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The molecular structure of tetrafluorohydrazine, N2F4, has

been investigated by gaseous electron diffraction at a nozzle tempera-

ture of 25°C. Two models, one of a pure trans component and the

other a mixture of gauche and trans components, give an acceptable

fit to the data, but that for the mixture appears to be significantly

better based on statistical criteria. The bond lengths and valence

angles are essentially the same for the two models, except of course

for the dihedral angle which is not a parameter in the pure trans

model. The preferred model is the mixture with the two rotameric

isomers (gauche with molecular symmetry C2 and trans with sym-

metry C2h) present in the approximate proportion 30% gauche/70%

trans having essentially the same structure except for the dihedral

angle. This suggests that the trans rotamer is 700-1200 cal/mole



more stable than the gauche. The bond lengths, valence angles, and

root-mean-square amplitudes of vibration are (parenthesized values

are 2a): N-N = 1.492 A. (0. 007), N-F = 1.372 A (0. 002),

/FNF = 103.1° (0. 6) , / NNF = 101.4° (0. 4), the dihedral angle in the

gauche rotamer 0 = 64.2° (3.7), iN-N = 0.048 A. (0. 005),
0 0

=N-F 0.044 A. (0. 002), iF1F2 = 0.064 A (0.004), fN1
F3

= 0.081 A

(0. 008), Q = 0.093 A (0.012), and F1F4 = 0.079 A. (0. 008).F
1
F3

It is shown that the data are relatively insensitive to the amount of

gauche rotamer present.
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CONFORMATIONAL ANALYSIS: THE MOLECULAR
STRUCTURE OF TETRAFLUOROHYDRAZINE, N2F4,

BY GASEOUS ELECTRON DIFFRACTION

INTRODUCTION

Tetrafluorohydrazine was first reported by Colburn and Kennedy

(1958). Since then there have been many experimental studies of the

structure of this compound, the results of which were in considerable

disagreement in respect to the possible gauche-trans rotameric

composition. The first study was on the microwave spectrum (Lide

and Mann, 1959). Their data were consistent with a hydrazine-like

model (point group C2) for N2F4, and assuming bond distances of

N-N = 1.47 A- and. N-F = 1.37A, they found /FNF = 108°,

/NNF = 104°, and a dihedral angle of 65 °; the estimated accuracy

was two to three degrees. The trans rotamer of N
2
F4 has C

2h
sym-

metry and does not contribute to the microwave spectrum, but from

intensity considerations they felt that the observed gauche species

was present in concentrations of at least 10%. A minimum value for

the barrier to internal rotation of 3 kcal/mole was given.

In 1963 both infrared (Durig and Lord, 1963) and Raman (Kutov

and Tatevskii, 1963) spectra were reported. The infrared work

included a fairly complete analysis carried out on the assumption that

the molecule belonged to the point group C2. The Raman assignments
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contained some disagreements but it was concluded that the presence

of significant amount of the trans rotamer was improbable.

An electron-diffraction study reported by Bohn and Bauer (1967)

led them to flatly exclude a trans structure; they report the molecule

to have the gauche conformation with parameter values

r(N-N) = 1.530 A (0. 027), r(N-F) = 1.393 A (0. 008),

/FNF = 103.7° (0. 8), /NNF, = 99.0° (1. 8), /NNF2 = 103.5° (2.1),

and the dihedral angle 0 = 69.3° (4.7). For the distances, these

errors are approximately given by [9°-Ls + (0.005r)
2] 1/2, and for

the angles by 3crLS Shortly before, a low-temperature NMR

investigation of N2F4 (Colburn, Johnson, and Haney, 1965) led to the

conclusion that two rotational species, trans and gauche, were pre-

sent and that the two differed in energy by about 100 to 200 cal/mole.

In their paper, Bohn and Bauer (1967) stated that another explanation

must be found for this result.

Recent Raman and infrared investigations substantiate the NlvIR

investigation and also show that the earlier infrared and Raman spec-

tra can be reassigned in terms of the presence of two rotamers.

Durig and Clark (1968) compared their low-temperature Raman

spectra with the infrared spectra of Durig and Lord (1963) and found

the mutual exclusion principle to operate for a number of vibrational

bands; their conclusion was that an appreciable amount of trans-N
2
F4

must be present, even at - 120° C. Their assignment of the observed
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bands is based on the assumption of an equilibrium of the trans and

gauche rotamers. Koster and Miller (1968) investigated the infrared

spectrum of the liquid at -120°C and found it to be essentially identical

to that of the solid and the vapor. The mutual exclusion of a number

of frequencies observed in the infrared and Raman spectra was taken

as evidence for the presence of the trans rotamer in addition to the

gauche one. The two isomers appeared to have approximately equal

energies.

A more recent investigation of the gas-phase vibrational spec-

trum of N
2
F4 has been carried out by Oskam, Elst, and Duinker

(1970). A number of new details on band positions and infrared band

contours are reported and the vibrational assignments, based on the

new infrared data and earlier reported Raman data, again strongly

support the idea that N
2
F4 actually consists of an equilibrium mixture

of two rotamers, trans and gauche, differing very little in energy as

suggested by the NMR data.

As a consequence of this additional evidence, Cardillo and Bauer

(1969) reinvestigated the structure of N
2
F4 by gaseous electron dif-

fraction and arrived at a composition of 47% gauche - 53% trans

rotamer. The temperature of the gas jet was estimated to be about

200°K, and this together with the reported composition, suggests that

the trans rotamer is about 300 cal/mole more stable than the gauche

rotamer. The parameter values and quoted error limits for the work
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of Cardillo and Bauer are included in Table 3.

Between the period of the first and second reports from Profes-

sor Bauer's laboratory, we have initiated and essentially completed

an electron-diffraction investigation of tetrafluorohydrazine. Our

reasons for taking up the problem were to investigate the barrier to

internal rotation and to compare the seemingly very long N-N bond

distance reported by Bohn and. Bauer and the even longer N-N bond

distance in N204 which was currently being reinvestigated in this

laboratory (McClelland and. Hedberg, 1971).

Our preliminary work indicated the original gauche rotamer

interpretation by Bohn and. Bauer was incorrect and the electron-

diffraction data we had collected were consistent with the recent

Raman and infrared work; therefore a thorough investigation was car-

ried out to determine the structure and mole ratios of the N
2
F4

rotamers.



5

SCATTERING THEORY

Since scattering theory applicable to gaseous electron diffrac-

tion has been presented by many authors (Brockway, 1936; Glauber

and. Schomaker, 1953; Mott and. Massey, 1965; Seip, 1967), there

seems to be no need for more than a brief summary here. The fol-

lowing is essentially the development of Seip.

The scattering or diffraction observed when a beam of high

energy electrons is passed through a gaseous sample consists of both

elastically scattered electrons, which are important for molecular

structure determination, and inelastically scattered electrons, which

are not.

In the case of elastic scattering, a single atom is treated and

then an array of atoms having fixed relative positions (a molecule). In

the most simple treatment, a single atom is represented by a spheri-

cally symmetric force field in which the potential energy of the scat-

tered electrons is different from zero. The distribution of the

scattered electron is assumed to be observed at large distances from

the scattering centers, and an asymptotic solution is sought. A brief

summary of the problem follows.

