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MOVEMENT OF POPULATIONS IN
RES TRIC TED REGIONS

I. HISTORICAL INTRODUCTION

Thomas Malthus (1766-1834), in his three volume: Essay on the

Principles of Population, 1798, coined the fundamental idea that

population, when unchecked, grows exponentially. In Malthus' own

words, "It goes on doubling itself at regular intervals, or increases

in a geometrical ratio. " Malthus noted in Volume I of his work that in

the town of Berne, out of 487 notable families, 379 became extinct in

the span of two centuries, from 1583 to 1783. That is, while the

population as a whole showed rapid growth, individual family lines

tended to extinction. The theory of branching processes may be said

to have had its birth from the realization that such paradoxes are not

just the result of some extraordinary circumstances.

The French statistician L. F. Benoiston de Chateauneuf (1776-

1856) had studied noble families founded in the tenth to the twelfth

centuries and estimated their duration to be three hundred years.

Another Frenchman, I. J. Bienayme (1796-1878) treated the problem

mathematically and seems to have been able to determine the correct

relationship between the probability of a family's extinction and the

mean number of male children per father.
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The real credit for the formulation of the problem belongs to

Sir Francis Galton (1822-1911), a cousin of the famous Charles

Darwin, who studied the decline of English nobility. Galton stated the

problem of the extinction of families in the "Educational Times, "

1873, as follows:

Problem 4001: A large nation, of whom we will
concern ourselves with the adult males, N in number, and
who each bear separate surnames, colonize a district.
Their law of population is such that in each generation, a0
per cent of the adult males have no male children who reach
adult life; al have one such male child; a2 have two; and so
on up to a5 who have five. Find (1) what proportion of the
surnames will have become extinct after r generations; and
(2) how many instances there will be of the same surname
being held by n persons.

When Galton received no adequate answers to his publication he

sought out his friend, the clergyman and mathematician Rev. H. W.

Watson. Because of an algebraic oversight Watson failed to solve the

problem entirely correctly. He managed, however, to transform the

problem into one of iteration of generating functions similar to the

way it is still treated today. The mathematical model formulated by

Galton and Watson has become appropriately known as the Galton-

Watson branching process.

The problem remained dormant for half a century until 1922

when R. A. Fisher introduced Galton's problem into population

genetics and the survival of mutant genes. Five years later, J. B. S.

Haldane (1892-1964), the biochemist, psychologist, geneticist,



3

biomathematician, and political publicist again applied the model to

genetics and solved Fisher's problem.

The first complete and correct determination of the extinction

probability for the Galton-Watson process was submitted by J. F.

Steffensen, a Danish actuary, in 1930. The problem was also handled

by the Russian A. N. Kolmogorov who, in 1938, determined the

asymptotic form of the probability that a family will still exist after a

very large finite number of generations.

While in general, populations are much more complex than the

problem of Galton, in the beginning

branching processes were thus tightly interwoven with
demographic considerations. The main stream of
demography, however, for obvious reasons, was less con-
cerned with family extinction than with properties of entire
populations, like growth and composition. The founders of
modern demography were empirical scientists. They
measured frequencies of birth and death, evaluated ratios
of births to marriages, and constructed the first life tables
[1, p. 3].

The idea was to search out consistencies in order to predict future

population.

One of these demographers was the clergyman Johann Peter

Si.issmilch (1707-1767) who was of the opinion that the universe was

divinely ordered in a mathematical sense. Siissmilch, a friend of

Leonhard Euler, on occasion sought the help of the famous mathe

matician. It was thus that Euler came to lay the groundwork for what

is today known as the "stable population theory. Euler formulated
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the principle of exponential growth in his Introductio in analysin

infinitorum (1748) and concluded that:

For that reason are the objections of these incredulous
men, who deny that in such a short space of time the whole
earth could have been filled with inhabitants descending
from one man, utterly ridiculous.

Euler treated homogeneous asexually reproducing populations

and showed that a

hypothetical closed population with a given time invariant
age specific mortality and fertility and a constant rate of
(i. e. exponential) increase must have a fixed age distribu-
tion [1, p. 4].

He was thus concerned with the relationship between age structure

and fertility-mortality.

