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Misclassification introduced by fallible measure-

ments affects the estimate of the proportion in a class as

well as the comparison of proportions in different classes.

In this thesis the magnitude of effects of misclassification

and the importance of misclassification error rates on

estimates of proportions and variances of these estimates

were examined. Studies on the values of the false negative

and false positive rates associated with medical screening

were reviewed to determine typical levels of error rates

occurring in practice. A lack of a consistent relation-

ship between these rates was found and the common assumption

of a small constant error rate in all groups being compared

was violated in almost all-studies.



An attempt was made to determine how robust the

usual statistical procedure for analyzing a given set of

data is against these classification errors. The study was

carried out for the case of two independent binomial samples

(very common in epidemiologic research) with the conditional

model (Fisher's exact test) considered in detail under

various error rates.

Substantial effects of misclassification on the

estimation of parameters as well as on hypothesis testing

showed the importance of estimating the values of the

misclassification rates in a particular study. The random-

ized response technique was used to estimate error rates and

the prevalence rate, , for a situation where the true classi-

fication can only be obtained directly from the respondent,

but the response has a stigmatizing nature. An unbiased

estimate of .rr was obtained along with an expression for the

variance of ii. Formulas for sample size determination for

fixed cost and fixed variance problems are given.
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CLASSIFICATION ERRORS IN THE ANALYSIS

OF FOURFOLD TABLES

CHAPTER I

INTRODUCTION, LITERATURE REVIEW, AND

OBJECTIVE OF THESIS

1.1 Introduction

The effects of misclassification of categorical

responses have been considered by investigators in many

different fields. The effects of classification errors in

sample surveys was discussed by Hansen, Hurwitz and Bershad

(1961) and Madow (1965). Dunn and Buell (1950) considered

classification errors in medical screening tests. While

the methods used to study classification errors range

from analyses in sociology (Sutcliffe [1965J), to cost

utility methods (Berkson [19471), to operations research

techniques (Blumberg [1957)), the problem reduces to that

of somehow evaluating the suspected extent of the errors

in the data and then determining necessary adjustments

to make in the analyses. The diverse models available for

the study of errors of measurement have been discussed in

a review paper by Cochran (1968). Attention was given to

the type of mathematical model used to represent errors of



2

measurements, the extent to which standard techniques of

analysis become erroneous and misleading if certain types

of errors are present, and the techniques that are available

for the numerical study of errors of measurements.

1.2 Misclassification in the Fourfold Table- -

Errors in One Direction

(a) Bross Model

Bross (1954) examined misclassification for the case

of the 2 x 2 table with one axis subject to errors of

measurement. The model assumed that a fallible classifier

is used to separate each of two independent samples into

two groups. Two types of error, false negative and false

positive, are ideally obtained from an evaluation study in

which the fallible measurement is compared to a standard

of "truth" as defined by true measurement. In this situa

tion, we observe the following:

In sample i, we have

True measure

Fallible measure

a. c.
1 1

b. d.
1 1

a. + c.

b. + d.
1 1

ai bi ci + di n.
1

ci
Then, the false negative rate,ei =E ( a. + ci ), is the proba-

bility of a true positive being incorrectly classified
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negative in the ith sample and the false positive rate, =

E(
bi

i
,is the probability of a true negative being incor-

rectly classified positive in the ith sample.

Let 7. = Expected proportion, in sample i, of positive

results on the factor if no misclassification were

present (may be considered as the prevalence rate

in the epidemiologic situation)

Pi = Expected proportion, in sample i, of positive

results on the factor under fallible classification.

If in sample i of size ni, xi individuals screen positive,
x;

n
the ratio -= is used to estimate the true proportion of

positive results in the ith sample. Then under the assump-

tion that and= e
2'

and 41 = 2
,

1

--x

2

) P1 P2 (71 72) (1ni n2

whereP.=-Tr. (1 - + (1 - 7
i

)

i
and

x. = a- + b1, i = 1,2.

The significance level of the Chi-square test that =
2

remains unchanged, but the power is reduced (Cochran [14]).

(b) Limitations

The limitations of this approach have been pointed

out by Rubin, Rosenbaum and Cobb (1956) who studied this



scheme in order to tabulate the ratio of sample sizes

required to regain the power of the no-misclassification

case using cost considerations versus screening interviews.

They pointed out that:

1. 6 and ¢ should both be small.

2. ¢ is more important in the determination of

sample size in the ranges of prevalences found in disease

studies.

3. e and ¢ are usually unknown and must be

estimated.

4. Assuming the equality of error rates in the two

samples is unrealistic. This is also noted by Cochran (14),

Diamond and Lilienfeld (17), Newel (41) , Feldman (21) and

Keys and Kihlberg (29).

Walsh (1963) exploits this model further in his

comparison of the null hypothesis 71 = 72 with the alterna-

tive hypothesis 7
1

7
2

rather than Bross' alternative of

P
1

P
2'

The conclusion reached is that by using two

samples of sizes kn1 and kn2 when misclassification is

present, instead of samples of sizes nl and n2 without

misclassification, the power of the one-sided X
2

test

remains the same and the efficiency is

1 (1efl 2
7(1-7)

k ((1-0q) 7+(Pl[(1e-4) (1-70+8]
for IT/ = '72 --47,

independent of n1 and n2 with e and ¢ small.



5

The general result for this model that misclassifi-

cation damps the observed difference between the two

proportions has been contradicted by Diamond and Lilienfeld

(17) who claim that an observed difference between

proportions and a relative risk of significant magnitude

can result in whole or in part from misclassification

errors. In essence they analyze their data under two

alternative assumptions:

1. Prob. [true positive/stated positive] and Prob.

[true negative/stated negative] are equal in the two

groups being compared. This leads to differences in

proportions and relative risks that are greater than or

equal to the true differences.

2. Prob.[stated positive/true positive] = 1 -

and Prob.[stated negative/true negative] = 1 - q) are equal

for cases and controls. Buell and Dunn (1964) point out

that only this later assumption is reasonable and is

indeed the Bross assumption. The inconsistent finding

of Diamond and Lilienfeld is the result of confusion of

the definitions of false positive and false negative

(Newell [41]). That this contradiction should occur in

this model is a consequence of the lack of independence

between Prob.[true positive/stated positive] and the

disease prevalence which may differ from one study to

another. Diamond and Lilienfeld reply to this criticism
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by noting that unless the relationship between true and

observed status is determined separately for cases and

controls, there is no way to ascertain which assumption is

appropriate.

Further clarification of the issues raised has

been attempted by Keys and Kihlberg (1963) who point out

that the problems in logic are caused by estimating the

relative prevalence of an attribute in one population group

as compared with another population group when the error

rates are not necessarily equal in the two groups (the

same criticism noted above for Bross's model). In

particular these authors suggest that instead of examining

the relative risk as Diamond and Lilienfeld do, one should
P
i

compare 1
i
with P

i
by considering the rate -- for each of

i

two groups. Or they advise the comparison of the relative

risk with misclassification to that without misclassifica-

tion by means of the ratio of the two risks.

1.3 One Direction Misclassification in the

r x c Table

The model considered so far for the 2 x 2 table

with errors of measurement along one axis has been general-

ized to the 2 x c table by Mote and Anderson (1965).

If there is no misclassification, the usual test

criterion is the X
2

-1.
The rejection of the null

c
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hypothesis on the P's is equivalent to rejection of the

null hypothesis on the 71s without misclassification.

Mote and Anderson extend their results to two-way

contingency tables with one-way errors (known) only in

the jth categories for the following situations:

i) stratified sampling

Let, r = number of independent samples

n
i
= number of observations in the ith sample

c = number of categories j = 1,2,...c

8...IJJ ,= probability of the observation in cell (i,j)

being misclassified into cell (i,j');
33

=81..., 1.

The e...I3J , are independent of i and j' and therefore equal

for all i samples. 7..
ij ij

and p.. are the expected probabil-

ities of being observed in cell (ij) without and with

misclassification.

For the null hypothesis that Trij = 7j, the same X2

criterion is used as if there were no errors of measure-

ment. The power is reduced.

ii) random sampling

If N individuals are taken at random from one population

and classified with respect to two variables with errors

in only one of the variables, the test procedure is the

same as that given above to test independence when errors

are assumed known.



8

1.4 Misclassification in Two Directions

in the 2 x 2 Table Under Simplifying

Assumptions

We again consider the fourfold table with errors

of measurement now permitted in both variables. This situa-

tion has been examined by Rogot (1961) who compared morbid-

ity rates in two samples with varying degrees of misclassi-

fication. His results support those of Bross in that the

power of the test to detect differences in the two propor-

tions is reduced. That the difference between the two

proportions or prevalences may be either under or overesti-

mated when errors are present has been shown by Keys and

Kihlberg (1963), Gullen et al. (1968) and others. These

latter authors provide a two-directional analogue to the

Bross result. Under the assumption of independence between

factor and disease, P/ - P2 = ( Tr/ - Tr2) k,where k is a

function of the four misclassification rates and the

probability of being in the disease or disease-free groups.

Under the assumption of equality of error rates for each

of the categories in the two directions, they show that the

difference between the two proportions is always damped,

the significance level of the test remains unchanged, and

power is lost.
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1.5 Two-Directional Misclassification in

the r x c Table

The general theoretical framework for errors of

misclassification in the r x c contingency has been given

by Assakul and Proctor (1967). When the joint density of

the cells is multinomial, X
(r-1)(c-1)

is the traditional

significance test used. If we let 0 = (es4kj) be the

error matrix, nonsingular and known, then two situations

may be considered, where esikj is the probability of an

individual truly in cell (s,k) being classified in (i,j).

(i) independent errors

The first case is that of independent errors and the

hypothesis being tested is H0 : Trij 7i . 7j

As before, the appropriate test of H0 is equivalent to

a test of Ho : Pij = Pi . Pj , with the result that the

test statistic and significance level remain unchanged.

The ratio of the noncentrality parameter with misclassifi-

cation to that without misclassification is used to provide

a measure of the effects of errors on the power of the X
2

test.

(ii) non-independent errors

For the case of non-independent errors, the significance

level of the X2 increases and may be found as the tail

of a non-central X
2

. If 0 is known, the Tr..
13

may be
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expressed as functions of r x c 2 parameters which are

estimated by minimum X 2
method. If some of the e's are

unknown, they may then be estimated.

Assakul and Proctor point out that the effects of

misclassification become more serious as the significance

level ( a) decreases.

1.6 Alternative Model for Errors of

Measurement in 2 x 2 Tables

Sample Survey Approach

Using a regression framework, the Census Bureau

developed a model for incorporating sampling variability

from repeated measurements into the study of misclassifi-

cation of qualitative data. The basic model developed by

Hansen, Hurwitz and Bershad (1961) considers the case of

continuous data with the mean square error taken as the

appropriate measure of variability rather than the

standard error. When this model is reinterpreted for

binomial data, the results are those of Bross (Cochran

[14]). The error variance and the index of inconsistency

were given.

The advantages of this model are its generality,

since no assumptions are made about the distributions of

the parameters, and the use of MSE (Koch [1969]). This

model has been further considered by Fellegi (1964) who
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uses this approach to include interviewer effects combining

re-enumeration and interpenetrating sample methods and is

therefore able to estimate more parameters than either

method alone.

For the effects of errors of measurement in quali-

tative data a model that involves no assumptions about

the distribution of measure of association has been postu-

lated by Koch (1969). The methods involve decomposing the

mean square errors of measures of association into bias,

response variance, and sampling variance with the index of

inconsistency response variance
response variance + sampling variance

1.7 Objectives of the Thesis

As we can see from the literature review given

above, many aspects of the problem of misclassification

are still open. We have in this thesis

(a) examined the effects of misclassification on

estimates of different levels of prevalence rates and

considered the relative importance of false positive

and false negative rates;

(b) studied the values of error rates actually

occurring in research and investigated the validity of

the assumptions made about these error parameters in the

analysis of data with misclassification;

(c) determined how robust the usual statistical

procedure for analyzing a given set of data is against
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these classification errors. (This study was carried out

for the case of two independent binomial samples (very

common in epidemiologic research) with the conditional

model (Fisher's exact test) considered in detail under

various error assumptions. The values of the error param-

eters studied were chosen from levels found in Chapter 2

of this thesis; levels of prevalence were selected from

values for diseases in which screening is of concern.); and

(d) estimated binomial proportions from data

subject to misclassification using the randomized response

technique. This problem was considered as a special type

of misclassification where the true classification can only

be obtained directly from the respondent, but the response

has a stigmatizing nature. The maximum likelihood estima-

tion procedure was used and an expression for the variance

of the estimator is given. Sample size determination was

also considered for fixed cost and for fixed variance.
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CHAPTER II

FALSE NEGATIVE AND FALSE POSITIVE RATES IN MEDICAL RESEARCH

2.1 Introduction

Whenever some fallible measurement or screening test

is used in place of a true measurement in epidemiologic

research, the misclassification introduced by the fallible

measurement affects the estimates of disease prevalence as

well as comparisons of prevalence rates in different groups.

The extent to which these measures are affected is a func-

tion of the true prevalence rate, Tr, the false negative

rate, 0, and the false positive rate, q). A starting point

in the study of misclassification and its effects would be

(a) to examine the effects of different levels of error

rates on the estimate of 7; (b) to study the values of error

rates actually occurring in research and to investigate the

validity of assumptions made about the error parameters in

the analysis of data subject to misclassification.

We first present some straightforward calculations

to show the effect of eand ¢ on the observed prevalence

rate, x/n, and on the variance of x/n. Then we have a report

on a few representative illustrations of screening situa-

tions (diabetes, heart disease, etc.) found in the literature.

For each of the illustrated examples we have demonstrated
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actual values of a and cp occurring and the validity of

assumptions that may be made about them.

2.2 Magnitude of Effects of Misclassification

on Estimation of 7

The effects of misclassification on estimates of IT

were examined for different combinations of 4r, 9, and cp

with the hope of clarifying the extent to which misclassifi-

cation affects prevalence estimates. This is done for

the values of 7 ranging from .05 to .95 and values of 8 and

4 from 0.00 to 1.00, i.e. from perfect classification to

complete misclassification.

For 7= .05, .25 .50 .95, the effects of misclassifi-

cation on estimation of 7 for different values of a and 4)

are given below. (For other values of 7 see Appendix B,

Tables 1- 9.)

The relative importance of 8 and q5 depends very

much on the magnitude of 7, the true prevalence of the

disease. When 7 is small (i.e. a rare disease), the false

positive rate, 4), has a very marked effect on P, which is

the expected prevalence rate based on the results of

fallible measurements. Even a small false positive rate

may lead to a severe over-estimate of the true prevalence.

