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TRANS1ENT TEM1ERATURES AND INELASTIC THI:RML STRESSES 
IN GAS-COOLED IERFORiTED CEReM1C CYLINDERS 

'1TH INTERNAL HEAT GENERATION 

INTRUDUCTIU'1 

The purpose of this report is to present a method for 

estimating the transient temperature distributions and in- 

elastic thermal stresses in perforated, cooled ceramic 

cylinders with internal heat generation. The determina- 

tion of the inelastic thermal stresses is based on the 

elastic viscoelastic analogy (1, p. 578-595; 4, p. 103). 

The analysis of thermal stresses in perforated geometries 

is based, with some latitude, on the method of G. Horvay 

(ó, P. 355-360). The heat transfer process in the perfo- 

rated, cooled cylinder is based on the concept of volu- 

metric heat dissipation. Several appendices to the report 

contain detailed derivations and explanations that serve 

as a complete development of the method presented. Some 

results of a study using the method described are pre- 

sented as an example of its use. 



THECRY AND METHODS 2 

1. Heat Transfer 

a. Unit Cells 

unit cell is defined as a coolant hole in a perfo- 

rated cylinder surrounded by ceramic whose outer boundary 

is defined by lines of symmetry (see Figure 1). For ease 

of analysis1 the small unit cell is converted to an equiv- 

alent hollow cylinder cross section. A sketch of a typi- 

cal perforated ceramic cylinder is shown in Figure 1. 

To demonstrate the use of the analytical method out- 

lined in this report, a helium-cooled aluminum oxide cyl- 

inder was analyzed (Figure 2). This cylinder has a void 

fraction of 0.5 representing 140 cooling channels. These 

cooling channels have an inner radius, a, of 0.299 inch 

and the outer radius, b, of the unit cell model is 0.423 

inch. The radius of the cylinder is 5.0 inches. The he- 

hum flow in each channel is 0.1 lb/sec at a constant tem- 

perature of 15000 F. The outer boundary of the cylinder 

is kept at 1500e F. 

in the transient heat transfer analysis of the unit 

cell, a finite difference solution of the differential 

equation must be used since physical properties, power 

generation, ambient conditions, etc., may be changing with 

time. The stability of the finite difference equations 

depends upon the compatibility of the unit cell dimensions, 

thermal properties and time increment chosen. This poses 
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a tremendous problem immediately in the analysis since the 

small dimensions of the unit cell model and the thermal 

properties of the material (see Figure 3) force the use 

of an extremely small time increment to maintain equation 

stability. 

The differential system which describes the heat 

transfer process in a unit cell is 

z 
r = (1) 

-k 
(I) L0 a7L 4 

(2)ArJ(r-) ' ra, t=é 
t;) T=7 S r ¡ô. 

The finite difference representation of this system and 

the determination of the stability criteria are given in 

ippendix A. A plot of the stability factor as a function 

of time of operation for the equations for a unit cell is 

presented in Figure 4. The temperatures at which the 

thermal properties were evaluated are presented in 

Figure 5. The base lines labeled "boundary" and "in- 

tenor" In Figure 4 represent the values of stability 

factor below which the respective equations would be un- 

stable. 

It may be seen from Figures 4 and 5 that the selec- 

tion of a time interval which will maintain system sta- 

bility over a wide range of temperatures is not an easy 
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matter. Even during the period of highest operating tem- 

perature the time interval ould be less than 0.5 second. 

Ht lower operating temperatures the time interval is much 

less than 0.25 second. This makes hand computation time 

consuming and high speed machine computation costly. 

The first oroblem encountered then was to determine 

the transient temperature distributions in a unit cell 

during a desired operating period. 3ince the usual meth- 

ods of analysis, i.e., the mathematical and the numerical 

representation of the mathematical, were ruled out on the 

grounds of complexity and impracticability, an approximate 

method was devised. This method is based upon the con- 

sideration of the unit cell model as one region, i.e., all 

heat is transferred, absorbed and generated at one radial 

position in the model (in this case, the outer periphery 

of the model). The basic equation of the approximate 

method is: 

w h r e 

fV 2zrí('7-7)I% 

_____ - Heat storage 

if, 
V Heat generation 

2aW(Ç_-r)4= Heat transfer. 

(2) 
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1- further approximation is made with regard to the temper- 

ature distribution within the unit cell riudel wall, In 

the one region model considered, thc terperature distribu- 
tion within the wall is due only to the heat transfer term 

in Equation (2) since the storayc and yeneration of heat 
occurs at the outer boundary only. This heat flow iould 

produce the usual steady-state teiiperature distribution 
for a hollow cylinder wjthout heat çeneration. in the 

actual case, heat storage and generation, distributed in 

sorne manner over the unit cell radius, will not produce 

this type of temperature distribution. i simple approx- 

imation of the correct temperature distribution may be 

made by consideriny the heat transferred in the unit cell 
wall as volumetric heat cjeneration, distributed unit rmly, 

to be used in the steauy-state form of the differential 
system (1). This was found to be a fair approximation 

provided the unit celi wall thickness does not exceed 

about 0.15 inch (see Figure 6). This conclusion was based 

upon a comparison with a classical mathematical solution 
to the problem (see í.ppendix B and Figures 7 through 10). 
rs fiore detailed account of the approximate methods ais- 
cussed here are presented in hppendix . lt must be 

pointed out at this time that the approximate method dis- 
cussed cannot evaluate sudden heating or cooling such as 

in quenching, etc., where a sudden reversal of the slope 



of the temperature profile is experienced. t typical ex- 

ample of such a situation is shown in Figure 12. The tem- 

perature distributions that might be obtained by the ap- 

proximate method are shown by dotted lines in Figure 12. 

reversal of the slope of the tempexature profile such as 

that shown would not be experienced by the unit cell under 

carefully controlled conditions. At steady coolant condi- 

tions power changes would not produce the reversal of 

slope shown and changes in coolant conditions could be 

carefully controlled to avoid such a situation. 

b. -arent Cylinder 

The heat transfer process in the perforated cooled 

cylinder (see Figures 1 and 2) is defined by the equation: 

(r-)-, =/7C 

where 

= the conduction term 

(T-7) = a term for dissipation due to 

multiple sinks 

fv = the internal heat generation term 

= the storage term. 
/ 

(3) 
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In this type of geometry, the heat transfer by con- 

duction through the perforated mass is hampered by the 

perforations which when cooled, provide for heat dissi- 

pation. 1± the object is of moderate dimensions, is 

cooled or heated at the outer periphery and has many small 

cooling channels representing a substantial void fraction, 

an analysis of individual isolated unit cells will not 

provide a reasonable estimation of the heat transfer pro- 

cess in the object. A reasonable estimation of the heat 

transfer process may be obtained by the use of Equation 

(3) with an "apparent" thermal conductivity, k, and a 

"volumetric heat dissipation coefficient", Us,. The terms 

k and are functions of the void fraction of the ob- 

ject. The defining equations for these terms are pre- 

sented in ppendix C. 

There are limitations on the validity of this treat- 

ment which nave not been established. rhe limitations of 

this treatment will depend upon a parameter relating 

cooling passage diameter, void fraction, number of cool- 

ing passages and overall dimensions of the perforated ob- 

ject. For example, it is possible to have two objects 

with the same overall dimensions and void fraction, how- 

ever, one could have several cooling passages of small 

diameter while the other could have one large cooling 

passage (e.g., a hollow cylinder). The latter object 



could not be analyzed using Equation (3). The limitations 

of the method could be established by experiments which 

would evaluate the parameter mentioned. This parameter 

could then be used in the same manner as Reynolds number 

is used for fluid flow problems, i.e., to establish a val- 

id range of usefulness of the method for any situation. 

