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TRANSIENT TEMFERATURES AND INELASTIC THERMAL STRESSES
IN GAS-COOLED FERFORATED CERAMIC CYLINDERS
WITH INTERNAL HEAT GENERATION

INTRODUCTION

The purpose of this report is to present a method for
estimating the transient temperature distributions and in-
elastic thermal stresses in perforated, cooled ceramic
cylinders with internal heat generation, The determina-
tion of the inelastic thermal stresses is based on the
elastic viscoelastic analogy (1, p, 578-595; 4, p. 105).
The analysis of thermal stresses in perforated geometries
is based, with some latitude, on the method of G. Horvay
(6, ps 355-360). The heat transfer process in the perfo-
rated, cooled cylinder is based on the concept of volu-
metric heat dissipation. Several appendices to the report
contain detailed derivations and explanations that serve
as a complete development of the method presented. Some
results of a study using the method described are pre-

sented as an example of its use.



THECRY AND METHODS 2

1, Heat Transfer

a. Unit Cells

A unit cell is defined as a coolant hole in a perfo-
rated cylinder surrounded by ceramic whose outer boundary
is defined by lines of symmetry (see Figure 1), For ease
of analysis, the small unit cell is converted to an equiv-
alent hollow cylinder cross section. A sketch of a typi-
cal perforated ceramic cylinder is shown in Figure 1.

To demonstrate the use of the analytical method out-
lined in this report, a helium-cooled aluminum oxide cyl-
inder was analyzed (Figure 2). This cylinder has a void
fraction of 0.5 representing 140 cooling channels. These
cooling channels have an inner radius, a, of 0.299 inch
and the outer radius, b, of the unit cell model is 0,423
inch. The radius of the cylinder is 5.0 inches. The he-
lium flow in each channel is 0.1 lb/sec at a constant tem-
perature of 1500° F. The outer boundary of the cylinder
is kept at 1500° F,

In the transient heat transfer analysis of the unit
cell, a finite difference solution of the differential
equation must be used since physical properties, power
generation, ambient conditions, etc., may be changing with
time. The stability of the finite difference equations
depends upon the compatibility of the unit cell dimensions,

thermal properties and time increment chosen. This poses
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a tremendous problem immediately in the analysis since the
small dimensions of the unit cell model and the thermal
properties of the material (see Figure 3) force the use
of an extremely small time increment to maintain equation
stability.
The differential system which describes the heat

transfer process in a unit cell is

2T L 12T 4 fv = pc T (1)
ors. ror % It

() 2T =o at r=b, ¢=*¢
da

2) AIT=A(T-T) 4t rea, t=t

() 7'./;* at r=r tzo
The finite difference representation of this system and
the determination of the stability criteria are given in
Appendix A. A plot of the stability factor as a function
of time of operation for the equations for a unit cell is
presented in Figure 4. The temperatures at which the
thermal properties were evaluated are presented in
Figure 5. The base lines labeled "boundary" and "in-
terior" in Figure 4 represent the values of stability
factor below which the respective equations would be un-
stable.

It may be seen from Figures 4 and 5 that the selec-

tion of a time interval which will maintain system sta-

bility over a wide range of temperatures is not an easy
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matter. Even during the period of highest operating tem-
perature the time interval would be less than 0.5 second.
At lower operating temperatures the time interval is much
less than 0.25 second. This makes hand computation time
consuming and high speed machine computation costly.

The first problem encountered then was to determine
the transient temperature distributions in a unit cell
during a desired operating period. Since the usual meth-
ods of analysis, i.e., the mathematical and the numerical
representation of the mathematical, were ruled out on the
grounds of complexity and impracticability, an approximate
method was devised, This method is based upon the con-
sideration of the unit cell model as one region, i.e., all
heat is transferred, absorbed and generated at one radial
position in the model (in this case, the outer periphery
of the model). The basic equation of the approximate
method is:

PC V:{/:'"N & ﬁV" zrald(Tmay—T)dx (2)

where

= Heat storage

cv A Tmax
T

;@ V' = Heat generation

2mrald /7/;0!'7)/1= Heat transfer.
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A further approximation is made with regard to the temper-
ature distribution within the unit cell model wall, 1In
the one region model considered, the temperature distribu-
tion within the wall is due only to the heat transfer term
in Equation (2) since the storage and generation of heat
occurs at the outer boundary only. This heat flow would
produce the usual steady-state temperature distribution
for a hollow cylinder without heat generation. 1In the
actual case, heat storage and generation, distributed in
some manner over the unit cell radius, will not produce
this type of temperature distribution. A simple approxe-
imation of the correct temperature distribution may be
made by considering the heat transferred in the unit cell
wall as volumetric heat generation, distributed uniformly,
to be used in the steady-state form of the differential
system (1). This was found to be a fair approximation
provided the unit cell wall thickness does not exceed
about 0.15 inch (see Figure 6). This conclusion was based
upon a comparison with a classical mathematical solution
to the problem (see Appendix B and Figures 7 through 10).
A more detailed account of the approximate methods dis-
cussed here are presented in Appendix B. It must be
pointed out at this time that the approximate method dis-
cussed cannot evaluate sudden heating or cooling such as

in quenching, etc., where a sudden reversal of the slope
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of the temperature profile is experienced. A typical ex-
ample of such a situation is shown in Figure 12. The tem=-
perature distributions that might be obtained by the ap=-
proximate method are shown by dotted lines in Figure 12.

A reversal of the slope of the temperature profile such as
that shown would not be experienced by the unit cell under
carefully controlled conditions. At steady coolant condi-
tions power changes would not produce the reversal of
slope shown and changes in coolant conditions could be
carefully controlled to avoid such a situation.

b. Parent Cylinder

The heat transfer process in the perforated, cooled

cylinder (see Figures 1 and 2) is defined by the equation:

%V‘T—D;(T'E)"iyﬂ“%’ (3)

where
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the conduction term
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a term for dissipation due to
multiple sinks
the internal heat generation term

/OC'JZZT = the storage term.
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In this type of geometry, the heat transfer by con=-
duction through the perforated mass is hampered by the
perforations which, when cooled, provide for heat dissi=-
pation. If the object is of moderate dimensions, is
cooled or heated at the outer periphery and has many small
cooling channels representing a substantial void fraction,
an analysis of individual isolated unit cells will not
provide a reasonable estimation of the heat transfer pro-
cess in the object. A reasonable estimation of the heat
transfer process may be obtained by the use of Equation
(3) with an "apparent" thermal conductivity, k, and a
"volumetric heat dissipation coefficient", U,. The terms
k and U, are functions of the void fraction of the ob-
ject. The defining equations for these terms are pre=-
sented in Appendix C.

There are limitations on the validity of this treat-
ment which have not been established. The limitations of
this treatment will depend upon a parameter relating
cooling passage diameter, void fraction, number of cool=-
ing passages and overall dimensions of the perforated ob-
ject. For example, it is possible to have two objects
with the same overall dimensions and void fraction, how=-
ever, one could have several cooling passages of small
diameter while the other could have one large cooling

passage (e.g., a hollow cylinder). The latter object
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could not be analyzed using Equation (3). The limitations
of the method could be established by experiments which
would evaluate the parameter mentioned. This parameter
could then be used in the same manner as Reynolds number
is used for fluid flow problems, i.e., to establish a val-
id range of usefulness of the method for any situation.

2. Thermal Stress

a., Viscoelastic Theory

The inelastic thermal stresses dealt with in this re-
port are based upon the elastic viscoelastic analogy for a
material with creep (Maxwell body). This is the simplest
idealization of the mechanical behavior of structural ma-
terials at elevated temperatures. An excellent discussion
of the theory of inelastic stress is given by A, M. Freu-
denthal (1, p., 578-595; 4, p. 205) which is the basis for
the inelastic thermal stress work presented in this re-
port. My derivation of the equations for radial ( J, )
and tangential ( ¢ ) thermal stresses in a Maxwell cylin=-
der, based upon the elastic viscoelastic analogy, is pre=-
sented in Appendix D. The derivation in Appendix D yields
two simultaneous partial differential equations for 0}
and (0 that can be separated only by the assumption of an
incompressible medium. This assumption manifests itself

as a Poisson's ratio of 0.5 for the material under study.