For example when 7 = .05 (Table 2-a) P is usually

greaterthanTr for all false positive rates greater than

.05. There is a linear increase in the amount of



Table 2-a
Expected Value of Observed Proportion for Different Error Rates, When Ti = .05

4)

.000 .025

E( -1xl)

.05

= rr ( 1

.10

0 ) (

= .05

0

.25

1 rr )

.45 .50 .75 1.00

.00 .0500 .0480 .0475 .0450 .0375 .0275 .0250 .0125 .0000

.01 .0595 .0583 .0570 .0545 .0470 .0370 .0345 .0220 .0095

.02 .0690 .0678 .0665 .0640 .0565 .0465 .0440 .0315 .0190

.05 .0975 .0963 .0950 .0925 .0850 .0750 .0725 .0600 .0475

.10 .1450 .1438 .1425 .1400 .1325 .1225 .1200 .1075 .0950

.15 .1925 .1913 .1900 .1875 .1800 .1700 .1675 .1550 .1425

.20 .2400 .2388 .2375 .2350 .2275 .2175 .2150 .2025 .1900

.30 .3350 .3338 .3325 .3300 .3225 .3125 .3100 .2975 .2850

.40 .4300 .4288 .4275 .4250 .4175 .4075 .4050 .3925 .3800

.50 .5250 .5238 .5200 .5200 .5125 .5025 .5000 .4875 .4750

.75 .7625 .7613 .7575 .7575 .7500 .7400 .7375 .7250 .7125

.90 .9050 .9038 .9025 .9000 .8925 .8825 .8800 .8675 .8550
1.00 1.0000 .9988 .9975 .9750 .9825 .9775 .9750 .9625 .9500



Table 2-b
Variance of Observed Proportion for Different Error Rates When If = .05

.00

Var(x/n)

.025

= -

(1 TO
[(1

2
0 (1) )

ur = .05
0

.25

0(1+ ) gl (P)

1.00

n

.05

n - 10

.10

1

.45 .50 .75

.00 .004750 .004642 .004524 .004297 .003609 002674 .002437 .001234 .000000

.01 .005596 .005490 .005375 .005153 .004479 003569 .003331 .002152 .000941

.02 .006426 .006320 .006208 .005990 .005331 004434 .004206 .003051 .001864

.05 .008799 .008703 .008597 .008394 .007777 006938 .006724 .005640 .004524

.10 .012397 .012312 .012219 .012040 .011494 010749 .010560 .009594 .008597

.15 .018240 .015624 .015390 .015234 .014760 014110 .013944 .013098 .012219

.20 .020484 .018177 .018109 .017977 .017574 017019 .016877 .016149 .015390

.30 .022277 .022238 .022194 .022110 .021849 021484 .021390 .020899 .020377

.40 .024510 .024493 .024474 .024437 .024319 024144 .024097 .023844 .023560

.50 .024937 .024943 .024949 .024960 .024984 .024999 .025000 .024984 .024930

.75 .018109 .018172 .018240 .018369 .018750 019240 .019359 .019938 .020484

.90 .008598 .008695 .008799 .009000 .009594 010369 .010560 .011494 .012397
1.00 .000000 .000120 .000249 .000497 .001234 002199 .002437 .003609 .004750



Table 2-c
Expected Value of Observed Proportion for Different Error Rates When ¶

E (211-c)= n (1 0) + (1 ) (I)

= .25
0

.00 .025 .05 .10 .25 .45 .50 .75

= .25

1.00

.00 .2500 .2438 .2375 .2250 .1875 .1375 .1250 .0625 .0000

.01 .2575 .2513 .2450 .2325 .1950 .1450 .1325 .0700 .0075

.02 .2650 .2588 .2525 .2400 .2025 .1525 .1400 .0775 .0150

.05 .2875 .2813 .2750 .2625 .2250 .1750 .1625 .1600 .0375

.10 .3250 .3188 .3125 .3000 .2625 .2125 .2000 .1375 .0750

.15 .3625 .3563 .3500 .3375 .3000 .2500 .2375 .1750 .1125

.20 .4000 .3938 .3875 .3750 .3375 .2875 .2750 .2125 .1500

.30 .4750 .4688 .4625 .4500 .4125 .3625 .3500 .2875 .2250

.40 .5500 .5438 .5375 .5250 .4875 .4375 .4250 .3625 .3000

.50 .6250 .6188 .6125 .6000 .5625 .5125 .5000 .4375 .3750

.75 .8125 .8063 .8000 .7875 .7500 .7000 .5000 .6250 .5625

.90 .9250 .9188 .9125 .9000 .8625 .8125 .8000 .7375 .6750
1.00 1.0000 .9938 .9875 .9750 .9375 .8875 .8750 .8125 .7500



Table 2-d
Variance of Observed Proportion for Different Error Rates When T = .25

Var(x/n) = "1
n

" [(1 o 02 + "1 + 4)(1 " ]
1 "ff

.00 .025 .05

= .25

.10

n = 10
0

.25 .45 .50 .75 1.00

.00 .018750 .018436 .018109 .017437 .015234 .011859 .010937 .005859 .000000

.01 .019119 .018815 .018497 .017844 .015697 .012398 .011494 .006510 .000744

.02 .019477 .019182 .018874 .018240 .016149 .012924 .012040 .007149 .001478

.05 .020484 .020217 .019937 .019359 .017437 .014438 .013609 .009000 .003609

.10 .021937 .021717 .021484 .021000 .019359 .016734 .016000 .011859 .006937

.15 .023109 .022935 .022750 .022359 .021000 .018750 .018109 .014438 .009980

.20 .024000 .023872 .023734 .023437 .022359 .020484 .019937 .016734 .012750

.30 .024937 .024903 .024859 .024750 .024234 .023109 .022750 .020484 .017430

.40 .024750 .024808 .024859 .024937 .024984 .024609 .024437 .023109 .021000

.50 .023438 .023589 .023734 .024000 .024609 .024984 .025000 .024609 .023438

.75 .015234 .015618 .016000 .016734 .018750 .021000 .021084 .023438 .024609

.90 .006938 .007461 .007984 .009000 .011859 .011859 .016000 .019359 .021937
1.00 .000000 .000616 .001234 .002438 .005859 .007984 .010937 .015234 .018750



Table 2-e

(1),

Expected Value of Observed Proportion

E(-(-) = (1

=
0

.00 .025 .05 .10

for Different Error Rates When lr

0) + (1 - q)

.50

.25 .45 .50 .75

= .50

1.00

.00 .5000 .4875 .4750 .4500 .3750 .2750 .2500 .1250 .0000

.01 .5050 .4925 .4800 .4550 .3800 .2800 .2550 .1300 .0050

.02 .5100 .4975 .4850 .4600 .3850 .2850 .2600 .1350 .0100

.05 .5250 .5125 .5000 .4750 .4000 .3000 .2750 .1500 .0250

.10 .5500 .5375 .5250 .5000 .4250 .3250 .3000 .1750 .0500

.15 .5750 .5625 .5500 .5250 .4500 .3500 .3250 .2000 .0750

.20 .6000 .5875 .5750 .5500 .4750 .3750 .3500 .2250 .1000

.30 .6500 .6375 .6250 .6000 .5250 .4250 .4000 .2750 .1500

.40 .7000 .6865 .6750 .6500 .5750 .4750 .4500 .3250 .2000

.50 .7500 .7375 .7250 .7000 .6250 .5250 .5000 .3750 .2500

.75 .8750 .8625 .8500 .8250 .7500 .6500 .6250 .5000 .3750

.90 .9500 .9375 .9250 .9000 .8250 .7250 .7000 .5750 .4500
1.00 1.0000 .9875 .9750 .9500 .8750 .7750 .7500 .6250 .5000



Table 2-f
Variance of Observed Proportion for Different Error Rates When If = .50

4 .00

Var(x/n)

.025

(1-1T) 1(1 -

IF = .50

.10

2 + 6(1 ) 4) (1

.75 1.00

=

.05

(p)
1

n = 10

.25

Tr

.45 .50

.00 .025000 .024984 .024937 .024750 .023438 .019938 .018750 .010938 .000000

.01 .024997 .024994 .024960 .024797 .023560 .020160 .018997 .011310 .000497

.02 .024990 .024999 .024977 .024840 .023677 .020378 .019240 .011678 .000990

.05 .024937 .024986 .025000 .024937 .024000 .021000 .019937 .012750 .002437

.10 .024700 .024859 .024937 .025000 .024437 .021938 .021000 .014438 .006750

.15 .026437 .024609 .024750 .024937 .024750 .022750 .021937 .016000 .006937

.20 .024000 .024234 .020437 .020750 .024937 .023438 .022750 .017438 .009000

.30 .022750 .023109 .023438 .024000 .024937 .024438 .024000 .019938 .012750

.40 .021000 .021484 .021937 .022750 .024437 .024938 .024750 .021938 .016000

.50 .018750 .019359 .019937 .021000 .023638 .024938 .025000 .023438 .018750

.75 .010937 .011859 .012750 .014437 .018750 .022750 .023438 .025000 .023438

.90 .004750 .005859 .006937 .009000 .014437 .019938 .021000 .024438 .024750
1.00 .000000 .001234 .002437 .004750 .010937 .017438 .018750 .023438 .025000



Table 2-g
Expected Value of Observed Proportion for Different Error Rates When if = .95

.00 .025 .05

71-(1

.10

- 0) + (1

71- = .95
0

.25

Tr )

.45 .50 .75 1.00

.00 .9500 .9263 .9025 .8550 .7125 .5225 .4750 .2375 .0000

.01 .9505 .9268 .9030 .8555 .7130 .5230 .4755 .2380 .0005

.02 .9510 .9273 .9035 .8560 .7135 .5235 .4760 .2385 .0010

.05 .9525 .9288 .9050 .8575 .7150 .5250 .4775 .2400 .0025

.00 .9550 .9313 .9075 .8600 .7175 .5275 .4800 .2425 .0050

.15 .9575 .9338 .9100 .8625 .7200 .5300 .4825 .2450 .0075

.20 .9600 .9363 .9125 .8650 .7225 .5325 .4850 .2475 .0100

.30 .9650 .9413 .9175 .8700 .7275 .5375 .4900 .2525 .0150

.40 .9700 .9463 .9225 .8750 .7325 .5425 .4950 .2575 .0200

.50 .9750 .9513 .9275 .8800 .7375 .5475 .5000 .2625 .0250

.75 .9875 .9638 .9400 .8925 .7500 .5600 .5125 .2750 .0375

.90 .9950 .9713 .9475 .9000 .7575 .5675 .5200 .2825 .0450

1.00 1.0000 .9763 .9525 .9050 .7625 .5725 .5250 .2875 .0500



Table 2-h
Variance of Observed Proportion for Different Proportion, When IT = .95

Tr(1 - Tr)
())2

0(1 0) 4)(1 )

n
Var(x/n) [(1 6 (1)) +

1 it ii

.00 .025 .05

= .95

.10

n = 10

8
.25 .45 .50 .75 1.00

.00 .004750 .006827 .008799 .012397 .020484 .024949 .024937 .018109 .00000

.01 .004705 .006784 .008759 .012362 .020463 .024947 .024940 .018136 .00005

.02 .004660 .006741 .008719 .012326 .020442 .024945 .024942 .018162 .00010

.05 .004524 .006613 .008598 .012219 .020377 .024938 .024949 .018240 .00024

.10 .004298 .006398 .008394 .012040 .020269 .024924 .024960 .018369 .00049

.15 .004069 .006182 .008190 .011859 .020160 .024910 .025969 .018499 .00074

.20 .003840 .005964 .007984 .011678 .020049 .024894 .024977 .018624 .00099

.30 .003378 .005525 .007569 .011310 .019824 .024859 .024990 .018874 .00147

.40 .002910 .005082 .007149 .010938 .019594 .024819 .024977 .019119 .00196

.50 .002438 .004633 .006724 .010560 .019359 .024774 .025000 .019359 .00243

.75 .001234 .003489 .005640 .009594 .018750 .024640 .024984 .019938 .00360

.90 .000498 .002788 .004974 .009000 .018369 .024544 .024960 .020269 .00429
1.00 .000000 .002314 .004524 .008598 .018109 .024474 .024937 .020484 .00475



bias as 4 increases. We note from the model given

23

above that P can be considered as a linear function of q)

with slope (1 - 7) and intercept 7(1 8). On the other

hand, when 7 is small, the false negative rate, e, has

little effect on the estimate of 7. As the prevalence

of the disease (7) increases, the false positive rate has a

decreasing effect on P and e becomes more important- -

a trend that may be clearly seen from Appendix B, Tables

1- 9. When 7 is large (e.g., .95) (Table 2-g) the estimate

of P based on the screening test (fallible) is generally an

underestimate of the true prevalence for all false negative

rates greater than .05. The estimate is now relatively

unaffected by the false positive rate. The same conclusion

can be drawn on the effects of error rates on the variance

of 7 (see tables 2-b, 2-d, 2-f and 2-1).

In practice, one should expect small prevalence to

be overestimated with the degree of bias being determined

mainly by the false positive rate. Large prevalence rates

tend to be underestimated with the false negative rate

influencing the extent. For prevalence in the neighborhood

of .50, both of the error rates are important and the true

prevalence may be underestimated, overestimated or unbiased

(Table 2-e). It is apparent that the estimates of 7 whenever

even small amounts of misclassification are present can be

strikingly different from the true 7. Thus, there is a

need for knowledge about the values of 8 and q) which
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actually occur in order to ascertain reasonable ways to

adjust for the presence of errors in a particular study.

The statistical models given by Bross (6), Mote and Anderson

(38), Assakul (1965), and Assakul and Proctor (1967) for

handling misclassification generally assume that the

parameters are known. But this is generally not the case.

Frequently, the investigator makes no effort to evaluate

the procedures used to classify subjects in a study. He

may have no "truth" against which to compare his procedure.

In other instances one error rate may be known or found,

but the other error rate remains unknown. We can see this

in the following examples from medical literature.

Cooly et al. (1960) studied the barium enema as a

diagnostic technique for cancer of the colon and found a

false negative rate of .10 but no false positive rate.

(This is an instance where surgery provides confirmation

of the test, but is obviously not performed unless there is

other clinical evidence of disease.) Mateer et al. (1943)

evaluate liver function tests with respect to false negative

rates but not false positive rates because of the difficul--

ties in dealing with young, healthy subjects. Sosman (1950)

reports false positive rates but no false negative rates

for gastrointestinal radiologic techniques because no

negatives on x-ray are subjected to surgery. Thus it is

clear that it is not always easy to find both the false

positive and false negative rates associated with a
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screening procedure. There is need to make some effort to

have the knowledge of both error rates in a particular

study. Often this is done by repeated readings of x-rays

or repeated use of the screening tests, although at greatly

increased costs.

2.3 False Negative and False Positive Rates

As Found in Literature for Various Diseases

The literature was reviewed in detail in order to

determine the levels of the error parameters and any possi-

ble general trends in these levels, and check the validity

of the assumptions usually 'made about the misclassification

parameters. These assumptions include:

(i) eandcp are constant and small in all groups

being compared (6, 26, 43).

(ii) 8 and q) are inversely related and this relation-

ship is the same in all subgroups under study (1, 2, 38).

(iii) Equality of error rates in two groups (6, 14,

17, 21, 29, 41) .

The data found in the medical literature reflect

a variety of procedures used as screening tests. These

methods include the simplest tests based on a single dichot-

omous measure, those tests based on combinations of dichoto-

mous measures and those based on one or more continuous

measurements. Continuous data in a screening curve situa-

tion in which the cutoff point for dividing the sample into
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the well and the ill can be chosen subjectively by the

investigator so that the efficiency of the test is opti-

mized. There are situations in which several dichotomous

tests are used singly or in combinations in order to vary

the stringency of the criteria for calling an individual

positive on screening. Repeated independent observations

of the same test may be similar to the situation of varying

the criterion in a screening test since each reader is

applying a slightly different definition for calling an

individual positive. Also, the same test may be used at

different levels in different studies and if the data from

different sources are comparable, a screening curve might

be used to determine the best level of the test in general.

2.4 Screening Curves

(a) Diabetes

We shall first consider an example of a screening

curve for diabetes. The presence of diabetes may be detected

using blood-sugar level (somogyi-Nelson method) compared to

the definitive diagnostic procedure which is a complete

clinical examination and glucose tolerance test t32).

Since this blood sugar test is available at several levels

and evaluation is possible at each, a screening curve can

be obtained. The "best" cutoff level chosen by these
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investigators (for the purposes of dividing the population

into two groups) is 130 mg/100 ml, resulting in a false

negative rate, e, of 0.35 and a false positive rate

of .02.

Table 2-i below gives the false negative and false

positive rates due to different blood sugar levels consid-

ered as positive.

Diabetes is one of the diseases for which alterna-

tive methods of screening are available. Fasting blood

tests (Wilkerson-Heftman with larger e and cp than Somogyi-

Nelson), Fasting urine tests (copper reduction, bismuth

reduction both of which have larger error rates than the

blood tests e>.6 and 40>.07) and combinations of these tests

(Kurlander [32]). If all four tests are combined, ereduces

to .286 and 4) increases to .190 when the definition of

positive on screening is positive on any one of the four

tests.

The intervaneous tolbutamide test has also been

evaluated against the Somogyi-Nelson method blood sugar

test rather than the standard glucose tolerance test.

e was found <.15 and y5<.06. Other tests have been

dichotomized for the purpose of distinguishing diabetics

and non-diabetics with false negative rates smaller than

the false positive rates (0 <.15, c<.33) (39) . This
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Table 2-i

Screening for Diabetes

Blood Sugar Level
Somogyi-Nelson Method

mq/100 ml

80 .00 .59

90 .04 .33

100 .13 .18

110 .26 .09

120 .30 .03

130 .35 .02

140 .44 .01

150 .48 .01

160 .61 .00

170 .70 .00

180 .78 .00

190 .78 .00

situation is the reverse of that found for the diabetes

screening tests currently in use. It is a reflection of the

general trend toward refinement of techniques as the result

of increased knowledge about the nature of the disease and

technological advancements which serve to reduce the error

rates. Table 2-j gives the false negative and false

positive rates due to different screening procedures.

