

AN ABSTRACT OF THE THESIS OF

Jaewon Yoo for the degree of Master of Science in Electrical and Computer Engineering

presented on June 4, 2008.

Title: Side Channel Attack Resistant Elliptic Curves Cryptosystem on Multi-cores for

Power Efficiency

Abstract approved: __

Ben Lee

The Advent of multi-cores allows programs to be executed much faster than before.

Cryptoalgorithms use long-bit words thus parallelizing these operations on multi-cores will

achieve significant performance improvement. However, not all long-bit word operations in

cryptosystems are suitable for parallel execution on multi-cores. In particular, long-bit words

used in Elliptic Curves Cryptography (ECC) do not efficiently divide by the system word size.

This causes some of the cores to be idle, which makes it vulnerable for attackers to guess how

many operations occurred and thus what field size is being used.

Multiplication is the most important part of public key cryptosystems. Long-bit word

multiplication operations are needed for encryption and decryption. J. Fan et al. proposed using

Montgomery multiplication on multi-cores using GF(2
256

) [25, 26], which is suitable for comput-

er systems with 16-bit or 32-bit word size. Fan‟s Montgomery multiplication is suitable for most

RSA. However, in ECC, some GFs will cause idle cores. For example, suppose GF(2
131

) is used

(which is one of the recommended word size by NIST) on a quad-core with a 32-bit word size,

which requires 132/32 =5 iterations with the last iteration requiring just a 3-bit operation. This

cause three of the cores to be idle during this time causing needless power consumption. The

most general and the easiest way to make side channel attacks difficult is to insert dummy in-

structions to cover the idle processors. However, dummy instructions result in extra workloads

that lead to performance degradation and increases in power consumption.

In this thesis, we will present a multiplier adjuster technique to improve the execution

time and the power consumption for the last unbalanced iteration. By appropriately applying

dummy instructions between point-addition and point-doubling operations, a balanced point op-

eration can be achieved in ECC. The performance and power-efficiency of the proposed method

on multi-cores are analyzed for each GF used in ECC.

©Copyright by Jaewon Yoo

June 4, 2008

All Rights Reserved

Side Channel Attack Resistant Elliptic Curves Cryptosystem on Multi-cores for

 Power Efficiency

by

Jaewon Yoo

A THESIS

submitted to

Oregon State University

in partial fulfillment of

the requirements for the

degree of

Master of Science

Presented June 4, 2008

Commencement June 2009

Master of Science thesis of Jaewon Yoo presented on June 4, 2008

APPROVED:

Major Professor, representing Electrical and Computer Engineering

Director of the School of Electrical Engineering and Computer Science

Dean of the Graduate School

I understand that my thesis will become part of the permanent collection of Oregon State

University libraries. My signature below authorizes release of my thesis to any reader

upon request.

Jaewon Yoo, Author

ACKNOWLEDGEMENTS

Thanks God!

 I wish to express my gratitude to Professor Ben Lee, my advisor, for his encouragement,

insightful guidance and patience throughout my MS degree at OSU.

I also want to extend great appreciation to Professor Huaiping Liu, Traylor Roger, and John A.

Nairn for their serving in my graduate committee.

 I want to thank my country Korea, Korean Air Forces, and Defense Security Command

for giving chance to study and fully supporting me in USA. In Specially, DSC and 2
nd

 Service

Department for patience about my studies for the last two years.

Finally, I express my deepest appreciation and love to my father, Youngkun Yoo, and

my mother, Yangsun Oh, who have been encouraging, caring, and praying for my whole life. I

also express my thanks to my God parent, Hubert and Maris Böwer, and his family. In special, I

would like to express my deepest gratitude to my wife, Hyeking Jeon who has shown endless pa-

tience and love. She supported me fully with victimizing her important period in her life. I thank

very much my daughter, Siyeon Yoo for well-breeding with health and happiness.

Thanks Everybody

Jaewon Yoo

TABLE OF CONTENTS

 Page

1 Introduction ... 1

2 Cryptography .. 4

2.1 Symmetric Key Cryptography .. 4

2.2 Public Key Cryptography .. 5

2.3 Hybrid Cryptography .. 6

2.4 Example of Crypto-algorithm ... 7

2.4.1 Data Encryption Scheme (DES) ... 7

2.4.2 Rivest, Sharmir, and Adleman (RSA) Scheme .. 10

2.4.3 Elliptic Curve Cryptography (ECC) ... 13

3 Background ... 16

3.1 Mathematic Tools Used in Cryptosystem ... 16

3.1.1 Fundamental Mathematical Operation ... 16

3.1.2 Addition Chain ... 22

3.1.3 Montgomery‟s Method ... 25

3.1.4 Chinese Reminder Theorem (CRT) ... 26

3.1.5 Euclid‟s Algorithm ... 27

3.1.6 Projective Coordinate ... 28

3.2 Power Model ... 29

3.2.1 Power Reduction of Circuit Level .. 31

3.2.2 Power Reduction of Architectural Level .. 31

3.2.3 Power Reduction of Software Level .. 32

TABLE OF CONTENTS (Continued)
 Page

3.3 Parallel Computing Architectures ... 32

3.3.1 Single Instruction, Single Data (SISD) .. 34

3.3.2 Single Instruction, Multiple Data (SIMD) ... 34

3.3.3 Multiple Instruction, Single Data (MISD) ... 35

3.3.4 Multiple Instruction, Multiple Data (MIMD) .. 36

4 Side Channel Attack (SCA) .. 37

4.1 SCA Methods .. 37

4.1.1 Timing Analysis ... 37

4.1.2 Power Analysis ... 38

4.1.3 Mircro-architecture Analysis .. 39

4.2 SCA Countermeasures .. 40

4.2.1 CM for Timing Analysis .. 41

4.2.2 CM for Power Analysis .. 42

4.2.3 CM for Mircro-architecture Analysis ... 44

5 Related Work .. 46

5.1 Montgomery Multiplication on Mutli-cores .. 46

5.2 Montgomery Multiplication in GF(2
k
) ... 48

5.3 Projective Coordinates in GF(2
k
) ... 48

6 The Proposed Method ... 51

6.1 Parallel Implementation of modular multiplication ... 54

6.2 Inserting Dummy Instruction .. 58

6.3 Multiplier Adjuster ... 60

TABLE OF CONTENTS (Continued)
 Page

7 Simulation Study & Result ... 62

7.1 Simulation Environment .. 62

7.2 SESC API .. 64

7.3 Simulation Methods ... 67

7.4 Simulation Results ... 68

8 Future work & Conclusion... 72

Bibliography ... 73

LIST OF FIGURES

Figure Page

1. Symmetric Key Cryptosystem.. ... 5

2. Public Key Cryptosystem .. 6

3. Hybrid Cryptosystem ... 7

4. Architecture of DES .. 8

5. E-table and Example of bits extension. .. 10

6. S-box Substitution. .. 10

7. RSA Scheme ... 12

8. Operations in Elliptic Curves over GF(p) and GF(2
m
). ... 13

9. ECC ElGamal Scheme ... 15

10. Example of Addition in Group Z15 and Multiplication in Group Z11
*
 17

11. Arithmetic Operations of Polynomial Bases. ... 19

12. Binary AD Algorithm. ... 23

13. Binary SM Algorithm .. 24

14. MM Algorithm and Example .. 26

15. Flow of SISD .. 34

16. Flow of SIMD ... 34

17. Flow of MISD ... 35

18. Flow of MIMD .. 36

19. Power Analysis in RSA .. 39

20. Cache Analysis .. 40

21. Dummy Instruction in AD Algorithm.. 41

22. Random instruction in AD Algorithm ... 41

23. Masked Gates .. 42

LIST OF FIGURES (Continued)

Figure Page

24. MM in GF(2
n
) ... 44

25. Radix-2
w
 (n-bit) MM ... 47

26. Fan‟s MM on Multi-cores .. 48

27. Projective Coordinates and Mixed Coordinates with Affine Systems 49

28. Jacobian Coordiantes and Mixed Coordinates with Affine Systems 50

29. Difference of Elliptic Curve PA and PD .. 52

30. Multiplication over GF(2
131

) for Word Size 32 bits ... 53

31. Charateristics of GFs ... 53

32. Original Code – poly_mul() & poly_div() .. 54

33. Original Code – poly_mul_partial() ... 55

34. Conventional MM operation ... 55

35. Parallelizing MM operation .. 56

36. Data Structure – SUB .. 56

37. Modified Code – poly_mul() ... 57

38. Modified Code – poly_sub() .. 57

39. Low-level Dummy inserting over GF(2
131

) for word size 32 bits 58

40. High-level Dummy inserting .. 59

41. Modified Code – Jpoly_edbl() ... 60

42. Multiplier Adjuster .. 61

43. MIPS 10K Multiprocessor Configuration using Cluster Bus .. 63

44. ARM 11MP Processor Configuration ... 63

45. Configuration File in SESC (sesc.conf)... 64

46. Typical Thread Program .. 65

LIST OF FIGURES (Continued)

Figure Page

47. SESC Version of Threading Program .. 66

48. Performance of GFs ... 68

49. Instantaneous Power of GFs ... 69

50. Energy of GFs ... 70

51. Energy-Delay Product of GFs .. 71

LIST OF TABLES

Table Page

1. Multiplication modulo 8 and Occurrences.. ... 16

2. Multiplication mod f(x) where f(x) = x
3
 + x + 1 ... 21

3. Relationship between Affine Coordinates and Projective Coordinates 29

4. The number of field operations on each coordinates systems .. 67

Side Channel Attack Resistant Elliptic Curves Cryptosystem on Multi-cores for

Power Efficiency

1. Introduction

Information security has always been an important challenge in our society. Information

processing, especially in governments and businesses, requires systems to be secure. Protection

of critical information has usually been accomplished using cryptography. Cryptography is the

science of hiding data from eavesdroppers. On the other hand, eavesdroppers want to find data

from systems that use cryptography, which is known as cryptanalysis or attack. Cryptography

and cryptanalysis have an antagonistic relationship. One side hides data, while the other side at-

tacks it. In the age of computers, cryptography has been integrated into computer systems. Ac-

cordingly, attacks have been accomplished by observing the computer system.

 A cryptosystem is also referred to as a cipher. For example, one of the well-known cryp-

to-algorithms can be found in Roman Emperor Caesar‟s letters for his staff generals. Caesar en-

crypted his orders by shifting the letters some fixed number of positions further down the alpha-

bet so that only the generals who knew the number of shifts could understand them. In the

Second World War, German‟s used a cipher called Enigma to hide messages from the allied

forces. With the advent of the Internet, the importance of privacy and security of personal infor-

mation has increased. Therefore, people began to use various crypto-algorithms in their comput-

ers, hand-held devices, smart cards, etc.

 The efforts to hide information have also attracted the efforts to break the cryptosystem.

The essence of cryptosystems has traditionally been considered as a kind of a mathematical prob-

lem. Making a crypto-algorithm impossible to break is the key to security. Even mathematically

immune crypto-algorithms have vulnerability in practical devices, i.e., real computer systems.

Ideally, a cryptosystem generates an output with two inputs: plaintext and key. However, real

systems have other inputs and output, such as voltage, current, power consumption and electro-

magnetic emission. These parameters have been ignored in traditional cryptosystems. However,

the concept of a side channel has been recently introduced to include physical characteristics of

cryptosystems. A side channel is another source of information about the plaintext and key. The

cryptosystem can be broken using this side channel information, which is called a Side-Channel

Attack (SCA). One general method of SCA is performing power and timing analysis, since dif-

ferent operations of a cryptosystem generate different power consumption and execution time

characteristics.

 In traditional cryptosystems, the fastest cipher was considered the best cipher. However,

in 1996, the vulnerability of cryptosystems to SCAs was exposed by Kocher [14] who extracted

javascript:flink(%22antagonistic%22);
javascript:flink(%22relationship%22);

2

the key value by monitoring the execution time of a cipher. Since then protection from SCA has

become one of the major issue in the design of cryptosystems. The general techniques for pro-

tecting against SCAs involve masking at the gate-level, inserting dummy instructions, and using

regular behaving algorithms [16, 19, 37]. However, most of these research efforts have been per-

formed on a single-core processor. A multi-core processor is a single-chip multiprocessor that

contains two or more processors have been attached for enhanced performance, reduced power

consumption, and more efficient simultaneous processing of multiple tasks. Multi-core set-up is

somewhat comparable to having multiple, separate processors installed in the same computer, but

because the two processors are actually merged into the same chip, the connection between them

is faster. Ideally, e.g. a dual-core processor is nearly twice as powerful as a single-core processor,

and quad-core is four times better than single-core. However, multi-core processors present

new software challenges that must be overcome to fully take advantage of processing ca-

pabilities to get twice the performance or even more than a single-core processor. Con-

ventional programs do not take into account the capability of multiprocessing, especially

in personnel computers or mobile computing devices. Software developers thought that

parallel programming is only needed in large companies that require parallel data

processing. Thus, small programs, including cryptography programs, used in PCs or mo-

bile devices have been designed for single-core systems.

With the advent of multi-cores, a number of parallel multiplication algorithms have been

developed [25, 26]. However, crypto-algorithms use long keywords, e.g., one of the key sizes in

ECC is 163-bit. This requires a 163-bit multiplication on multi-cores, which causes uneven dis-

tribution of the load. For example, consider an eight-core system with 32-bit processors. Then,

163-bit divided by 32-bit generates six iterations that can be distributed across the cores. Howev-

er, this causes two of the cores to be completely idle making it vulnerable to SCAs. Therefore,

this thesis analyzes the performance and power characteristics of running crypto-algorithms on

multi-cores, and develops methodologies to improve the energy-delay product and at the same

time protect from SCAs. We proposed arranging the main operation of crypto-algorithm to make

it balanced and inserted dummy instructions to fill the gap which is for not accessed data in nor-

mal operations. Also, to reduce the overhead from the dummy instructions, we applied a multip-

lier adjuster for the last iteration in a multiplication operation. Rearrangement of the operation

and dummy instructions increased runtime by 7.5% and the energy-delay product (EDP) by 1.5%

http://searchcio-midmarket.techtarget.com/sDefinition/0,,sid183_gci212833,00.html

3

on average. This increase reduced to at most a 1.1% and 2.7% overhead for runtime and EDP,

respectively.

 The thesis organized as follows: Section 2 presents a brief review of some typical crypto-

systems with examples: Data Standard Encryption (DES), Rivest-Shamir-Adleman Scheme

(RSA), Elliptic Curves Cryptography (ECC). Section 3 presents the background on mathemati-

cal tools used in cryptosystems that include Galois Field (GF), basic operations in GF, the addi-

tion chain and multiplication algorithm. Then a Power model and parallel methods are reviewed.

Section 4 introduces the Side channel attack method and defense techniques. In Section 5, related

works for this thesis that include multiplication operations on a multi core and projective coordi-

nates. Section 6 shows the proposed method of parallelizing multiplication, inserting dummy in-

struction and using multiplier adjuster. Section 7 shows the simulation environment, simulation

methods, and results for the proposed method. Finally, conclusions are drawn in Section 8.

4

2. Cryptography

According to Wikipedia, Cryptography is the practice and study of hiding information. Until re-

cently, cryptography almost referred exclusively to encryption, which is the process of converting

ordinary information, called plaintext, into meaningless garbage information, called ciphertext.

Decryption is the reverse process that converts ciphertext to plaintext. The pair of algorithms that

performs this encryption and decryption is called a cipher, or cryptosystem. The detailed opera-

tions of cryptosystems are controlled by both the algorithm and a parameter called a key. This is

a secret key for a specific message exchange context, and is ideally known only to the communi-

cants.

 Cryptosystems can be divided into three groups depending on the types of keys: Symme-

tric key cryptosystem, public key (also known as asymmetric key) cryptosystems, and hybrid

cryptosystems. The first method uses the same key for both encryption and decryption. The

second method uses different keys for encryption and decryption. The last method uses the com-

bination of the previous two cryptographic schemes.

 The following subsections describe the characteristics of the three algorithms.

2.1. Symmetric Key Cryptography

Until the 1970s, all ciphers were based on Symmetric Key Cryptography (SKC). The basic idea

was simple – a cipher generates a ciphertext based on an input message and the key. Then, the

delivered ciphertext with the same key recovers the original message.

Figure 1 illustrates an example SKC. Suppose Alice wants to communicate securely with

Bob. First, Alice and Bob have to meet and share a key to use in the cipher. Then, Alice gene-

rates a ciphertext with the message and the shared key and sends it to Bob. When Bob receives

the ciphertext, Alice‟s message is reproduced with the shared key.

http://en.wikipedia.org/wiki/Encryption
http://en.wikipedia.org/wiki/Plaintext
http://en.wikipedia.org/wiki/Plaintext
http://en.wikipedia.org/wiki/Algorithm
http://en.wikipedia.org/wiki/Cipher
http://en.wikipedia.org/wiki/Parameter

5

Plaintext

Hi, Bob.

How are you?

Alice

Cipher text

!#@#F@#AFA

F32DA@#D^^&

Plaintext

Hi, Bob.

How are you?

Alice

Same key is used during

the encryption/decryption

2.2. Public Key Cryptography

In SKC, anyone who wants to communicate must share the same key in a secure way; e.g., face-

to-face or through a trusted courier. Furthermore, frequent key exchanges are usually required to

maintain secure communications. In addition, each user who wants to perform cryptography

must have keys for all other users, which makes key management and distribution a major prob-

lem. Before World War II, this was not a big problem because only a few people in Government

agencies and the military used SKC. Therefore, key management and distribution was not an is-

sue.

 However, with advances in technology, the need for secure communication in our society

has become essential. Therefore, key management and distribution has become a major challenge

for researchers. In order to reduce the side effects of using symmetric keys, Diffie and Hellman

introduced the concept of public key cryptography (PKC) in 1976 [12]. The concept of public

key is to use two different keys during encryption and decryption, called a public key and a pri-

vate key. Thus, a user who wants to use this scheme needs to notify to others his public key.

 Figure 2 shows an example where Alice wants to send a message to Bob using PKC.

Alice first acquires Bob‟s public key. Then, the message is encrypted to ciphertext using the ob-

tained key and sent to Bob. When Bob receives the ciphertext, it is decrypted to plaintext using

Bob‟s own private key.

Figure 1: Symmetric Key Cryptosystem

6

Plaintext

Hi, Bob.

How are you?

Alice

Cipher text

!#@#F@#AFA

F32DA@#D^^&

Plaintext

Hi, Bob.

How are you?