2. Thermal Stress 

a. Viscoelastic Theory 

The inelastic thermal stresses dealt with in this re- 

port are based upon the elastic viscoelastic analogy for a 

material with creep (Maxwell body). This is the simplest 

idealization of the mechanical behavior of structural ma- 

tenais at elevated temperatures. An excellent discussion 

of the theory of inelastic stress is given by . M. Freu- 

denthal (1, p. 578-595; 4, p. 205) which is the basis for 

the inelastic thermal stress work presented in this re- 

port. My derivation of the equations for radial ( 
c 

) 

and tangential ( 
c 

) thermal stresses in a Maxwell cylin- 

der, based upon the elastic viscoelastic analogy, is pre- 

sented in ppendix D. The derivation in Appendix L) yields 

two simultaneous partial differential equations for cÇ 

and that can be separated only by the assumption of an 

incompressible medium. This assumption manifests itself 

as a }-ojsson's ratio of 0.5 for the material under study. 
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Any transient thermal stress study based upon the 

elastic viscoelastic analogy is heavily dependent upon the 

relaxation time t' of the material. The relaxation time 

is defined by the relationship: 

t= (1, p. 579) (4) 

G 
wh e re 

, = material viscosity 

G = material modulus of rigidity 

The temperature dependence of 2 is primarily due to the 

temperature dependence of J which may be expressed as 

:: f'_---i)7 (1, p. 578) (5) 
O L7fT /J 

where 

= activation energy 

R = the universal gas constant 

T = absolute temperature 

T0 = reference absolute temperature 

= reference viscosity at 

Therefore, neglecting changes in the modulus of ri- 

gidity 

(6) 

L,7tT /1 
where 

to reference relaxation time at T. 
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r-or the aluminum oxide cylinder of Figure 2 the ref- 

erence relaxation time was estimated from internal fric- 

tion data for polycrystalline A1203 (2, P. 21). Accord- 

ing to Chang (3) if we use the frequency and the tempera- 

ture at which the peak occurs on the internal friction 

plot, we can approximate Z in the following manner: 

where 

= ___J___ (7) 

Z7T7 

= frequency producing peak internal 

friction at T0 

Chang points out, however, that this implies stress relax- 

ation by the mechanism of grain boundary slip over the en- 

tire temperature range considered where, in reality, other 

mechanisms may be predominant at high temperatures. 

A plot of the temperature variation of the relaxation 

time for polycrystalline A1203 (based on equations 6 and 7) 

is presented as Figure 13. 

b. Thermal Stresses in Perforated Geometries 

Mccording to Horvay (6, p. 355-360) a thermal stress 

analysis can be made for a perforated plate by using the 

usual thermal stress equations with the elastic modulus E 

and Poisson's Ratio for the solid material replaced by 

modified values for the perforated material. The modified 

E and ,,a are functions of the web thickness to radius 
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ratio for the unit cell. s pointed out ifl section 2a, 

page 8, Concerninq viscoelastic theory, a OiSSOflS ratio 
of 0.5 uust be assumed, consequently, no modification oíjt 
is necessary. However, the value of E used in the acaly- 
sis of the perforated cylinder of }igure 2 was modified 

accordinj to Horvay's suggestion. Florvay also suggests 

rnodifyirij the therarLal ConduCtivity k of the waterial by 
rriultiplyirìy by the web thickness to radius ratio for the 

unit cell, This modification of k was not used ici favor 
of one proposed by Jakob (7, p. (35) which is given as 

Equation (e-2) in ipendix C. Ire dicussinq the limita- 
tions of his method c'f analysis Horvay emphasizes tfe fdct 

thut the temperature distribution must not vary by more 

than infinitesicdl iniounts froi hole to hole. in this re- 
spect the method of Horvay is used iith great latizude 
since substantial variations in temperdture from hole to 

hole are eiicountered in many situations to which the meth- 

od outlined in this report is applied. 
hen computing the elastic thermal stresses in a per- 

forated geometry the thermal stresses in the parent ele- 
merit uue to the variation in temperature across the holes 
axe superimposed upon the thermal stresses calculatea for 
the unit cell due to the teuepexature variation across the 

wb. Jis procedure is suggested by Horvay (, p. lb). 
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The viscoelastic thermal stresses in a bod'y are ex- 

trernely sensitive to the environment. Any forces icposed, 

even momentarily, durthy the operatThy history of the body 

may affect the final stress level attained. Consequently, 

any superposition of the thermal stresses in the unit cell 

and the parent perforated geometry should be done at the 

time couputed before proceeding to the next time in order 

to account for the interaction. This instantaneous super- 

position of the stresses represents a rather forniidable 

computational task at this time. in this report the 

stresses in the unit cell and parent geometry are computed 

separately and combined at the end of the computations. 

c. i3oundary Conditions for Thermal .tresses in a 

Unit Cell 

Une of the most perplexing and ccntroversial areas 

encountered in the pursuit of the subject of thermal 

stresses in perforated geometries was that of the boundary 

conditions of the unit ceJi. it first it was assumed that 

an equivalent cylinder model of a unit cell could be 

treated as an isolated cylinder with no normal forces at 

the inner and outer surfaces (i.e., zero radial stresses 

at the surfaces). However, it seemed more logical that a 

condition of symmetry would exist at the outer boundary of 

a unit cell in a sufficiently large cluster of identical 

unit cells. This latter approach was taken only to find 
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that the summation of the moments obtained in the unit cell 

was not zero. idthough this could be explained analytical- 

'y, it did not seem to be a realistic representation of 

ttze actual situation. in oroer to provide some indication 

of the actual conditions which would exists a simple infi- 

rute matrix of square unit cells with square cooling chan- 

fiels (see Figure 14) was analyzed by setting up a network 

of nodes for the finite difference representation of the 

biharmonic equation. The results of this study (Figures 

15, 16 and 17) indicate that conditions of syncetry do 

exist at the outer boundary of a square unit cell, however, 

the magnitude and distribution of those stresses compara- 

ble to the tangential stresses in a hollow cylinder are 

similar to those of a hollow cylinder with zero radial 

stresses at the surfaces (see Figure 17). in order to 

provide a complete picture of the study made both analyti- 

cal approaches mentioned are presented in Mppendix E. 

d. Transient Unit Cell Temperature r'epresentation 

in the Thermal stress Equation 

In the partial dif±erential equation for the elastic 

viscoelastic radial stress in the equivalent cylinder mod- 

el of a unit cell (see Equation I--1, Appendix F) a temper- 

ature-time derivative ( ) exists on the right 
IvÌLL 

hand side of the equation. The question arises, consider- 

ing the approximation discussed in section la, page 2, and 
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in Mppendix B, how this time-temperature differential is 

obtained. The answer tu this question lies in another ap- 

proxirnation based upon the first. This compounding of ap- 

proxirnations is an unfortunate necessity in this particu-. 

lar study, however, the error involved is predominantly 

that discussed in t-ppendix B and illustrated in Figures 6 

through 10. i detailed development of the tire variable 

approximation of the temperature gradient ( - ) is 
ìrdL 

presented in ¡ppendix F. 

3. .ethoci of Ina1ysis 

The discussion of the heat transfer and thermal 

stress theory of the preceding sections, with the nuiierous 

references to te appropriate appendices, outlines the 

general approach to the analysis of perforated gas-cooled 

geometries with internal heat generation. The purpose of 

this section is to present a specific analytical procedure 

based upon equations extracted from the many theoretical 

derivations and their associated approximations. 

tep 1: heat Transfer in the perforated Cylinder 

The teperature distributions (maximum unit cell tern- 

peratures) in the perforated cylinder and the heat dissi- 

pation to the cooling holes are determined in this step. 

Luation (c-1) (ippendix C) is solved by numerical 

methods to yield the temperature distributions in the cyl- 

inder at various times. The volumetric heat dissipation 
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coefficient, defined by Equation (C-9), is evaluated by 

first using Equation (B-8) for the overall heat transfer 

coefficient for the unit cell. The heat dissipated to a 

cooling hole may be calculated by Equation (C-5). 

The heat transfer boundary conditions for the perfo- 

rated cylinder of Figures 1 and 2 are: 

(1) '70 at I O 

(2) T=O atR=A 

(3) T=T atttirneC), 

Step 2: Thermal Stresses in the Perforated Cylinder 

The distributions of radial thermal stress in the 

perforated cylinder are calculated by Equation (F-29). 

