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1
I N T R O D U C T I O N

Graphs have a wide variety of real-world applications. In the area of social networks, graphs
are composed of individuals and their relationships with others. Analysis of social networks
led to the discovery of the small-world phenomena, which is also known as six degrees of sep-
aration. The small-world property was first explored by Stanley Milgram in his small-world
experiment [1]. His experiment consisted of sending letters randomly with instructions to for-
ward the letter to a certain person. The letters were initially mailed to Omaha, Nebraska and
Wichita, Kansas, and the final recipients were in Boston. The letters instructed the random
recipients to forward the letter back to its intended recipient in Boston. If the random recipi-
ent did not know the final recipient’s address, they were instructed to forward it to someone
they thought would know the final recipient’s address. Many of the letters did not reach
their intended targets, but of the ones that did, the average number of forwards required was
between 5 and 6. In one experiment, 160 letters were mailed out, of the 24 that were received,
16 of them were correctly sent by a clothing merchant. The clothing merchant is an example
of a hub in a social network, where one person is connected to many more than an average
person.

With respect to biological networks, there are graphs that describe the interactions of pro-
teins within cells. These graphs are referred to as protein-protein-interaction (PPI) networks.
Comparing a diseased cellular network to a healthy one can provide insights for finding a
cure, and comparing the cellular networks of animals to those of their ancestors can help
explain the evolutionary process.

In the area of electric power systems, graphs can be used to model the structure of a grid,
and especially its resilience to blackouts. Through research in the field of power system pro-
tection, we know that certain structures are more resilient to certain kinds of attacks. Our
current power grid is less susceptible to random attacks, but the removal of key nodes can
result in large-scale disconnection and outages. The metrics to define those key nodes are
a substantial focus in related literature [2] [3] [4]. It should also be noted that, for exam-
ple, a complete transient electromagnetic simulation of the US power grid is an extremely
challenging computational task, therefore using reduced models that can respond to various
parameters is a more feasible approach [5].
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introduction

Figure 1: A graph representing a Facebook users’ social network [6].

5



2
G R A P H S

A graph is commonly defined as a set of vertices and edges. Graphs are commonly referred to
as networks, vertices are commonly referred to as nodes, and edges are commonly referred to
as links or arcs. Generally the application of a graph dictates the terminology used to describe
it. The degree of a vertex is the number of edges that are connected to it, or the number of
direct neighbors it has. Directed graphs have a direction associated with each edge. In this
paper, we will focus on undirected graphs. A small undirected graph with numbered vertices
can be seen below.

Figure 2: A small undirected graph with numbered vertices [7].

There are many different kinds of graphs (directed, undirected, regular, Hamiltonian) with
many different properties that define them. When comparing graphs, it is necessary to use
statistics in order to quantify differences and similarities between graphs. Some common
statistics used to compare graphs are degree distribution, clustering coefficient, and network
diameter.

The degree distribution of a graph counts the number of edges connected to each node,
ranging from smallest degre to largest degree [8]. A degree distribution plot is a histogram
where each bin contains the total number of nodes that have the number of edges indicated
by that bin. The degree distribution for our example graph can be seen in Figure 3.

The degree distribution is an important statistic because it can indicate whether or not a
graph is scale-free. We will detail later the significance of scale-free graphs. A scale-free graph
is a graph with many nodes that have a much higher degree than the average. Visually, the
difference between a scale-free graph and a non-scale-free graph is depicted in Figure 4.

Many real networks are best-modeled as scale-free networks [10] [11]. Social networks,
power grids, journal papers, airline routes, etc. tend to have a few hubs with many connect-
ing nodes [9]. However, power grids can differ significantly in some ways from scale-free
networks [12]. The degree distribution of a scale-free network is power-law, which, mathe-
matically, can be written as

P(k) ∼ k−a (1)

which gives the probability that a randomly-selected node has exactly k edges. For most
networks, the value of a is somewhere between two and three. A plot of a typical power-law
distribution is seen below.
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graphs

Figure 3: Degree distribution for our simple graph.

Figure 4: A random network (no hubs) and a scale-free network (three hubs). [9]

The clustering coefficient for a given node can be defined as the proportion of nodes that
are connected to it versus the greatest number of nodes that could be connected [14]. The
clustering coefficient for a given node can be computed by the fraction of possible triangles
that exist within the graph. Mathematically, this is given as

cu =
2T(u)

deg(u)(deg(u)− 1)
(2)

where T(u) is the number of triangles through node u and deg(u) is the degree of u. The
clustering coefficient for node 1 of our example graph (Figure 2) is 1, because each of its
neighbors, 2 and 5, are connected. The clustering coefficient for node 4 is 0, because none of
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graphs

Figure 5: An example power-law distribution. [13]

its neighbors, 3, 5, and 6, are connected. The global clustering coefficient is the mean of each
clustering coefficient of each node i,

Cglobal =
1
n

n

∑
i=1

Ci (3)

The global clustering coefficient is a measure of how clustered a graph is overall. For
example, the global clustering coefficient of a scale-free graph will be larger than that of a
truly random graph.