(b) Heart Disease and Hypertension

A similar situation is observed for the case of

screening for hypertension and hypertensive heart disease

using blood pressure levels (31) compared to clinical

examination. Table 2-k gives 8 and (0 values for various



Table 2-j

Diabetes Screening

Test

Urine
Copper reduction (Clinitest)
Bismuth reduction (Gulatest)

Blood
Wilkerson-Heftman
Somogyi-Nelson '130 mg/100 ml

Positive on 1 test or
negative on all 4 tests

Intravenous Tolbutamide Response
Test evaluated against the
Somogyi-Nelson blood sugar

20-minute test
Cutoff at 80% fasting blood
sugar

Cutoff at 85% fasting blood
sugar

30-minute test
Cutoff at 70% fasting blood
sugar
Cutoff at 75% fasting blood
sugar

1 dose oral standard (cutoff
at 120 mg/cc)

2 dose one-hour test
a) Exton-Rose
b) Gould-Altschuler modification

Moyer-Womack use of Exton-
Rose

Moyer-Womack use of modifica-
tion

1-hr. oral glucose tolerance test
100 gm. urine glucose vs. 50 gm.

29

ci)
Literature

.667 .150 Kurlander

.619 .071 et al. (31)

.429 .031

.333 .022

.286 .190

Unger (50)

.05 .06

.04 .04

.10 .05

.15 .03

.346 .010 Moyer and
Womack (39)

.00 .363

.03 .00

.08 .330

.15 .35

.00 .15 National

.375 .350 Health
Survey (40b)
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Table 2-k

Screening for Heart Disease

Blood Pressure Level 8 4

180/100 .39 .09

160/100 .27 .10

160/96 .22 .14

150/100 .22 .14

150/96 .19 .18

160/90 .15 .24

150/90 .14 .26

140/90 .09 .29

cutoff points. Both 8 and 4, cover only narrow ranges of

the values with e<.39 and <.29. The best choice for

defining the well and the ill was a reading of 150 mm Hg

or over systolic or 90 mm Hg or over diastolic to call an

individual positive. It can be seen that the e and levels

are not small even for the best choice. The relationship

between the parameters is reciprocal.

Various techniques have been employed to screen

for hypertension and hypertensive heart disease. These

methods range from medical histories to chest x-rays, blood

pressure levels (discussed above) and electrocardiograms

used individually and in combinations. The standard use

for comparison is the clinical examination. The National

Health Survey (40a) used medical histories as a screen and
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found the false negative rate a = .620, the false positive

rate q) = .086 which implies that few people would say they

do have heart disease when in fact they do not, but that

many do not reveal that they are ill or do not know that

they are ill. Kurlander et al. (31) found 6 = .284, q) =

.528 for physician histories and e = .580 P = .324 for

clerk histories. There is little consistency between

physician histories and clerk histories in the same study

and between different studies. The National Health Survey

(40a) and Wylie (1962) data reveal the same trend of e and <p

unlike the Kurander et al. (31) data.

Chest x-rays have also been used by several investi-

gators (12, 31, 53) as a dichotomous screening test for

heart disease (see Table 2-1). The results vary with the

reader, with the definition of positive results on the test,

and with the type of x-ray. In general, e is fairly large,

is small. The relationship between e and P is inverse.

The variability from study to study may reflect differences

in the criteria used to define positives on screening.

Electrocardiograms also have fairly large e values

associated with their use (Table 2-1) and the two studies

using ECG show inverse relationship between e and cp. When

blood pressure levels are used to screen for heart disease,

Kurlander (31) chose the best cutoff for the positive and

negative groups at 150 mm Hg systotic or 90 mm Hg diastolic

pressure with the result that e = .137 and <p = .260
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Table 2-1

Hypertension and Hypertensive Heart Disease

Medical Histories e 45

National Health Survey (40a) .620 .086

Kurlander et al. (31)

Physicians .284 .528

Clerks .580 .324

Wylie (53 ) death rates .753 .060

X-rays

Chapman et al. (12) - 70 mm

photofluorograms

Reader A .29 .29

Reader B .51 .14

Heart enlarged .70 .05

All CV abnormal .52 .10

Kurlander et al. (31)

35 mm .679 .042

70 mm .445 .100

All x-ray .524 .079

Wylie (53) death rates 70 mm .443 .177

ECG

Kurlander et al. (31) .494 .244

Wylie (53) death rates .516 .121

Blood Pressure

Kurlander et al. (31) .137 .260

Wylie (53) death rates .762 .065
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(see Table 2-k). Wylie (53), using death rates, found

e = .762, ep= .065. There is considerable variability

between the different studies with regard to these screening

procedures.

(c) Cervical Cancer

Screening for cervical cancer is ordinarily carried

out using the Papanicolan smear. In early studies using

poorly defined criteria, Meigs et al. (37) evaluated

vaginal smears against the definitive diagnosis of cancer

provided by biopsy of the cervix, endometrium or uterus.

They found false negative rate e = .104 and false positive

rate q)=. .30,and for the Papanicolan smear compared with com-

plete clinical diagnosis, e = .14, and = .003. More recent

work has focused on refinements in technique, in particular

the use of instruments such as the cytoanalyzer to read

smears and upon criteria for calling a smear positive.

(d) Rheumatism Symptoms

History of rheumatism or arthritis may be used to

screen for the presence of the disease in several different

settings such as household survey questions, individual

interviews and physician interviews (Cobb et al. [19551).

The differences in the false positive rates and false

negative rates obtained with those methods are slight. The

false positive rates are smaller than false negative rates

with a reciprocal relationship between the two rates.
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(e) Syphilis Screening

Several alternative tests are available to screen

for syphilis. These include the TPCF which is a complement

fixation test, the fluorescent treponemal antibody test

(FTA), the VDRL--a slide used for serologic testing with

the cardiolipin antigen, the rapid plasma Reagin (RPR) which

uses potassium oxalate and the Kolmer-Reiter Protein (KRP)

which uses treponemal antigen (Jolly et al. [1960]). Most

of the available data for the evaluation of these dichoto-

mous tests involves comparisons of one test with another

instead of with a "true standard." Buck and Mayer (1964)

studied different groups of diseased subjects in Ethiopia

comparing the VDRL with the RPR cord test, considering the

VDRL the procedure of choice. They found a wide range of

e (0 .42) and (P(.03 - .50) values for the RPR test (Table

2-m) in different groups. Buck and Spruyt (1964) examined

VDRL against the FTA as a standard in different age groups

as well as different disease groups also in Ethiopia. The

different age groups have varying false negative and false

positive rates, having the largest a = .67 and the smallest

(I) = .04 (Table 2-m) .

The National Health Survey evaluated the relative

sensitivity and specificity of the VDRL and the KRP tests

for males and females as well as for blacks and for whites

(Table 2-m). There is greater variability in e in the KRP

test when the VDRL is taken as a standard with blacks having
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Table 2-m

Syphilis Screening

A. RPR card test (compared to VDRL as standard) - Buck and

Mayer (8)

Subgroup (I)

Patients with early syphilis .021 .50

Healthy controls .059 .10
Newly registered VD clinic outpatients .116 .123

Patients with tuberculoid leprosy .000 .025

General population in area of hyper-
endemic leprosy .226 .368

B. VDRL (compared to FTA as standard) Buck and Spruyt (10)

Controls .25 .08

Lepromatous leprosy .14 .32

Tuberculoid leprosy .50 .00

General population in area of hyper-
endemic malaria .00 .49

Age groups
.67 .040-4

5-14 .20 .14

15-24 .27 .14

25-34 .30 .34

35-44 .20 .47

45+ .22 .35

C. KRP (VDRL as standard) - National Health Survey (40c)

Males .54 .023
Females .78 .025
Negro males .29 .118
Negro females .32 .103
White males .69 .012

White females .87 .018

VDRL (KRP as standard) National Health Survey (40c)

Males .49 .028

Females .64 .036
Negro males .45 .070

Negro females .55 .043

White males .52 .025
White females .77 .035

(Cont'd. on next page.)
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Table 2-m (Cont'd.)

D. RPR, VDRL, TPCF (compared to

Jolly (28)

Test

clinical diagnosis)

(Pi

RPR .04 .02

VDRL .16 .02

TPCF .08 .00

RPR rel. to VDRL .02 .01
VDRL rel. to RPR .30 .01
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much lower 8 values than the other groups. In general,

e is quite high and has a larger range for the KRP than for

the VDRL. The false positive rates are lower for the VDRL

than for the KRP. The major point to note here is that e

is very high and q5 is small.

When the RPR, VDRL and TPCF tests were evaluated

against a complete clinical diagnosis, the false negative

and false positive rates were quite reasonable with 8 less

than .16 and cp very small ( <.02). The best procedure

was the RPR test, although TPCF appeared also to be good.

Table 2-m shows that there appears to be an inverse rela-

tionship between 8 and qD within studies, with the exception

of Jolly data.

(f) Circumcision Screening

A series of studies has been done to determine the

usefulness of yes-no questions to determine the circumcision

status of males. A physician examination is considered the

criterion for evaluation of the questioning. When wives

were questioned with regard to the status of their husbands,

Aitken-Swan and Baird (3) found the false negative rate

e = .32 and the false positive rate qb = .00; in a similar

situation Stern and Lachenbruch (45) found 8 = .07,q) = .06.

When men were asked about their own status, the

results reflect considerable variation from study to study

and for Jews versus non-Jews. The Aitken-Swan and Baird

data (Table 2-n) showed that false negative rates, based
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Table 2-n

Husbands' Statements about Circumcision Status

Study
6

Aitken-Swan and Baird (3) (excluding uncertain) .17 .01

Partial or complete .28 .07

Lilienfeld and Graham (34) .56 .18

Stern and Lachenbruch (46) .05 .09

Dunn and Buell (19)

Complete circumcision

Non-Jews

Under 40 .57 .08

40-59 .74 .06

60 or over .73 .10

Jews

L.A.C. General Hospital .00 1.00

Cedars of Lebanon .00 .00

Partial or complete

Non-Jews

Under 40 .52 .07

40-59 .48 .06

60 or over .67 .07

on males' statements are lower than the rates based on wives'

statements. In contrast, the Stern and Lachenbruch findings

are similar for both husbands and wives when Jews and

non-Jews are considered separately (Dunn & Buell [19]), we

notice that the rates are different. This is because Jews

are generally circumcised and are aware of it. Among the

non-Jews, the false negative rate is rather high, and the
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false positive rate is fairly low in all age groups.

2.5 Discussion

This study of the values of the false negative and

false positive rates associated with medical screening

tests was done in order to determine the levels of these

parameters in practice and the interrelationships, if any,

actually observed between the two error rates. We have

reported here a few representative illustrations of

screening situations found in the literature. Table 2-o

lists the diseases which were investigated and the types

of screening measurements available for them.

There are a fair number of situations in disease

screening with an inverse relationship between e and ,

although both rates range from 0 to 1. There are also

some situations in which there is an inverse relationship

with both e and gb falling into narrower ranges. These

include blood pressure levels to screen for heart disease,

repeated readings of x-rays to screen for tuberculosis,

combinations of dichotomous tests to screen for heart

disease, combinations of dichotomous questions to screen

for rheumatism.

There is a lack of any consistent relationship

between 6 and q) as we move from disease to disease. Also

many of the assumptions in the literature are contradicted.

The assumption of equal error rates in the two groups for



Table 2-o

False Positive Rates and False Negative Rates for Different Diseases

Method of
Disease Measurement Screening Ranges Relationship

Diabetes Continuous Screening curve .00-.67 Inverse

Hypertension Continuous Screening curve Not small .05-.75 Inverse
(1)>0

Hypertension-
Heart Disease Continuous Combining Dichot. Not small,wide 0>q)

Contin. tests

Cervical Cancer Continuous Screening curve (P and 0 varies
widely on sub-
groups

No trend
O>4)

Rheumatism Dichotomous Combo dichot.
questions

Moderate No trend
(19>0

Syphillis Dichotomous Single dichot. Vary both widely Inverse
tests for different

subgroups
4 >0

Circumcision Dichotomous Single dichot.
questions

4 stable, small
vary for differ-
ent groups

Inverse
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the two sample problems frequently does not hold. For

example, the rates with age and religion for circumcision.

Syphilis screening tests differ with sex and race; rheuma-

tism screening by symptoms differs with sex, tine tests

for tuberculin sensitivity reflect sex differences, etc.

The assumption that both e and 4) tend to be small

is violated almost everywhere. In fact, the rates cover

the entire range possible. This is a reflection of the

lack of precision in the screening tests used. The levels

of e and (t) found in a given study are a reflection of the

method used for screening, how good the procedure is, what

the goals of the study axe, the nature of the population

under study and a reflection of the current state of know-

ledge about the disease. This last point is particularly

important in that as knowledge increases one learns which

factors are best included in a screening test, and often

chooses those factors that may have been unknown at an

earlier point of time.

We have also discussed the problems involved in

obtaining the values of both false negative and false

positive rates in the same study using the same criteria

on the same group of subjects. This is one of the reasons

for the study of robustness of the usual procedure for the

2 x 2 table when misclassification is present. The precise

effects of e and 4) on the significance level and power of

statistical procedures employed will be studied in
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Chapter 3 in order to quantify the effects of using the

screening tests in epidemiologic research.
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CHAPTER III

THE EFFECT OF MISCLASSIFICATION ON THE EXACT SIGNIFICANCE

LEVEL AND POWER IN THE 2 x 2 TABLE

3.1 Introduction

In medical and epidemiologic research, it is often

required to compare two groups on the presence or absence

of a disease or factor which is subject to misclassifica-

tion. In these cases, if the presence of errors is

suspected, but the levels of the error rates are unknown,

one might wish to determine the effect of these errors on the

properties of the exact test. Investigators (Cochran {14J)

have examined this problem under restrictive assumptions

for large samples; the problem has not been examined for

the exact tests in the 2 x 2 table. In the fourfold table,

a significance test is generally performed on the difference

between the two proportions or on the relative odds. Even

slight misclassification can cause severe bias in these

measures (16), where false positive rates play a more

important role than false negative rates for Tr<.5 and the

situation is reversed for 7>.5.

The problem has been examined for the fourfold table

by several investigators. Bross (6) considers the case of

the fourfold table with misclassification in each of two
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independent binomial samples with underlying prevalences

7
1

and 7
2'

If e
i

and 95

i
are false negative and false posi-

xi
tive rates in ith sample,E (--)= 7

i
(1 4)

ie
i

) + (1 ) .

n
i

Under the assumption that 81 = 82 = 8 and q 952 = 95,

the difference between the two proportions is always damped

x
1

x
2

by the presence of error measurements, i.e., E ( H - =T

(7
1

7
2

) (1
8

c) and the difference is unbiased under

7
1

= 7
2
or 8 + (I) = 1. The one-degree of freedom chi-square

is then used as a significance test to evaluate this

difference.

3.2 Asymptotic Results

Some consideration has been given to an examina-

tion of the effects of errors of measurement on the level

and power of the X2 with one degree of freedom. The level

of the test is unchanged by the presence of equal misclassi-

fication in the two samples, because the difference between

the two proportions and the estimated variance of this

difference are unbiased under Ho : 71 = 72. However the

power is generally reduced. Power curves for this model

were presented by Rubin et al. (44) for equal misclassifica-

tion in two subgroups when interviews were used instead of

clinical examinations to classify arthritics. Using

calculations similar to Bross, the authors found the ratio
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of sample sizes required to regain the power of the

no-misclassification cases. Walsh (51) examines the same

situation, but considers the alternative hypothesis of

interest to be 7
1

0 7
2

rather than Bross' alternative of

P/ # P2 where Pi = (1 -0) + (1 -

This Bross model has also been extended by Gullen

et al. (26) and Rogot (43) to permit errors of measurements

along both axes of the fourfold table under similar simpli-

fying assumptions with similar results (i.e. equal error

rates leave the level of X2 unchanged, but the power is

reduced) .