The term À. (àE is obtained from the results of 
¿it (/ 

Step 1. The tangential thermal stresses are the highest 

stresses in the cylinder and are obtained from Equaticn 

(F-35) once the radial stresses are known. 

The thermal stress boundary conditions for the perfo- 

rated cylinder of Figures 1 and 2 are: 

(1) ''OatR=o 

(2) c=ò atRA 
(3) a = O(initia1) at t o. 

Elastic thermal stresses may be obtdined by using an infi- 

tüte relaxation time in Equation (F-29). 



3; heat Transfer in the finit cell 

he temperature distributions in the unit cell are 

obtained from Equation (3-7). before this equation CLIn 

be used, the maximum unit cell temperature and the heat 

dissipation to the coolant channel must be obtained from 

tep 1. The fictitious value of heat generation for the 

unit cell is derived from the heat dissipation according 

to Equation (E-6). 

¿tep 4: Thermal Stresses in the Unit Uell 

The highest thermal stresses in the unit cell model 

are the tangential stresses. These stresses are deter- 

mined from Equation (k-lu). ior tnis equation, is 

defined by Equation (F-ló) and (F-17) anu is bund 

from the procedure outlined in section 2a, page 8. me 

term ¡?$*/ yL is obtained from the results of 

(rn" 41 
\ ¿ / 

the unit cell heat transfer analysis of Step 3 (see Equa- 

tions x--1 through F-id). 

The therAal stress boundary conditions br the unit 

cell model for the perforated cylinder of Figures 1 arid 2 

are: 

(I) cZ;:=o atrb 
(2) G = o at r = a 

(j) cÇ. Q(initial) at t = t. 
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Elastic thermal stresses may be obtained by using an infi- 

nite relaxation time in Equation (F-18). 

Step 5: Combination of Unit Cell and Cylinder 

Thermal Stresses 

The final step in the analytical procedure is the 

combining of the tangential thermal stress in the perfora- 

ted cylinder with the maximum tangential thermal stress in 

a unit cell at the same radial location in the perforated 

cylinder. 
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To demonstrate the use of the analytical method pre- 

sented in this report, the helium-cooled aluminum oxide 

cylinder of Figure 2 was analyzed. 

hen subjected to the power schedule of Figure 18 and 

the other conditions already mentioned (Figure 2), the 

maximum temperature in a unit cell (calculated by the 

methods outlined) will vary in the manner shown in Figure 

18. The conditions which cause this variation in maximum 

unit cell temperature also produce severe elastic tangen- 

tial thermal stresses in the unit cell (see Figure 19). 

The allowable tensile stress for aluminum oxide at 2000° F 

is 32,500 psi. At 18000 the stresses calculated using 

the viscoelastic equations depart from the elastic curve 

at about 30,000 psi, peak at about 31,000 psi and then 

drop sharply. The second peak on the viscoelastic curve 

of Figure 1 is due to an arbitrary change in the relaxa- 

tion time. At this point, the temperature dependence of 

was abandoned in favor of a constant value of 5.0 

seconds. This was necessary since the time interval of 

computation in this demonstration was 5.0 seconds and the 

stability factor for the equations used did not permit a 

value of 2' less than 5.0 seconds. In actual practice, 

high speed computing machines would eliminate this re- 

striction. The third peak on this curve occurs where Z 

exceeds 5.0 seconds due to a reduction of the temperature. 



C) 

i- similar curve (I:igure 20) was generated for the 

tangential thermal stresses in the perforated cylinder at 

a point on the radius corresponding to the location of the 

unit cell, s the final step in the analysis, the visco- 

elastic thermal stresses in the unit cell and the perfo- 

rated cylinder are combined to give the total predicted 

maximum thermal stresses in the cylinder (see Eigure 21). 

The results plotted in ligures 19, 20 and 21 repTe- 

sent only a portion of the complete results obtained in 

this study. Many similar plots could have been prepared 

for other locations in the perforated cylinder, however, 

those presented are typical and serve to illustrate the 

advantages of determining thermal stresses using inelastic 

theory. 

The viscoelastic thermal stresses in a body are sen- 

sitive to the environment. ny forces imposed, even mo- 

mentarily, curing the operating history of the body may 

affect the final stress level attained. Any superposition 

of the thermal stresses in the unit cell and the parent 

perforated geometry should be done at the time computed 

before proceeding to the next time increment in order to 

account for the interaction. This superposition of the 

stresses represents a rather formidaole computational task 

at the present time. To simplify the computations for the 
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example given in this paper, superposition of the stresses 

was the final step iii the analysis. 

The elastic stresses of Fiyures 1, 20, and 21 would 

yo to zero as the temperature of the cylinder reaches a 

uniform value of 1500° 1 at the end of the operating peri- 

od, however, the viscoelastic stresses would not go to ze- 

ro. There are 'frozen in" compressive stresses present 

due to the inelastic behavior of the material. These 

frozen mu stresses would be the initial stresses in the 

cylinder for any subsequent operating procedure. hepeated 

cycling according to the schedule described would result 

in a moderate build-up of the compressive stresses which 

would eventually level off to a nearly constant value. 

Excessive cycling, however, could result in failure due to 

fatigue, 
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The method presented in this report should provide a 

way of estimating thermal stresses in perforated geome- 

tries during transient operation arid should serve to pro- 

vide sorne insight to the phenomena associated with high 

temperature operation. The approximations used in some 

phases of the method do not place it in the highly rigor- 

ous category recjired for exacting research investigations, 

however, it does provide a means of analysis of a diffi- 

cult situation where there previously was none. lt is 

recom:ended that the techniques presented here be checked 

by suitable experiments to establish the range of useful- 

ness, errors involved, etc. 

ì-n unfortunate limitation of the method presented is 

its inability to evaluate temperature and thermal stress 

distributions for sudden heating and cooling such as in 

quenching, etc., where a sudden reversal of the slope of 

the temperature profile in the unit cell wall is experi- 

enced. This limitation, however, should not detract from 

the value of the method for the prediction of temperatures 

and thermal stresses in a controlled environment or for 

establishing such an environment. 

The approximation of the temperature distribution in 

the unit cell wall (see section la, paqe 2) was found to 

be within about 5 percent of the temperature distribution 
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obtained by more rigorous methods, provided the unit cell 

wall thickness does not exceed about 0.15 inch (see 

Figure o). 

From the analysis of the infinite matrix of square 

cooling channels in a heat generating medium (see Figure 

14 (a) and Mppendix E), it was concluded that the boundary 

conditions for radial thermal stress in the unit cell mod- 

el of Figure 1 should be zero radial stress at the inner 

and outer radii. i4though a condition of symmetry was ob- 

tained in the analysis of Appendix E, the resultant 

stresses, comparable to the tangential stresses in the 

unit cell model, were distributed in a manner suggesting 

stress-free boundaries. 

The greatest single factor affecting the prediction 

of the transient inelastic thermal stresses in materials 

operating at high temperature is the relaxation time. 

This property is not available for aluminum oxide and 

other data from which it might be predicted are not read- 

Uy available. The method used in this report to obtain 

the relaxation time implies that stress relaxation occurs 

by the mechanism of grain boundary slip where, in reality, 

other mechanisms may be predominant at high temperatures. 

The results presented in ligures 19 and 20 sugqest that, 

in aluminum oxide, creep starts at about 18000 1. The 
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validity of the method used for obtaining relaxation time 

might be related to this point of departure from the elas- 

tic curve. 

The phenomenon of "frozen in" stresses discussed on 

page 20 suyyests one possible use of the analytical method 

presented in this report. The process for making ceraric 

objects includes a period of "firing" at high temperatures 

to bring about fusion. Upon cooling, these ceramic ob- 

jects may have "frozen in" stresses which could cause pre- 

mature failure depending upon the conditions to which the 

object is subjected. The analytical method of this report 

could be used to devise ari annealing process for control- 

ling the "frozen in" stresses of ceramics to eliminate 

weaknesses or, possibly, to provide "built-in" strenjth. 



