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ESTIMABILITY CONSIDERATIONS FOR N-WAY CLASSIFICATION
EXPERIMENTAL ARRANGEMENTS WITH MISSING
OBSERVATIONS

I. INTRODUCTION

This dissertation is concerned with the problem of determining
estimability of linear parametric functions in classification models.
The two estimability problems at which it specifically aims are: the
problem of determining whether the design matrix is of maximal rank
(i.e., all cell expectations are estimable); and in the event that the
design matrix is not of maximal rank, the problem of finding a basis
for the subspace of estimable parametric functions involving any one
particular effect. The contributions of this dissertation to the solution
of these problems are several procedures or algorithms for conven-
iently obtaining spanning sets for certain subspaces of estimable
parametric functions. Tools such as generalized inverses (Rao,

1962) and column-reduction (Bradley, 1968) are already available for
attacking such problems, but their implementation is tedious when
done by hand and is subject to round-off error when done by computer.
It is hoped that the algorithms which are presented here prove to be
more efficient and more accurate.

For some classification models with incomplete incidence
patterns, the statistician l;nows beforehand that the design matrix is

of maximal rank. Fractionally replicated experimental designs,



Latin squares and Graeco-Latin squares are examples of such cases.
However, it may happen that missing observations occur by accident,
so that the statistician is unsure whether the design matrix is of
maximal rank or not. The design matrix being of less than maximal
rank means not all the usual parametric functions will be estimable.
It is important then to find out which ones are estimable. Ignoring
such considerations will lead to incorrect degrees of freedom, incor-
rect hypothesis tests, and attempts to invert singular matrices.

The estimability problem described briefly above has been of
concern to statisticians for many years.

Bose (1949) seems to have been the first writer to rigorously
attack the problem. For an adldit'we two-way classification model
(block by treatment, with arbitrary incidence) Bose intfoduced the
notion of connectedness, and via this concept answered the question
of whether every treatment contrast is estimable. In Bose's termi-
nology a treatment a, is said to be associated with a block B, if
the treatment is contained in the block ﬁj i.e., there is at least one
observation in the (i,j) subclass. Two treatments, two blocks, or
a treatment and a block are said‘ to be connected if it is possible to
pass from one to the other by means of a chain consisting alternately
of blocks and treatments such that any two adjacent members of the
chain are associated. And a design is said to be a connected design if

every block and treatment of the design is connected to each other.



Bose (1949) then proved that the additi;re two -way model is connected
if and only if every treatment contrast is estimable.

Weeks and Williams (1964) treated the additive N-way classifica-
tion model. They defined the design points of such a model to be
connected if all simple contrasts (i.e., differences of two levels of the
same factor) are estimable, and defined two design points to be nearly
identical if the N-tuples corresponding to them are equal in all except
one component. Using the idea of nearly identical design points,
Weeks and Williams described a procedure for determining connected-
ness. However, as Weeks and Williams (1965) pointed out "m their
errata, their condition for data to be connected is sufficient but not
necessary. This is easily seen by considering an additive three-way

model

=u+a ¥ ,
E(Y.ljk) bta ﬁj+Yk

where i=1,2, j=1,2, and k =1,2 and with data occurring in
cells (1,1,2), (2,1,1), (2,2,2), and (1,2,1). This is a 1/2 replica-
tion of a 23 factorial. No pair of these observations are nearly
identical, but a; - a,, ﬁl - 62’ Y, - Y, are estimable. For

instance, we can write Yy~ Y, as:

1
(- 5 L (+a +By +y,) - (wha B, +y))

Huta, +B,+y,) - (wta,+8 v )]



Therefore the data in the above model is connected, but have no
property of being nearly identical, so that Weeks and Williams' proce-
dure fails to provide any information.

Srivastava and Anderson (1970) also discussed the concept of
connectedness in additive N-way classification models. Their defini-
tion of connectedness is equivalent to that of Weeks and Williams
(1964) but stated in a slightly different form as: ''the design is said to
be completely connected if and only if all the linear contrasts within
each factor are estimable.'" They defined a chain connecting two
levels of a factor to be a sequence of occupied cells such that the
alternating sum of the corresponding cell expectations is a nonzero
multiple of the difference of the two levels. Then they established a
theorem that a simple contrast is estimable if and only if there is a
chain connecting the two levels involved in the contrast. They gave no
algorithm for finding such chains and it seems that in any such
algorithm there would be no upper bound on the number of sequences
of occupied cells that must be looked at in order to find a chain.

A graphical presentation of classification data of arbitrary inci-
dence is contained in an unpublished paper by Mexas (1972). The
possibility of extending Bose's theorem to more than two factors has
been considered. By a counterexample Mexas showed that pairwise
connectedness is not sufficient for maximality of rank in an additive

three-way classification model.



Searle (1971) mentions that ''the general problem of finding
necessary conditions for main effect differences to be estimable [for
an additive model having more than two factors] remains as yet
unsolved. "

Recently, Birkes, Dodge, Hartmann, and Seely (1972) presented
general and complete results for estimability considerations in an
additive two-way classification model which are easily programmed
for electronic computers. They introduced an algorithm, the
R-process, which determines what cell expectations are estimable.
Furthermore they gave a method for determining a basis for the esti-
mable functions involving only one effect; for determining ranks of
matrices pertinent to considerations for degrees of freedom; and for
determining which portions of the design are connected.

Birkes, Dodge and Seely (1972) provided results on estimability
for an additive three-wagr classification model with arbitrary incidence.
They introduced the R3-process which provides a sufficient condition
for a cell expectation to be estimable. They also gave an algorithm
for obtaining a spanning set for the estimable contrasts involving only
a single effect. The main part of the algorithm is called the
Q-process, and because of the usefulness of this process in this dis-
gertation it is described in the Appendix.

The approach to estimability of linear parametric functions in

this dissertation follows the general framework established in the last



two papers mentioned above.

In Chapter VI a general classification model will be considered.
However, to be more specific we will investigate in detail the additive
four -way model in Chapter II. In Chapter III two algorithms for find-
ing a spanning set for combined y and &-contrasts will be intro-
duced where Yy and & denote the third and fourth effects in an
additive four -way model. This is followed by Chapter IV in which
some useful miscellaneous results are given. In Chapter V an attempt
is made to separate y's and ©&'s. Chapter VII is devoted to exam-

ples and comments related to the general model.



II. ESTIMABILITY CONSIDERATIONS FOR THE
FOUR-WAY MODEL

The Model

Let {Yijkte} be a collection of n independently distributed

random variables each having a common unknown variance o and

each having an expectation of the form:

—hta +B +v +6 .,
E(Yijkte) BTy ?’j Y T 5,

where 1i,j,k,t range from 1 to a,b,c,d respectively and for a

given 1i,j,k,t the index e ranges from 1 to As usual,

n,, .
ijkt
ni'kt = 0 means that no random variables with the first four sub-
J

scripts i,j,k,t occur in the collection. If no random variable
occurs with first subscript i =1, then of course there can be no
estimable linear parametric function involving a- Since this thesis
is concerned solely with estimability, a, might as well be dropped

from the model. For this reason it is assumed that

= i = ].,. P
o .. Ejktnijkt 70 for i a
= i = ].,. “« e \
BT ZiktPijke 70 for b
= =1,...,
n. K Eijtnijkt # 0 for k c
and
= for t=1,...,d.

b Zijk ik 70



Thus, we are assuming a fixed effects four-way classification model

without interaction and with no restrictions on the unknown parameters

occurring in the above expectations.

Definitions

A linear combination of the parameters which occur in the

expectations of the Yijkt,s is called a linear parametric function.

Such a function is said to be estimable if it can be written as a linear
combination of the cell expectations p + a, + [3]. + Yo + 6t for which
nijkt > 1. A linear parametric function is said to be a contrast if the
sum of the coefficients of the parameters is zero. A d-contrastis a
contrast involving only the parameters 61, Ce ,6d. An a, B and
y-contrast are defined similarly. As there are no restrictions
assumed on the parameters, a fact which should be noted is that an
estimable linear parametric function not involving @ must neces-
sarily be a sum of four contrasts; these contrasts being a, B, v,
and 6-contrasts respectively. To see this let f be an estimable
linear parametric function not involving p. Then we can write

=
¢ €3

f= Zizj Z)k

ta +B.ty, +6) .
jkt(“ 4 63‘ Yy T9,)

Using the usual dot notation to denote summation over the suppressed

subscripts we can write



= + + +
fec wHZe o tEe, B2 tEe S

3 kS, . k. Yk t°t
Since f does not involve it follows that ¢ = 0. Then
a ) a
= c a., 1is an a-contrast because X,_,c, =c =0

i=17di... 1 i=1741. ..