Giesbrecht (1967) provides a general model for

measurement errors in both directions of the 2 x 2 table

without any restrictive assumptions about the nature of the

errors. By using the test statistic

[x1 (n2 - x2) - x2 (x1 - n1)]2

n
1
n
2
t (n - t)

wheren=n1 + n
2 '

x1 +x2 = t,

he evaluates the effects of the error parameters which

are varied one at a time. Bross' conclusions are supported

for the one direction equal error rates situation. When

error rates are present in both directions, there are

situations in which the significance level of the X2 is

affected as the result of the errors. Power may increase

in some instances. These results are asymptotic and the



46

distribution of the X2 is not examined for finite samples.

3.3 Larger Contingency Tables

The properties of the chi-square test for the 2 x c

table with misclassification are evaluated by Mote and

Anderson (38) who show that the level of X (
c - 1) remains

unchanged if false negative and false positive rates are

equal in each of the c classes (misclassification only in

one direction). On the other hand power is reduced. The

change in power occurs whether or not the error rates are

known and also for the special case of misclassification

only in neighboring classes.

The authors also consider the case of stratified

sampling from r independent groups with errors in c categor-

ies; in this case the power is sometimes reduced.

Assakul and Proctor (2) extend these results to the

case of the r x c contingency table with errors in both

directions. For the r x c table with a nonsingular error

matrix and independent errors in the two directions,

acceptanceorrejectionof1.10:1Tir--711. -7T.i is equivalent

to tests of Ho : P. P. . , P
.

. with the result that the
2.3

test statistic, X (r - 1)(c 1)'
and its significance level

remains unchanged. Asymptotic power is reduced. When the

errors are not independent, the significance level as well

as the power is affected if the presence of error is
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ignored. The effects of misclassification become more

serious as the significance level (a) decreases.

3.4 Extension of Bross Model for 2 x 2 Table

Once more the question of the validity of assuming

a "nice" relationship between false negative and false

positive rates in the two samples of the fourfold table

arises. Many investigators (14, 17, 18, 21, 41) have cast

doubt upon the simplifying assumption that el = 82, q)1. =

This assumption is unreasonable and invalid in many situa-

tions that we have discussed earlier. This consideration

leads us to an examination of the two sample problems with-

out this restrictive assumption. Eliminating the assump-

tions that 81 = e
2

and
1

= cp

2
in the Bross model, yields:

X
1

X
0

E (T1- 1-71=) = ul (1 el (pi) Tr2(1 e2 -4)2
1 2

(4)1
2)

Under H
0 1

= 7
2
= u, (3.1) reduces to:

x, x2
E (

nl
± -

n2

"1 cP2)

[(8
2

- e
1

) + (4)
2

ci)1 )]

(3.1)

(3.2)

Therefore, the expected bias under the null hypothesis is

independent of 7 if

(02 el) + "2 (1'1)
0



Under the assumption of two independent binomial samples,

the variance of the difference is now:

x. x 7
1
(1 - 7

1
) IT ( 1 -1T )

Var (

1
-

17--2

=
n1 k +

2 '

n
2

2

2 0i (1 ei) q)i(1 q)i)where kl = (1 - ei - 0i) +
1 - 7i

and the MSE (E
1

-
2
) becomes

Var (--
x
1

--x 2
) + [(1 71.

1
)q)

1
7
1
e
1

+ (1 7ni n2 2
) (I)
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2-
2 2'2'

Thus the estimated difference between the two proportions is

no longer unbiased under Ho : Al = 72, as it is for the case of

equal misclassification.

As a result the test statistic is affected. There-

fore, the significance level of X
(1)

will change by the

presence of unequal error rates.

3.5 Exact Model for the 2 x 2 Table with

Misclassification

All of the results given earlier in the chapter are

for misclassification effects on the asymptotic X2 . With

the use of computers it is feasible to consider the appro-

priate exact tests and their robustness against misclassifi-

cation in the fourfold table. This is particularly relevant

in epidemiologic research in which small pilot studies may

be performed to determine the feasibility of continuing

research on a larger scale.
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The fourfold table can arise from different situa-

tions. If we take a random sample of size n from a popula-

tion and classify the elements with respect to a factor

present (+) or absent (-) and belonging to group I or

group II, then the distribution of the observed table is

given by the multinomial distribution.

On the other hand if we observe the same table by

taking a random sample of size n1 from binomial population

I and another random sample of size n2 from a different

binomial population II and then classify the elements in

each sample with respect to presence or absence of the

factor of interest, the distribution of the observed table

is given by the product of two independent binomial

distributions.

In our study we consider the distribution of 2 x 2

tables obtained by conditioning on the sum xi + x2 = t in

the product binomial model. From the following observed

table (with underlying fallible proportions Pi and P2 with

respect to the attribute under study in binomial samples

I and II), we have

Sample

Attribute Status

I x
1

n
1
-x

1

II x2 n
2
-x

2

t n-t



Then P (x
1
/x

1
+ x

2
= t)

P(xl,x1 + x2 t)

P(xi + x2 = t)

x n-xi -x n -(t-x
1

)

n
2

1
Q22(1) .

P
1

Q
1

x
1

t-x
= 1

tn_ n1 n 1-k
`"\-- Pt-k Qn2

-(t -k)
kit 2

/ t-k P1 Q
1

Q2
2 2

k=0

1112 Qn1 2
Q

t-x 1 2

n1 n2

r
2 t

Q1 Q2
Q2

t

t

K=0

xl

1Q2

P2 Q1

k=0

n2 \ P10.2 \k

t-ki ( P2Qi

1 (P2 t

Q2

(n1\ (n2 I P1Q2 \
k

k ) s t-k) P2 Qi )

, for x
1
= 0,1,2...t

where P. = Tr.
1

(1
1

e.) + (1 - u.) 4).
1

and = 1 - P.
1
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(4.1)

This model is analogous, in epidemiology, to a retrospective

study subject to misclassification with respect to the

attribute under study, or to a prospective study subject

to misclassification with respect to disease. The advan-

tages of considering the conditional model (4.1) are

several:

(a) that the test based on this distribution is the

uniformly most powerful unbiased level a test for the
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exponential family of distributions with the odds ratio as

the parameter about which the hypotheses are formulated

(Lehmann[331),

(b) that the probability of observing a zero sum

in one of the margins is non-existent unless specified,

and

(c) that the probability distribution under the null

hypothesis is independent of values of 71 and 72 (relative

odds is 1) unlike the joint binomial model.

Therefore the test based on this model is performed

on the observed table without any assumptions about the

underlying probabilities and error rates. By varying

prevalence rates and error parameters, we may examine the

distortion in the results of the analysis introduced by

misclassifications. On the other hand, even under the null

hypothesis, the binomial model depends on the value of the

probability specified.

We are interested here in both the change in

significance level and the change in power of the exact

test resulting from the presence of misclassification in

the fourfold table. The change in significance level may

be found by comparing the level under the null hypothesis

Ho : = 72 without errors with the level for this

hypothesis when the samples are subject to misclassifica-

tion. The change in power under the alternative hypothesis

may be found by comparing the power without
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misclassification for the significance level chosen to the

power in the presence of misclassification against the same

H0 : rl = 112.

The levels of misclassification chosen for study

here range from small to moderate values of false negative

and false positive rates ( ei, (pi = 0.0, .05, .10, .15,

.20, .30, .40 in all combinations). These levels of the

error parameters were chosen so as to be reasonable to our

previous discussions and to be small enough so that there

is some justification for using screening tests with

associated errors of these magnitudes. No further assump-

tions are made about the values of these parameters or the

relationship between them. Samples of sizes ni = 10, 15

and 25 were considered with the latter providing some

measure of comparison to asymptotic results. The values

of x1 x2 = t were chosen such that approximately t = n7

under H0 : Tr/ = 72.

3.6 Effects of Errors on Level of Fisher's

Exact Test

We will first consider the effects of misclassifica-

tion on the nominal significance level of Fisher's exact

test in small samples.

(a) One-Sided Tests

What we are concerned with here is the change in

significance level for testing H0:Tr1 =72 vs.H1:71> :r2 when
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errors of measurement are present. Table 3-a shows the

effects of misclassification on level for selected error

combinations under H0 : 71 = 72 = 0.10, n1 = n2 = 10, xl +

x
2

= 3. Without misclassification, the distribution of x
1

is symmetric, and therefore, the upper and lower tails

contain the same proportion of distribution. This symmetry

is a property of Fisher's exact test under the null hypothe-

sis with nl = n2.

The significance level is independent of 7 when

there is no misclassification. In addition, if e
1

= 8
2

and

ql = 4)2, the symmetry remains and the nominal level is

unchanged.

For a particular critical value, notice what

happens to the nominal level that we think we are operating

at when misclassification is present. For example in

Table 3-a, if a = .105263, the critical value of xl is 3.

If q2, the false positive rate in the second sample,

increases, the true level for this critical value decreases

when compared to the fixed nominal level of the test. That

is, the null hypothesis is not rejected as often as it should

be. If the error set is (0, 0, 0, 0.30), the significance

level foracritical value of 3 is .003659 which means H0

is rejected only .37% of the time when in fact it should

be rejected 10.5% of the time.

On the other hand, as (Pi increases, all other

parameters constant, the actual level increases when
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Table 3-a

Effects of Misclassification on Significance Level of
Fisher's Exact Test-Selected Error Rates

n1 = n2 = 10 xi + x2 = 3 H0: 71 = 72 = .10

Exact probabilities of observing xl or greater values of x/

e
1 1

9
2 2

X
2=3.529

x
1
=0

X
2=.392

x
1
=1

X
2=.392

x
1
=2

X
2=3.529

x
1
=3

00 00 00 00 1.000000 .894737 .500000 .105263
00 00 00 .10 1.000000 .731472 .254483 .028540

00 00 00 .30 1.000000 .459592 .076194 .003659
00 00 .05 .10 1.000000 .740352 .263746 .030452
00 00 .05 .30 1.000000 .465878 .078700 .003858
00 00 .05 00 1.000000 .903443 .520181 .114506
00 00 .30 00 1.000000 .944210 .635371 .179467

00 00 .10 .05 1.000000 .831402 .381289 .060837

00 00 .30 .10 1.000000 .785501 .316286 .042577
00 00 .40 .05 1.000000 .885907 .480696 .096924
00 00 .05 .40 1.000000 .362190 .043869 .001509
00 00 .40 .40 1.000000 .400227 .055120 .002167

00 05 00 .05 1.000000 .894737 .500000 .105263

00 .05 00 00 1.000000 .947412 .646412 .186992

00 .05 .30 00 1.000000 .974953 .763324 .286495

00 .10 00 .30 1.000000 .683510 .209488 .020164

00 .10 .05 .40 1.000000 .578385 .134163 .009351

00 .10 .05 .30 1.000000 .689708 .214864 .021087

00 .40 00 .40 1.000000 .894737 .500000 .105263

.05 .05 .05 .05 1.000000 .894737 .500000 .105263

.05 .30 .05 .30 1.000000 .894737 .500000 .105263

.05 00 .30 00 1.000000 .983409 .616297 .167069

.10 .05 .10 .05 1.000000 .894737 .500000 .105263

.10 .05 .10 .40 1.000000 .461991 .077144 .003734

.10 .40 .30 .05 1.000000 .997635 .941803 .590260

.30 00 .30 00 1.000000 .894737 .500000 .105263

.30 00 .30 .05 1.000000 .783771 .314085 .042024

.30 .05 .30 .30 1.000000 .545571 .115720 .007293

.40 .10 .40 .05 1.000000 .946031 .641603 .183692

.40 .05 .40 .10 1.000000 .816318 .358397 .043969

.40 .20 .40 .05 1.000000 .982689 .807953 .337610

.40 .30 .40 .30 1.000000 .894737 .500000 .105263
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compared with the nominal chosen level. If we consider the

error set (0, .05, 0 0), the significance level for

critical value 3 is .186992 which is an increase over the

nominal .105263. In this case the test is actually reject-

ing H0 18.6% of the time when it should be rejecting only

10.5% of the time.

The false negative rates el and 82 have less effect

than the false positive rates with 62 causing increases in

the nominal level (e.g. for error set 0, 0, .05, 0 the

significance level for xi = 3 is .114506) and increases

in 81 causes decrease in significance level when compared

to the nominal level (e.g. for the error set .05, 0, 0, 0

significance level for xi = 3 is .096557).

That the major effect on the nominal significance

level for the test of H
0

7
1
= 7

2
vs H

1
Tr

1
> 7

2
is

caused by the difference between two false positive rates

with
1

>sb
2
causing increases in level and (I)

1
<Q2 causing

decreases may be verified from able 3-b. Table 3-b shows

the one-sided significance levels for ni = 10, t = 3

7 = .10 for Fisher's exact test averaged over 16 combina-

tions of four false positive rates for each set of false

negative rates and averaged over four false negative rates

for each set of false positive rates. From this it is

clear that the level of the test is quite stable against

false negative rates, but quite unstable with respect to

false positive rates.



Table 3-b

Effects of Misclassification on One Sided Significance
Level of Fisher's Exact Test

ni = n2 = 10 H0: ffl = = .10 x
1
+ x

2
= 3

. 00

1
.05

. 10

. 30

.00

.05

.10

.30

A: Averaged Over 16 Combinations of
False Positive Rates

82

.00 .05 .10 .30

.1556 .1626 .1700 .2074

.1503 .1572 .1645 .1985

. 1453 .1519 .1574 .1923

. 1255 .1314 .1322 .1679

B: Averaged Over 16 Combinations of

False Negative Rates

152

.00 .05 .10 .30

.1499 .0506 .0263 .0031

.200 .1051 .0637 .0092

.2875 .1711 .1104 .0933

.5658 .4281 .3581 .1057

56
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Tables 3-c and 3-d give selected error combinations

for other values of ni, t, 7. As before, as qh2 increases,

the true level for a particular critical value decreases

when compared to the fixed nominal level of the test. As

q)

1
increases (other parameters constant) the actual

level increases when compared with the nominal chosen

level. The false negative rates 01 and 82 are less

important. An increase in 82 causes an increase over the

nominal level and an increase in e
1
causes a slight decrease

in the significance level when compared to the nominal

level.

We now consider the one tailed test for Ho : 71 =

Tr2 versus the alternative H
1

: - 7
I

<7
2
using Fisher's exact

test. For this test, the change in nominal significance

level may be found from the lower tail of the distributions

for x
1
in Tables 3-a, 3-c and 3-d. In this case the criti-

cal value of x1 such that the probability of observing x1

or smaller value of x
1

is a. The effects in significance

level with respect to the error parameters are the reverse

of those discussed earlier for the alternative hypothesis

H
1

:

l
>7

2'
That is, 4)

2
increases, cause increases over

the nominal level and 01 increases cause decreases over

nominal level. Increases in 9
2

causing decreases over the

nominal level and increases in 8
1
causes increases in

significance level compared to nominal level.



Table 3-c

Effects of Misclassification on Significance Level of Fisher's Exact Test as xl + x2 t Changes

ni=n2=10 1= .25 (Probability of observing the value of xi or a greater value)

xi+x2=5 x1 +x2=7

X 2 6.67 2.4A 2.67 2.40 6.67 16.364 9.90 5.050 1.818 .202 .202 1.818 5.050

41 41 82 42 x1=0
xl= 1 x1 =2 x 1 =4 x1 =5 x 1 -0 x1=1 x1=2 x1=3 x1=4 x1=5 x1=6 x1=7

0 0 0 0 1.00000 .983746 .84829 .15170 .01625 1.00000 .99964 .99011 .91509 .67504 .32496 .08490 .00988

0 0 0 .05 1.00000 .97426 .79708 .10978 .00990 1.00000 .99925 .98273 .87531 .59133 .24923 .05543 .00541

0 0 0 .15 1.00000 .94629 .68391 .05657 .00372 1.00000 .997472 .95795 .77552 .43332 .14077 .02318 .00164

0 0 0 .40 1.00000 .813045 .38815 .00890 .00028 1.00000 .97729 .81219 .45760 .14813 .02505 .00203 .00007

0 0 .05 0 1.00000 .98631 .86424 .168828 .01921 1.00000 .99973 .99197 .92666 .70300 .35393 .09777 .01211

0 0 .15 0 1.00000 .99062 .89412 .208863 .02696 1.00000 .99985 .99494 .94714 .75821 .43786 .12955 .01826

0 0 .05 .30 1.00000 .88746 .52418 .02210 .00098 1.00000 .99095 .89754 .612578 .25932 .05975 .00673 .00032

0 .10 .05 .05 1.00000 .99129 .89920 .21705 .02869 1.00000 .99986 .99537 .95045 .76801 .43027 .13630 .01969

0 .10 0 .10 1.00000 .98374 .84829 .151170 .01625 1.00000 .99964 .99011 .91509 .67504 .32496 .08990 .00988

.05 0 .30 0 1.00000 .99421 .92342 .26362 .03943 1.00000 .99993 .99718 .96548 .81653 .49755 .17637 .02599

0 .05 .10 .30 1.00000 .92545 .61908 .03892 .00217 1.00000 .99558 .93755 .71218 .35650 .10069 .01418 .00085

.05 .30 .05 .30 1.00000 .983746 .84829 .15170 .01625 1.00000 .99964 .99011 .91509 .67504 .32496 .08490 .00988

.10 .30 .05 .30 1.00000 .981587 .835687 .13974 .01431 1.00000 .99956 .98850 .905662 .65360 .30408 .07618 .00847

.10 .40 .10 .40 1.00000 .983746 .84829 .15170 .0162 1.00000 .9984 .99011 .91509 .67504 .32496 .08490 .00988

.30 .05 .30 .05 1.00000 .98374 .84829 .15170 .01625 1.00000 .99964 .99011 .91509 .67504 .32496 .08490 .00988

.30 .05 .40 .05 1.00000 .98913 .88330 .19295 .0237 1.00000 .99981 .99394 .93392 .73776 .35305 .11665 .01565

.40 .40 .40 .40 1.00000 .98374 .84829 .15170 .0162 1.00000 .99964 .99011 .91509 .67504 .32496 .08090 .00988



Table 3 .-d

Effects of Misclassification on Significance Level of Fisher's Exact Test as .ample Size Changes

e
1

0
1

0
2

.

