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ABSTRACT

When averaging the equations of motion, thermodynamics, and scalar conserva_tion over turbulent fluctuations,
we perform the process in several stages. First, an average is taken over the microscopic scales of turbulen{:e,
including the centimeter-scale band in which the dissipation of kinetic energy and temperature or density
variance occurs. The eddy-correlation fluxes that arise in this stage are called microstructure fluxes. Next, the
equations are transformed into coordinates relative to the microscopicaily averageq .1sopyc1'1als. sz_ﬂly, an
average is taken, relative to these isopycnals, over macroscopic scales of eddy variability, which may include
the mesoscale band of planetary motions. Average transport terms, analogous to conventional Reynolds transports
in fixed-depth averages, arise also from the macroscopic eddies. This is not so for density, for which no counterparts
of macroscopic Reynolds transports exist on constant density surfaces. Only microstructure flux divergence,
which is synonymous with diapycnal velocity, contributes to the density balance. Under the assqmption that
microstructure density variance production is in equilibrium with its molecular dissipation, the microstructure
density flux has the form of the molecular flux of heat down the vertical mean gradient, amplified by the Cox
number. Munk’s abyssal recipe for the vertical velocity/diffusivity ratio can now be reinterpreted as the diapycnal
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velocity /diffusivity ratio.

1. Introduction

The use of isentropic coordinates has often been rec-
ommended for representing the equations of motion
and thermodynamics in the atmosphere, when the
motion conserves potential temperature or entropy
(Eliassen and Kleinschmidt 1956). The use of potential
density coordinates in the ocean has been suggested
for similar reasons (Robinson 1965). Bleck and Smith
(1990) have developed a numerical ocean model that
exploits isopycnal coordinates and conserves density
adiabatically. Representation of the motion in isopyc-
nal coordinates may still have advantages if density is
only approximately conserved, that is, if there is tur-
bulent density transport. In this case one must param-
eterize the irreversible transport processes. A common
choice is to replace Reynolds-averaged fluxes with
products of eddy diffusion coefficients and mean gra-
dients. Redi (1982) asserted that the eddy diffusivity
tensor cught to be diagonal with respect to coordinate
axes aligned with local isopycnal surfaces. This would
be another powerful reason for preferring isopycnal
coordinates.

We have reexamined the parameterization of non-
conservative processes in isopycnal models. We find it
useful to average the equations of motion, continuity,
thermodynamics, and passive scalar concentration in
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two stages. First, an average is taken over the micro-
scopic scales, including the Batchelor scale, typically
of the order of a few centimeters but extending to scales
of the order of a few meters at which overturning bil-
lows occur. The reason for this is twofold. First, we
wish to average over the numerous finescale, short-
lived, density inversions, which occur in a band cen-
tered at the Batchelor scale in well-developed turbu-
lence and over the rarer but larger-scale overturning
billows, and thereby ensure a monotonic average den-
sity profile. Second, we want to separate the micro-
scopic nonhydrostatic scales from the macroscopic hy-
drostatic scales to which the primitive equations apply.
We refer to the fluctuation-correlation terms created
in this averaging process as microstructure fluxes.
Before the next stage of averaging, the equations are
transformed to coordinates relative to the microscop-
ically averaged isopycnals. This has the effect of trans-
forming the mass-continuity equation into a prognostic
equation for the specific thickness 3z/dp and trans-
forming the thermodynamic equation for density into
a diagnostic equation relating the sources and sinks of
density (w = Dp/ D) to the microstructure density flux
divergence. The isopycnal-coordinate primitive equa-
tions are further averaged over macroscopic scales,
which may encompass the planetary scales of eddy
variability in the ocean. This averaging produces eddy-
correlation terms analogous to the usual Reynolds flux
divergences in the momentum and scalar concentration
equations, but not in the thermodynamic equation for
density. The microstructure flux divergence (macro-
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scopically averaged) remains the only source term in
that equation.

We propose a parameterization for the microstruc-
ture density flux in terms of the dissipation of density
variance. This has the appearance of the molecular dif-
fusive flux of density associated with the mean gradient
but amplified by the Cox number, that is, by the ratio
of mean-squared density gradient to the squared mean
gradient (Osborn and Cox 1972). Similar parameter-
izations for microstructure fluxes of momentum and
scalar concentration can be given, though they must
be augmented by the macroscopic turbulent transport
processes for these properties.

The crucial point is that macroscopic averaging pro-
duces no new macroscopic flux divergences for density
as it does for other variables. The transformation to
isopycnal coordinates changes the prognostic equation
for density into a diagnostic equation for the new de-
pendent variable w. This elementary fact permits a
simpler, less subjective, parameterization of the mixing
processes for density. For the other variables the mac-
roscopic and microscopic fluxes are additive, and ad-
ditional parameterizations must be proposed. Con-
ventionally, these may involve eddy viscosities and dif-
fusivities. But they have a different origin from the
density microstructure flux parameterization.

We are able to conclude that Munk’s (1966 ) abyssal
recipe for the vertical advective-diffusive balance ap-
plies to the diapycnal velocity e = @/z,, rather than
vertical velocity w. Specifically, we find that

d 0 (. 9
_—= — K_
€6z 62( az)’

where K is the diapycnal diffusivity due to microscopic
fluctuations. No assumptions need to be made about
neglecting horizontal advection or macroscopic hori-
zontal diffusion.

Gent and McWilliams (1990) also considered av-
erages of equations expressed in isopycnal coordinates.
We have made clear the correspondences to their work
in appendix C.

