Page 4
Least Squares User Manual
5/19/2011
By Evon Silvia, Graduate Research Assistant, School of Civil and Construction Engineering
evon.silvia@gmail.com

Introduction
The Least Squares program is a simple Qt interface that receives a set of matching point pairs and performs a traditional, un-weighted, nonlinear least squares adjustment and reports the results. The “adjustnonlinear” C++ class was written to be easily integrated into other programs if desired. 
Application of the resultant transformation to additional points must be done manually by the user.
Data preparation
Input files must be comma-delimited ASCII files, with X,Y,Z coordinates followed by a newline character on every line. Comment lines must begin with a “#” character. The control and measured data must have the same number of points, with corresponding points following the identical order in both input files. The file must also end with a newline character (a blank line).
General procedure
For details regarding the nonlinear least squares solution see Evon Silvia’s thesis “Overcoming the Level Bubble: Dynamic Terrestrial Laser Scanning Reference Frame Transformations,” 2011, Oregon State University or the textbook “Adjustment Computations: Spatial Data Analysis” by Charles Ghilani (5th Edition, 2010).
Upon opening, the program immediately requests the user to select a CSV or TXT file with control data to remain fixed, and then again for measured data to be adjusted. These files must have the same number of points. 
[image: ]
Figure A1: The control point file loading screen.
If loading succeeded, then the user may start the adjustment by clicking [Start].
[image: ]
Figure A2: Verify that the correct number of points loaded from each file prior to clicking [Start].
The program currently seeds the iterative process with rotations and translations of 0 and a scale factor of 1. This may be an issue for some data sets that will be unable to converge without good initial values.
The program will iterate up to 200 times or until the new RMS has changed less than 0.000001 from the previous iteration, whichever comes first. The rotation angles are forced to be between 0 and 2π after each iteration to prevent value inflation.
For each iteration, a Jacobian matrix populated by the first-order Taylor series polynomials of 

is calculated, where

The K matrix as defined by Ghilani is then computed based on the results of the previous iteration (or the initial guess for the first iteration), and the corrections for the current iteration are computed by

The inverse is computed using the C++ code provided by Ghilani (2010) in Table B.1. More efficient methods exist, but this one works and is easy to implement. Transformation parameters are then updated and the measured points are re-transformed for the next iteration.
Once the exit conditions are met, the results are printed to a text box.
Interpreting results
[image: ]
Figure A3: Adjustment results will be shown on a screen similar to this one. Rotation angles are in radians and Degrees-Minutes-Seconds. Copy and paste this output to a blank text file if you want to save it.
The results printed are fairly straightforward and can be copied to your favorite text editor or spreadsheet to be saved. 
· RMS is a report of the Root Mean Square error, which is a measure of the quality of the match between the input data sets. 
· Usually no more than 10 iterations are required to find a match. If there are more, there may be issues with the adjustment.
· S is the scale parameter.
· Tx,Ty,Tz is the translation vector.
· Rx,Ry,Rz are the rotation angles in radians or DMS.
· The rotation matrix is computed from Rx,Ry,Rz (see equations in Silvia (2011)).
· The new points are the transformed points from the measured point file after the final iteration. 
image2.png

image3.png

image1.png