Similarly the other terms of f are seento be f, y, and

&-contrasts respectively.

Estimability

In this section we develop a procedure for obtaining a spanning
set for the vector space of estimable parametric functions involving
only one of the four classification effects. For convenience we con-
centrate on finding a spanning set for #, the vector space of all
estimable 6-contrasts. Once such a spanning set is obtained a basis
for # can then be extractedby standard methods.

In order to obtain a spanning set for p[ we do the following

steps:

1. Direct §-differences. First apply the R-process described

below to a special two-dimensional matrix. By doing this we gener-
ally find more estimable cell expectations. That is, even though a
particular nijkt may be zero, it is possible that the cell expectation

Bt a, + Bj + Yy + 6t is estimable. After applying the R-process,
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some 6-contrasts may be ''directly' seen to be estimable. For
i ta +B,+y,t + +
example if p O BZ Y3 61 and pu + a, BZ + Y3 63 are
both estimable, then their difference 61 - 63 is estimable. We

collect all the "direct 6-differences'' that can be obtained in this way.

These direct §-differences form a set D.

2. Direct w-differences. We form a new two-dimensional

matrix and apply the R-process again in order to find more estimable
cell expectations. This time we find some estimable contrasts,
called "direct w-differences,' involving vy and &6-effects. The rea-
son that we bring y-effects into consideration is that our procedure
makes use of the Q-process of Birkes, Dodge and Seely (1972), which
eliminates only p, a, and P-effects. We collect all '"direct
w-differences'' that can be obtained in this way. These direct

w-differences form a set E.

3. Contrasts from the Q-process. At this step we form a

special matrix M. By applying the Q-process we obtain more

estimable w-contrasts. These contrasts form the set F.

4, Separation of 6-contrasts. Since the set E and F

found at steps 2 and 3 contain contrasts involving y-effects as well as
§-effects, we must take linear combinations of these w-contrasts to

obtain 6=-contrasts.
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Remark 2.1. Since the maximum dimension of the vector space

is d-1, if at any point we find d-1 linearly independent
estimable functions involving 6-effects we stop the procedure.

Let us describe the R-process.

The R-process is a procedure applied to any two -dimensional
matrix, say W, to obtain a final matrix Z. The R-process is
defined as follows:

1) For each pair 1i,j, if w,, =0 set =z, =1, otherwise,

set =z, =0,

2) For each pair 1i,j, if there exist k,h such that

Zo T Eg T zkj =1, then set zij = 1. (Pictorially, we add
the fourth corner whenever three corners of a rectangle
appear in the matrix.)

3) Continue step (2), using the new nonzero z.'s as corners

‘ 1]
of new rectangles, until no more entries can be changed.

Observe that the final matrix Z is a matrix of the same

dimensions as the matrix W. Also, note that if we denote the col-

umns of the matrix Z by Cl’ R ,Cv, then for any two columns
Cj and Ch either Cj = Ch, i.e., they have ones in precisely the
same rows, or else CJ'.Ch = 0.

We are now in a position to describe in detail the first step in

obtaining a spanning set for # We transform the four-dimensional

axbxcxd matrix N = (nijkt) into a special two-dimensional



12

abc x d matrix as shown in the diagram below, where the rows are

identified by triples.

)
1 2 t d

- .
(1,1,
(2,1,1)

afy (i,j k) nijkt

(a, b, c)

- e

Apply the R-process to the above two -dimensional matrix to
obtain a final matrix Z. Now we transform this two-dimensional
matrix Z into a four-dimensional matrix M with entries
m... =z, . . (Note that the rows of matrix Z are identified

IJkt (1:J:k):t
by triples.) The matrix M is related to cell expectation as can be

seen by the following proposition.

Proposition 2.1. If 1, then the parametric function

ikt

pot a, + 'Bj + Yy + 6t is estimable.

Proof. Consider the R-process as described above. At step

(1), m, =1 means n,,

0 t fa +B +y +6 |
ikt let# so that p +a, Bj y t+6 s

obviously estimable. We see that whenever one sets mijkt =1 in

some iteration of step (2) it is because there exists (u,v,w) and h
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= = =1. A i i 1 -
such that mijkh m o wh m ot pplying an induction argu

ment on the number of iterations of step 2, we can conclude

ta, +PB.+y +6 = (uta. +B ty +8 ) - (pta + +
BTy [Sj Y T8 = (ktey ﬁj Y toy) - (ktay ﬁV+YW6h)
+ (uta + +
(p clu. FSV+YW 6t)

is estimable.

Remark 2.2. Although the above proposition provides a suffi-

cient condition for a cell expectation to be estimable, it does not in
general provide a necessary and sufficient condition. The matrix M
can, however, for estimability considerations be viewed as the inci-
dence matrix for the original pattern. This is easily seen from the
above proposition and from the fact that nijkt 7 0 in the original
incidence matrix N implies that mijkt # 0 in the matrix M.
We continue now with step 1 essentially treating M as the incidence
matrix for the data pattern.

For t=1,...,d let Mt denote the a x b x c matrix
having entries mijkt ;  we call these matrices the 6-levels of M.

Define an equivalence relationon {1,2,...,d} by t~h if

Mt =M Suppose there are s equivalence classes; by relabeling,

h
we can assume {1,2,...,8} is a complete set of representatives for

these equivalence classes. If t ~h, then 6t - 6h is seen to be

estimable. We refer to these estimable contrasts as direct

§-differences.
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Let D={6t—6h:1<:t§__s, s+1§h§d,t~h}, andletoﬁ
be the vector space spanned by D. Once we have D we reduce
estimability problems to a model with fewer 6-effects by keeping 6t
for only one t in each equivalence class in {1,2,...,d}. To see
intuitively why this can be done recall that a linear parametric
function is estimable provided it can be expressed as a linear combi-

nation of cell expectations for which m,. >1. Thus if we drop 6

ijkt = h

from the model while keeping 6t where t ~h, andif mijkh z 1,

then we do not lose the corresponding cell expectation, because

mijkt =1 and 6t ) h is in D, so that we have

+ta +B +v + = (uta +B 4y +6 ) - (& - )
hta ﬁj Y 8, (b a, 53. Y 61:) (61: 6h) (2.1)

To formally prove why we can drop & suppose 1 is a nonzero

h,

estimable linear parametric function, By definition, we can write

a b c d
- +
= T B B e TR YY)

where c.. =0

i = 0. s +1 < s i
ikt if mijkt 0. For each h s <h<d find

t 1<t <s, such that h ~t,. Then we can write

h’ —'h h

]
=Z +a,+8.+y, +
b zz z:1:=lcijkt(p‘ % B_] Y 61:)

d

2D E B 011%Kkh

ta,+ +
(nta, Bj+vk &)
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Substituting 2.1 we have:

S
=ZZZZ +a +B .ty +
\ L ﬁj Y, te,)

1%1jkt
+zzzzd c [(nta, +B.+y, +6 )-(5 -8 )]
h=s+1ijkh i T Ykt t. "°h
h h
or
)
- ta,+B,+y, +
b= 22D B0 (ke thity 78y
+2222d (wta,+B.+y, +6 )
h=s+1ijkh' ") Yk b,
-2 ZZ Zd C (6 5, )
h=s+1ijkh "t " h
where 1 Sth <s.
Thus, we can write
a b c d
+ -
LIJ lelzJ:l k=1 h:s+lcijkh(6th 6h)
52 2P 3¢ 285 o (uta +B.+y, +6))
i=1%5=1%Kk=1%1=1 Kt 4Ty Yk
Note that ¢'.. =0 if m,,, = 0. Therefore in order to find more
ijkt ijkt

estimable 6-contrasts we need to consider only the estimable contrasts

of the form

52 Z)b c 8 .

=S = fa +B +y, + 2.2
=1%521 %1218 1 e PO P PO (2.2)
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Remark 2.3. Similar considerations could also be made with

regard to a, P and y-effects. For instance, by applying the
R-process to a special two-dimensional matrix having the columns
identified by the levels of y-effects, we may find a set, say K,

which consists of direct y-differences. In this case, if it happens that
we find c-z direct y-differences then we only need to consider con-

trasts involving z of the y-effects.