2. Averaging in isopycnal coordinates

In this section we first average the equations of mo-
tion, thermodynamics, and passive scalar concentra-
tion over microscopic scales. We call the fluxes that
arise thereby the “microstructure fluxes.” Next we
transform the equations into isopycnal coordinates.
Then we average the transformed equations over mac-
roscopic scales of motion. Because the coordinate
transformation makes the nonlinear rate of change of
density Dp /Dt into a dependent variable w, which is
trivially linear (a major motivation of the procedure),
the macroscopic average of the transformed density
equation produces no extra Reynolds-averaged density
flux. The microstructure flux is the only source term
for density. For momentum and for concentrations of
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scalars other than density, there are additional mac-
roscopic eddy fluxes analogous to the conventional
Reynolds-averaged fluxes. An argument for the form
of the microstructure flux of density can be given that
does not depend on proposing a Fickian diffusion ten-
sor for density. Nevertheless, the form so obtained does
have the appearance of an effective diapycnal diffusivity
acting on the mean density gradient. This formulation
circumvents Redi’s (1982) procedure, in which the
proposed diffusivity tensor is diagonal in local orthog-
onal coordinate axes aligned with mean isopycnals,
thereby minimizing spurious diapycnal diffusion of
density.

a. Microscopically averaged equations of motion:
microstructure fluxes

The equations of motion, continuity, thermody-
namics and passive scalar concentration are, in level
Cartesian coordinates,

Du 1
=~ _fv+—p, = 0TF", 1
Dt Sfo P (1)
Dv 1
——+ fu+—p,= 9"F", 2
7 Su pop} (2)
0=-p.—g&p, (3)
Uy + v, +w, =0, (4)
Dp
—_— = (')TF" =, 5
Dt @ ()
D¢
— = 9"F?, 6
Di (6)
where
D T= d 7
—D_[ =0, + udx +va, + wa;, 9" = (dx, 9y, 2), (7)

Ff = —u,p,, F’=-ug,, (8)
The shallow Boussinesq approximation has been made.
We assume that Egs. (1)-(6) have been preaveraged
over microscopic fluctuations (denoted by asterisked
variables) smaller than, say, several meters. This en-
sures that the density field has been averaged over the
band of scales centered around the Batchelor scale,
typically of the order of a few centimeters, at which
numerous, finescale, short-lived, turbulent density in-
versions occur, and over rarer density inversions on
larger scales—several meters—such as those associated
with Kelvin—-Helmholtz billows, so that the average
vertical density gradient everywhere possesses the same
sign. The right-hand sides of these equations contain
the divergences of momentum, density, and scalar
concentration fluxes, caused by these microscopic
fluctuations. We call F*?, F?, etc., the microstructure
fluxes. For simplicity, we have taken the density
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anomaly p to be synonymous with temperature anom-
aly. This implies neglect of salinity and the neglect of
nonlinearities in the equation of state for seawater.
(This is not essential to our analysis, nor is the Bous-
sinesq approximation.)

b. Transformation from Cartesian coordinates to
isopycnal coordinates

We now transform Egs. (1)-(7), expressed in terms
of Cartesian coordinates x, y, z, t as 1ndependent vari-
ables, into isopycnal coordinates X, 7, p, ¢, where

x=X%y=7,z=2z(% J,p1), t =1 (9a,b,cd)

(Eliassen and Kleinschmidt 1956). Tildes are em-
ployed to emphasize that the calculation of partial de-
rivatives such as d;¢ are performed with p held fixed,
that is, along sloping isopycnals. In contrast, d,¢ is cal-
culated along level surfaces (z fixed). Notice that we
are transforming to time-dependent microscopically
averaged isopycnal surfaces, which are free to fluctuate
in time as well as space. The partial derivatives trans-
form according to

0 0\ /9;
9| _ A 01}l 95
5 ol{a ] 9
a, 0 0 -z/z, 1/\&;
where
1 0 —zi/z,
A=|0 1 -—z/z]). (11)
0 0 1/z

On application of the transformation (10), Egs. (1)-
(7) become

Du 1 .
- - + — Txu
(Dt fv wa) J'F¥, (12)
Dv 1
4+ — — ATy
(Dt + fu Ovry) 3TF?, (13)
0=—w, + gz, (14)
zg + (uz,)z: + (vz,) + (@2,), =0, (15)
Dz
E =W, (16)
2‘3_ 3TRe
z, D a'F?, (17)

where

D
-l—)—t=a,+ua + v9; + ®d,, 3T = (8%, 93, 9,), (18)

and = = p + gpz is the Montgomery potential. Fluxes
in isopycnal coordinates are related to fluxes in Carte-
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sian coordinates by
F¢ = 2ATF® = (—z,u, 05, —2,0505, ~€505)", (19)

where

€y = Wy — UgZs — VyZj (20)
is the fluctuating velocity normal to the macroscoplc
isopycnal [overlooking a factor (1 + | Vz|2)!/2, which
is very close to 1]. The flux divergences transform ac-
cording to

TR = L3t TR, (21)
z,

which may be verified by substituting from:(10) and
(19). Just as (6) transforms into (17), so the second
equality in (5) transforms into

2@ = 0TK? = 3x(—z,Uzpy)
+ 35(—2Z,0px) + 3 (—Expy).

Comparing (1)-(7) with (12)-(18), one notes the
replacement of z by p as independent variable, and w
by @ as independent variable. Equation (15) is the
transformed continuity equation (4). It is called the
“thickness equation,” because —z, (which is invariably
positive) is the spacing of isopycnals per unit density.