Euler's work in this field also was neglected for more than half

a century until 1839 when it was again taken up by Ludwig Moser

ICZnigsberg who applied it to his studies of the populations of the

United States and France. After KOnigsberg, the door seems to have

been opened and many men followed suit in taking up the idea. Such

men as the great Belgian statistician Adolphe Que.telet (1796-1874)

and the important work of the two actuaries Alfred Lotka (1880-1949)

and L. Herbelot who share credit for the modern stable population

theory were some of the more important of these men.

Thus, it came to be that in the early twentieth century there

were two schools of thought concerning problems of population develop-

ment. One was the Galton-Watson branching process, which
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considered the fate of individual family lines in a growing population

and was of a probabilistic nature. The other was the Euler -Lotka

stable population theory.

Slowly but surely, as more and more complex branching

models were considered, the two views came together. The

coalescence of the two theories was brought about by many great

names of modern mathematics.

Some of these men were George Yule (1871-1951), W. H. Furry

(1907- ) and William Feller (1906-1970) working with "continuous

time processes of a birth-and-death type" [1, p. 5]. And so it was

about this time (1926) that Vito Volterra (1860-1940), then professor

at the University of Rome, began his investigation of competing

species. Volterra's work is of particular importance to the writing

of this paper and thus deserves more careful consideration.

Volterra's friend U. D'Ancona had made a statistical analysis of

the fish being caught in the Adriatic Sea. Evidently, there was a

periodic flux between plentiful food fish followed by an increase in

predators such as sharks and rays which in turn brought a decline to

the food fish population, then a decline in predators due to lack of

food so that again the food fish flourished, and so on.

This phenomenon was described by Volterra's pair of differen-

tial equations [5, p. 7]:



dN1

dt
= a

1
N1 X

1
N

1
N2

dN2

dt
= -a

2
N2 ± X

2
N

1
N2

where a
i

and X. are positive constants so that -X1N1N2 gives

the loss rate of small fish (prey) due to "collisions" with larger ones

(pr edator s), and X 2N1
N2 gives the growth rate of the larger fish

6

as a result of the same collisions. Here species 1 would describe the

usual Malthusian exponential growth in the absence of species 2,

while species 2 would die out in the absence of species 1.

The work of these men and their continuous time processes was

brought to a head and summed up by David Kendall in his book,

Stochastic Processes and Population Growth (1949).

On the other hand, the Galton-Walton process was being genera-

lized by such investigators as Richard Bellman and Theodore Harris.

After 1940, interest in the model increased, partly because
of the analogy between the growth of families and nuclear
chain reactions, and partly because of the increased general
interest in applications of probability theory [4, p. 2].

In 1963, Harris's book, The Theory of Branching Processes,

summed up the whole train of thought and laid the basis for further

research and more rapid progress.
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Introductory Summary of Thesis

The usual formulation of the equations governing the growth of

populations leads to a system of ordinary differential equations for the

total population of the specie or species in question. Consequently,

the predictions are global, if natural and local variations in the

populations are neglected. The purpose of this paper is to derive a

partial differential equation governing the population density and then

to apply the results to a few simple examples.
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II. DERIVATION OF PARTIAL DIFFERENTIAL EQUATION

We shall be working in two dimensional Euclidean space, R2.

Points in R2 are denoted by (x, y), ( 1), etc; t, T will denote

time variables. Let u = u(x, y, t) denote the population density in

(x, y) at the time t. That is, if A is any region in R2 with a

smooth boundary (i. e. , if the boundary of A is parameterized by

( (s),r)(s)) where (s) and ri(s) are twice continuously differen-

tiable functions) then

NA (t) = J u(x, y, t)dxdy

A

gives the number of individuals, NA, in A at the time t. The

change per unit of time in NA (t) is

NA(t) = ut "(x y, t)dxdy

A

Now let B denote the boundary of A, v the unit exterior

normal to B, ds an element of length on B, q(x, y, t) the number

of individuals passing over an arc, ds, per unit time, so that

q v ds gives the net emigration from A. Finally, let yo (x, y, t)

B
give the number of births per unit area and Ox, y, t) the number of

deaths per unit area. Then, the change per unit time in N
A

(t) can



be represented as

(1. 2) NA(t) - vds +
B

codxdy idxdy
A A

9

To obtain a mathematically tractable problem, it is necessary to

have reasonable expressions for q, (p, and ii in terms of u, x,

y, and t.

