INTRODUCTION

In the past two decades considerable research has been done to develop drying schedules at temperatures exceeding the boiling point of water. Successful commercial application of these schedules is rare, and lack of sufficient information on the effect of discoloration, degrade, and changes in mechanical properties restrict current usage to small kilns in furniture factories. The Ottawa and Vancouver Laboratories of the Forest Products Research Branch have been working for a number of years on this project, and in 1957 preliminary results of experiments conducted on 1-inch lumber from several coniferous species of western Canada were described (1). Since then the objective in the Vancouver Laboratory has been to develop schedules applicable to dimension lumber.

The purpose of this paper is to present the results obtained using mixed schedules which employ conventional temperatures until the fibre saturation point, ranging from 18 to 26 per cent moisture content, has been reached, and then using temperatures above 212°F. In this second phase, above 212°F., two types of drying medium were employed:

1. High-temperature air-mixture using temperatures slightly above the boiling point of water and high saturations.

2. Superheated steam.

As a further step in the study, a series of co-operative tests were made on matched lumber dried at high-temperature schedules in the Laboratory's small experimental kiln, at conventional schedules in the commercial kiln of a co-operative company. The results of this work were favourable and are discussed below.

Small clear specimens of Douglas fir using four different kiln schedules were tested to determine the effect of high-temperature schedules on the strength values of structural lumber.

Procedures

Figure 1 shows the Laboratory experimental kiln used in the tests. A scale was installed in the kiln so that the weight of the lumber could be determined at any time.

Three shipments, comprising 2 by 6-inch construction-grade Douglas fir lumber in 16-foot lengths, were obtained and prepared in 3-foot lengths for the kiln. Each charge consisted of 36 pieces. Four matched charges were cut from each shipment. The moisture content and oven-dry weight of each board were calculated on the basis of structural lumber.

Three runs (91, 92, and 94) of the first shipment were dried with high-temperature air-mixture, and the fourth (93), with superheated steam. The drying times varied from 86 1/2 hrs. to 118 1/2 hours. The final moisture content averaged 12.3 per cent.

Superheated steam was used for runs 95, 96, 97, and 98. The warm-up temperatures of these runs were the same as those dried in air-mixture. Gradually the settings were changed, between 20.7 and 27.5 per cent moisture content the kiln was brought to saturation (212°F. W.B.) and the dry-bulb temperature was raised to 220-225°F. The final moisture content averaged 12.3 per cent.

Run 95 and 96 followed conservative conventional schedules, using temperatures not exceeding 170°F. D.B. with a 20°F. W.B. depression. The final moisture content averaged 12.4 per cent.

One conventional (97), and two levels of superheated steam runs (95 and 98). Three runs of the second shipment (100, 101, and 102), were dried at two levels of superheated steam temperature. A conventional schedule was used to dry the last run of the final series (103). The dried lumber from each charge was left to stabilize for two days in an open shed prior to grading and final moisture content determination. Sections taken from the middle of each board were used for both the moisture content and moisture distribution measurements. Both halves of each piece were then dressed two sides and graded.

Following the above experimental work a co-operative experiment series was carried out on matched pieces of three shipments, using high-temperature and conventional schedules. A 3-foot piece of each piece was dried at high temperatures in the experimental kiln at the Vancouver Laboratory, and a 1-foot matched piece was dried at conventional schedules in one of the industrial kilns of the co-operating company.

The lumber from runs 95, 96, 97, and 98, was selected for strength evaluation and kept under dry-shed conditions for at least two months. Clear specimens for bending, compression parallel to the grain, and toughness tests were then cut from these pieces. The testing procedure in respect to these clear specimens was in accordance with prescribed ASTM test procedures, secondary method.

Subsequent to bending and compression tests, one 1-by-1-by-4-inch block was cut from each specimen close to the zone of failure. Basic specific gravity of the 1-inch piece was determined by the usual volume-displacement method. Growth rate and per cent summerwood were also measured.

Experiments and Discussion

Runs 91, 92, 93, and 96 were dried at high temperatures with air-mixture schedules (Table 1). Warm-up temperatures for all but run 91 were 150°F. D.B. with a 39°F. W.B. depression. The changes to high-temperature were made at 50°, 51, 52°, and 53°F. W.B. depression. The final moisture content at the ninth run was 50° W.B. depression. The final moisture content averaged 12.3 per cent.