Let the scattering center be at the origin of the coordinate sys-

tem and the incident beam be along the z axis. We assume the

interaction between the electrons in the beam to be negligible. The

Schrodinger equation for one electron is then
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v2 qi(r) + 2mA2 [E-V(r)4(r) = 0. (1)

V
2 is the Laplace operator, m is the mass, E the energy of the

electron, and V(r) is the potential energy of the electron in the

force field. By introducing k
2 = 2mE/X [k = = 2Tr/X, where X

is the electron wavelength], and U(r) = 2m /' the expression

becomes

v + [k 2
- U(r)]Iii = 0. (2)

The wave function for the incident electron is 2' eikz. The asymp-

totic form of the scattered wave is easily expressed in polar coordi-

nates [r, 0, (I) where 0 is measured from the z axis]. The

scattered wave spreads radially outward from the origin and cannot

be a function of (1) because of the assumed symmetry. Thus, since
2 ikrthe intensity must decrease as 1/r , we obtain A(0)e/r for

large r. The asymptotic form of the acceptable solution must

therefore be

00 ikz 1 ikr
qics = C[e + A(0)e ]r (3)

where C is a normalization constant. By substitution of this solu-
00

tion into the SchrOdinger equation it is seen that 4 really satisfies

the equation for large r values. Since the intensity is given by

1 2
, we find that the incident intensity is

ikz 2 2
Io = ICe = ICI (4)
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and the intensity of the radially outgoing scattered wave is found to be

I = (I
o

ir 2
) I A (A)

2
(5)

Our problem reduces therefore to the determination of the scattering

amplitude A(0).

The most popular method currently in use for the determination

of the scattering amplitudes is that of partial waves, first introduced

in scattering theory by Faxen and Holtsmark (1927). The result of

solving the SchrOdinger equation (Equation 2) by this method results

in

00

(21+1)
2i6

1
A(0) = P

1
(cos 0)[e -1]

L_, 2ik
1=0

(6)

where P
1

is the Legendre polynomial of degree 1 and 6
1

is

the phase shift in the l'th partial wave.

To be able to carry out the summation, 6
1

must be known.

A. number of methods for determining these terms have been devised

(Schiff, 1965; Karle and Bonham, 1964; Peacher, 1965; Cox, 1967),

all of which make use of approximate solutions to partial differential

or integral equations. The best values of the scattering factors cur-

rently available are determined by numerical solutions of a combina-

tion of the different approximate expressions available for 81,
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each used in the range where its accuracy is greatest.

An important approximation often utilized in this treatment is

due to Born (Mott and. Massey, 1965), and amounts to an assumption

that inside the atom the amplitude of the incident wave is much greater

than that of the scattered wave. Further, it is assumed that no phase

shift occurs in the scattering process. The solution for a molecule,

obtained by summing the scattered waves due to the atoms, is aver-

aged over all possible orientations in order to account for the random

phase relations between the waves scattered by different molecules.

Theories have been developed for the scattering factors of atoms

that do not make use of a spherically symmetric force field, and also

for molecules without the independent atom approximation. Unfor-

tunately, these expressions do not readily yield useful solutions and

we must await future developments for scattering theory to give us

more accurate scattering factors for use in molecular structure

determination.

In lieu of a more exact form of the expression for the intensity

of electrons scattered by a molecule, the following treatment is used.

We apply the complex scattering amplitudes (Equation 6), but still

regard the atoms as independent scattering centers. The intra-atomic

multiple scattering is neglected. The difference in phase caused by

the difference in path length between a wave scattered from atom

and a wave scattered from the origin is i . Let us first consider



a rigid molecule in a fixed orientation. The scattered intensity is

then (leaving out the multiplier I
o
/r 2):

5-iSR i R.
i 3A. e A.e

1 3

,j

9

(7)

where IR. gives the position of atom i. If the average over ran-
i

dom orientations is considered, then

I(s)

j

A.
3 R.. s

13

sin (R.. s)
13

(8)

where R.. is the distance between atom i and j. This may be

written in a more usable form as

where

I(s) =

i< j

Ail IA
sin (R..s )

cos (n.-71.)
1 3 R.. s

A(s) = IA(s)lein(s).

(9)

(10)

While this expression is adequate for a rigid molecule, we must

change the expression to account for molecular vibrations. If

RP.( )dR gives the probability that the distance between atoms

and j is between R and R + dR, then we can write



I( s) =

i < j

sin (R s)A.A. cos A n . . P..(R)
R s

dR
1 j

We usually assume a Gaussian distance distribution, corres-

ponding to a harmonic oscillator potential function, of the form

1 1
(R-R..)2

P..(R) = a exp(- 13 )
13

ne
fij

21
13

where 1 is the root-mean-square amplitude of vibration, and
lj

10

(12)

Rij now denotes the mean distance between atoms i and j. From

this, we obtain to a very good approximation

I(s ) =

i < j

1 2 2
sin r..s

A.A. cos An.. exp(- ..s )
1 3 2 13 r. s

3

1j

(13)

Here r.. is equal to R (1) (Bartell, 1955) which is the cen-

ter of gravity of the function P(r)/r. It is this value which shall be

referred to as the internuclear distance henceforth.
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THE FOURIER TRANSFORM AND SPECTRAL
ANALYSIS METHODS

The intensity expression given in Equation 11 suggests that it is

approximately the Fourier sine transform of a sum of Gaussian prob-

ability functions. This relation can be used in finding the inverse

transform which gives a distribution of distances and estimates of the

root-mean-square amplitudes of vibration for the molecule studied.

To carry out the transform process, the following conditions are

usually necessary:

1) The coefficients A.A. cos An.. must be transformable into
1 3 13

essentially constant coefficients which are proportional to

Z.Z., where Z. is the atomic number of atom
1 3 1

2) The intensity curve with constant coefficients is multiplied

point by point by s.

3) The intensity curve, called 1.1( ), is multiplied by a damp-

ing function, exp(-Bs2), to account for the finite series

length. B is usually chosen such that exp( -Bs 2 ax)z 0.1.

The intensity function is now written approximately as

i.

I'(s) =

i < j

2 2

2 -1Z.Z,e r.. sin(r..$) (14)
1



and the Fourier transform of this may be written as

-Bs2D(r) = 2/Tr I'(s)e sin(rs)ds
0

12

(15)

The peaks which appear in the curve D(r) can be interpreted as

follows. Each peak, assuming it is not a composite made up from

more than one internuclear distance, will have an area which is pro-

portional to n..Z.Z./r.., there n.. is the number of times dis-
13 1 3 13 13

tance r.. occurs in the molecule. The spread or broadness of each

peak is a function of both the mean-square amplitude of vibration of

the atoms i and j and the damping factor B. This is sum-

marized by the expression

Z.Z. (r-r..)2
1 1

D(r) = r..
2

exp [

NI ij+
2B 2/2 +4B

ij

(16)

While the radial distribution method is certainly the most

straight-forward and useful method of examining electron-diffraction

data for distance distributions, other methods of spectral analysis are

also applicable under certain conditions. Some of these methods were

examined in the course of this study and will be briefly summarized

here.

The autocorrelation function A(T) of a function I(s) may be



defined. as

oo

A(T) = I ( s)I(s-T) ds
_oo

13

(17)

and is simply the mean value of the product I(s)I(s-T) over the

range of the variable s. Therefore the variable A(T) character-

izes the relationship between values of the function I(s) separated

by an amount T on the s scale of the variable; theoretically

A(T) contains all of the information found in I(s), only in an aver-

aged form.

The autocorrelation function A(T) is related to its power

spectrum APS(r) through a pair of Fourier transforms (Jenkins

and. Watts, 1968). These relationships are expressed as

and.