Any transient thermal stress study based upon the
elastic viscoelastic analogy is heavily dependent upon the
relaxation time 2° of the material. The relaxation time
is defined by the relationship:

Fa M (1, p. 579) (4)

G

where
Y = material viscosity
G = material modulus of rigidity
The temperature dependence of 2° is primarily due to the

temperature dependence of /)  which may be expressed as

@ /75 ) (1 578) (5)
= e o I Sl v Pe
=R /

activation energy

where

the universal gas constant

= absolute temperature

- - X 0O
n

o = reference absolute temperature
70 = reference viscosity at Ty

Therefore, neglecting changes in the modulus of ri-

gidity
7= Z; €*y7 _éz ({22’—;,) (6)
kL \T

2; = reference relaxation time at To'

where
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For the aluminum oxide cylinder of Figure 2 the ref-
erence relaxation time was estimated from internal fric-
tion data for polycrystalline Alp03 (2, p. 21). Accord=-
ing to Chang (3) if we use the frequency and the tempera-
ture at which the peak occurs on the internal friction

plot, we can approximate 2, in the following manner:

A (7)

where
1{ = frequency producing peak internal
friction at T,

Chang points out, however, that this implies stress relax-
ation by the mechanism of grain boundary slip over the en-
tire temperature range considered where, in reality, other
mechanisms may be predominant at high temperatures.

A plot of the temperature variation of the relaxation
time for polycrystalline Aly0q (based on equations 6 and 7)
is presented as Figure 13,

b. Thermal Stresses in Perforated Geometries

According to Horvay (6, p. 355-360) a thermal stress
analysis can be made for a perforated plate by using the
usual thermal stress equations with the elastic modulus E
and Poisson's Ratio 4 for the solid material replaced by
modified values for the perforated material. The modified
E and 4 are functions of the web thickness to radius
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ratio for the unit cell. As pointed out in section 2a,
page 8, concerning viscoelastic theory, a Foisson's ratio
of 0.5 must be assumed, consequently, no modification ogu
is necessary., However, the value of E used in the analy-
sis of the perforated cylinder of Figure 2 was modified
according to Horvay's suggestion. Horvay also suggests
modifying the thermal conductivity k of the material by
multiplying by the web thickness to radius ratio for the
unit cell, This modification of k was not used in favor
of one proposed by Jakob (7, p. 85) which is given as
Equation (C-2) in Appendix C. In discussing the limita-
tions of his method of analysis Horvay emphasizes the fact
that the temperature distribution must not vary by more
than infinitesimal amounts from hole to hole. In this re=-
spect the method of Horvay is used with great latitude
since substantial variations in temperature from hole to
hole are encountered in many situations to which the meth=-
od outlined in this report is applied.

when computing the elastic thermal stresses in a per-
forated geometry the thermal stresses in the parent ele-
ment due to the variation in temperature across the holes
are superimposed upon the thermal stresses calculated for
the unit cell due to the temperature variation across the

web., This procedure is suggested by Horvay (5, p. 18),.
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The viscoelastic thermal stresses in a body are ex~-
tremely sensitive to the environment. Any forces imposed,
even momentarily, during the operating history of the body
may affect the final stress level attained. Conseqguently,
any superposition of the thermal stresses in the unit cell
and the parent perforated geometry should be done at the
time computed before proceeding to the next time in order
to account for the interaction. This instantaneous super-
position of the stresses represents a rather formidable
computational task at this time. In this report the
stresses in the unit cell and parent geometry are computed
separately and combined at the end of the computations.

c. Boundary Conditions for Thermal Stresses in a

Unit Cell

One of the most perplexing and ccntroversial areas
encountered in the pursuit of the subject of thermal
stresses in perforated geometries was that of the boundary
conditions of the unit cell. At first it was assumed that
an eqguivalent cylinder model of a unit cell could be
treated as an isolated cylinder with no normal forces at
the inner and outer surfaces (i.e., zero radial stresses
at the surfaces). However, it seemed more logical that a
condition of symmetry would exist at the outer boundary of
a unit cell in a sufficiently large cluster of identical

unit cells. This latter approach was taken only to find
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that the summation of the moments obtained in the unit cell
was not zero. Although this could be explained analytical-
ly, it did not seem to be a realistic representation of
the actual situation. 1In order to provide some indication
of the actual conditions which would exist, a simple infi-
nite matrix of square unit cells with square cooling chan-
nels (see Figure 14) was analyzed by setting up a network
of nodes for the finite difference representation of the
biharmonic equation. The results of this study (Figures
15, 16 and 17) indicate that conditions of symmetry do
exist at the outer boundary of a square unit cell, however,
the magnitude and distribution of those stresses compara-
ble to the tangential stresses in a hollow cylinder are
similar to those of a hollow cylinder with zero radial
stresses at the surfaces (see Figure 17). 1In order to
provide a complete picture of the study made both analyti-
cal approaches mentioned are presented in Appendix E.

d. Transient Unit Cell Temperature Representation
in the Thermal Stress Equation
In the partial differential equation for the elastic
viscoelastic radial stress in the equivalent cylinder mod=-

el of a unit cell (see Equation F-1, Appendix F) a temper-
7T )
orot

hand side of the equation. The question arises, consider-

ature-time derivative ( exists on the right

ing the approximation discussed in section la, page 2, and



14
in Appendix B, how this time-temperature differential is
obtained. The answer to this question lies in another ap-
proximation based upon the first. This compounding of ap-
proximations is an unfortunate necessity in this particu-
lar study, however, the error involved is predominantly
that discussed in Appendix B and illustrated in Figures 6
through 10, A detailed development of the time variable
approximation of the temperature gradient ( 9T ) is

orit

presented in Appendix F.
3. iMethod of Analysis

The discussion of the heat transfer and thermal
stress theory of the preceding sections, with the numerous
references to the appropriate appendices, outlines the
general approach to the analysis of perforated gas-cooled
geometries with internal heat generation. The purpose of
this section is to present a specific analytical procedure
based upon equations extracted from the many theoretical
derivations and their associated approximations.

Step 1: Heat Transfer in the Perforated Cylinder

The temperature distributions (maximum unit cell tem-
peratures) in the perforated cylinder and the heat dissi-
pation to the cooling holes are determined in this step.

Equation (C-1) (Appendix C) is solved by numerical
methods to yield the temperature distributions in the cyl=-

inder at various times. The volumetric heat dissipation
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coefficient, defined by Equation (C-9), is evaluated by
first using Equation (B-8) for the overall heat transfer
coefficient for the unit cell. The heat dissipated to a
cooling hole may be calculated by Equation (C-5).

The heat transfer boundary conditions for the perfo-

rated cylinder of Figures 1 and 2 are:

(1) Z7-p atR=0
2R
(2) T=0 atR=A

(3) T=T; at t = time = O,

Step 2: Thermal Stresses in the Perforated Cylinder

The distributions of radial thermal stress in the
perforated cylinder are calculated by Equation (F-29).
The term —Aé'? (ﬁ_g is obtained from the results of
Step 1. The tangential thermal stresses are the highest
stresses in the cylinder and are obtained from Equation
(F=35) once the radial stresses are known.