Superheated steam was used for runs 93, 95, 96, 99, and 101. The warm-up temperatures of these runs were the same as those dried in air-mixture. Gradually the settings were changed, between 20.7 and 27.5 per cent moisture content the kiln being brought to saturation (212°F. W.B.) and the dry-bulb temperature was raised to 220-225°F. The final moisture content averaged 12.3 per cent. The drying times varied from 40 1/2 hrs. to 113 hours.

Runs 97 and 103 followed conservative conventional schedules, using temperatures not exceeding 170°F. D.B. with a 20°F. W.B. depression. The final moisture content averaged 12.4 per cent. Total drying times were 153 and 116 1/2 hours respectively.

The longest drying times of both types of high-temperature runs were equal to those of the slower conventional drying. However, as there was a considerable difference in the green moisture content of the charges -- the initial moisture content of the former being 60 to 63 per cent, and that of the conventional schedule, 54 per cent -- no direct comparisons can be made.

Table 1 shows the parameters of the drying medium and the range of moisture content of the lumber during drying. The warm-up temperatures of 190 to 195°F., used in the high-temperature runs, were higher than usually used in conventional drying. From the equilibrium moisture content it is obvious that run 91 was dried with the most severe schedule. The high temperatures and low saturation applied in the second phase of drying resulted in heavy degrade. The green moisture contents of the twelve charges ranged from 36 to 68 per cent. The range in final moisture content was below 7 per cent except in runs 91, 92, 93, and 98, where it was up to 12 per cent.
The change in schedule to temperatures above 212°F. should be made at the fibre saturation point. Attempts to measure this moisture content at the temperatures used in the kiln were unsuccessful, so the changes were made by trial and error at from 70.9 to 79.3 per cent.

Figure 2 shows distribution of the final moisture gradients for various conditions. Run 96 is shown separately, and the others are grouped by different temperature levels. The best results were achieved with the lower level of superheated steam drying when a shell-core moisture differential of less than 3 per cent was achieved in 90 per cent of the pieces, and less than 5 per cent in 98 per cent of the pieces. Except for run 94, the higher level of superheated steam, the conventional and the high-temperature air-mixture schedules showed a moisture gradient of less than 5 per cent in 85 per cent of the pieces. In run 94, with its high temperature and low saturation, only 50 per cent of all the pieces showed a moisture gradient of less than 5 per cent. Experience has shown that degrade occurs when the moisture gradient is above 5 per cent.

Most of the differences in moisture content between shell and core were below 1 per cent, as shown in Figure 2. In run 96, although the average deviation was 3.9 per cent, many boards exceeded 5 per cent, and these developed a honeycomb type degrade.

Surface defects were negligible and any that developed were removed by surfacing. No end-checks occurred and knots were not seriously damaged. Honeycomb type checks were the most serious defects and these developed only after cross-cutting. The lumber was graded on the basis of these honeycomb checks, as shown in Figures 3 and 4. No checks or slight checks, as in A and A 1, were graded together as A; a few checks as B and severe checking as C. The result of this grading are shown in Figure 5 for each of twelve runs.

The next step was to compare the results of conventional commercial drying with those of the high-temperature runs. Matched pieces of 2-by-8-inch Douglas fir clears and glulam stock; 7/16- by 8-inch western hemlock clears; 2- by 10-inch western hemlock construction grade; and 2- by 6-inch western red cedar clears were dried and compared.

No defects developed in the Douglas Fir lumber at high temperature. The knots were damaged less by high temperature, as shown on the right side of Figure 7. The lumber was graded on the basis of these honeycomb checks, as shown in Figures 3 and 4. No checks or slight checks, as in A and A 1, were graded together as A; a few checks as B and severe checking as C. The result of this grading are shown in Figure 5 for each of twelve runs.

The schedule used for the high-temperature drying of western hemlock is shown in Figure 10, and was based on the results of a few preliminary runs. The time saving for the matched boards was 15 per cent, compared with the conventional schedule, in spite of the differences in final moisture content which averaged 10 per cent for the high-temperature runs and 13 per cent for the conventional. The clears were dried most satisfactorily without and defects in the high-temperature runs. The construction lumber showed cupping varying from 1/16 to 3/16-inch when the final moisture content was as low as 10 per cent, which is much drier than normal for this grade of material. The knots were not damaged except for normal star checks which never extended beyond the knot boundary in both types of drying. The discoloration, which could not be avoided at the high temperature, was slight.