Remark 2.4. It is not actually necessary to do step (1) for our

algorithm to work. That is, one could start immediately with step (2)
described below by simply setting the matrix M' equal to N.
But in many cases doing step (1) and finding the set D will facilitate
the search for a spanning set for # . The second algorithm of
Chapter III bypasses the set D.

We now start the second step toward finding a spanning set for
H by working with the a x b xcxs submatrix of M consisting

of the first s levels M . ,Ms ; denote this matrix by M'.

17"
Define « to be the column vector whose transpose is

(yl, cees Y s 61, ces 65). The reason that we bring y-effects into con-

sideration is that we want to make use of the Q-process which

eliminates only W, a, and B-effects.

We now form the two-dimensional ab x ¢cs matrix, as shown

in the diagram below, where rows and columns are identified by pairs:



vo
(1,1 L (ket) .. (cos)
(1,1) ]
(a,b)

Apply the R-process to the above two-dimensional matrix to
obtain a final matrix G. Now we transform this two-dimensional

matrix into the four-dimensional a x b x cx s matrix M'"  with

entries m, (note that the rows and columns of G

ijkt  5(i,7), (k,t)

are identified by pairs).

For each pair of indices (k,t) where 1 <k <c and

17

1<t<s let M(k ) denote the a xb matrix with entries
mijkt and let w(k,t) = Yy + 6t. Because the R-process has been
applied, eithe M =M or else, there are no 1i,j such
PP T Mgh)  Tav) !
=1 = 1. f = ,

that mijgh and mijuv I M(g,h) M(u,v) and
m 70 for some ,r, then w -w is directly seen to

qrgh 4 (g, h) (u,v) 4
be estimable, and moreover if m,, =1, then

ijuv

= +06 + + + - -
(|J,+c1_1 ﬁj yu+6v) (yg 6h Y, 6V)

p,+c1,l+[3j+yg+6h
is estimable. Define an equivalence relationon C = {(1,1),...,(c,8)}
by (g,h) ~(u,v) if M =M and m,, # 0 for some i,j.

(g, h) (u, v) ijgh
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Let S be a complete set of representatives for these
equivalence classes. For each ';,j, there is at most one pair
(k, t), (k,t)e S, such that mijkt 7 0. Let

E = {w €8S, (g,h) ~ (k,t)}. Let é be the vector

-w , h)
(g0 " “lc, )| (8
space spanned by E. Then from an argument similar to the one
given for Expression (2.2) it follows that in order to find more

estimable 6-contrasts we need to consider only the w-contrasts of the

form

a b

1B 4y + 2.
Zi1Zm1 %, b esGigre e P PO (2-3)

=0 1 =0
where dijkt if mijkt

Now we start the third step toward finding a spanning set for

by letting '@ be an estimable contrast which has the form of the

i 2.3). =2 . i =0
Expression ( ). Set Dij (k,t) €5 dijkt Either Dij or
.. = d,, where u,v is the unique pair of indices such that
ij ijuv
. 70. We seethat X.,D,, =0 forall j and Z.D. =0 for
ijuv i7ij joij
all i. For some (i.,j,)» D. . #0. Since XZ.D. . =0, thereis
1771 L] Iy
171 1
some J,:], # Jp with D,1 i # 0. Since ZiDij = 0, there is
172 2
some 1i.,i, #1i,, with D, . # 0. In this way we get a sequence
22 1 L0

(il»jl)(il:jz)(iz»jz)(iz:J'3)('13»J'3)- .
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where 1 #1i i 7 for all and D.. #0 for each
p Jp T Ipt1 P ij

p+1’
(i,j) in the sequence.

Let p,q be the first two indices such that jp = jq with
p < q. In this case the sequence

(lp"] )(lp"]p+l)(1p+l"]p+l). T (1q-1’Jq-1)(1q-1’Jq)

yields a loop.

We define a loop to be a sequence of an even number u(u > 0)
of pairs

(11’_]1)(12’_]2) PN (l.u’_] )

such that

i) the pairs are distinct,

i) i =j,, for t odd (t= 1,2,...,u-1),
iii) Ji = i1 for t even (t=2,4,...,u-2),
iv) JI:Ju'

For example, (3,3)(3,1)(5,1)(5, 2)(1,2)(1,4)(2,4)(2,3) is a loop- If
we connect the corresponding entries of a two-dimensional matrix we

obtain a picture of a rectilinear loop:

(S T VS A o
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Above we said the sequence
(i, ME j ) -G 5 (i . Y 0] )
p'lp plptl q-2"9g-1"""q-1"7q-1""q-1"7q

yields a loop. It is itself a loop if i i . If iq—l = ip, then

q-1 " 'p
(lq-l’Jq—l)(lp’Jp+l) e (lq-Z’Jq-l) is a loop. For convenience let us
assume (i ,j )i »j ... ,j ) is a loop. For each (i ,j ) in
p'’p p’lptl a-1'7q P wly
this sequence, let k t be the unique index such that
uv uv
d, . 0. Then m, . 40, so
ijk ¢t i
u’v uv uv u’v uv uv
gt a, + B, + Vi + 6t is estimable. Now
u e uv uv
(nta, +B, +y,  +& ) - (uta, +B.  +y +6 )
i j k t i t
P P PP PP p “ptl "p.ptl p.ptl
ool - (pt +8, + +6
(nta, ﬁj Y ¢ )
q-1 ‘g9 "q-l,q q-l.q
=y + & -y -6 + ... -y -6
k t k t k t
PP PP p:ptl p,ptl q-l.q  ‘q-l.q

is an estimable w-contrast; call it p'w. The estimable w-contrast

N w - d,1 Dkt p'w can be expressed as a sum of estimable cell
PJP PP PP

expectations with strictly fewer nonzero coefficients than the expres-
sion for \'w.
Using induction we can argue that every estimable w-contrast of
the form EaZbZ} d (uta.+B.+y, +6.) can be expressed as a
o 2, - 1P,
i7) (k,t)eS 1JktH i JYk t press

linear combination of estimable w-contrasts which can be derived from
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the loops in the above manner.
Let W be the vector space of estimable w-contrasts of the
Z +a,+B.+y, + . h il
form X = (k,t)eSdijkt(M a, ﬁJ Yy, Gt) We have just proved the

following:

ILLemma 2.1. The vector space W of estimable w-contrasts

+B8 +y, + i h
of the form Z Z Z(k,t) ] Sdijkt(w-ai ﬁj 2 Gt) is spanned by the
+ - + C - +6
contrasts (yk 6t ) (yk Gt ) (yk ¢ ) where
1 1 2 2 u u
(11,31). .. (lu,Ju) is a loop, and (kr,tr) is the unique pair in S

such that m, . £ 0.
i k t
r'rrr

Define the matrix IT/I such that

- (k,t) if mijkt =1, (k,t) €S
m,, -~
Y 0 otherwise
A loop (il,jl).. (1 ,J will be called a loop in M if ;1,1 i # 0
PP _
for p=1,...,u. Let P {P|P .(iu,ju) is a loop in M}

and let ’&= {P‘P is a loop in M derived by the Q-process}. For
the sequence P € P such that P = (il,jl). .. (iu,ju), define

wP)==__. (-1

+ , , . . .
r=1 Gt ) where (kr tr) is the unique pair in

Vi
r r

S such that m, ikt # 0. In Lemma 2.1 we proved that W is
r’r rr

spanned by {w(P)|P eP }. Define F = {w(P)|P e'& }. Let vy(P)

be the part of w(P) involving only Y's.
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I.emma 2.2. The vector space W of estimable w-contrasts

is spanned by F.
The proof of this lemma is a direct analogy to the lemma on

page 12 of Birkes, Dodge and Seely (1972).

Theorem 2.1. The vector space ﬂof estimable

w-contrasts may be written as

j=ﬁ@ {€+l/’}

where @ denotes direct sum.

The direct sum in Theorem 2.1 follows from the fact that after

finding a direct 6-difference 6t - 6h for the set D, we can

eliminate 6 stl <h <d, and only keep 6t’ 1 <t <s, inthe

h)

model for the remainder of the process. Therefore no linear combi-

nations of the elements in 27 will occur in {6 +W} i.e.,
D &Wwr-».

