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Abstract. We propose algorithms for computational upscaling of flow
from porescale (microscale) to lab scale (mesoscale). In particular, we
solve Navier-Stokes equations in complex pore geometries and average
their solutions to derive properties of flow relevant at lab scale such
as permeability and inertia coefficients. We discuss two variants of tra-
ditional discretizations: a simple algorithm which works well in periodic
isotropic media and can be used when coarse approximations are needed,
and a more complex one which is well suited for nonisotropic geometries.
Convergence of solutions and averaging techniques are major concerns
but these can be relaxed if only mesoscopic parameters are needed. The
project is a proof-of-concept computational laboratory for porous me-
dia which delivers data needed for mesoscale simulations by performing
microscale computational simulations.

1 Introduction

Computational modeling of flow in porous media such as aquifers and oil-gas
reservoirs has been constrained until recently to the scales of physical observation
and of experiments such as Darcy-scale (lab-scale = mesoscale). At the same
time, in various applications it has been necessary to upscale the models and
parameters of flow to macro-scale which is the scale of interest in large porous
reservoirs.

In this paper we pursue the upscaling from microscale, i.e., porescale to
mesoscale (lab or Darcy scale). While relevant mathematical theory was devel-
oped decades ago via homogenization [30] and volume-averaging [25], the com-
putational modeling at porescale, due to its complexity, had remained unfeasible
until recently when advances in micro-imaging were accompanied by increases in
computational power and development of discrete models such as network and
lattice models [26, 22,19, 29].

In this paper we are interested in continuum models, i.e., traditional dis-
cretizations of partial differential equations adapted to porescale such as studies
in [1,13]. We investigate the conditions under which simple algorithms can be
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used efficiently to deliver reliable quantitative information from microscale to
mesoscale. Our project can be seen as a first step of a computational laboratory
for modeling flow over a range of scales; the model at mesoscale can be further
upscaled to macroscale by using approach such as one proposed in [7,14].

The specific following problem is of interest for stationary incompressible
viscous flow. It is well known that linear models of flow are not valid beyond
certain Reynolds numbers [2], also in porous media [12, 10,27, 6, 3]. The relevant
models are those of Stokes and Navier-Stokes at porescale and Darcy and non-
Darcy at mesoscale. Yet identification of a particular regime and of nonlinear
models which extend the basic linear models is still a subject of research [20,
25,17,21,16]. While it is now believed that in the nonlinear laminar regime it
is the inertia rather than micro-turbulence effects that are most important, no
mathematical form of non-Darcy model is yet universally accepted especially in
anisotropic media [5,15,16], and the values of associated coefficients reported
in literature vary significantly [3,16]. Consider then a scenario in which the
experimental data for modeling linear flow at Darcy scale (permeability K) is
available but that no data for modeling inertia effects (denoted by [) is given.
We propose to i) use the computational porescale model accounting for inertia
effects and derive data (3 for nonlinear models at Darcy scale; here we focus on
2D porescale models with isotropic mesoscale. In addition, one can ii) use these
models to investigate anisotropic nonlinear laws at mesoscale that emerge from
complicated anisotropic porescale geometries, and aid theoretical developments.

The main difficulties of the project i) are the following. First, even though
standard discretization techniques for Navier-Stokes equations are well studied,
their use in complex geometries requires fine grids and, in general, is nontrivial.
Second, calculating average quantities from computational data is only super-
ficially straightforward since their stability with respect to grids, other compu-
tational parameters, and algorithms, over a large range of Reynolds numbers,
is necessary. Next, as concerns ii), realistic data on porescale geometries should
be used [19], and their uncertainty needs to be accounted for. Finally, compu-
tational efficiency of the proposed “on-demand” porescale modeling laboratory
must be considered. In this paper we focus on proof-of-concept realization of i);
details on ii) will be addressed in a forthcoming paper.

The plan of the paper is as follows. In Section 2 we describe the relevant
physical models and in Section 3 the computational models; in Section 4 we
propose the method of upscaling. In Section 5 we discuss the computational
examples that illustrate the algorithms.

2 Computational models

Let 2 ¢ R% d = 2,3, be an open bounded domain occupied by porous medium
and the fluid within. Let £2r C (2 be the part of 2 occupied by the fluid, that is,
the domain of flow, and let rock (solid) part be 2r = 2\ 2p. Let 912 denote the
boundary of 2, and let I" = 982p \ 012 be the interior boundary (between rock
and fluid domains) while the external boundary of flow 02p N 02 is divided into
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inflow I3, and outflow I},,; parts. We also denote by 7 the unit outward normal
to the boundary and by 7 the unit tangent. For simplicity no special notation is
used for numerical solutions.