APS(r) 1 S' -irT
aT

27r
_oo

A(T) = r_271 APS(r)eirTdr
_co

Since the autocorrelation function A(T) is an even function, its

Fourier transform is also even, and we can write

oo

APS(r) = A(T) cos(rT )dT..
0

(18)

(19)

(20)



In a like fashion we can derive a cross-correlation function

between I(s) and a test function t(s). Here

co

CR(T) = S4 I(s)t ( s - T )d s
_0o

and the Fourier transform pairs are

and

00
1 CCRPS(r) = CR(T)e

-irT
dT

N/271- j-oo

co

CR(T)
2Tr

CRPS(r)eirT dT
N1

_co

14

(21)

(22)

(23)

When it is taken into account that electron-diffraction data are

not available over an infinite interval but only for a small range of s

and the expressions are modified accordingly (Fano, 1950; Schroeder

and Atal, 1962), and account is also taken of the fact that I(s) is a

sum of sine waves which vanish at the origin and. I(s) = I(-s), we

can write modified expressions as

and

Sm

A(T) = 2a SI I(s)I(s-T) exp [-2a(Sm-sdds (24)
0

T

APS(r) = 2 SI A(T) exp(-aT) cos (rT)dT
0

(25)
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where S is the maximum value of s for which data exists, andm

is chosen so that exp(-2aSrr) z 0. Also for the cross-

correlation function

and

S

CR(T) = 2a 51 I(s)t(s-T) exp[-2a(Sna-s)]ds
0

T

CRPS(r) = 2 CR(T) exp(-a-r) cos(rT)dT
0

(26)

(27)

If a series of cross-correlation functions and the corresponding

spectra are computed, a two-dimensional power spectrum can be

plotted from the resulting data. The r values of the test function

[a simple sine function of the form t(s) = const. sin(rs)] is varied

over a certain range of interest, depending on where internuclear

distances are expected to be found. All maxima corresponding to

internuclear distances are located along the diagonal of the two-

dimensional power spectrum. It is therefore sufficient to compute the

terms along the diagonal to obtain the necessary structure informa-

tion, The diagonal terms will be referred to as the diagonal power

spectrum (DPS).

One of the very useful properties of these kinds of functions is

that of filtering out random errors from experimental functions. To
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show this we represent a periodic function as f(t) and a function of

random or white noise as n(t). Then the experimental observed

function, q(t), is represented as

q(t) = f(t) + n(t). (28)

The autocorrelation function is then given by

a(T) = <[f(t)+n(t)][f(t-T)-Fn(t-T)] >,

which reduces to

a(T) = <f(t)f(t-T)>+ <f(t)n(t-T)> + <n(t)f(t-T)> + <n(t)n(t-T)> .

If there is no correlation between the periodic signal and the random

errors, then we can see that

<q(t)q(t-T)> = <f(t)f(t-T)>. (29)

Another method of examining the intensity function for its rlis-

tance (i. e. frequency) distribution is that of averaging complex

demodulates. If I(s) is our intensity function which extends to

S , and we have a series of weights wk which form a symmetrical

low-pass filter of length 2N-1, then the complex demodulates at

distance r is the complex series



for

17

N-1

Zs(r) = w I(s+T) exp[-ir(s+T)] (30)

T=1-N

s = N-1,N,N+1,...,Sm-N.

These S - 2(N-1) complex values at distance r are averaged to
m

form the spectral estimate

C(r) = 1

Sm-2(N-1

Sm-N

2 IZs(r)1

s=N-1

2
(31)

What is being computed is roughly as follows. Moving segments

of I(s) of length 2N-1 are shifted in frequency so that the dis-

tance of interest ro corresponds to frequency zero. A low-pass

filter is applied to cut off frequencies corresponding to distances

other than r. The spectrum at r
0 0

is calculated and the average

of these over all segments gives an estimate of the power at
0

The only filter which has been examined in this work is the Tukey or

Cosine filter which can be expressed as

1 rwk= 0+ cos( T-ii-c)}

where k = 0,1,2, ... , N-1. While there is reason to believe that

(32)

more modern filter designs could give much improved results, these
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have not yet been tested.

One further function which was examined is the sharpened radial

distribution curve (SRD). According to definition, the function is

computed as the sine transform of the molecular intensity function

modified by a function g(s) = N2X exp[-X(Sm-s)]. In the Fourier sine

transform of this function g(s)I(s), each internuclear distance con-

tributes with a Gaussian function that is sharpened by multiplication

with a cosine function whose maximum value coincides with the maxi-

mum of the Gaussian peak. The amount of sharpening is determined

by the period of the cosine function which is again a function of X.

An increase in X leads to an increased sharpening effect; however

an increase in peak sharpening is also accompanied by a correspond-

ing increase in series-termination effects which may easily offset any

resolution gained in sharpened peaks. The sharpened radial distribu-

tion function has the form

oo

SRD(r) = N2X Sb I(s) exp[-X(Sm-s)] sin(rs)ds. (33)
0
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EXPERIMENTAL

A. sample of tetrafluorohydrazine was obtained from Air Pro-

ducts and Chemicals, Inc. , Allentown, Pennsylvania. The stated

purity of this material was greater than 99. 9% and it was used without

further purification. Electron diffraction photographs were made in

the Oregon State apparatus using a rotating sector with angular open-

3
ing approximately proportional to r , 8 in x 10 in and

5 in x 7 in Kodak process plates, beam currents of 0. 2 to 0.7 p.a,

and exposure times of 15-180 sec. The sample container, connected

directly to the diffraction apparatus using a Kel-F lubricated joint,

was cooled to -130° C to obtain a suitable vapor pressure. The nozzle

temperature was 25°C and the ambient pressure in the apparatus dur-

ing the exposures was about 2 x 105 Torr. The electron wavelengths

were in the range 0.05697-0. 05743 A, as determined by measure-

ments of the accelerating voltage calibrated from diffraction patterns

of gaseous CO2. Nozzle-to-plate distances were 75.08, 29.96, and

12.36 cm.

Twenty-one diffraction plates were found to be free from defects

and of proper quality and density. The plates were scanned along a

diametrical line on a modified Joyce-Loebl microdensitometer while

being rotated about the axis of the rings. The output of this double-

beam instrument, normally a chart record of photograph density as a
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function of distance on the specimen, was digitized by fitting a poten-

tiometer with external power supply to the pen mechanism to provide

a voltage proportional to density. This voltage is conveyed to a sys-

tem of a voltage-to-frequency converter, a five-digit counter, and a

digital punch and recorded to five figures. The stability of this sys-

tem is better than two parts in ten thousand or 0. 02%. Interval sam-

pling is achieved by repeated activation of a microswitch with a cam

fixed to a screw made to drive the specimen table; the microswitch

initiates counting which continues for a pre-set time, usually one

second. Digitized data were obtained at intervals of 0.3514 mm on the

plate. During acquisition of the counts comprising each datum, the

plate was rotated exactly two cycles and translated 0.1171 mm; thus

each measurement reflected an integration over a path of the plate

several centimeters long. In the process of scanning the plates it was

found that at least 15 of the plates were of very good quality and the

data collected would be acceptable for structure determination and

refinement.

The plate scans were recorded in counts per second on an arbi-

trary scale which was then related to a density scale by scanning a

standard step wedge calibrated in optical density units. The step

wedge was scanned following the scan of each plate with all instru-

ment settings unchanged. All of the curves were transferred from

paper tape to computer files and stored for use in the data reduction
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program

The data were reduced (Hedberg and Iwasaki, 1962) using a

computer program written by Lise Hedberg which performed the fol-

lowing calculations:

1. The curves in counts were converted to density units.

2. The precise center of each scan was determined by finding

the minimum sum-of-squares deviation for the two branches

of the curves.