Alice

Different keys are used during

the encryption/decryption

Private key for decryption

Public key for encryption

2.3. Hybrid Cryptosystem

Both SKC and PKC have advantages and disadvantages. SKC has a high security level and is

easy to implement, but key distribution and management is a problem. PKC solves the aforemen-

tioned issue in SKC, but has a big shortcoming – the level of security for PKC compared with

SKC of the same key size is lower. Hybrid Cryptosystems have been introduced to overcome this

weakness by implementing key distribution/management as in PKC and encryption/decryption

process based on SKC.

Figure 3 shows an example of a hybrid scheme. First, Alice and Bob generate their own

key, called a session key, using the PKC scheme. They then exploit the session key with the

SKC scheme.

Each user, Alice and Bob, has his or her own private key as same as we saw in the PKC. They

need a secret key to operate the system. The secret key must be shared by two parties, i.e., Alice

and Bob. However, the secret key is created by the PKC. This key which is created by PKC is

called a session key in contrast with the normal secret key. Alice gets Bob‟s public key and then

mixes it up with her own private key. Bob also performs the same process with Alice‟s public

key. These key is ideally the same: Kpri_alice * (Kpri_bob * Base) = Kpri_bob * (Kpri_alice * Base) where

Kpri_alice and Kpri_bob are their own private key, Base and * are the shared information and opera-

tion, i.e., Base is basic point and * is scalar multiplication in ECC.

Figure 2: Public Key Cryptosystem

7

Plaintext

Hi, Bob.

How are you?

Alice

Cipher text

!#@#F@#AFA

F32DA@#D^^&

Plaintext

Hi, Bob.

How are you?

Alice

Alice get

Bob’s public key

Bob get

Alice’s public key

Alice make the

session key with

private key and

Bob’s public key

Bob make the

session key with

private key and

Alice’s public key
Public Storage

2.4. Example of Crypto-algorithm

There have been many cryptographic algorithms developed since humans started hiding informa-

tion. After WWII, most cryptographic applications have been developed for computing environ-

ments. This section overviews three modern crypto-algorithms; Data Encryption Standard

(DES), Rivest-Shamir-Adleman (RSA) scheme, and Elliptic Curve Cryptography (ECC).

 DES is a typical SKC system, while RSA and ECC represent PKC systems.

2.4.1. Data Encryption Scheme (DES)

A team at IBM proposed the DES algorithm [1] in 1975 as a response to the government‟s needs

for secured protection of classified and other sensitive information. DES was adopted in 1977

and became the most widely used encryption scheme. In DES, data is encrypted in 64-bit blocks

using a 56-bit key. A plaintext is first divided into 64-bit blocks, and then the blocks are changed

bit-by-bit using permutation and substitution, based on subkeys produced from the 56-bit key.

The overall architecture of DES is shown in Figure 4, which accepts a 64-bit block of

plaintext and a 56-bit key. The processing of the plaintext proceeds in three phases; Initial Per-

mutation (IP), 16-Round processing, and Inverse IP. The right-hand portion of Figure 4 shows

the way in which the 56-bit key is used. Initially, the 56-bit key is passed through a permutation

function, which changes the position of the bits. Then, for each of the 16 rounds, a 48-bit subkey

Figure 3: Hybrid Cryptosystem

8

or roundkey Ki is produced by the combination of a left circular shift and a permutation [2, 10,

11]. Based on this, each round obtains a different subkey.

28-Bit

C1

Initial Permutation(IP)

L2 R2

L1 R1

Expansion

(E-table)

Permutation

Substitution

(S-Box)

Permutation Choice2

(PC2)

6
4

-b
it

32-bit 32-bit

32-bit

Permutation

(PC1)

Left Shift1 Left Shift1

Left Shift2 Left Shift2

28-Bit

D1

28-bit

5
6

-b
it

Swap L16 and R16

Inverse Initial Permutation

6
4

b
it
s

48-bit

Expansion

(E-table)

Permutation

Substitution

(S-Box)

3
2

b
it
s

48-bit

4
8

-b
it

plaintext

Ciphertext

F-function

F-function

C2 D2

Figure 4: Architecture of DES

9

Figure 4 also shows the internal structure of a single round. The left (Li-1) and right (Ri-1)

halves of each 64-bit intermediate value are treated as separate 32-bit quantities. The processing

requirement for each round i can be summarized as the following formulas:



Li Ri1

RiLi1F(Ri1,Ki)

where the subkey Ki is 48 bits and Li-1 and Ri-1 are 32-bit inputs. Ri-1is then expanded to 48 bits by

a predefined extended permutation table (E-table). The extended 48 bits are mixed with the sub-

key by exclusive-OR and substituted with 32 bits by S-box. Finally, by passing the permutation

table, the substituted 32 bit positions are changed into the next Li after an exclusive-OR operation

with Li-1

The 48-bit subkey is produced by using the 56-bit key as an input and then applying Per-

muted Choice1 (PC1), circular left shift (LS), and Permuted Choice 2 (PC2). Ci-1 and



Di1 are 28

bits of the left and right sides of the 56-bit key. PC2 chooses 48 bits as a subkey with Ci=LS(Ci-1)

and Di=LS(Di-1). Afterwards,



Ci and



Di are used as the inputs for the next round processing.

 Simply DES gets a 64-bit data, and then divides it into two parts. One of them is ex-

tended using E-table and mixed with the subkey. After this, it is reduced by S-box, and finally its

bit position is interchanged. This process repeats 16 times in DES machine.

Suppose we have a simple permutation table such as „2 5 7 8 4 6 3 1‟, which numbers

represent the bit position, instead of a real permutation table since real permutation tables require

at least 32 bits. Any input character in the American Standard Code for Information Interchange

(ASCII) format can be changed by the permutation table. For examples, the letter „A‟ (0100

0001)2 is changed to „È‟ (1001 0000)2. IP, IP-1, PC and PC2 have the same concept of this sim-

ple example. The Extended table(E-table) is also similar to the permutation tables. Figure 5

shows the real E-table and an example in DES. As shown in the Figure, there are extra bits such

as the 4
th
, 5

th
and 32

nd
 positions.

O
0 1 0 0

1 1 1 1

S
0 1 0 1

0 0 1 1

U
0 1 0 1

0 1 0 1

! 0 0 1 0

0 0 0 1

1 0 1 0 0 1

0 1 1 1 1 0

1 0 1 0 1 0

1 0 0 1 1 0

1 0 1 0 1 0

1 0 1 0 1 0

1 0 0 1 0 0

0 0 0 0 1 0

32 1 2 3 4 5

4 5 6 7 8 9

8 9 10 11 12 13

12 13 14 15 16 17

16 17 18 19 20 21

20 21 22 23 24 25

24 25 26 27 28 29

28 29 30 31 32 1

 Figure 5: E-table and Example of bits extension

10

Using the table, the 4 letter word “OSU!”, viz., O(0100 1111)2, S(0101 0011)2, U(0101 0101)2,

and !(0010 0001)2, is changed to a 48 bit chunk. The extended data chunk is shortened by the

Substitution Box. S-box operations are described in Figure 6.

S1 S2 S3 S8

48 bits

32 bits

R

o

w

Column

1 0100 1

0100

11
4

0100

S-Box consists of eight substitution tables. The extended 48-bit chunk is divided by 8 and distri-

buted to each substitution table; S1, S2, …, S7, and S8. The distributed 6 bit chunk is used to

choose the substitute data. The 1
st
 and 6

th
 bit are used to select a row and the 2

nd
 to 5

th
 bit are used

to select a column as shown in Figure 6. In our example, the first 6 bit chunk (101001)2 from

Figure 5 selects (11)2 as a row and (0100)2 as a column.

2.4.2. Rivest, Shamir, and Adleman (RSA) Scheme

In 1976, Diffie and Hellman demonstrated the concept of an algorithm where two parties can

communicate without sharing the key [3, 12]. The first implementation of the algorithm was pro-

posed by Rivest, Shamir, and Adleman (RSA) at MIT in 1977. The RSA scheme is a block ci-

pher, and the plaintext and ciphertext are integers between 0 and n-1 for some n.

RSA relies on the difficulty of factoring some number and modular operations based on

the following equations:

C = Me mod n (2.1)

M = Cd mod n = (Me)d mod n, (2.2)

where C is ciphertext, M is plaintext, n is the product of the two prime numbers, and e and d are

the public key and the private key, respectively. How e, d, and n are chosen will be discussed

shortly.

Figure 6: S –box Substitution

11

 For example, suppose Alice wants to communicate with Bob. Bob first generates the

RSA key pair (eBob, dBob). Alice obtains Bob‟s public key, eBob, and encrypts the message M using

the obtained key eBob and modulus n. When Bob receives the ciphertext C, the message is de-

crypted using the private key dBob and modulus n.

 Before performing encryption and decryption, the RSA algorithm requires a setup opera-

tion to choose e, d, and n, which is done using the following steps:

1. Choose two distinct prime numbers p and q

2. Compute n = pq

3. Compute Euler‟s totient function of n : (n) = (p-1)(q-1)

4. Select the public key eBob such that gcd(eBob, (n))=1

5. If eBob < 1 or eBob > (n), return to step 4.

6. Compute dBob = eBob
-1

 (mod (n)) using extended Euclid‟s algorithm.

The security of RSA comes from the difficulty of solving the Discrete Logarithm Problem (DLP).

In other words, RSA relies on the difficulty of factoring some numbers, which requires multipli-

cation and squaring. Euler‟s totient function (n) is defined as the number of integers less than n

which are relative prime to n. For example, (6) = 2 since 1 and 5 are relative prime to 6. Also

(9) = 6 since 1, 2,4,5,7, and 8 are relative prime to 9.

The equation of step 6 above can be represented as eBobdBob = 1 (mod (n)) by multiplying

the eBob for both sides. Since GCD(eBob, (n)) = 1 by step 4, GCD(eBob, (n)) can be represented

as the following equation by Extended Euclid‟s algorithm which is described in the background

work.

eBobx + (n)y = 1 (mod (n)) (2.3)

 The x and dBob are identical since (n)y (mod (n)) = 0. The dBob is the multiplicative inverse of

eBob (mod (n)). Extended Euclid‟s algorithm is used in finding out x and y from the equation

(2.3).

12

Plain text

Text : H e l l o

ASCII : 72 101 108 108 111

Plain text

Text : H e l l o

ASCII : 72 101 108 108 111

Cipher text

Text :) _ r r C

ASCII : 41 95 114 114 67

RSA Scheme

n= 143

e=47

C= Me mod n

RSA Scheme

n= 143

d=23

M= Cd mod n

H : 7247 mod 143 = 41

e : 10147 mod 143 = 95

l : 10847 mod 143=114

l : 10847 mod 143=114

o : 11147 mod 143 = 67

) : 4123 mod 143 = 72

_ : 9523 mod 143 = 101

r : 11423mod 143 =108

r : 11423mod 143 =108

C : 6723 mod 143 = 111

Figure 7 shows the RSA scheme. Suppose the encryption process of the sentence “Hello” is per-

formed by RSA. The n is set to 143. Since we choose p = 11 and q =13, as a result (n) will be

set to 120. The encryption key and decryption key are 47 and 23, respectively. The first letter

„H‟ in our example can be represented „72‟ in ASCII. The number 72 is converted to 41 by RSA

algorithm; 41= 72
47

 mod 143. The same method applied to the other letters. The decryption

process is also similar to the encryption process. The encrypted letter „41‟ is recovered to „72‟ by

the equation; 72 = 41
23

mod 143. The processes of other encrypted letters are identical.

Figure 7: RSA Scheme

13

2.4.3. Elliptic Curve Cryptography (ECC)

x x

yy

P1

P2

P’3

P3

P1

P’3

P3

Addition

P3 = P1 + P2

Doubling

P3 = P1 + P1

GF(p)d, e

a,b,c = 0;p>3;4d
3
+27e

2
≠0

GF(2
m
)c, e

a=1;b,d =0;e≠0

O + O =O

(x,y) + O = (x,y)

(x,y) + (x,-y) = O

O + O = O

(x,y) + O = (x,y)

(x,y) + (x,x+y) = O

Addition over GF(p)

(x1,y1) + (x2,y2) = (x3, y3)

λ = (y2-y1)(x2-x1)
-1

x3 = λ
2
-x1-x2

y3 = λ(x1-x3)-y1

Addition over GF(2
m
)

(x1,y1) + (x2,y2) = (x3, y3)

λ = (y2-y1)(x2-x1)
-1

x3= λ
2
+λ+x1+x2+c

y3 = λ(x1+x3)+x3+y1

Doubling over GF(p)

(x1,y1) + (x1,y1) = (x3, y3)

λ = (3x1
2
+d)(2y1)

-1

x3 = λ
2
-2x1

y3 = λ(x1-x3)-y1

Doubling over GF(2
m
)

(x1,y1) + (x1,y1) = (x3, y3)

λ = x1 +(y1)(x1)
-1

x3 = λ
2
 +λ + c

y3 = λ(x1+x3)+x3+y1

ECC was introduced by Neal Koblitz and Victor S. Millerin in 1985 [6]. ECC relies on the diffi-

culty of performing algebra on an elliptic curve. ECC offers an equal level of security with

smaller key sizes than RSA. Thus, the computational requirement is reduced. The security from

ECC comes from the difficulty in solving the Elliptic Curve DLP (ECDLP) modular random

number p. An arbitrary number n
x
(mod p) has the same result with n×n××n (mod p), i.e., x

times multiplication in RSA. Also, arithmetic operation of random point dP(mod p) has similar

Figure 8: Operations in Elliptic curves over GF(p) and GF(2
m
)

14

results with the RSA case. Scalar multiplication of d times point P, dP, gives the identical output

as P + P +  + P, d times addition in ECC.

In fact, elliptic curves are not ellipses. They are named so because they are described by

cubic equations, similar to those used for calculating the circumference of ellipses. In general,

cubic equations for elliptic curves take the form



y2  axy by  x3 cx2  dxe

where a, b, c, d, and e are real numbers that satisfy some simple conditions. Also included in the

definition of any elliptic curve is a single element denoted as O, called the point at infinity or the

zero point, which is the sum of three points on an elliptic curve that lie on a straight line [2].

 There are two major types of elliptic curves in real cryptosystems; Galois Field (GF) in

prime number p, GF(p), and GF in 2
m
, GF(2

m
). The coefficients of an elliptic curve change de-

pending on the types. They also have different doubling and addition equations. Figure 8 shows

the difference of operations between the two types.

As we see in Figure 8, the addition of two points on an elliptic curve always lies some-

where on the curve. Even though the third point as a sum of two points also lie on the elliptic

curve, the point addition is not as simple as adding the coordinates of the points. The third point

P3 is defined as follows. A certain point P‟3 in Figure 8 will be met by the straight line - it can be

created by two given points - and elliptic curve whether the two points are different or not. P‟3 is

reflected across the x-axis. The reflected point also lies on the elliptic curve. This reflected point

is P3 which is the result point of the addition P1 and P2. The difference of GF(p) and GF(2
m
)

comes from distinct algebra operation from each field as we saw in the mathematical section. We

will briefly review the Addition and Doubling operations over GF(p).

On the elliptic curves, O plays a role of Addition Identity, which acts similar to 0 in gen-

eral algebra. Since an elliptic curve is symmetric about the x-axis, when we add two distinct

points which have the same x value, it does not satisfy the summation sentence as we discussed

without Addition Identity O. When we add two distinct points with different x values on elliptic

curves, the third point will be on the curve. With two points, we can create a linear equation and

then find out the third point by interception with the elliptic curves and the lines. Also, in the

case of doubling, we can use the tangent of a line by differentiation of the elliptic curves. The

same rule also applies to elliptic curves over GF(2
m
). For more detail, see [30].

15

Public key :
Pbob= kbob x B

Private key :
kBob

Encryption
1. Gen’ random value r and point :
 Pr = r x B
2. Convert Plaintext to Plain point : Pm

3. Gen’ common point : Pc = r x Pbob

4. Gen’ hidden data point : Ph = Pm + Pc

Decryption
1. Gen’ common point : Pc = kbob x Pr

2. Solve Pm = Ph – Pc

3. Convert Pm to Plaintext

Send (Ph, Pr)

Alice & Bob use

same Elliptic Curves and

Base Point(B)

 There are several applications using elliptic curves, but this paper discusses a simple ap-

plication -the ElGamal scheme in Figure 9. Assume that someone who wants to send a message m

has to convert the message into point Pm over the Elliptic curve. The plain point Pm will be en-

crypted and then decrypted. Each user chooses an arbitrary number k less than n and one point

P=kG, where k and P are used as a private key and a public key, respectively. Using these keys,

plain point Pm can be encrypted as

Cm=(rG, Pm + rPrcv),

where r is a random number chosen by the sender and Prcv is the other party‟s public key. Then,

the other party can decrypt the ciphertext Cm to the point Pm by subtracting a common value from:

Pm = Pm+rPrcv–krcvrG (using rPrcv = rkrcvG).

Then, the extracted Pm is converted into the message that was originally sent by sender.

Figure 9: ECC ElGamal Scheme

16

3. Background

This section presents a brief overview of the background information necessary to understand the

rest of the thesis. First, some mathematical concepts used in cryptosystems are introduced. Then,

some basic information on power models are discussed. Finally, methodologies for parallel com-

puting are summarized. For a detailed treatment of these topics, readers are referred to the fol-

lowing: Cryptography [2, 10, 11], Power Model [17], and Side Channel Attack [14, 15]

3.1. Mathematical Concepts Used in Cryptosystem

Cryptosystems cannot be explained without mathematics. Cryptographers often evaluate the se-

curity of ciphers by observing their mathematical functions. The fundamental mathematical op-

erations in cryptography consist of addition, subtraction, multiplication, and division with re-

minder. Using these four mathematical operations, a cryptosystem can change a plaintext into a

cipher text and vice versa.

3.1.1. Fundamental Mathematical Operations

Humans use the base-10 number system. However, base-10 is not efficient for computer arith-

metic operations, since computers use the base-2 number system. Therefore, a cryptosystem also

uses the base-2 number system. However, the number of occurrences of the nonzero integer is

not uniform in modular multiplication using the binary system. For example, the results of per-

forming modular multiplications on 3-bit data (i.e., mod 8) are shown in Table 1. As can be seen,

there are only four occurrences of 3, but twelve occurrences of 4. Uneven number format is

shown to be cryptographically weaker than a uniformly distributed number format [2]. In con-

trast, polynomial base (PB) provides a uniform number format, i.e., the frequency of occurrence

of any number is the same.