The derivation and meaning of Eqs. (16), (18) de-
serve some comment. The application of the transfor-
mation ( 10) to the substantial rate-of-change operator
(7) gives

(22)

D W— zZ;— Uzz — VZ;
— =0;+ ud; + vd; + £9,.
Dt * d 2,
Applying this to p and using (5), we see that
W— Zy— UzZz — VZj
W = .
z

f 4

This relation may be used to give the final form (18)
for D/Dt; it may also be rewritten as Eq. (16). This
equation permits an interesting interpretation of the
quantity e = z,©. This is the difference between vertical
velocity w and the apparent vertical motion, z; + uz;
+ vz, of an isopycnal surface. The quantity e/(1
+ |Vz| 2)1/2 is the diapycnal flux, the normal flux of
volume per unit area across the isopycnal surface. Be-
cause |Vz| < 1, eitself is usually called the diapycnal
flux, or diapycnal entrainment velocity. From the large-
scale point of view, the area-integral of e over an entire
1sopycnal surface is the negative of Speer and Tziper-
man’s (1992) water mass transformation function
F(p). The link between ¢ and diabatic processes is
made clear by (5). If there were no diabatic processes,
that is, if the microstructure flux in (5) were to vanish,
Dp/Dt = w = 0, then isopycnal surfaces z = z(X, J,
p, t) would be material surfaces. Equation ( 16) restates
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the kinematic consequence of w = 0, namely, that ver-
tical motion is given by the motion of the isopycnal
surfaces, w = z; + uz; + vz;. In general, for w # 0,
Eq. (16) furnishes the means to calculate w from iso-
pycnal displacement.

¢. Macroscopic averaging in isopycnal coordinates:
Weighted averages

The next step is to average the momentum, conti-
nuity (or thickness), and scalar concentration equa-
tions (12)-(15), (17), and the microstructure density
flux divergence w [Eq. (22)], over an ensemble of
macroscopic realizations of flows. Practically, we take
this to be equivalent to averaging over regions of space—
time (or space-density-time ) containing enough fluc-
tuations to permit the construction of reliable mac-
roscopic averages. This requires the averaging scale to
be in a spectral gap between the small-scale fluctuations
and the resolved large-scale variations (Lumley and
Panofsky 1964).

We write

z=z+72, z,=2,+72, (23)
where the bar indicates an ensemble average. However,
it is convenient to introduce also an average, denoted
by a circumflex or by angle brackets (. . .), weighted
by the thickness z,,

(24)
where

d={d)=12,6/z,, {(¢">=124"/2,=0. (25)

[Eliassen and Kleinschmidt (1956) used similar av-
erages, weighted by density.] Note that both weighted
and unweighted averages are performed at fixed %, y,
p, t, that is, on an isopycnal surface. Derivatives com-
mute with the unweighted averaging operation, but not
with the weighted average. Gent and McWilliams
(1990) considered the density and continuity equations
in isopycnal coordinates. A microscopic-scale average
is implicit in their equations, although they neglected
diabatic processes; that is, @ = 0. They too averaged
over eddy scales in isopycnal coordinates, equivalent
to what we call macroscopic averaging. However, they
used unweighted-average variables. This leads to some
differences that we elucidate in appendix C.

The macroscopically averaged forms of Egs. (12)-
(15),(17) are
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0=—7,+gz, (28)
_pl + (Z_pﬁ)' + (pr))ﬁ + (Zp‘&,)p - 0’ (29)
z 2$=5T(W+G¢) (30)

* Dt ’

where
D ) . .

Eaa,+u8~+uay~+m6,, (31)
G¢T = ("Zpu” ”’ —zpv”¢", _mell¢ll), (32)

etc. The use of weighted averages avoids the appearance
of eddy thickness fluxes in (29) and additional eddy
flux terms in (26), (27), (30). A careful comparison
of our equations with the Gent and McWilliams (1990)
unweighted-average equation is given in appendix C.
The average microstructure fluxes F#, etc., can be sub-
stituted from (19). The average dlapycnal flux is cal-
culated by averaging (22):

e = = 9z(— Zp< u*ﬂ*>)
+ 00— Z,( Vb ) + 0(—CPx)-

This is strongly dominated by the third term, the dia-
pycnal gradient of density flux. The double bar indi-
cates a macroscopic average following a microscopic
average. The macroscopic momentum flux vectors G,
G* have forms similar to (32) and are combined with
the average microstructure fluxes F*, F*. Notice the
appearance of thickness—pressure gradient covariance
terms in (26), (27).

(33)

d. Parameterization of microstructure fluxes

To calculate the right side of (33), which defines the
average diapycnal flux, we consider the balance of mi-
croscopically averaged square denmsity variance, o

= 1/2p3,

Do potap + aTR - x .