The thermal stress boundary conditions for the perfo=-
rated cylinder of Figures 1 and 2 are:

(1) 2% _-patR=o0
or

(2) ogg=0 atR=A
(3) @ = Oz (initial) at t = o.
Elastic thermal stresses may be obtained by using an infi=-

nite relaxation time in Equation (F-29).
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Step 3: Heat Transfer in the Unit Cell

The temperature distributions in the unit cell are
obtained from Equation (B-7). Before this equation can
be used, the maximum unit cell temperature and the heat
dissipation to the coolant channel must be obtained from
Step 1. The fictitious value of heat generation for the
unit cell is derived from the heat dissipation according
to Equation (B-6).

Step 4: Thermal Stresses in the Unit Cell

The highest thermal stresses in the unit cell model
are the tangential stresses. These stresses are deter=-
mined from Equation (F-18). For this equation, ¢22 is
defined by Equation (F-16) and (F-17) and 73 is found

from the procedure outlined in section 2a, page 8. The

term (f? zV:;) is obtained from the results of

the unit cell heat transfer analysis of Step 3 (see Equa=-

tions F-1 through F-18).

The thermal stress boundary conditions for the unit
cell model for the perforated cylinder of Figures 1 and 2
are:

(1) Q; =0 atr=5h

(2) 0r =0 atr

(3) Gp = Or(initial) at t = t,.

a



17

Elastic thermal stresses may be obtained by using an infi-
nite relaxation time in Equation (F-18).

Step 5: Combination of Unit Cell and Cylinder

Thermal Stresses

The final step in the analytical procedure is the
combining of the tangential thermal stress in the perfora-
ted cylinder with the maximum tangential thermal stress in
a unit cell at the same radial location in the perforated

cylinder.
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To demonstrate the use of the analytical method pre-
sented in this report, the helium-cooled aluminum oxide
cylinder of Figure 2 was analyzed,

When subjected to the power schedule of Figure 18 and
the other conditions already mentioned (Figure 2), the
maximum temperature in a unit cell (calculated by the
methods outlined) will vary in the manner shown in Figure
18. The conditions which cause this variation in maximum
unit cell temperature also produce severe elastic tangen=-
tial thermal stresses in the unit cell (see Figure 19).
The allowable tensile stress for aluminum oxide at 2000° F
is 32,500 psi. At 1800° F the stresses calculated using
the viscoelastic equations depart from the elastic curve
at about 30,000 psi, peak at about 31,000 psi and then
drop sharply. The second peak on the viscoelastic curve
of Figure 19 is due to an arbitrary change in the relaxa~-
tion time. At this point, the temperature dependence of

I was abandoned in favor of a constant value of 5,0
seconds. This was necessary since the time interval of
computation in this demonstration was 5.0 seconds and the
stability factor for the equations used did not permit a
value of 7  less than 5.0 seconds. In actual practice,
high speed computing machines would eliminate this re-
striction. The third peak on this curve occurs where 2

exceeds 5.0 seconds due to a reduction of the temperature.
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A similar curve (Figure 20) was generated for the
tangential thermal stresses in the perforated cylinder at
a point on the radius corresponding to the location of the
unit cell, As the final step in the analysis, the visco-
elastic thermal stresses in the unit cell and the perfo-
rated cylinder are combined to give the total predicted
maximum thermal stresses in the cylinder (see Figure 21),

The results plotted in Figures 19, 20 and 2l repre=
sent only a portion of the complete results obtained in
this study. Many similar plots could have been prepared
for other locations in the perforated cylinder, however,
those presented are typical and serve to illustrate the
advantages of determining thermal stresses using inelastic
theory.

The viscoelastic thermal stresses in a body are sen-
sitive to the environment. Any forces imposed, even mo-
mentarily, during the operating history of the body may
affect the final stress level attained. Any superposition
of the thermal stresses in the unit cell and the parent
perforated geometry should be done at the time computed
before proceeding to the next time increment in order to
account for the interaction. This superposition of the
stresses represents a rather formidable computational task

at the present time. To simplify the computations for the
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example given in this paper, superposition of the stresses
was the final step in the analysis.

The elastic stresses of Figures 19, 20, and 21 would
go to zero as the temperature of the cylinder reaches a
uniform value of 1500° F at the end of the operating peri-
od, however, the viscoelastic stresses would not go to ze=-
ro. There are "frozen in" compressive stresses present
due to the inelastic behavior of the material. These
"frozen in" stresses would be the initial stresses in the
cylinder for any subsequent operating procedure. Kepeated
cycling according to the schedule described would result
in a moderate build-up of the compressive stresses which
would eventually level off to a nearly constant value.
Excessive cycling, however, could result in failure due to

fatigue.
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The method presented in this report should provide a
way of estimating thermal stresses in perforated geome-
tries during transient operation and should serve to pro-
vide some insight to the phenomena associated with high
temperature operation. The approximations used in some
phases of the method do not place it in the highly rigor-
ous category required for exacting research investigations,
however, it does provide a means of analysis of a diffi-
cult situation where there previously was none. 1t is
recommended that the technigques presented here be checked
by suitable experiments to establish the range of useful=-
ness, errors involved, etc.

An unfortunate limitation of the method presented is
its inability to evaluate temperature and thermal stress
distributions for sudden heating and cooling such as in
quenching, etc., where a sudden reversal of the slope of
the temperature profile in the unit cell wall is experi-
enced. This limitation, however, should not detract from
the value of the method for the prediction of temperatures
and thermal stresses in a controlled environment or for
establishing such an environment.

The approximation of the temperature distribution in
the unit cell wall (see section la, page 2) was found to

be within about 5 percent of the temperature distribution
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obtained by more rigorous methods, provided the unit cell
wall thickness does not exceed about 0.1%5 inch (see
Figure 6).

From the analysis of the infinite matrix of square
cooling channels in a heat generating medium (see Figure
14 (a) and Appendix E), it was concluded that the boundary
conditions for radial thermal stress in the unit cell mod-
el of Figure 1 should be zero radial stress at the inner
and outer radii. Although a condition of symmetry was ob-
tained in the analysis of Appendix E, the resultant
stresses, comparable to the tangential stresses in the
unit cell model, were distributed in a manner suggesting
stress-free boundaries.

The greatest single factor affecting the prediction
of the transient inelastic thermal stresses in materials
operating at high temperature is the relaxation time.

This property is not available for aluminum oxide and
other data from which it might be predicted are not read-
ily available. The method used in this report to obtain
the relaxation time implies that stress relaxation occurs
by the mechanism of grain boundary slip where, in reality,
other mechanisms may be predominant at high temperatures.
The results presented in Figures 19 and 20 suggest that,

in aluminum oxide, creep starts at about 1800° F, The
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validity of the method used for obtaining relaxation time
might be related to this point of departure from the elas~-
tic curve.

The phenomenon of "frozen in" stresses discussed on
page 20 suggests one possible use of the analytical method
presented in this report. The process for making ceramic
objects includes a period of "firing" at high temperatures
to bring about fusion. Upon cooling, these ceramic ob-
jects may have "frozen in" stresses which could cause pre-
mature failure depending upon the conditions to which the
object is subjected. The analytical method of this report
could be used to devise an annealing process for control=-
ling the "frozen in" stresses of ceramics to eliminate

weaknesses or, possibly, to provide "built-in" strength.
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Figure 1. PERFORATED COOLED CYLINDER
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Figure 2. ALUMINUM OXIDE CYLINDER
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Figure 3. THERMAL CONDUCTIVITY AND OTHER PROPERTY
DATA FOR ALUMINUM OXIDE
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Figure 5. TEMPERATURES USED IN THE EVALUATION OF THE
STABILITY OF THE FINITE DIFFERENCE APPROXIMATION OF
THE UNIT CELL HEAT TRANSFER EQUATION
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OF MATHEMATICAL AND AFPFROXIMATE METHODS

TABLE 1

TRANSIENT TEMPERATURES IN SLABS COF VARICUS
THICKNESSES WITHOUT HEAT GENERATION - A COMPARISON

OF CALCULATION

Temperature at 3,0 Seconds, O

Fercent Deviation of

Slab Approximate Method
Thickness Mathematical Approximate from
{(inches) Method Method Mathematical Method
Interior Surface Interior| Surface Interior Surface
0.6 104 574 171 683 -64 .4 -19,0
0.1 669 741 671 740 - 0.3 c.1
0.05 208 920 S04 ¢l15 0.4 0.5

62




Deviation of Approximate Method from the
Mathematical Method, Percent
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Figure 6.