Table 1: Multiplication modulo 8 and Occurrences

Mult 001(1) 010(2) 011(3) 100(4) 101(5) 110(6) 111(7)

001(1) 001(1) 010(2) 011(3) 100(4) 101(5) 110(6) 111(7)

010(2) 010(2) 100(4) 110(6) 000(0) 010(2) 100(4) 110(6)

011(3) 011(3) 110(6) 001(1) 100(4) 111(7) 010(2) 101(5)

100(4) 100(4) 000(0) 100(4) 000(0) 100(4) 000(0) 100(4)

101(5) 101(5) 010(2) 111(7) 100(4) 001(1) 110(6) 011(3)

110(6) 110(6) 100(4) 010(2) 000(0) 110(6) 100(4) 010(2)

111(7) 111(7) 110(6) 101(5) 100(4) 011(3) 010(2) 001(1)

Integer 1 2 3 4 5 6 7

Occurences 4 8 4 12 4 8 4

17

A polynomial is a sum of different powers of a variable. For example,

x
4
 + x

2
+ 1 (3.1)

x
3
 + x + 1 (3.2)

are polynomials in x. The polynomials (3.1) and (3.2) can be represented in binary format

(10101)2 and (1011)2, respectively. A polynomial is not set to any particular constant, i.e., x is

not defined. Thus, four operations in PB, i.e., addition, subtraction, multiplication and division,

are different from conventional algebra. Before discussing the PB operations, the concepts of

fields and group will first be reviewed. This will be followed by a discussion on addition, sub-

traction, multiplication, and division operations in PB.

Group and Fields

A group is a set of numbers with a set of custom-defined arithmetic operations. The unique rules

for arithmetic in groups are the source of the hard problems necessary for cryptographic security.

In general, two groups used in cryptosystems are Zn, the additive group of integers modulo a

number n, and Zp
*
, the multiplicative group of integers modulo a prime number p.

The group Zn operations use only the integers from 0 to (n – 1). Its basic operation is ad-

dition, which ends by reducing the result modulo n, i.e., taking the integer remainder when the

result is divided by n. One very important feature of arithmetic in a group is that all calculations

give numbers that are in the group, which is called closure. The modular reduction by n ensures

that all additions result in numbers between 0 and (n – 1).

The multiplicative group Zp
*
 uses only the integers between 1 and (p – 1) and its basic

operation is multiplication. A multiplication ends by taking the remainder of a division by a

prime number p, which ensures closure.

Figure 10 shows some example additions and multiplications in group Z15 and group Z11
*
.

The additive group Z15 uses integers from 0 to 14. If two arbitrary numbers a and b belong to Z15,

the result c of its addition also belongs to group Z15, i.e., (a + b) mod 15 = c. The multiplicative

(11 + 13) mod 15 = 24 mod 15 = 9

(4 + 11) mod 15 = 15 mod 15 = 0

(14 + 4) mod 15 = 18 mod 15 = 3

(9 +10) mod 15 = 19 mod 15 = 4

(10 * 3) mod 11 = 30 mod 11 = 8

(4 * 7) mod 11 = 28 mod 11 = 6

(2 * 8) mod 11 = 16 mod 11 = 5

(9 * 5) mod 11 = 45 mod 11 = 1

Figure 10: Example of Addition in Group Z15 and Multiplication in Group Z11
*

18

group Z11
*
 uses integers from 1 to 10. A multiplication in Z11

*
 finishes by taking the remainder

after the result is divided by 11.

An arithmetic operation is said to be commutative if the order of its arguments is insigni-

ficant. With ordinary numbers, addition and multiplication are commutative operations; e.g., (2*

9) = (9*2) and (2 + 9) = (9 + 2). However, subtraction and division are not commutative, e.g., (2

– 9) ≠ (9 – 2) and (2 / 9) ≠ (9 / 2).

A group is called Abelian if its main operation is commutative. Thus, an additive group

is Abelian if (a + b) = (b + a) for all elements a and b in the group. A multiplicative group is Ab-

elian if (a * b) = (b * a) for all elements a and b in the group. The additive group Zn and the mul-

tiplicative group Zp
*
 are both Abelian groups.

A field is a set of elements with two custom-defined arithmetic operations; most com-

monly, addition and multiplication. The elements of the field are an additive Abelian group, and

the non-zero elements of the field are a multiplicative Abelian group. This means that all ele-

ments of the field have an additive inverse, and all non-zero elements have a multiplicative in-

verse. As is true for groups, other operations can be defined in a field, using its two main opera-

tions. A field is called finite if it has a finite number of elements. The most commonly used fi-

nite fields or Galois fields in cryptography are GF(p) (where p is a prime number) and GF(2
n
)

[28].

Field of GF(p)

The GF(p) field consists of numbers from 0 to (p – 1). Its operations are addition and multiplica-

tion, which are defined for the groups Zn and Zp
*
, respectively, and all calculations end with re-

duction modulo p. The restriction that p be a prime number is necessary so that all non-zero ele-

ments have a multiplicative inverse. As with Zn and Zp
*
, other operations in GF(p) (such as divi-

sion, subtraction, and exponentiation) are derived from the definitions of addition and multiplica-

tion.

Field of GF(2
n
)

The GF(2
n
) field is attractive for implementation due to their carry-free arithmetic, and the avail-

ability of different equivalent representations of the field, which can be implemented and opti-

mized in hardware [28, 29]. There are several ways to describe arithmetic in GF(2
n
). Polynomial

basis (PB) and optimal normal basis (ONB) are typical GF(2
n
) representation methods. Our pro-

posed method is based on PB, therefore, only the PB representation will be reviewed in this thesis.

19

 A cryptosystem uses various GF sizes. For example, ECC usually uses GF(2
131

), GF(2
163

),

GF(2
193

), and GF(2
233

), whereas RSA uses GF(2
1024

), GF(2
2048

) and GF(2
3072

). In order to im-

prove security, the field size will become bigger in future.

Polynomial Bases Representation

GF(2
n
) has 2

n
 elements, which are polynomials of degree less than n, with coefficients in GF(2

n
),

i.e., {an-1x
n-1

 + an-2x
n-2

 + ... + a2x
2
 + a1x + a0 | ai = 0 or 1}. These elements can be written in vector

form as (an-1 ... a1 a0). The main operations in GF(2
n
) are addition and multiplication. Some

computations involve an irreducible polynomial f(x) = x
n
 + fn-1x

n-1
 + fn-2x

n-2
 + ... + f2x

2
 + f1x + f0,

where each fi is in GF(2
n
). The polynomial f(x) cannot be factored into two polynomials over

GF(2
n
), each of degree less than n. The irreducible polynomial takes the same role as a prime

number in the GF(p). The basic arithmetic operations of polynomial bases are shown in Figure

11:

Addition/Subtraction

 (cn-1 ... c1 c0) = (an-1 ... a1 a0) ± (bn-1 ... b1 b0),

 where ci = ai xor bi, 0 ≤ i ≤ n-1

Division/Modular operation

 (an-1 ... a1 a0) = (qn-k … q0) × (bk-1 ... b1 b0) + (rk-2 … r0)

 where (qn-k … q0) is the quotient, (rk-2 … r0) is the reminder (n ≥ k)

 (an-1 ... a1 a0) ÷ (bk-1 ... b1 b0) = (qn-k … q0)

 (an-1 ... a1 a0) mod (bk-1 ... b1 b0) = (rk-2 … r0)

Modular Multiplication

 (rn-1 ... r1 r0) = (an-1 ... a1 a0) × (bn-1 ... b1 b0) mod f(x),

 where ai, bi and ri (0 ≤ i ≤ n-1) is the remainder modulo f(x)

 an-1 ... a1 a0

 × bn-1 ... b1 b0

 an-1bn-1 (an-1bn-2 + an-2bn-1) ... (a1b0 + a0b1) a0b0

 mod 1 fn-1 fn-2 ... f1 f0

 rn-1 ... r1 r0

20

Additive Identity/Inverse

 (an-1 ... a1 a0) + 0 = (an-1 ... a1 a0) mod f(x)

 0 is called an additive identity

 if (an-1 ... a1 a0) + (bn-1 ... b1 b0) = 0 mod f(x) then

 (bn-1 ... b1 b0) is an additive inverse of (an-1 ... a1 a0)

Multiplicative Identity/Inverse

 (an-1 ... a1 a0) × 1 = (an-1 ... a1 a0) mod f(x)

 1 is called a multiplicative identity

 if (an-1 ... a1 a0) × (bn-1 ... b1 b0) = 1 mod f(x) then

 (bn-1 ... b1 b0) is a multiplicative inverse of (an-1 ... a1 a0)

Figure 11: Arithmetic Operations of Polynomial Bases

In order to illustrate PB arithmetic operations, consider the following two polynomial representa-

tions

x
4
+ x

2
+ 1 (a4 a3 a2 a1 a0) = (1 0 1 0 1) (3.3)

x
3
+ x

2
+ x + 1 (b4 b3 b2 b1 b0) = (0 1 1 1 1), (3.4)

where both are elements of GF(2
5
). The result of performing addition according to Figure 11 is

as follows:

 c4 = a4 xor b4 = 1 xor 0 = 1 c3 = a3 xor b3 = 0 xor 1 = 1

c2 = a2 xor b2 = 1 xor 1 = 0 c1 = a1 xor b1 = 0 xor 1 = 1

c0 = a0 xor b0 = 1 xor 1 = 0

(1 1 0 1 0) x
4
 + x

3
 + x

Thus, PB representation x
4
 + x

3
 + x is the addition of (3.3) and (3.4). In PB representation, sub-

traction also provides the same results. Multiplication is more difficult than addition/subtraction.

The following illustrates the multiplication of the above two polynomials, i.e., (x
4
 + x

2
 + 1) × (x

3

+ x
2
 + x + 1) mod (x

5
 + x

3
 + 1):

21

 x
4
 × (x

3
+ x

2
+ x + 1) = x

7
 + x

6
 + x

5
 + x

4

 x
2
 × (x

3
+ x

2
+ x + 1) = x

5
 + x

4
 + x

3
 + x

2

 1 × (x
3
+ x

2
+ x + 1) = x

3
 + x

2
 + x + 1

 (x
7
+ x

6
 + x + 1) (11000011) (3.5)

 - (x
5
 + x

3
 + 1) × x

2
 (10100100) (3.6)

 (x
6
 + x

5
 + x

2
 + x + 1) (01100111) (3.7)

 - (x
5
 + x

3
 + 1) × x (1010010) (3.8)

 (x
5
 + x

4
 + x

2
 + 1) (00110101) (3.9)

 - (x
5
 + x

3
 + 1) (101001) (3.10)

 x
4
 + x

3
+ x

2
 (11100) (3.11)

Multiplication is simply a shift and Exclusive-OR as shown in (3.5). However, since multiplica-

tion increases the size of the exponent, we need to shorten it to fit into a GF(2
5
) word size, i.e., 5

bits. To prevent word size overflow, a modular operation is performed using an irreducible poly-

nomial x
5
 + x

3
 + 1, which is one of the irreducible polynomials in GF(2

5
) that has been arbitrarily

chosen. The division and modular operation involves a series of shift and Exclusive-OR opera-

tions as shown in (3.6) to (3.11) until the reminder becomes an element of GF(2
5
). The quotients

bits are generated from operations (3.6), (3,8) and (3.10), i.e., x
2
 + x + 1. The last reminder is the

result of modular operation, which is x
4
 + x

3
 + x

2
.

 The benefit of PB is a uniformly distributed number format system. Back to the 3-bit

system, we already saw the binary format is unevenly distributed as shown in Table 1. Consider

the same bit system using PB format where irreducible polynomial is x
3
 + x + 1. The results of

multiplication mod f(x) are shown as Table 2.

Table 2: Multiplication mod f(x) where f(x) = x
3
 + x + 1

Mult 001(1) 010(2) 011(3) 100(4) 101(5) 110(6) 111(7)

001(1) 001(1) 010(2) 011(3) 100(4) 101(5) 110(6) 111(7)

010(2) 010(2) 100(4) 110(6) 011(3) 001(1) 111(4) 101(5)

011(3) 011(3) 110(6) 101(5) 111(7) 100(4) 001(1) 010(2)

100(4) 100(4) 011(3) 111(7) 110(6) 010(2) 101(5) 001(1)

101(5) 101(5) 001(1) 100(4) 010(2) 111(7) 011(3) 110(6)

110(6) 110(6) 111(7) 001(1) 101(5) 011(3) 010(2) 100(4)

111(7) 111(7) 101(5) 010(2) 001(1) 110(6) 100(4) 011(3)

Integer 1 2 3 4 5 6 7
Occurences 7 7 7 7 7 7 7

22

3.1.2. Addition Chain

Multiplication is one of the big issues in Cryptography. In particular, efficient algorithms for

group exponentiation have received much attention due to their role in the cryptosystem. Sup-

pose we want to evaluate M
n
 for given arbitrary numbers M and n. The computation of M

n
 is an

n-multiplication operation, i.e., the result is equals to M multiplied n times. However, computa-

tion cost is expensive because a cryptosystem uses a large number n to increase security. For ex-

ample, RSA typically uses a 1024-bit number for n. Many mathematicians have tried to find a

solution that requires a less number of multiplications, and Addition Chain is one of the solutions.

Interestingly, Addition Chain is not new. Knuth found material that existed in around 200 B.C.

related to the addition chain problem [30]. Indian and Arabic works in the 10
th
 and 11

th
 century

also mentioned the problem.

 An addition chain is a sequence of integers

 a0 a1 a2 … ar

starting from a0=1 and ending with ar = n in such a way that any ak is the sum of two earlier in-

tegers ai and aj in the chain, i.e.,

 ak = ai + aj for 0 < i, j < k

For example, the computation of M
15

 can be done in two ways as shown below.

 M × M × M × M × M × M × M × M × M × M × M × M × M × M × M = M
15

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 (3.12)

 (((M)
2
 × M)

2
 × M)

2
 × M = M

15

 1 2 3 4 5 6 7 (3.13)

As we see from the above result, (3.12) needs 15 multiplications but (3.13) needs just 6 multipli-

cations. Using the Addition Chain is almost two times more efficient than performing multiplica-

tions sequentially. In the following subsections, we will show the Binary Addition Chain as an

example of performing addition, and then discuss exponentiation.

Binary Addition Chain

The Binary Addition Chain is also called the Addition-and-Doubling (AD) Algorithm. Suppose

we want to compute the encrypted point S = dP (mod f(x)), where d is an n-bit key value, i.e., d =

(dn-1, dn-2, … ,d0)2, P is a given plain point, and f(x) is the irreducible polynomial in GF. A mod-

ular f(x) operation is a protection from word size overflow. Figure 12 shows the steps of AD,

which processes the bits of d from MSB to LSB.

23

if dn-1 = 1 then S = P else S =0

for i from n-2 to 0 {

 S = S + S (mod f(x))

 if di =1 then S = S + P (mod f(x))

 }

return S

Figure 12: Binary AD Algorithm

Suppose we want to compute 15 (d) times P by using Addition Chain ignoring modular operation

since the results from Point Addition and Point Doubling are already optimized by modular oper-

ation. 15 can be expressed as a binary (01111)2 in GF(2
5
). Since the MSB is 0, the initial value S

is set to O. The following operations are then performed.

 (0 1 1 1 1) S = O // S = S + S 1
st
 iteration

 ↑ S = P // S = S + P

(0 1 1 1 1) S = 2P // S = S + S 2
nd

 iteration

 ↑ S = 3P // S = S + P

(0 1 1 1 1) S = 6P // S = S + S 3
rd

 iteration

 ↑ S = 7P // S = S + P

(0 1 1 1 1) S = 14P // S = S + S 4
th
 iteration

 ↑ S = 15P // S = S + P

As a result, we obtain S = 15P in GF(2
5
). The scalar multiplication using the Addition Chain

takes 8 additions compared to 15 additions without it. Using the AD method, the n-bit Addition

Chain requires n-1 doubling (i.e., S + S) operations, and the number of S + P operations is equal

to the number of 1‟s in d (except MSB). In our example, we need 4 doubling and 4 addition op-

erations. This Addition Chain is the one of main operations in the ECC scheme and is also the

main source to get the private key. The method to get the private key will be discussed in a later

section.

Binary Exponentiation

Binary exponentiation uses an algorithm similar to AD called Squaring-and-Multiplication (SM),

where doubling changes to squaring and addition changes to multiplication. Figure 13 shows the

algorithm for binary exponentiation:

24

if dn-1 = 1 then S = P else S = 1

for i from n-2 to 0 {

 S= S × S (mod f(x))

 if di = 1 then S = S × P (mod f(x))

 }

return S

Figure 13: Binary SM Algorithm

For example, suppose we want to compute 10
15

, P is set to 10 (01010)2, d is set to15 (01111)2,

and modular f(x) is set to 32 (100101)2. Since the MSB of d is 0, the initial value S is set to 1.

(0 1 1 1 1) S= (11100) // S = S × S (mod f(x)) 1
st
 iteration

 ↑ S =(01100) // S = S × P (mod f(x))

(0 1 1 1 1) S= (10100) // S = S × S (mod f(x)) 2
nd

 iteration

 ↑ S =(11010) // S = S × P (mod f(x))

(0 1 1 1 1) S= (00011) // S = S × S (mod f(x)) 3
rd

 iteration

 ↑ S =(11110) // S = S × P (mod f(x))

(0 1 1 1 1) S= (10011) // S = S × S (mod f(x)) 4
th
 iteration

 ↑ S =(11011) // S = S × P (mod f(x))

As a result we obtain 10
15

in GF(2
5
). The binary exponentiation using the addition chain takes 8

multiplications compared to 15 multiplications without it. Using the SM method, we can see that

the n-bit addition chain needs n-1 squaring and the number of S × P operations equal to the num-

ber of 1‟s in d (except MSB). The SM method is the main operation of RSA and also the target

algorithm to get a private key.

25

3.1.3. Montgomery’s Method

In 1985, P. L. Montgomery proposed a new modular multiplication algorithm without requiring

division by n [24]. Montgomery Multiplication (MM) exploits additions and divisions by a power

of 2, i.e., shift right or left. This method replaces division by n with division by r = 2
k
, where 2

k

is greater than n, GCD(r, n) should be one (1) and the inverse of r is less than n. Using this me-

thod, computer systems can easily implement the modular divide operation since r = 2
k
 involves

simple shifting operations.

 MM is used to compute Z = ABr
-1

(mod n), where A and B are the n-residues of a and b

with respect to r and r
-1

 is the inverse of r in modulus n, i.e., A = ar mod n, B= br mod n. Since

r is chosen as a power of 2, r and n should be relative prime. In addition, we need n
-1

 in such a

way that rr
-1

–nn
-1

 = 1. Montgomery found the following equation, where m is set to t(-n
-1

mod

r) mod r:

 (t + mn)/r = {t + n  [t  (-n
-1

mod r) mod r]} /r

 = (t + ntn
-1

)/r

= t r
-1

 mod n

Using this equation, we can divide by r instead of by n. For example, suppose we want to com-

pute a  b using MM. First, a and b changed to A and B, respectively, and the result of AB is giv-

en as

 A  B = (ar) (br) r
-1

 mod n

 = a  b  r mod n

Then, we obtain the result by using one more MM with 1, i.e.,

 (a  b  r mod n)  1 = (a  b  r)  r
-1

mod n

 = (a  b) mod n

Figure 14 shows the MM algorithm and example.