A few preliminary runs of western red cedar with normal moisture contents averaging 7 per cent were made to establish a suitable high-temperature schedule. However, the lumber for the co-operative tests was very wet, averaging 96 per cent moisture content, with wide variations up to 131 per cent green moisture content. As a result, about half of the shipment showed wet spots in cross-sections of lumber dried at the high temperatures, and about 60 per cent in the conventional. The degrade in the two runs was similar. Figure 11 shows the high-temperature schedule.

Strength Properties

One shipment of Douglas fir from which runs 95, 96, 97, and 98 were made, was selected for tests in bending, compression parallel to the grain, and toughness. Thus a comparison was obtained of matched boards from the conventional, high-temperature air-mixture, and two levels of superheated steam runs.

Table 2 shows a summary of the mean values of individual tests as computed for fibre stress at the proportional limit, modulus of rupture, modulus of elasticity, and maximum crushing strength. The data are adjusted to 12 per cent moisture content according to logarithmic equations published by the Forest Products Laboratory at Madison, Wis.

In order to make the data directly comparable, the strength properties were further adjusted to a common specific gravity of 0.60. The mean values of figures adjusted individually for fibre strength at the proportional limit, modulus of rupture, modulus of elasticity, and maximum crushing strength, are shown in Table 3. The standard deviations indicate a normal distribution of values for wood. Run 97 was dried according to conventional schedule and shows normal values for Douglas fir. Runs 95, 96, and 98 were dried at high temperatures and show lower strength values.

These values were summarized and expressed as a percentage decrease in strength based on the values obtained for run 97 (see Table 4). The high-temperature air-mixture in run 96 and the superheated steam in run 95 did not appear to have any different effect on strength. However, total time at high temperature, as shown in the superheated steam runs 95 and 98, appears to have a marked effect on strength properties.

Toughness tests could not be adjusted for specific gravity and the data are shown in Table 5. In this table the results of the two superheated steam charges were presented together. Both the tangential and the radial impact showed a decrease for wood dried at high temperature.

Conclusions

Two-inch Douglas fir, western hemlock, and western red cedar were dried successfully in the laboratory kiln at temperatures above 212°F.

The change to temperatures above 212°F., and not exceeding 225°F. D.B., with 200 to 212°F. W.S., for Douglas fir was made safely when the moisture content of the lumber reached 15 to 20 per cent.

Western hemlock schedules similar to those for Douglas fir were also satisfactory.

High temperatures of 218°F. D.B., with 170°F. W.S., were used for western red cedar. No time saving was achieved on western red cedar of very high moisture content. However, the low degrade suggests that further investigation would be justified.
Some of the observed advantages of high-temperature drying are summarized as follows:

1. Drying time is shorter by 20 to 30 per cent.
2. Final moisture distribution is more uniform.
3. Core and shell differential moisture contents are lower than obtained with conventional schedules.
4. No twisting or checking occurred.
5. Knot damage is slightly less than with conventional schedules.
6. The durability of western red cedar is not impaired (4).

Some disadvantages are:

1. Some discoloration occurs.
2. The reduction in strength properties found in Douglas fir dried at high temperatures is sufficient to make the use of this method of drying for structural material questionable at the present time.

However, no definite conclusions should be made at this stage in the investigation. Tests made on selected lumber dried in industrial kilns should be compared with lumber dried in industrial high-temperature kilns to obtain true differences.

References

DISTRIBUTION OF FINAL MOISTURE GRADIENTS FOR 4 X 8 DOUGLAS FIR COMMON DRIED AT VARIOUS CONDITIONS.

- Mean of runs 95, 100, 102, 222° 215° Superheated Steam
- Mean of runs 93, 98, 101, 225° 212°.
- Mean of runs 97, 103, 170° 150° Conventional.
- Mean of runs 91, 92, 96, 218° 200° High Temp Air Mix
- Run 94 240° 195°.