TRANSIENT TEMPERATURE ANALYSIS OF A SMALL SLAB

A comparison of mathematical and approximate methods
of analysis at 3.0 seconds after start of heating.
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Figure 7. TRANSIENT TEMPERATURE ANALYSIS OF A SMALL SLAB

A comparison of mathematical and approximate methods
of analysis at 3.0 seconds after start of heating.
slab thickness = 0.6 inech.
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Figure 8.

TRANSIENT TEMPERATURE ANALYSIS OF A SMALL SLAB

A comparison of mathematical and approximate methods

of analysis at 3.0 seconds after start of heating.

slab thickness = 0.3 inch,
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Figure 9. TRANSIENT TEMPERATURE ANALYSIS OF A
SMALL SLAB

A comparison of mathematical and approxi-
mate methods of analysis at 3.0 seconds after
sta;t of heating. Total slab thickness = 0.1
inch.
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Figure 10. TRANSIENT TEMPERATURE ANALYSIS OF A
SMALL SLAB

A comparison of mathematical and approxi-
mate methods of analysis at 3.0 seconds after
start of heating., Total slab thickness = 0.05
inch,
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Figure 11, THERMAL CONDUCTANCE AND CAPACITY OF SMALL SLABS
USED IN AN APFROXIMATE METHOD OF ANALYSIS
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Figure 12, AN ILLUSTRATION OF THE DEVIATION OF 36
THE APPROXIMATE METHOD FROM THE MATHEMATICAL
METHOD OF ANALYSIS OF A SMALL SLAB SUBJECTED TO
SUDDEN HEATING AND COOLING
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Figure 13.

TEMPERATURE VARIATION OF THE RELAXATION TIME OF
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Figure 14, AN INFINITE MATRIX OF SQUARE 38

COOLING CHANNELS IN A HEAT GENERATING
MEDIUM
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Figure 15. A MAP OF THE STRESS FUNCTION IN A
UNIT CELL IN AN INFINITE MATRIX OF CELLS
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Figure 16. A MAP OF THE STRESSES IN A UNIT CELL
IN AN INFINITE MATRIX OF CELLS
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41
Figure 17. THERMAL STRESS DISTRIBUTION
IN THE WALL OF A SQUARE UNIT CELL IN AN
INFINITE MATRIX OF CELLS
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HEAT GENERATION AND CALCULATED TEMPERATURES IN A

UNIT CELL
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Figure 19. CALCULATED MAXIMUM TANGENTIAL THERMAL STRESSES
IN A UNIT CELL
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Figure 20,
PERFORATED CYLINDER
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Figure 21, COMBINED CYLINDER AND UNIT CELL VISCOELASTIC
TANGENTIAL THERMAL STRESSES :
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APPENDIX A 47

DETERMINATION OF THE INSTABILITY OF THE FINITE DIFFERENCE
EQUATIONS FOR HEAT CONDUCTION IN A UNIT CELL

The finite difference representation of the differen-
tial system (Equation 1) which defines the heat transfer

process in a unit cell is expressed by the following equa-

tions:
Interior Points

2
T mat = 4.0t 00t ) Tt o (s #Y) Toneyn . | S Comn 4F
' 2 Vom Zm oy mn 8¢

(Vo= 21 mwi]z,,,, . (Psn 4'2) )
2 m /4%;n5n At

Convection Boundary Point

Fowss < (Ut oo, 2 g 80T, [Ton Gop
_ (Pmthme) 2/,..,,,4;» T 1
Ym om,n
Um,n Cmn 4 2) (A-2)
- /}o,m,n Aé e
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The stability of Equation (A-l1) is determined by the coef-
ficient of 7;5;1 + Rewriting Equation (A-1)

Y ST /47/:1f4n +8BTmyn +CTmn (A-1)
M
= ETmegn 5 Tmegn # 65 Tryn (4-1)
where
F;: _i (A-?)
M
i = B (4-4)
M
_C _ M-A-B . (A-5)
5 - L - Hpe

The requirement is that /3 £ 0 otherwise Equation (A-1)

will become unstable and values of 7» will oscillate.
When /A 20

then

.4
Pm,n(m/” ar M2 AH+8= Imar 12 m + V-1
/4ﬁényn at 251”
= Von 44V 4 2 4Von - A1
2/Vm

— rm = Z.
Z2Vm

v

Therefore, the requirement for stability of Equation (A-l)
is:

M= SmnCmn OF% 2 (A-¢)
Ao, AT
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The stability of Equation (A-2) is determined in a similar

manner. The requirement for Equation (A-2) is:

M___ &n(mndrz = 2+ 4r 4 Z’/jn,nAr. (/4‘7)
#
‘4*%n3)1£5f' & 9) m,n

A plot of M for the equivalent cylinder model of

the aluminum oxide unit cell of Figure 2, as a function of
time of operation, is presented as Figure 4, The tempera-
tures at which the thermal properties were evaluated are
presented as Figure 5. The base lines labeled "boundary"
and "interior" on Figure 4 represent the values of M

below which the respective equations would be unstable.,



APPENDIX B 50

DERIVATION COF AN APPROXIMATE METHOD OF DETERMINING THE
TRANSIENT TEMPERATURE DISTRIBUTIONS IN A UNIT CELL
AND A COMPARISON WITH A MATHEMATICAL SOLUTION

Consider the equivalent cylinder model of a unit cell
shown in Figure Bl.

Figure Bl

Ideally, in order to find the temperature distributions in
this cylinder under transient conditions and with internal
heat generation the following differential system would be

solved:

2 _ o7 “
AT ¢ = pC T (5-1)
() T=7; at t=o,r=r

2) 2T =0 at r=b, t=¢
oF

(3) A T - A (1-7;) af F=a, t-%,
ar
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It is virtually impossible to solve this system when Aéb

j@,,/D) & and ,44 vary drastically with time and/or
temperature. For the equivalent cylinder model of the unit
cell of Figure 2 the finite difference approximation of
this system has already been ruled out as impractical (see
Appendix A).

An approximate method of determining the transient
temperature distributions in the unit cell model has been
devised. The approximate method has been used on a sim-
ple slab geometry and the results compared with those of
the mathematical solution to establish confidence in the
method and to determine under what conditions the method
fails. Three cases have been selected to illustrate vari-
ations of the approximate method. The first case deals
with an isolated unit cell in which the heat generated in
the unit cell is the only heat flowing to the cooling pas-
sage. The second case deals with a unit cell which is one
of many in a perforated geometry. In the second case, the
temperature distribution in the perforated geometry has
been determined by considering conduction through the ge-
ometry, heat generation in the unit cells and heat lost
from the unit cells (this case is treated analytically in
Appendix C). In this second case then, the unit cell heat
generation has been used and the unit cell maximum temper-

ature calculated. The information to be obtained from the
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second case would be the temperature distribution in the
unit cell for thermal stress or other purposes. The third
case considered is that of a simple isolated slab without
heat generation, heated only by gas flowing over one sur-
face. The results of this case are used to show the devi-
ation of the results of the approximate method from those
of the mathematical solution.