As the fourth and final step for finding a spanning set for ﬁ,

let J be the set of sequences P such that P e ﬁor P is

)(kz,tz) such that mijkltl #0

the sequence of two pairs (kl,t1

and m'jk tZ#O for some 1i,j. Let

)
2’= {alw(P1)+. . .+anw(Pn)|P1, ce ,Pn ejaly(Pl)ﬁ . .+any(Pn) =0} .
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Recalling that # is the vector space of all estimable &-contrasts

we get the following theorem.

Theorem 2. 2. #:p@ } , where 27 is the vector

space spanned by the set D of direct 6-differences and 2’ is the

vector space defined as above, i.e., 2’ = Hf‘\ {g +W} .

The proof of this theorem follows from the fact thatﬁ CH

It should be noted that the &§-differences found directly after
applying the R-process at the first step yield a linearly independent
set D of d-s differences. The problem then becomes to extract
a basis for estimable §-contrasts from the sets E and F.
Fortunately, for small experiments such a basis is often easily

obtained by hand.
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III. TWO ALGORITHMS FOR FINDING A SPANNING SET FORJ

In this chapter we give two algorithms for finding a spanning set
for w-contrasts. We assume the same model, assumptions and nota-
tions as introduced in Chapter II.

The first algorithm follows approximately the proof of Theorem
2.1. The second algorithm is different from the first one in that the
R-process is only implicitly used and Remark 2.4 is taken into account.
It will be seen that each of these two algorithms has some advantages
over the other depending upon the structure of the incidence matrix.

We will demonstrate both these algorithms via some examples.

Algorithm 3.1

This algorithm consists of the following procedure:
Step (1). Transform the four-dimensional axbxcxd

matrix N = ( ) into a two-dimensional abc xd matrix whose

ikt
columns are correspondent to &-effects. (See Chapter II for the exact
transformation.)

Step (2). Apply the R-process to this two-dimensional matrix
to obtain a final matrix.

Step (3). Compare the columns of the final matrix. If two col-

umns, say t and h, have nonzero entries in the same row, then

6t - 6h is estimable. Keep one column and eliminate the other one.
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Collect all the direct 6-differences that can be obtained in this way.
These direct 6-differences form the set D.

Step (4). Suppose we are left with s of these columns.
Transform this abc x d matrix intoan axb xcxs matrix M
(Note that this is a submatrix of the matrix M of Chapter II.)

Step (5). Form a two -dimensional ab x cs matrix whose
columns corresponded to pair (yk, 6t).

Step (6). Apply the R-process to this two -dimensional matrix to
obtain a final matrix.

Step (7). Transform this final matrix into a four -dimensional
matrix M".

Step (8). For (g:h) # (u,v) if M'('g,h):M(”u,v)’ and

n . . . .

mijgh 40, for some i,j then (yg+6h) (yu+6v) is estimable.

Keep either M or M!" and ignore the other one. Collect
P (g»h) (u,v) &

all direct w-differences that can be obtained at this step. These
direct w-differences form the set E.
Step (9). Form a matrix IT/I as described in Chapter II.
Step (10). Apply the Q-process to this matrix. Collect the

w-contrasts that we can obtain by this step into our spanning set for

jand stop.
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Example 3.1. Foran axbxcxd incidence matrix N let

N » N denote the 6-levels, i.e., N is an axbxc matrix

1Ny ¢

with entries nijkt' Consider the following 4 x3 x 2 x5 incidence

matrix N:

8
Y, Y,
B, B, B, B, By P
al 3 al 1
v - az 2 azr
1
%3 %3
0,4 0,4
%,
Y
2
Y]
B, B, B, B, B, B,
1 |
N = 2 *2
.
%3 %3
a4 1 a4 1
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Y1 RP)
8
By By Bs B, B4
1
4 2
Y1 RP)
By By B B, P
1
6
1
Y1 Y2
8
By By B B, 85




) into a two-dimensional

Steps (1)-(2).
matrix N = (nijkt
final matrix 2

Transform the four -dimensional

24 x5

4 x3x2x5

matrix.

obtained from N by the R-process is

%)

o] o (o] (o] o (o] (o]

o ©o o O

%

o

o o o O

5

o O O N

o O O O O O 0O O O O O o O o o o o o o -

—

%3

o (o] (o] o o [ I

(o] o (o] [ I (o]

%

o O (o]

—

o O© O O

- O

- O O O O O © o ©o o

o O © o o o

o o o o o

o o o o o o

%

(o] o o (o] [ I (o]

o

(o] o (o] o ¥

The
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where x indicates a cell that has been filled by applying the
R-process.

Step (3). We see that columns 1, 3 and 5 have nonzero entries
in the first row. Thus 61 - 63 and 61 - 65 are estimable, and
they form the set D. Keep columns 1, 2 and 4 and eliminate columns
3and 5. Thus we are left witha 24 x 3 matrix.

Step (4). Transform the 24 x 3 matrix into the four-

dimensional 4 x 3x 2 x 3 matrix M' with entries

mijkt = Z(i,j,k),t . Thus we have:

1 |o |o o |1 o
o lo |1 o lo |o
M! =
1 o lo o 1 {o |o
o |1 ]o ol1 fo
o loio] o o |o
o |o}o oo |o
| B
M, =
o lolo o lo |o
1 lo |o o lo |
o lo]o o |lo |o
1 |o|o o o lo
M' =
4 o lo}o o1 (o
o lol1 o lo |o
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Steps (5)-(6). Form a two-dimensional 12 x 6 matrix with

rows and columns identified by pairs, and apply the R-process to this
two-dimensional matrix to obtain a final matrix G. After applying
the R-process we have the following matrix where, as before, x

indicates a cell filled in by the R-process.

(Y: 6)

(1,1) (2,1) (1,2) (2,2) (1,4) (2.4)

- -
(1, 1) 1 X 0 0 0 0
2,1) o 0 0 X 1 0
(3,1) |x 1 0 0 0 0
(4, 1) 0 0 1 0 0 0
(1,2) X 1 0 0 0 0
(a, B)
(2, 2) 0 0 0 0 0 0
G =
(3, 2) 0 0 0 0 0 1
(4,2) 1 1 0 0 0 0
(1,3) |0 0 0 0 0 0
(2, 3) 1 X 0 0 0 0
(3, 3) 0 0 0 0 0 0
(4,3) |o 0 0 1 1 0
-
-

Step (7). Transform this two-dimensional matrix into the four-

dimensional 4 x 3x 2 x 3 matrix M" with entries
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1 - h .
ikt 8L ), (kot) o ovE
_ - - -
1 1 O 1 1 O
0 0 1 o {0 o0 1
M("1 1) = (2,1)
’ 1 0 O 1 0 O
[0 1 0] (0 1 0
0 0 O 0 0 O
0 0 O 1 0 O
M" - M" -~
(12) {5 o o (2:2) 1o 0 o
1 0 O 0 0 1
JL -] l_ —
_ - _ -
0 0 O 0 0 O
1 0 O 0 0 O
M" - M" -
L4 1, o o (Z:4) 1o 1 o
0 0 1 0 0 O
- . L -
" = " " - n
Step (8). We see that M(l, 1 M(Z, 1) and M(Z,Z) M(1,4)

which implies (y,+6,) - (y,+t6,) and (y,*+8,) - (y,1t6,) are
1 71 2 1 2 2 1 74

4 n " 1" n
estimable. Keep M(l,l)’ M(l,Z)’ M(Z,Z) and M(2,4). Thus the

set E = {yl-yz, -y1+y2+62—64} .

Step (9). Form a matrix M:



Step (10).

ii)

(1, 1) (1, 1) -

ZI

(1,1) }(2,4) -

(1,2) | (1,1) [(2,2)

Apply the Q-process:

1,y Ja,n | -

32
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iii) (1,1) -
- |y

e | -

172) (1) |(2,2)

(Y1+51) - (Y2+54) + (Y1+51) - (Y1+52)

(2,4) -

(1,2) [(1,1) }(2,2)

At this point there are no further loops which can be obtained and
hence the Q-process and step (10) are concluded. From this step the

Q-process has given us the following three estimable contrasts:

-2 2 -1 1 0 Set F

Note: There are many different ways we could have done the
Q-process above and each way would give a different set of three

estimable contrasts. But they would always span the same vector

space W




34

Thus from step (4) we found the set D = {61—6 , 61—65} and

3
from step (8) we found the set E = {yl-yz, -y1+y2+62—64} and from
= {- - , -2y 2y, - VY - -5.-8,}

step (10) we found F = { y1+y2 61+64 Zyl Zyz 61+62 Y] \(2+261 62 64}

By Theorem 2.1 the vector space J of estimable
w-contrasts is spanned by D, E, and F. After taking linear
combinations, we see that ﬂ is spanned by
{yl—y2,61—62,61-63,61—64,61-65}. Thus dlmj: 5.