Dt (34)

This is written in Cartesian coordinates, where F* is
given by (8) and

1
Fﬂ == _u*pi’

3 (35)

X® = #|9p, | (36)
are the flux and the molecular dissipation, respectively,
of density variance («” is molecular diffusivity of den-
sity). Transformed to isopycnal coordinates, (34) be-
comes

Do

2 o = F§ 43Tk — z,x @,

(37)
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where the substantial derivative is defined by (18), and

F4 = —e,p». The macroscopic average of (37) is
_D._= 3T Tro = 3 (o)
z,,Ea=F‘3’+a (G°+F7)—z,x'», (38)

where G’ is defined similarly to (32). By assuming
that the turbulence has adjusted to equilibrium and
that flux divergences are negligible, the local balance
of production and dissipation of density variance gives

F§=—2ypy = Z,X . (39)
We are conservative in asserting this balance only after
macroscopic averaging. It is often suggested after
merely microscopic averaging. If that were done, (37)
would give

F§=2x®, (39)
By introducing into (39) the Cox number,
Cx = ([9ps1°) 22, (40)

the ratio of mean-square density gradient to the squared
mean gradient (Osborn and Cox 1972), we can write
(33), neglecting the first two terms on the right, as

KP
€=z, ~ 6,,(7) , where K’ =«”-Cx. - (41)

Zp

The argument for the relation (39) between the
pseudovertical density flux and dissipation has often
been given, though usually with respect to fixed Carte-
sian coordinates, in which horizontal gradients are ne-
glected (Osborn and Cox 1972). Our derivation serves
to emphasize that the neglect of horizontal gradients
is not at all necessary and that the argument furnishes
the diapycnal component of the density flux. Moreover,
it is precisely this diapycnal component that is most
important in Eq. (33).

A similar argument may also be advanced for the
parameterization of the flux of scalar ¢, so that

3TF¢ ~ a,,(Kvs @) , (42)

Zp
where K* ~ K*. Similarly also for 37F¥, "F*. But
this is less than half the story for the fluxes of those
quantities. Parameterizations for the macroscopic
fluxes G¢, G*, G" must also be given to complete the
specification of Eqs. (26), (27), (30). The point here
is to emphasize that the parameterization (41) of the
microstructure flux of density is enough to specify the
diapycnal flux. Classical random-walk diffusion models
apply to the passive scalar ¢ (though not necessarily
to i, D), guaranteeing a diffusivity tensor for the pa-
rameterization of the macroscopic flux G? (Monin and
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Yaglom 1971). An important example of such a scalar
is salinity! On density surfaces, salinity does not occur
in the buoyancy force gz of Eq. (28), and may be con-
sidered passive.

The introduction of the Cox number in (41) does
not obviate the need for a closure model for, say, K.
Short of that, however, it facilitates an empirical spec-
ification of K” from interpretation of measurements of
microstructure variability in the ocean.

There are other processes that could contribute to
z,®, 3TF?, etc. The differential rates of molecular dif-
fusion of temperature and salinity provide a mecha-
nism for transporting buoyancy (density) that is not
accounted for in the discussion above. Use of the
Boussinesq approximation, and linearization of the
equation of state, has permitted simplification of the
derivation. Non-Boussinesq effects, and nonlinearities
in the equation of state, could be included in our anal-
ysis, at some cost in complexity, but without vitiating
the essential results.

It has been crucial to the above formulation that the
macroscopic averaging was done at fixed density, not
fixed depth. The resulting microstructure fluxes and
macroscopic Reynolds fluxes depend on this. It is in-
structive therefore to rewrite the averaged equations
(26)-(30) in level coordinates in order to compare
them with the conventional equations averaged at fixed
depth. This has been done in appendix A. For the most
part, the results are familiar, producing equations for
momentum, continuity, density, and scalar concen-
tration with forms similar to those obtained by con-
ventionally Reynolds averaging the equations. How-
ever, it is important to emphasize that the inverse
transformation of (41) shows that

p =B =08:(K"), (43)

ISJISE

where p is the macroscopically averaged density field
(appendix A).

In a contrasting vein, in appendix B we display the
conventional equations of motion, macroscopically
averaged in fixed coordinates, transformed to macro-
scopically averaged isopycnal coordinates. This latter
set of equations is quite distinct from Egs. (26)-(30),
obtained by the two-stage averaging process, with the
macroscopic average done on microscopically averaged
isopycnal coordinate surfaces. It is instructive to see,
nevertheless, that a parameterization formally resem-
bling (41) for the density flux divergence is obtained
by adopting Redi’s (1982) hypothesis that the Fickian
diffusivity tensor for density is diagonal in isopycnal
coordinates. The derivation for this form that we have
presented is preferable because it identifies the micro-
scopic scales of motion responsible for mixing of den-
sity. By enlisting Osborn and Cox’s (1972) argument,
it gives a stronger, more mechanistic explanation for
its parameterization. It also distinguishes between the
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diffusion of momentum and other properties by both
macroscopic and microscopic scales, and the diffusion
of density, which can be effected only by microscopic
scales.

The formulation of Eq. (41) has a number of ad-
vantages over the Reynolds-averaged density equation
transformed to mean isopycnal coordinates. The ex-
istence of a diffusivity tensor for mean density need
not be postulated. Density influences the motion
through the buoyancy force. Hence the formal deri-
vation of a density diffusivity as the rate of change of
covariance of displacement is not possible as it is for
a passive scalar. The derivation assumes that fluid par-
ticle displacements are independent of both the initial
scalar concentration and its source strength and that
the distribution of particle displacements is normal
asymptotically for large time after release (Monin and
Yaglom 1971). For an active scalar like density, the
statistical independence of displacements from initial
concentration or source strength seems most unlikely.
The particle motions may well “forget” the initial den-
sity field, but this seems like special pleading. In any
event, we seek an analysis of diapycnal fluxes that is
valid in general. Our analysis of the diapycnal density
flux avoids this difficulty.