Network diameter is defined as the longest path possible between any two nodes u and v
in a network [15].

maxu,vd(u, v) (4)

Network diameter is related to the small-world property, which is the idea that any two
nodes in a graph can be reached in a small number of steps. The concept of six degrees
of separation, or that no two people are more than six friends apart, is an example of the
small-world property.

These statistics can be easily used to show differences between networks, however graphs
constructed to have the same statistics could actually differ greatly in their behavior, as we
have seen in the power systems literature. This is a motivation to apply more advanced
metrics in order to understand the statistics of graphs that represent electric power networks.
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2.1 graphlet degree distribution

2.1 graphlet degree distribution

In order to generalize the similarities and differences between power system graphs, we will
use a new metric that is introduced in the biological networks literature: the graphlet degree
distribution (GDD). The definition of GDD is similar to the regular degree distribution, as
in fact GDD is a generalized version of the degree distribution [16]. The simple degree
distribution measures the number of edges touching each node. On the other hand, the GDD
measures the number of subgraphs touching each node. A subgraph is defined here out of a
complete template graph composed by 5 nodes (can be larger). In this analysis we will use 29

graphlets, or orbits, as shown below.

Figure 6: The 29 graphlets used in our graphlet degree distribution comparison algorithm.
[16]

In order to make a meaningful comparison between two graphs based on their degree
distribution, the measure of graphlet degree distribution agreement (GDD-A) is used. The
following description is adapted from [16] .

For each orbit j, one needs to measure the j-th GDD,

dj
G(k) (5)

or the distribution of the number of nodes in G “touching” the corresponding graphlet at orbit
j k times. The simple degree distribution, for example, is the 0th GDD, or the distribution for
the 2-node graphlet. (2) is scaled by k in order to decrease the contribution of larger degrees
in a GDD.

Sj
G(k) =

dj
G(k)
k

(6)
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2.1 graphlet degree distribution

(3) is then normalized with respect to its total area,

T j
G =

∞

∑
k=1

Sj
G(k) (7)

giving

N j
G(k) =

Sj
G(k)

T j
G

(8)

The j-th GDD-agreement compares the j-th GDDs of two networks. For two networks G
and H and a particular orbit j, the “distance” D(G,H) between their normalized j-th GDDs is:

Dj(G, H) =
1√
2
(

∞

∑
k=1

[N j
G(k)− N j

H(k)]
2)

1
2 (9)

The distance is defined between 0 and 1, where 0 means that G and H have identical j-th
GDDs, and 1 means that their j-th GDDs are far away. Next, D(G,H) is reversed to obtain the
j-th GDD-agreement:

Aj(G, H) = 1− Dj(G, H), f orj ∈ {0, 1, . . . , 72} (10)

The total GDD-agreement between two networks G and H is the arithmetic or geometric
average of the j-th GDD-agreements over all j

Aarith(G, H) =
1
73

72

∑
j=0

Aj(G, H) (11)

or

Ageo(G, H) =

(
72

∏
j=0

Aj(G, H)

) 1
73

(12)

GDD-agreement is scaled between 0 and 1, where 1 means that two networks are identical
in terms of GDD-A.

In order to determine the structure of our graphs, we will compare them to various random
network models. The first one being used for comparison is the Erdos-Renyi (ER) model. In
the ER model, the goal is to create a “truly” random graph with an average degree between
2 and 3. An Erdos Renyi random network can be seen in Figure 4. A complete procedure for
generating Erdos Renyi random graphs can be found in: [17]. We also compare the power
system test case models with scale-free and minimum-distance graphs [18].
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2.2 results

2.2 results

As a main power systems test dataset, we are using a model for the Polish grid. Using the
Graphcrunch 2 software package, statistics such as degree distribution, average diameter, and
clustering coefficient can be computed. Most importantly, we also obtain the pairwise GDD-A
for the Polish and synthetic graphs.

Figure 7: The Polish power grid model for Winter 1999.

Figure 7 is a rendering of the Polish power grid model that represents a snapshot for the
Winter 1999-2000. The average degree is 2.422. The degree distribution is shown in Figure 8.

The degree distribution follows the exponential distribution seen in scale-free networks.
[18]

We are also considering a different snapshot of the Polish power grid corresponding to Sum-
mer 2004 during peak conditions. It is shown in Figure 9, along with its degree distribution
in Figure 10.

Not surprisingly, its degree distribution is similar to that of the Winter 1999 graph showing
that the structure is fundamentally conserved over time in power grid networks.

We are also using a randomly generated graph based on the minimum-distance algorithm,
which generates edges based on topological proximity to other nodes [18]. A new node is
more likely to connect to a nearby node rather than a far one. Graphs generated based on
this property exhibit a fat-tail property for their degree distribution as seen in Figures 11 and
12, also consistent with empirical power grid models.

11



2.2 results

Figure 8: The degree distribution for the Winter 1999 Poland power grid model.