Let us point out the difference between Algorithm 3.1 above and
Algorithm 3.2 which is presented below. Steps (1)-(4) of the first
algorithm are bypassed. Steps (5)-(8) are replaced by another method

of finding direct w-differences. Steps (9)-(10) of the first algorithm

are the same as steps (5)-(6) of the second algorithm.

Algorithm 3.2

This algorithm consists of the following procedure:
Step (1). Begin to form the matrix M by changing every

nonzero entryof N to 1.

Step (2). For (k,t) # (u,v), if mfgkt =1 and mfguv =1
for some f,g then ©t) © (0, v) is estimable (recall

- n . ' di
w(k,t) Vi 6t ) and should be put into the set E' of direct

w-differences.
Step (3). For (k,t) and (u,v) as in step (2), redefine the

submatrix M(k,t) and M of M by

u, V)



1 if l or m =1

Mkt ijuv

m"kt B
Y 0 otherwise .

Eliminate the submatrix M .
(u, v)

Step (4). Repeat steps (2 ) and (3) until no more changes can
be made in the matrix M.

Step (5). Form the matrix M as defined in Chapter II.

Step (6). Apply the Q-process to the matrix M. Add the

w-contrasts that we can obtain by this step to those found by step (2),

and stop. We now have a spanning set for j

Remark 3.1. A method similar to steps (1)-(4) of Algorithm

3.2 can be used for finding direct w-differences. This is usually

35

preferable to the method in steps (1)-(4) of Algorithm 3.1 when calcu-

lations are being done by hand. See Chapter IV for a complete

description.

Example 3.2. Consider a 4 x4 x 3 x3 factorial experiment

with the following incidence matrix:

!
k8! Y2 V3
By P, Py By
o [2
Ny = ZZ 3 :
3
0.4 1
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Step (1). Change every nonzero entry of N to 1. We can

assume such a change without drawing the above pattern again.

Steps (2)-(4). a. m, 55 # 0 and m,,3 # 0. Thus
w(z, 1) " w(1’3) is estimable. Keep m,55 and zero out m,, 3
Similarly, from m,5s9 and m,,33 We find that ©2,1) "9(3, 3)

is estimable. Again we keep one of the cells and zero out the other

one. We keep my551°
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#0 and m # 0, which implies w

b- 3432

xJ

M3412 (1,2) " “(3,2)

is estimable. Keep M1z and zero out My432°

#0 and m 70,

c. Finally, because 5223

Mg231

w( - w( is estimable. Keep m and zero out Me,o3

3,1) 2,3) 5231

Note that (a-c) are steps (2)-(4) of the algorithm.

Step (5). Form the matrix M.

(1,1 | - - -

- (2,1) | (2,2) -

<l

- - (1,1) }(1,2)

- (3,1) - (2,2)

Step (6). By applying the Q-process to the matrix M, we find
that

©21) " 92,2 Ty T T2 0B

is estimable. Thus we get sets

}

E'= {‘*’(2, 1)7(1,3) 92, 1)7%3,3)“(1,2) 73,2 °(3, 1) (2, 3)

from steps (2)-(4) and

F= {‘*’(2, 1,170, 2) 7B, 1)}

from step (6).
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ﬂis spanned by E' and F. This is true by Theorem 2.1 and the
fact that all direct 5-differences in D will occur in the set E' if
Algorithm 3.2 is used. Thus we have the following 5 estimable

contrasts:

If we row-reduce the above 5 x 6 matrix we see that dim)ij= 4.
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IV. SOME USEFUL PROCEDURES

In this chapter we assume the same model, assumptions, and
notation as introduced in Chapter II. The purposes of this chapter
are: to describe the method for finding direct 6-differences which
was referred to in Remark 3.1; to show how estimability problems
can be reduced to models with fewer effects and sometimes even fewer

factors; and to illustrate some miscellaneous shortcuts.

Notation. In the following examples we will use X to denote
the design matrix. We can write X = (1,A,B,C,D), where
1,A,B,C,D are the submatrices corresponding respectively to .,

a, B, y and &-effects. The notation r(X) denotes the rank of X.

Definition. The degrees of freedom (d.f.) for any effect is

defined to be the dimension of the subspace of estimable linear

parametric functions involving that effect.

An Alternative Method for Finding Direct 6-Differences

Suppose we have an additive four-way classification model with
incidence matrix N. For t=1,...,d, let Nt be the
axbxc matrix having entries nijkt‘ To find direct 6-differences

we do the following steps:

Step (1). Begin to form the matrix M' (the same M' as in
g
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step (4) of Algorithm 3. 1) by changing every nonzero entry of N to 1.

p (2). , i : =1 ' =1
Step (2) For t#h if m efgt and mefgh for
some e,f,g, then § -6 is estimable and should be put into

t h

the set D of direct 6-differences.
Step (3). For t and h as in step (2), redefine the sub-

matrix M't of M' by

. ' — =
1 if m 1 or mijkh 1

= ijkt
ijkt 0 otherwise

Fliminate the submatrix Mlil.
Step (4). Repeat steps (2) and (3) until no more changes can be

made in the matrix M'.

Example 4.1. Consider again Example 3.1. After step (1) we

have the following pattern:

61
Y] Y2
51 52 53 51 52 53
al 1 1
" - aZ 1

1 a
3
%




]
My223
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1; thus 6. - & is

— 1
1 and m 1 3

1 - =
We see that leZl 1223

estimable. We now eliminate the submatrix M'3 and replace 1's

in the appropriate cells in M'1 . Therefore we have the following
pattern:
1 1
o 1
M1 =
1 1
! =
MZ
1 1
. 1
M4 = :
1
1
! =
Mg
1
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1; thus &, -6 is

1 and m ] 5

! = =
We see that mllll 1115

estimable. By the same procedure as above we eliminate ME") and

keep M'1 This leads to the following pattern:

1 1
1
! =
Ml
1
1 1
! =
MZ
1 1
' 1
M4 =
1
1
We see that no more changes can be made in the matrix M', and

the set D is {61-63,61-65}.
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Reduced Model

In order to show how a problem can be reduced to a smaller one
let us consider the 4 x 4 x 3 x 3 factorial experiment of Example
3.2. Using Algorithm 3.2, we found that dim ﬂ: 4, which
implies that we have full degrees of freedom for vy and 6-effects;
in other words, all the linear contrasts of y-effects and of 6-effects
are estimable. In particular we know that 61 - 62 is estimable.
Consider any occupied cell in NZ, such as cell (2,3,2,2).

Recalling Equation (2. 1), we see that

ot 0.2 + [33 + Y, + 61 = (p+a2+[33+y2+62) - (61-62)

is estimable; we can indicate this by placinga 1 in cell (2,3,2,1).
Now we can place a 0 in cell (2,3,2,2) without losing any

information about estimability, because

In general, knowing that 61 - 62 is estimable, we can change the

entries in all occupied cells of N2 to 0 if we placea 1 inthe

corresponding cells in Nl. Thus we can eliminate NZ and reduce

the problem to a new model with only two 6-effects. The new inci-

(1)

dence matrix N'~ ', obtained from N as just described, is shown

below.
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61
Y W Y3
B, B, B, B,
a 1
a 1 1
2
N =
1 1|1 1
3
9y 1 1
62
1
1
(1) _
N3 =
1
We also know 61 - 63 is estimable. By the same procedure

1
as above we can eliminate N( ) after placing 1's in the appropri-

3
1
(1 ) . Now the problem is reduced to a model with

(2)

ate cells in N

incidence matrix N with only one &§-level:
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Yl Y2 Y3
B, B, B, B,
1
1
(2) aZ 1 1 1 1
N =
1 a 1 1 1
3
1
a4 1 1

But of course this is just the incidence matrix of 2 4 x4 x 3
factorial design. Thus, knowing that all 6-contrasts are estimable,
we have been able to reduce the problem from a four-way model to a
three -way model.