CIRCULATION, ALL RUNS, 600 FPM.
Figure 5

Figure 6

Figure 7

Figure 8

Figure 9
<table>
<thead>
<tr>
<th>RUN</th>
<th>WARM-UP</th>
<th>DRYING SCHEDULE</th>
<th>DRYING ABOVE F.S.P</th>
<th>DRYING BELOW F.S.P</th>
<th>MOISTURE CONTENTS DURING DRYING IN %</th>
<th>CHANGE IN THE SCHEDULE</th>
</tr>
</thead>
<tbody>
<tr>
<td>91</td>
<td>190</td>
<td>165</td>
<td>190 165 155 210 200 109 218 200 71 218 200 71</td>
<td>32 64 64 64 20 4 10</td>
<td>13 20 20 20 3 5 12</td>
<td>HTA</td>
</tr>
<tr>
<td>92</td>
<td>195</td>
<td>190</td>
<td>195 190 148 210 200 109 218 200 71 218 200 71</td>
<td>34 44 64 53 21 1</td>
<td>10 21 18 14 6 3 12</td>
<td>HTA</td>
</tr>
<tr>
<td>93</td>
<td>195</td>
<td>190</td>
<td>195 190 148 210 200 109 212 212 135 255 212 7</td>
<td>17 25 25 25 8 3 14</td>
<td>4 6 10 14 5 3 12</td>
<td>HTA</td>
</tr>
<tr>
<td>94</td>
<td>195</td>
<td>190</td>
<td>205 190 148 210 200 109 212 212 135 255 212 7</td>
<td>17 25 25 25 8 3 14</td>
<td>4 6 10 14 5 3 12</td>
<td>HTA</td>
</tr>
<tr>
<td>95</td>
<td>195</td>
<td>190</td>
<td>195 190 148 210 200 109 212 212 135 255 212 7</td>
<td>17 25 25 25 8 3 14</td>
<td>4 6 10 14 5 3 12</td>
<td>HTA</td>
</tr>
<tr>
<td>96</td>
<td>195</td>
<td>190</td>
<td>195 190 148 210 200 109 212 212 135 255 212 7</td>
<td>17 25 25 25 8 3 14</td>
<td>4 6 10 14 5 3 12</td>
<td>HTA</td>
</tr>
<tr>
<td>97</td>
<td>195</td>
<td>190</td>
<td>195 190 148 210 200 109 212 212 135 255 212 7</td>
<td>17 25 25 25 8 3 14</td>
<td>4 6 10 14 5 3 12</td>
<td>HTA</td>
</tr>
<tr>
<td>98</td>
<td>195</td>
<td>190</td>
<td>195 190 148 210 200 109 212 212 135 255 212 7</td>
<td>17 25 25 25 8 3 14</td>
<td>4 6 10 14 5 3 12</td>
<td>HTA</td>
</tr>
<tr>
<td>99</td>
<td>195</td>
<td>190</td>
<td>195 190 148 210 200 109 212 212 135 255 212 7</td>
<td>17 25 25 25 8 3 14</td>
<td>4 6 10 14 5 3 12</td>
<td>HTA</td>
</tr>
<tr>
<td>100</td>
<td>195</td>
<td>190</td>
<td>195 190 148 210 200 109 212 212 135 255 212 7</td>
<td>17 25 25 25 8 3 14</td>
<td>4 6 10 14 5 3 12</td>
<td>HTA</td>
</tr>
<tr>
<td>101</td>
<td>195</td>
<td>190</td>
<td>195 190 148 210 200 109 212 212 135 255 212 7</td>
<td>17 25 25 25 8 3 14</td>
<td>4 6 10 14 5 3 12</td>
<td>SH2</td>
</tr>
<tr>
<td>102</td>
<td>195</td>
<td>190</td>
<td>195 190 148 210 200 109 212 212 135 255 212 7</td>
<td>17 25 25 25 8 3 14</td>
<td>4 6 10 14 5 3 12</td>
<td>SH2</td>
</tr>
<tr>
<td>103</td>
<td>195</td>
<td>190</td>
<td>195 190 148 210 200 109 212 212 135 255 212 7</td>
<td>17 25 25 25 8 3 14</td>
<td>4 6 10 14 5 3 12</td>
<td>SH2</td>
</tr>
</tbody>
</table>

N. HTA — High Temperature Air Mixture
SHI — Superheated Steam, 222° Level
SHZ — 225° Level
CON — Conventional Air Mixture
Circulation, All Runs — 600 fpm
Table 2
Showing Mean Values Adjusted to 12% M.C. and 0.460 Specific Gravity