Figure 1. PERFORATED COOLED CYLiNDER 
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Figure 2. ALUMINUM OXIDE CYLINDER 

0\ 
0 

0 
- 5.0 inches_j_ o 

Boundary at 100°F 
(Consta n t 

/ \ 

<ci?:> (®) 
a - 0.299 inches 

b - 0.423 inches 

Void fraction B 0.5 
Number of cooling channels a 140 
Helium cooled: T (Gas) 1500°F (Constant) 

W Flow rate per channel 
0.1 lb/secxchannel 

Property data: Density 3.8 gm/cc 
E0 - 5.3 x psi 

4.45 x 100 in/inx°F 



26 
Figure 3. THERMAL CONDUCTiVITY AND OTHER PROPERTY 
DATA 10R ALUMINUM OXIDE 
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Figure 4. STABILITY OF THE FINITE DIFFERENCE APPROXIMATION 
OF THE UNIT CELL HEAT TRANSFER EQUATION 
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TABLE i 

TRANSIENT TEMPERATURES IN SLABS OF VARiOUS 
THICKNESSES WITHOUT HEAT GENERATION - A COMPARIS 

OF MATHE1ATICAL AND APPROXIMATE METHODS OF CALCULATION 

Temperature at 3.0 Seconds, 1- -ercent Deviation of 
1ab 

Thickness 
(inches) 

Approximate method 
from 

athematica1 .ethod 
Mathematical 

Method 
Approximate 

¡'ethod 

interior Surface Interior surface Interior 3urf ace 

104 574 171 683 -64.4 -19.0 0.6 

0.3 200 288 606 -44.0 - 2 

0.1 669 741 í71 740 - 0.3 0.1 

0.05 908 920 904 0.4 0.5 
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Figure 6. TRANSIENT TEMPERATURE ANALYSIS OF A SMALL SLAB 

A comparison of mathematical and approximate methods 
of analysis at 3.0 seconds after start of heating. 
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Figure 7. TRANSIENT TEMPERATURE ANALYSIS OF A SMALL SLAB 

A comparison of mathematical and approximate methods 
of analysis at 3.0 seconds after start of heating. Total 
slab thickness 0.6 inch. 
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Figure 8. TRANSIENT TEMPERATURE ANALYSIS OF A SMALL SLAB 

A comparison of mathematical and approximate methods 
of analysis at 3.0 seconds after start of heating. Total 
slab thickness - 0.3 inch, 
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Figure 9. TRANSIENT TE1VPERATURE ANALYSIS OF A 
SMALL SLAB 

A comparison of mathematical and approxi- 
mate methods of analysis at 3.0 seconds after 
start of heating. Total slab thickness 0.1 
inch. 
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Figure 10. TRANSIENT TEMPERATURE ANALYSIS OF A 
SMALL SLAB 

A comparison of mathematical and approxi- 
mate methods of analysis at 3.0 seconds after 
start of heating. Total slab thickness = 0.05 
inch. 

Ma t h e ma t 

/ 
Approximat. 

0.01 0.02 0.03 0.04 0.05 

Slab Thickness, inches 



Figure 11. THERMAL CONDUCTANCE AND CAPACITY OF SMALL SLABS 
USED IN AN APPROXIMATE METHOD OF ANALYSIS 

12 

O 
'-4 

X 

WO OX 
CCN 

Ox 
W 

o 
oct 

'-I 

e 

W 

O 
O 

Aluminum oxide heated by helium at 1000°F. 

fr w 0.137 lb/in3 
C 0.23 B/lkìx°F 
k 2.48x104 B/secxinx°F 
h 1.333x103B/secxin2xoF 

0.1 0.2 0.3 0.4 

Total Slab Thickness,J, inches 

0.5 

0.020 

0.015 

0.010 

0.005 

-J O 
0.6 

(J 

>u4 
+ o 
r4 X 
uc 

Or4 
( .- 

-i 

e 

Q) 

- 

() 
L'I 



s 

4) 

Ii 

e 
. 

I-4 

Figur. 12, AN ILLUSTRATION OF THE DEVIATION 0F36 
THE APPROXIMATE METHOD FROM THE MATHEMATICAL 
METHOD OF ANALYSIS OF A SMALL SLAB SUBJECTED TO 
SUDDEN HEATING AND COOLING 
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Figure 13. TEMPERATURE VARIATION OF THE RELAXATION TIME OF 
POLYCRYSTALLINE A1203 
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Figure 14. AN INFINITE MATRIX OF SQUARE 
COOLING CHANNELS IN A HEAT GENERATING 
MEDIUM 
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Figure 15. A MAP 01- THE STRESS FUNCTION IN A 

UNiT CELL iN AN INFINITE MATRIX OF CELLS 
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Figure 16. A MAP 0F THE STRESSES IN A UNIT CELL 
IN AN iNFiNITE tATR1X OF CELLS 
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Figure 17. THERMAL STRESS DISTRIBUTION 
IN THE WALL OF A SQUARE UNIT CELL IN AN 
INFINITE MATRIX OF CELLS 
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Figure 18. HEAT GENERATION AND CALCULATED TEMPERATURES IN A 
UNIT CELL 

2000 

1500 

coo 

500 

20 40 60 

Time, seconds 

80 100 

5.0 

4.0 

3.0 

20 

1.0 

- o 
120 

-o 

o 
Ci) 

(Y) 

C 
f1 

o 
G) 

o 
r4 

(Q 

k 
Q) 

C 
Q) 

(Q 

Q) 

X 



100 

80 

60 
U) 

s 
U) 

u, 

1 

U) 

ri 

-20 
o 

Figure 19. CMLCULATED MAXIMUM TANGENTIAL THERMAL STRESSES 
IN A UNIT CELL 
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Figur. 20. CALCULATED TANGENTIAL THERMAL STRESSES IN THE 
PERFORATED CYLINDER 
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Figure 21. COMBINED CYLINDER AND UNIT CELL VISCOELASTIC 
TANGENTIAL THERMAL STRESSES 
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APPENDIX A 47 

DETERMINATION OF THE INSTABiLITY (F THE FiNITE DIFFERENCE 

EQUATIONS FOR HEAT CONDUCTION IN UNIT CELL 

The finite difference representation of the differen- 

tial system (Equation 1) which defines the heat transfer 

process in a unit cell is expressed by the following equa- 

tions: 

Interior Points 

[f,(4t2 
¿ 

21,, 

-(,-2,rm-Jr,}. (c2\ 
('ì-i) 

Convection Boundary Point 

_________ 2-4,Lfr7 
L 

- (Km rm#i) 2L1 77 J 
fr_», -4m,iJ j 
1' &'n"Y 4r2) (A-2) 

-- ( I. 
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The stability of Equation (A-1) is determined by the coef- 

ficient of . Rewriting Equation (A-1) 

47in 751m-/fr1 *CTm.i (A-') 
n 

+ f 7;h (,4.-Í) 

where 

(4-e) 

= (A-4) 
/4 

C (/4-5) n 
The requirement is that / O otherwise Equation (A-1) 

will become unstable and values of 7 will oscillate. 

When /Ç 0 

then Ar Z 

M A t 8 2Kg,, 4 / 

2P 
- i 

Therefore, the requirement for stability of Equation (A-1) 

is: 
¿ (,4-) 

¿It 



The stability of Equation (A-2) is determined in a similar 

manner. The requirement for Equation (A-2) is: 

M= fmC,)nK2 2* _____ (4-7) 

A..'- 
Km 

-.,/-oi n C '74ì i", 

plot of Al for the equivalent cylinder model of 

the aluminum oxide unit cell of Figure 2, as a function of 

time of operation, is presented as Figure 4. The tempera- 

tures at which the thermal properties were evaluated are 

presented as Figure 5. The base lines labeled "boundary" 

and "interior" on Figure 4 represent the values of /11 

below which the respective equations would be unstable. 