3. The s-vector corresponding to the points on the curve was

calculated and interpolated for even intervals of s. (Note:

s = 4.TrX
I sin 0, where 20 is the scattering angle and. X

is the electron wavelength calculated from the relativistically

corrected voltage. )

4. The geometrical corrections were applied to the intensities.

If density units on the plates are designated I (s), the

expression for the total corrected intensity is

I (s) H3 10-8
I (s) = p

3a(s) cos 20
(34)

where a(s) is the sector function and H3 is the cube of

the camera height. (H3 scales the data to correct for the

different sector functions applied at different heights.)

5. I t(s) was then multiplied by s4 which gave curves called

'sector corrected curves' described by



s
4

It(s) = kI (s) + Bexp(s),

22

(35)

where I (s) is the molecular intensity and. Bexp(s) ism

the experimental background intensity. The scale factor k

arises from the fact that the intensities are not measured

on an absolute scale.

6. The results from the left and right sides of the diametrical

scan line were averaged.

The results from each plate were plotted and eight curves,

three from the long distance, three from the middle distance, and

two from the short distance, were selected as those being most free

of noise and defects. Smooth backgrounds were then fitted to each of

these. These curves are shown in Figure 2 and the experimental

conditions for each are given in Table 1.

After subtracting out smooth background curves in the usual

manner, the resulting curves were multiplied by s. The results are

called sI (s) curves and have a form corresponding to

sI (s) = n..A.A.r.- 1 V..(s) cos I An..(s)lsin(r..$) (36)
m , j ij

iij

swhichis seen to be very similar to Equation 13. The A.' are

modified electron scattering amplitudes, rij 's unique internuclear
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n..'s multiplicities of distances r.., V..'s molecular
13

vibration factors, and A 11. . 's phase differences. The scattering
3.3

amplitudes A. and the phases n. used in the structure determina-
i

tion were obtained from Cox and Bonham's (1967) table as follows.

The amplitude values tabulated at 70 and 40 kV were first linearly

interpolated to give values corresponding to the accelerating voltage.

These values were then interpolated to give values at intervals

A s = 0. 25 by fitting a cubic equation to four points, two on each side

of the desired point. Finally, the array of values was multiplied by

s
2 and the results smoothed. The phases were obtained by interpo-

lating the values tabulated at 10, 40, 70, and 100 kV according to a

cubic equation followed by a similar interpolation to give values at

intervals A s = 0. 25. Subsequent smoothing was felt not to be neces-

sary.

The ranges of the data from the 75-, 30-, and 12-cm camera

distances were 1 < s < 13, 6 < s < 31, and 22 < s < 45, respec-

tively, and the data interval was A s = 0. 25. These curves are

shown in Figure 3, and the data given in Table 2.



PRELIMINARY STRUCTURE ANALYSIS

For the purpose of calculating radial distribution curves, a

composite intensity curve was made by scaling and averaging the

individual curves in the overlap regions. The composite intensity

curve was then converted into one with essentially constant coeffi-

cients [Iml (s)] by multiplying each point by (ZNZF/ANAF).

A preliminary experimental radial distribution curve was first

calculated according to

D(r) =
Tr

2 ,6s

Smax

s = 1

I' (s) exp(-Bs 2 ) sin(rs)m

°2
using B = 0.0012 A2 to assure a minimum of series termination

24

(37)

errors. A. theoretical intensity curve was then calculated using the

parameter values suggested by the preliminary D(r) curve; the

results were scaled to the experimental curve by a least-squares

procedure and used to make small background corrections in the

observed intensity curve and to supply the missing intensity data in the

range 0 < s < 1. The radial distribution curve was then recalculated

using data over the range 0 < s < 45. The final radial distribution

curve shown in Figures 5 and 6 reflects additional small background

changes in the intensity curve introduced in the course of the
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refinement.

The positions of the four peaks of the radial distribution curve

could be interpreted in terms of either a gauche or trans rotamer of

N
2
F4 having the following distances: 1.37 A, N-F; 1.50 A, N-N;

2.15 A F F 2, 2.25 A, N
1
F3 (and F

2
F4 non-bond distance for the

gauche rotamer); 2.60 A, F
1
F3 non-bond distances (trans rotamer)

and F
1
F4 non-bond distances (gauche rotamer); 3.35 A, F

1
F4 non-

bond distances (trans rotamer) and F
1
F3 non-bond distance (gauche

rotamer). Considerations of the relative areas of the peaks at 2.60

and 3.35 A indicated that the D(r) curve could not be interpreted in

terms of only a gauche rotamer being present. It was not clear, how-

ever, whether a mixture of gauche and trans rotamers or a pure trans

component would give the best fit to the observed data. This situation

is due to the structure of the -NF
2

group: the angles are such that the

Fl NF
2

angle projected along the N-N bond is close to 120°, so that

projected. N-F distances from different -NF
2

groups lie almost in a

straight line, even in the gauche conformation.

The area of the isolated non-bond fluorine-fluorine peak at

3.35 A is determined by the trans /gauche ratio, and can vary up to

50% on going from pure trans to pure gauche because the trans rota-

mer has two distances at this separation while the gauche has only

one. Preliminary observations indicated that the trans rotamer was

present in amounts greater than 50% and possibly as much as 100%.
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O

The area of the 3.35 A peak is somewhat affected by errors in the

low-angle diffraction data and inaccuracies in the scattering factors

used for low angles. Also, the base line may be slightly shifted,

depending on the model used to calculate the inner peak of the intensity

curve used to provide the missing experimental data. Hence it was

necessary to investigate two models of the structure, one composed of

a trans rotamer only, and one composed of a mixture of gauche and

trans rotamers, and to closely examine the parameters, error limits,

and radial distribution curves for each.

A number of power spectra were calculated in order to resolve

the N-N peak at 1.50 A from the N-F peak at 1.37 A and also to see
O

what information could be gained in the 2.1-2.7 A region, i. e. , to

see whether or not the peak components could be better resolved in

this region. The computational expressions used for these calcula-

tions are given in the Appendix.

All of the power spectra showed a peak at approximately 1.5 A
O

which was resolved from the strong peak at 1.37 A, with the exception

of the spectrum of complex demodulates. The sharpened radial dis-

tribution curve (SRD), which is shown in Figure 7, was calculated

with a value of a equal to 0.03, and gives as good resolution as any

of the averaging methods. It can be seen that series termination

error is quite severe and that no additional information is gained in

the region >2 A. over that given by a conventional radial distribution
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curve. The autocorrelation power spectrum (APS) gives essen-
O

tially the same information as the SRD in the region 1-2 A. The

best resolution was obtained with a = 0.02 and. T = 40.0.max

However, much of the higher frequency information is lost, as can be

seen in the almost missing peaks in the regions of 2.6 and 3.4 A.

This is also true of the diagonal power spectrum, though not to as

great an extent. The DPS gives about as good resolution as the
O

SRD in the 1-2 A region, but since it is much more complicated and

time consuming to calculate, its use is questionable. These spectra

are given as part of Figure 7.

The spectrum of complex demodulates, also shown in Figure 7,

has very poor resolution. This is due to the lack of a sharp low-

frequency filter which greatly reduces the resolution and also tends

to smother the higher frequencies. The spectrum shown was calcu-

lated with a Tukey filter of 170 terms, T = 42, and is the best
max

spectrum obtained. Other more complex filter designs were not-

tried.