Case 1: 1Isolated Unit Cell with Heat Generation

The unit cell model on page 50 is treated as one re-

gion and the heat balance is

7(2a%)pc ;.{2_‘7-5 = (. 5z~az)j,o- 2rau(7;-%) (8-2)

or
AT = Jvo_ 2au(%-7%) (B8-3)
At ¢ (4%4%)pc

Equation (B-3) may be used for a transient situation,
where i"“ L, C and Y are varying, by applying to each
increment of time A4 ¥ . This is done by considering all
the variable quantities constant over the small time in-
terval and that the unit cell temperature at the beginning
of each time interval, 2;" is the final temperature,

z;'vf/ computed for the previous time interval. Each

time interval begins at a time zero and ends at a timed? .
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The solution of Equation (B-3) for a time interval is

A-BCEWP57
‘4"6?(Z;n -7%)

= exp (-BAZ‘) (6-1)

where
A = 222
£C
e = _jEfo_. ‘
(6%a?)pc
During the transient operation defined by Equation
(B-2), the heat flowing through the unit cell wall is

@Q=z2mad(7-7).

In the one region model considered, this heat flow will
produce a steady-state temperature distribution since the
storage and generation of heat occurs at the outer bound-
ary only. In the actual case, both heat storage and gen-
eration will be distributed in some manner over the unit
cell radius and will not produce the same temperature dis-
tribution as the usual steady-state. A reasonable approx-
imation of the correct temperature distribution must be
made for the calculation of thermal stress. The simplest
approximation one can make in lieu of more detailed study
would be to consider the heat flowing through the unit
cell wall as heat generated in the wall and distribute it

uniformly as a volumetric heat generation. For this
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approximation, the temperature distribution in the unit

cell model is defined by the following differential system:

/27 / /7' Vo o (B-5)
dﬂ’z 14%
(/) _Z/__Z——_-a Pla /’—’A

aFr

2) Aé;{{/l'=/£/7—7;) a? r=a
r

where

(8-6)

The solution of system (B-5) is

7= 9% (4 3/«’7,#}.20.%_/_',4 gro (424") +7.  (B-7)
£ 2k a4 zadh ®
The overall heat transfer coefficient, ./ , must be
compatible with the system (B-5) and Equation (B-6)., Sub-
stituting Equation (B-7), evaluated at y=b , into

Equation (B-6) and rearranging, we get

. 77';1/4, (b%a%)
2B @ 8)s ol b 4 AR,
R < “/
or
(52_42)
= ‘ B-8
204280, 28" o | (=4 (o
2k k4 T F
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An alternate solution may be obtained using Equation
(B=6) if the unit cell wall temperature, 7;;/ , at /r=a ,

is known. For this alternate solution
/ 'ZZﬁdb%f/ZL—75)

= -9
fro 7(b%2%) “4

Case 2: A Unit Cell Which is One of Many in a Cooled
Perforated Geometry with Internal Heat Gen=-
eration

In this case, the maximum temperature in the unit

cell is the same as that calculated for the perforated
geometry at that location (see Appendix C). In this case
it is necessary only to find the temperature distribution
in the unit cell wall using Equations (B-6), (B=7) and
(B-8).

Case 3: 1Isolated Slab without Heat Generation,
Heated Only by Gas Flowing Over One Surface

The main purpose for considering the case of this

slab is to show how the approximate method deviates from
the mathematical solution. The mathematical solution for
the slab geometry is simpler than that for a cylinder.
The semi-infinite slab used in this case is shown in

Figure B2,
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The slab is treated as one region the same as the

unit cell in Case 1. The heat balance on the slab is

/06/4[;/772 = —UA (E‘fo}

or
an _ _y
Az _ (G-7;
At pcl &

The solution to Equation (B-ll) is

M = e.\'p/_”f';
4
Zn-T £

(8-10)

(8-1)

(8-12)

An approximation of the temperature distribution in the

slab would be obtained in the same manner as in Case l.
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In this case the approximate temperature distribution is

defined by the differential system

Zalge f;o =0 (8-/3)

e

(/) ﬂ=o at X=o

X
(2)—%5[://7—7;) at r=A
¥

where
/ uAd (7,-7,)
Frvo = ‘L (5-/4)
AL
The solution of system (B-13) is
/ /
7= Zvo (424) + Jud 4 7. (5-/5)
2

4

The overall heat transfer coefficient, 4 , must be
compatible with the system (B-13) and Equation (B-14).
Substituting Equation (B-15), evaluated at V=0 , into
Equation (B-14) and rearranging we get

H = > (5‘/4)




If the surface temperature at X=u€ is known, an alter-
nate solution similar to that of Case 1 may be obtained

by using

e A (T-%) (8-17)
A4

2, Mathematical solution

The differential system which defines the transient

heat transfer process in the slab is

@l oo e IT
2x¢  _g 2t
(’) 27'-0 at Y=o, Z-{

(B-/8)

(2/——//327' BIEE Y otipml, 44t

(3) 7=7 a* ¥=x, t=o

The solution to this system is

-0 A, 12
o 7;+”Z=:/ [2(7‘ %) I Ay (as/;;{zjexp ,47.‘)

S/n/ Co.f) +/* ID
(N=1423 i eh) (B-/3)

where ,%” is defined by

.Jh Tan A, = ffééz - (8-22)
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3. Comparison of the approximate method with the

mathematical solution

The approximate method was compared to the mathemati-
cal solution by evaluation at four slab thicknesses. The
temperatures at stations X=9¢ and X=/€ 3.0 seconds
after the start of heating were compared and the percent
deviation of the approximate method from the mathematical
solution computed. The percent deviation as a function of
slab thickness is presented in Figure 6. The computations
are based upon the following conditions:

T, = 1000° F

T; = 100° F

£ = 0,137 1bs/in3

C = 0.23 B/lbs °F
ky = 2.48 x 10°4 B/sec x in x °F

h = 1.33 x 10”3 B/sec x in? x °F.

The slab thicknesses considered were 0.05, 0.1, 0.3 and
0.6 inches. A summary of the results is presented in
Table I.

The shape of the curve representing the interior
point of a slab in Figure 6 can best be explained by con-
sidering the conductance and thermal capacity of the slab
as shown in Figure 1l. At large slab thicknesses the con-
ductance 4 (see Equation B=-1l) is small and the thermal
capacity /DCVZ is large. These conditions result in a
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small heat influx and a small heat storage which give a
large A7 in the slab and a small temperature rise. At
small slab thicknesses & is large and /953( is small.
This results in a large heat influx and a large heat stor=-
age which give a small A7 and a large temperature rise.

By simpler reasoning, it becomes obvious that as the
total slab thickness increases the percent deviation of
the temperature of the interior point, calculated by the
approximate method, from that calculated by the mathemati-
cal method would become smaller. At sufficiently large
slab thicknesses and small times the temperature of the
interior point calculated by both methods would approach
the initial temperature. At larger slab thicknesses, how=-
ever, as shown by Figure 6, the error in the surface tem=-
perature would continue to increase. The error in the
surface temperature, however, would decrease at greater
times.

The approximate method cannot evaluate sudden heating
or cooling such as in quenching, etcs, A typical example
of such a situation is shown in Figure 12. The approxi=-
mate method can only operate with the source temperature,
conductance and thermal capacitance of the slab, The tem-
perature distributions which might be obtained by the ap-
proximate method are shown by dotted lines in Figure 12.
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HEAT TRANSFER IN PERFORATED GEOMETRIES WITH VOLUMETRIC
HEAT DISSIPATION AND VOLUMETRIC HEAT GENERATION

The differential equation which describes the heat
transfer process in an object with multiple heat sinks and

with internal heat generation is

AV T- U (7%)+g, -pc 2T (c-1)

where
/’4?27_ = the conduction term
Uy (7-7) = the term for dissipation due to
multiple sinks
?L = the internal heat generation term

/ﬂc'jizr = the storage term.
2t
The solution of Equation (C-l) is not difficult to obtain

for common shapes such as cylinders, slabs, etc. However,
most practical problems require numerical methods of solu=-
tion since Aé 0,,', Z, g /ﬂ and C vary with tempera-
ture or time.