Even if a diffusivity tensor for density did exist, it is
not obvious from rigorous arguments why the tensor
should be diagonal in local orthogonal isopycnal co-
ordinates if the distinction between microscopic and
macroscopic scales is not made. While it is intuitively
appealing that small-scale motions that transport
properties should be constrained to lie nearly in iso-
pycnal surfaces, a counterexample may be offered: if
the averaging scale were coarse enough to include pro-
cesses like baroclinic instability in which the orbits of
water parcels cross mean isopycnals, then the diffusivity
tensor need not be oriented with mean isopycnal sur-
faces. McDougall and Church’s (1986) dismissal of this
possibility is unsound. They argue that because water
parcels conserve density approximately in baroclinic
instability, there can be no diapycnal mixing, over-
looking the distinction that needs to be made between
instantaneous orbits and isopycnals on one hand and
mean isopycnals and orbit orientations on the other.
In fact, the flux of density across mean isopycnals is
given by the rate of change, plus the molecular dissi-
pation, of density variance. Perhaps the most con-
vincing argument for an isopycnally diagonal diffusivity
tensor is that it gives a form of the density diffusion
law analogous to (41)! But this depends on the subtle
distinction we have made between averaging over mi-
croscopic scales at fixed levels and averaging over mac-
roscopic scales on microscopically averaged isopycnals.

Ocean data can be displayed in either isopycnally
averaged or fixed-level averaged form. Unless great ef-
forts are made to resolve high-wavenumber and high-
frequency variability, raw observations of currents,
density, and passive scalar concentrations are usually
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averages over volumes with scales of order 1 m to 10
m and times of minutes to hours. Some oceanographic
atlases (e.g., Levitus 1982) display data averaged over
large horizontal areas at fixed depths. In other atlases
(Reid 1965), scalar concentrations and pressure (i.e.,
dynamic height or acceleration potential ) are displayed,
after some horizontal smoothing, on density surfaces,
whose mean depths are also shown. When tempera-
ture-salinity relations (or other property-property re-
lations) are shown, raw observations are plotted on
scatter diagrams (Gordon et al. 1982), or histograms
are prepared (Worthington 1981). The kind of aver-
aging that such displays invite is similar to isopycnal
averaging.

3. Munk’s abyssal recipe

The mean diapycnal flux, or entrainment velocity,
Eq. (41), may be written

1
E=7,8 = a,,(KP —) (44)
ZP
or
0 (0
eaz_az (K az)' (45)

The similarity of (45) to Munk’s (1966) vertical ad-
vective-diffusive balance
dp
Kv P
82)

dp 0
"oz az (

where w is vertical velocity and K, is vertical diffusivity,
is apparent. Munk ( 1966 ) took pains to emphasize the
arbitrariness of neglecting horizontal advection and dif-
fusion in adopting (46). He used (46) to estimate w/
K, assumed constant, by fitting a curve to the observed
midocean pycnocline. (Actually, he did this separately
for the thermocline and halocline using temperature
and salinity balances like (46), with T"and S replacing
p. He also fitted w/ K, to nonconservative scalars like
dissolved oxygen and '“C concentrations by allowing
for their source and destruction functions.)

Equation (45) was derived with no mixing length
hypothesis nor any assumptions about the magnitude
of horizontal (meaning along-isopycnal) advection and
diffusion. Only rather mild assumptions about (i) den-
sity variance production and dissipation being in equi-
librium, and (ii) neglect of horizontal density flux di-
vergence [ Eq. (33)], are made in the argument leading
to (41). If, as in section 2, the average ¢ is calculated
in isopycnal coordinates, it is not even necessary to
posit formally a diffusivity tensor for density, nor its
diagonality in isopycnal coordinates. Hence we can give

(46)
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a far stronger interpretation of Munk’s calculations,
merely by reinterpreting the ratio w/K, as ¢/ K”.

4. Discussion and summary

We have carefully examined the issues involved in
averaging the equations of motion, continuity, ther-
modynamics, and scalar concentration, and trans-
forming them into isopycnal coordinates. We recom-
mend first averaging at fixed levels over microscopic
scales—meaning the band of scales containing the
fluctuations that dissipate kinetic energy and density
variance, and extending up to the scales of density-
overturning billows. This guarantees a monotonic
mean vertical density gradient so that unique isopycnal
surfaces can be defined. Next we would average on
isopycnal surfaces over the macroscopic scales of ed-
dies, which may significantly transport properties lat-
erally. This is conveniently done after transforming to
isopycnal coordinates. Both averaging processes pro-
duce turbulent transports due to the microscopic and
macroscopic scales. We distinguish these by the terms
“microstructure flux,” and “macroscopic” or “Reyn-
olds flux.”

The microstructure flux divergence of density is most
important because it is the only source of density. One
of the consequences of the use of isopycnal coordinates
is to transform the rate of density change Dp /D¢, non-
linear in the dependent variables, into the density
source @, which is a new dependent variable in place
of vertical velocity. The macroscopic averaging of this
variable produces no eddy correlation fluxes in iso-
pycnal coordinates. Averaging the total rate of change
of any other variable, such as momentum or scalar
concentration, produces familiar eddy fluxes. An ar-
gument for parameterizing microstructure flux of den-
sity in terms of Cox number amplification of the mo-
lecular flux operating on the mean gradients follows
immediately (Osborn and Cox 1972).

