditions. We express the projections as the multi-model median and interquartiles. 
Averaging across all available models and model runs minimizes the effect of internal climate 
variability on the projections shown in Figure S6c and preserves modeled variability that may be 
attributed to changes in anthropogenic radiative forcing.  
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Supplemental tables and figures 
 
Table S1. Airfield information 

Name Code 
Lat 
(°N) 

Lon 
(°W) 

Elev 
(m) 

Sub-
region 

N* 
(years) 

First 
year 

Santa Barbara Municipal Airport SBA 34.426 119.844 6 SB 56 1949 
Oxnard Airport OXR 34.201 119.206 21 SB 58 1953 
Point Mugu Naval Field NTD 34.117 119.117 4 SB 67 1948 
Van Nuys Airport VNY 34.210 118.489 244 LA 43 1948 
Santa Monica Municipal Airport SMO 34.017 118.450 53 LA 42 1973 
Los Angeles International LAX 33.938 118.406 99 LA 67 1948 
Burbank/Glendale BUR 34.200 118.350 236 LA 63 1948 
Jack Northrop Field HHR 33.923 118.334 19 LA 42 1973 
Torrance Municipal/Zamperini Field TOA 33.800 118.333 31 LA 42 1973 
Long Beach Daugherty Field LGB 33.828 118.163 12 LA 67 1948 
Los Alamitos Army Airfield SLI 33.783 118.050 11 LA 55 1948 
Fullerton Municipal Airport FUL 33.872 117.979 29 LA 42 1973 
Santa Ana John Wayne Airport SNA 33.680 117.866 17 LA 47 1968 
Ontario International Airport ONT 34.056 117.600 289 LA 51 1950 
Camp Pendleton Marine Corps Air Stn. NFG 33.300 117.350 24 SD 47 1968 
McClellan-Palomar Airport CLD 33.128 117.279 100 SD 42 1973 
North Island Naval Air Stn. NZY 32.700 117.200 8 SD 67 1948 
Lindbergh Field SAN 32.735 117.169 9 SD 67 1948 
Miramar Naval Air Stn. NKX 32.867 117.150 146 SD 66 1948 
Montgomery Field MYF 32.816 117.140 130 SD 41 1973 
Imperial Beach/Ream Field NRS 32.567 117.117 7 SD 63 1948 
Gillespie Field SEE 32.826 116.973 118 SD 42 1973 
San Nicolas Island NSI 33.250 119.450 154 Islands 65 1948 
San Clemente Island NUC 33.023 118.588 56 Islands 52 1960 
 
*Number of years of data indicates the number of years for which all months in the stratus 
season (May–September) had valid stratus-frequency values for all hours evaluated (07:00, 
10:00, 13:00, 16:00). The number of years of data may be higher for individual hours and/or 
months. The last year with valid data is 2014 for all airfields. 
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Table S2. Upper height bounds for the four cloud-base height classes at each airfield. Units 
are meters above sea level. The four height classes represent the lowest 25%, 50%, 75%, and 
100% of stratus cloud base heights at each airfield, where all clouds with base <1000 m above 
sea level are considered to be stratus and we consider only observations of stratus at 07:00, 
10:00, 13:00, and 16:00 during May–September 1973–2014 in determining these thresholds. For 
each airfield, the boundary heights were calculated for each of the 1000 alternate records of 
cloud-base height. Values shown here are the averages of each set of 1000 values. The boundary 
heights among the 1000 alternate records were generally consistent. For most airfields, 95% of 
alternate boundary heights were within 1 to 2 m of the mean boundary height for all levels. The 
largest spread was for the 75% level at VNY, where the inner 95% of the 1000 alternate 
boundary heights were within 4.05 m of the mean. 
 

 
Height Class 

Airfield 25% 50% 75% 100% 
SBA 179 287 486 1000 
OXR 210 311 456 1000 
NTD 186 300 448 1000 
VNY 499 640 787 1000 
SMO 297 408 592 1000 
LAX 394 519 690 1000 
BUR 500 646 816 1000 
HHR 352 486 678 1000 
TOA 336 480 640 1000 
LGB 348 491 672 1000 
SLI 326 463 623 1000 
FUL 390 534 704 1000 
SNA 340 471 628 1000 
ONT 538 652 784 1000 
NFG 313 464 639 1000 
CLD 306 423 563 1000 
NZY 304 422 600 1000 
SAN 336 461 604 1000 
NKX 380 515 714 1000 
MYF 373 533 678 1000 
NRS 270 374 523 1000 
SEE 403 531 707 1000 
NSI 255 350 482 1000 
NUC 287 365 501 1000 
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Table S3. Observed changes in stratus frequency. Linear relativized changes in May–
September stratus frequency for each sub-region and airfield. Δ in stratus frequency is calculated 
for all stratus clouds (cloud base ≤1000 m) in the column labeled “All” and for the four quartiles 
of height classes. Changes in stratus frequency are expressed relative to the initial regression 
value (e.g., a reduction of 0.25 from an initial stratus frequency regression value of 0.50 equals a 
-50% change). Asterisks indicate trends significant at 99% (**) and 95% (*) confidence levels 
according to both Spearman’s Rho and Kendall’s Tau tests. Trends are not marked as significant 
unless these significance criteria were met by at least 95% of the 1000 alternate time series. 
 