APPENDIX B 50 

DERIVATION UF AN APPROXIMATE METHOD 0F DETERi1INING THE 

TRANSIENT TEMPERJTURE DISTRIBUTIONS IN i UIT CELL 

AND COMPARISON WITH A MATHEMATICAL SOLUTION 

Consider the equivalent cylinder model of a unit cell 

shown in Figure Bi. 

\ 

Figure Bl 

/ - - 

Ideally, in order to find the temperature distributions in 

this cylinder under transient conditions and with internal 

heat generation the following differential system would be 

solved: 

tcff 

(1) 7;: 77 at ¿La r=- 

(2) ¿Io at ¿-= 
t:zL 

(3)%Z. (r-7;) s P=?) t::í, 

o7fr- 

(a-i) 
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lt is virtually impossible to solve this system when A4 

jVO) 
,P) C and vary drastically with time and/or 

temperature. i-or the equivdlent cylinder model of the unit 

cell of Fiyure 2 the finite difference approximation of 

this system has already been ruled out as impractical (see 

rppendix A). 

#n approximate method of deternining the transient 

temperature distributions in the unit cell model has been 

devised. The aproxitnate method tms been used on a sim- 

pie slab yeometry and the results compared with those of 

the mathematical solution to establish confidence in the 

method and to determine under what conditions the method 

fails. Three cases have been selected to illustrate vari- 

ations of the approximate method. The first case deals 

with an isolated unit cell in which the heat generated in 

the unit cell is the only heat flowing to the cooling pas- 

sage. The second case deals with a unit celi which is one 

of many in a perforated yeornetry. In the second case, the 

temperature distribution in the perforated geometry has 

been determined by considering conduction through the ge- 

ornetry, heat generation in the unit cells and heat lost 

from the unit cells (this case is treated analytically ií1 

rtppendix _). in tîis second case then, the unit cell heat 

generation has been used and the unit cell maximum temper- 

ature calculated. The information to be obtained from the 



52 

second case would be the temperature distribution in the 

unit cell for thermal stress or other purposes. The third 

case considered is that of a simple isolated slab without 

heat generation, heated only by gas flowing over one sur- 

face. The results of this case are used to show the devi- 

ation of the results of the approximate method from those 

of the mathematical solution. 

Case 1: Isolated Unit Cell with Heat Generation 

The unit cell model on page 50 is treated as one re- 

gion and the heat balance is 

or 

17 
dt 

2-a2)jdo_ 2ìT.?./(7-7) 

dt 

244/ (7;-?;) 

(5-a) 

(B-3) 

Equation (B-3) may be used for a transient situation, 

where C and ¿I are varying, by applying to each 

increment of time ¿ t . This is done by considering all 

the variable quantities constant over the small time in- 

terval and that the unit cell temperature at the beginning 

of each time interval, 7, is the final temperature, 

7;i,ø#ì computed for the previous time interval. Each 

time interval begins at a time zero and ends at a time.1t 
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The solution of Equation (B-3) for a time interval is 

where 

_________ = e.k (-54z') 
- 

"C 

5= ____ 
(a-a '),pc 

(a-i) 

During the transient operation defined by Equation 

(B-2), the heat flowing through the unit cell wall is 

Q z77-QU('7-7). 

in the one region model considered, this heat flow will 

produce a steady-state temperature distribution since the 

storage and generation of heat occurs at the outer bound- 

ary only, in the actual case, both heat storage and gen- 

eration will be distributed in some manner over the unit 

celi radius and will not produce the same temperature dis- 

tribution as the usual steady-state. A reasonable approx- 

imation of the correct temperature distribution must be 

made for the calculation of thermal stress. The simplest 

approximation one can make in lieu of more detailed study 

would be to consider the heat flowing through the unit 

cell wall as heat generated in the wall and distribute it 

uniformly as a volumetric heat generation. For this 
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approximdtion, the t(perature distribution in the unit 

cell model is defined by the following differential system: 

__T / 17- o (3-5) 

ir 4 

where 

(/)= _/ r 
Ii- 

¿fr- 

ZTT4! ¿V' (7_7) 
,fzaa) 

The solution of system (B-5) is 

1= 7± ( )-fkA 
1(422) 

¿4 4 2dJ 

(a-s) 

(5-7) 

The overall heat transfer coefficient, ¿j , must be 

compatible with th system (B-5) and Equation (B-6). Sub- 

stituting Equation (B-7), evaluated at P 6 into 

Equation (B-6) and rearranging, we get 

77-ffb 
(4Z) 

U::: 

o,- 

2fl?/vo (a2b2) 1ohÁ 
q; I z_4Ç J 

/12 2 
(a-a,' 

a (a - 6 ') 
'? 

Lh (4 
z- 2) 

2....4 -k0 

. (ß-8) 
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í-n alternate solution may be obtained using Equation 

(B-6) if the unit cell wall temperature, 7, , at , 

is known. For this alternate solution 

(8-9) (22) 

Case 2; A Unit Cell Which is One of .any in a Cooled 

Perforated Geometry with Internal Heat Gen- 

eration 

In this case, the maximum temperature in the unit 

cell is the same as that calculated for the perforated 

geometry at that location (see i-ppendix C). In this case 

it is necessary only to find the temperature distribution 

in the unit cell wall using Equations (B-6), (B-7) and 

(B-8). 

Case 3: Isolated Slab without Heat Generation, 

Heated Only by Gas Flowing Over Une surface 

The main purpose for considering the case of this 

slab is to show how the approximate method deviates from 

the mathematical solution. The mathematical solution for 

the slab geometry is simpler than that for a cylinder. 

The eì-infinite slab used in this case is shown in 

Figure 32. 
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Ga 

k 
x=i 

1. Approximate method 

4d,q lic 

Si,-/ace 

Figure 82 

The slab is treated as one region the same as the 

unit cell in Case 1. The heat balance on the slab is 

?C41 f = - ¿M (- 7;) (8 -/) 

dé 

or 

- (-//) 

The solution to Equation (B-11) is 

-ut (5-12) 
= 

ín approximation of the temperature distribution in the 

slab would be obtained in the same manner as in Case 1. 



In this case the approximate temperature distribution is 

defined by the differential system 

where 

12 
7Lfr û 

dyl 

(I) 

dx 

(2) J() 
1.4' 

ft,= 
AI 

_7I y=J 

The solution of system (8-13) is 

c2x2) p'- 
- 7__ f, 

till 

2 J 

(8-/3) 

¿5-14) 

(8-/p) 
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The overall heat transfer coefficient, ¿q , must be 

compatible with the system (B-13) and Equation (B-14). 

Substituting Equation (B-l5) evaluated at iO , into 

Equation (B-14) and rearranging we get 

¿41= / 

24 J 

(B-/i) 



If the surface temperature at X1 is known, an alter- 

nate solution sirilar to that of Case i may be obtained 

by usinç 

/ J'4 (-) (5-/i) 

'li -. 

2. Mathematical solution 

The differential system which defines the transient 

heat transfer process in the slab is 

?2T 
= 

(1)Z=o 

(2) 
Ix 

(3) 77 

;77- 
(8-/I) 

s z'-é 

y= t=. 

The solution to this system is 

1= r- r) Ca (7ex(4) 
Cos * A J 

213 e) (5-19) 

where is defined by 

¿1 = __ (B-Za) 

4 
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3. Comparison of the approximate method with the 

mathematical solution 

The approximate method was compared to the mathemati- 

cal solution by evaluation at four slab thicknesses. The 

temperatures at stations X=o and X-i 3.0 seconds 

after the start of heating were compared and the percent 

deviation of the approximate method from the mathematical 

solution computed. The percent deviation as a function of 

slab thickness is presented in Figure 6. The computations 

are based upon the following conditions: 

= 10000 F 

T = 1000 F 

P = 0.137 lbs/in3 
C 0.23 B/lbs 0F 

k0 = 2.48 x icY4 B/sec x in x 

h = 1.33 x 10 B/sec x in2 x °F. 

The slab thicknesses considered were 0.05, 0.1, 0.3 and 

0.6 inches. A summary of the results is presented in 

Table I. 