The guantities /{ﬂ and A are "apparent" values
based upon the total volume of the object and are func=-
tions of the true values for the solid material and the

void fraction in the object. The apparent thermal
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conductivity, /¢é s is defined as

Ag.—_//; /_/_:_g) (7, p. 85) (c-2)
/-f3§

where
/16 = the solid material thermal
conductivity
and
B = the void fraction.
Jakob (7, p. 85) mentions that similar forms of this equa=-
tion may be valid up to B = 0,5 .
The apparent volumetric heat generation, ;9,, is de-
fined as

9= fou (1-8) (c-3)
where
j@, = the volumetric heat generation
for the solid material.
The apparent density, /0 » is defined as

/osg (/—5) ((-4)
where
/g = the density of the solid material,

The volumetric heat dissipation coefficient, Zc , is

derived from a consideration of the heat transfer in a
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unit cell. For a differential length of cooling passage,
the heat transferred in a unit cell (see Appendix B) is

Q= zrad (7-7,)dx. (c-%5)

If we base this heat flow on the total volume of the unit

cell we can write

2rau (7-7:)dr= 782U, (7-7 )4y (c-6)
or

U, = z;z/. (¢-7)
Now the void fraction for the unit cell is

8= matdy _ a* (¢-8)

7 8% % b*
therefore Equation (C=7) becomes
a
It is clearly evident, then, that the analysis of the

heat transfer process in an object with multiple heat
sinks and with internal heat generation involves the
treatment of "lumped" heat sinks as "distributed" heat
sinks in Equations (C-1) and (C-6)., In a numerical method
of analysis, where the object is divided into discrete re=-
gions, a "re-lumping" of the distributed heat sinks is

necessary.
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DERIVATION OF THE THERMAL STRESS EQUATIONS FOR A MAXWELL
CYLINDER BASED ON THE ELASTIC VISCOELASTIC ANALOGY

The simplest idealization of the mechanical response
of materials at elevated temperatures that includes both
the elastic and the creep component of the deformation is
the linear viscoelastic response (1, p. 578-595). The
linear viscoelastic response combines the linear elastic
(Hookean) relation between stress and strain with the
linear viscous (Newtonian) relation between stress and
strain rate to produce a material that responds nearly
elastically to rapidly applied loads but creeps under
loads of longer duration (Maxwell body) (4, p. 205),

The Maxwell body may be represented by a spring and
dashpot model as shown in Figure Dl.

Figure D1
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For a cylinder under conditions of plane strain the

combination of the equilibrium equations

2% 4 L (G- )=0 2-1)
2r r

2% _, 3
- (2-2)

and the compatibility condition

2% 4+ 1 (6-6)=0 (D-3)
or F

with the linear viscoelastic stress-strain relations,

26 7€ v L Pbs L PG O (0, +&o+de)] (D-
[_i_tfa%-ﬁﬁ +ﬂ‘/ -Z,L)/kg(k+9*?)(f)

26 359 /a"é;- 26 4 )]/ / o'_/ d, +0; +cf] (-5,
ot ot ?Z' da‘ Jz"L (% +% X

26|24 _1 [I6r 106 4 Jéa)] ( -1 (4 +%+%)] (2~
52 3575 afz-?(” S

the compressibility equation,

K (Jér L 2% + //Jf +dp #02) . Ko jf" (2-7)
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and the plane strain condition

2éz _p (2-8)
ot

produces two simultaneous partial differential equations
for OF and db that can be separated only by the assump-
tion of imcompressibility ( A—=e2, M/ =0.5 ), 1In this
case, the equation for 5;- for the Maxwell cylinder can be
directly written on the basis of the elastic viscoelastic
analogy in the following manner:

Assuming incompressibility, and the plane strain condi-
tion, Equation (D=7) reduces to

6?ék' 476% 27,
: = 3 D-9
9L g e a

Solving Equation (D-6) for Jz we get

5. r)cg“g@ The ;; ) e

Substituting from Equation (D-10) into Equations (D-4) and
(D-5) and solving for ZEér and Féo .

a2t 2t
25;-_:_2 27 & 7 i N/ D=7/
kel dab ( + )(Jr %) (2-7)
€0 -3 09T 41 7+l Ng-a). (2-72)
it Z  F¢ i T

Rewriting Equation (D-3) as
P _ y 2% L 2% (0-13)
ot orot .at
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and substituting from Equations (D-11) and (D-12) we ob=-

tain
7 41 4-%)= 3ra<27+r// 2((_/) (D-14)
ot T 2 rot 46 (2t /3

Finally, using the equilibrium Equation (D-1), we get a
differential equation for the radial stress

( /321 = -bGri Py (D-/%5)
2t Z‘ JrJz‘

Integrating Equation (D-15) with respect to / and divid-
ing by k3 gives

( /1/ _ —66% JT /zé%zr,/r,w, (2-/¢)
ot T ryo ot 2t 73

Integrating again with respect to / reduces Equation
(D-16) to

L0 = ‘46"‘ rif,a’r C a= ”)+( (2-17)
az‘ T I rr*

where C; and C, are constants of integration,
Substituting Equations (D-16) and (D-17) into Equation

(D-1) we obtain the tangential stress equation

2 41 “" Pifa/r §6xIT G [dsr
ot 7)6 Jt 7t 2|z )+

@2-8)



where

and

(D-/9)

(2-20)
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THE BOUNDARY CONDITIONS FOR THERMAL STRESS IN A UNIT CELL
IN A PERFORATED GEOMETRY

1. Thermal Stresses in an Equivalent Cylinder Model

of a Unit Cell with Conditions of Symmetry at the

Quter Boundary

Consider a cluster of unit cells sufficiently large
and operating under conditions such that a unit cell lo-
cated in a particular region is exactly like those sur=-
rounding it. Under these conditions, the radial stress at
the outer boundary of the equivalent cylinder model of the
unit cell would equal that of each surrounding unit cell.
No discontinuities are envisioned in the radial stresses
at the outer boundaries and there are no applied forces
inside the holes, therefore, the differential system which
describes the steady-state elastic radial stress distribu-
tion in the unit cell is

Z /3y )= pridr (£-1)
ar ar s ar
() é@?‘::o at r=b
ar
(2) Op =0 at r=a

where ﬂ:-—.’_‘_g.
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The solution of this differential system is

=é/d/7'r/r+(f ﬂ)// TK/)fZ/Tr/—Z/ (E-2)

Solution (E-2) yields a non-zero summation of moments
across the radius of the unit cell model. To explain why
this occurs and to justify the occurrence, the following
analysis is presented.

Consider a unit cell in which the elastic thermal

stresses are defined by the differential system

A*, , 4 V% L1448 ). /7’ .
(/7+f4r Ar? rdr /‘dr i

(/) d{."r—o at  r=b

Ar
2) d, =0 it r=a
4
(3) G rdr =0
A
where
O = é/dl
r Ar
and
G = L4,
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The stresses obtained from the solution of the biharmonic

equation are

p
%<2 /7)'//*7‘_@ +8+28nr+26 (E-4)
/K2y y2
and
¥
z) =ﬁ7—é/7r/r—£/ + 24 +25,,%;/'+Z(, (£-5)
a f2

where A;, B; and C; are constants of integration.