   
Δ (%) within each height class 

Name 1st year N All 
Fog 

0-25% 25-50% 50-75% 75-100% 
Santa Barbara 1948 67 2 5 21 14 -20 
SBA 1949 56 -4 17 18 -28* -15 
OXR 1953 58 23* 19 68* 52** -19 
NTD 1948 67 -5 -8 -7 17 -17 
Los Angeles 1948 67 -23** -63** -9 5 1 
VNY 1948 43 -46** -65** -47 -23 -38* 
SMO 1973 42 -28** -42 -42* -21 1 
LAX 1948 67 -10 -38* -4 -2 18 
BUR 1948 63 -22* -49** -5 -13 -7 
HHR 1973 42 -24* -60* -34 8 11 
TOA 1973 42 -17 -28 -36 39 -25 
LGB 1948 67 -19** -61** 1 16 4 
SLI 1948 55 -22** -62** 12 11 -11 
FUL 1973 42 -37** -58** -19 -30 -35* 
SNA 1968 47 -31** -55** -35 -16 -9 
ONT 1950 50 -43** -87** -16 6 -23 
San Diego 1948 67 -9 -25 -9 -4 10 
NFG 1968 47 -22** -15 -34 -33* -3 
CLD 1973 42 -8 -32* -32* -1 58** 
NZY 1948 67 -6 -21 -3 7 -5 
SAN 1948 67 3 -20 15 10 10 
NKX 1948 66 -10 -16 -12 3 -15 
MYF 1973 41 -27** -38* 134** -80** 5 
NRS 1948 63 -12 -30 -25 1 18 
SEE 1973 42 -31** -53** -7 0 -48** 
Islands 1948 67 -9 60* -20 -39* -1 
NSI 1948 65 -9 40* -17 -34* -4 
NUC 1960 52 -7 12 -20 -17 2 
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Figure S1. Changes in stratus frequency for all hours. Absolute changes in hourly frequency 
of fog (blue bars) and upper 75% stratus (beige bars) during 1948–2014 for the airfield with the 
most complete cloud-height record in each sub-region. Whiskers indicate uncertainty caused by 
limited vertical resolution of cloud-base height measurements. Specifically, the whiskers bound 
the inner 95% of trends calculated from the 1000 alternate records for each hour. Filled bars 
indicate significant trends for hours when at least 95% of the 1000 alternate trends are significant 
(P<0.05) according to both Spearman’s Rho and Kendall’s Tau tests. Changes in stratus 
frequency in this plot are absolute, meaning not relative to an initial frequency value. 
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Table S4. Observed changes in stratus frequency at 07:00. Linear relativized changes in 
May–September stratus frequency at 07:00 for each sub-region and airfield. Δ in stratus 
frequency is calculated for all stratus clouds (cloud base ≤1000 m) in the column labeled “All” 
and within the four quartiles of height classes. Changes in stratus frequency are expressed 
relative to the initial regression value (e.g., a reduction of 0.25 from an initial stratus frequency 
regression value of 0.50 equals a -50% change). Asterisks indicate trends significant at 99% (**) 
and 95% (*) confidence levels according to both Spearman’s Rho and Kendall’s Tau tests. 
Trends are not marked as significant unless these significance criteria were met by at least 95% 
of the 1000 alternate time series. 
 