Because all the y-contrasts are estimable, by the same proce-
dure the problem reduces from a three-way to a two-way model with

the following incidence matrix:

4
a4 1
a, 1 1
ag 1 1
a, 1 1

As we see, it turns out that this incidence matrix has the same
problem as the matrix M, 1i.e., they both have nonzero entries in

the same positions. The reason for this is that by applying the
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R-process at (any) step (2) and step (6) of Algorithm 3.1 no cell
(i,j»h,t) will be filled unless there is already some cell (i, j,u,v)
which is filled.

In order to find the degrees of freedom for a and P-effects
we use the method developed in Birkes, Dodge and Seely (1972).
Apply the R-process to the above incidence matrix. We get the follow-

ing final matrix

B1 B2 : B3 B4
a4 1 ‘
a, 1 1 1
o, 1 1 1
a, 1 1 1
From the final matrix we see that a, - a5 and ay - a, form a

basis for the space of estimable a-contrasts so the degrees of free-
dom for a-effects is 2. (See Remark (4.1).) We can find
r(A,B)=b+ (d.f. for a) = 4 +2=6, andthe degrees of freedom

for P-effects is r(A.,B) -2=6 -4 = 2.

Remark 4.1. The above procedure for finding the degrees of

freedom for a and P-effects using a two-way model is valid only
because we know there are full degrees of freedom for y and
§-effects. In case there are not full degrees of freedom for vy and

§-effects, we can switch the roles of a and f with the roles of vy
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and & in order to find the degrees of freedom for a and P-effects.
However, the above procedure is always valid for finding r(A, B).

We are now in a position to write the table of degrees of free-
dom. Note that r(X)=r(A,B) + dimﬂ= 6 +4 =10 which implies

the design matrix is not of maximal rank (i.e., is not 11).

S.V. _ d.f.

Mean 1

a 2

p 2

Y 2

& 2

Confounded 1

Residual n-rX)=11-10=1
Total 11

We now introduce via examples some shortcuts that are very

useful.

Some Miscellaneous Shortcuts

It may happen that the incidence matrix is such that we can
obtain all estimable contrasts by direct differences. In such a case

one can use the method developed by Weeks and Williams (1964).

Example 4.2. Consider the following 3 x 3 x 2 x 2 incidence

matrix:
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8
Y] Y,
B, b, B,
1
4
le aZ 1
1 1
%3
%,
1
N, = 1 1] 1
1

Notice that cells (3,3,1,1) and (3,3,2,1) lead to the estimability
of Y, - Yy and cells (3,3,1,1) and (3,3,1,2) lead to the

estimability of 61 - 62 . Now the problem is to find estimable con-

trasts for a and f effects.

Because Yy " Y, and 61 - 62 are estimable, we can form a

two -way table as follows:

B, B, B
@ 1
a, 1 1 1
a, 1
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From cells (1,1) and (2,1) we find a, -a, to be
estimable, and from cells (2, 3), (3, 3), a, - a3 is estimable, simi-
larly from (2,1),(2,2) and (2,2),(2,3) we find that 61 - 52 and

62 -p are estimable. Note that all estimable functions have been

3
found simply by direct differences. The design matrix for the above
problem is of maximal rank, i.e., r(X) =7, and table of degrees

of freedom is as follows:

S.V. I d.f.
Mean 1
a 2
B 2
Y 1
6 1
Residual 2
Total 7

It is important to notice that each Nt can be considered as the
design matrix of a three-way classification model, so it is sometimes
wise and efficient to see if we can find all y-contrasts via applying the
method described in Birkes, Dodge and Seely (1972). If it happens
that we can obtain all y-contrasts by this method, the problem can be
considered as a three-way model by dropping the y-effects.

Example 4.3. Consider a 24 design with incidence matrix as

follows:
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1
Y, Y,
‘31 ‘32 ‘31 BZ
(11 1 1
(12 1 1
62
Yy Y
‘31 BZ ‘31 BZ

Consider the N1 matrix corresponding to the first level of .

N1 isa 2x2x2 matrix and applying the Q-process, it follows

immediately that vy. - is estimable. We see this by forming the
y 1~ Y2 y g

matrix N, = Z kN

Now applying the Q-process to the matrix N1 we get
2\/1 - 2\/2 to be estimable. Therefore we can now work with the
following pattern by noting that y-levels have been dropped from the

model.
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6l
ﬁl B2
1
. a, 1
! a 1 1
2
and
62
B, B,
a 1
1
! =
N2 i
2

Again this problem can be considered as a three-way additive model,
from which it immediately follows that all estimable differences of
a's, PB's, and 6&'s exist.

In a four-way model with incidence matrix N, if one two-
dimensional submatrix N(k,t) has all its cell expectations esti-
mable (which is equivalent to the condition that all its cells can be

filled by applying the R-process), then the problem can be considered

as a two-way classification model.

Example 4.4. Consider a 4 x 3 x 2 x 2 factorial design with

the following pattern:



61
¥y \F)
Fa1 52 53
1
al 1
c12 1 1
N =
1
1 a3 1
a4 1
62
1
N2 = )
1

After applying the R-process to the two-dimensional matrix N(1 1)
all cells will be filled. This means that we have full degrees of
freedom for a and P-effects. The problem of finding degrees of

freedom for vy and ©&-effects reduces to considering a two-way

model with the following incidence matrix:

53
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We see that Y- Y, and 61 - 62 are estimable. The design

matrix is of maximal rank, and the table of degrees of freedom is as

follows:
S.V. d.f.
Mean 1
a 3
§] 2
Y 1
6 1
Residual 2
Total 10

A Comparison

In this section we try to compare the effectiveness of the
R-process with the method developed by Weeks and Williams (1964).

Consider a 3 x 2 x 3 x2 factorial having the following pattern:

1
A \) Y3
[31 [32 [31 [32 [31 [32
a, 1
c12 1
a3 1
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5,
Y] Y, Y3
By Py By Py By Py
1
Y
a2 1
a3 1 1

By applying the method introduced by Weeks and Williams (1964)

(see Chapter I), we see that no pair of these observations is nearly

identical.

see below.

However, the design matrix is of maximal rank as we will

Let us investigate the effect of the R-process on the same

problem.

Form a two-dimensional matrix, as shown in the diagram

below, where the rows and the columns are identified by pairs

(a, )

(v, 6)

(1,1) (2,1) (3,1) (2,1) (2,2) (3,2)
(1,1) (o 0 0 0 0 o)
(2,1) | 0 0 1 1 0 0
(3,1) | 0 0 0 0 0 1
(1,2) {0 1 0 1 0 0
(2,2) | 0 0 0 0 0 0
(3,2) | 0 0 1 0 1 0




56
Applying the R-process to the above matrix, we get
(v, 8)

(1,1) (2,1) (3,1 (2,1) (2,2) (3,2)

.1 [ o 0 0 0 0 0]

2n {o [J 1 1 0

3,1) | o o 0o 0 0 1
(a, B)

(1,2) | 0 1 1 0

2,2) [ 0 o o 0 0 0

(3.2) | o 1 1 0

where ﬁ-} is in cells filled after applying the R-process. Nov’v form
another two-dimensional matrix with columns corresponding to
5-effects and apply the R-process again. We get the two-dimensional
matrix shownonthe left of the following page, where @ is in cells
filled after applying the R-process. Now form a two-dimensional
matrix, with columns corresponding to a-effects and apply the
R-process again. We get the two-dimensional matrix shown on the
right of the following page, where /A is in cells filled after applying

the R-process.
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Now transform this matrix back to a four-dimensional matrix.

We have
61
Yl Yo Y3
B, B,
a 1 1 1 1 1 1
(12 1 1 1 1 1 1
1 1 1 1 1
(13 1
6Z
Yy Y2 Y3
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1

We see that all cells are filled, i.e., all cell expectations are
estimable, and so the design matrix is of maximal rank. Hence, in
general, the R-process is more effective than the method developed

by Weeks and Williams (1964).