Flow at porescale. We consider an incompressible Newtonian fluid of velocity
u and pressure p flowing in 2p characterized by viscosity p (fixed). In what
follows the fluid’s constant density p = 1. We also assume that the characteristic
quantities of the flow are such that the Reynolds number Re is correlated to the
magnitude of inflow velocities.

At microscale (porescale), for steady-state flow, in the absence of forces and
mass source/sink terms, the momentum and mass conservation in Eulerian frame
are expressed by Navier-Stokes equations and continuity equation [2]

u-Vu—pAu=—-Vp, (1)
V-u=0. (2)

In 2D (d = 2) it is convenient to consider the formulation in terms of the vorticity
vector w =V X u and the (scalar) stream function ¢ defined by u =V x ¢ [2].
Taking Vx equation (1) and noticing V x (Vp) = 0, one obtains the system

u-Vw = pAw, (3)
AY = —w. (4)

The last equation follows from standard calculation w =V x (V x ¢p) = V(V -
1) — Atp, which, with (2), for 2D flow reduces to (4). We can get p from

Oug Ouy — Ouy %

oxr Oy dy 833) (5)

—Ap = (V(u-V))-u =2

For small Re the nonlinear convective terms associated with u- are dropped
from (1) and (3) and we have the (linear) Stokes approximation

—pAu=—-Vp, (6)

which is valid when viscous effects dominate in the flow. For larger Re the inertia
effects associated with u- cannot be neglected. For even larger Re in the next
regime of flow, the turbulence occurs. We recall that, up to the definition/units
of characteristic quantities, the linear laminar flow regime is for Re < 1, the
nonlinear regime is for 1 < Re < 100, and that turbulence may occur for
Re > 100 [27,21]; however, turbulence rarely occurs in porous media.

Boundary conditions. We consider flow driven primarily by external bound-
ary conditions which is what would happen experimentally in a lab. We prescribe
velocity at the inlet and impose an outflow condition at the outlet. On internal
boundaries we assume no-slip condition u = 0.
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Flow at Darcy scale. At mesoscale the boundaries between 2 and {2; are
no more recognized, One considers an average pressure P :=< p > and velocity
(flux) U :=< u > where the averages over a volume V' (x) centered at x € {2 are
defined as < ¢ >y=< ¢ > (x) = m fV(m) q(y)dy. (In what follows we drop
subscript V'). Conservation of mass after averaging yields V- < u >= 0; note
that derivatives in V are taken with respect to large scale variable x.

Darcy’s law is a linear momentum equation at mesoscale which can be proven
[4,30] to be an average of Stokes flow (6)

pK ' <u>=-V<p> (7)

Here K, a symmetric tensor, is a permeability usually measured in a lab. Due
to large viscous dissipation and the interstitial effects typical in porous media,
Darcy’s law is a good approximation for a large class of flow phenomena. K
reflects geometry at microscale, and K~! measures resistance of porous medium
to the flow. For heterogenous media K = K(x), for isotropic media K = KT.
In the nonlinear laminar regime with significant inertia, averaging (1) yields

Kl <u>)<u>=-V<p> (8)

The form of nonlinear map K has been the subject of theoretical research [15,
5,17]. The simplest form of such a model in 1D first proposed by Forchheimer
[12] was K=Y(U) := uK 1 + B|U|, with multidimensional isotropic version [10,
3,27,6]

Kl <u>)<u>=(K'u+p/<u>|)<u>=-<Vp>. (9)

Now, while values of K are available for many porous materials [3], the data
for coefficient 3 is not universally available and/or consistent; moreover, the form
of K itself for general anisotropic 2D and 3D media is still a subject of research
[20, 13,16, 21].

Boundary conditions. The flow in {2 at mesoscale is driven by boundary
conditions posed on 02 which are the averages of porescale external boundary
conditions.