The estimation of distance distributions using power spectra was

not helpful in this study. While others (Traetteberg, 1964;

Traetteberg and. Bonham, 1965) have found these methods useful in
O

resolving bond distances of nearly equal weight in the range 1-2 A,

separated by as little as 0.1 A, the resolution of the N-N bond dis-

tance peak at 1.5 A from the N-F bond distance peak at 1.37 A was
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accompanied by shifts in the apparent N-N bond distance of as much
0

as 0.1 A from its true value. Hence we could only find the true split

between the N-F and. N-N distances by comparing theoretical spectra

with the experimental ones. For the structure analysis, this offered

no advantage over what could be done with the least-squares method.
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STRUCTURE REFINEMENT AND ERROR ESTIMATES

Refinements of the structures were carried out by the method of

least-squares based upon intensity curves (Hedberg and. Iwasaki,

1964) in the mathematical form defined by Equation 36 with the har-

2 2monic approximation V..(s) = exp[-<5/
ij

>s /2], using a unitary

weight matrix. The computer program is capable of operating with

many sets of observed intensity data in place of just one set, such as

is represented by a single composite intensity curve, and simultan-

eously adjusting estimates of the structural parameters and mole

fractions of components of mixtures.

A part of the final results of the least-squares refinement gives

the error matrix (Hedberg and Iwasaki, 1962; Ryan and Hedberg,

1969). The diagonal elements of the error matrix are estimates of

T. , and reflect random errors not including the possible correlations

among observations; the off-diagonal elements allow cP,lcu-
ij

lation of the correlation of errors from the p..-coefficients. The

error estimates given in this investigation are

r = 2[2o-
2

+ (O. 0005)
2 ]1 /2

LS

2o- = 2[2c-2 + (O. 021 )
2

]
112

1 LS

2cr-a = 2[2c2 ]1/2
LS

(38)

(39)

(40)
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2where the Cr

LS
are the diagonal elements of the error matrix and

the factors 2, 0.0005, and 0.02 respectively take into account esti-

mated correlations among observations, errors in wavelength,

camera distance, and sector calibration, and error in conversion of

photographic density to scattered electron intensity.

Two geometrical models of the molecule were involved in the

interpretation of the experimental data. The trans rotamer (C 2h-

symmetry) is described by four parameters: the N-N and N-F bond

distances and the F
1
N

2
F2 and N

1
N

2
F3 valence angles (Figure 1) and

has six different types of distances, each having a root-mean-square

amplitude of vibration associated with it, giving a total of 11 inde-

pendent parameters (scale constant included) to be adjusted by the

least- squares refinement. The gauche rotamer (C 2-symmetry) is

described by six parameters: the N-N and N-F bond distances, the

F1N1F2, N1N2F3, and N1N2F4 valence angles, and the dihedral

angle (Figure 1); in addition there are eight root-mean-square ampli-

tudes of vibration giving a total of 15 independent parameters.

The refinement based on a single trans component proceeded in

a routine fashion. All of the 11 parameters converged to acceptable

values. The final parameter values for this model with their associ-

ated errors are given in Table 3; theoretical intensity and radial dis-

tribution curves are shown in Figures 4 and 5, respectively, together

with the corresponding differences between experimental and
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theoretical curves. The correlation matrix is given in Table 5.

Except for the slight area discrepancy for the 3.36 A non-bonded

F
1
F4 peak in the radial distribution curve, the refinement of this

model gave a perfectly acceptable representation of the diffraction

data judged by the usual quality standards.

A complete refinement of the trans /gauche mixture model would

involve the simultaneous adjustment of 26 independent parameters.

Although the two rotamers in principle are independent of each other,

they are structurally similar, giving many overlapping distances. In

order to increase the statistical significance of the refinement it was

felt desirable to introduce the following constraints on the model:

1. The valence angles N1 N2F3 and N1 N2F4 in the gauche

rotamer were assumed to be equal.

2. The valence angles were assumed to be equal in the two

rotamers.

3. The bond distances (N-N and. N-F), and their amplitudes of

vibration in the gauche rotamer were assumed to be equal

to the corresponding ones in the trans rotamer.

4. Additional restraints on the amplitudes of vibration were:

F
1 F 4(g)

= j2
F

2
F

4
(g)

=
F

1
F

3
(tr) and F

1
F

3(g)
= F

1
F

4
(tr).

These constraints reduce the number of adjustable parameters to 13,
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including the composition and the scale constant. They are: the N-N

and. N-F bond distances, the F
1

N
1
F2 and N

1
N

2
F3 valence angles, the

diehedral angle 0, the amplitudes IN -N' /FF, INF'
1 2 1 3

and iF1F4(tr)' the mole fraction and a scale constant.F
1
F

3
(tr)

The parameter values found for this model with associated errors are

given in Table 3; theoretical intensity and radial distribution curves

are shown in Figures 4 and 5 respectively along with the correspond-

ing difference curves. The correlation matrix is given in Table 4.

A number of different starting models were used in the least-

squares refinements and all with an initial mole fraction in the range

of 0.5 to 0.9 for the trans rotamer converged to give parameter values

within the standard error limits of those given in Table 3. Several

refinements were attempted without constraints 1 and 2. The standard

deviation in fitting the intensity curve increased with these additional

parameters and the refinements would not converge but instead

oscillated around this higher residual. Although there were only

slight shifts in any of the valence angles (less than 0.5 degrees), high

correlations between the distances and the corresponding amplitudes

of vibration gave standard deviations which indicated that any apparent

shift was probably meaningless. Attempts to carry out refinements

with this same parameter set except for the mole fraction ratio held

constant at 71% trans /29% gauche were also unsuccessful. Since the
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differences which might exist among the valence angles appear to be

smaller than the standard errors obtained with the assumption of no

difference, and because of the very excellent agreement with observa-

tion provided by the constrained model, the results given in Table 3

for this model are felt to be as good a representation of the molecular

structure as can be obtained from the data.

A comparison of the two different models, one a pure trans com-

ponent and the other a mixture of trans and gauche rotamers, shows

that the mixture is to be favored. The R-factor ratio test described

by Hamilton (1964, p. 157-160) shows the trans /gauche mixture to

produce a significantly better fit even at the 99% confidence level.

Least-squares refinements on both models were also carried

out using a diagonal weight matrix (Hedberg and Iwasaki, 1964;

Gundersen and Hedberg, 1969) calculated according to

P(s) = Hs 1 exp(-bs2)[1- exp(-as 2)]
(41)

with a = 0. 02 - 0. 03 and b = 0. 0003 - 0. 0004, and H equal to

the camera height (in cm) of each individual plate. These refinements

gave essentially the same results, but with lower error limits. Since

the refinements based on a unitary weight matrix gave results which

do not differ from these by even the smaller error limits, the more

conservative (larger error limits) results given by the use of the

unitary weight matrix are preferred.
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DISCUSSION

The electron-diffraction data can be interpreted in terms of

either a pure trans component of tetrafluorohydrazine or a mixture

of trans and gauche rotamers, due to their very similar structures.

The best results are obtained by interpreting the data as a mixture,

which is in agreement with the findings from NMR (Colburn, 1965),

molecular spectroscopy (Durig, 1968; Koster, 1968; Oskam, 1970),

and. Cardillo and Bauer's electron-diffraction experiment (1969).

The agreement of this work with that of Cardillo and. Bauer is

excellent for all of the bond distances, valence angles, and amplitudes

of vibration. While these authors chose to define their model with

many more parameters (angles and vibrational amplitudes), essen-

tially none of their values, and certainly not an average of these val-

ues, for any of the valence angles or non-bond amplitudes of vibration

differ significantly from those determined here. The N-F and N-N

bond distances determined from the independent studies agree to well

within their standard errors.