A complete solution to the system (E-3) is not possi-
ble without a consderation of the displacements. The ra=-
dial displacement ( & ) and the tangential displacement
( ## ) are defined by the equations:

g = 24 (£ 6)
or
U , | I
€& = — + L &2 £E-7,
> ¥ ¥ e (ene

and

U 4y v _ (F-2)
v ¥
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From Hooke's Law (for plane strain)
& =L |G —ul(th+03)+ExT [= 24 £-9
b E/}r/ﬂ/ﬁ 2-)7‘ / S ( )

o (E-70)

€ =L |-t (02+0.)+FrT =4 L L Z¥
@ [’“( A iy

-zézﬂé;;yw(qz:fqa)7‘[3(7' = Camvsﬁéan (E-1/)

Solving Equation (E-11) for 0z and substituting into
(E=9) and (E-10) along with 7 and 02 of (E=4) and (E-5)

we obtain after integration
4== [ (/;a‘)/frﬂ’r—///;u} T dlr +(14u) Ex [T dlr
‘:/”'é?é%":}7’L7129). (F-12)

From (E-=10) we then obtain

j;r Ve -u =L G (1u°)~110) (£-13)

Integration of (E-13) gives

=4 Brél/- et 2)— /7[/&)49 +£0r). (E-17)

é?

When Equations (E-12) and (E-14) are combined with Equa=

tion (E-8) when 7;9 is zero and the resultant equation
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integrated we obtain

£r) = Fr (F-15)

and

£16) = H 518 + K Cosé. (E-/6)

Therefore Equation (E-14) becomes
A= 2_4 (1 %) B ré +Fir+FHcos@—-Ksmb  (£-17)

where F, H and K are constants of integration.

The first term in Equation (E=17) causes the tangen=
tial displacement 2~ +to become many-valued which is
physically impossible in a full ring. For this reason the
constant Bj in the general solution of the system (E-3) is
usually set equal to zero (8, p. 66-68). The purpose of
the development of the analysis of which the complete so-
lution of the differential system (E-3) is a part is to
explain why a positive moment is obtained with the solu-
tion (E-2) and to justify its occurrence. For this rea=-
son, Bj is not set equal to zero since the solution would

revert back to that of (E-2) and the cause of the positive
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moment would remain a mystery. When the boundary condi-

tions
U=0 )
= = 7"‘ (E—/y)
”""0? 4/504”0//‘_4?_
P _y
2r J
are imposed upon (E-17) we obtain
- =_E£ (1 %) B, ré—K siné. (£-79)

At g =27 , a tangential displacement

,¢~;._22f (/:y/%)éi/’::all’ (E-20)
E

is the result of the conditions of system (E-3). To visu-
alize this displacement assume that the system (E-3) ap-
plies to a hollow cylinder with a radial cut.

In order to restore the cylinder to its original con-
dition, a mechanical force must be applied such that a

displacement of opposite sign occurs, i.e.,
A= — k) (E-27)
The stresses in the cylinder due to the applied force are

superimposed upon those of Equations (E-4) and (E-5) to

obtain the stresses which would occur in the cylinder if
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had not been allowed to deflect. The mechanical

stresses are defined by the differential system

//z / & 6/2¢z /ﬂ/@

Ry e Al (£-22)
() A% _ o  at r=é

ar
(2) 0y = 0 att r=4.

The stresses obtained from the solution to this biharmonic

equation are

()’2:: Az + B, +232/£'V+ 2(2 (£-23)
r?.

Gy = 2 136 126 drt2e (£-24)
r

where Ay, By and Cy are constants of integration.

The tangential displacement at &= 27 would be
o= 87 (1ou2) & r. (£-2%)
£

However, this displacement must be of opposite sign to
that of (E-20), therefore

& =-§. (E-26)
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Equations (E-23) and (E-24 are rewritten to give

%= _g-z254r+26 (F-27)
ye
and
Joy = -/_:_4;_2 _ 38, -26br+24. (£-28)

From the boundary conditions of the systems (E-3) and

(E-22) the constants of integration are
b b r
2
A = _{. Za?b [ﬁlﬁ/’-ﬁl;’ (an/r)/;]
R dzfzéz,gr_é + b2 4% [éz_észb)-,%ﬁﬁ/r]}
a
5 (BPd")® (£-29)

o fek g ofgmalhs]

zafaf e A1 (f 7)) ]

= (8-4Y)* (F-30)
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G =- {—[b%5+6ia%d—dz.faz(/fz%qx%rzé)]
xz:&zézr(b)-ﬁé Arr/r] + [; % 1424na) +Af7

[p [T R ([ )]}

- ( 4222 )Z (E-3/)

Ay = — B b (£-32)
and

& =.§!ééf+/+ zﬂa). (€-33)

When these constants are substituted in (E-4) and (E-23)
and the equations added to produce 02,‘*072 we find that
the resultant equation is identical to Equation (E-2).

The moment

b
V.74 ::/ 022 /"JI" [5—34)
a

is the same as that obtained from the solution of the sys=-
tem (E-1) and represents the moment exerted upon the unit
cell by its surroundings to produce a zero radial stress
gradient at the outer boundary of the unit cell and single-

valued tangential displacements.
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2, Thermal Stresses in a Unit Cell in a Square Matrix of
Square Cooling Channels
Consider the infinite matrix of square cooling chan-
nels in a heat generating material as shown in Figure 14
(a)s A unit cell is shown in Figure 14 (b).
In terms of the stress function, the thermal stresses
in the unit cell may be expressed as
' I I __xefdT 9=7= g
oxY Aoyt Iyt ym(2X oy (1)
(£-35)

The boundary conditions at the cooling channel surfaces

are defined by

72 _ ;2?2 - ¥ o (F-36)
2y? Xy
and
 2°@ _.A! 2P = ;7 = 1 (E-37)
ox? Ix 3y

where X and Y are the forces acting in the x and y di-
rections, respectively, and /(ﬂ and #7 are the direction

cosines of normals to the boundary. In the x direction

Y¥=Y=o0 (no normal forces)
m= O
and l" /.
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Similarly for the )4 direction

=0

§‘\><(
i\ I
Q0 ¥

I\
o

and

Substitution of these terms in Equations (E=36) and (E=37)
and integration yields the boundary conditions

j—':'—" j—f =§)’¢; =¢ ( A# = normal to surface).

A finite difference approximation of the differential
system represented by Equations (E-35) and (E-38) creates
a system of equations for the stress function at the varie-
ous nodes in Figure 14 (b). The simulation of an infinite
matrix of unit cells may be accomplished by connecting
like numbered nodes as shown in Figure 14 (b).

At conditions nearly approximating those in the equi=-
valent cylinder model of the unit cell of Figure 2, an
analysis was made to determine the thermal stress distri-
butions in the square unit cell of Figure 14 (b). The
conditions used are:

j&a= 1.7 B/sec x in3
/’fa = 2.48 x 10™% B/sec x in x °F
M = 0,3

A E = 236 1b/in® x °F
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Node spacing = 0.0l inch

The solution of the system of equations with these
conditions produced a map of the stress function as shown
in Figure 15. The definition of the stress function
states that

& = 2P
X 2),2
0 PP
4 PP
2
z;yz._;"’.
x 2y

Using these definitions, the stress map of Figure 16 was
constructed. The stresses along the radial line A-A in
Figure 16 are plotted in Figure 17. The curves in
Figure 17 indicate that the slope of the curve for (Y
( 0; corresponds to the radial stresses, 0;-. in a
cylindrical unit cell model) is zero at the outer boundary.
The curve for the stress q; ( 4} corresponds to the tan-
gential stress, (p , in a cylindrical unit cell) is of
the same shape and magnitude one would expect of a curve
of O for the cylindrical unit cell with the conditions
o’r =0 not a/JV = at the outer boundary.
ar
It is recommended that for the computation of the

tangential stresses in a cylindrical model of the unit
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cell the condition at the outer boundary be specified as

0y =©  rather than ’/_(’ =0
Ar
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SOLUTION OF THE INELASTIC THERMAL STRESS EQUATIONS FOR THE
UNIT CELL AND CYLINDER BY NUMERICAL METHODS AND
THE DETERMINATION OF THE STABILITY REQUIREMENTS

Most studies of practical importance which require
the determination of the viscoelastic stresses usually in-
volve time and temperature variable material properties,
ambient conditions, etc. In such cases the solution of
the viscoelastic equations must be obtained by numerical
methods and this in turn requires the additional consider-
ation of equation stability.