Mathematical upscaling from micro- to mesoscale. There are essentially
two methodologies that apply. The first, with the use of homogenization theory
(H) [4, 30], requires periodic geometry but gives elegant theorems on convergence
of the averages of microscale quantities to the appropriate mesoscale quantities
when the size of periodic cell goes to 0. The second, volume averaging (VA), does
not restrict geometry and proposes that the averaged quantities are reasonably
stable if the averaging region (REV = Representative Elementary Volume) is
large enough [17]; but it may be difficult to quantify what size of REV is suffi-
cient.



3 Computational models for porescale

For flow in 2, we consider two algorithms H and V. A: they are useful in similar
contexts as, respectively, mathematical upscaling methods H and VA; each has
advantages and disadvantages. For other algorithms see [31,9].

We illustrate these two algorithms with results along the following scenario.
All flow in {2 is from left to right. The pore geometries are idealized: we envision
rock grains as very long cylinders so that every cross-section can be approximated
by a 2D computational region with {2r being a union of solid disks replicated
periodically. The ratio of disk diameters to the size of the period denoted by D
ranges from 0.6 to 0.9 in this study. See Figures 1 and 3.

Algorithm H. This simple algorithm solves for (w, ) in d = 2 and uses sim-

ple structured grids over 2p and therefore can be easily adapted to interpret

data from porescale imaging [19] without significant investment of time in grid

generation. It is based on a central finite difference formulation enhanced by

treatment of boundary conditions and post-processing, following [18, 28, 8].
The discretization of (3) and (4) yields

(1An = (u-Vi))w =0, (10)
A;ﬂ/) = —Ww. (11)

where the numerical Laplacian Ay, has the usual 5-point stencil, and the advec-
tive term is computed using second order central differences. The coupling in
the model is resolved by iteration: given w”, i) compute ¥"*! from (11), then
ii) calculate velocity w™*! from ¢!, then iii) solve (10) for w™*2, and finally
iv) compute w™ = w2 4 (1 — \)w™ where ) is the relaxation parameter.

In this algorithm steps i) and ii) require that boundary values of ¢ and w are
known, respectively. This is the most delicate part of the algorithm and crucial
for porescale computations: an idea how to implement inlet, outlet, and no-slip
conditions follows; we refer to [28,8, 9] for details.

For structured rectangular grids over a periodic cell §2, the boundary I is
composed of vertical and horizontal segments only, and the external bound-
ary has either vertical or horizontal 5, I,,:. Consider vertical I75,. On inlet
boundary, u = (u,,0) is given and hence ¢ has to be constant and given as the
integral of u, while vorticity is given from (4). On the vertical portion of the
outlet boundary we have % =0 and % =0.

In the interior, we have no-slip boundary conditions u = 0; it follows that
1) = const. To find useful conditions for w, we approximate its second derivative

as follows. Consider Taylor expansion ¥ (z 4 0z, y) = ¥(z,y) + 5;32—2 + %‘?;qu +

d } 92 2(¢p(z+Az,y)—P(z,
O(6x3). But u, = —a_i’ = 0 thus —w = B—;é’ — 20 g;é) v(zy)) 4 O(dx).
To recover (post-process for) the velocities and pressures, we use central finite
differences in the interior of the domain and appropriate one-sided differences at

the boundary. The pressure is found from (5).
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Fig. 1. Results of algorithm H, D = 0.6. Shown are profiles of p overlaying contours
of u for Re = 1,100, (left and right) on three grids: coarse, fine, and very fine (top to
bottom). Even though the pointwise values appear unresolved on the coarse meshes,
the computed averages and K and 3 are stable on all grids
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Fig. 2. Algorithm H: convergence of iterative algorithm for standard benchmark prob-
lem of Poiseiile flow [9] (left) and for geometry as in Figure 1 (right); the iteration error
is defined as discrete Iz norm of the stream function .

The implementation works well enough for a range of Reynolds numbers and
grids that are not very fine, see Figure 1. The difficulties arise since finding an
optimal value of X in step iv) may be a problem; see Figure 2. The simplicity of
‘H is in that it consequently uses the same Poisson solver for which very efficient
solvers e.g. multigrid [9, 31], and preconditioners, are available. An alternative,
a coupled solver for (10)—(11) can be written but this requires sophisticated
nonsymmetric solvers and preconditioners. Currently H works well for small
periodic domains {2 but may scale poorly to large regions, complex geometries,
and large Re

Algorithm V.A. This algorithm solves for (u,p) and can be used in compli-
cated geometries but requires substantial pre-processing; it follows an industry
standard in computational fluid dynamics [23,11]; general unstructured grids
can be used in 2D and 3D. We omit the details but provide an example which
illustrates the grids and complexity of computations, see Figure 3.