It is clear from Figures 4 and 5 that the differences between a

model of 100% trans N2F4 and one of 70% trans/30% gauche N2F4 are

very slight as far as electron-diffraction intensity and radial distribu-

tion curves are concerned. The only major difference in the intensity

curve appears in the region s 3-12. This is not in agreement with
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the study of Cardillo and. Bauer (1969), which s-hows much larger dif-

ferences in the intensity curve over most of the scattering region with

small changes in the trans /gauche ratio. While the values of the

molecular parameters are not significantly affected by this discrep-

ancy, one must proceed cautiously in interpreting the electron-

diffraction results as to the fractions of trans and gauche components

present and in applying error limits to these values.

The difference in energy of the gauche and trans rotamers can

be e determined from the Boltzmann expression Ni N = g. exp(-E./ T)

from a knowledge of the ratio of mole fractions of the two species

N(tr) /N(g) and the temperature of the gas at the point of diffraction,

assuming the two components are at equilibrium. While there is some

uncertainty in the mole fraction ratio as discussed above, the mean

temperature of the gas at the nozzle tip differs negligibly from the

temperature of the nozzle (Ryan and Hedberg, 1969). If the limits on

the mole percent of the trans component are taken to be 60-80%, then

the trans rotamer is 650 to 1250 cal/mole more stable than the gauche

rotamer. The percent ratio 71% trans /29% gauche gives an energy

difference of 946 cal/mole.

The N-F bond distance of 1.372 A (20- = 0. 002) agrees well

with the distance calculated from Schomaker-Stevenson radii and

corrected for electronegativiity difference (1.38 A). The N-F dis-

tance and the valence angle /FiNiF2 (103. 1 '; 20- = 0.4°) are very
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close to the values N-F = 1.371 A and /FNF = 103 ± 1° reported

for NF
3

(Sheridan and Gordy, 1950). The N-N bond distance of

1.492 A (2cr = 0. 007) is significantly longer than that found in N2H4

(1.453 A, Yamaguchi, et al. , 1959) and other substituted hydrazines,

a difference compatible with the much lower bond dissociation energy

of N2F4 (20 kcal/mole) as compared to N H4 (60 kcal/mole). Per-

haps this type of correlation should not be pushed with N204 (dissoci-

ation energy 12.7 kcal/mole) because the planar N204 molecule

certainly has much different bond properties than N2F4. However, it

is at least satisfying that a very long N-N bond distance in N204

(1.78 A, McClelland and Hedberg, 1971) does accompany an energy

of dissociation even lower than N
2
F4.



Table 1. Data for electron-diffraction photographs used for the structure determination of gaseous N2F4.

Plate
Identification

Plate
Size

Accelerating
voltage
(volts)

12/Wavelength
(A)

Exposure
(sec)

Beam
Current

(11a)
Density
range

Nozzle-to-plate
distance

(cm)
s-range

I- 101 -06 5" x 7" 43882 0. 057326 30 0.10 0. 4-1. 1 75.075 1.00- 7.75

1-104-08 8" x 10" 43829 0. 05 7363 20 0.12 0. 2 -0.5 75.075 1. 00-1 2. 75

1-104-10 5" x 7" 43836 0. 05 7358 15 0.12 0. 1-0. 3 75.07S 1.00- 7. 75

1-110-03 5" x 7" 43736 0.057426 180 0.16 0. 7-1. 8 29.961 6. 00-1 9. 50

I- 110 -04 8" x 10" 43753 0. 05741 4 180 0.16 0. 5-1. 5 29. 961 6. 00-28. 75

1-110-11 8" x 10" 43778 0. 057397 150 0.12 0. 4-1. 0 29. 961 6. 00-31. 25

I- 214 -24 5" x 7" 44414 0. 056968 180 0.70 0. 6-1. 0 1 2. 359 22. 00-44. 75

I- 214 -25 5" x 7" 44395 0.056981 120 0.70 0. 5-0. 9 1 2. 35 9 22. 00-44. 75

Nozzle Temperature = 25 °C Bath Temperature = -130°C Run-in Pressure = 2 x 10-5 Torr

12/

Kodak process plates.

Wave-lengths were determined from the accelerating voltage which was calibrated against diffraction patterns of gaseous CO2 (see
Gundersen and Hedberg, 1969).
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Table 2. Experimental intensity curves [sIm(s)] for N2F4.

s \As 0.00 0.25 0.50 0.75

Long camera distance (75 cm) Plate 1-101-06

1.00 30 47 39 -10
2.00 -89 -203 -302 -339
3.00 -348 -285 -226 -218
4.00 -307 -487 -699 -698
5.00 -383 386 1488 2549
6.00 3082 2900 2015 644
7.00 -854 -2044 -2832 -3069

Long camera distance (75 cm) Plate 1-104-08

1.00 24 36 33 -7
2.00 -72 -158 -236 -261
3.00 -264 -234 -179 -168
4.00 -244 -399 -528 -592
5.00 -298 337 1151 2040
6.00 2506 2374 1620 508
7.00 -713 -1737 -2460 -2601
8.00 -2584 -2175 -1476 -567
9.00 487 1580 2345 2609

10.00 2369 1637 703 -197
11.00 -571 -540 -323 -247
12.00 -191 -484 -966 -1285

Long camera distance (75 cm) Plate 1-104-10

1.00 19 31 24 -7
2.00 -58 -125 -191 -214
3.00 -215 -190 -167 -157
4.00 -192 -305 -421 -439
5.00 -252 264 929 1602
6.00 2006 1895 1257 363
7.00 -528 -1292 -1788 -1982

Middle camera distance (30 cm) Plate 1-110-03

6.00 3126 293 2 2016 652
7.00 -740 -1916 -2800 -3164
8.00 -3037 -2636 -1869 -863
9.00 383 1669 2705 3163

10.00 2714 1881 782 -189
11.00 -660 -707 -455 - 237

(continued)
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Table 2. Continued.

s\As 0.00 0.25 0.50 0.75

12.00 -324 -719 -1249 -1701
13.00 -1814 -1787 -1466 -826
14.00 -32 998 2197 3053
15.00 3690 3341 2080 485
16.00 -1454 -2762 -3439 -3295
17.00 -2471 -1585 -711 -62
18.00 310 605 890 1150
19.00 1239 1164 1070

Middle camera distance (30 cm) Plate 1-110-04

6.00 3126 2913 2013 718
7.00 -716 -1967 -2847 -3160
8.00 -3105 -2763 -2003 -967
9.00 395 1741 2799 3198

10.00 2728 1857 708 -234
11.00 -685 -720 -492 -333
12.00 -366 -731 -1234 -1624
13.00 -1849 -1755 -1418 -894
14.00 -67 953 2116 3084
15.00 3535 3237 2055 479
16.00 -1208 -2.553 -3151 -2979
17.00 -2427 -1440 -724 5

18.00 414 755 780 1336
19.00 1355 1432 1230 915
20.00 804 584 204 -116
21.00 -535 -1149 -1872 -2140
22.00 -2238 -1806 -1194 -305
23.00 446 1150 1464 1607
24.00 1725 1745 1492 722
25.00 116 -486 -1123 -1379
26.00 -1338 -1258 -992 -795
27.00 -907 -374 -44 174
28.00 587 967 1090 1194

Middle camera distance (30 cm) Plate 1-110-11

6.00 2502 2.301 1620 625
7.00 -558 -1555 -2415 -2651
8.00 -2533 -2197 -1571 -779
9.00 245 1317 2106 2426