Consider first q. We shall assume that, unless there are

other effects present, the natural tendency is to move from areas of

high population concentrations to areas of lower concentrations. At

the same time, due to external conditions (for example: economic in

the case of humans, a moving environment such as a stream for

bacteria, etc. ) there is often a tendency for a population to congregate

in certain more attractive areas. Thus, we assume that q is of the

form:

(1.3) q = V u + uv

where the vector v is an underlying velocity of movement of

individuals from one region to another and a > 0.

Combining (1. 1), ( 1. 2) and (1.3) now yields:

( 1 . 4) utdxdy = J (aVu- v-u; v)ds + g(co-Odxclly

A A



In equation (1.4), the integral:

(avu v -uv v)ds = (avu-uv) v ds

We have assumed that B is a sufficiently smooth closed curve and

that u is continuous and has continuous first and second order

partial derivatives on A. Thus, applying the Gauss divergence

theorem (Green's theorem in the plane) we get

(aVu-uv) v ds = .11S1 div(aVu-uv)dxdy

A

Equation (1.4) now becomes

(1. 5) gutdxdy =.gdiv(avu-uv)dxdy + g(co-ip)dxdy

A A A

At this point we need the following;

Lemma: If, for every region A C D with smooth boundary

and continuous F(x), we have

F(x)dx = 0
A

then F(x) E 0 in A.

10
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Proof: Suppose F(x) 0 on D. Then there exists

such that F(x) 0. We may suppose F(x) > 0.X = (X1' X2) E D

By continuity of F, there exists 5 > 0 such that F(x) > 0, for

all x E B(x, 5), the ball centered at x and radius 8. We now

choose A = B(x, 8) C D to be our region of integration, so that;

F(x)dx > 0
A

since F(x) > 0 on A. This is a contradiction since J F(x)dx = 0
A

for every region A C D. We conclude F(x) E 0.

Invoking the lemma we get our final result, that is;

(1. 6) ut (x, y, t) = div(avu -uv) ((,P

Dimensionally, we have (N is the number of individuals in the popu-

lation):

[u] = N. 1-2

r a n = N 1-1. t-
1

N r 3
, ry

1
] = 1. t ,

so that [a ] = 12(1

This coefficient, a , must be determined by experimentation.

At this point in our discussion it is instructive to consider a few

simple examples.
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III. ROAMING NOMADS

Consider the case of nomads who winter at one place, then

move in a fairly straight line to the north, spend the summer and then

return to spend the winter. Let us suppose that the population is

stable, so that cp = 0, and does not spread out, that is, a -= 0.

Let:

v (t)

0< t< t1

, t1
t < t

1 2

-v, t2 < t
2 3

, t3 < t
3 4

Here, t
1

is the time needed to go north; t
2

t
1

is the length of

the summer; t
3

- t
2

= t
1

is the time needed for the return trip;

and t4 t
3

is the length of the winter. Also, we assume v )

is constant.

Let f(x, y) be the initial population density: in this case a

function which vanishes identically for (x,y) sufficiently far from

(x0, y0), the initial camp-site. Equation (1. 6) now becomes:

ut = di v ( uv ) = -v .77u

since v is a constant vector, The problem to be solved, then, is:

find u(x, y, t) which satisfies the differential equation:



(D. E. ) ut = -Aux jau , for all x, y E R, t > 0,

subject to the initial condition at t = 0

(I. C. ) u(x, y, 0) = f(x, y).

For the solution, we assume u(x, y, t) in the form:

u(x, y, t) = f(x+A(t), y+B(t))

where

Then

and by the chain rule

so that

Thus

A(0) = 0 = B(0).

u = f
x x

u =f
Y Y

ut A l(t)f + B'(t)f

ut + Aux + µu = Afx + p.f + A if +
x

.

0 = [X+A f(t)1f + [11+13'4*
x y

A'(0 = -X and Bt(t) =

13
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Integration now yields the functions A(t) and B(t). That is

and

t

A(t) = A(0) X.dt = CX-dt
0 j0

t
B(t) = B(0) J µdt = J ladt

Thus, for the solution of the initial value problem we have

t
u(x, y, t) = f((x, y) J Nr(T)d-r) .