In addition to the Polish grid, we are also analyzing certain portions of the US grid. An
overview of the division of Interconnections for the US (Eastern Interconnection, Western
Interconnection, Texas Interconnection) can be seen in Figure 13.

Finally, we present a table summarizing the key statistics for each graph:

Graph Average Degree Network
Diame-
ter

Average Clustering Coefficient

Poland Winter 1999 2.422 30 0.0122

Poland Summer 2004 2.555 30 0.015

Minimum-Distance 2.41 29 0.184

Eastern Interconnection 2.697 88 0.048

Texas Interconnection 2.592 34 0.024

Western Interconnection 2.695 68 0.065
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2.3 gdd-a analysis

Figure 9: The Polish power grid model for Summer 2004.

2.3 gdd-a analysis

Figure 14 illustrates a comparison of the two Polish graphs and a minimum-distance graph to
the synthetized networks (random ER, geometric, and scale-free graphs). Scale free models
consistently agree with the power system models. Random ER also display high agreement
with the power system models. Geometric graphs show a high variation in the GDD-A
coefficients with respect to the Poland test case.

Figure 15 summarizes a similar analysis with respect to the US power networks (Western
Interconnection and Texas Interconnection) and a similarly sized minimum-distance graph
where we kept the synthetic graphs with highest agreement (random ER, scale-free). Again,
scale-free graphs show the maximum agreement with all US network subgrids. The random
ER models show a similar pattern agreement but lower magnitudes for GDD-A.

As seen in figures 14 and 15, scale-free networks have the largest GDD-agreement with our
graphs. The main characteristic of scale-free networks is the presence of hub nodes. Removal
of hub nodes in a scale-free graph can result in disconnectivity between components of the
graph. Further removal of hub nodes would cause the remaining portions of the graph to
more closely resemble the Erdos Renyi random graph model.
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2.3 gdd-a analysis

Figure 10: The degree distribution for the Summer 2004 Poland power grid model.

Of particular interest is also the dissimilarity seen between Polish winter test case and the
geometric random graph model. This is because in power grids node distance is determined
by electrical distance instead of physical distance. For example, two buses can be in close
physical proximity but have a large phase shift. For future reference, it would be better to use
a model that accounts for both electrical distance and physical distance between nodes.
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2.3 gdd-a analysis

Figure 11: A minimum-distance graph.

Figure 12: Degree distribution for the minimum-distance graph.
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2.3 gdd-a analysis

Figure 13: US Power Grid Interconnections. [19]
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2.3 gdd-a analysis

Figure 14: Comparison of arithmetic GDD-A for the mindis and Polish graphs with Erdos-
Renyi, Geometric, and Scale-free random graphs.

Figure 15: Comparison of Western Interconnection, Texas Interconnection, and mindis with
Erdos Renyi and Scale-free random graphs.
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3

C L U S T E R I N G

Clustering is an unsupervised machine learning algorithm used in many fields, such as image
processing, data analytics, and bioinformatics. In this chapter we use an electrical distance
metric [18] to cluster the buses from the Polish winter test case.

With respect to power grids, clustering of buses can help with power system protection.
The electrical structure of a grid (voltage phase angle between generators) can be modeled as
a graph, with each node having a certain phase angle. The nodes can then be grouped into
clusters based on similarity of voltage phase angle [20].

For our experiment, we are using the Poland Winter 1999 test case. As before, it consists
of 2383 buses and 6 zones. For our purposes, we can think of each zone as an “original”
cluster according to the design of the system. A rendering of the Polish grid with the original
clusters based on zones can be seen in Figure 16.

Figure 16: Clustering of Polish Winter Test Case based on zones

Instead of clustering based on physical space, we assigned clusters based on electrical
distance. The first step of procedure is to convert the Ybus for the power system into an
electrical distance matrix. Next, find the smallest average electrical distance between nodes.
This resulted in only 3 clusters, instead of the original 6. This indicates that many nodes in
the grid are not distant from one another electrically speaking.
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clustering

Figure 17: Clustering of Polish Winter Test Case based on electrical distance.

Figure 18: Orginal cluster assignments histogram. Horizontal axis indicates cluster number,
vertical axis indicates number of nodes assigned to that cluster.
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clustering

Figure 19: Cluster assignments based on electrical distance. Horizontal axis indicates cluster
number, vertical axis indicates number of nodes assigned to that cluster.
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4

C O N C L U S I O N S

We compared synthetic graphs to real power networks according to a higher dimensional
metric that measures the degree distribution with respect to a set of graphlets, the Graphlet
Degree Distribution Agreement. We find that scale-free networks agree with several empirical
power system networks. Similarly, Erdos Renyi random graphs also suggest similarity in
terms of GDD-A. On the other hand, geometrical graphs did not consistently score high in
this regard.

We also test the cluster accuracy of the Polish grid for a metric of electrical distance. We
found that clustering based on electrical distance reduces the number of clusters with respect
to the original partition for this system (which was based on topological distance). This
indicates that there are many nodes in the network that are close in an electrical sense.
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