58
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V. A TECHNIQUE FOR SEPARATING y-CONTRASTS
FROM 6-CONTRASTS

In this chapter we assume the same model, assumptions, and
notation as introduced in Chapter II. The basic purpose of the present
chapter is to present an algorithm, which is essentially a row-

reduction algorithm for obtaining a spanning set for H » the vector

space of estimable §-contrasts. Recall from Chapters II and III that

several means are available for obtaining a spanning set forﬂ )

the vector space of estimable w-contrasts, and that the algorithms in

Chapter III conveniently provide a decomposition of ﬁ of the form

/A
Since oﬂ C 7:% it then follows that
=ﬂ@ 2‘ 2’z7’)tm (5+W) :

And thus we need only concentrate on finding a spanning set for 2—

which is the vector space of all estimable §-contrasts in g + W

Definition. For a loop P = (il,jl). .. (iu,ju) in Q (see step
7 , i = - e -
(7) below), define vy(P) Yk Yo + Yk and
1 2 u
SP)=6 -6 +...-06 where k ,t for r=1,...,u are
t t t r r
1 2 u
unique indices such that n, i kot = 1. Furthermore, for a sequence
r'r rr

of pairs P=(k1,t1)(k2,t2) where (kl,tl) and (kZ’tz) are such
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that n,, =1 and n, =1 let y(P)=vy_ - and
LJkltl 1Jk2t2 k, kz

S5(P)=6 -6 for some 1i,j.
t t
1 2

We assume that the set D of direct &6-differences has already
been found. Thus we are left with the matrix M' which is the inci-
dence matrix of a four-way model which has no direct é-differences.
Therefore, for the purposes of this chapter we can assume that we
have an axb xc x s incidence matrix N with all entries either
0 or 1 and with no direct 6-differences.

Our technique involves finding a spanning set for y-contrasts
which should be estimable if 6-effects were not in the model. We
refer to such a y-contrast as a y-path.

The technique consists of the following steps:

Step (1). Form the matrix N = Z:‘ltNt ,  where Nt is an
axbxc matrix with entries n,_, .

ijkt

Step (2). Form the matrix Q with entries

1 if n 0

0. - ik
ijk 0 otherwise
Let Q be the a x b matrix with entries q,. .
k ijk

Step (3). If qijk:1 and qijh:1 for some 1i,j, then we
have y(Pl) = Yk - Y, where Pl = (k,tk)(h,th) (we do not care

what tk and th are until step (5) ). We emphasize again that this
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Ve © Y is not necessarily estimable in the four-way model. Set

or

either equal to zero and keep the other. Continue in

ik 9ijh

this way until there are no nonzero cells in common between Qk's

for k=1,...,c. Collect all y(Pi)'s that can be obtained by this
step, and also keep track of the Pi's .
Step (4). In the collection of y-paths, find, if possible,

yl(Pl),---,y(Pm) such that aly(P) +...+a_vy(P )=0 for some

numbers a sa which are not all zero. If this is not possible

I

go to step (7).

Step (5). Search for &(P ),...,8(P_) in N. Form

1 m
a 8P.)+...+a &P ) and keep it as an estimable 6-contrast.
1 1 m m

Step (6). Take one a,a, # 0, and eliminate Y(Pi) from the
collection of y-paths. (The reason we can do this is shown in Lemma
5.1 below.) (Go to step (4).)

Step (7). Form the matrix 6 = E;zlek .

Step (8). Apply the Q-process to the matrix Q. Add all v(P)
(where P is a loop in C_l) that can be obtained by this step to the
collection of y-paths.

Step (9). Repeat steps (4)-(6) with "go to step (7)" replaced by
"go to step (10)".

Step (10). Stop. The §-contrasts found in step (5) form a

spanning set for 9/ .
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If at any step we find d-1 linearly independent estimable

contrasts we stop.

Remark 5.1. At step (3) sometimes it is efficient whenever we

find a y-path to search in the matrix N to see whether a corres-
ponding §-contrast is equal to zero. If it is, then depending on the
degrees of freedom for y-effects, the problem could possibly be

reduced to a three way model.

Lemma 5.1. Consider steps (6)-(8) above. Suppose we find

aly(Pl) + ...+ amy(P ) = 0, a, # 0, in step (6) and we eliminate

m

(P,) from the collection of y-paths in step (8). If

Y, P

)+ ...+b y(P ) =0, then we will be able to tell that
]. m m

b.8(P.)+.-.+b &P ) 1is estimable.
m m

Proof. From the algorithm in step (6) we find
)+...+a_ vy(P_)=0. Then we know a &§(P ) +...+a 5(P )
m m 1 1 m m
is estimable. Suppose a, 7 0 and at step (8) we eliminate y(Pl)-
Thus we cannot find the zero combination b y(P.,)+...+b_ y(P_) =20
1 1 m m
directly from the algorithm because y(Pl) has been eliminated.
From step (6) we can write:
1
) = (—

1 al

[-a,¥(P,)--..-a_y(P )], a #0.

By substitution we can write:



bl{(;) -a,Y(P,)- -amY(Pm)]} +b,y(P,) +. ..+ b_y(P
or
bl bl
(bZ— ;‘I az)y(P2)+. .ot (bm— ;"l‘ am)y(Pm) =0

It is possible to get (5. 1) directly from the remaining y-paths

y(PZ), . ,y(Pm). Moreover we see that
bl
b Y(P )+ . 4b (P ) = (—l-)[aly(Pl)+. . .+am\((Pm)]
bl
b
1
tood (b _-—a )y(P )]

Thus eliminating y(Pl) in step (8) would not lead to losing

b.y(P

1 1

v-paths in (5.1), we know

is estimable. Thus we can write

)+. .+ bmy(Pm) = 0. Corresponding to the zero combination of
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b
S §
b16(P1)+. . .+bm6(P ) = (al )[alé(Pl)+ +am6(Pm)]
b b
+[(b ——la )6(P,)+. . .+(b -—-la )6(P )]
2 a, 2 27 m a, m m

Since the right hand side is estimable, the left hand side is also

estimable.

Example 5.1. Consider the following 3 x 3 x 2 x 2 incidence

matrix N:

61
k5!
3 3
ﬁ1 "2 "3
O,l l l
Nl = a2 1 1
a3 1
62
= 1
NZ
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Step (1). Form KI=N1+2N2

Z |
il
—
o
—

Step (2). Form the matrix Q as follows:

Step (3). From ( it is seen that we can estimate Y - Y,
(ignoring 6-effects), because A33; = 1 and A335 = 1. Save the
y-path y(Pl) YT Y, and P1 =(1,1)(2,2) set d33) ~ 0. This
is the only y-path we get from step (3). Thus steps (4)-(6) will be
eliminated.

Step (7). Form the matrix Q

1 2 2
_: 2 =
Q=Q, +:2Q, 2 1 |1
1 2

Step (8). Applying the Q-process to the matrix 6, we see

that P2 = (1, 1)(1, 2)(2,2)(2,1) forms a loop in 6, which leads to

the y-path y(Pz) = Zyl - Zyz.
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Step (9). From step (3) we have y(Pl) Y 7Y, and from step
(8) we have y(PZ) = Zyl - Zyz. We see that Zy(Pl) - y(PZ) = 0.
Step (10). Corresponding to these v(P)'s in ltl are

6(P1) =6, -0 and 6(P2) =0

) 5 -62+61—6 =8, -6,. Therefore,

1 1 1 2

26(P1) - 6(P2) = 61 - 62 is estimable.
We can stop because there can only be one degree of freedom

for 6-effects.

Example 5.2. Consider the following 4 x5 x 2 x4 incidence

matrix N:

%
Y] Y2
B, B, B, B, B,
1
Y
N. = "2 :
1_ a
3
%y
%,
1
N =




Step (1). Form Nle + 2N, + 3N, + 4N

z1
1

Step (2). Form the matrix Q:
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Step (3). No y-path can be found by this step. Therefore
step (4)-(6) will be eliminated.

Step (7). Form the matrix Q = Q1 + ZQ2 :

2 11
- 1) 2 1
Q=
1l2]2
1 2 1

Step (8). Apply the Q-process to the matrix Q. We see that

P = (1,1)(1,2)(2,2)(2,1) and P, = (3,3)(3,2)(1,2)(1, 1)(4, 1)(4, 3)

and P3 = (3,4)(3,2)(1,2)(1,1)(2,1)(2,4) are loops in 6 The first

and the second loops lead to y(P.) = -Zyl + Zyz and

1

Y(PZ) Y 7Y, and we have y(P,) t 2y(P,) = 0. Corresponding to

1

! = - - = -
these vy(P)'s are 6(P1) 61 62 + 63 61 62 + 63 and

= - + - + - = -5 - .
6(P2) 64 63 62 61 64 62 61 63 + 264 Therefore

6(P1) + 6(P2) = -261 - 62 - 63 + 464 . The third loop leads to



Y(P3) =Y, " Y, Ty, - Y, + Y, - ¥, ¢ 0, and corresponding to this

y-path is 6(P,) =6, - 6, +6, -6 +6& -6, =26, -6,-6, .