0

where we are now writing f as a function of a vector. Now we have

t
N7(T)d-r = µ)t for 0 < t < t

1

0

tl
rt

4.c V(T)di- V(T)dT V(T)dT

0 0

= (X, 1-1-)t1 for t
1

< t < t

Ti(T)d-r = v(T)dT
2

t
3

V(T)dT V(T)dT

0 0 tl

= (X, p.)ti (X, 1,L)-r
It

'tz

= (X, 1.1)t1 (X, la) [t -t2] for t2 t < t
2 t3



t
2

t
3

tTi(T)dT = .51

1

V(T)dT + .51 V(T)dT 17(T)dT + V(T)dT

0 0 t1 t
2

t
3

= (X, Ot1 (X, p.) [t3-t2]

= (X, Oti (X, Oti

=0 for t < t < t
3 4

Written out, then, the solution is

u(x, y,

f(x-Xt, y-Fit), 0 < t < tl

f(x-Xti y-µt1), t1 < t t2

f(x-Xti+X(t-t2), y-Ilt1 +1-L(t-t2)), t < t < t
2

f(x, y), t3 < t < t4

15
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IV. RADIAL BACTERIA GROWTH

Consider a bacteria culture on a circular dish of radius a.

Suppose a very small drop containing N0 bacteria is initially

deposited at the center of the dish. Assume no bacteria can escape

through the side of the dish; that the dish is radially symmetric; that

the medium is at rest (i. e. , v = 0) and the rate at which bacteria

spread out is a = 1. Finally, suppose that cp = Xu.

Equation (1. 6) becomes

(3. 1) ut div(Vu) + ku

:= Au + X.0

.= 1 (ru
T

) r + Xu [where we have changed
to polar coordinates]

The problem to be solved, then is: find u(x,y,t) satisfying

the differential equation;

(D. E. ) ut u
1

Xu, r < a
Tr r r

subject to the boundary conditions

(B. C. ) u is bounded as r 0

a u (a , t)
8r

and the initial condition



(I. C.) u(r, 0) = N
o

6(x, y)

where 6(x, y) is the two dimensional Dirac delta function.

We have: u = 1 (ru ) + Xu and, letting u(r ,t) = eXtw(r , t),
t r r r

we get:

(Xw+wt)eXt = 1 (rw ) ex.t + Xwe).t .

r r r

Canceling eft and subtracting Xw from both sides we see that

w(r , t) must satisfy the simpler problem

(D. E. )

with the boundary conditions

(B. C )

w = 1 (rw )
t r r r

ur (a, t) = 0 => wr (a, t) = 0

u(0, t)1 < => I w(0, < 00

and the initial condition is

(I. C. ) u(r, 0) = w(r, 0) = N06(x, y)

To solve, we let

w(r, t) = R(r)T(t),

then;

17
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RI" = 1 (rR')'T

T' (1 /r)(rR. 1)1

so that; T 11T = 0 and Ru +
1r R , µR = 0. We now consider the

following two cases to determine the eigen values.

Case I. v
2

, v > 0, gives rise to the modified Bessel

differential equation of order zero

R" +
1 R' - 2R = ,r

which has for its general solution;

R = C -1
0
(vr) + D (unbounded solution)

where C and D are constants. Boundedness implies that D = 0

and therefore

where

But,

R(r) = CI
0

(vr)

R'(r) = CIf0 (vr)

oo
v

v r()2 1-1

1=1
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which is strictly greater than zero for r 0 and C 0. Thus,

R'(a) = 0 =>C = 0 = 0.

Case II. t.J. = v2, v > 0,

equation of order zero:

which has for its solution

gives rise to the Bessel differential

R" + 1
+ v

2R = 0r

R(r) = AJ
0

(vr) + BY
0

(vr)

where A and B are constants. Boundedness implies that B = 0,

so that:

Thus,

R(r) = AJ0(vr).

R'(r) AvJ1(vr)

R'(a) AvJ1(va) --- 0

which implies that J
1
(va) = 0 and determines the eigenvalues. The

solution, then, to our original problem for u(r,t) is

where

u(r,t) = eft

CC

j =1

2-K.t/a2
K1"

A .e J0(0 a

K. is the jth root of J1(Ki) = 0. To determine Ai, we



use the initial condition along with the orthogonality of the Bessel

function. From the initial condition

00

u(r, 0) =

we get

2-rr a K r
J ru(r,O)J0(-)drde

0 0

But since,

this left hand integral is

Thus,

j=1

CO

=1

K , r

J
.J

0(-1a )

27 a K.r K r
A. \ rJ

0 a )JO( ( -)drde .

0 0
1

u(r, 0) = N06(x,y)

a K r 2Tr. a K r
ru(r, 0)J0( ( = N

0
S rJ

0
(

a )5(x, y)drd0
0 0

= N
0

J
0

(0)

= N
0

.