The shape of the curve representing the interior 

point of a slab in Figure 6 can best be explained by con- 

sidering the conductance and thermal capacity of the slab 

as shown in Figure 11. At large slab thicknesses the con- 

ductance U (see Equation B-11) is small and the thermal 

capacity is large. These conditions result in a 
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small heat influx and a small heat storage which give a 

large ¿ in the slab and a small temperature rise. At 

small slab thicknesses ¿.1 is large and is small. 

This results in a large heat influx and a large heat stor- 

age which give a small ¿7 arid a large temperature rise. 

¿3y simpler reasoning, it becomes obvious that as the 

total slab thickness increases the percent deviation of 

the temperature of the interior point, calculated by the 

approximate method, from that calculated by the inathemati- 

cal method would become smaller. í-t sufficiently large 

slab thicknesses and small times the temperature of the 

interior point calculated by both methods would approach 

the initial temperature. At larger slab thicknesses, how- 

ever, as shown by Figure 6, the error in the surface tem- 

perature would continue to increase. The error in the 

surface temperature, however, would decrease at greater 

times. 

The approximate method cannot evaluate sudden heating 

or cooling such as in quenching, etc. A typical example 

of such a situation is shown in ligure 12. The approxi- 

mate method can only operate with the source temperature, 

conductance and thermal capacitance of the slab. The tem- 

perature distributions which might be obtained by the ap- 

proximate method are shown by dotted lines in Figure 12. 
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HEiT TRPNSFER IN PERFUHMTED GEUMEThIES ITH VuLTJ1rETRIC 

HEiT DISSIPATION ND VOLUMETRIC HEíT GENERITION 

The differential equation which describes the heat 

transfer process in an object with multiple heat sinks and 

with internal heat generation is 

where 

p2T = the 

the 

mul 

= the 

= the 

= __ (c-/) 
/ 

conduction term 

term for dissipation due to 

tiple sinks 

internal heat generation term 

storage term. 

The solution of Equation (C-l) is not difficult to obtain 

for common shapes such as cylinders, slabs, etc. However, 

most practical problems require numerical methods of solu- 

tion since _- 

f, 
) f and C vary with tempera- 

ture or time. 

The quantities and ß are "apparent' values 

based upon the total volume of the object and are func- 

tions of the true values for the solid material and the 

void fraction in the object. The apparent thermal 



conductiv±ty, , is defined as 

-d' 

¡/-_5\ 

= 
(7, p. 85) (c-e) 

where 

the solid material thermal 

conductivity 

and 

B = the void fraction. 

Jakob (7, p. 85) mentions that similar forms of this equa- 

tion may be valid up to B 0.5 

The apparent volumetric heat generation, ¡L' , is de- 

fined as 

¡L' (/5) 

where 

(C-3) 

f ai, = the volumetric heat generation 

for the solid material. 

The apparent density, ¡O is defined as 

p (i-a) 

where 

¿c-i) 

/ = the density of the solid material. 

The volumetric heat dissipation coefficient, ¿.. , is 

derived from a consideration of the heat transfer in a 
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unit cell. For a differential length of cooling passage, 

the heat transferred in a unit cell (see Appendix B) is 

Q= 2/ (r-)dx. (c- .c) 

If we base this heat flow on the total volume of the unit 

cell we can write 

2a?(T-7)dY (T-)ay (c-s) 

or 

(c-7) 

Now the void fraction for the unit cell is 

(C-9) 

therefore Equation (C-7) becomes 

z:'- 
i, - ___________ 

1 

It is clearly evident, then, that the analysis of the 

heat transfer process in an object with multiple heat 

sinks and with internal heat generation involves the 

treatment of "lumped" heat sinks as "distributed° heat 

sinks in Equations (c-l) and (C-6). In a numerical method 

of analysis, where the object is divided into discrete re- 

gions, a "re-lumping" of the distributed heat sinks is 

nece ssary. 
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DERIVTION ol- THE THERMML STRESS EUiTIÛNS FUR A WXELL 

CYLINDER BtSED UN THE ELASTIC VISCOELASTIC ANALOGY 

The simplest idealization of the mechanical response 

of materials at elevated temperatures that includes both 

the elastic and the creep component of the deformation is 

the linear viscoelastic response (1, p. 578-595). The 

linear viscoelastic response combines the linear elastic 

(Hookean) relation between stress and strain with the 

linear viscous (Newtonian) relation between stress and 

strain rate to produce a material that responds nearly 

elastically to rapidly applied loads but creeps under 

loads of longer duration (Maxwell body) (4, p. 205), 

The Maxwell body may be represented by a spring and 

dashpot model as shown in Figure Dl. 

F 

Figure Dl 

F 
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For a cylinder under conditions of plane strain the 

combination of the equilibrium equations 

_f_ 

1'- t 

and the compatibility condition 

I- 

(2'- /) 

(P-2) 

(-3) 

with the linear viscoelastic stress-strain relations, 

26[?6,. 

Lt ?T 

zG[( 
)7(// 

iLl [L (] (p-s) 
a 1' L/j Lt 

2[j ;- 
L uiL 3 J 

the compressibility equation, 

v+±= 31(°')*Ko?i7 (v-î,) 

t dé/ L 3 tJ 



and the plane strain condition 

___ =0 (z-8) 
9z 

produces two simultaneous partial differential equations 

for and C that can be separated only by the assump- 

tion of imcompressibility ( 
A'_o lcS ). In this 

case, the equation for ó for the axwell cylinder can be 

directly written on the basis of the elastic viscoelastic 

analogy in the following manner: 

Assuming incompressibility, and the plane strain condi- 

tion, Equation (D-7) reduces to 

(V-9) 
le. c1 

Solving Equation (D-6) for we get 

/ 
-3(L (-a) 

Substituting from Equation (D-10) into Equations (D-4) and 

(D-5) and solving for l- and s 

(v-/í) 

a' dzL 4g z;) 

= ï r , / * 
- ) . 

It 2 ?/' 

Rewriting Equation (D-3) as 
aé:k 

fr-2É - ,74 (D-13) 
çì-?t 
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and substituting from Equations (D-li) and (D-12) we ob- 

ta i n 

L/ '-d)z I T ,L ,Lí)È (-/) 
(1L t) 2 16 (1 zm- 

Finally, using the equilibrium Equation (D-l), we get a 

differential equation for the radial stress 

(_ /ì-)= _&r 
rJ-t 

Integrating Equation (D-15) with respect to P and divid- 

ing by 
_3 

gives 

(L V) - /2 

t é ZA 1/-J i- 4 zL 

Integrating again with respect to k reduces Equation 

(D-16) to 

-f- 

v-/7) 
t z-,,' 

17J4 t 

where C1 and C2 are constants of integration. 

Substituting Equations (D-16) and (D-17) into Equation 

(D-l) we obtain the tangential stress equation 

71 , - (Lrd- / ) 

7_ t\ 

( 

;j - 
-;:i-h it t 7(4zkiJ 

(D -i8) 



where 

and 

6 

(D -/ 9 

(D-2e) 



iPPENDIX E 

THE ßC'UNDARY CuNDITIONS FOR THERIIAL STRESS IN IA UNIT CELL 

IN A PERFORATED GEOMETRY 

1. Thermal Stresses in an Equivalent Cylinder ¡.odel 

of a Unit Cell with Conditions of Symmetry at the 

Outer Boundary 

Consider a cluster of unit cells sufficiently large 

and operating under conditions such that a unit cell lo- 

cated in a particular region is exactly like those sur- 

rounding it. Under these conditions, the radial stress at 

the outer boundary of the equivalent cylinder model of the 

unit cell would equal that of each surrounding unit cell. 