0
2

x =0

n
1
=n

2
=15

x
1
=1

x
1
+x

2
=3

x1 =2 x1=3

7:L=n2=.10

x1 =0 x
1
=1

n
1
=n

2
=25

x1 =2 x1 =3

x
1
+x

2
=5

x
1
=4 x1 =5

0 0 0 0 1.00000 .88793 .50000 .11207 1.00000 .97492 .82566 .5000 .17438 .02507
0 0 0 .05 1.00000 .80139 .35096 .05585 1.00000 .93483 .68067 .31737 .07934 .00786
0 0 0 .15 1.00000 .63666 .18174 .01719 1.00000 .82062 .43441 .12962 .01938 .00111
0 0 0 .40 1.00000 .33889 .04040 .00146 1.00000 .50688 .12403 .01508 .00087 .00001
0 0 .05 0 1.00000 .89720 .52056 .12190 1.00000 .97828 .84147 .52552 .19109 .02887
0 0 .15 0 1.00000 .91528 .56451 .14497 1.00000 .98426 .87223 .57988 .23021 .03851
0 0 .05 .30 1.00000 .44619 .07563 .00400 1.00000 .63480. .21460 .03739 .00313 .00009
0 .10 .05 .05 1.00000 .93814 .62962 .18505 1.00000 .99067 .91072 .65934 .29712 .05791
0 .10 0 .10 1.00000 .88793 .50000 .11207 1.00000 .97492 .82566 .50000 .17434 .02507
0 0 .30 .10 1.00000 .77250 .31312 .04516 1.00000 .91820 .63420 .27274 .06189 .00552
0 .05 .10 .30 1.00000 .58083 .14338 .01148 1.00000 .77183 .36235 .09299 .01179 .00056

.05 .30 .05 .30 1.00000 .88793 .50000 .11207 1.00000 .97492 .82566 .50000 .17434 .02507

.10 .30 .05 .30 1.00000 .88425 .49216 .10847 1.00000 .97353 .81939 .49027 .16821 .02375

.10 .30 .10 .30 1.00000 .88793 .50000 .11207 1.00000 .97492 .82566 .50000 .17434 .02507

.30 .05 .30 .05 1.00000 .88793 .50000 .11207 1.00000 .97492 .82566 .50000 .07934 .02507

.30 .05 .40 .05 1.00000 .90421 .53695 .13016 1.00000 .98069 .85341 .54582 .20513 .03218

.40 .40 .40 .40 1.00000 .88793 .50000 .11207 1.00000 .97492 .82566 .50000 .17434 .02507
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In all cases discussed above it is clear that the

null hypothesis is being rejected the proper number of times

only when the false negative rates (e/, e2) are equal and

the false positive rates (c61, cb2) are equal (Bross result).

When the error rates are not equal we observe in

Table 3-c that regardless of what the fixed margin, t, is

the effects on the level of the test are similar. Also,

in Table 3-d we can see that the effects of misclassifica-

tion on the distribution of xl are similar as ni increases.

Thedistributionofn=15, 7r= .10 (Table 3-c) may be

compared with that for ni = 10, 7 = .10 (Table 3-a) for

t = 3. If we take critical value x
1
= 3 in Table 3-a,

P = .10526 compared to .1120 in Table 3-d without misclas-

sification in both cases. The differences due to sample

size are very slight when misclassification is present.

If we have a desired significance level, say a =

a
o

, in order to obtain this exact level a0, it is necessary

to randomize at the critical value, c. That is a() =

P (reject Ho/xl >c) P (x1 >c) + P (reject 110/xl = c)

P (x1 = c) or au = P (x1 >c) + yP(x1 = c) ,

where y = prob (randomize).

From Table 3-a (page 54), for x/ = 3, if we perform

the randomized test, we reject the null hypothesis 95% of

the time at this value to achieve a nominal level a = .10.
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For ni = 15 and t = 3, xl = 3, for the randomization test we

reject the null hypothesis 89.22% of the time to achieve a

nondriallevelc6=.10(forn.=25, t = 5, xl = 4 reject

50.19% of the time, for ni = 10, t = 5, xi = 4 reject 62%

of the time). (see Table 3-e).

(b) Two-Sided Tests

We now consider the two-sided Fisher's exact test

for H
0

7
1 7r 2

vs. H1 : 71 72. The exact level:

may be found by combining the upper and lower tails of the

distribution of x
1

to obtain a fixed level a. Without

misclassification, because of the symmetry of the distribu-

tion of x
l'

this is equivalent to doubling the single tail

probabilities. However, if the error rates in two samples

are unequal, the distribution of xl is no longer symmetric.

If we turn to Table 3-f which shows the level of the

two-sided tests for selected error combinations, we can see

that the actual level generally exceeds the nominal level

with the greatest increase occurring when the difference

between the false positive rates is large as well as when

the difference between the false negative rates is large.

One generally rejects the null hypothesis too often when

this happens.



Table 3-e

Effects of Large Misclassification Rates on One Sided
Significance Level of Fisher's Exact Test

H0: 71 = 72 vs H1:
''1'2

62

e11 1 e2 1)2

Tr1=72=.10

.=10n1

Critical t=3
value x1 3

1

n.=15
1

t=3
3

71=1T2='25
n.=25 n.=10
1 1

t=5 t=5
4 4

0 0 0 0 .1052 .1120 .1743 .1517

0 0 0 .05 .0526 .0559 .0793 .1098

0 0 0 .10 .0285 .0301 .0383 .0790

0 0 0 .30 .0037 .0038 .0029 .0195

0 0 0 .40 .0014 .0014 .0008 .0089

0 0 .10 0 .1247 .1383 .2096 .1878

0 0 .30 0 .1794 .1907 .3063 .2868

0 0 .40 0 .2182 .2314 .3720 .3538

0 .30 .40 .30 .1356 .1443 .2291 .2726

.10 .30 .40 .30 .1277 .1359 .2149 .2393

.40 .40 .40 .40 .1052 .1120 .1743 .1517

Randomized test Reject Reject Reject Reject
a = .10 95% of 89% of 51% of 62% of

time time time time

0 0 0 0 .1 .1 .1 .1

0 0 0 .05 .05 .0498 .0437 .0717

0 0 0 .10 .0271 .0269 .0206 .0420

0 0 0 .30 .0035 .0034 .0015 .0121



Table 3-f

Level and Power of Two Sided Fisher's Exact Test with Misclassification

Ho: Tr, --= 712= . 25 iii=n2=.10 H
0

: n
1
=ff

2
=.10

01 02

n
1
=n

2
=10

x
1
+x

2
=5

H1:ff1=.25 H1:711=.50

Tr2= 5° Ti2=7* 25

n
1
=n

2
=15

x
1
+x

2
=3

1-11:y..10 141:71-1=.10

ff2= 25 71-2= 50

n
1
=n

2
=25

x
1
+x

2
=5

H1:Tr1 =.10 Hi: w1=.10

Tr2= 25 ¶2= 50

.00 .00 .00 .00 .5503 .550 .4027 .7009 .2014 .5434

.00 .00 .00 .30 .7546 .306 .6773 .8201 .5129 .7115

.00 .00 .05 .30 .7227 .309 .6650 .8025 .4971 .6866

.00 .00 .10 .05 .5152 .627 .4208 .6773 .2190 .5122

.00 .00 .30 .10 .4156 .550 .4027 .5989 .2014 .4136

.00 .05 .30 .00 .3244 .271 .2328 .4184 .0565 .2167

.00 .10 .05 .30 .6007 .335 .4593 .6434 .2578 .4687

.05 .30 .10 .05 .3041 .723 .2628 .2587 .0795 .0765

.10 .30 .30 .00 .3468 .817 .3695 .2245 .1703 .0504

.30 .05 .30 .30 .6264 .306 .5555 .6635 .3626 .4943

.30 .30 .30 .30 .5403 .550 .4027 .7009 .2014 .5434

Significance level: xl < 1 or x
1
> 4
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3.7 Power of Fisher's Exact Test with

Misclassification

(a) One Sided Power

We now examine the change in power resulting from

the presence of errors of measurement. Table 3-f and

Table 3-g show the cumulative distribution of xl for

selected error rates under various alternative hypotheses.

For the one-sided test of H
0

7
1

= 7
2
vs. H

1
Tr

1
<Tr

2

the power may be obtained for a given level a from the upper

tail of these cumulative distributions. Similarly we may

find the power of the one-sided alternative H1 : 71> 72

from the lower tails of these distribution for the reverse

error sets. The effects of misclassification on these

one-sided powers for Fisher's exact test are similar to the

effects on the corresponding one-sided significance levels

discussed earlier.

(b) Two-Sided Power

In order to find the two-sided power for fixed

level a, we must consider the alternatives 71 < 72 and

71 >72 separately and then combine the appropriate tails of

the separate distributions. Table 3-h gives the two-sided

power for H
0

: 7
1

= 7
2
= .25 vs. H

1
: 7

1
- 7

2
= .25

(n = 10, t = 5) found from the lower tails of 7
1

= .25,

72 = .50 and the upper tails of 71 = .50 and 72 = .25.

The power of the two-sided test may also be found by



Table 3-g

Exact Probabilities of Observing the Value of the Test Statistic or
More Extreme Value - Fisher's Exact Test for Selected Error

Rates under Alternative Hypotheses: Tr
1 2

01 (1)1 02

A.

(1)

2

Ho : Tri= Ili= .10

n
1
=n

2
=10

X
2
=3.529
X
1
=0

Hi : Tri= . 10 ,

t=3

.392
1

712= . 25

.392
2

3.529
3

.00 .00 .00 .00 1.000 .6301 .1678 .0137

.00 .00 .00 .30 1.000 .3416 .0384 .0012

.00 .00 .05 .30 1.000 .3544 .0418 .0014

.00 .00 .10 .05 1.000 .6104 .1542 .0118

.00 .00 .30 .10 1.000 .6301 .1678 .0137

.00 .05 .30 .00 1.000 .8552 .4211 .0740

.00 .10 .05 .30 1.000 .5692 .1288 .0087

.05 .30 .10 .05 1.000 .9525 .6648 .2001

.10 .30 .30 .00 1.000 .9821 .8044 .3332

.30 .05 .30 .30 1.000 .4683 .0797 .0039

(Cont'd. on next page.)



Table 3-g (Cont'd.)

B. H0: i1=42 =.10
H1:

111
=.10, 712=.25

el1 (1)1.

0

n
1
=n

2
=15

X
2=3.333

x
1
=0

t= 3

.370
1

.370
2

3.333
3

.00 .00 .00 .00 1.000 .6117 .1637 .0144

.00 .00 .00 .30 1.000 .3239 .0365 .0012

.00 .00 .05 .30 1.000 .3364 .0397 .0014

.00 .00 .10 .05 1.000 .5916 .1502 .0124

.00 .00 .30 .10 1.000 .6117 .1637 .0144

.00 .05 .30 .00 1.000 .8459 .4196 .0787

.00 .10 .05 .30 1.000 .5498 .1249 .0091

.05 .30 .10 .05 1.000 .9496 .6677 .2124

.10 .30 .30 .00 1.000 .9812 .8085 .3507

.30 .05 .30 .30 1.000 .4486 .0766 .0041

(Cont'd. on next page.)
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(I)1

C.

8
2

Table 3-g

H 0
:111 =ff

2
=.10 H1:711=10,

ni=n2=15 t=3

2=3.333
(I)

2 x1=0

(Cont'd.)

1T2=.50

.370
1

.370
2

3.333
3

.00 .00 .00 .00 1.000 .3001 .0309 .0010

.00 .00 .00 .30 1.000 .1801 .0103 .0002

.00 .00 .05 .30 1.000 .1977 .0126 .0002

.00 .00 .10 .05 1.000 .3239 .0365 .0012

.00 .00 .30 .10 1.000 .4039 .0601 .0028

.00 .05 .30 .00 1.000 .5943 .1520 .0127

.00 .10 .05 .30 1.000 .3584 .0458 .0018

.05 .30 .10 .05 1.000 .7939 .3407 .0528

.10 .30 .30 .00 1.000 .8951 .5158 .1196

.30 .05 .30 .30 1.000 .3379 .0401 .0014
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combining the lower tail of the distribution for 71 <72 for

a given set of (el, yhi, 92, 4)2) with the lower tail for

7 1> 7
2
with reverse error set (e

2' 2' l' 1
). For example,

if 01 = .05, yhi = .30, 82 = .10 and 4)2 = .05, for the

alternative 7
1

<'2' the lower tail probability is .1643

from Table 3-g. For the alternative 71 >72, we take the

lower tail probability for the error set 91 = .10, = .05,

82 = .05, cp2 = .30, which is .6978. Adding the two

probabilities, we obtain .8621, which is then randomized to

be compatible with a = .10 in the (0, 0, 0, 0) case: that

is,power = .287, which is the same power as given in

Table 3-i. Notice that the power of this without misclassi-

fication is 35%.
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Table 3-h

Exact Probabilities of Observing That Value or More Extreme Value of Test Statistic

Error Rates Under Alternative Hypotheses

A. Ho: ni.--.7:2=.25 n1 =n2=10 x1 4x2=5

111:1:17.25
Hi:x1=.50

u2=.50
w
2
=.25

X
2

6.667 2.400 .267 ..267 2.400 6.667 6.667 2.400 .267 .267

4'2 xl 0 1 2 3 4 5 0 1 2 3

for Selected

2.400 6.667

4 5

0 0 0 0 .1.000 .8583 .4649 .1276 .0152 .0006 1.000 .999 .985 .872 .535 .1 2

0 0 0 .30 1.000 .6987 .2480 .0400 .0027 .0001 1.000 .987 .871 .542 .177 .021

0 0 .05 .30 1.000 .7304 .2810 .0499 .0037 .0001 .1.000 .989 .882 .563 .191 .023

0 0 .10 .05 1.000 .8782 .5043 .1500 .0195 .0008 1.000 .999 .982 .858 .509 .128

0 0 .30 .10 1.000 .7600 .3155 .0614 .0050 .0001 1,000 .999 .985 .872 .535 .142

0 .05 .30 0 1.000 .9679 .7675 .3813 .0919 .0076 1.000 1.000 .997 .954 .732 .282

0 .10 .05 .30 1.000 .8268 .4097 .0999 .0104 .0003 1.000 .994 .918 .643 .253 .037

.05 .30 .10 .05 1.000 .9816 .8357 .4790 .1398 .0143 1.000 1.000 .995 .943 .698 .251

.10 .30 .30 0 1.000 .9948 .9284 .6691 .2752 .0424 1.000 1.000 .999 .976 .816 .374

.30 .05 .30 .30 1.000 .8104 .3842 .0884 .0086 .0003 1.000 .979 .821 .456 .127 .012