10.00 2139 1477 601 -248

(continued)
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Table 2. Continued.

s \Os O. 00 0.25 0.50 0.75

11.00 -565 -486 -289 -111

12.00 -189 -452 -864 -1337

13.00 -1409 -L389 -1133 -706

14.00 73 898 1833 2578

15.00 3006 2.827 1915 437

16.00 -1169 -2250 -2685 -2638

17.00 -2090 -1284 -628 -150

18.00 159 479 708 834

19.00 808 919 957 791

20.00 739 597 464 203

21.00 -212 -529 -1266 -1673

22.00 -1793 -L347 -831 -337

23.00 354 831 1083 1381

24.00 1410 1318 1009 574

25.00 63 -302 -780 -1069

26.00 -1065 -1072 -812 -555

27.00 -603 -232 -113 326

28.00 431 708 915 857

29.00 906 885 543 213

30.00 -159 -231 -726 -962

31.00 -1121 -1012

Short camera distance (12 cm) Plate 1- 214- 24

22.00 -1924 -1906 -1331 -594

23.00 342 892 1656 2090

24.00 2504 2362 2138 1523

25.00 403 -691 -1107 -1438

26.00 -1848 -1947 -1715 -1493

27.00 -1165 -600 45 389

28.00 655 1027 1357 1296

29.00 1304 1234 704 377

30.00 66 -486 -1080 -1305

31.00 -1393 -1323 -1189 -924

32,00 -693 -202 424 987

33.00 1119 1329 1398 984

34.00 870 684 99 -429

35.00 -609 -990 -1201 -1288

36.00 -1050 -575 -369 79

37.00 46 552 861 806

38.00 876 1012 904 470

(continued)
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Table 2. Continued .

s \A s 0.00 a. 25 0.50 0.75

39.00 21 -568 -774 -725
40.00 -994 -1363 -965 -437
41.00 -377 123 656 698
42.00 672 1240 1191 824
43.00 323 94 26 -100
44.00 -238 -582 -696 -667

Short camera distance (12 cm) Plate 1-214-25

22.00 -2425 -1103 -1595 -744
23.00 246 1181 1834 2154
24.00 2333 2090 1853 1139
25.00 132 -649 -1257 -1512
26.00 -1532 -1582 -1686 -1507
27.00 -874 -368 -5 433
28.00 773 1172 1382 1438
29.00 1489 1245 906 303
30.00 -159 -681 -1322 -1260
31.00 -1373 -1433 -1403 -884
32.00 -453 33 631 947

33.00 1262 1599 1628 1221
34.00 734 342 -53 -234
35.00 -577 -951 -880 -742
36.00 -831 -573 -118 -95

37.00 -20 442 1167 837
38.00 1024 1033 859 440

39.00 92 -282 -593 -644
40.00 -543 -856 -488 -393
41.00 -317 -21 137 335
42.00 685 651 664 656
43.00 595 219 125 92
44.00 -603 -796 -436 -567

Composite curve of 12, 30 and 75 cm data

1.00 25 39 33 -8

2.00 -74 -164 -240 -272
3.00 -256 -203 -145 -130
4.00 -204 -371 -559 -607
5.00 -367 236 1109 1970
6.00 2476 2407 1703 613

(continued)
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Table 2. Continued.

s As O. 00 0.25 0.50 0.75

7.00 -590 -1607 -2298 -2599
8.00 -2580 -1271 -1664 -757

9.00 373 1523 2355 2674
10.00 2364 1571 610 -186
11.00 -588 -601 -416 _258

12.00 -264 -516 -868 -1209
13.00 -1363 -1404 -1224 -812
14.00 -162 697 1656 2489
15.00 2921 1729 1896 602
16.00 -796 -1932 -2486 -2346
17.00 -1958 -1262 -590 -55

18.00 306 581 740 909
19.00 939 926 840 728
20.00 668 570 442 205

21.00 -209 -721 -1306 -1645
22.00 -1724 -1400 -900 -313
23.00 323 824 1179 1379
24.00 1457 1330 1048 609
25.00 76 -420 -813 -1011
26.00 -1051 -971 -803 -625
27.00 -482 -280 -55 200

28.00 457 696 862 920
29.00 909 787 524 241

30.00 -31 -380 -742 -935

31.00 -1020 -997 -834 -639
32.00 -172 166 494 700
33.00 805 863 805 658
34.00 452 213 -85 -315
35.00 -386 -652 -727 -660
36.00 -612 -374 -158 -6

37.00 8 323 661 535
38.00 619 666 574 296
39.00 37 -276 -444 -445
40.00 -499 -721 -472 -270
41.00 -226 33 257 335
42.00 442 614 603 481
43.00 299 102 49 -2

44.00 -275 -449 -368 -401
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Table 3. Parameter values for N
2
F4.

% Trans
% Gauche
rN-N

rN-F

rF1F2

r
F 1F3 (tr)

r
F 1F4(tr)

rF
1
F

4(g)
r
F

2
F

4(g)
r
F 1F 3(g)

N-N
I

N-F

F
1F2

N
1

F3

P./
F

1
F

3
(tr)

F F (tr) PJ
1 4

F
1
F4 (g)

F F (g) P./
2 4

F
1 F 3(g)

/ F
1
N

1
F2

LN 1N 2F3

8 (dihedral)

RATIO g./

Trans-Gauche
Mixture Trans

Cardillo and Bauer
Mixture

r, I 2 CF r, 2 o- r, I Error

71. 2 8.1 100 0.010 53 3

28.8 7.7 47 3
1.492 0.007 1.495 0.006 1.489 0.004

1.372 0.002 1.372 0.002 1.375 0.004

2.148 0.009 2.160 0.005

2.218 0.005 2.214 0.004

2.600 0.010 2.581 0.008

3.373 0.006 3.366 0.005

2.487 0.042

2.250 0.034

3.365 0.007

0.048 0.005 0.048 0.004 0.044 0.004

0.044 0.002 0.045 0.002 0.045 0.003

0.064 0.004 0.066 0.004 0.053 0.004

0.081 0.008 0. 087 0.006 0.094 0.006

0.093 0.012 0. 109 0.008 0.113 0.030

0.079 0.008 0.087 0. 007 0.070 0. 007

0.093 0.012 0.120 0.030

0.093 0.012 0.118 0. 026

0.079 0.008 0.068 0.012

105. 1° 1.5°103.1° 0.6° 103.9 0. 4°
102 . 9° 1.0°

100.1° 1.5°
101.4 o0.4 101.0° 0.3° 104.3° 1.0°

100.6° 0.6°

64. 2° 3.7° 180° 67. 1° 1.0°

0.086 0.102

Distances (r) and root-mean-square amplitudes (I) in angstroms, angles in degrees.
The r and values differ slightly from re (Hedberg and Iwasaki, 1964). The 2 °-
values include estimated of systematic as well as random error.

.12/ See text for constraints applied to these amplitudes.

.2/ 2 2 ,11 /2RATIO R = , where A. = I. (obs ) - I.(calc).i



44

Table 4. Correlation matrix for trans-grauche N2F4.