26

Input : a, b

Output : a·b·r

mod n

 n
-1

 & r
-1

 are pre computed.

Function: MMmult(A,B)

 t = A*B

 m = t * n
-1

 mod r

 u = (t+m*n)/r

if u ≥ n then return u–n

 else return u

a = 5, b = 3, n = 7, r =2
4

r
-1

r- n
-1

n =1, thus n
-1

 = 9 , r
-1

= 4

A = a * r mod n = 5 * 16 mod 7 = 3

B = b * r mod n = 3 * 16 mod 7 = 6

MM(A, B)

 t = A * B = 18

 m= t * n
-1

 mod r = 18 * 9 mod 16 = 2

 u = (t + m * n) /r = (18 + 2*7) /16 = 2

MM(u,1)

 t = u * 1 = 2

 m= t * n
-1

 mod r = 2 * 9 mod 16 = 2

 u = (t + m * n) /r = (2 + 2*7) /16 = 1

Figure 14: MM Algorithm and Example

Consider the case: 5 × 3 mod 7. It is easily computed with a result of 1. However the operation

(mod 7) is not easy to computer as mentioned. Consider the r as 2
4
, we can get n

-1
 as a 9 and r

-1

as a 4 by using the Extended Euclid‟s algorithm, which are discussed in a later section. Then in-

put value 5 (a) and 3 (b) are changed n-residues 3 (A) and 6 (B), respectively. Using A and B,

MM(A, B) computed the a × b × r
-1

 mod n as a result 2. Actually, our purpose is not the compu-

tation of a × b × r
-1

 mod n, but a × b mod n. To change a × b × r
-1

 mod n into a × b mod n, one

more MM is required with the result of MM(A, B) and 1 as an input. As shown in figure 14, the

second MM(2, 1) shows the same value with 5 × 3 mod 7.

 MM needs pre-computations of n
-1

 and r
-1

, and the changing processes of input values are

also needed. Finally, one more MM is required to get a correct value. Even though MM needs

pre and post processing, it is better than conventional modular multiplication in the case of cryp-

tosystems where a large number of modular multiplications are required.

3.1.4.Chinese Reminder Theorem (CRT)

CRT was discovered by a Chinese mathematician, Sun Tse, in the 1
st
 century [10]. The basic

theorem is simple. Let m1 and m2 be relatively prime integers. Given x1 less than m1 and x2 less

than m2, there exists a unique integer X less than m1m2 such that

X = x1 mod m1

X =x2 mod m2

X = x1 + m1[(x2-x1)m1
-1

 mod m2]

This method is useful in reducing an n-bit modular exponentiation into two half size modular ex-

ponentiations with CRT processing.

27

3.1.5. Euclid’s Algorithm

Greatest Common Divisor of a and b, denoted as GCD (a, b), is the largest positive integer that

divides both a and b. There are two general ways to determine the GCD. The first method is fac-

toring each number a and b to find the common factor. For example, if a = 1728 and b = 135,

then GCD can be found as

 1728 = 2
6
3

2
, 135=3

3
5 => GCD(1728, 135) = 3

2
 = 9

Since a and b have the same factor of 3
2
, GCD is 9. However, factoring large numbers is not

easy. Therefore, Euclid‟s Algorithm is used to determine the GCD of large numbers. For any

integer a and b, a is greater than or equal to b, if not, switch a and b. The first step is to divide a

by b, hence represent a in the following equation:

 a = q1b + r1 (3.14)

where q1 is the quotient and r1 is the reminder. If r1 = 0, then GCD is b. If not, then continue in

the following form until the reminder is zero.

 a = q1b + r1 r2= q4r3 + r4 ⋮

b = q2r1 + r2 r3= q5r4 + r5 rk-2= qkrk-1 + rk

r1= q3r2 + r3 ⋮ rk-1= qk+1rk

Then the GCD (a, b) = rk. Euclid‟s algorithm has the following important characteristics. If one

of a or b is not zero, then there exist integers x and y such that ax + by = GCD (a, b).

 The process of finding x and y is called Extended Euclid‟s algorithm. Suppose we start

by dividing by b into a, that is a = q1b + r1, then proceed as above in Euclid‟s algorithm. We will

get the successive quotients, i.e., q1, q2, …, qk+1. The x and y can be found by the following equa-

tions;

 xj = -qj-1xj-1 + xj-2, x0 = 0, x1 = 1 for (2 < j < k + 1) (3.15)

 yj = -qj-1yj-1 + yj-2, y0 = 1, y1 = 0 for (2 < j < k + 1) (3.16)

The xk+1 and yk+1 are what we want to find. Suppose we want to find out GCD (1180, 482) and x

and y in the equation 1180 × x + 482 × y = GCD (1180, 482) by extended Euclid‟s algorithm. The

process of finding the GCD (1182, 482) is like below:

 1182 = 2 × 482 + 216 50 = 3 × 16 + 2

 482 = 2 × 216 + 50 16 = 8 × 2

 216 = 4 × 50 + 16

28

Thus, we can find out the GCD (1180, 482) = rk = 2, and then we can also get the quotients q1 = 2,

q2 = 2, q3 = 4, q4 = 3 and q5 = 8. By using these quotients, we can find out the x and y. The fol-

lowing processes show the way of finding x and y.

 x0 = 0 y0 = 1

 x1 = 1 y1 = 0

 x2 = -2x1 + x0 = -2 y2 = -2y1 + y0 = 1

 x3 = -2x2 + x1 = 5 y3 = -2y2 + y1 = -2

 x4 = -4x3 + x2 = -22 y4 = -4y3 + y2 = 9

 x5 = -3x4 + x3 = 71 y5 = -3y4 + y3 = -29

The 71 and -29 are what we want. Extended Euclid‟s algorithm is useful to find the multiplica-

tive inverse.

To find the multiplicative inverse of 11111 (mod 12345) as an example, Let us analyze the defini-

tion of the multiplicative inverse, i.e., the multiplicative inverse x is defined as the multiplicative

identity 1 multiplied by 11111 as in equation (3.17).

11111x = 1 (mod 12345) = 12345y‟ +1 (3.17)

11111x + 12345y = 1 = GCD (11111, 12345), Substitute y = -y‟ (3.18)

from equation (3.18), we can get the quotients q1 = 1, q2 = 9, q3 =246, q4 = 1, and q5 =4 by Euc-

lid‟s algorithm. Then, we can find the number x=2471 as the multiplicative inverse by Extended

Euclid‟s algorithm. To verify it, we substitute x with 247. Then we can check it with following

equation (3.19);

 11111 × 2471 = 27455281 = 2224 × 12345 + 1 = 1 (mod 12345) (3.19)

3.1.6. Projective Coordinate

The projective coordinate is used to eliminate the need for performing division. Affine coordi-

nate in ECC as shown in the Cryptography section requires a division operation, i.e., computing λ

requires one division in both GF(p) and GF(2
m
). In computer systems, a division operation needs

more clock cycles than a multiplication operation [28]. Affine coordinate (x, y) can be

represented as a projective (Jacobian style) coordinate (X, Y, Z), where (x, y) = (X/Z
2
, Y/Z

3
). A

point doubling and a point addition are transformed as shown in Table 3.

29

Table 3: Relationship between Affine Coordinates and Projective Coordinates [30,43]

y
2

+ xy = x
3
+ax

2
+b

over GF(2
m
), b ≠ 0

Affine Coordinates(x, y) Projective Coordinates(X, Y, Z)

Point Addition

(x1,y1) + (x2,y2) = (x3, y3)

 λ = (y2-y1)(x2-x1)
-1

 x3= λ
2
+λ+x1+x2+c

 y3 = λ(x1+x3)+x3+y1

(X1,Y1,Z1) + (X2,Y2, Z2) = (X3, Y3, Z3)

 A = X1Z2
2

 B = X2Z1
2

 C = A + B

 D =Y1Z2
3

 E = Y2Z1
3

 F = D + E

 G = Z1C

 H = FX2 + GY2

 Z3 =GZ2

 I = F + Z3

 X3 = aZ3
2
 + IF + C

3

 Y3 = IX3 + HG
2

Point Doubling

(x1,y1) + (x1,y1) = (x3, y3)

 λ = x1 +(y1)(x1)
-1

 x3 = λ
2
 +λ + c

 y3 = λ(x1+x3)+x3+y1

(X1,Y1,Z1) + (X1,Y1, Z1) = (X3, Y3, Z3)

 Z3 = X1Z1
2

 A = bZ1
2

 B = X1 + A

 X3 = B
4

 C = Z1Y1

 D = Z3 + X1
2
 + C

 E = DX3

 Y3 = X1
4
Z3 + E

A division operation in Affine Coordinates does not appear in Projective Coordinates. In-

stead of division operations, Projective Coordinates need more multiplication than Affine Coor-

dinates, i.e., Point Doubling needs 12 multiplications in Projective Coordinates while it needs

only 2 multiplications in Affine Coordinates. Thus, the appropriateness of using projective coor-

dinates is determined by user. Furthermore, a division operation is needed to change Projective

Coordinates into Affine Coordinates.

3.2. Power Model

Most of our electric appliances like TVs, game cubes and computers, consume power from power

outlets and lots of hand-held devices also use a battery as a power source. This means that power

consumption rates are one of the performance standards, which makes limiting power consump-

tion a critical issue for embedded systems. A cryptosystem requires numerous computations,

30

which means lots of 0-to-1 or 1-to-0 transitions at the gate-level. These gates usually consist of

one or more complementary metal-oxide semiconductor (CMOS) logic circuits.

 The dominant equation for the CMOS power model is given by

P =ACV
2
f + tAVIshortf+ VIleak

(3.20)

The first term measures the dynamic power consumption, which is proportional to the frequency f,

the active gates A, the capacitance C, and the square of voltage V
2
. The second terms are related

to short-circuit power, which varies with short circuit current Ishort, and instantaneous time t. The

last term, VIleak, shows the leakage power by Ohm‟s law. However, the second and third terms

are less significant than the first term in most CMOS circuits.

 P is defined as the consumption at a discrete point in time while energy E is defined as

the power dissipation during the execution time D, as shown in the equation:

E =PavgD (3.21)

As we know, power uses watts units (W), and energy uses Jules (J = W/s). Even if a processor

operates at low power, its energy can be greater than or equal to the energy used when operating

at high power. Another example, a single core can finish a job in time 2t using power p while a

dual core takes time t using power 2p. The energy between the single and dual core will be the

same even though the performance of dual core is better than that of the single core. Energy or

instantaneous power, as a measure of efficiency, is not suitable for evaluating the system. There-

fore, evaluating the power-performance of a system based only on instantaneous power or energy

is not sufficient. Thus, researchers use a new method for power-performance, the energy-delay

product [18]:

EDP = ED (Jsec) (3.22)

By using Energy-Delay product (EDP), the above example of comparison with single core and

dual core can be meaningful. The EDP of the single core is (2t)
2
p while that of the dual core is

t
2
2p. Thus, dual-core is twice as good as a single core. Notice that smaller EDP means better

power-performance efficiency.

 There are several ways to improve performance-power efficiency in mobile devices. Re-

search on power reduction consists of techniques at the circuit level, architectural level and soft-

ware level. We will briefly discuss these methods in the following subsections. For more detail,

refer to [17].

31

3.2.1. Power Reduction at the Circuit Level

We will overview three methods for power reduction at the circuit level. The first method is

clock gating, which exploits a characteristic that all gates do not need to be clocked at the same

time. Therefore, the power consumption can be reduced by turning off the clock tree which

branches to unused gates. The second technique is half-frequency and half-swing clocks. A gate

uses either the rising edge or falling edge. The half-frequency technique uses both edges of the

clock to synchronize events. Half-frequency and half-swing clocks reduce power consumption. Tradi-

tionally, hardware events such as register file writes occur on a rising clock edge. Half frequency

clocks synchronize events using both edges, and they tick at half the speed of regular clocks.

Thus, cutting clock switching power reduces by half. Reduced-swing clocks also often use a

lower voltage signal and thus reduce power by power equation (3.20) [31]. That is, the half-

swing clock technique swings using only half of the supply voltage for making slow frequency.

The last method is to omit the clock tree using asynchronous logic. The clock tree consumes 30%

of the processor power. Therefore, removing the clock tree using asynchronous logic can signifi-

cantly reduce power.

3.2.2. Power Reduction at the Architectural Level

We have reviewed power saving features at the circuit level as though they were a fixed founda-

tion upon which programs execute. However, programs exhibit wide variations in behavior.

Researchers have been developing hardware structures whose parameters can be adjusted on de-

mand so that one can save power consumption by activating just the minimum hardware re-

sources needed for the code that is executing.

 There are various techniques to reduce power consumption in architectural level. Memo-

ry systems including cache and main memory are one of the major power consumers, which con-

sists of two types of power loss: dynamic power and leakage power. Whenever a processor ac-

cesses memory, it uses dynamic power. Therefore, accessing only the required part of memory is

a way to reduce power loss in the memory hierarchy. One memory system power reduction me-

thod is adaptive caches, which can be selectively activated based on the application workload.

One example of such a cache is the Deep-Submicron Instruction (DRI) cache [32]. This cache

permits one to deactivate its individual sets on demand by gating their supply voltages. To de-

cide what sets to activate at any given time, the cache uses a hardware profiler that monitors the

application‟s cache-miss patterns. Whenever the cache misses exceed a threshold, the DRI cache

activates previously deactivated sets. Likewise, whenever the miss rate falls below a threshold,

32

the DRI deactivates some of these sets by inhibiting their supply voltages.

The second example for power reduction is Dynamic Voltages Scaling (DVS). DVS al-

gorithms assign different speeds for different tasks. These speeds remain fixed for the duration of

each task‟s execution. When we uses parallel processing for some workloads, some threads,

which are parallelized workloads, will be waiting after finishing their own job. We can reduce

the power by reducing voltage for those threads that have completed around the same time as the

thread that takes the longest time. Accurate branch predictors could be another power reduction

method. For example, if a branch predictor makes a wrong prediction, useless instructions waste

power. Therefore, we can reduce power, especially dynamic power, by using a better branch pre-

dictor.

3.2.3. Power Reduction of Software Level

As we saw in the power consumption equation in (3.20), reducing the supply voltage has a big

advantage in power reduction. At the software level power reduction is usually performed by the

operating system (OS). OSs control the computer resources like memory systems, file systems,

and processes. Some processes have a marginal time to complete computations. If an OS knows

the computation deadline, it can reduce power by setting the supply voltage to satisfy the compu-

tation deadline.

 There are two types of approaches to scaling. One is that the OS provides direct interface

for voltage scaling, which processes can use to schedule their own voltage needs. The second

approach is the OS has a control of determining voltage needs of each process. For example, a

MPEG decoder just has to complete one frame within 1/30
th
 second, making it unnecessary to

complete its job as soon as possible. Thus, the OS runs the MPEG decoder with a typical voltage

at the first time, and then it computes the marginal time to adjust voltage scaling [17].

3.3. Parallel Computing Architectures

Parallel processing simply means concurrent performance at a particular cycle. It exploits thread-

level parallelism instead of instruction-level parallelism (ILP). The ILP extracts parallelism in a

sequential single program: modern superscalar microprocessors have multiple execution units

working in parallel using this with OoO (Out-of-Order) execution. The TLP, however, is expli-

citly represented by multiple threads of execution that are inherently parallel.

33

 Multiple threads can be executed in parallel on multi cores. This multi-threading general-

ly occurs by time slicing (similar to time-division multiplexing), wherein a single processor

switches between different threads, in which case the processing is not literally simultaneous as

the single processor is really doing only one thing at a time. This switching can happen so fast

that it gives the illusion of simultaneity to an end user. For instance, most PCs several years ago

only contained one processor core, but we could run multiple programs at once, such as typing in

a document editor while listening to music in an audio playback program. Though the user expe-

riences these activities as simultaneously, in reality, the processor quickly switches back and forth

between these separate processes.

 On a multiprocessor or multi core system, which are now coming into general use, mul-

tithreading can be achieved via parallel processing, wherein different threads and processes can

run simultaneously on different processors or cores. In other words, threads are distributed to

distinct processors and executed concurrently. It introduces much more efficient performance

than multithreading on one core-processor [28].

The idea of using multiple processors both to increase performance and to improve avail-

ability dates backs to the earliest computers. Flynn proposed a simple model of categorizing all

computers that is still used today. He categorized the parallelism in the instruction and data sys-

tems into four types, which will be discussed in this subsection [28].

34

3.3.1. Single instruction stream, single data stream (SISD)

SISD are implemented in a serial computer. Only one single instruction stream is being acted on

by the CPU and only one data stream is being used as input during any one clock cycle. Al-

though SISD is the oldest, it is the most prevalent form of computer until recently [22]. Figure 15

shows an example of SISD execution.

LOAD A(1)

LOAD B(1)

C(1) = A(1) + B(1)

STORE C(1)

A(1) = B(1) * 2

STORE A(1)

Processor

P1

T
im

e

Figure 15: Flow of SISD

As we see in Figure 15, it can execute one instruction at a particular time. After loading A, this

system can load B, and then can compute C, and so on.

3.3.2. Single instruction stream, multiple data stream (SIMD)

LOAD A(1)

LOAD B(1)

C(1) = A(1) + B(1)

STORE C(1)

A(1) = B(1) * 2

STORE A(1)

LOAD A(2)

LOAD B(2)

C(2) = A(2) + B(2)

STORE C(2)

A(2) = B(2) * 2

STORE A(2)

LOAD A(n)

LOAD B(n)

C(n) = A(n) + B(n)

STORE C(n)

A(n) = B(n) * 2

STORE A(n)

Processor

P1

Processor

P2

Processor

Pn

...

T
im

e

Figure 16: Flow of SIMD

35

In SIMD, the same instruction is executed by multiple processors using different data streams.

Each processor has its own data memory. Each processing unit can operate on a different data

element. It is best suited for specialized problems characterized by a high degree of regularity,

such as image processing. SIMD type architectures perform synchronous and deterministic ex-

ecution [22]. Figure 16 shows an example of SIMD execution. As we see Figure 16, n processors

execute the same instruction with different data. Processor P1, P2, and Pn perform data 1, 2, and

n respectively.

3.3.3. Multiple instruction streams, single data stream (MISD)

A single data stream is fed into multiple processing units. Each processing unit operates on the

data independently via independent instruction streams. Few actual examples of this class of pa-

rallel computer have ever existed. One is the experimental Carnegie-Mellon C.mmp computer

(1971). Figure 17 shows an example of MISD execution [22].