<table>
<thead>
<tr>
<th>RUN NO.</th>
<th>NO. PCS. TESTED</th>
<th>BASIC SPECIFIC GRAVITY</th>
<th>BENDING STRENGTH</th>
<th>COMPRESSION PARALLEL TO GRAIN</th>
<th>STRENGTH PARALLEL TO GRAIN</th>
<th>AV. VALUES</th>
<th>STD. DEV.</th>
<th>AV. VALUES</th>
<th>STD. DEV.</th>
<th>AV. VALUES</th>
<th>STD. DEV.</th>
</tr>
</thead>
<tbody>
<tr>
<td>95</td>
<td>29</td>
<td>7107</td>
<td>1276</td>
<td>12,399</td>
<td>1588</td>
<td>1676</td>
<td>311</td>
<td>6034</td>
<td>933</td>
<td></td>
<td></td>
</tr>
<tr>
<td>96</td>
<td>29</td>
<td>7299</td>
<td>1290</td>
<td>10,107</td>
<td>1883</td>
<td>1557</td>
<td>335</td>
<td>8636</td>
<td>869</td>
<td></td>
<td></td>
</tr>
<tr>
<td>97</td>
<td>29</td>
<td>8843</td>
<td>1115</td>
<td>12,785</td>
<td>1114</td>
<td>1773</td>
<td>317</td>
<td>7551</td>
<td>560</td>
<td></td>
<td></td>
</tr>
<tr>
<td>98</td>
<td>29</td>
<td>7920</td>
<td>1065</td>
<td>11,152</td>
<td>1205</td>
<td>1086</td>
<td>230</td>
<td>8404</td>
<td>535</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 3
Showing Mean Values Adjusted to 12% M.C.

<table>
<thead>
<tr>
<th>RUN NO.</th>
<th>NO. PCS. TESTED</th>
<th>F.S. AT PL. (PSI)</th>
<th>N.O.R. (PSI)</th>
<th>N.O.E. (1000 PSI)</th>
<th>MAX. CRUSHING STRENGTH</th>
<th>AV. VALUES</th>
<th>STD. DEV.</th>
<th>AV. VALUES</th>
<th>STD. DEV.</th>
<th>AV. VALUES</th>
<th>STD. DEV.</th>
</tr>
</thead>
<tbody>
<tr>
<td>95</td>
<td>29</td>
<td>6843</td>
<td>18.6</td>
<td>17.5</td>
<td>10.4</td>
<td>6275</td>
<td>37</td>
<td>6275</td>
<td>37</td>
<td>6275</td>
<td>37</td>
</tr>
<tr>
<td>96</td>
<td>29</td>
<td>7920</td>
<td>10.6</td>
<td>20.8</td>
<td>12.5</td>
<td>7251</td>
<td>29</td>
<td>7251</td>
<td>29</td>
<td>7251</td>
<td>29</td>
</tr>
<tr>
<td>97</td>
<td>29</td>
<td>7920</td>
<td>10.6</td>
<td>20.8</td>
<td>12.5</td>
<td>7251</td>
<td>29</td>
<td>7251</td>
<td>29</td>
<td>7251</td>
<td>29</td>
</tr>
</tbody>
</table>

Table 4
Showing Effect of Temperature on Strength Properties of 2x8 Douglas Fir

<table>
<thead>
<tr>
<th>RUN NUMBER</th>
<th>97</th>
<th>95</th>
<th>96</th>
<th>98</th>
</tr>
</thead>
<tbody>
<tr>
<td>DRYING TIME - HRS.</td>
<td>153.5</td>
<td>116.0</td>
<td>116.0</td>
<td>95.0</td>
</tr>
<tr>
<td>TREATMENT - °F</td>
<td>CONVENTIONAL</td>
<td>SUPERHEATED STEAM</td>
<td>HIGH TEMP AIR MIXTURE</td>
<td>SUPERHEATED STEAM</td>
</tr>
<tr>
<td>RUN NO.</td>
<td>170°</td>
<td>150°</td>
<td>225°</td>
<td>212°</td>
</tr>
<tr>
<td>AV. VALUES</td>
<td>12.5</td>
<td>20.8</td>
<td>12.5</td>
<td>11.6</td>
</tr>
<tr>
<td>STD. DEV.</td>
<td>10.4</td>
<td>4.9</td>
<td>11.6</td>
<td>4.9</td>
</tr>
<tr>
<td>MAXIMUM CRUSHING STRENGTH (PSI)</td>
<td>7251</td>
<td>16.0</td>
<td>12.1</td>
<td>11.6</td>
</tr>
</tbody>
</table>