00

0

a

0 a J0( ;. )drd0
K r

0 0
j=1

2 2 K a
2Tra

=
2 ,T 1(

20



so that, solving for Al we get

A
Tra2J

0
(Ki)

NO

Note that for large values of t, since K1 = 0,

-kt NO
lim e u(r,t)

2t"°0 Tra

so that for large values of t, the bacteria are fairly uniformly

distributed over the dish.

Incidentally, observe that the function

27 a
N(t) = u(r,t)rdrd0

0 0

51udA
A

satisfies:

(for simplicity)

N t = XN (t ), t > 0

N(0) = No

since*,

21



N'(t) utdA

A

= J J (Au+Xu)dA
A

(from 3. 1)

div(Vu)dA ,,csb udA

A A

= J vu
B

XN(t)

v ds + X.N(t)

v ds + ?N(t)

22

since q v = 0 on the boundary. From this result we conclude that

our model predicts the same total population as does the usual

ordinary differential equations model.

By combining the methods of these two examples (i. e. Nomads

and bacteria), one can also model the migration and propagation of

geese and other migratory fowl.
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V. ONE DIMENSIONAL URBAN GROWTH

The next example shows how one can model the growth of an

urban area. For ease in presentation, we shall consider a one

dimensional problem.

Suppose initially the total population is concentrated near the

right end of the interval 0 < x < 1, and the movement due to

external causes is to the left. Suppose further that cp Xu and,

to be more specific, that a = 1 and that there is no immigration

across the sides of the interval. Let us then consider the problem:

D. E.

B. C.

ut = Tx (ux+v(x)u) + 0 < x < 1, t > 0

ux(0,t) + v(0)u(0,t) = 0 = ux(1,t) + v(1)u(1,t), t > 0.

I. C. u(x, 0) = f(x)

2where v(x) = x (that is, there is no movement at x = 0 and the

further away from x = 0, the faster the movement) and

-VL1-- 1-J2 - 112 < x < 1

0 0 < x <

with A = 15N 0/81 where gives the width of the interval where

the population is initially located. We have
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and

Let

Then

1 1

f(x)dx = A S {[ )",e ]2-1}2 dx = N0
0

ut = 8x-a (u
x

+v(x)u) + )u

u eXtw.

wt = Tx [wx+v(x)w]

and the boundary conditions lead to

ux + v(x)u = e [wx+v(x)w] = 0 => wx + v(x)w = 0 for x = 0,1.

This problem which is of the Sturm-Liouville type has no closed form

solution so we examine the steady state solution for w. Let t

so that wt = 0 since there is no dependence on time in the

equilibrium state.

Thus

Integrating gives

(w' +vw)' = 0

w' + vw = C

where C is constant. At x = 0,



w'(0) + v(0)w(0) = 0 => C = 0.

We now have the first order ordinary differential equation:

wt + vw = 0.

Using the integrating factor

we have

so that

) = e xp xv ( s ) d s ,

0

xv(s)ds xv(s)ds

e0 0
[wt+vw] e w =0

v(s)ds

w(x) = De 0

where D is constant. We note that:

Thus,

1 1

wtdx = J [wx+v(x)w]xdx O.
0 0

ddt
w( x t )dx = 0

0

1 1 1

%51 w(x, t)dx = Constant = w(x, 0)dx = .51 f(x)dx
0 0 0

25
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Let t 00, then w(x, t) w(x) and

so that

Finally,

1

w(x)dx = No
0

x

0

v(s)ds
1

DY e dx = S f(x)dx
0 0

D

1

f(x)dx
0

NO

()

1 3

-51 v(s)ds -x /3
dx

0 0
dx

-tc v(s)ds
0lirn w(x, t) = w(x) =

t- 00 y 1

0

-x3 /3
e dx

0

so for large t, w(x, t) z w(x) and

NO -x3 /3
u(x, t) extw(x) e

Xt

1 3x /3
dx

0

For large values of t, we see that the population density is highest
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around x = 0 and least around x = 1 as one would expect.

In a completely similar manner, one can derive equations

governing the distribution of several populations. For two populations,

the equations have the form:

(1 ) (1) (1) (1) (1)-1 , (1)
'

(2)
ut div[a Vu -v u J

1
lu u )

1
(u

(1)
u

(2)
)

(2) (2) (2) (2) (2) (1) (2) (1) (2)ut div[a Vu -v u + cp (u u ) (u u )2 '

and uwhere u
(1) (2) refer to the population densities of the

respective populations and the other functions have meanings corn-

pletely similar to those already mentioned above.
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VI. PREY PREDATOR

Next we will deal with the case when a species of, say, soles

swims into a species of, say, sharks. The sharks will feed on the

soles available. We assume this all takes place over a very short

time interval so that no reproduction takes place.