LOAD A(1)

STORE B(1)

C(1) = A(1) - B(1)

LOAD C(1)

A(1) = B(1) * 3

STORE A(1)

STORE A(1)

LOAD B(1)

C(1) = A(1) + B(1)

STORE C(1)

A(1) = B(1) - 2

JUMP A(1)

A(1) = A(1) +1

B(1) = B(1) * 2

C(1) = A(1) * B(1)

JUMP C(1)

A(1) = B(1) /4

LOAD A(1)

Processor

P1

Processor

P2

Processor

Pn

...

T
im

e

Figure 17: Flow of MISD

MISD has a contrary concept to SIMD. As we see in Figure 17, a processor P1 performs a load

operation with data 1, P2 performs a store operation with same data, and Pn performs an add op-

eration. MISD is hard to implement due to data dependencies.

36

3.3.4. Multiple instruction streams, multiple data stream (MIMD)

LOAD A(1)

STORE B(1)

C(1) = A(1) - B(1)

LOAD C(1)

A(1) = B(1) * 3

STORE A(1)

STORE C(2)

LOAD B(2)

C(2) = A(2) + B(2)

STORE C(2)

A(2) = B(2) - 2

JUMP A(2)

A(n) = B(n) +1

B(n) = B(n) * 2

C(n) = A(n) * B(n)

JUMP C(n)

A(n) = B(n) /4

LOAD A(n)

Processor

P1

Processor

P2

Processor

Pn

...

T
im

e

Figure 18: Flow of MIMD

Currently, the most common type of multi core computer is MIMD. Most modern computers fall

into this category. Every processor may be executing a different instruction stream while work-

ing with a different data stream. Execution can be synchronous or asynchronous, and determinis-

tic or non-deterministic. Figure 18 shows an example of MIMD execution [22].

As we see in Figure 18, each processor performs different operations with different data. While

P1 performs the loading of data A(1), Pn performs an add operation with A(n) and B(n).

37

4. Side Channel Attack (SCA)

As we mentioned before, Cryptography is the science of hiding information. However, there are

also people who try to uncover hidden information without having access to a secret or private

key. This process of cracking hidden information is usually called Cryptanalysis or Attack. Con-

ventional cryptanalysis has been focused on finding weaknesses in crypto-algorithms. Recently,

people have been trying to break cryptosystems using side channel information, which is referred

to as Side-channel Attack (SCA). One general method of SCA is power and timing analysis be-

cause different operations of a cryptosystem result in different power consumption and execution

time characteristics.

 SCA has become the focus for cryptanalysis ever since Kocher discovered side channels,

such as voltages, currents, power consumption and electromagnetic emissions of a cryptosystem

[14, 15], can be used to perform attacks. Obviously, SCA is not new. One well-known example

is a safecracker who uses feelings from his hands and sounds he hears to open a cash box. This is

also similar to a submarine that can find out adversary‟s ship size, class, and speed using sonar.

 The following subsections discuss general SCAs and countermeasures for SCA.

4.1. SCA Methods

There are various techniques utilized in cryptanalysis. We will briefly introduce three types of

general methods; timing analysis, power analysis, and CPU component (Cache) analysis.

4.1.1. Timing Analysis

A processor results in different execution times depending on the types and the number of in-

structions executed and the amount of data processed. Before the discovery of side channels,

computer engineers thought that execution time for encryption/decryption was the benchmark for

comparing different crypto-algorithms. That is, the shortest execution time means the most effi-

cient and thus the most marketable.

However, the execution time depends not only on the crypto-algorithm but also on the

input data, i.e., plaintext/cipher text and key. Kocher showed a relationship between timing cha-

racteristic and input data in 1995 [14]. For example, as shown in Figure 12, the addition and

doubling (AD) algorithm is the main function of ECC scalar multiplication. When di is 1, more

time is required to compute an elliptic point. As discussed in Section 2, n-bit Addition Chain

needs n-1 doublings operations and the number of additions equal to the number of 1‟s in the bi-

38

nary expansion of d, without the MSB. For example, if d is (11111)2, the cryptosystem computes

4 doubling and 4 addition operations. If d is (10000)2, only 4 doubling operations are needed.

Therefore, an attacker can figure out how many bits are set to 1 since the execution time depends

on numbers of operations.

 If an attacker can observe and compare the execution times of several loop iterations in

the addition chain, the attacker may be able to deduce the value of the corresponding bits in d.

Thus, the private key in ECC can be obtained. Cryptanalysis for RSA is similar to ECC; however,

in both cases an attacker may not be able to observe the timing characteristics of individual loop

iterations.

 For example, suppose that an attacker, Eve, sends a series of plain points (i.e., plain texts)

P1, P2, … , Pk to a cryptosystem that implements ECC using the AD algorithm. Eve records the

times t1, t2, … , tk the cryptosystem take to return the encrypted points S1, S2, … , Sk on each of the

known points P1, P2, … , Pk. Then, the timing analysis of t1, t2, … , tk allows Eve to recover the

bits in d.

4.1.2. Power analysis

Power consumption occurs when the output of a gate transitions from 0 to 1 and vice versa.

Power analysis consists of two phases - data collection and data analysis. In the data collection

phase, an adversary monitors power consumption of a cryptosystem to obtain a pattern depending

on the processed data and executed instructions. In the data analysis phase, the collected data is

analyzed and compared with randomly chosen data to guess on the value of d.

We can find a correlation between time analysis and power analysis. However, we can

find more useful information from power analysis compared to time analysis. For example, if the

chosen data results in the same power consumption as with the collected data, then the chosen

value would most likely be the secret key inside the cryptosystem.

39

 Figure 19: Power Analysis in RSA

Figure 19 shows an actual power analysis output of an RSA addition chain [42]. The

power trace shows nine spikes during an addition chain operation. In each iteration, the value S

to be squared or multiplied is initially loaded from memory to a register, which causes the power

to spike. If the multiplication requires the value P to be loaded, then another, slightly wider spike

occurs. As a result, the square operation di = 0 (i.e., a narrow spike) can be distinguished from

the square-and-multiply operation di = 1 (i.e., a narrow spike followed by a wider spike). Thus,

five key bits (i.e., d = 00111) can be determined from the above figure.

4.1.3. Micro-architecture Analysis

Microarchitecture analysis is a kind of time or power analysis on a specific component of the mi-

croarcitecture. For example, cache architecture can be analyzed to determine what data was

processed. A processor needs to retrieve data at high speeds in order to improve performance.

However, the latency of main memory makes it difficult to deliver data at high speeds. Moreo-

ver, the gap between the latency of main memory and processor speed continues to grow causing

performance degradation. Therefore, cache is used to reduce this gap.

 A cache attack exploits the cache hits and misses that occur during the encryption/ de-

cryption process of a cryptosystem. Usually, cryptosystems have data-dependent memory access

patterns and leak information about the cache hit/miss statistics of ciphers through side channels,

e.g., execution time and power consumption.

 For example, S-box in DES will be used 16 rounds during the encryption/decryption

process. In each round, there is an access to the eight substitute tables as shown in Figure 6. The

indices, which are 48-bit input to S-box, used in the first two rounds are given below:

 I0 = K0 XOR E(R0)

 I1 = K1 XOR E(R1) = K1 XOR E(L0 XOR P(S(K0 XOR E (R0))),

40

where E is E-table, P is the permutation function, and K0 and K1 are subkeys. If an attacker can

capture the profile of the cache activity during the second round, i.e., the outcomes of the S-box

using index I1, then I0 and I1 can be correlated. From this correlation, the attacker can partially

find the bits of K0 and K1. Note that an attacker knows the internal structure of DES and the input

value (i.e., plaintext L0 and R0).

The aforementioned technique is a hypothetical method where the author‟s assumed that

it was possible to capture the cache profile without explaining how this can be achieved [45]. A

real example of this type of attack was discussed in [48], where a spy process is run simulta-

neously within the cryptosystem. The spy process continuously reads each cache set in the same

order and measures the access times during the operation of the cipher. If a read access time of a

cache set takes longer than usual, the attacker can conclude that this set was accessed during the

time interval between the last and the current read access period. Using this method, an attacker

was able to identify the value of d in an Addition chain operation as shown Figures 12 and 13.

For example, suppose a crypto algorithm uses the point P and S data structure in memory as

shown in Figure 20. The attacker uses spy data which has the same index in memory and conti-

nuously accesses it. Then the cache updates P and S when d is one, or S is updated when d is zero.

By this characteristic of the algorithm, the attacker can figure out the secret value d.

Figure 20: Cache Analysis

4.2. SCA Countermeasures

There are also several techniques to prevent SCA. These methods include gate-level masking,

inserting dummy instructions, and a regularly behaving algorithm. Countermeasures (CM) are

not limited to certain types of SCAs; e.g., Countermeasure for timing analysis could be that for

power analysis or CPU component analysis.

41

4.2.1. CM for Timing Analysis

There are two ways to make timing analysis difficult for attackers. The first method is to guaran-

tee constant execution time regardless of input data using dummy instructions; however this me-

thod makes the system inefficient.

if dn-1 = 1 then S = P else S = 0

for i from n-2 to 0{

 S = S + S (mod p)

 if di =1 then S = S + P (mod p)

 else dummy instructions

 }

return S

Figure 21: Dummy instruction in AD Algorithm

Another option is to introduce some noise using randomly inserted instructions, which require

more execution time and make them difficult to conduct timing analysis.

Figure 21 shows an example of using a dummy instruction that has similar weight, i.e.

execution time, as S + P (mod p). Therefore, the execution time will be similar regardless of in-

put d. By using this method, an attacker will have trouble analyzing the execution time of a cryp-

tosystem. However, this method results in constant execution time.

In the second method, the instructions can be chosen and inserted randomly, which will

result in a different execution time. The difference with dummy instructions is independent of the

crypto-algorithm. Dummy instructions are used to make crypto-algorithms behave consistently.

The purpose of Random instructions is different from Dummy instructions. Random instructions

are used to make noise.

if dn-1 = 1 then S = P else S = 0

for i from n-2 to 0{

 S = S + S (mod p)

 Random instructions (1)

 if di =1 then S = S + P (mod p)

 Random instructions (2)

 }

return S

Figure 22: Random instruction in AD Algorithm

42

Random instructions randomly generated in cryptosystem are shown Figure 22. Consider Ran-

dom instructions (1) and (2) are inserted randomly. Random instructions (1) is related to arith-

metic operations and Random instructions (2) is related to branch operations. Random instruc-

tion (1) could create additional spike similar to what was shown in Figure 19 with extra power

consumption and execution time. Random instructions (2) create confusion to figure out the value

di as well as generating power and time confusion. Randomly chosen instructions [44] might be

more efficient than the first method by appropriate use. A recent paper shows 29.8% in runtime

and 27.1% in energy consumption overhead when using random instructions [54].

4.2.2. CM for Power analysis

There are several techniques to prevent power analysis. These methods include gate-

level masking, inserting dummy/random instructions, and regularly behaving algorithms that

force consistent behavior regardless of the data processed [16, 19]. Masking at the gate-level is

algorithm independent and in principle it can even be done completely automatically, i.e., a pro-

gram can be used to control when gates are masked.

XOR

XOR

XOR

A

B

M

M

M

M

Output

Masked

AND

A

B
Output

A

B
Output

M = 0 M = 1

Figure 23: Masked Gates

Gate-level masking makes power monitoring difficult. In a digital circuit, a gate gene-

rates the output q based on the inputs a and b, i.e., q = f(a, b). In a masked circuit, the inputs as

well as the output are masked. This means that am = f(a, m), bm = (b, m) and qm = f(q, m), where

43

m is a randomly generated mask to make SCA difficult [37]. Figure 23 shows an example of

masked gates. The normal circuit consists of two AND gates and one OR gate. Using masked

gates, each input signal has been randomized and processed by predefined logic, e.g., XOR logic.

Then the output is masked. The output signal is recovered with one more XOR gate. The masked

Gate acts as an AND gate or OR gate depending on M. The input and output are also masked

with M. The masked gates in Figure 23 have both inputs and outputs masked and behave as

AND gates regardless of the M signal. Since M is randomly generated, cryptosystem analysts

have difficulty in getting information.

 The second method involves inserting dummy instructions. This technique gives an ef-

fect of eliminating if-then statements. Dummy instructions have the same workloads as normal

instructions, e.g., S = S + P (mod p) in Figure 21. This results in similar power consumption

whether a branch is taken or not taken.

 The last method is to use a regularly behaving algorithm, which involves replacing the

algorithm of a major arithmetic operation with another algorithm that behaves consistently re-

gardless of data. Usually, an algorithm that does not have branch instructions due to if-then

statements is considered a regularly behaving algorithm. In fact, the dummy instruction and regu-

larly behaving algorithm share the same idea: it consists in ultimately having an algorithm that

behaves consistently and regularly.

In RSA/ECC, the MM algorithm is used for this purpose [19]. As discussed in Section 3,

it operates regularly except for the last subtraction. Furthermore, MM in GF(2
n
) does not have

the last subtraction part [33] because no carries are generated when it performs additions and sub-

tractions. As shown in Figure 24, the intermediate value m is always less than r, i.e., 0 ≤ m < r.

Thus, the inequality 0 ≤ mn < rn (1) is satisfied by multiplying the inequality by n. Another value

t r
-1

 is also less than n. Therefore the inequality 0 ≤ t < rn (2) is satisfied. From these inequa-

lities (1) and (2), i.e., 0 ≤ t + nm < 2rn, the value u = (t + nm)/r might be bigger than the value n.

Therefore, the final subtraction is required in GF(p).

The equation (t + nm) does not causes a carry during the addition in GF(2
n
). The value u is al-

ways less than the value rn, i.e., 0 ≤ t + nm < rn.

44

Figure 24: MM in GF(2
n
)

4.2.3. CM for Micro-Architecture Analysis

There are several techniques to make cache analysis difficult. General methods are using a data-

oblivious memory access pattern, disabling cache sharing, and Static or disabled cache.

Oblivious memory access pattern is that the pattern of accesses to the memory is completely obli-

vious to the data passing through the algorithm. Using a naïve approach, to implement a memory

access one can

read all entries of the relevant table, in fixed order, and use just the one needed. This induces

significant slowdown. Goldreich and Ostrovsky [49] showed a generic program transformation

for hiding memory accesses, which is quite satisfactory from a theoretical perspective. However,

its concrete overheads in time and memory size appear too high for most applications.

 The second method is disabling cache sharing. To protect against software-based attacks,

it would suffice to prevent cache state effects from spanning process boundaries. However, prac-

tically this is very expensive to achieve. On a single-threaded processor, it would require flushing

all caches during every context switch. On a processor with simultaneous multithreading, it

would also require the logical processors to use separate logical caches, statically allocated within

the physical cache [50].

 The last and brutal countermeasure against the cache-based attacks is to completely disa-

ble the CPU‟s caching mechanism; the effect on performance would be devastating. An alterna-

Input : a, b

Output : a·b·r

mod n (i.e., A·B·r

-1
 mod n)

 n
-1

 & r
-1

 are pre computed.

Function: MMmult(A,B)

 t = A·B

 m = t · n
-1

 mod r m is always less then r

  0 ≤ m·n < r·n

 u = (t+m·n)/r 0 ≤ t·r
-1

 < n since t = A·B

  0 ≤ t < r·n

Both t and mn are less than n, the addition in GF(2
n
) is

also less than n.

45

tive is to activate a “no-fill” mode where the cache is used but not updated (i.e., eviction is dis-

abled). We are not aware of any processor that provides the necessary facilities [50].

46

5. Related Work

Although there has been a lot of work on effective crypto-algorithms, SCA is a relatively new

subject. Various countermeasures for SCA have been introduced since it first emerged. Using a

SCA-resistant crypto-algorithm might be an easy choice for protecting cryptosystems. However,

these research efforts have mostly been performed on a single-core processor. The multiplication

operation is the most important part of a cryptosystem. With the advent of multi-cores, people

have made some multiplication algorithms for multi-core processors. In RSA/ECC, one useful

algorithm is the Montgomery modular multiplication or simply Montgomery Multiplication

(MM). A lot of work has appeared in the literature related to efficient implementations of MM in

both software and hardware.

 In this section, J. Fan‟s Montgomery Multiplication modular method [24], which has

been implemented on multi-cores will be discussed. To the best of our knowledge, Fan‟s method

is the only implementation on multi-cores as of this writing. Following Fan‟s method, two differ-

ent types of projective coordinates will be discussed. Projective coordinates are used to reduce

the burden of a division operation in ECC. The projective coordinates give the improvement of

performance as described in background work. However, the projective coordinates need a high-

er multiplication to division ratio. To reduce the multiplications, some mixed coordinates tech-

niques are used [25, 46].

5.1. Montgomery Multiplication on Multi-cores

MM is a fundamental operation in many PKC algorithms, such as RSA and ECC. Since the divi-

sion operation in modular reduction is time-consuming, Montgomery [24] proposed a new algo-

rithm that avoids division as discussed in the previous section. However, it is still computational-

ly intensive, which makes it difficult for software implementation.

With the advent of multi-cores in commercial computers including embedded systems,

MM can be accelerated using parallel processing. Fan et al. [26] proposed partitioning the MM

algorithm into tasks and then mapping those tasks to specific cores in order to achieve a high per-

formance. Figure 25 [27] shows a more detailed Montgomery algorithm compared to Figure 14.

This is a version for long word Montgomery multiplication. As discussed in Section 2,

RSA/ECC uses longer bit vectors (e.g., 131 bits over the GF(2
131

)) than the word size of general-

purpose computer systems, i.e., 32 bits or 64 bits. In a typical implementation, operations on

large numbers are performed by breaking the number into multiple words. Thus, MM has the

47

long bit vectors divided into several words. Suppose we want to compute XYR
-1

mod M. First,

X, Y, and M are broken into words, and then MM is performed word by word. The difference

between Figure 19 and Figure 5 is that the Montgomery algorithm in Figure 25 generates a carry

Z. Otherwise, the rest of the operation is the same as the original algorithm.

The main data dependencies in MM using multi-cores are due to the carries generated by

additions. As can be seen in Figure 25, the operation is (zj + (X  yi)j+ (M  T)j + carry zj−1), where

carry zj−1 is the carry generated when computing zj−1. Obviously, xj  yi, for any 0 ≤ i, j ≤ s-1, is

dependent only on the operands X and Y. We can also calculate M  T immediately after the gen-

eration of T.