B. H
0

:It
1 2

n
1
=n

2
=25 x

1
+x

2
=5

Hl:w1=.10 Ho:w1=.10

1T2=.25 If '5°

0 0 0 0 1.000 .7994 .4015 .1120 .0156 .0008 1.000 .4566 .0973 .0102 .0005 .0.)00

0 0 0 .30 1.000 .4878 .1133 .0130 .0007 .0000 1.000 .2885 .0351 .0020 .0000 .0000

0 0 .05 .30 1.000 .5073 .1222 .0147 .0008 .0000 1.000 .3144 .0423 .002i .0001 .0000

0 0 .10 .05 1.000 .7816 .3757 .0993 .0130 .0006 1.000 .4878 .1133 .0130 .0007 .0000

0 0 .30 .10 1.000 .7994 .4015 .1120 .0156 .0008 1.000 .5864 .1760 .0268 .0019 .0000

0 .05 .30 0 1.000 .9574 .7545 .4006 .1176 .0139 1.000 .7840 .3792 .1009 .0133 .0007

0 .10 .05 .30 1.000 .7426 .3250 .0766 .0088 .0004 1.000 .5313 .1387 .0181 .0011 .0000

.05 .30 .10 .05 1.000 .9934 .9295 .7047 .3416 .0729 1.000 .9307 .6686 .3052 .0744 .0072

.10 .30 .30 0 1.000 .9987 .9784 .8606 .5485 .1690 1.000 .9775 .8379 .5196 .1871 .0279

.30 .05 .30 .30 1.000 .6375 .2169 .0381 .0032 .0001 1.000 .5057 .1233 .0149 .0009 .0000
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Table 3-i

Two-Sided Power of Fisher's Exact Test with
Misclassification Randomized to

H
0
:a =.10

n
1
=n

2
=10

H
0
7
1
=7

Level

2
=.25 H1:71-

72
=.25

Power
t=5 x

1`
1 Lowery Upper

2 two-sided
8
1 4) 1 82 q52

or x
1
14 tail tail fora..10

.00 .00 .00 .00 .3034 .535 .535 .353

.00 .00 .05 .30 .4979 .719 .191 .300

.00 .00 .10 .05 .1821 .496 .509 .330

.00 .00 .30 .10 .3034 .376 .535 .301

.00 .05 .30 .00 .4013 .233 .732 .318

.00 .10 .05 .30 .3845 .500 .253 .248

.05 .30 .10 .05 .4767 .164 .698 .287

.10 .30 .30 .00 .6377 .072 .816 .293

.30 .05 .30 .30 .4830 .616 .127 .278

1Lower tail from 71 =.25, 72=.50

2 Upper tail from 71=.50, 1T2=.25
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CHAPTER IV

ESTIMATION OF BINOMIAL PROPORTION, FALSE NEGATIVE AND

FALSE POSITIVE RATES USING THE RANDOMIZED

RESPONSE TECHNIQUE

4.1 Introduction

We have shown that the presence of misclassification

can have substantial effects on the estimation of parameters

as well as on hypothesis testing. This effect on the sample

estimate of the binomial proportion was first studied

by Bross (6) under the assumption of a probabilistic mis-

classification model. The statistical model discussed by

Bross (6), Mote and Anderson (38) and Assakul and Proctor

(2) for handling misclassification assumes that the error

rates are known. But this is not generally the case as we

have seen earlier. The previous discussions on the effects

of misclassification lead us to the awareness of the impor-

tance of estimating the values of e and y in a particular

study. Since the error rates vary in nature from one study

to the other, and from one group of individuals to another

group with respect to age, sex, religion, etc., it is

necessary to estimate these error rates in each separate

independent study before making valid conclusions on the

study. In order to adjust the bias due to misclassification,
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the amount of misclassification that is present in the

data must be available. One method of obtaining informa-

tion on the extent of misclassification is to compare the

results obtained by two or more measuring devices on the

same group of sampling units. Suppose an investigator

has a true and fallible measuring device to classify

sampling units into one of two categories, denoted as "0"

and "1" respectively. The fallible device is a relatively

inexpensive procedure which tends to misclassify units,

whereas the true device is a more expensive device which

is subject to no misclassification. Using only the fallible

classifier on all N units in the sample results in a biased

estimate of Tr. A better estimate of Tr could be obtained if

the true classifier were used; however, the expense of

using the true classifier on all N units may be too high.

As a compromise between these two extremes, Tenenbein (1970)

introduced a double sampling scheme for estimating from

binomial data with misclassification.

The method introduced by Tenenbein requires a true

device subject to no errors of measurement. But

experimental situations arise where there is no exact

device for measuring a true response. In some practical

situations only the respondent knows the true response. If

the response has a stigmatizing nature, estimates based

on a direct questionnaire may be biased. In this special
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situation we propose the use of a randomized response

technique to reduce the bias in estimating the population

proportion.

The randomized response technique was originally

proposed by S. L. Warner (1965). He developed a design

for estimating the proportion, IrA, of individuals with

a sensitive attribute, A, without requiring the individual

respondent to report his actual classification, whether

it be A or not A, to the interviewer. A simple random

sample of n individuals is drawn with replacement from

the population and provisions made for each person to be

interviewed. Before the interviews, each interviewer is

furnished with an identical spinner with a face marked so

that the spinner points to the letter "A" with probability

6 and to the letter "B" with probability 1-d. Then in each

interview the interviewee is asked to spin the spinner

unobserved by the interviewer and report only whether or

not the spinner points to the letter representing the group

to which the interviewee belongs. That is, the interviewee

is required only to say "yes" or "no" according to whether

or not the spinner points to the correct group, without

reporting to the interviewer the group to which the spinner

points. Under the assumption that these "yes" or "no"

reports were made truthfully, we could estimate the misclas-

sification rates by applying the technique to a subsample of

n units from a main sample of N units drawn from
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the population.

4.2 Model

Our proposed sampling technique is as follows:

(a) Take a sample of N individuals from the population and

obtain their fallible classification; (b) Take a subsample

of n units from the main sample of N units and obtain the

responses by the randomized response technique; (c) Combine

(a) and (b) to obtain estimates of the true proportion, 7

false negative rate, and false positive rate. Under the

above scheme, the data on n observations can be summarized

as
Fallible Response

Randomized "NO"

Response "YES"

("0")

("1")

"NO"

(,.0H )

"YES"

("1")

n0.

n1.

n00
n
01

n
10

n
11

n.
0

n.
1

where the probabilities for each classification are

Fallible Response

"NO" "YES"

(11011 ) ( II 1 ft )

Randomized "NO" ("0")
p00 p01

1 -

Response "YES" ("1") P
10

P
11

1-a a 1

For the N - n remaining individuals information is
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only available from the fallible measurement.

Fallible Response

"NO" "YES" Total

Frequency y X N-n

Probabilities 1-a a 1

A fallible "yes" or "no" response means belonging or not

belonging to the group under study. A randomized response

"yes" or "no" means whether or not the spinner points to

the correct group to which the respondent belongs. Thus,

for each sampling unit we define,

P (S) = Probability that the spinner points to A=6

P (S) = Probability that the spinner does not point

to A = 1 6

P (A) = Probability that the individual belongs to

Group A = 7

P (A) = Probability that the individual not belonging

to A = 1 - 7.

Let R = 1 if the sample element says "yes" for the random-

ized response

if the sample element says "no" for the random-

ized response

and F = if the sample element gives "yes" for the falli-

ble measurement

0 if the sample element gives "no" for the fallible

measurement.

Also let 6
01

= P[F = 0/A] and 610 = P[F = 1 /A]



In our previous terminology, e01 and 010 can be described

as false negative and false positive rates respectively.

Then,

A =P(R=1) = P(SnA or SAA)

= P[AnS] + p[14§]

= P (A) P (S) + P (A) P (S)

A = 76 + - 7)(1 - 6)

and PER = 0] = 1 - PER = 1] = 1 - A

= 7r(1 - 6) + (1 - 706.

The cell probabilities can be expressed in terms of the

parameters above in the following manner:

P00 = PER = 0, F = 0]

Now,

= P(R = 0, F = 0, S, A) + P(R = 0, F = 0, S,

+ P(R = 0, F = 0, S, A) + P(R = 0, F =

= P(Ai) + P(Bi) + P(Ci) + P(Di)

P (A
1

) = P(R = 0, F = 0, S, A)

= P(R = 01S,A)P(F = 01S,A)P(S)P(A)

= (0) (0
01

)67

= 0

P (B
1

) = P(R = 0, F = 0, S, A)

P(R = 01S,K)P(F = P(S)P(X)

= (1) (1 e10)6(1 ')

= 6 (1 ) (1 010)

P (ci) = P(R = 0, F = 0, S, A)

= P(R = 01S,A)P(F = 01§,A)P(S)P(A)

76



= (1)e
01

(1 6)7

= Tr(1 6)901

P(D
1

) = P(R = 0, F =

= P (R = 0/,T) P (F = 0/,27) P (S) P (K)

= (0) (1 e
10

) (1 6) (1 -

= 0

Using above four probabilities, we obtain

P
00

= 6(1 - 7)(1 - 8
10

) + 7(1 - 6)0
01

Similarly,

P
01

= 6(1 - Tr) 810 + 7T(1 6) (1
01

)

P
10

=
01

67 + (1 - 0
10

)(1 - 6) (1 - 7)

P11 (1 801) 67 (1
6) (1

71)81°

77

(2.1)

so n00, n11, n10' n11
are quadrinomial with cell probabil-

ities
P00,

P
01'

P
10

and P
11

and sample size, n, where the

P..ij 's are given by (2.1) i,j = 0,1. Also, the distribution

of X is binomial with probability a and sample size (N - n).

Since the measurements in the second sample of

(N - n) units are independent of the measurements in the

first sample of n units, we can write the joint distribution

of
n00,

n01, n10, n11, X, and Y as

L
P(n00, n01, n10, n11,

X, Y/N, n)

n
00

n
01

n
10

n
11 X=CP P P Pa(1

00 01 10 11
(2.2)



78

4.3 M.L.E. of 7, e01,
01' 10

Let us define,

y = Conditional probability that randomized

response gives "yes" when fallible response

gives "yes"

= PER = 11F = 1] = Pll
a

Y2 = Conditional probability that randomized response

gives "yes" when fallible response gives "no"

= PER = 11F = 0] = P10

1-a

so (1 yi) = PER = OIF = 1] = P01
a

and (1 y2) = PER = OIF = 0] = POO

1-a

Using the definition (2.1) becomes

P00 (1 - a) (1 - y
2

)

P
01

= (1 -y
1
)a

P10 = (1 a)Y2

(3.1)

P
11

=
1
a

so the likelihood function in (2.2) can be written in terms

of YI' 1 , a as

1.111
n
01

n10 n00 n
01+n 11+X

n n +Y00+ 10
L = C

11 (1-11)- 12 (1-12) a
(1-a)

The maximum likelihood estimators (MLE) of a, y y
2
are given

by &,
1

, Y
2
respectively, where



=
+X n

.1A ^
n
11 -

1 n
1

. '

4) = 10
'2 n.0

Note that X = y2 (1 - a) + yf4; so we can obtain X as

A ^ A

X = y
2
(1 - a) + y a

1

n1l 1 1)
X + n.

( 1
1

) +
n

n X + n.

n0
0 1

n
10

Y + n
'0)

+

n
11

X + n.
1

n.
0

n.
1
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(3.2)

(3.3)

In the estimate of A given by (3.3), the proportion of the

N units which has been classified in category "1" and "0"
X + n

.1by the fallible measuring device, namely and

Y + n
0

N
, are corrected by multiplication by the ratios

n
11 and

E
10 respectively. The former ratio is an estimate

n
.1 '0

of the proportion of randomized category "1" measurements

which are also in fallible category "1"; the latter ratio

is an estimate of the proportion of randomized category

"1" measurements which are fallible category "0." Summing

these two products of ratios yields an estimate of X.
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we get

From X= 67 + (1 - 6)(1 TI)

-

26
(1

-

-
1

6)
which in turn gives NILE of 7

as

and

or

ft

1

(1

( 1 s )

671

-

of e
01'

(1

7) 8
10

S(1

e
10

we write

810) (1

+ 7(1 -

- Tr)

810

-6)(1

6)(1

7) ]

- e
01 )]

To obtain

12 =

y
1

=

- Y
1

)

= -

26 - 1

the MLE's

[801

[6 (1

- 6 ) 7

11-

1

a

(1

801(1 -

a

6)W

a a

and I
2

(1 - TT) (1 - 6) 67

801

(1 -6)

1- a

(1 7)
e

1 -

1 - a 10



SO,

((il ( 1 - 6 ) ( 1
;);) (3 )

1 - a 011 a

001

10

(1 - 6)7 6(1 - 7)
9
01

" -

a a

r 7(1 - 6) 6(1 -
)1 -1

a a

Sir (1 -6) (1 -7)
1 - a 1 - a

(1-6)7
a
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IT) (1 - 6)
Y2 1 -

It is easily verified that the above matrix is non-singular

provided 6 1/2.

With the randomized response technique,6 1/2.

Therefore, the MLE of 7, 8
01' 10

are given by

(1 - 6)

26 - 1



-1
(1-6),R7(1-v S(1-n (1- )

a

^ (1-ft)(1-s) /)
6; (170(1 Y2 1-a ./\ 1-a 1-a

4.4 E(/4) = Ti and Asymptotic var
A A A

Lemma 1: Let Y1, Y2, a

var(ci)

var (y2)

n(1 -a)

be as (2.2). Then

Y1(1 Yi)

na

Y2(1 Y2)

var(a
A

)

all - a)

N

cov(i%1 i(s2) = cov (Y/.,&) = coy (12,(;) = 0

Lemma 2:

(a) E(X) = x where ^X is given in (3.3).

aY1(1-Y1)
(b) var ( A ) = + (I a)

n

82

(3.4)

Y2(1-12)
(Y1-Y2)

2

a(1-a)N

Lemma 3: ECsir) = 7.
1 r Yi(1-Y1)04 + 12(1-Y2) (1-0)var(;) ' +

2 L
(26-1) n

(Yi-Y2)
2
a(i-a)

Lemma I can easily be established by noting that

(4.1)
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a
2
Log L -n

11
n
01

)11.

2 2 2

Y1
(1-y1)

a
2Log L -n10 nO0

aY2
2

Y2
2

(1-y2)2

.

1
Y + n.a2Log L

X + n
0

a
2

a
2

(I-a)
2

2Logi,
2LogL a

2LogL
= 0

1
3y

2
ay 9

1
a

1
ct

and getting the inverse of the information matrix obtained

by taking expectations of the above derivatives.

Lemma 2a can be shown as follows:

We have

10 (Y) n10 n11 (X)
n11

n.
0

N n.1
IN

so E a 10\ Efy.
n
10\

n111 EIX) 11\
) n. 'N' N 'n. 'N' N

0 1

P10 (N-n) (1-a) nP
10 11 (N-n) a

nP
11

1-a
+ +

a N N

= P
10

+ P
11

To establish lemma 2b,we write 3 = aci + (1-a)i.2 = g. Since

the covariances are 0 by lemma 1, then

Sg csavar(X) = var(Y)(-- ) 2
+ var(y )(-=-)1 Sli 2 672

var()(1-i)2

(4.2)
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where the partial derivatives are evaluated at yi y2 and a

respectively.

Use of 4.2 and lemma 1 establishes lemma 2b.

^ A-(1-6)
Since Tr = , lemma 2a,b establish lemma 3.

(26-1)

To express variance of in terms of false negative

and false positive rate, let us first define:

IS

01
= P[F = OIR = 1]

10
= = 1IR = 0]

The cell probabilities of page 77 can be written as

P
00

= (1 -A) (1 -
10

)

P
01

=
10

(1 -A)

P
10

= XS
01

P
11

= A(1
01 )

Lemma 4: Let °f
l'

y2,a, A be defined as before.

Then the followina identities hold: (Proof given in Appendix

A.)

A(17x) (1-3
01 10)

2
(a) Y1(1-Y1)a + y2 (1 -Y2) (1-a) = a (1-A) 1 -

X
2
(1-A)2

(b) (y
1

y
2

)

2
a(1-a) [1 -

01 13 10
a(1-a)

where
a01

and S10 are given above.