No discontinuities are envisioned in the radial stresses 

at the outer boundaries and there are no applied forces 

inside the holes, therefore, the differential system which 

describes the steady-state elastic radial stress distribu- 

tion in the unit cell is 

I 

(I) a7 -6 
a'fr 

2) c'=o t=a 

where = 
- ____ 

(F-') 
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The solution of this differential system is 

7= 4 Jul (2a2)/Izr(J) z JI (E- z) 

z L a 

Solution (E-2) yields a non-zero summation of moments 

across the radius of the unit cell model. To explain why 

this occurs and to justify the occurrence, the following 

analysis is presented. 

Consider a unit cell in which the elastic thermal 

stresses are defined by the differential system 

/i,dyIzø, /)AI(Ir) (E-s) 
dJ 

(I) 

Z) d 

(3) tIr 

where 

I frIfr 

and 

/ 
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The stresses obtained from the solution of the biharmonic 

equation are 

and 

fIr24ht2C, (E- 
/ 

t2 

Tf;PdkA/ 32A2 (e-c) 
/ tz i fr2 

where A1, B1 and C1 are constants of integration. 

complete solution to the system (E-3) is not possi- 

ble without a consderation of the displacements. The ra- 

dial displacement ( 
U 

) and the tangential displacement 

( ,' ) are defined by the equations: 

a nd 

4 = 

- *_ f_ (E-7) 
e- e-16' 

, - I 
du i±:- - -, (E-:) fr-b-:)- Ir é- 
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From Hooke's Law (for plane strain) 

(E-9) 

(-/& 
fr- fr-;6 

(c1 o$) &r] (E-i/) 

Solving Equation (E-11) for c7 and substituting into 

(E-e) and (E-10) along with 0 and d of (E-4) and (E-5) 

we obtain after integration 

/ /(i7/ 2)f (// (i) /7 

E 1(6). (E-/z) 

From (E-lo) we then obtain 

- = ¿3, (/7I 
2) 

-7(6). (I±_-/ 3,) E 

Integration of (E-13) gives 

'V- = k-8 2) -f16 7L /(/-) 

When Equations (E-12) and (E-14) are combined with Equa- 

tion (E-8) when Ç is zero and the resultant equation 
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integrated we obtain 

and 

F,- 

/17/ $/' i'- k ce's &. (E- /) 

Therefore Equation (E-14) becomes 

(,»r6' -AF//cth--*rn6 (E-17) 

where F, H and K are constants of integration. 

The first term in Equation (E-17) causes the tangen- 

tial displacement 4' to become many-valued which is 

physically impossible In a full ring. For this reason the 

constant B1 in the general solution of the system (E-3) is 

usually set equal to zero (8, p. 66-68). The purpose of 

the development of the analysis of which the complete so- 

lution of the differential system (E-3) is a part is to 

explain why a positive moment is obtained with the solu- 

tion (E-2) and to justify its occurrence. For this rea- 

son, ß1 is not set equal to zero since the solution would 

revert back to that of (E-2) and the cause of the positive 
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moment would remain a mystery. When the boundary condi- 

tions 

/,/O - 

S s (-'8) 

e 

J 

are imposed upon (E-17) we obtain 

(E-19) 

At a tangential displacement 

(/,a2)5fr--P (E-Zo) 

E 

is the result of the conditions of system (E-3). To visu- 

alize this displacement assume that the system (E-3) ap- 

plies to a hollow cylinder with a radial cut. 

In order to restore the cylinder to its original con- 

dition, a mechanical force must be applied such that a 

displacement of opposite sign occurs, i.e., 

,v-= -K. (E-21) 

The stresses in the cylinder due to the applied force are 

superimposed upon those of Equations (E-4) and (E-5) to 

obtain the stresses which would occur in the cylinder if 
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it had not been allowed to deflect. The mechanical 

stresses are defined by the differential system 

«de /IYI"ø'z í» 
( 

*Tr7 ¿ 
û (E-22) 

(/) a/ r= 

4 
(2) cJ= 7L 

The stresses obtained from the solution to this biharmonic 

equation are 

" s+2hfr-+zc2 (E-23) r 

'-85. +282%r2c2 (E-24) 

where i2, 82 and C2 are constants of integration, 

The tangential displacement at 8 277 would be 

'V- = r (,2) 5 (E-2c) 

However, this displacement must be of opposite sign to 

that of (E-20), therefore 

2 
:- (E-2e) 
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Equations (E-23) and (E-24 are rewritten to give 

= - -2S,S,*2Cz (E-27) 

and 

T 

From the boundary conditions of the systems (E-3) and 

(E-22) the constants of inteyration are 

A, 
-(- 

22h2[ßfrdI1 qí)ì7 J J 

* a2(24- 

(b242)Z (E-29) 

= -{(i2 bz2)[r(b)Af] 

24 2[Aj dk -'4 (4 rdr) íj} 
..: (ba2)2 (E-3ô) 
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C, 

[,62r(ti]+[4 (/+2ba) 

(d/ (»2} 

a rid 

(b (t-3/) 

= - (E-32) 

(E-33) 
2 k 

hen these constants are substituted in (E-4) and (E-23) 

and the equations added to produce 
, 

t.crv we find that 

the resultant equation is identical to Equation (E-2). 

The moment 

(E-3 

is the same as that obtained from the solution of the sys- 

tern (E-1) and represents the moment exerted upon the unit 

cell by its surroundings to produce a zero radial strss 

gradient at the outer boundary of the unit cell and single- 

valued tangential displacements. 
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2. Thermal Stresses in a Jnit Cell in a Square ¿atrix of 

Square Cooling Channels 

Consider the infinite matrix of square cooling chan- 

nels in a heat generating material as shown in Figure 14 

(a). , unit cell is shown in Figure 14 (b). 

In terms of the stress function, the thermal stresses 

in the unit cell may be expressed as 

,L2' 
¿2y9' ay2/ (/,a)4 

(E- 3c) 

The boundary conditions at the cooliny channel surfaces 

are defined by 

and 

- ___ y (E-3e) 
ay2 

»1 2t Jc? () 

where and V are the forces acting in the x and y di- 

rections, respectively, and and are the direction 

cosines of normals to the boundary. In the x direction 

and 1= i. 

(no normal forces) 
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Similarly for the y direction 

,f2 

and ,4Ø/. 

Substitution of these terms in Equations (L-36) and (E-37) 

and integration yields the boundary conditions 

M = normal to surface). 

i finite difference approximation of the differential 

system represented by Equations (E-35) and (E-38) creates 

a system of equations for the stress function at the vari- 

ous nodes in Figure 14 (b). The simulation of an infinite 

matrix of unit cells may be accomplished by connecting 

like numbered nodes as shown in F:iqure 14 (h). 

»t conditions nearly approximating those in the equi- 

valent cylinder model of the unit cell of figure 2, ari 

analysis was made to determine the thermal. stress distri- 

outions in the square unit cell of 1-iqure 14 (b). The 

conditions used are: 

f= 1.7 B/sec x in3 

,1 = 2.4R X B/sec x in x 

__,h4 0.3 

2 o c'(E = 236 lb/in x F 



eb thickness = 0.04 inch 80 

xi s)aciny = 0.01 inch 

The solution of the system of equations with these 

conditions produced a map of the stress function as shown 

in iigure 15. The definition of the stress function 

states that 

ay1 

Using these definitions, the stress map of Figure 16 was 

constructed. The stresses along the radial line in 

Figure 16 are plotted in Figure 17. The curves in 

J:igure 17 indicate that the slope of the curve for c1' 

( C corresponds to the radial stresses, cf'r , in a 

cylindrical unit cell model) is zero at the outer boundary. 

The curve for the stress , ( d'y corresponds to the tan- 

gential stress, Q , in a cylindrical unit cell) is of 

the saíne shape and magnitude one would expect of a curve 

of d6 for the cylindrical unit cell with the conditions 

Ö_ r 
not !: at the outer boundary. 

lt is recommended that for the computation of the 

tangential stresses in a cylindrical model of the unit 



cell the condition at the outer boundary be specified as 

o rather than O 

1fr 
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SOLsrIoN OF THE INELiSTIC THERÄAL STRESS EQUATIONS FOR THE 

UNIT CELL AND CYLINDER BY NU.ERICL !;ETHODS AND 

THE DETEHi..INATIUN OF THE STíi3ILITY HECUIREMENTS 

Most studies of practical importance which require 

the determination of the viscoelastic stresses usually in- 

volve time and temperature variable material properties, 

ambient conditions, etc. In such cases the solution of 

the viscoelastic equations must be obtained by numerical 

methods and this in turn requires the additional consider- 

ation 0f equation stability. 