Function: Radix-2
w
(n-bit) Montgomery modular multiplication [27]

Input: integers M = (ms-1, …, m0)r, X=(xs-1, …,x0)r, Y=(ys-1, …, y0)r,

 where 0 ≤ X,Y < M, r=2
w
, s=n/w, R=r

s
 with gcd(M,r)=1

and M‟ = -M
-1

 mod r

Output: Z = X  Y  R
-1

 mod M

Z = (zs-1, …,z0) r  0

for i= to s-1 do

 T  (z0 + x0  yi)  M‟ mod r

 Zi  (Zi + (X  yi)i + (M  T)i+carry from zi-1)/r

end for

if Z > M then

 Z  Z- M

end if

return Z

Figure 25: Radix-2
w
 (n-bit) MM

 It is therefore desirable to partition the Montgomery algorithm so that carries are loca-

lized within a core. T is generated and distributed to the other cores as shown in Figure 26. The

other cores compute the distributed T. Using this method, Fan et al. increased the performance of

multiplication. Compared to the implementations on a single-core system, the performance can

be improved by a factor of 1.87 and 3.68 when 256-bit modular multiplication is being performed

on a 2-core and 4-core system, respectively [26].

48

CORE-1 CORE-2 CORE-3 CORE-4

T

x0y0 + p0T + z0

x1y0 + p1T + z1

z1

x2y0 + p2T + z2

x3y0 + p3T + z3

z3

x4y0 + p4T + z4

x5y0 + p5T + z5

z5

x6y0 + p6T + z6

x7y0 + p7T + z7

T

Z1

Z

3
Z5

T

x0y7 + p0T + z0

x1y7 + p1T + z1

z1

x2y7 + p2T + z2

x3y7 + p3T + z3

z3

x4y7 + p4T + z4

x5y7 + p5T + z5

z5

x6y7 + p6T + z6

x7y7 + p7T + z7

T

Z1

Z

3
Z5

Figure 26: Fan‟s MM on Multi-cores.

5.2. Montgomery multiplication in GF(2
k
)

Dhem et al. proposed the first timing attack on RSA using MM. They focused on the final sub-

traction performed in MM. They experimentally showed a timing attack by analyzing the ap-

pearance rate of final subtraction correlated with the multiplication of two random inputs. The

experiment showed 17% of multiplication generates the final subtraction. They expected a 512-

bit RSA key to be cracked within a few minutes once 350,000 timing measurements are collected

[36].

 Koç and Acar proposed MM in GF(2
k
) [33]. They removed the final subtraction from

MM by considering the unique characteristics of GF(2
k
), which does not generate a carry. The

algorithm is shown as Figure 24.

5.3. Projective Coordinate in GF(2
k
)

As described in the background work, division is the most expensive operation over GFs. Jebril et

al. showed the effectiveness of projective coordinate systems compared to affine coordinate sys-

tems. According to their experiment, one division has similar workloads with 10 multiplications

in terms of execution times [52]. Therefore, researchers have proposed the various projective

coordinates in order to replace the inversion operations with multiplications [25, 30, 46]. In this

section, we will show two types of projective coordinates; projective coordinates [47] and Jaco-

bian coordinates [30]. The differences with two coordinate systems come from mapping with

affine coordinates, i.e., projective coordinates have the form (x, y) = (X/Z, Y/Z), while Jacobian

coordinates have the form (x, y) = (X/Z
2
, Y/Z

3
). Figure 27 and 28 show an elliptic point addition

and an elliptic point doubling.

49

Figure 27: Projective Coordinates and Mixed Coordinates with Affine systems

As shown in Figure 27, 7 additions, 1 squaring and 16 multiplications are required during

an elliptic point additions, while 5 additions, 4 squaring and 7 multiplications are needed in an

elliptic point doublings. One of the points has 1 as a z-coordinate, then the required field arith-

metic operation is reduced [25]. A scalar multiplication of an elliptic curve point is performed by

the Addition chain as shown in Figure 12, i.e., the intermediate point S is always updated, while

the point P is fixed. Therefore, the point P could be set as (X/1, Y/1). By this method, the re-

quired operations can be reduced from 16 multiplications to 13 multiplications as shown in figure

27. The Jocobian coordinate systems have similar results.

Projective Coordinates (x, y) = (X/Z, Y/Z)

Point Addition

 A = X1·Z2

 B = X2·Z1

 C = A + B

 D = Y1·Z2

 E = Y2·Z1

 F = D + E

 G = C + F

 H = Z1·Z2

 I1 =C·C

 I2 = H·I1

 I3 = I1·C

 I4 = a·I2

 I5 = H·F

 I6 = I5·G

 I24 = I2 + I4

 I = I24 + I4

 X3 = C·I

 Z3 =H·I3

 Y31 = G·I

 Y32 = F·X1

 Y33 = C·Y1

 Y323 =Y32 + Y33

 Y324 = I1·Y323

 Y3 = Y31 + Y324

Point Doubling

 A = X2·Z2

 B1 = Z2·Z2

 B2 = B1·B1

 B3 = X2·X2

 B4 = B3·B3

 B11 = b·B2

 B = B11 + B4

 C = A·B4

 D = Y2·Z2

 E1 = B3 + D

 E = E1 + A

 Z31 = A·A

 Z3 = Z31· A

 X3 = A·B

 Y31 =B·E

 Y3 = C + Y31

 Addition: 7

Squaring: 1

Multiplication: 16

Addition: 5

Squaring: 4

Multiplication: 7

Projective Coordinates (x, y) = (X/Z, Y/Z)

Point Addition

 A = X1·Z2

 C = A + X2

 D = Y1·Z2

 F = D + Y2

 G = C + F

 I1 =C·C

 I2 = Z2·I1

 I3 = I1·C

 I4 = a·I2

 I5 = Z2·F

 I6 = I5·G

 I24 = I2 + I4

 I = I24 + I4

 X3 = C·I

 Z3 =Z2·I3

 Y31 = G·I

 Y32 = F·X1

 Y33 = C·Y1

 Y323 =Y32 + Y33

 Y324 = I1·Y323

 Y3 = Y31 + Y324

Point Doubling

 A = X2·Z2

 B1 = Z2·Z2

 B2 = B1·B1

 B3 = X2·X2

 B4 = B3·B3

 B11 = b·B2

 B = B11 + B4

 C = A·B4

 D = Y2·Z2

 E1 = B3 + D

 E = E1 + A

 Z31 = A·A

 Z3 = Z31· A

 X3 = A·B

 Y31 =B·E

 Y3 = C + Y31

 Addition: 7

Squaring: 1

Multiplication: 13

Addition: 5

Squaring: 4

Multiplication: 7

Special

Case

 Z1 = 1

50

Figure 28: Jacobian Coordinates and Mixed Coordinates with Affine systems

Compared to Projective coordinate systems, Jacobian coordinate systems need one less

multiplication. Similar to Projective coordinate systems, if one point has 1 as a z-coordinate, then

the required multiplications are reduced from 15 to 11 and squaring is also reduced from 5 to 3.

Jacobian Coordinates (x, y) = (X/Z2, Y/Z3)

Point Addition

 A1 = Z2·Z2

 A = X1·A1

 B1 = Z1·Z1

 B =X2·B1

 C = A + B

 D1 = A1·Z2

 D = Y1·D1

 E1 = B1·Z1

 E = Y2·E1

 F = D + E

 G =Z1·C

 H1 = F·X2

 H2 = G·Y2

 H = H1 +H2

 Z3 = G·Z2

 I = F + Z3

 X31 = Z3· Z3

 X311 = a·X31

 X32 = I·F

 X33 = C·C

 X331 = X33·C

 X34 = X311 + X32

 X3 = X34 + X331

 Y31 = I·X3

 Y32 = G·G

 Y322 = H·Y32

 Y3 = Y31 + Y322

Point Doubling

 Z31 = Z2·Z2

 Z3 = X2·Z31

 A = b·Z31

 B = X2 + A

 X31 = B·B

 X3 = X31·X31

 C = Z2·Y2

 D2 = X2·X2

 D1 = Z3 + D2

 E = D·X3

 Y31 = D2·D2

 Y312 = Y31·Z3

 Y3 = Y312 + E

Addition: 7

Squaring: 5

Multiplication : 15

Addition: 4

Squaring: 5

Multiplication: 5

Jacobian Coordinates (x, y) = (X/Z2, Y/Z3)

Point Addition

 A1 = Z2·Z2

 A = X1·A1

 C = A + X2

 D1 = A1·Z2

 D = Y1·D1

 F = D + Y2

 H1 = F·X2

 H2 = C·Y2

 H = H1 +H2

 Z3 = C·Z2

 I = F + Z3

 X31 = Z3· Z3

 X311 = a·X31

 X32 = I·F

 X33 = C·C

 X331 = X33·C

 X34 = X311 + X32

 X3 = X34 + X331

 Y31 = I·X3

 Y322 = H·X33

 Y3 = Y31 + Y322

Point Doubling

 Z31 = Z2·Z2

 Z3 = X2·Z31

 A = b·Z31

 B = X2 + A

 X31 = B·B

 X3 = X31·X31

 C = Z2·Y2

 D2 = X2·X2

 D1 = Z3 + D2

 E = D·X3

 Y31 = D2·D2

 Y312 = Y31·Z3

 Y3 = Y312 + E

Addition: 7

Squaring: 3

Multiplication : 11

Addition: 4

Squaring: 5

Multiplication: 5

Special

Case

 Z1 = 1

51

6. The Proposed Method

Basically, RSA/ECC uses addition chains to reduce the number of multiplications or exponentia-

tions. However, these algorithms have strong data dependencies as discussed in Section 3, which

make multiplications more difficult to parallelize. Fan et al. [25] proposed a parallel Montgom-

ery Algorithm to improve performance. Although their method improves performance, their

study was done using idealistic field sizes that result in the same workload for each core. How-

ever, ECC in real cryptographic systems uses a prime number of bits for the field size, such as

GF(2
131

), GF(2
163

), GF(2
193

) and GF(2
233

), which are recommended by the U.S. Government [39].

In the RSA case, from the RSA factoring challenge [51], some field sizes, i.e., RSA-576 and

RSA-704, result in idle cores. A cryptosystem that uses these field sizes results in uneven work-

loads and in turn causes idle cores, making it vulnerable to power or timing analysis. Therefore, a

counter measure is proposed for SCA. The proposed method is to rearrange point operations with

dummy instructions and parallelize the multiplier which involves distributing the loads equally

across cores to make power analysis difficult.

In order to illustrate the problem of unbalanced load, Figure 30 shows load distribution of

Fan‟s multiplication over GF(2
131

) on four cores with a word size of 32 bits. In the 2
nd

 iteration,

one core has more work than the others because it performs an additional 3-bit multiplication

causing the other three cores to be idle. Even if a cryptosystem uses eight cores, it will have a

similar problem because three of the cores will be idle.

As can be seen in Figure 30, these idle cores could be used in SCA. By finding the occur-

rence of idle cores we can figure out the secret value of di in the addition chain in some RSA or

ECC cases, i.e., RSA-704[51], ECC over GF(2
131

), GF(2
193

), etc. In RSA, we can find the num-

ber of multiplications by observing the occurrence of idle cores and timing. The occurrence of

idle cores can be checked by similar methods with cache analysis, particularly I-cache, as we

mentioned in the section on SCA. We can also figure out the secret value di in ECC by observing

the occurrence of idle cores. Since elliptic curve addition and doubling have been shown for a

different number of field operations, the occurrence pattern is shown differently as described in

Figure 28. This figure showed a modified doubling process in a Jacobian coordinate systems in

Figure 27 after checking for RAW(Read After Write) dependencies.

As shown in Figure 28, the different number of fields operations between Point Addition

and Point Doubling might cause vulnerability to SCA. For example, when we assume each point

operation processed in-order, we can figure out the number of multiplications between additions

52

by checking the I-cache, i.e., the addition might access different cache blocks instead of previous

cache access patterns. Therefore, a 2-2-2-1-5-2 multiplication pattern will show in Point Addition,

while a 2-6-2 pattern will show in Point Doubling. The difference of multiplication occurrences

in Points Operation can also be seen in the projective coordinates system as shown Figure in 27.

Therefore, the attacker can deduce the secret value of di from patterns; If the attacker observed

the doubling pattern twice, then he could deduce the value of di as 1. If he got addition pattern

followed by doubling, then he could guess the value of di as 0. Thus, the elliptic point operations

need to be shown similarly from the attacker. For this purpose, dummy instructions are used. As

we mentioned in section 4, dummy instructions must have same weight. Figure 29(a) shows the

difference between two point operations. As shown in Figure (a), Point doubling has 3 less addi-

tions, 2 more squaring operations, and 6 less multiplications. Thus, 2 squarings in Point doubling

need to be changed into multiplication, i.e., D2 = X2·X2 is substituted with D21=X2·Z1 and

D2=X2·D21, X31=B·B is also substituted with X311 = B·Z1 and X31 = B·X31. Then, Point doubling

arranges field operations as shown Figure 29(b). After arrangement, the appropriate dummies

(multiplication denoted as a Dummy(mul) or addition as a Dummy(+)) are inserted as described

in Figure 29(c).

Figure 29: The Difference of Elliptic curve PA and PD

Jacobian Coordinates

Point Doubling

 Z31 = Z2·Z2

 A = b·Z31

 B = X2 + A

 D21 = X2·1

 D2 = X2·D21

 C = Z2·Y2

 X311 = B·1

 Y31 = D2·D2

 X31 = B·X311

 Z3 = X2·Z31

 X3 = X31·X31

 D1 = Z3 + D2

 D = D1 + C

 E = D·X3

 Y312 = Y31·Z3

 Y3 = Y312 + E

Addition: 4

Squaring: 3

Multiplication: 9

(b)

Jacobian Coordinates (x, y) = (X/Z2, Y/Z3)

Point Addition

 A1 = Z2·Z2

 A = X1·A1

 C = A + X2

 D1 = A1·Z2

 D = Y1·D1

 F = D + Y2

 H1 = F·X2

 H2 = G·Y2

 H = H1 +H2

 Z3 = C·Z2

 I = F + Z3

 X31 = Z3· Z3

 X311 = a·X31

 X32 = I·F

 X33 = C·C

 X331 = X33·C

 X34 = X311 + X32

 X3 = X34 + X331

 Y31 = I·X3

 Y322 = H·Y32

 Y3 = Y31 + Y322

Point Doubling

 Z31 = Z2·Z2

 A = b·Z31

 B = X2 + A

 D2 = X2·X2

 C = Z2·Y2

 X31 = B·B

 Y31 = D2·D2

 X3 = X31·X31

 Z3 = X2·Z31

 D1 = Z3 + D2

 D = D1 + C

 E = D·X3

 Y312 = Y31·Z3

 Y3 = Y312 + E

Addition: 7

Squaring: 3

Multiplication : 11

Addition: 4

Squaring: 5

Multiplication: 5

(a)

Jacobian Coordinates

Point Doubling

 Z31 = Z2·Z2

 Dummy(mul)

 A = b·Z31

 B = X2 + A

 D21 = X2·1

 Dummy (+)

 D2 = X2·D21

 C = Z2·Y2

 Dummy (+)

 X311 = B·1

 Dummy (+)

 Y31 = D2·D2

 X31 = B·X311

 Z3 = X2·Z31

 X3 = X31·X31

 Dummy(mul)

 D1 = Z3 + D2

 D = D1 + C

 E = D·X3

 Y312 = Y31·Z3

 Y3 = Y312 + E

Addition: 4 + 3

Squaring: 3

Multiplication: 9 + 2

(c)

53

Furthermore, each operation performs a long-bit number operation, thus it can also implement

parallel processing like Fan‟s MM. Then, each one may also produce idle cores as shown in Fig-

ure 30. These idle cores may give useful more information than the cache analysis does. By ob-

serving occurrence patterns of idle cores, we can distinguish each field operation since idle cores

will not access I-cache or D-cache for certain periods. By using cache analysis combined with

idle core analysis, we can figure out the secret value d more easily.

 Moreover, the last word of each GF is less than one word size. A smaller-sized multiplier can

be used instead of a full-sized multiplier to reduce power consumption.

CORE-1 CORE-2 CORE-3 CORE-4

32-bit Multiplication

8-bit Multiplication

(3bit)
Idle State

1st

Round

2nd

Round
Idle State Idle State

32-bit Multiplication 32-bit Multiplication 32-bit Multiplication

Figure 30: Multiplication over GF(2
131

) for Word Size 32 bits.

The characteristics of cryptosystems, such as the number of cores and GF size are known

as described in Figure 31, therefore, the multiplier adjuster can be defined for power efficiency

and dummies in Figure 29(c) make analysis more difficult. We propose the idea of a multiplier

adjuster on multi-cores that uses a power-performance improving technique described in Figure

30. Using this technique, we can expect a more power efficient multiplier.

Figure 31: Characteristics of GFs

As shown in Figure 31, GF(2
131

) requires 5 iterations with each iteration performing a 32-

bit operation. In case of a quad-core, the 5
th
 iteration requires execution time to perform a 3-bit

operation causing the rest of the cores to become idle. Similarly, GF(2
163

) requires 6 iterations

and causes two cores to become idle. The last word size is also a 3-bit. Thus, a smaller-sized mul-

tiplier can be used. In general, the relationship between field size and the number of idle cores is

given as

Types GF131 GF163 GF193 GF233 GF239 GF283 GF409 GF571

Required Iterations 5 6 7 8 8 9 1

3

1

8 Required Round 5/3/2/1 6/3/2/1 7/4/2/1 8/4/2/1 8/4/2/1 9/5/3/2 13/7/4/2 18/9/5/3

Idle core 0/1/3/3 0/0/2/2 0/1/1/1 0/0/0/0 0/0/0/0 0/1/3/7 0/1/3/3 0/0/2/6

* Notation : A/B/C/D A : Single core D: Eight cores C: Quad cores B:Dual cores

54

 Number of idle cores 




















s

f

sp

f
p ,

where f is the field size, s the system word size, and p the number of cores. The last word size

can also be defined as

 Size of Last word s
s

f
f 










Section 6.1 describes the parallelization of the original source code described in [38] us-

ing Pthreads to run on multi-cores. Then, Section 6.2 discusses how and what dummy instruc-

tions are assigned during Point operation. Finally, Section 6.3 presents the multiplier adjuster

technique.

6.1. Parallel Implementation of Modular Multiplication

Rosing provided simple code for ECC [50]. He uses a conventional multiplication algorithm.

Rosing ‟s code is actually not implemented in parallel. As shown in Figure 32, the function

poly_mul() consists of the function poly_mul_partial() and poly_div(). The function

poly_mul() gets two inputs: a and b. Then it outputs a * b mod irreducible polynomial. The

function poly_div() returns the quotient and remainder with two inputs: top and bottom.