The mean diapycnal velocity é = z,@ is the net flux
of volume per unit area across an isopycnal surface.
This flux is necessary to supply the density diffused
across the convoluted, instantaneous, random realiza-
tions of the isopycnal surface. The form we obtained
for the diapycnal velocity resembles the vertical velocity
that Munk (1966) proposed from the vertical advec-
tive—diffusive heat and salinity balances. With the cru-
cial reinterpretation of Munk’s vertical velocity as mean
diapycnal velocity €, we find that Munk’s calculations
and’inferences apply, without the necessity of any as-
sumptions about the dominant directions of advection
or diffusion. Thus, a much stronger statement of
Munk’s (1966 ) abyssal recipe is possible. The integral
of microstructure density flux over the whole sub-
merged area of an isopycnal p; ought to be the same
as the area-integrated surface flux of density (heat flux
minus freshwater flux, each appropriately scaled) into
surface waters lighter than p,, given that there are no
long-term trends. If the latter is thought of as a function
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of p,, its derivative with respect to density is Speer and
Tziperman’s ( 1992) water mass transformation func-
tion, the incremental surface density flux, per unit
density, into waters of density p;. The negative of the
water-mass transformation function is the same as the
integral of the diapycnal volume flux ¢ integrated over
the whole submerged area of the isopycnal p; .

Redi (1982) asserted that the Fickian diffusivity
tensor for eddy density flux, averaged with respect to
fixed coordinates, ought to be diagonal in orthogonal
coordinate frames oriented with the local isopycnal
surfaces. While this assertion may be intuitively ap-
pealing, it does not bear close scrutiny. Its consequence
is that density diffusion is entirely diapycnal. But this
condition comes about quite naturally by microscop-
ically averaging the equations first, then transforming
to isopycnal coordinates, and finally taking macro-
scopic averages. It is only necessary to assume that mi-
crostructure density variance production is in equilib-
rium with molecular dissipation of density variance.

It is a slight weakness of our formulation that we
have treated density as synonymous with temperature,
possessing a well-defined molecular diffusivity. Of
course, in the ocean salinity is an important influence
on density. The mechanism of double diffusion, which
depends on the differential rates of molecular diffusion
of heat and salt, can cause net density flux. It is difficult
to know what an acceptable parameterization of this
process might be, but it must involve mean temperature
and salinity gradients separately, not a lumped density
gradient. Apart from double-diffusive effects, salinity
on density surfaces can be treated as a passive scalar
to which classical random-walk diffusion models apply,
guaranteeing a well-defined macroscopic salinity dif-
fusivity tensor.

Nevertheless, a firm basis has been established for
the parameterization of diapycnal velocity and density
flux divergence as a process like diapycnal diffusion.
This is important for the development of models that
properly handle diapycnal processes. In models that
resolve the larger, planetary-scale, macroscopic eddies,
we would advocate using parameterizations like those
used in (41), (42) for representing microstructure
fluxes of density, scalar concentration, and momen-
tum. Although our point of view (involving conditional
averaging on isopycnal surfaces) is different from Redi’s
(1982) (conventional fixed-level averaging), these pa-
rameterizations are functionally equivalent to her sug-
gestion of using diffusivity tensors diagonal with respect
to isopycnal surfaces. Although such parameterizations
may be implemented in fixed-level coordinate models,
their natural form in isopycnal coordinates is compel-
ling. ‘
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APPENDIX A
Isopycnally Averaged Equations in Level Coordinates

To transform Egs. (26)-(30) from isopycnal co-
ordinates X, J, p, t to level coordinates x, y, z, ¢, set

X=x, =y, p=px,¥,2,1), t =t. (Alab,cd)

At fixed x, y, ¢, the function p(x, y, z, t) is the inverse
of z(x, y, p, 1), the mean vertical height of isopycnal
p; that is,

p(x, ¥, Z(x, ¥, p, 1), 1) = p. (A2)
This function differs from the mean density Z(x, y, z,
t) at the fixed space-time point x, y, z, ¢ (appendix
B). The partial derivatives transform according to

Jz 0\ / 0«
5| B 011 6,
3, olla.]
9 0 0 —p/b: 1/\6
1 0 _bx/;)z
B=[0 1 —pp.]. (A3)
0 0 1/p

[If 5(x, y, z, t) were replaced by the actual random
density p(x, y, z, t), which is the inverse function of
(9c), then the transformation (A3) would be the in-
verse of the transformation (10).] By defining

wW=—2z= ;+12_,\:+1’>_17+’&)Z_p,

Dt
the derivative following the macroscopic motion of a
macroscopically averaged isopycnal surface, we can
show that the substantial derivative (31) following the
weighted-average motion transforms into

D . . .
th 9, + 10, + 09, + W,

in level coordinates. Applying (31) and (A5) to 5, we
see that

(A4)

(A5)

D. .,
E p =1, (A6)
where, from (41),
W ~ 3,(K*p,). (A7)

The macroscopically averaged momentum, thick-
ness, and scalar concentration equations (26)-(30)
transform into

D . I e e T u
Eu_fv+—px+pzzp7ri/po= d (Gll‘+F1),
Po
(AB)
D, ... 1_ _— T
—d+fid+—p,+ p.z,m5/po = dT(GY + FY),
Dt Po

(A9)
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0=—p.— gv, (A10)
iy + D, + W, = 0, (Al11)
D._ .1,
=Zé= +F$), Al2
Dt¢ 97 (G} {) ( )

where 8T = (0., 9,,9.)and p = T — gpz is the averaged
pressure on isopycnal surfaces. Note the reappearance
of the familiar form of the continuity equation (All)
with the macroscopic vertical velocity defined by (A4).
Analogous to (19), the relation between G¢ and G*
[Eaq. (32)]is

Gt = 5BG
= (=p:z,u"$", —p.z,0"¢", —p:z,w'$")T, (A13)
where w” = u"Zz + v"Z; + ®"Z, is an equivalent vertical
fluctuating velocity: similarly for G¥{, G}. Analogous

to (21), the microstructure flux divergences transform
according to

3"Ft = p.ATF® ~ 3.(K%.$),  (Al4)

where the approximation (42) has been used. The mo-
mentum flux divergences transform similarly. The di-
vergence of macroscopic flux dTG¢ is added to (A14)
on the right side of (A12). The parameterization of
the macroscopic flux (A13) is still an open question,
beyond the scope of this paper. Macroscopic flux di-
vergences do not occur in the density equation (A6).