Assume the soles, denoted as species 1, is swimming from

left to right (along the x-axis) with constant velocity v1. Assume the

sharks, denoted as species 2, are swimming to the left with constant

velocity -vz. We make the example slightly unrealistic by assuming

even after the species come together, they will continue on in the

same direction as before the meeting with the same velocity. Further,

we make the problem one dimensional.

Since the fish swim in schools we take a
(1)

=
(2)

= 0. We

assume that cp
2 2

= 0 but that cp
1

=
(1)

u
(2)

. Thus the

problem to be solved takes the form:

D. E.

I. C.

(1) (1) (1) (2)
ut -vlux XL' u

(2) (2)
ut v u2 x

(1)
u (x, 0) = f

1
(x)

u(2)(x, 0) = f (x)

We first solve for u (2)(x,t) by assuming a solution in the form
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then

and

(2)
u (x, t) = f

2
(x+a(t))

-v
2

u (2) -v 2 ax f
2
(x+a(t)) = -v

2
fl(x+a(t))

u(2) = a:Me
2

(x+a(t))

(u(2) v2 ux 2) = 0 = (al(t)-v
2

)ft(x+a(t))

so that we must have

Thus,

al(t) = v2

u(2)(x, t) = f2(x +v2t) .

The method of characteristics now yields the solution for u
(1)

From page 28,

now becomes

(1) (1) (1) (2)
y

u -vlux Xu u

u (1) + vu = -Xf u (1)
y l x

(1)

with the initial condition:

(1)
u (x, 0) = f

1
(x).

The characteristic equations are:
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du (1)dx c_ly.

dt dt1 dt -Xf2u
(1)

--f2(x+v2Y)u
(1)

and from the initial condition we have

y0 =0; x0 =s; (1)and uo f
1
(s).

. . x = v
1
t + cp(s); y = t + tii(s) and the initial conditions give:

Thus

so that

x = \Tit + s and y t.

du
(1)

(1)
-Xf

2
(x+v2y)dt = -Xf2(v

1
t+s+v 2t)dt

u

(1)
log u(i)(s,t) t

-X J f2((v
1
+v2)T+s)dT

u (s, 0) 0

(1)
u (s,t)

f (s) exp
1

f-X
J f

2
((v

1
+v

2
)-r+s)d-r

0

We have: x = v1t + s ; y = t so that s = x viy = x vit. The

final solution for u
(1) (x,t) is

(1),
u t) f

1
(x-v

1
t)exp .) f2(v1 +v2)T +x- v1t)dTt)dT

1/4.

0
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VII. SPAWNING SALMON

The final example will deal with salmon spawning, going to sea,

returning, spawning, etc.

Consider the case of a square ocean, say 0 < x < 1, 0 < y < 1.

1

0 1

On part of the boundary, B, say S = {(x, y):x = < y < p

there are rivers where the salmon spawn and from there the fish

diffuse into the ocean. After four years the mature salmon return to

their spawning grounds. The equations that must be solved together

with their boundary data are, therefore, the following: let T1, T2,

T3, and T4 be times, then

ut = div[avu-vu] ku, X. > 0

Initially, we assume that u(x, y, 0) = 0 and for (x, y) E B S we

assume

(oeVu-vu) v = 0.

We take X > 0 to indicate that salmon will be lost, either by dying

or by being eaten, during the time while at sea.

For, 0 < t < T 1 , we take
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-(aVu-vu) = yo on S

where co gives the rate at which the young salmon are entering the

sea during this time interval.

During the interval T1 < t T2,

-(aVu-vu) v = 0 for (x, y) E S

which means that no more fish are entering the sea. Furthermore,

during the interval 0 < t < T2, v(x, y,t) = 0 since it is assumed

that the salmon simply diffuse in all directions.

Finally, for T2 < t < T3, the salmon swim to the region S

at velocities allowing them to arrive at S. The differential equation

becomes

ut = -div(vu) X.0 .

On S we need to keep track of those entering the river systems,

say uv ds. Thus, during the interval T2 < t < T
3

T3

No uv v ds
T2 S

will have enter ed.