Figure 32: Original Code – poly_mul() & poly_div()

/* Polynomial multiplication modulo poly_prime. */

void poly_mul(a, b, c) /* c = a*b mod irreducible polynomial */

FIELD2N *a, *b, *c;

{
 DBLFIELD temp;

 FIELD2N dummy;

 poly_mul_partial(a, b, &temp);

 poly_div(&temp, &poly_prime, &dummy, c);

}

void poly_div(top, bottom, quotient, remainder) /* quotient = top/bottom */

DBLFIELD *top; /* remainder = top%bottom */
FIELD2N *bottom, *quotient, *remainder;

55

Figure 33: Original Code – poly_mul_partial()

The function poly_mul_partial(), as shown Figure 33, performs general multiplication with two

inputs: a and b. It returns the value c which is a long-bit number. The overall process is shown

below in Figure 34. poly_mul_partial() gives the result t9 ~ t1, and poly_div() computes the

c4~c0.

x

x

x

...

b4 b3 b2 b1 b0

a0

b4 b3 b2 b1 b0

a1

b4 b3 b2 b1 b0

a4

t9 t8 t7 t6 t5 t4 t3 t2 t1 t0

mod

c4 c3 c2 c1 c0

f (x)

Figure 34: Conventional MM operation

void poly_mul_partial(a, b, c) /* c= a*b */
FIELD2N *a, *b;

DBLFIELD *c;

{
 INDEX i, bit_count, word;

 ELEMENT mask;

 DBLFIELD B;

/* clear all bits in result */

 dblnull(c);

/* initialize local copy of b so we can shift it */

 sngltodbl(b, &B);

/* for every bit in 'a' that is set, add present B to result */

 mask = 1;

 for (bit_count=0; bit_count<NUMBITS; bit_count++)

 {
 word = NUMWORD - bit_count/WORDSIZE;

 if (mask & a->e[word])

 {
 DBLLOOP(i) c->e[i] ^= B.e[i];

 }

 /* multiply copy of b by x */
mul_shift(&B);

/* shift mask bit up */
 mask <<= 1;

/* when it goes to zero, reset to 1 */

 if (!mask) mask = 1; }
}

56

We have used conventional modular multiplication instead of Montgomery Multiplica-

tion, since we want to see the occurrence of the idle core and the effect of dummy instructions.

Suppose modular multiplication is performed on A and B in GF(2
131

), where A = (a4, a3, a2, a1,

a0) and B = (b4, b3, b2, b1, b0).

The result of multiplication T = (t9, t8, t7, t6, t5, t4, t3, t2, t1, t0) consists of the sum of partial prod-

ucts ai × B (0 ≤ i ≤ 5) as described in figure 26. The partial product only affects some part of T;

i.e. a0 × B affects the (t5, t4, t3, t2, t1, t0) in T and a1 × B affects the (t6, t5, t4, t3, t2, t1).

 Since the size of result T is larger than the size of f(x), we can get the result C of A × B

(mod f(x)) by using modular operation.

b4 b3 b2 b1 b0

a0

… t5 t4 t3 t2 t1 t0

mod

c4 c3 c2 c1 c0

f (x)

b4 b3 b2 b1 b0

a4

t9 t8 t7 t6 t5 t4 …

mod

c4 c3 c2 c1 c0

f (x)

x x

...

C= P0 + P1 + … + P4

P0 P4

Figure 35: Parallelizing MM operation

Like Figure 35, the conventional multiplications can be parallelized since the computation of par-

tial products needs only ai (0 ≤ i ≤ 4) and B. Each intermediate result P0 ~ P4 is obtained inde-

pendently. Therefore, we can execute sub multiplication operations in parallel. Using this proper-

ty, the original source code has been modified to fit parallel processing.

 The modified source code from Figure 33 using pThread is shown in Figure 37.

The modified function poly_mul() sets the number of threads. This thread calls the func-

tion mul_sub(). The function mul_sub() is combined with poly_mul_partial() and

poly_div() as shown in Figure 38. The function mul_sub() uses the structure SUB as

shown Figure 36 since pThread cannot accept multiple variables.

Figure 36: Data Structure – SUB

typedef struct {

 INDEX i;

 FIELD2N *a, *b, *c;

} SUB;

57

Figure 37: Modified Code – poly_mul()

Figure 38: Modified Code – mul_sub()

void mul_sub(para)

SUB *para;

{

 INDEX i, t, bit_count;

 ELEMENT mask, ta;

 FIELD2N dummy;

 DBLFIELD B, C;

 t=para->i;

 ta = para->a.e[NUMWORD-t];

 sngltodbl(para->b, &B);

 mask = 1;

 for (bit_count=0; bit_count<WORDSIZE; bit_count++)

 {

 if ((ta) & mask)

 {

 DBLLOOP(i) C.e[i-t] ^= B.e[i];

 }

 mul_shift(&B); /* multiply copy of b by x */

 mask <<= 1; /* shift mask bit up */

 if (!mask) mask = 1; /* when it goes to zero, reset to 1 */

 }

 poly_div(&C, &poly_prime, &dummy, ¶->c);

 dblnull(&C);

}

void poly_mul(a, b, c)

FIELD2N *a, *b, *c;

{

 SUB *input[NUMWORD]

 FIELD2N total,temp[NUMWORD];

pthread_t p_thread[NUMWORD];

 int t, q, status;

 INDEX i;

 for(t=0;t<NUMWORD;t++){

 input[t] = (SUB *) malloc(4 * sizeof(FIELD2N *));

 input[t]->i=t;

 input[t]->a=a;

input[t]->b=b;

input[t]->c=&temp[t];

pthread_create(&p_thread[t], NULL, mul_sub, (void *)input);

 }

 for(q=0;q<NUMWORD;q++){

 pthread_join(p_thread[q], (void *)&status);

 }

 for(t=0;t<NUMWORD;t++){

 SUMLOOP(i) total.e[i] ^= temp[t].e[i];

 }

 copy(&total,c);

}

58

6.2. Inserting Dummy Instruction

Inserting dummy instructions involves simply inserting some dummy functions. However, as we

saw before, the field operation causes idle cores depending on GFs. Full dummy insertion, called

low-level dummy inserting, for every idle core is quite expensive. Low-level dummy inserting

might also be vulnerable to cache analysis where the attacker could figure out the position of

point P in the memory since the point P is not accessed during the Point doubling operations. In

the case of PD-PD, the point P is not accessed during the 32 field operations in Projective coordi-

nate systems, 28 field operations in Jacobian coordinate systems. The low-level dummy inserting

is shown in Figure 39.

CORE-1 CORE-2 CORE-3 CORE-4

32-bit Multiplication

8-bit Multiplication

(3bit)

Dummy

Inserting

1st

Round

2nd

Round

Dummy

Inserting

Dummy

Inserting

32-bit Multiplication 32-bit Multiplication 32-bit Multiplication

Figure 39:Low-level Dummy inserting over GF(2
131

) for word size 32 bits.

Compared to low-level inserting, we propose high-level dummy inserting. Point arith-

metic operations are quite different as shown in Figure 28. Thus, as mentioned before, the differ-

ent characteristics can be used in SCA by the attacker. Figure 40 shows the high-level dummy

inserting techniques.

59

 As described in Figure 40, 5 dummy instruction sets (2 field multiplication dummy sets and 3

field addition sets) are required in high-level dummy inserting. The point P will be accessed in

dummy instructions. Therefore, the attacker cannot find the difference between PA and PD. To

make same weight with PA operations, we inserted two types of dummy instructions into PD, i.e.,

Dummy1 and 5 have multiplication whereas dummy 2 to 4 have addition chain. The modified is

source code shown in Figure 41.

Point Addition

 A1 = Z2·Z2

 A = X1·A1

 C = A + X2

 D1 = A1·Z2

 D = Y1·D1

 F = D + Y2

 H1 = F·X2

 H2 = G·Y2

 H = H1 +H2

 Z3 = C·Z2

 I = F + Z3

 X31 = Z3· Z3

 X311 = a·X31

 X32 = I·F

 X33 = C·C

 X331 = X33·C

 X34 = X311 + X32

 X3 = X34 + X331

 Y31 = I·X3

 Y322 = H·Y32

 Y3 = Y31 + Y322

Point Doubling

 Z31 = Z2·Z2

 Dummy1(mul)

 A = b·Z31

 B = X2 + A

 D21 = X2·1

 Dummy 2(+)

 D2 = X2·D21

 C = Z2·Y2

 Dummy 3(+)

 X311 = B·1

 Dummy4 (+)

 Y31 = D2·D2

 X31 = B·X311

 Z3 = X2·Z31

 X3 = X31·X31

 Dummy5(mul)

 D1 = Z3 + D2

 D = D1 + C

 E = D·X3

 Y312 = Y31·Z3

 Y3 = Y312 + E

Figure 40: High-level Dummy inserting

60

Figure 41: Modified Code – Jpoly_edbl()

6.3. Multiplier Adjuster

Inserting random instructions causes extra power consumption. In order to achieve a power effi-

cient implementation, we propose the Adjusted Multiplier for the last iteration in GF. The moti-

vation behind the Adjusted Multiplier is that the last iteration is always less than the register word

size. Thus, multiplication may be performed using only a half- or quarter-sized multiplier.

For example, if we use GF(2
131

) in a 32-bit quad-core system, dividing the field size by

the register word size results in the last word to be 3 bits. Thus, a quarter-size a multiplier can be

used to reduce power and increase performance since the 32-bit multiplier scans all operands

even though the leading zeros only exist. Figure 42 shows Modified Source code from previous

void Jpoly_edbl (dummy, p1, p3, curv)

JPOINT *dummy, *p1, *p3;

CURVE *curv;

{

 INDEX i;

// for Jacobian coordinate system//

 FIELD2N A,B,X31,C,D,D2,,D21,D1,E,Y31,Y312,Z31,X311;

 FIELD2N Dummy1, Dummy2, Dummy3, Dummy4, Dummy5;

 int q, thid;

 poly_mul(&p1->z, &p1->z, &Z31);

 //dummy1

 poly_mul(&dummy->x, &p1->z, &Dummy1);

 poly_mul(&curv->a6, &Z31, &A);

 SUMLOOP (i) B.e[i] = p1->x.e[i] ^ A.e[i];

 poly_mul(&p1->x, &dummy->z, &D21);

 //dummy2

 SUMLOOP (i) Dummy2.e[i] = p1->x.e[i] ^ Dummy1.e[i];
 poly_mul(&D21, &dummy->z, &D2);

 poly_mul(&p1->z, &p1->y, &C);

 //dummy3

 SUMLOOP (i) Dummy3.e[i] = Dummy1.e[i] ^ dummy->x.e[i];
 poly_mul(&B, &dummy->z, &X311);

 //dummy4

 SUMLOOP (i) Dummy4.e[i] = Dummy3.e[i] ^ Dummy2.e[i];

 poly_mul(&D2, &D2, &Y31);

 poly_mul(&B, &X311, &X31);

 poly_mul(&p1->x, &Z31, &p3->z);

 poly_mul(&X31, &X31, &p3->x);

 // Dummy5

 poly_mul(&X31, &p3->x, &Dummy5);

 SUMLOOP (i) D1.e[i] = D2.e[i] ^ p3->z.e[i];

 SUMLOOP (i) D.e[i] = D1.e[i] ^ C.e[i];

 poly_mul(&D, &p3->x, &E);

 poly_mul(&Y31, &p3->z, &Y312);

 SUMLOOP (i) p3->y.e[i] = Y312.e[i] ^ E.e[i];

}

61

source code in Figure 38. The bit_count is modified for the last word multiplication. As de-

scribed, the modified source code determines the number of iterations by bit_count. It reduces

the computation workloads.

Figure 42: Multiplier Adjuster

void mul_sub(para)

SUB *para;

{

 INDEX i, t, bit_count, word_count;

 int q;

 ELEMENT mask, ta;

 FIELD2N a,b, dummy, c;

 DBLFIELD B, C;

 copy(para->a, &a);

 t=para->i;

 ta = a.e[NUMWORD-t];

 copy(para->b, &b);

 sngltodbl(&b, &B);

// multiplier adjuster

 word_count = WORDSIZE

 if (t == NUMWORD) word_count= NUMBITS - WORDSIZE*(t-1);

 mask = 1;

 for (bit_count=0; bit_count<word_count; bit_count++)

 {

 if ((ta) & mask)

 {

 DBLLOOP(i) C.e[i-t] ^= B.e[i];

 }

 mul_shift(&B); /* multiply copy of b by x */

 mask <<= 1; /* shift mask bit up */

 if (!mask) mask = 1; /* when it goes to zero, reset to 1 */

 }

 poly_div(&C, &poly_prime, &dummy, &c);

 SUMLOOP(i) para->c->e[i] = c.e[i];

 dblnull(&C);

 sesc_exit(0);

}

62

7. Simulation Study

This section discusses the simulator, experimental method, and environment parameters. A simu-

lator is an important component of an architectural study. There are two types of simulators; full-

system simulators and application-only simulators. Although full-system simulators are prefera-

ble, server class workloads are difficult to run on the simulators because they require simulations

of all aspects of a computer system, including OS, networking, storage, I/O, etc. On the other

hand, application-only simulators can easily verify application performance on a single compu-

ting environment.

Many simulators have been used in computer architecture research. These simulators in-

clude Wattch [21], SimpleScalar [22], and Simics [23]. Each of these simulators has its own li-

mitations. Wattch is an architectural-level power analysis tool that runs on top of other microarc-

hitecture simulators. SimpleScalar does not support multi-cores, but it does have support for mul-

tithreading. Although Simics allows users to simulate multi-core and multithreading, it is pro-

prietary and has limitations for evaluating power. Therefore, we used SuperESCalar (SESC) si-

mulator [20] for evaluating performance and power of our target system. SESC provides a cycle-

accurate timing model using a MIPS Interpreter (MINT) for functional simulation. It also allows

power evaluation of multi-cores and multithreading. SESC is an event-driven simulator and the

actual instructions are executed by an emulation module using MIPS Instruction Set Architecture

(ISA).

The purpose of the simulation study is to analyze power consumption characteristics of

different methods of preventing side-channel attacks on multi-core based cryptographic systems.

7.1. Simulation Environment

SESC models MIPS R10K microprocessor [53] with a variety of options including the number of

CPUs with either in-order or out-of-order execution, operating frequencies and memory configu-

rations. The MIPS 10K microprocessor has separate 32 KB I-Cache and D-Cache. It also has L2

cache ranging in size from 512 KB to 8 MB. A multiprocessor system can be created with up to

four processors by using a cluster bus configuration as shown in Figure 43. A Cluster bus is

created by attaching the system interfaces of up to four R10K processors with an external agent

(called the clustering coordinator). The clustering coordinator is responsible for managing the

flow of data within the cluster. For embedded systems, the most popular processor is the ARM

63

processor. Since SESC does not support ARM processors, the simulation parameters had to be

modified for an embedded ARM processor.

R10K R10K

Cluster

Coordinator

R10K R10K

To Other system

Resource

Cluster Bus

Secondary

Cache

Secondary

Cache

Secondary

Cache

Secondary

Cache

Figure 43: MIPS R10K multiprocessor configuration using the cluster bus

Figure 43 shows the architectural layout used in the simulation study, which are similar to the

ARM11MP system [34]. As shown in Figure 44, the ARM 11MP system also supports up to four

cores. The Snoop Control Unit (SCU) has a similar function to Cluster Coordinator. I-Cache and

D-Cache are separated. Cache size is configured from 16 KB to 64 KB. However, ARM 11MP

accesses L2 cache through the Advanced eXtensible Interface (AXI), while R10K core has its

own L2 cache interface. Therefore, SESC can be similarly configured to model ARM 11MP.

ARM MP11

Cores

ARM MP11

Cores

ARM MP11

Cores

ARM MP11

Cores

Snoop Control Unit(SCU)

AXI

Read/Write 64-bits Bus

AXI

Read/Write 64-bits Bus

Figure 44: ARM 11MP processor Configuration

64

Figure 45: Configuration file in SESC(sesc.conf)

Although ARM11MP supports only up to four cores, the number of cores in our simulation study

goes up to eight. SESC uses .conf file to configure its simulation environment as shown in Figure

45. In our experiment, we modify the number of cores, and cache size. The other parameters

remain are unchanged from the default values. In our simulation, we have set the number of

cores as a single-core, clock frequency of 620 MHz and L1 I/D-Cache as 32 KB as described in

Figure 45. In order to test a dual-core environment, the number of cores is changed (procsPer-

Node) to 2 in sesc.conf.

7.2. SESC API

The source code for our experiment was obtained from [38], and parallelized to run on multi-

cores as well as modified to work with the SESC simulator. We have also modified the multipli-

cation operation for the last-word in GF(2
k
).

procsPerNode = 1 /* number of cores */

cacheLineSize = 32

⋮
###############################

clock-panalyzer input #

###############################

[techParam]

clockTreeStyle = 1 # 1 for Htree or 2 for balHtree

tech = 70 # nm

frequency = 620e6 # Hz

skewBudget = 20 # in ps

⋮
##############################

MEMORY SUBSYSTEM #

##############################

instruction source

[IMemory]

deviceType = 'icache'

size = 32*1024

assoc = 2

 ⋮
data source

[DMemory]

deviceType = 'cache'

size = 32*1024

⋮

65

Figure 46 shows a simple parallel program using Pthreads. The program creates 5

threads with each thread having a unique thread id and generates “Hello Beaver!” as output.

#include <pthread.h>

#include <stdio.h>

#define NUM_THREADS 5

void *print_hello_beaver(void *threadid)

{

 printf(“\n %d: Hello Beaver!\n”, threaded);

 pthread_exit(NULL);

}

int main()

{

 pthread_t threads(NUM_THREADS);

 int i;

 for (i = 0; i < NUM_THREADS; i ++) {

 printf(“Creating thread %d\n”,i);

 pthread_create(&threads[i], NULL, print_hello_beaver, (void *) i);

 }

 pthread_exit(NULL);

}

Figure 46: A Pthreads program

In order to run this program in SESC, some modifications are needed. First, the program needs to

use <sescapi.h> instead of <pthread.h>. Then, all thread related functions should be replaced

with the functions provided by SESC API. Figure 47 shows SESC API and its relation to

Pthreads and the SESC version of the program Hello Beaver!. The sesc_init() function initializes

the threads library and prepares the thread creation. sesc_init() needs to be executed before

threads are created. The SESC uses sesc_spawn() function instead of pthread_create() to create

threads. The other functions are described in Figure 47.

66

SESC API

sesc_init();

: initialize the library and prepare thread creation

sesc_spawn();

: create threads, allocates each thread to

a particular processor

sesc_wait();

: block processing until threads activation is

completed

sesc_exit();

: terminates the current thread activated.