Fig. 3. Results of VA for D = 0.9 with Re = 1 (top) and Re = 100 (bottom).
Shown are contours of pressure p (left) and zoomed in velocity u profiles: component
z (middle) and y (right).

4 Upscaling algorithms from porescale to mesoscale

Strictly speaking, the work reported in this paper does not require any com-
putations at mesoscale, i.e., in 2. However, keeping in mind our future goals,
we choose to upscale from microscale to some chosen computational grid at
mesoscale. In this paper we choose the conservative cell-centered finite difference
method equivalent to lowest order Mixed Finite Element method on rectangles
[24]; this provides a bridge to macroscale following [14].

The idea is as follows: we impose a mesoscale cell-centered grid over {2 in a
way which defines principal directions of flow that we anticipate will prevail at
mesoscale (This may help to avoid handling full tensor K at mesoscale). With
each center of mesocale grid (X, Y;), we have an associated cell £2; over which we
average to get values P;. Velocities are computed over unions of regions so that
they are associated with locations “dual” to those for pressures [24]. Figure 4
illustrates the idea. Ideally, the locations (X}, Y;) coincide with centers of mass
of §2; and the velocity components are computed in the direction of principal
axis; but there are ways to handle situations when this does not hold.

Assume now that porescale results (u, p) are available. We can then compute
U and P as discussed above. Next, by inverse modeling, we can identify resistance
of the medium K~! in discrete counterpart of (8).

Note that for small Re, the resistance X ~! reduces to K—! as in (7). Thus, if
data is available for a large range of Re from creeping flow to nonlinear laminar
regime, then one could hope to identify the appropriate model of tensor K. In
particular, if the medium is isotropic at mesoscale, then (9) is valid. In other
words, given  and K and knowing U, one can compute (3 for any Re. Clearly
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Fig. 4. Left: averaging region for a small periodic region {2, case D = 0.7. The z-
component U can be computed from averaging over regions (21, {23 and (22, £24. Right:
general averaging region, case D = 0.9.

if the model for K is valid and the computational algorithm is successful then
[ remains reasonably constant throughout the nonlinear laminar regime; this
appears true in our results, see Figure 5.

We stress that stability of K and 3 is not guaranteed with just any ad-
hoc averaging technique; in particular, the choice of REV, principal axis and
their orientation, and of the boundary conditions, plays a significant role. In
addition, there is currently no general explicit mathematical model and virtually
no experimental work for anisotropic inertia represented by K. We defer detailed
discussion to forthcoming work.
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Fig. 5. Results of upscaling from porescale to lab scale. Left: dependence of K on
the grid and Re; notice isotropy at mesoscale revelealed by equal diagonal and very
small off-diagonal componets of K. Right: dependence of § on the relative diameter
D € (0.7,0.9) and on grid size (results computed for coarse and fine grids).

5 Discussion

In this section we revisit and summarize the results presented above and discuss
future work.

Fluid flow in porespace is subject to viscous effects, inertia effects, and dissi-
pation on the solid boundaries. In order to approximate it for large Re, we need
to ensure that the grid is fine enough in the channels where the solid boundaries
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are the closest. Using algorithm H we could only use D = 0.6 while VA works
well for realistic porosities i.e. D > 0.9, partly due to unoptimal A\. While we
have not found an optimal parameter A\, the convergence of H appears reason-
able for simple cases. Still, more work needs to be done before the algorithm H
can scale to more complicated geometries and large Re. In particular, we are
considering a transient regularization of (3) which will help the convergence.

The use of algorithm VA, while more promising, also requires care in gridding
and monitoring convergence of the iterations. Here the difficulties are related to
proper porescale grid definition with respect to principal axis. There is also the
relative lack of availability of VA due to its commercial implementation.

Overall, regardless of the method chosen, for some grids and some Re, the
profiles of (u,p) may reveal local instabilities. However, this does not imply
instability of mesoscale properties, at least, with the averaging method that we
proposed. In fact, K and 3 appear stable for a large range of values of Re as
well as appear convergent with respect to the grid size, see Figure 5.

Current and future work includes convergence analysis as well as serious
computational studies aiding the theoretical modeling of tensor K. Our project is
a prototype of a computational laboratory which can provide on-demand model
data for flow with inertia in porous media.
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