Using Lemma 4 in (4.1),

2

a(1-a)
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2(1-X)(1-f3.
01

-13 10 )

2
X2 (1 -X )(1-

01
-13

10
)2

var(S) A(1-X)
1

}-
[1

(2(5-1)'n a(1-a)
(26-1)

2Na(1-a)

(4.3)

In order to express variance of ; in terms of the false nega-

tive rate, 6
01

,and the false positive rate, e
10'

we expressed

(1-01-1310) 7(1- 7)(25 -1)(1 -801 -810) (see Appendix A),

which in turn gives

var(
x(1A) 1 2 2

2S)

n (26-1) 2 (1-7) (1e
01
e

10
)

A(1x)a(ia)

7
22

(1-7) 2(1e
01
e

10
)

Na (1 -a)

(4.4)

Thus is an unbiased estimate of 7 with asymptotic variance

given by the expression (4.4).

4.5 Square of Correlation Coefficient between Randomized

and Fallible Measurement

Let p 2 be defined as the square of the correlation

coefficient between R and F. From the distribution of R and

F, we have E(R) = E(R 2 ), = A, E(F) = E(F
2

) = a, var(R) = ;,(1-X)

var(F) = a(1-a) and

cov(R,F)= P11
Xa

= A(1-1301 ) AC1310 (1A) + A(1-3
01

)].

2'1(1-1301)(1x) 310 (1x)1

= A(1x)(1
1301 1310)



p

2 2
X (1-X)

2
(1-.

01 10)2 (cov (R,F))
2

var(R)var(F)
a(1-a)X(1-X)

X(1-X) (1-1301-$10)
2
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a(1-a)

By definition p 2 measures the strength of the relationship

between randomized and fallible measurements and 0 < p
2

< 1.

asWe can write

var(7r) =

the

"1-A)

var(7) from

(1 p2)

(1-p
2

)

equation (4.4)

2
+

(2

16:.)

(26-1)-n

X(1-X)
[k

1) N
p

2

+
2_

I
2

(25-1)

Thus, the asymptotic variance of 7 is the weighted average

of:

a. the variance of a binomial estimate of Tr based

on n randomized measurements and

b. the variance of a binomial estimate of Tr based

on N randomized measurements.

4.6 Soecial Cases for p 2 = 0,1

(a) When p2 = 0, var(;) = 1 X(1-X) which

(26-1) 2

can be expressed as the sum of the variance due to sampling

and variance due to randomized device as follows:

Note, A = 76 + (1-6)(1-7)

(1-X) = 7(1-6) + (5(1-ff)
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so, x(1-X) = [76 + (1-6)(1-7)1[7(1-6) + 6(1-7)

when p 2
=

var( 1)

= 7
26(1-6) + 7(1-7)6

2 + 7(1-7)(1-6)

+ (1-7) 2
6(1-6)

= 476
2

- 46
2
7
2

+ 47x26 + 7 6 - 467

= 26
2
(-27

2 + 27 1/2) 26(-27
2

+ 27

+ 1/2(-272 + 27 - + 4

= 4 + (262 - 26 + 1/2) (-27
2 + 27 1/2)

0,

4
+ (262 - 26 + 1/2) (-272 + 27 - 1/2)

2

- 6
2

1/2)

+ 7

- 7
2

- 11)

4(5-1/2)2n

1
(6-1/2)

-2 2(5
2

- 6 + 4)2(-7 2

+
16n

4(6-11)
2
n

1
2

-2 (7-1/2)
(S- 2)

16n
n

E 1
(7-1/2)

2
In 16(6-1)2

2

1 1

2

7(1-7)

16(6-1/2)

which equals the variance due to randomized device plus

variance due to sampling. p
2 = 0 implies the precision in

the estimate of 7, which is attained by using the proposed

sampling scheme, is no better than the precision of a



88

binomial estimate based on n randomized measurements only.

N-n additional fallible measurements do not yield any

additional information concerning 1r and false negative and

false positive rates. This is to be expected as the

fallible and randomized measurements on a given unit are un-

correlated.

(b) When p2 = 1, var(IT)
(28-1)

2N

A (1 -A)

1

16(5-1/2)
2 4

1-(1-1.)

N N

That is, in the case p 2 = 1, we obtain the same precision on

N fallible measurements as compared to a binomial estimate

of Tr based on N randomized measurements, since fallible

measurements are as good as randomized measurements.

Moreover, it is to be noted that var(;) is a de-

creasing function of p 2 which can be seen as follows:

var(7)
A(1-A) 1 1

[(1-p
2

) + p2.1
(26-1)

w

A(1-A) 1 1 1

) 1°

2

1

(25-1)
/

A(1-A) A(1-A)
2

(

1
p2
2

n(25-1) (26-1)
2 N

For fixed n, N with n < N, (N 1)p
2 is negative which

N n

establishes the above proposition.

Therefore, when p 2 .>0 and since n<N, the subsampling
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scheme (randomized device on subsample) is more efficient

than the randomized response on n observations alone when

the cost of N fallible measurements is not considered

(approximately the case when the total sample of misclassi-

fied responses is already available on file).

The efficiency of the randomized response on n

observations only with respect to the randomized response

on subsampling is given by

E
R

) n,N
- p

2
(1 -

var(;
R

)

n

However, p 2 is a function of and 6. In any specific

problem the probability of biased estimates from randomized

responses should be considered too. The researcher may

make a decision based on an appropriate pilot study as to

which course of action should be taken: (i) use only

fallible responses or (ii) use the subsampling scheme with

randomization device on a subsample. Such a decision will be

based on best guesses of cost, error rates, Tr, bias in the

randomized response estimator, and S.

4.7 Sample Size Determination

To develop criteria for selecting n and N, we must

have an idea as to the cost of measurement; this will cer-

tainly be a consideration for determining the sample sizes.

We assume that the total cost of measurements, defined as C,
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is a linear function of n and N. That is, C = Cln + C2N =

Cln + C2(n + m), where C1 = cost of obtaining one randomized

measurement, C2 = cost of obtaining one fallible measurement,

and m = N-n.

In practice two situations may arise. An investi-

gator might have a certain budget Co for measurement costs

and he might choose n and N to minimize the variance of

estimator, or he might want to obtain a given precision of

the estimator, vo, at minimum cost. We can state these two

different situations in the following manner.

A. Fixed Cost

We choose n and N to minimize v(7) = A(1."")1)

2
[
1

n (1-p
2

)

(26-l)

1 2,
+ _1 subject to C

1
n + C

2
(n + m) = C

o
.

B. Fixed Variance

We choose n and N to minimize Cln + C
2
(n + m)

subject to v(;) = "1-X) [1 (i_p21 1
P
2i

vo.
(25 -1)

2 n

Special Cases

(i) When p2 = 0, we have mentioned earlier that

additional m fallible measurements do not yield any additional

information concerning
7' 1301'

and a10, which implies that

Cln + C2n = Co since m = 0, i.e.

C
o

n
Cl + C

2
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In this situation both fallible and randomized measurements

are taken on n units.

(ii) When p
2
= 1, we obtain the same precision on

N fallible measurements as compared to the binomial estimate

of 7 based on N randomized measurements. So randomization

on subsampling is not necessary in terms of the precision

of the estimate and cost.

(iii) When 0 < Tr

2
<1 both of these problems can

be solved by the method of undetermined multipliers. The

solutions are given in the following tabulations.

Optimum values of n and N

Fixed Cost Problem Fixed Variance Problem

C R f0 c A ,7
n n = [(1-p

2 + p 2
z

C
1

1+R
c
f

nn
a

P2
C
o

nc
1

N
N = n-n

a
(1-P

2
)

C
2 A

n
a

Xwhere R
c

=
Cl

A = (1-X )

(V-1) 2

f =
1 - p

2 1/2

2
p Cl

C
2
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C
1
= Cost for obtaining one randomized

measurement

C
2
= Cost for obtaining one fallible measure-

ment

C
o
= Total budget for measurement costs

v
o
= Given precision of the estimate

To apply the preceding optimum formulae, the

square of the correlation coefficient, P 2
, must be known.

But p2 depends on X, a, and the probabilities of misclas-

sifications. Thus, n and N cannot be determined exactly

in advance.

One method of obtaining estimates of n and N is to

take a pilot sample of k units and obtain the fallible and

randomized responses for each of the k units. Estimates of

X, a,
01'

and 310 can be obtained and then n and N can be

determined using the estimate of the square of the correla-

tion coefficient between randomized and fallible measurements.

The problem of these methods is the choice of initial sample

size k. On one hand k should be sufficiently large so that

reasonable estimates of x
01' 10

and a can be obtained.

On the other hand, if k is chosen too large, we run the risk

of too many randomized measurements. This problem is not
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studied here and is subject to further research in this

area.



94

CHAPTER V

GENERAL CONCLUSIONS AND COMMENTS

One of the strong motivations for the study reported

in this thesis was to determine how serious a problem

misclassification presents to the analysis of data in

research. The presence of misclassification may be adjusted

for in analysis if the error rates are known in the two

samples of the fourfold table. But the rates are often

unknown and the rates often vary from study to study making

it very doubtful that a rate known from one study would be

applicable to a different sets of circumstances. The

situation in which error rates are unequal and vary from

study to study is very realistic. For example, these rates

vary on screening tests with age and religion for circumci

sion status, with sex and race for syphilis, with sex for

rheumatism and with sex for tuberculin sensitivity. Thus

in practice the niceties of the Bross' model do not apply

and the situation is in fact much more complicated.

For the range of 7 common to epidemiologic research,

and for error rates chosen from practice, we have attempted

to provide a table which shows the change in the nominal sig-

nificance level and power of the usual tests when the data in

a fourfold table are analyzed under the assumption that no
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misclassification errors are present, and under various

assumptions about the error structure.

For the exact significance test in the fourfold

table, i.e., Fisher's exact test of the null hypothesis

1-1071 = 72 versus the alternative H/ : l> 72, the nominal

level a which is set for the no-misclassification case is

inflated if sbi>(p2 and deflated if (1)1 < The magnitude

of the difference between the two false positive rates

determines the extent of the change over the nominal level.

The effects of the false positive rates are reversed for

H1 : 71<72. The trends for the power of this one sided test

are similar.

For the two sided test of H
0

: 7
1

= 7
2 against 1-11 :

7172, the level increases over the nominal level a of the

Fisher's exact test. The power associated with this two

sided test generally decreases from that associated with the

alternative without misclassification for fixed level.

We have shown that the presence of misclassification,

even if it is small, can have substantial effects on estima-

tion of parameters as well as on significance level. The

discussions in Chapter 2 lead us to the awareness of the

importance of estimating the error rates in a particular

study. Since those error rates are quite varying in nature,

it is necessary to estimate these error rates in each

separate independent study wherever its presence is

suspected before continuing the research on large scale.
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We have proposed the randomized response technique

as a useful approach to estimate the error rates and the

prevalence rate, Tr , in certain types of studies. An

unbiased estimate of Tr was given with a method for the

estimation of variance of Tr. Formulae for sample size

determinations for fixed cost and fixed variance were given.

We may therefore come to some general conclusions

about the effects of misclassification on the analysis of

2 x 2 tables. The false positive rates have more effect

on the estimation of parameters as well as on hypothesis

testing than false negative rates suggesting that attention

is better paid to eliminating false positives than false

negatives in a study. The test becomes more stable against

errors of measurement as the null hypothesis approaches

0.5 since this value of Tr is most stable against the bias

produced by the errors.

In medical screening, in many situations e is larger

than c; however, often the false positive rates are larger.

If the error rates are large enough, it might no longer be

suitable to perform analysis on a study before giving a

closer look to the misclagsification present in the data.

It is far more important to spend fixed sums of money on

reducing error rates, than on increasing sample sizes. This

may be an advantage to the investigator in preventing him

from doing research from which no legitimate conclusions

may be drawn.
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Our proposed randomized response procedure is use-

ful for practical situations where there is no exact device

for measuring a true response. Of course, the randomized

response technique is not free from bias and we suggest to

use the double sampling scheme proposed by Tenenbien if a

true device of measurement is possible. For future study,

our proposed randomized response technique can be extended

to multinomial data with misclassification or one can

perform a comparative study of different randomized response

designs to estimate error rates and proportions.
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APPENDIX A

(All notations used here are defined as in the text.)

(i) Show yi(1 - yi)a + y2 (1 - a ) (i cc ) = x (1 - A)

A (1 -2) (1
-1301 1.0)2 )

a(1 - a)
We have y/(1 - yi) + 12(1 - y2) (1 -a)

P
11
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01

P P
10 00

a 1-a
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11
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1
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a
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10

Y2 1-a
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1-y =
2 1-a

P00

x(1-501) 510(1 -x) AN) (1-A)(1-10)

a 1-a
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01 10
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01

(1-X)(1-810)a

a(1-a)
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APPENDIX B
Table 1

V- .0 5 10

ElX/N)=PI(1.THETA14(1...PI1PNI

P= .10

THETA
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3 .100100 .095060 .090000 .085330 .080660----.05
.145000---0140000----..135000---.130000---.125000.14 .19003 .185400 .180000 .175300 .170600.15 .23504) .230006 .225000 .223300. .215600
.280000---.275600---:270400----i.265000---0260060.50 .550300 .545000 .540000 .535003 .533060.75 .775000 .770000 .765000 .760306 .755000

84-7---i820000 .815000 .810000 .805000 .800000
.90 .910030 .965606 .900000 .895003 .890000.95 .955000 .950004 .945000 .943300 .935000

.99500V---.9900110 :185003 .980000
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.50 .75 .80 .90

.050000 .025003 .320300 .010000
---.095000 -.070003- .565300 .055340

.140006 .115000 .114300 .104600

.185003 .160000 .155000 .145000

.500000 .475000. .470030 .460000

.725006 .700030 .695000 .685000

.770000 .745001 .740000 .730403-

.860000 .835000 .830000 .820600

.905000 .840000 .875000 .865000
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.005000

.050000 .045000

.095060 .090330
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0105000 .900030

G .309030 .608598 .008190 .4131778 .007360 .004756 .002438 .001966 .003993 .000497 0.05-------;012398- -00 12040 -.0/1677Th 01/310 .013937- .008598 .006513 .006377 .005197 .004750 .004216.113- .015390 .015078 .014760 .014437 .014110 .012046 .010177 .609790 .009000 .000597 .008190.15 .017978 .017710 .017438 .017160 .016878 .015078 .013440 .013098 .012398 .012040 .011678.620163 .619938 .019710 .019477-.319240 .017710 .016298 .016006 .015390 .015078 .014760.50 .024750 .024798 .024840 .024878 .024910 .025000 .024938 .024910 .024840 .024798 .024750.75 .017438 .017710 .017978 .018240 .018498 .019938 .021030 .021198 .021578 .621760 .021937.80 .4.1476T-0015077 .4/5390 .015697 .016000 .017710 .018997- .019240 .019713 .019937 .020160.90 .008190 .068597 .009600 .009397 .039790 .012u40 .013777 .014110 .014760 .015077 .015390.95 .004297 .404750 .005197 .605640 .006077 .008597 .010560 .016937 .011677 .012044 .012397a .1131497 70-001994- .001477- s011960- 0064750 .006938 :067360- .008190 .1108598 0009000
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Table 2

P= .20

THETA

.05 .15 .5C .75 .80 .90 -.95PHI 4 1.00

0 .200000 .190000 .180000 .170300 .160600 .100000 .050000 .040000 .020300 .010000 0
.05 .240300- .230000 -.220000 .213000 .200000 .140000- .090000 .080000 -.060300 .050C40 .040000
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.20 .360300 .350000 .34000J .330000-"-.320000 .260300 .210300-- .20001)0 -.180100 --.170000 -.160000
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VARIANCE OF X/N

0 .016000 .015390 .014760 .014116 .013440 .669001 .004750 .063840 .001960 .010990 a
.018244---.0177017160-- .01659C- .0161.00- .112340 .108190 .007360-- .005640-- .004750 .003840

.10 .024160 .319710 .319240 .018756 .018240 .0 14760 .011310 .011.560 .039004 .3081'40 .007360.15 .021760 .021390 .021300 .020590 .020160 .017160 .014110 .013440 .012040 .011310 .010560
---.0233.40 -.3 22750 .022443 .022110 .021760 .019240 .016590 .016000 .014760 .014113 .013440