Because | p.z), | < 1, the pressure gradient-thickness
covariance terms in (A8), (A9) are negligible compared
to the horizontal pressure gradient.

APPENDIX B

Averaging at Fixed Depth: Average-isopycnal
Coordinates

We show that the equations of motion, first Reyn-
olds-averaged in Cartesian coordinates, then trans-
formed into coordinates fixed in the macroscopically
averaged isopycnal surfaces, assume forms similar to
the equations obtained above by macroscopically av-
eraging affer transformation to isopycnal surfaces. We
show how in the former approach the analog of the
diapycnal flux, forced by the average microstructure
flux in section 2, must be represented by a parameter-
ization of eddy density flux as Fickian diffusion with
a diffusivity tensor diagonal in local isopycnal axes.

a. Conventional Reynolds-averaged equations

The equations of motion, continuity, thermody-
namics, and scalar concentration (A8)-(A12), aver-
aged macroscopically on isopycnals, and expressed in
level coordinates, are not the same as the conventional
equations Reynolds-averaged at fixed depth. The latter
are

DU—-fV=—1,+37GY, (B1)
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DYV -fU=-1,+3'GY, (B2)

0=-1II, — g2, (B3)
U+ V,+ W, =0, (B4)
Dz = 9"G?, (BS)
D = 3"G?, (B6)

where
Dy=98,+ Ud+ Vo, + Wo,, (B7)

and uppercase symbols denote the forms of the depen-
dent variables Reynolds-averaged at fixed depth. The
terms GY, G¥, G2, G? on the right are the usual eddy
fluxes; for example,

GZ=—u"p", (B8)
Variables like U, V, ..., averaged at fixed depth,
differ from i, D, ..., averaged at fixed density. If

and U differ, then so do the fluctuations u”, u*,

u=ad+u" =U+u*. (B9)

Practically, however, the clear distinction between iso-
pycnal averaging and averaging at fixed depth may be
lost when the theoretical ensemble is replaced by an
ergodic average over space-time. If the averaging vol-
ume centered on a level z;, say, is always large enough
to include an isopycnal p;, then there may be little
distinction between the ergodic average at z, and that
at p;. Necessary conditions for this to be true are that
there be no secular trend in the isopycnals and that
the scale of the averaging volume be larger than the
root-mean-square isopycnal displacement. If these
conditions are met, we are justified in blurring the dis-
tinction between (B1)—(B6) and (A8)-(A12).

b. Eddy flux parameterizations: Diffusivity tensor

It is conventional to parameterize the eddy fluxes
that occur, for example, in (B8) by

G = —u'p® = K32, (B10)

where K is a diffusivity tensor. In general K should be
positive definite and symmetric. The positive definite-
ness follows from the requirement that in the density
variance balance the term (—u*p*)TdZ should be in-
variably positive; that is, variance tends to be created
by density flux (B10) occurring down the mean density

K, (1+Z§r+eZ3\r
K=——5——"5| —ZxZy(1 — ¢)
1+ Z5+Z% Ze(1 =€)
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gradient 3Z. These properties imply that at every point
there is an orthogonal transformation that diagonalizes
K. Without loss of generality, the transformation can

be considered a rotation R:
" RTKR = K*, (Blla)
where

K* = diag(K}, K, K3). (Bl1b)

Hence there is a local coordinate frame in which the
tensor K becomes diagonal. Redi (1982) asserted that
this coordinate frame is spanned by two basis vectors
iT, i3 tangent to the local isopycnal surface and one
basis vector i3 normal to it, such that

K, =K2>K3, (BllC)

with the inequality spanning six or seven orders of
magnitude. McDougall and Church (1986) concurred
in this assertion.

¢. Transformation to average-isopycnal coordinates:
Redi’s diffusivity tensor

Suppose (B1)-(B6) were transformed into mean
isopycnal coordinates X, Y, Z, 7, according to
x=X, y=Y, z=Z(X,Y,Z, 1), t=r1,

(Bl2a,b,c,d)
where Z(X, Y, Z, 7) is, at fixed X, Y, 7, the inverse
function of Z(X, Y, Z, 1), the density averaged at
fixed depth; that is,

Z(X, Y, 2X, Y, z,7), 7)= z. (B13)

Then the partial derivatives transform according to

0
C 0
a\ _ dx
(a,)“ 5 (a) (Blda)

z,

0 0 -z 1
where % = (dx, 9y, ds), and

1 0 —Zy/Zs
0 0 1/Zs

The tensor that satisfies Redi’s (1982 ) requirements is,
in level coordinates,

where ¢ = K;/K, . Equations (B5), (B10) can be expressed as

1
D2 =97(K3Z) = Z % (Z:K,0xP),
z

—szy(l - 6) Z)((l - 6)
1+Z%+eZ% Zy(1 —¢€) , (B15)
Zy(l —¢€) Z5+Z%+ e
(B16)
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where
Zgy(l - 6) “szy(l - 6) ZX
- . &
1+Z%+ 2% 1+Z%+ 2% Zs
“szy(l - 6) Z%r(l - 6) ZY
= T =K Sl =y 7 — — B17
Ki=CKC=K| 17,3572 1+Z%+ 2% A (B17)
ZX ZY € 2 2
—€—= —€— —(1+Z5+Z
622 €Zz Zé( X Y)