l. Unit Cell
The equations for inelastic thermal stresses based

upon the elastic viscoelastic analogy for a cylinder are

P30 ). ¢ 6ric 25T :
Cé r)ar( 4 (7%

(See Appendix D, Equation D-15)

7 , ! Jd !/ v -
—4?)0’9 ={i_t+? a;+r§;). (F-2)

%7
Consider the term ;3;:;2, in Equation (F-l1). This

may be approximated for an increment of time by

2*7T _ d Eﬂ-ﬁo)_

rdt  dr | {ypy -t

(F3)
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At any instant of time, if we assume that the heat dissi-
pation or absorption may be distributed volumetrically as
discussed in Appendix B, we can approximately represent
the heat flow in the unit cell as a steady state process.
Only 7y and 4@ will change with time. Therefore

2
Tny = -%ﬂ—r + Alwr +B (F~4)
N+l

and
2

7w = 277 4 Ch 4D (7-5)
e

where A, B, C, and D are constants of integration.
The boundary conditions at any instant of time, if we
define / as the excess of temperature above the wall

temperature (temperature at inner radius), would be

() ir-—o at r=6b
ar

(2) F =o art r=aq.

(F-¢)

Imposing the conditions (F-6) on Equations (F-4) and (F-5)

2 2
2;*/ =_f:2::/ /?f r ) 5 AAL —/7 (y:_z)

and 7; = gg” (4 2% ;Z'é "/ (F-8)
I

we obtain
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The time derivative of the temperature is then approxi=-
mately represented by

%‘fo’ //f i % / (F-5)
{”;/— 7:1

and Equation (F-3) may be written

ibn+/ 2
2 o (B F78) F(5+£)

Z‘
b1~ (F-10)

Substituting from (F-10) into (F-1) and integrating with
respect to / we obtain

d = -36u b* Je I’/) C? £ /=
17)% ;/ﬁ, Bty - I

When we impose the boundary conditions discussed in part B
of Appendix E (conditions E-1), i.e.,
(1) Or=o at Fr=b

(F=)
(2) oy =0 ar* r=a

we can write

(Jé 7)% = 36,,(?[1“ el 7’/»" at4*

a  grt

25"' é (F-13)
( 2rt Za (b%a




and from (F=2)

_ 2% fb 3r 82 r _ a%4?
(af +)%" 3;«{.;[ %“ gr*

foem)-4]] (Zf‘i/”U

(F-14)

= 36 5 Jf, (F-15)

The maximum stress in the cylindrical model of the unit
cell will be the tangential component at radius "a" and

Equation (F~15) becomes

(3495 =5 [5-FHga 2] ¥

= 36"6%; (F-17)

The finite difference approximation of (F-17) is

TGny —%un _ —Tn /-360‘54‘(%,,*, %7(/""9)
s

at
If we set
M= tn (F-13)
4t
and

N = 36, ?z,/ éjj 362 7, 5 (F-20)
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then Equation (F-18) may be written

(Gony—Tgn)= —%n+N

M
or
(emw = (M‘/)oé'””v. (F=27)
M
Equation (F-21) is stable when
Mg o
M
or
= ﬁ 8./ (F-22)
At

2. Perforated Parent Cylinder
For the perforated parent cylinder, Equation (F-1)

is written as
%k, 3 éo’);_-_z.fx»?zé’zr (F-23)
af % azz R R IRt

where R = the variable radius of the parent cylinder

Ee 2 (/+1u)6,
A restriction on the use of the elastic viscoelastic anal-
ogy is that the material must be assumed to be incompress-
ible (Poisson's ratio, #4/ =2:%5 ), therefore £ =36 (see
Appendix D). The modulus of elasticity E in Equation (F-23)



is modified for perforated geometries as suggested by
Horvay (6, p. 355-360).

The finite difference approximation to Equation
(F-23) is developed in the following manner :

)[ ﬂ?,mf-/ 2% /?,m +a7?am-l + /fﬁ’m,«/ O;Fm-}]
f e

= — 2 Eplm Z

(F-24)

[M:o//)z .-—-—..(*‘)

where H = node spacing.

let [ = ( mf/—za?m+ff”‘/)+3 (@mw

~ %R mt ) (F-25)
and
Ay = —ZEmEm (F-2¢)
Kom

Therefore Equation (F-24) becomes

A J AT F_z7
(5+5)E =z (). ()
or in finite difference form

Zm«;z‘[n ~ Zh —-,4;" /_7( )] (F—Zﬂ)

87
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Finally, substituting (F-25) and (F=26) into (F-28)

-2, m +9R m-
0k, ms1 :/"’+ Rom Q (f,f mr "’”'")
H ots Zf/l?n, h+/

02"»4/"2(’5"’*(‘""-)— 3 ("wu-4 -]
( |~ s )

L HE o 2l (%mw-zo’em»«fcm-y
Ty HE %

Wm(m,., ,,.-,)j
-2(%) =GR,

The initial values of stress for a time increment will be

known, therefore the final values must be determined by

solving the equations, for each radial position, simulta-

neously., The term -ft (ggzi) is determined beforehand
At ( AR

from the heat transfer methods described in Appendix C.

I1f we set

M

Amn [4 (4T ]
N = Y _
z /At‘/A'?)'v p (F-31)

fl

Zn (F-30)
t

and
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then Equation (F-28) may be written

S o N AFEMI)Zh (F-32)
htl = Py L

The stability requirement for this equation is

M- 2o, (F-33)
M
or
M = ﬁ => ¥ (F’34)
At

When the radial stresses in the perforated cylinder are
determined from Equation (F-29), the tangential stresses
are obtained by applying

7/, — P sy .

Gymn = Gy + o (Tt ops
2H n

The tangential stresses of Equation (F-35) are superim-

posed upon those of Equation (F-18), for the same loca-

tion in the cylinder, to obtain an estimate of the maximum

thermal stresses in the cylinder.
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The inner radius of a unit cell

Heat transfer area

Outer radius of an equivalent cylinder model of a
unit cell

Void fraction

Heat capacity

Modulus of elasticity

A geometric factor for computing the tangential
thermal stress in an equivalent cylinder model

of a unit cell

Z
\77« , at radius .
Modulus of rigidity

, at radius 7

Heat transfer coefficient of convection
Radial node spacing for calculating thermal
stresses in the perforated cylinder by finite
differences

Denotes initial conditions

Thermal conductivity

k, of the perforated cylinder

kos of the unit cell or slab

Bulk modulus

Length of slab

Denotes a point in space
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Moment
Stability factor
Denotes a point in time
Volumetric heat generation
Gys in the perforated cylinder
Qygr in the unit cell
q&o. a fictitious value for the unit cell or
slab derived from the heat flow through the wall
The heat flowing through the unit cell wall or
slab
Variable radius of the equivalent cylinder model
of the unit cell
Variable radius of the perforated cylinder
Time
Temperature
To. of fluid
Tb. of the unit cell at radius "b"
T,» of the unit cell at radius "a" (wall tempera-
ture)
Ty, of the slab at length "1"
T(b), a function of "r" evaluated at radius "b"
Overall heat transfer coefficient for the unit
cell based on heat transfer from radius "b"

through the wall to the fluid
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92
Radial displacement
Volumetric heat dissipation coefficient
Tangential displacement
Variable length of slab
Coefficient of expansion

Tangential displacement angle
= B
/=M
Shearing strain

Strain
€y, radial strain
€s, tangential strain
€, axial strain
Viscosity of solid material
Denotes tangential conditions
Root of An TanAu = /é{ (h=291/42
0

Poisson's ratio

7V,n+/ yn
Nt W
at
3.1416
Density
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Stress

d;, radial of unit cell
dk » radial of cylinder
0}. tangential

QE, axial
Relaxation time, 7 =g
Shear stress

Stress function