.50 .024000 .024193 .324361 .024510 .024640 .02500a .024754 .024640 .024360 .024190 .024300.75 .016000 .01659U .017160 o017710 .018240 .621000 .022750 .023040 .023560 .023790 .024000
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Table 3

P= .30

THETA

--PHI 0 .05 .10 .15 .20 .50 :75 .80 -.10 95 -1.00

0 .300000 .285000 .210000 .255006 .244000 .150006 .075000 .060000 .030000 .015460 0

.335aao---;320ccum305000---.290000 '.275000 '.185000----.110000 --.095000---.065000---.050000---.035000
.G5
.10 .370033 .355000 .340040 .32540) .316060 .220306 .145400 '1u000 .106300 .485000 .070000

.15 .445330 .390000 .375000 .360000. .345000 .255000 .180300 .165003 .135404. .124060 .105440

.380000 .290004 --.21533W---.200000----.170000---.155040-.14,4000
----.2a .44033J .-4250d0---.410000 .395000

.50 .654300 .635040 .620000 .665006 .590000 .500030 .425000 .410000 .386000 .365000 .350030

.75 .825300 .81006G .795000 .780000 .765060 .675000 .600030 .585400 .555000 .540400 .525000

.80 .860030 :145000----.830403- .815300- .800000 .710004 7--.635000- .626000 .590000 .57500D .560000

.90 .930300 .915044 .904000 .885300 .876600 .780406 .705040 .690400 .660000 .645040 .630000

.95 .965000 .950000 .93500Z .920300 .905000 .815060 .740000 .725000 .695000 .6800150 .665000

:W50134-7970000- :455000 .940UG0 .850000 .775003 .76G000 .730000----.715000-

VARIANCE OF X/N

0 .021000 .020378 .019714 .018998 .018240 .012754 .006938 .045640 .002910 .001477 0

.020593 .019937 .015078 .009790 .048597 .006077 .004750 .003377
.05 .022278 .021760 .321197
.10 .023310 .022897 .022440 .021937 .021390 .017166 .012397 .011310 .009300 .0077'7 .006510

.15 .024)97 .023790 .023437 .023343 .022597 .018997 .014760 .013777 .011677 .010560 .009397

.024438 .020590 .016877 .016400 :014110 ---.013097
.20 .324640- .024193 -.023898 ".023560 .012040

.5G .022750 .623177 .023560 .023898 .024190 .025000 .024437 002419G .023564 .023177 .022750

.75 .414437 .015390 .016297 .017160 .017977 .021937 .0241500 .024277 .024697 .024840 .024937

.0 13097-.0141/0 .015077---.016000-.020590- .023177 .023560 .024190 .024437 .024640

.90 .036510 .0:17777 .009040 .010177 .011310 .017164 .020797 .021390 .022440 .022897 .023310

.95 .003377 .034750 .006077 .007360 .008597 .015077 .019240 .019937 .021197 .021760 .022277

.0-01477---7002910 ---.0174-38----0011240
1.011 .004298 .005640-:012750 .019710 .102-0-377---0121000
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Table 5

P= .45

THETA
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.15 .532530 .510060 .487500 .465000 .442503 .307500 .195400 .17250C .127500 .105000 .082500
.26 .560000----i537500 .515000 .49260u .476E100- .335000 .222560 .266000" .155000 .132504 .110000
.50 .725000 .762500 .686000 .657500 .635000 .500003 .387560 .365000 .326100 .297500 .275000
.75 .862503 .840060 .817530 .795000 .772500 .637500 .525300 .562500 .457500 .435033 .412500

.890000 .867500 .845000 .822504 .800000 .665400- .552500- .530000 .485004-.462500- .440600
.90 .945300 .922500 .900000 .877500 .855300 .720000 .607500 .585000 .546000 .517566 .495000
.95 .972540 .950000 .927530 .905006 .882530 .747500 .635003 .612503 .567500 .545000 .522530

.977500
:775300 .662500

---1 i0 1.400400 ;955000- .93250G .910000"
:64t000- "":595000- .572500 .550000

VARIANCE OF X/N

0 .C24750 .324474 .024097 .023619 .023140 .017437 .009984 .008190 .004297 .002194) 0
7----;115----;1224949----;024797---.024544

.018874 -.012040 .016369 .006724 .054750 ---.002674
-.C24194-.023734-10 .024997 .624969 .024840 .424609 .024277 .020166 .013944 .012397 .009140 .347149 .035197

.15 .024894 .024996 .024984 .024677 .424669
--.022277

.021294 .015697 .014274 .011124 .009397 .007569
.2C .1424640- .024859_".024977 .624994 .024910 .017299 .016400-- .013C97---.011494-.039790
.50 .019937 .020899 .321760 .022519' .023177 .025406 .023734 .023177 .021763 .020899 .019937
.75 .011859 .013444 .014919 .616297 .017574 .023109 .024937 .024999 .024819 .024577 .024234
.84- .089790 ;1111494 .013C9T .014599- .016000 .022277 .024724 .024910 ".024977' .024859 .024640
.90 .005197 .007149 .009600 .010749 .012397 .020166 .023844 .024277 .024840 .024969 .024997

, .95 .002674 .004756 .006724 .008597 .010369 .018874 .023177 .023734 .024544 .024797 .024949.002199--7004290 .108190 .017437 .022359
.123040----.024,397----.024474

1.00 0
.006294-

.024750--

H
to
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Table 6

.75 .80

P= .55

.2C .50 -.90.05

THETA

---pHr a- .10 .15 .95 -1.00

0 .554000 .522560 .495600 .467500 .440060 .275000 .137500 .110300 .055003 .027500 0

4;25--4,-572530 --.545000-.517540 -,11 493003 -.462500 T.297504 166000 .4,132506---:077500---:050000---.022500
.10 .595300 .567500 .540060 .512560 .485600 .320000 .182500 .155000 .106030 .072500 .045030
.15"'20 .617530 .590006 .562500 .535300 .507500 .342500 .205300 .177560 .122560 .095000 .067500

----;117507--;090000646300 6 1256-V:585400-o 557500----.130006 .236000---.145a00
.50 .775000 .747540 .720000 .692500 .665000 .500000 .362500 .335000 .286000 .252500 .225000
.75 .887500 .860460 .832500 .865000 .777500 .612500 4,475300 .447500 .392500 .365060 .337500

.80 .910000 .882500 .855000- .8275001 .800060- .635000 .497503- .470000 .415000 .387500-Th360600

.90 .955300 .927500 .9456600 .872500 .845600 .680000 .542500 .515000 .460304 .432500 .405000

.95 .977500 .950006 .922560 .895000 .867500 .702560 .565000 .537500 .482500
-.505000

.455000 .427500

1.00*17020320-3-972500-.945020 .917500 .890060 .725000 .187500 .562000" .477100---74-450000

VARIANCE OF X/N

0 .024750 .024949 .024997 .024894 .024640 .019937 .011859 .069794 .005197 .002674 0

.05 .024474- .024797- .024969 .024990 .024859 .020899 .013440 .011494 .007149 .004750 .002199

.1C .624397 .624544 .024840 .024984 .024977 .021760 .014919 .013097 4,009300 .406724 .004297

.15 .023619 .624190 .024609 .624877 .024994 .022519 .016297 .014599 .010749 .608597 .006294

.20-----4423143 .023734 .024277 .024669 .024910 4023177 .017574 .016006 .012397--.C10369---.008190

.50 .017437 .018874 .020160 .021294 .022277 .025000 .023109 .022277 .026160 .018874 .017437

.75 .009984 .012040 .013944 .015697 .017299 .023734 .024937 .024724 .023844 .023177 .022359

.86 .008190" .413369' s01239l- .014274 .316000' .023177 .024999 .024910 .024277 .023734 .023040

.90 .004297 41066724 .009600 .011124 .013097 .021760 .024819 .024977 .024840 .024544 .024097

.95 .002199 .044750 .007149 .009397 .011494 .020899 .024577 .024859 .024969 .024797 .024474

"i. 762674 --74-05198---w007569 .00979001993T024234024643 .024497-424949-42475a



Table 7

ElX/N)=PI(1.THETA)t11...PIPNI

.75

P= .6G

THETA

.80 ---/.00"-PHI a .13 .15 i2C .50 .90 .95

.600000 .570000 .540000 .510000 .480000 .340000 .150000 .120000 .060000 .030000 0

.500000 .320000 .170401 .14E040 .383300-.05 --.620' Jo3 .590301 .560000 .530000 .050000 .020000

.10 .640300 .610000 .586060 .550440 .520100 .340306 .190300 .160004 .100600 .070000 .040010

.15 .660330 .633000 .600003 .570000 .540000 .360300 .210000 .180000 .120004 .090000 .060100
.680100 .650000' .620000 .590003 .560000 .38000C .230000- .200000-Th146000 .110000 .080000

.53 .800000 .771000 .740000 .710000 .684000 .500000 .350000 .320300 .260000 .230000 .200000

.75 .900000 .870000 .840000 .810000 .780000 .600000 .450001 .420000 .360000 .330000 .300000

.80 .92000-:890040- :860000 ---.834003 .800000- ----.620000---.470000 .440000 .380300 .350000- .320000

.90 .960000 .930000 .900000 .870000 .840000 .660000 .510000 .480000 .420000 .390000 .360000

.95 .980000 .950000 .920000 .890000 .860000 .683000 .530000 .500300 .440000 .410000 .780000
.100000---.550000-.520000 .400000-15;00 -1.000-000----:9700VT---4140000-:910300 `.880000 .460000-A30000

VARIANCE OF X/N

0 .02430J .624510 .024840 .024990 .024960 .021006 .012753 .016560 .035640 .032910 0

0323560 ;024190 .024E4J .024910 .325000 0021760 .014110 .012143 .007360 .004756 .00196005:

.10 .023440 .1123790 .024360 .024750 .02496J .022440 .415394 .013440 .009000 .406510 .003840

.15 .022440 .023310 .024000 .02.310 .024840 .023440 .316590 .014760 .010560 .038190 .005640
--.;23----7.021760---;022750 ---.023563 .024194 .024E40 .023560 .0177/0 .016000 .012040 .009790 .007360
.50 .016100 .017710 .019240 .020590 .021760 .025000 .022750 .021760 .019240 .017710 .016000
.75 .019333 .011310 .013440 .015393 .017160 , .0240410 .024753 .024360 .023040 .022110 .021300

.016000 .023560 .024910 .024640 .023560.80 .047160- .0V9790 .012040 .C14113 .022750 .021760
.90 .003840 0016510 .009000 0011310 .013440 .022440 .024990 .024960 .024360 .023790 .023340
.95 .001960 .004750 .007360 .039796 .012040 .021760 .324913 .025040 .024643 .324196 .023560

.004190- .010560 .021000 .024750 X02411001.00- -V ii-0-029110-- .-005640- .024960 .024844 :024510



E II X/ N)=PI (1THETA) (1PI)PHI

P= .80

3

.833300

.820333
.15 .830000

----;20 .84000a
.54 .930000
.75' .950000
.80- .960303
.96 .980343
.95 .990000

.0 .416 003
5-.415390

.10 .014760

.15 0141.10
20- .013443
.50 .309300
.75 .034750
.80 .003840
.90 .001960
.95 .000990

1.00 0

Table 8

THETA

:75.05 .13 .15 .20 .5 C .8C ---.90 .95 --1.00

760000 .720000 .68000) .640303 .403000 .20.1000 160000 0086603 .040003

690000-.65C 300 -. 413000 -.2103 03- .170000 .090400 ---.050000 iaoacr
773300 ---.730003----.

.783000 .740030 703000 .660000 .420300 .220600 180000 .100300 .060000 .020000

.790640 .750003 710300 .673000 .433000 .230300 .193300 110003 .070000 .030030

.760000 ---i7200or ;2400 00 -.120000-.08000G
.84,3060 .680000 .440000 200000 --.040000

.860000 .820043 .784044 .740000 .500000 .360000 .260000 .184000 .140000 .100000

.910000 .873000 830306 .190060 .550300 .350000 .310000 .230000 .190000
-.200000.

.150000

.920300- :880000"'-:843000 sou COO .563000 .360000 ;32000G .240000- ----.160004-

.940030 .900003 .860300 .82u000 .580000 .380030 .340000 .260600 .220000 .183000

.950000 .910000 .870000 .830000 .590000 .390000 .350300 .270300 .230000 .190000

---.600006 -.400000- ----3600043- -.280000- ---.240CG0*
.980000 20000-47880000---.840000

---.24010011

VARIANCE OF K/N

.01824u 0 20 163 021760 .023040 24000 .3 16000 .013440 .007360 .303843 0

0 177/0---319710- .021393 -.022750 .024190 .016590 .014110 .008/90 .00475C .0043990

.0 17164 .019243 0 210 00 .322440 .024360 .017160 .014760 009600 .005640 .001960

.016590 .018750 020590 .022110 .024510 .017710 0 15390 .009790 .006516 .0 32910

.C16000 .018240 023160 .021760 024640 .018243 .016000 .010560 .007360 .033840

.012040 .014760 .017160 .319243 .025000 .021000 .019240 .014760 .612046 .009000

.00819u .011310 ovato .016 590 24754 .0227 50 .021390 .017710 .015390 .012750

. 0 u 7 3 6 0 ' : 3 1 6 5 6 0 : 0 1 3 4 4 0 016004- .024646 .0 230 40 .421760---.018240---.016000
.05640 009000 012640 .014760 .024360 0323560 .022448 .019240 .017160 .014760

.004750 .008190 011310 .014110 .024190 .023790 .022750 .019710 .017710 .015390

.1107360-7,010560- -W023040----.020161----i0/82411
03840 .013440 024000-- .0 243 013-- .016000



Tab le

EfX/NI=PI(1THETA14(1..PI1PHI

P= .90

THETA

.20 .50 ----.75 .80 -.95--PHI 0 .05 .10 .15

G .903000 .855000 .810300 .765000 .720000 .450300 .225446 .180000 .094300 .045060 0

-.005000----:05 :905001- .863003 .815060- .770440 .725000 .455000 .230000 .185000 .095000' .050600

.10 .916000 .865660 .820000 .775006 .730000 .460000 .235004 .190060 .100000 .055600 .010000

.15 .915440 .870046 .825030 .780034 .735030 .465000 .243400 .195000 .105400 .066060 .015000
-.020000.830000 .470003 .245004 .203000 --.110000-- .065004----.20 .920000-Th875000 .785003 .740040

.50 .950100 .905004 .860630 .815066 .770000 .500000 .275004 .236400 .140000 .095000 .050000

.75 .975000 .934600 .885334 .840000 .795000 .525606 .300000 .255560 .165000 .120030 .075000
90000 .845000 .800000 .530000 *.305004 .260030 .170400- .125300-.84 .983030:935000 .080000

.93 .993040 .945300 .900000 .855000 .810000 .540000 .315400 .270000 .180000 .13500G .0904100

.95 .995000 .950030 .905600 .860000 .815000 .545000 .320000 .2751100 .185000 .140060 4495000
----.1000001:000000 .865006 .820000 .550006 .325000 .2860001.01- :190000 .145000

VARIANCE OF X/N

0 .009000 .012397 .015390 .017977 .020163 .024753 .017438 .014760 .008190 .004297 0

.05------.038597---0412043---.015077----.417710 Th019937-.024797 --.017714 .015077 .008597---.004750---.000497

.16 .00819) .611677 .014760 .017437 .019710 .024846 .017977 .015390 .009404 .005197 .004990

.15 .307777 .311313 '.014437 .017160 .419477 .024(78 .018240 .015697 .009397 .005640 .001477
-----.20--.0'37363 .019240 .024910 118497 .016404-----.0.10937 --.014110 .016877- .009790 .606677 .001960

.50 .004750 .008597 .012340 .015377 , .017710 .625406 .019937 .017710 .012040 .008597 .004750

.75 .032437 .006513 .016177 .613444 .016297 .024937 .021030 .018997 .013777 .010560 .006937
-:83 .00-1960 .066077 .009793 .013097 .016000- .024910 .021197 .019240 .014110 .010937 .007360
.90 .000990 .005197 .049000 .012397 .015390 .024840 .021577 .019710 .014760 .611677 .008190
.95 .000497 .044750 .008597 .012440 .015077 .024797 .021760 .019937 .015077 .012340

-----.009000
.008597

1.00 0 .004296-----:108190 .011678 :014760 .024750 .021937 .023160 .015390 .1112397