Suppose typical “horizontal” and “vertical” length
scales are L and D, so that

A, 9y ~ L', (1/Zs)ds ~ D', (BI8)
and
|VxZ| ~é6=D/L < 1. (B19)
Then K; may be approximated by
(Kl 0 0 )
K~|0 kK 0 (B20)
0 0 K;/Z3
to O(82 + ¢). Hence, Eq. (B16) simplifies to
DI ~ Zizaz(Kszlz), (B21)

which we may compare to Eq. (41).

If we use the same diffusivity tensor as in (B10) to
parameterize the flux of mean scalar concentration ®;
that is, we set

G®=—ut¢* = Koo, (B22)

then Eq. (B6) transforms into mean isopycnal coor-
dinates as

1
DP=0T(Kad) = A 0% (ZsHax®) (B23)
>
[cf. (B16)]. Using (B20), this can be written

|
ﬂlq) ~ E“ [ax(Z);KlaX(I)) + ay(ZEKlay¢)
z

+ é)z(—ZI—<2 62<I>)] . (B24)

Comparing this to (30), (42), we note the similarity
in form of the third term on the right to the approxi-
mation (42). An eddy diffusivity parameterization of
G*? in (32), similar to (B22), will also produce terms
like those on the right of (B24).

APPENDIX C
Weighted versus Unweighted Averages

Introduction of the thickness-weighted ensemble
averages (24), (25) permits a compact form for the
momentum, thickness, and scalar concentration equa-

tions (26)-(30). Gent and McWilliams (1990) em-
ployed unweighted ensemble averages in isopycnal co-
ordinates. This leads to differences in the appearance
of the equations, which we shall now describe.

The relation between the weighted average and the
unweighted average of a variable ¢ = ¢ + ¢" = ¢ + ¢
is

20 =2,0+2,0. (Cl)
Hence Eq. (29) may be written
where
p ———— —_——
z,0 = f {9x(z,u') + 35(z,v") }dp + Z,®.  (C3)

Gent and McWilliams (1990) derived this form [ their
Egs. (6), (8)] except that they neglected the diapycnal
flux Z,@. They also prescribed an average scalar con-
centration equation in terms of unweighted-average
variables. If we perform the required operations, we
obtain

lj _ o - _ -
Z, 5, 8 = 0:(—Z,u'8) + 95(=2,0'%) + 8,(7,00)
— 8i(z,¢) + 3TGS + 3TR®, (C4)
where
-D:=a~+ 79z + 0y + 09 (C5)
D Y Uuos 7 0>
G = (—(zuW)'¢, ~(Z,0)'¢, ~4,86 — (z,0)'¢),
(C6)

and (z,u)' = z,u' + z,u, etc. If we compare this to Egs.
(10), (11), (13) of Gent and McWilliams, they show
the first three terms on the right of (C4), with the re-
maining terms either included in their alongisopycnal
diffusion term R(¢) or neglected (by setting ©w = 0).
Contrast (C4), (C5), (C6) with (30), (31), (32). If
the transformation (A3) to level coordinates is made,
the rate of change operator (C5) becomes

p=0Q (C9)

SIS
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where
D

W=—7Z, C8

w=_2 (C8)
It is easy to show that

D

P = ) (C9)
and that (C2) transforms into

Uy +0,+w,=0. (C10)

Gent and McWilliams (1990) propose a parame-
terization for the eddy thickness flux z/u’, in addition
to an implicit parameterization of G5. Whatever the
parameterization, they remark that its effect in an ar-
bitrary scalar concentration equation is to provide an
additional horizontal advection by the thickness flux;
that is, the total effective along-isopycnal advective ve-
locity is the thickness-weighted average

(C11)

that we have used in the average substantial rate of
change operator (31). The parameterization is to set

-9,(K\Vz) (C12)

in isopycnal coordinates. Substituted in (C3), this is
equivalent to setting

£,0 = -V-(K\Vz), (C13)

with Z,® neglected. Transforming (C13) into level co-
ordinates according to (A3), we obtain

Q = V'(K;Vﬁ) + 6z(_1<l‘32~z)

L s o
u=u+zyu/z,

’ L
zu' =

(C14)
with
6=1Vp/p.l, (C15)

V being the horizontal gradient operator in level co-
ordinates. [ Compare (C14) to Gent and McWilliams’s
(1990) Eq. (23).] Now (C14) resembles a Fickian dif-
fusion law but with a nonpositive diffusivity tensor.
This means that downgradient flux of density cannot
be guaranteed. For example, in a local density config-
uration where K;Vp is independent of horizontal po-
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sition, density would flow locally against its vertical
gradient. For this reason we do not believe that (C12)
or (C14) represents by itself an acceptable parameter-
ization of turbulent flux. If Z,® were not neglected in
(C13) and a term like (A7) were added to the right of
(C14), then K* might exceed — K42 and the positive-
ness of the diffusivity would be preserved.

In any case, we consider the parameterization of
thickness flux a side issue, because if thickness-weighted
average 1 is used instead of u, then the thickness flux
need never be explicitly considered.
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