Page 85

NISLT Matlab User Manual
5/19/2011
By Evon Silvia, Graduate Research Assistant, School of Civil and Construction Engineering
evon.silvia@gmail.com

Introduction
The adjustHan(ctrlPath,measPath) MATLAB script performs an optimized version of the similarity NISLT adjustment as developed and presented by Jen-Yu Han in
Han, Jen-Yu. "Noniterative Approach for Solving the Indirect Problems of Linear Reference Frame Transformations." ASCE Journal of Surveying Engineering 136, no. 4 (November 2010): 150-156.
The syntax for the command simply requires two windows-style file paths to two comma-delimited ASCII files, one for control data and one for measured data. A call to this function will look something like this:
adjustHan('J:\mon_ctrl.txt','J:\mon_meas.txt');
The function will match the points in order (the first point with the first point, the second with the second, etc), so ensure that they are sorted to match. It uses the Matlab csvread(filename) function to import the points, so follow the formatting rules for that function.
Output
The function will output a series of text that will look something like the following:
>> adjustHan('c:\temp\5pt-ctrl.txt','c:\temp\5pt-meas.txt');
Raw Rotation Matrix (R-hat):
 0.407777391022836 -0.914294786828213 0.0562338900691944
 0.913640618333182 0.407352352919333 0.0297736416791388
 0.000212293795449796 -8.42174476038914e-005 0.99794047648357

Recomputed Rotation Matrix (R-calc):
 0.407569252666347 -0.913174286505208 -0.000163544184471777
 0.913174276498378 0.407569276741785 -0.000159367005069884
 0.00021218543612765 -8.43912511745261e-005 0.999999973927728

Derived rotation around x (alpha) (rad,deg):
 8.43912531744563e-005 0.00483526263471635

Derived rotation around y (beta) (rad,deg):
 0.000212185437719842 0.012157330055483

Derived rotation around z (gamma) (rad,deg):
 -1.15100570648747 -65.9477691772056

Translation vector:
 34788.213974199
 26069.4690880224
 73.8516663028582

Updated translation vector:
 34788.213499084
 26069.4773608414
 73.8513886331855

Scale:
 0.999663999733704

Transformed points (R-hat):
 34758.4534357 26096.9804999565 74.5920597106532
 34775.3889262245 26105.9926083108 74.0473863268673
 34795.3742079115 26087.4272506351 73.8420325614988
 34819.1617829325 26061.7720804411 73.0923313997251
 34775.5326472315 26077.0495606564 74.3751900012557

or... (R-calc):
 34758.4513983188 26096.9688260255 74.5933029359046
 34775.4015314734 26105.987775405 74.0474972076757
 34795.3713596344 26087.427098077 73.8417244584684
 34819.1680899039 26061.7938219339 73.0904835942779
 34775.5186206694 26077.0444785586 74.3759918036734

RSME R-hat, R-Calc (new T):
 0.00573323275059479
 0.0157220817750252

The pseudo-rotation matrix R-hat (), Scale (), the Translation vector (), and the rotation angles (rx, ry, rz) are the same as defined in Han (2010) for the similarity model. However, it was observed that is not a true rotation matrix, and as such the rotation matrix computed using the rotation angles (R-calc) will not be the same. That calculated rotation matrix, the new translation vector derived from it, and the new set of transformed coordinates are also provided in addition to the typical results from the NISLT technique.
A Root Mean Square Error is also calculated using the results of both techniques.
Optimizations
One simple optimization was made to the original NISLT method to reduce memory usage and computation time. Rather than computing scale and the X terms over the range of i ≠ j, we computed for j > i where i increments from 1 to n-1, and j increments from i to n, where n is the number of point pairs. This removes redundancy introduced by computing the same distance (ij and ji) twice.