The spawning which takes place during T3 < t < T4 yields a

population, N(t), determined from
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N'(t) = N(t)

N(T 3) = N0

At time t = T4, the N individuals distributed uniformly along S

will begin to re-enter the ocean which is assumed to have zero popu-

lation density and the process repeats itself.

As an example of how this works, consider the following one

dimensional model.

We have first to solve:

(D. E. )

(B. C. )

ut = u uxx

ux(0, t) = 0

ux(1,t) = f1 0 , 0 < t < 1
0, 1 <t <2

(I. C.) u(x, 0) = 0;

and finally

and

ut = (vu )- u 2 < t < 3

u continuous

v(x) = 1 x

3

N0 = vu(1, t)dt
2

N'(t) = 5N(t), N(3) = N0.
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To solve this system we start with the time interval 0 < t < 1

and solve the problem:

(D. E. )

(B. C. )

Ut = U -uxx

ux(0, t) = 0

ux(1, t) = 10

(I. C.) u(x, 0) = 0.

-tLet u = e v, then the problem for v(x , t) is:

(D. E. )

(B. C. )

v = v
t xx

vx(0, t) = 0

v (1, t) = 10et

(I. C.) v(x, 0) = 0.

The function V (x, t) = 5x2 et satisfies the boundary conditions in the

problem for v(x, t). Define:

w(x, t) = v(x, t) V (x, t)

The problem for w(x, t) is:

(D. E. ) wt w
xx

-(5x2-10)e t



(B. C. )

(I. C.)

w (0, t) = 0
x

wx(1,t) = 0

w(x, 0) = -V (x, 0) = -5x2
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We break this problem into two parts and get the solution for w(x,t)

by superposition. We first solve:

(D. E. )

(B. C. )

(I. C. )

and get for its solution

where

Z =t xx

Zx(0,t) = 0 = Zx(1,t)

Z(x,0) = -5x2

Z (x,t) =

00

n=0

-X.
2

nt
an e cos X. x, X = (nTr)

n n

Next we must solve:

(D. E. ) z = z (5x2 -10)et
t xx



(B. C.) z (0, t) = 0 = z (1,t)x x

(I. C.) z(x, 0) = 0.

For its solution we get

where

z (x, t) an(t) cos (Xnx), X
n

= (nir)

an(t) =

n=0

r
(a

0
+10)Le

t n = 0

a -X2t
n [e -e n

2
], n > 1.

1+X
n

We now have z(x,t) and Z (x, t). Thus;

so tha

w(x, t) = z(x, t) + Z(x, t)

t

v(x, t) = z(x, t) + Z(x, t) + V(x, t)

u(x,t) = e -t{z(x, t)+Z(x, t)+V(x, t)} .

For the time interval 1 < t < 2 we must solve the problem:

and finally,

u = u u
t xx

ux(0, t) = 0 = ux(1,t)

36
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(I. C. ) u continuous across t = 1.

That is,

u(x, 1) =
1

{z(x, 1) +Z(x, 1) +V(x, 1)}
e

= F(x) (for simplicity in handling).

For the solution, we let u(x,t) = W(x, t) e-t, then W(x, t)

must solve the more familiar problem

(D. E. )

(B. C.)

Wt (x,t) = Wxx (x, t)

Wx(0,t) = 0 = Wx(1, t)

(I. C.) W(x, 1) = eF(x).

The solution for W(x, t) is found by the usual method of separation

of variables. We get

where

W(x, t)

CO

n=0

-X
2 t

cne cos(X x)

2

eF(x)dx, m = 0
1

X.2m+1 2

2e F(x) cos() x)dx, m > 1.
1

m



The solution for u(x,t) in 1 < t < 2 is

-(k2+1)t
oo

u(x,t) = e -tW(x,t) = cne cos(X. x) .

n=0

For the interval of time, 2 < t < 3, we have the problem:

(D. E. ) ut = (vu)x u, v(x) = 1 x

u continuous across t = 2.

u continuous across t = 2 implies that

u(x,2) =

00

n=0

-(X2+1)2
cne cos(Xnx) [from previous work]

G(x) (for simplicity in handling).

The method of characteristics now yields the solution:

u(x,t) = e-2(t-2)G(1+(x-1)e 2
t)

The spawning which takes place produces

individuals, where

-15 5t
N(t) e N e

0

3

N
0

= J vu(1,t)dt.
2

38
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