   
Δ (%) within each height class 

Name First year N All 
Fog 

0-25% 25-50% 50-75% 75-100% 
Santa Barbara 1948 67 -1 -8 19 13 -16 
SBA 1949 56 -3 5 23 -30 -29 
OXR 1953 58 8 -5 31 47 -8 
NTD 1948 67 -4 -9 -11 33 -14 
Los Angeles 1948 67 -18** -64** 26 80** 39 
VNY 1948 43 -25* -60* -11 49 23 
SMO 1973 42 -7 -24 -26 8 36 
LAX 1948 67 -14* -57** -8 21 54** 
BUR 1948 63 -14* -50** 17 22 25 
HHR 1973 42 -9 -43 16 37 6 
TOA 1973 42 -5 -16 -29 80** -9 
LGB 1948 67 -16* -59** 30 52** 23 
SLI 1948 55 -17** -60** 41* 60** -1 
FUL 1973 42 -12 -49** 32 31 -7 
SNA 1968 47 -10 -45** 5 48* 14 
ONT 1950 50 -26** -86** 83** 176** 18 
San Diego 1948 67 -7 -26* -3 15 26 
NFG 1967 48 -8 -17 -10 -9 28 
CLD 1973 42 0 -23 -4 12 66** 
NZY 1948 67 -6 -26* -2 17 6 
SAN 1948 67 -1 -20 15 8 13 
NKX 1948 66 -1 -13 -4 30 3 
MYF 1973 41 -20** -29 104** -76 6 
NRS 1948 63 -13* -41** -27 9 38 
SEE 1973 42 -13 -49** 11 50* -25 
Islands 1948 67 -2 63* -27 -42* -1 
NSI 1948 65 -2 44* -17 -40** -8 
NUC 1960 52 -2 22 -26 -14 16 
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Figure S2. Relationship between mean climatological stratus-cloud base height and mean 
climatological dew-point depression (DPD). Mean May–September 07:00 stratus-cloud base 
height versus mean May–September 07:00 DPD during 2000–2014. Each dot represents one of 
34 CSCA airfields that have at least 10 years of valid cloud-base height and DPD data during 
2000–2014. Dot colors indicate sub-regions (red: SB, blue: LA, green: SD, purple: Islands). 
Correlation significance value and 95% confidence bounds around the regression line account for 
uncertainties caused by spatial autocorrelation and measurement uncertainties for cloud base 
height and DPD. 
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Figure S3. Confounding effects caused by distance from coast. (a and b) Regressions of 
airfield-specific changes in daily minimum temperature during 1948–2014 (ΔTmin) and changes 
in the fraction of urban cover during 1950–2011 (ΔUrban) versus distance from coast expressed 
on a log scale. (c) Regression of the ΔTmin residuals versus the ΔUrban residuals after removal of 
the relationships with distance from coast shown in (a and b). Each dot represents one of 24 
CSCA airfields and dot colors indicate sub-region (red: SB, blue: LA, green: SD, purple: 
Islands). Bold black line: regression line. Correlation significance values and 95% confidence 
intervals bounding regression lines account for uncertainty due to spatial autocorrelation and 
measurement errors for Tmin and ΔUrban. 
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Figure S4. Relationships with 2011 urban cover. (a) Regression of airfield-specific changes in 
daily minimum temperature during 1948–2014 (ΔTmin) versus urban fraction in 2011 only. (b) 
As in (a), but after removal of relationships with distance from coast. (c and d) Changes in 
stratus-cloud base height per decade (ΔHeight) and fog frequency per decade (ΔFog) versus 
urban fraction in 2011. Each dot represents one of 24 CSCA airfields and dot colors indicate sub-
region (red: SB, blue: LA, green: SD, purple: Islands). Bold black lines: regression lines. 
Correlation significance values and 95% confidence intervals bounding regression lines account 
for uncertainty due to spatial autocorrelation and measurement errors in Tmin and cloud base 
height. 
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Figure S5. Secondary effects on frequency of low stratus. (a and b) Correlation between 
frequency of low stratus occurrence and mean vertical velocity in the lower troposphere (900 to 
600 hPa) before (a) and after (b) correlation with lower tropospheric stability (LTS) has been 
removed from stratus and vertical velocity time series. The LTS record represents mean May–
Sep LTS within the white box in the inset map of Figure 4f in the main article. Positive 
correlation indicates correlation with downward motion (subsidence). (a and b) represent 1979–
2014 and all correlations are shown, regardless of significance, to highlight the loss of 
correlation with subsidence near the CSCA after LTS is accounted for. (c) Scatter plot of 
residuals of CSCA low-stratus frequency versus residuals of CSCA cloud layer thickness (CLT; 
defined in article). Residuals are calculated by removing linear relationships with NKX inversion 
strength. (d) Scatter plot of measured versus estimated low stratus frequency, using NKX 
inversion strength and CLT residuals as predictors in a multiple regression. (c and d) represent 
1960–2014 and units are standard deviation anomalies from the 1960–2014 mean. Significance 
values and 95% confidence bounds around regression lines in (c and d) account for uncertainties 
due to temporal autocorrelation and measurement errors in cloud base height, NKX inversion 
strength, and CLT. Linear trends were removed from all time series prior to this analysis. 
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Figure S6. Observed and projected trends that would influence CSCA stratus frequency. 
May–September (a) reanalysis SST within 29–35°N, 117–123°W, (b) 850 hPa temperature for 
three radiosonde sites (NKX: San Diego-Miramar, NTD: Pt. Mugu, SNI: San Nicolas Island), (c) 
CMIP5 ensemble median (black line) and interquartile (grey area) projections of climate 
anomalies relative to the 1960–2005 mean within the geographic box 15–35°N, 110–120°W. The 
upper plot in (c) represents anomalies in lower tropospheric stability (LTS), defined in the article 
as potential temperature at 850 hPa minus potential temperature at 2 m above the surface.  

 