Pthread function

none

pthread_create();

pthread_join();

pthread_exit();

#include “sescapi.h”

#include <stdio.h>

#define NUM_THREADS 5

void *print_hello_beaver(void *threadid)

{

 printf(“\n %d: Hello Beaver!\n”, threaded);

 sesc_exit(0);

}

int main()

{

 int i;

 sesc_init();

 for (i = 0; i < NUM_THREADS; i ++) {

 printf(“Creating thread %d\n”,i);

 sesc_spawn((void *) *print_hello_beaver, (void *) i, 0);

 }

 pthread_exit(NULL);

 sesc_exit(0);

}

Figure 47: SESC version of threading program

67

7.3. Simulation Methods

Each ECC operation using Addition Chain requires one point-doubling operation, and either one

or no point-addition operation depending on the secret key values. We can assume that two

point-doubling and one point-addition operations are used for every two bits. Furthermore, each

point operation needs different field operations depending on the coordinate system. Table 4

shows the required number of field operations for each of the following coordinates: Affine, Clas-

sical projective and Jacobian projective coordinate system [52]. Therefore, each k-bit operation

needs k point-doubling and k/2 point-addition for a simple elliptic scalar multiplication. There-

fore, 3k (k * 2 multplication per point-doubling, k/2 * 2 multiplication per point-addition) multip-

lication are required in Affine coordinates and 19k in Mixed Jacobian coordinates. Thus, the

number of multiplications is different depending on a coordinates system. In our experiment, we

have simulated scalar multiplications on Mixed Jacobian coordinates, which require less multipli-

cations than the others. For the purpose of comparing GFs, we simulate the secret values d from

1 to 99 for all cases. To simulate effectiveness of the Multiplier adjuster scheme, we have chosen

GF(2
131

), GF(2
163

), GF(2
193

) and GF(2
233

), which causes different numbers of cores to be idle in

an eight-core system. All GFs used in the simulation study are recommended in ECC by the U.S.

Government [39]. The results are analyzed in terms of performance, power, energy, and energy-

delay product based on the following three cases: (1) fixed size word multiplier without dummy

instructions, i.e., the baseline case; (2) a fixed size word multiplier with dummy instructions; and

(3) a multiplier adjuster with dummy instructions.

Table 4: The number of field operations on each coordinates systems

Multiplication(PA/PD)

(include Squaring)
Addition(PA/PD) Division(PA/PD)

Affine Coordinates

(x, y)
2/2 9/6 1/1

Projective Coordinates

(X/Z,Y/Z)
17/11 7/5 0/0

Mixed Projective Coordinates

(X/Z,Y/Z)
14/11 7/5 0/0

Jacobian Coordinates

(X/Z2,Y/Z3)
20/10 7/4 0/0

Mixed Jacobian Coordinates

(X/Z2,Y/Z3)
14/10 7/4 0/0

 *PA: Point Addition PD: Point Doubling

68

7.4. Simulation Results

Figure 48: Performance of GFs

Figure 48 shows the performance of GFs on a single-core and different multi-core configurations.

Execution times compared to a single-core for all GFs improve by a factor of 1.64 ~ 1.75, 2.42 ~

2.79, and 2.6 ~ 4.06 when scalar multiplication is performed on dual-cores, quad-cores, and eight-

cores, respectively. As shown Figure 48, overhead for dummy instructions causes 6.6 ~ 8.6 %

and 7.6 ~ 8.8% increase in execution time when dummy instructions are inserted with and with-

out the multiplier adjuster, respectively.

For GF (2
131

), improvement from quad-cores to eight cores is smaller than other GFs.

This is because of the characteristics of this GF, i.e., the 5
th
 iteration of GF(2

131
) requires just a 3-

bit multiplication in the 2
nd

 round and the other three cores remain idle. Thus, the time required

to complete a field operation depends on the last iteration.

(a) GF(2
131

) (b) GF(2
163

)

(c) GF(2
193

) (d) GF(2
233

)

69

Figure 49: Instantaneous Power of GFs

Figure 49 show that instantaneous power of each GF is larger on multi-cores when compared to

single cores. The power of all GFs increased by a factor of 1.76 ~1.83, 2.92 ~ 3.02 and 4.07 ~5.2

on dual-cores, quad-cores, and eight-cores, respectively. However, the difference among all three

cases was only 0.001 ~ 0.03 watts depending on the GFs. Thus, the effect of the dummy instruc-

tions or the multiplier adjuster is negligible.

(a) GF(2
131

) (b) GF(2
163

)

(c) GF(2
193

) (d) GF(2
233

)

70

Figure 50: Energy of GFs

Figure 50 shows the energy of GFs, which increased by a factor of 1.04 ~ 1.06, 1.12 ~ 1.16 and

1.27 ~ 1.56 for dual-cores, quad-cores, and eight-cores respectively. Furthermore, as shown in

Figure 50, the overhead of dummy instruction causes a 6.7~8.7% and 8.0~8.7% increase in ener-

gy with and without the multiplier adjuster, respectively.

These results may lead one to believe that multi-cores are not as power-efficient as a sin-

gle-core. As discussed in the background, two different systems can have equivalent energy con-

sumption even though one system performs better than the other. Therefore, the system evalua-

tion should be based on both performance and energy. Thus, we use the energy-delay product

(EDP) for system evaluation.

(a) GF(2
131

) (b) GF(2
163

)

(c) GF(2
193

) (d) GF(2
233

)

71

Figure 51: Energy-Delay Product of GFs

EDP is also called power-performance. As shown in Figure 51, EDP for all GFs except GF(2
131

)

is reduced by a factor of 0.59 ~ 0.64, 0.39 ~ 0.49 and 0.31 ~ 0.46 on dual-cores, quad-cores, and

eight-cores, respectively. GF(2
131

) causes three idle cores for each iteration in each round. Note

that only GF(2
131

) have rounds with three idle iterations. All other GFs do not have this situation

because they have less than (p-1) idle core for every round. As shown Figure 50, the overhead of

dummy instructions causes 14.7~18.0% and 16.5 ~17.8% increase in execution time with and

without the multiplier adjuster, respectively.

(c) GF(2
193

)

(a) GF(2
131

) (b) GF(2
163

)

(d) GF(2
233

)

72

8. Future work & Conclusion

Our experiment shows that increasing the number of cores does guarantee the increase of perfor-

mance even though there are some idle cores causes by data dependencies. Furthermore, rear-

rangement of PD operation with dummy instructions can provide the appropriate protection from

SCA, i.e., Timing Analysis, Power Analysis and Cache Attack. Overheads which are cause by

rearrangement of this technique can be reduced by a multiplier adjuster. In this thesis, we cov-

ered only one possibility for SCA on multi-cores. Therefore, more research is needed to find out

other weakness of SCA on multi cores as well as to find a way to reduce data dependencies which

cause vulnerabilities for SCA and Power-performance degradation. Also, we implemented mul-

tiplier adjuster at the software level. As with adaptive cache, it needs to be implemented in hard-

ware or at the architectural level as we described in the background work.

73

BIBLIOGRAPHY

 [1] Data Encryption Standard (DES).

http://en.wikipedia.org/wiki/Data_Encryption_Standard.

 [2] W. Stalling. Cryptography and Network Security, Principles and Practice, 2
nd

 Ed. Pren-

tice Hall, 1998.

 [3] J. F. Kurose, and K. W. Ross. Computer Networking, A Top-Down Approach Featuring

the Internet, 3
rd

 Ed. Addison Wesley, 2005.

 [4] R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining Digital Signatures

and public-key Cryptosystems. Communications of the ACM, volume 21, issue 2, pages

120-126, 1978.

 [5] Riverst-Shamir and Adleman Scheme (RSA). http://en.wikipedia.org/wiki/RSA

 [6] N. Koblitz, A. Menezes, and S. Vanstone. The State of Elliptic Curve Cryptography.

Designs, Codes and Cryptography, volume 19, issue 2, pages 173 -193, March 2000.

 [7] SEC1. Elliptic Cruve Cryptography, Standards for Efficient Cryptography Group.

Available at http://www.secg.org

 [8] Hasse's theorem on elliptic curves. Wikipedia. Available at

http://en.wikipedia.org/wiki/Hasse%27s_theorem_on_elliptic_curves

 [9] M. Morales-Sandoval and C. Feregrino-Uribe. On the Hardware Design of an Elliptic

Curve Cryptosystem. Fifth Mexican International Conference in Computer Science

(ENC‟04), pages 64-70, 2004.

[10] B. Schneier. Applied Cryptography: Protocols, Algorithms, and Source Code in C. 2nd

Ed.

 Willey, 1996.

[11] K. Randall and Nichols. ICSA Guide to Cryptography. McGraw Hill, 1999.

[12] W. Diffie and M. E. Hellman. New Directions in Cryptography. IEEE Transactions on

Informa-tionTheory, volume IT-22, November 1976

[13] Ç. K. Koç. ECE 575 Data Security & Cryptography. 2004 Class Hand out available at

http:/islab.oregonstate.edu/koc/ece575/

[14] P. C. Kocher. Timing Attacks on Implementations of Diffie–Hellman, RSA, DSS, and

Other Systems. Advances in Cryptology - CRYPTO ’96. pages 104-113, Lecture Notes

in Computer Science, Springer-Verlag, 1996.

[15] P. C. Kocher, J. Jaffe, B. Jun. Differential Power Analysis. Advances in Cryptology –

74

CRYPTO ’99. pages 388-397, Lecture Notes in Computer Science, Springer-

Verlag,1999.

[16] K. Tiri and P. Schaumont. Changing the odds against Masked Logic. Selected Areas of

Cryptography (SAC), Lecture Notes Computer Science, Springer-Verlag, 2006.

[17] T. Mudge. Power: a first class design constraint. IEEE computer, volume 34, issue 4,

pages 52-57, April, 2001.

[18] R. E. Grant and A. Afsahi. Power-performance efficiency of asymmetric multiproces-

sors for multi-threaded scientific applications. Parallel and Distributed Processing

Symposium, IPDPS 2006. 20th International, pages 8, April, 2006.

[19] El-Badawy and El-Sayed A. Proposed Elliptic Curve for Counter-Measuring both Sign

Change

 Fault Attacks and Side Channel Attacks. Radio Science Conference, NRSC 2006. Pro-

ceedings of the Twenty Third National, Pages1-7, March 2006.

[20] J. Renau et al., SESC simulator. available at http://sesc.sourceforge.net/, Jan, 2005.

[21] D. Brooks, V. Tiwari, and M. Martonosi. Watthch: A Framework for architectural-level

power analysis and Optimizations. International Symposium on Computer Architecture

(ISCA), 2000

[22] T. M. Austin. SimpleScalar. available at http://www.simplescalar.com/

[23] Simics. available at http://www.virtutech.com/

[24] P. Montgomery,“Modular multiplication without trial division”., Mathematicis of Com-

putation, 44(170) p519-512, 1985

[25] J. Fan, K. Sakiyama and I. Verbauwhede, “Elliptic curve cryptography on Embedded

Multicore Systems.”,In Workshop on Embedded Systems Security - WESS 2007, pp. 17-

22, 2007

[26] J. Fan, K. Sakiyama and I. Verbauwhede, “Montgomery modular multiplication Algo-

rithm for Multi core Systems”, In proceedings of the IEEE Workshop on Signal

Processing Systems: Design and Implementation (SIPS 2007), IEEE, 2007.

[27] Ç. K. Koç, T. Acar and B. S. Kaliski. Analyzing and comparing Montgomery multipli-

cation algorithms. IEEE Micro, volume 16, pages 26-33, 1996

[28] J. L. Hennessy and D. A. Patterson. Computer Architecture: A quantitative Approach 3
rd

Ed. Mogarn Kaufman, 2003

[29] Introduction to Parallel Computing. Available at

http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=4275097
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=4275097

75

https://computing.llnl.gov/tutorials/parallel_comp

[30] G. Blake, Seroussi and N. Smart. Elliptic curves in Cryptography, Cambridge Universi-

ty Press,

 1997

[31] Venkatachalam. Power Reduction Techniques For Microprocessor Systems. ACM Com-

puting Surveys, September 2005

[32] M. Powell, S-H. Yang, B. Falsafi, K. Roy, and T. N. Vijaykumar. Reducing leakage in a

high-performance deep-submicron instruction cache. IEEE Trans. VLSI Syst. volume 9,

issue 1, pages 77–90. 2001.

[33] Ç. K. Koç and T. Acar. Montgomery Multiplication in GF(2
k
), Designs, Codes and

Cryptography, Volume 14 , Issue 1, April 1998.

[34] ARM11MP. Available at http://www.arm.com

[35] S. Hisayoshi, S. Daniel, and T. Tsuyoshi. Exact Analysis of Montgomery Multiplication.

Progress in Cryptology - INDOCRYPT 2004. 2004.

[36] J. Dhem, F. koeune, P. Leroux, P. Mestre, J. Quisquater and J. Willems. A practical

Implementation of the timing attack. CARDIS 1998, LNCS 1820, pages 167-182, 2002.

[37] M. Stefan, P. Thomas and G. M. Berndt. Side-Channel Leakage of Masked CMOS

Gates. Topics in Cryptology – CT-RSA 2005, 2005.

[38] M. Rosing. Implementing Elliptic curve cryptography. Manning, 1999.

[39] FIPS 186-2, Digital signature Standard. Federal Information Processing Standards Pub-

lication 186-2, available at http://csrc.nist.gov/, 2000.

[40] P. Mishra, N. Dutt and A. Nicolau. Technical Report #01-06: A Study of Out-of-Order

Completion for the MIPS R10K Superscalar Processor. University of Irvine, 2001.

[41] Ç. K. Koç. Timing Attacks on Implementations of Diffi-Hellman, RSS, DSS and Other

systems. Advances in Cryptology –CRYPTO ‘96, Lecture Notes Computer Science,

Springer-Verlag, 1996.

[42] J. A. Muir. Techniques of Side Channel Cryptanalysis, Master of Math Thesis. Univer-

sity of Waterloo, 2001.

[43] IEEE P1363/ Draft 13, IEEE Standard Specification for Public-Key Cryptography, An-

nex A, IEEE, 1999.

[44] J. A. Ambrose, R. G. Ragel, and S. Parameswaran. RIJID: Random Code Injection to

Mask Power Analysis based Side Channel Attacks. Design Automation Conference,

DAC '07. 44th ACM/IEEE, 2007.

http://www.springerlink.com/content/ubc3b1ebjb5y/?p=790a4c76592b4ed5b382cb04286905bb&pi=0
http://www.springerlink.com/content/h04wuru6kqb6/?p=7996af6ff473449494fbd4cfe7b23cf0&pi=0

76

[45] D. Page. Theoretical Use of Cache Memory as a Cryptanalytic Side-Channel. Technical

Report CSTR-02-003, Department of Computer Science, University of Bristol, June

2002.

[46] T. F. Al-Somani, M. K. Ibrahim and A. Gutub. Highly Efficient Elliptic Curve Crypto-

processor with Parallel GF(2
m
) Field Multipliers. Journal of Computer Science 2(5),

pages 395-400, 2006.

[47] O. Aciçmez. Advances in Side channel Cryptosystem Cryptanalysis: Micro Architectur-

al Attacks. Ph.D Thesis of EECS, Oregon State University, 2006

[48] C. Percival. Cache missing for fun and profit. BSDCan 2005, Ottawa, 2005.

[49] O. Goldreich, R. Ostrovsky, Software protection and simulation on oblivious RAMs,

Journal of the ACM, vol. 43 no. 3, pages 431–473, 1996

[50] D. A. Osvik, A. Shamir and E. Tromer.

Cache Attacks and Countermeasures: The Case

of AES. Topics in Cryptology – CT-RSA 2006, Lecture Notes Computer Science, Sprin-

ger-Verlag, 2006.

[51] RSA Challenge Numbers. available at http://

http://web.archive.org/web/20061209135708/http://www.rsasecurity.com/rsalabs/node.a

sp?id=2093

[52] I. H. Jebril, R. Salleh, and Al-Shawakbeh. Efficient Algorithm in Projective Coordi-

nates for ECC over GF(2
n
). International Journal of The computer, the Internet and

Management Vol. 15#1, pages 43-50, 2007.

[53] MIPS R10000 Microprocessor User‟s Manual, V.2. Available at

http://techpubs.sgi.com/library/manuals/2000/007-2490-001/pdf/007-2490-001.pdf

[54] J. A. Ambrose, R. G. Ragel, and Sri Parameswaran. RIJID: Random Code Injection to

Mask Power Analysis Based Side Channel Attacks. DAC 2007, 2007.

http://techpubs.sgi.com/library/manuals/2000/007-2490-001/pdf/007-2490-001.pdf

	ABSTRACT
	ACKNOWLEDGEMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	1. Introduction
	2. Cryptography
	2.1. Symmetric Key Cryptography
	2.2. Public Key Cryptography
	2.3. Hybrid Cryptosystem
	2.4. Example of Crypto-algorithm
	2.4.1. Data Encryption Scheme (DES)
	2.4.2. Rivest, Shamir, and Adleman (RSA) Scheme
	2.4.3. Elliptic Curve Cryptography (ECC)

	3. Background
	3.1. Mathematical Concepts Used in Cryptosystem
	3.1.1. Fundamental Mathematical Operations
	3.1.2. Addition Chain
	3.1.3. Montgomery’s Method
	3.1.4.Chinese Reminder Theorem (CRT)
	3.1.5. Euclid’s Algorithm
	3.1.6. Projective Coordinate

	3.2. Power Model
	3.2.1. Power Reduction at the Circuit Level
	3.2.2. Power Reduction at the Architectural Level
	3.2.3. Power Reduction of Software Level

	3.3. Parallel Computing Architectures
	3.3.1. Single instruction stream, single data stream (SISD)
	3.3.2. Single instruction stream, multiple data stream (SIMD)
	3.3.3. Multiple instruction streams, single data stream (MISD)
	3.3.4. Multiple instruction streams, multiple data stream (MIMD)

	4. Side Channel Attack (SCA)
	4.1. SCA Methods
	4.1.1. Timing Analysis
	4.1.2. Power analysis
	4.1.3. Micro-architecture Analysis

	4.2. SCA Countermeasures
	4.2.1. CM for Timing Analysis
	4.2.2. CM for Power analysis
	4.2.3. CM for Micro-Architecture Analysis

	5. Related Work
	5.1. Montgomery Multiplication on Multi-cores
	5.2. Montgomery multiplication in GF(2k)
	5.3. Projective Coordinate in GF(2k)

	6. The Proposed Method
	6.1. Parallel Implementation of Modular Multiplication
	6.2. Inserting Dummy Instruction
	6.3. Multiplier Adjuster

	7. Simulation Study
	7.1. Simulation Environment
	7.2. SESC API
	7.3. Simulation Methods
	7.4. Simulation Results

	8. Future work & Conclusion
	BIBLIOGRAPHY