1. Unit Cell 

The equations for inelastic thermal stresses based 

upon the elastic viscoelastic analogy for a cylinder are 

Ct2zT 
(L 7d/j ìt/ 

a nd 

(See Appendix D, Equation D-15) 

(F-2) 
6"- 

Consider the term in Equation (F-l). This 

may be approximated for an increment of time by 

6'ZT g_/rni_7;; 
). (:3) 

1fr-;l- atk- I t7,-z'/ 



t any instant of time, if we assume that the heat dissi- 

pation or absorption may be distributed volumetrically as 

discussed in Appendix B, we can approximately represent 

the heat flow in the unit cell as a steady state process. 

Only and will change with time. Therefore 

r 
+5 (r-4) 

and 

(f-f) 

where A, B, C, and D are constants of integration. 

The boundary conditions at any instant of time, if we 

define as the excess of temperature above the wall 

temperature (temperature at inner radius), would be 

(i) 
dr=0 s t6 
dr 

I (f-i) 

(2) T iL tj 
Imposing the conditions (F-6) on Equations (F-4) and (F-5) 

we obtain 

t/[(2)h4 
(F-7) 

7;;iv - 
-rnL// I ? 

and 7 
Mr(42)%»7 (F-2) - 

¿n! I 2 



The time derivative of the temperature is then approxi- 

mately represented by 

7[(t2t7 
(r-s) 

gr - ___ 

n,', - 

and Equation (F-3) may be written 

___ 7,,, 

_____ 2 
4/-4 y 

/ z ii-q-k 
2k/ t(Z 2k' 

Substituting from (F-10) into (F-1) and integrating with 

respect to t' we obtain 

(*)k 365(t)C +2. (,r/i) 

2 2,.Z 

When we impose the boundary conditions discussed in part B 

of Appendix E (conditions E-1), i.e., 

(') c1::o a t 
) 

: 
(F-/i) 

(2) d. =O r=a 
J 

we can write 

(--6) 
36[_(al*i-,'Z) _gLp:7L a 

8 2 a 

(i I 

24'J,47 
(F-ì3) - 

;- - ;i)( 2 a ) 



and from (F-2) 

3fr2 d22 
Ï 

r1 /a 2 r 
L / 

__ 
7j - LÏ( a2rL) L(b-a) 

(r 14) 

= (F-/c) 

The maximum stress in the cylindrical model of the unit 

cell will be the tangential component at radius hlau and 

Equation (F-15) becomes 

*() 

= 36.J. (f-17) 

The finite difference approximation of (F-17) is 

/_____ 
- 3&(I, 

If we set 

/i 
(f-. /9) 

and 
;M74.f_ 4&bl\_ 

Iv = ? 7 , J-1 - 3 l (F-2o) 



then Ecjuation (F-18) may be written 

-dM +1V 
M 

or 

(M-i)O»i,L/V 
(F-21) 

Al 

Equation (F-21) is stable when 

or 

Al-I 

ti 

Al -- / (F-22) 
¿1. 

2. Perforated Parent Cylinder 

For the perforated parent cylinder, Equation (F-l) 

is written as 

(+±Ye2k _)- 2I?Zc22T (a-23) 

t 2 c.9R1 dI/ 

where R = the variable radius of the parent cylinder 

E= 

restriction on the use of the elastic viscoelastic anal- 

ogy is that the material must be assumed to be incompress- 

ible (Poisson's ratio, therefore E 3 (see 

Appendix D). The modulus of elasticity E in Equation (1:_23) 



is modified for perforated geometries as suggested by 

Horvay (6, p. 355-360). 

The finite difference approximation to Equation 

(F-23) is developed in the following manner: 

I,/1¼'jmH 2c1frfl *C1m,7L km-i 
Na J2Am( 

8 /47 
,t 

(f-24) 

(frne,2 -°'') 
where H = node spacing. 

¿e/ ¿- 
= ( 

m*ì -2c1,1 +c7m-i) *_ 
N2 

(F-25) 

and 

- 

Therefore Equation (I-24) becomes 

77- (=Am(L 
or in finite difference form 

4f() 1. (F-2g) 

¿It 2 ' 



'il 
Finally, substituting (F-25) and (F-26) into (F-28) 

LI (2m&,') / ZA/Rm 

-(,_2m,) 3 (*m-/)7 
1/2 IM Z/"fm J 

2Hì 

/e r 7 (F-29) 

The initial values of stress for a time increment will be 

known, therefore the final values must be determined by 

solving the equations, for each radial position, simulta- 

neously. The term - i / is determined beforehand ¿t4R/ 
from the heat transfer methods described in appendix C. 

If we set 

and 

M = (F-3o) 

4, = ,4 ,/i- /T) 7 (F-31) 
2 L1?/mJ1 
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then Equation (E-28) may be written 

ç- 14' 
L (M-I) 2 (F-32) 

zn.'i/ 

/4 

The stability requirement for this equation is 

or 

. o. (E-33) 
Al 

/t,f /. (F-34) 

When the radial stresses in the perforated cylinder are 

determined from Equation (E-29), the tangential stresses 

are obtained by applying 

dk.yl ________ (r-35) 

2H 

The tangential stresses of Equation (E-35) are superim- 

posed upon those of Equation (k--18), for the same loca- 

tion in the cylinder, to obtain an estimate of the maximum 

thermal stresses in the cylinder. 



N Os Eì\CLJT UTE 

a = The Inner radius of a unit cell 

A = Heat transfer area 

b = Outer radius of an equivalent cylinder model of a 

unit cell 

B = Void fraction 

C; = Heat capacity 

E = ¿/odulus of elasticity 

;Z geometric factor for computing the tangential 

thermal stress in an equivalent cylinder model 

of a unit cell 

at radius 

at radius a. 

G Modulus of rigidity 

h = Heat transfer coefficient of convection 

H = Radial node spacing for calculating thermal 

stresses in the perforated cylinder by finite 

differences 

i = Denotes initial conditions 

k = Thermal conductivity 

k, of the perforated cylinder 

k0, of the unit cell or slab 

K = Bulk modulus 

i = Length of slab 

m = Denotes a point in space 



1v 

n 

r 

h 

t 

T 

u 
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= oment 

= Stability factor 

= Oenotes a point in time 

= Volumetric heat generation 

qv. in the perforated cylinder 

qv0, in the unit cell 

q' , a fictitious value for the unit cell or vo 

slab derived from the heat flow through the wall 

= The heat flowing through the unit cell wall or 

slab 

= Variable radius of the equivalent cylinder model 

of the unit cell 

= Variable radius of the perforated cylinder 

= Time 

= Temperature 

T, of fluid 

Tb, of the unit cell at radius 'b" 

of the unit cell at radius daft (wall tempera- 

ture) 

T1, of the slab at length "1" 

T(b), a function of "r" evaluated at radius "b" 

= uveraJ.l neat transfer coefficient for the unit 

cell based on heat transfer froii radius "b" 

through the wall to the fluid 



92 

u = Pradial displacement 

Volumetric heat dissipation coefficient 

V Tangential displacement 

x = Variable length o-f slab 

Coefficient of expansion 

Tangential displacement angle 

A 
= 5hearing strain 

Strain 

radial strain 

b, tangential strain 

E, axial strain 

Viscosity of solid material 

= uenotes tangential conditions 

LRoot of ,i T.P?Ak, - ___ 

/4= 1-oisson's ratio 

7fr; 

= 

(A1- £ 

7r 3.141b 

Density 
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d stress 

cÇ , radial of unit cell 

4 , radial of cylinder 

tangential 

C, axial 

2= Relaxation time, 

Shear stress 

= Stress function 