% Trans % Gauche I
N-N N-F F

1
F2 N

1
F3 F

1
F

3
(tr)

rN-F
F

1
F
4

(tr)
rN-N

1.00

1655.2a

-0. 99
1.00

1 489. 3

r
F

1F2

0. 02 0. 29 0. 22
-0.01 -0.18 -0. 18
1. 00 0. 38 0.02

1.00 0.19
1.00

2.3139 0. 1 451 1.3078

r
N1F3

r
F

1
F

3
(tr)

0. 13
-0.08
0.00
0.26
0.11
1.00

7.7113

rF
1F 4

(tr)

0. 33
-0.30
0.01
0.22
0.20
0.60
1.00

16.085

LF
1
N

1
F2

0.54 0. 25 0.14
-0.52 -0.16 -0.09
0.01 0.01 -0.17
0.21 0.55 0.25
0.13 0.07 0.07
0.11 0.18 0.11
0.20 0.21 0.12
1.00 0.18 0.10

1.00 0.62
1.00

6. 1076 6.0903 0. 1 211

/ N
1
N

2
F3 0 J

0. 39 -0. 42 -0. 69 -0.55 0. 37 -0.51 -0.41
-0. 36 0.47 0. 66 0.55 -0. 35 0.46 0.44
-0.01 0.01 -0.01 -0.02 0.02 0.02 -0.00
0.19 0.13 -0.24 -0.14 0.15 -0.42 0.04
0. 13 -0. 37 -0. 38 -0.41 0.12 -0. 31 0.04
0.87 0. 32 -0.48 0.25 0.85 0.04 0.67
0.59 0.18 -0.39 0.08 0.5 7 -0.08 0.57
0. 23 -0. 20 -0. 37 -0. 29 0. 21 -0.30 -0.19
0.10 0. 27 0. 22 -0. 21 -0.01 -0. 76 0.06
0.08 0.11 -0.12 -0.10 -0.09 -0.58 0.03
1.00 0.09 -0.72 0.05 0. 99 -0.04 0.44

1.00 0.55 0.88 0.07 0.41 O. 59
1.00 0.67 -0. 69 0.56 0.07

1.00 0.06 0. 77 0.57
1.00 0.06 0.43

1.00 0.33
1.00

10. 195 2.2074 12. 632 3.6821 46563. 20691. 1709180.

-a/Values of cr2
LS

(x 106). Distances and root-mean-square ampli-
tudes in A , angles in degrees

-b/With the refinement procedure used,
p[0] = p[rFF(g) F= -p[rF4

1

(g)] = p[rFF3(g)], and the respective
1 4 2

.
values of BLS ( x 106) are 223.79, 147.36, and 3.9220 A .



Table 5. Correlation matrix for trans N
2

F4.

F 1F2 N1F3 F 1F3
f

F1F4 rN-N
rN-F r

N1F3
r
F

1F3
r
F 1F4

LF F
1 1 2 / N

1
N

2
F

3

1.00 0.03 0. 73 0.07 0. 37 -0.01 0. 16 0.57 0. 33 0.12 0. 20 -0.12 -0.07 0.03 -0.41
1.00 0.33 0.02 -0.01 0.00 0.00 -0.02 -0.21 -0.02 0.01 -0.00 -0.01 0.04 0.04

1.00 0.06 0. 24 -0.00 0. 12 0.54 0.24 0.04 0.19 -0.08 -0.08 -0.02 -0. 38
1.00 -0. 46 0. 18 0.02 0.01 0.02 -0. 29 -0. 43 -0.18 -0.45 -0. 28 -0. 31

1.00 -0.25 0.06 0.11 0.09 0.74 0. 11 -0.36 0.07 0.69 -0.03
1.00 0. 01 -0.01 -0.00 -0.17 -0. 20 -0.06 -0.20 -0.16 -0.13

1.00 0.09 0.05 0.01 0.03 -0.02 -0.02 -0.00 -0.07
1.00 0.60 -0.09 0.31 -0.06 -0. 16 -0.24 -0. 75

1.00 -0.01 0.12 -0.04 -0.07 -0.26 -0.57
1.00 -0.20 -0.67 -0. 16 0.97 -0.05

1.00 0.77 0.88 -0.23 0. 39
1.00 0.84 -0.64 0.59

1.00 -0.14 0.75
1.00 0.09

1.00
SO. 76712/ 1.5361 0.0095 1.2260 2.6820 6. 1944 4. 21 79 4.0309 0.0084 3. 1 282 1.5185 7. 2757 2.4169 15564. 12917.

'Dimensionless scale constant of no structural significance. See Hedberg and Iwasaki (1964).
0

12/Values of Cr2
LS

(x 106). Distances and root-mean-square amplitudes in A
2
, angles in degrees2.

Ui
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Figure 1. The two conformations of N
2
F4.
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Figure 2. Sector corrected curves and final background curves for long, middle, and short
sample-plate distances.
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Figure 3. Experimental intensity curves sIna(s) for 1\12F4.
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Figure 4. Intensity curves for N2F4. The experimental curve is a composite for three
camera distances. The theoretical curves correspond to the models of Table 3.
The difference curves are the experimental minus the theoretical. 41,.0
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Figure 5. Radial distribution curves for N2F4. The experimental curve was calculated from
the composite intensity curve. The theoretical curves were calculated from the
intensity curves corresponding to the models of Table 3. The difference curves
are the experimental minus the theoretical. U-10
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Figure 6. Experimental radial distribution curve for N2F4 showing the relative contributions
for the different distances of the 71% trans/29% gauche model as given in Table 3.



2 3 4 A

52

Figure 7. Experimental power spectra for N2F4. A: spectrum of averaged complex
demodulates using a Tukey filter and Tmax = 42. B: autocorrelation power
spectrum using a = 0.02 and Tmax = 40. C: sharpened radial distribution
curve using a = 0.03. D: diagonal power spectrum using a = 0.03 and

= 10.Tmax
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APPENDIX



COMPUTATIONAL FORMULAS FOR RADIAL DISTRIBUTION
AND POWER SPECTRA FUNCTIONS

1. Radial distribution function, D(r).

D(r) =
Zn

Smax

s=Smin

I(s) exp(-Bs2) sin(rs),

where B is the damping constant.

2. Sharpened radial distribution function, SRD(r).

Smax

SRD(r) = N2a As

s=Smin

I(s) exp[-a(Smax-s)] sin(rs),

where a is the anti-damping constant.

3. Autocorrelation power spectrum, APS(r). An autocorrelation

function is first computed according to the formula:

Smax

A(T) = 2a As I(s)I(s-T) exp[-2a(Smax-s)].

s=Smin

The autocorrelation power spectrum is them computed as the

cosine Fourier transform of A(T):

Tmax

APS(r) = 2AT

T=0

A(T) exp(-aT) cos(rT).

56
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4. Diagonal power spectrum, DPS(r). For every r- value a test

function is computed according to the formula:

t(s) = C sin(rs) for S < s < Smin max'

where C is a constant. The cross correlation function than can

be defined for the test function and the experimental intensity

function is computed as follows:

Smax

CR(T) = 2a a s

S=T

I(s)t(s-T) exp[-2a(Smax-s)].

For the same r-value for which the test function was computed,

one point on the diagonal power spectrum is computed as follows:

Tmax

DPS(r) = 2 AT CR(T) exp(-aT) cos(rT).

5. Average complex demodulate spectrum. For each s in the

range s = N- 1, N, N+1, . . . , S -N where 2N-1 is the filter
m

length. The real and imaginary components of the complex

demodulates are calculated as:

Re(Z) =

N-1

-N

w I(s-T) cos [r(s+T)],
T



Im(Z) =

N-

T=-1 -N

w I(s-7) sin[r(s+7)].

58

These values for all s are then averaged to form the spectrum

for a particular value of r by

S -N

C(r) = 1 [Re(Z) 2 + Im(Z )
2

]
1 /2

.

S - 2(N-1)
N-1

This process is repeated for each r-value of interest.