3 4

Therefore {-26 -62-63+464, 262-63-64} is a basis for

1
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VI. ESTIMABILITY CONSIDERATIONS FOR THE
GENERAL MODEL

In this chapter we extract the essential features of Chapter II
which are applicable to very general classification models. It is the
purpose of this chapter to present a complete and more general solu-
tion to the problem of estimability in classification models. In
Chapter II we provided a spanning set for estimable functions involv-
ing y and &-effects. In Chapter IV we introduced an algorithm to
separate y from 6-effects within this spanning set. The general
model which will be presented here is faced with the same difficulties.
That is, it only provides a spanning set for estimable functions not
involving p, a and P-effects. However, as will be seen via
(several) examples, sometimes the structure of the incidence matrix is

such that the separation of effects does not require too much effort.

The Model

Let {Yijk} be a collection of n independently distributed
2
random variables each having a common unknown variance ¢ and
each having an expectation of the form:

=u+a, +B, + .
E(Y) =rtoy Btk M

where ™M is a column vector of parameters not including p»
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a

. ,Q a.nd 5,--~:ﬁ
a 1

1,..

and k.. is a vector of real numbers,
b ijt

so that the dot product k'jt - N is a linear combination of parameters
in M. The indices i and j rangefrom 1 to a and b
respectively, and for each 1i,j the index t ranges in a set Tij

where Tij is a finite (possible empty) index set.

Definition

A linear parametric function is estimable if it can be expressed
as a linear combination of the expectations p +a, + [3J, + kijt - n for
i
i=1,...,a, j=1,...,b, and te Tij' An n-contrast is defined to

be any linear parametric function involving only parameters in 7.

Notation and Purpose

Let j denote the vector space of all estimable M-contrasts.

Then it is the purpose of this chapter to obtain a spanning set for the

vector space ﬂ of estimable M-contrasts.

Estimability

Let {k..

1Jtl (i,j»t) € I}, where I denotes the index set

(i,j,t) such that i,j range from 1 to a,b respectively and

t e Tij. Note since K 1is written in set form that K consists of

the set of distinct vectors k, " Now for each k ¢ K define an
1)

axb matrix N(k) = (nij(k)) such that:
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1 if k=k,,t for some t e T,

n, (k) = H H
L 0 otherwise ,

Lemma 6.1. An extimable N-contrast can be written in the

form Zke ch(k- n), where the ck are real numbers.
The proof of this lemma follows directly from the definition of

estimability and the fact that the coefficients of p and a and [3j

are zero.

Direct n-Differences

Suppose there are two indices u,v such that Tuv has more

than one element, and let tl and tZ be two elements of Tuv

We see that if we set k. = k and k, =k , it follows that:
1 uvt1 2 uvt2

(ky-k,) - n = (pta +B +k) -m) - (pta +B8 +k; - m)

is estimable. This is equivalent to saying that if N(kl) and N(kZ)
have a non-zero entry in common, i.e., for some u,v both

n (k,)70 and n_ (k,)#0, then (k -k,)-n is directly seen to
uv . 1 uv 1 72

5)

be estimable. We refer to these direct differences as direct

n-differences. Moreover if (kl-kz)-n is estimable, and

nij(kl)ié 0 for some 1i,j then

+ . = + + . - - .
V! ai+ 5J. tk, M (B ai+ﬁ3j k1 ) (k1 k)
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is estimable.

Define a two-dimensional matrix Z = (Z ) with rows

(i,j) k

identified by the pairs (i,j) where 1i,j rangefrom 1 to a,b
respectively, with columns identified by the vectors k¢ K and with

entries defined by Z = nij(k). That is, the matrix N(k) is

(i, j), k

transformed to column k of Z. Now apply the R-process to the

matrix Z to obtain a final matrix W with entries W(i i)k .

For each k ¢ K define an a xb matrix Mi(k) = (mij(k)) by

m, . (k) =w, , . , i.e., take column k and put it back into an
IJ (1:J):k

ax b matrix.

Proposition 6.1. If mij(k) =1, then p+ ai + ﬁj +k-m is

estimable. The proof of the proposition follows exactly from Proposi-

tion 2. 1.

If M(kl) = M(kz), then (kl-kz) -1 is directly seen to be
estimable.

Now define an equivalence relation on K, by kl ~ kz if
M(kl) = M(kz). Let S be a complete set of representatives of
these equivalence classes in K. For each pair (i,j) there is at
most one s € S such that mij(s) = 1. Let J be the set of
triples (i, j,s) such that mij(s) =1, i=1,...,a, j=1,...,b,
s € S.

Let D= = {(k—s)-n|k ¢ K and s € S, k ~ s} and recall from
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above that the elements of D* are estimable. Now let Z) * be
the vector space spanned by D%*. Let W be the vector space of

estimable Mcontrasts of the form Z c.. (p+ai+ﬁj+s - n).

(i,j,s)eJ ijs

Then similar to Theorem 2.1 we get:

I Jw

For each s € S select a symbol GS which is not the

ILemma 6. 2.

numeral 0. Define a matrix M such that

1 for some s €S

6 if m, .(s)
_ S 1]

1 0 if m..(s) =0 forall s €S

1] .

The symbol GS is a device which can help us remember which
vector S is associated with which pair (i, j)-
) is a loop

As in Chapter II, let ]): {P|P = (i dq)e -

ij
u’Ju

in M} and let ’@E {P|P is a loop in M derived by the Q-process}.

For p EP, P = (il,jl). . .(iu,ju), define

n(P) sl-n-sz-n+...-s -n=(sl-sz+...—s)-n,

where 5 is a unique element of S such that m. . (s ) =1

for each r=1,2,...,u.
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Lemma 6. 3. 2/’ is spanned by {n(P)|P eP }

The proof of this lemma is directly analogous to the proof of

Lemma 2. 1.

Lemma 6.4. Let F = {n(P)lp € Q’ } . thenW is spanned

by F.
The proof is directly analogous to the proof of the lemma on

page 12 of Birkes, Dodge and Seely (1972).

Lemma 6.5. The vector Spaceﬂ of estimable n-contrasts

is spanned by Dx o F .
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VII. APPLICATIONS

In Chapters III, IV, and V we presented several examples to
demonstrate techniques for finding spanning sets for vector spaces of
certain estimable parametric functions. We now provide some more
examples which illustrate these techniques as well as the general
theory of Chapter VI. With regard to the notation used in the following
examples, several comments seem appropriate. In all of the exam-
ples we will use the notation introduced in Chapter VI with M con-
sisting of all parameters in the model except W, Apreeesa and
Bl, cees b' Thus,ﬂ ap and WO will denote, respectively,
the vector space of estimable N-contrasts, the vector space spanned by
D%, and the vector space spanned by F, where D* is the set
of direct n-difference and F is the set of estimable contrasts
obtained from the Q-process. For the examples in which we have an
additive four'—way model we use the notation ﬁ to denote the
vector space spanned by estimable direct 6-differences and g

denote the vector space spanned by estimable w-differences found after

obtaining 29 It should be noted that the notation J andz’/o
of the general model is consistent with the notation J and Z’/o

as used in an additive four-way model; (also, our usage of 2) and
g in four -way models is consistent with the definitions in Chapter

II). Also note that when the additive four-way model is viewed in the
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general setting, the vector 71 is the vector . We begin with a 24

factorial design to illustrate how the results of Chapter VI can be

compared with those of Chapter II.

Example 7.1. Consider a collection of random variables

.. such that
ijuve

=pta +B, ty +6
ijuve) K ai B_] Yu v

where 1i,j,u and v range from 1 to 2, respectively, and

e=1,...,n,, . Let n,, 's be arranged in incidence matrices
ijuv ijuv

Nll’NZI’NIZ and NZZ with entries (i,j) of Nuv being

nijuv . Suppose that we have the following pattern:
3
N, = N,, =
1
11 2 2 1
4
N2 - N2 =
2

Let n'= (YI’YZ’ 61, 62)- The set K consists of the vectors
k =k for u=1,2 and v=1,2 where k +«n=y +6 . The
uv uv u v

matrix N(kuv) is obtained from Nuv by changing all nonzero

entries to 1's. We see that kZl ~ klZ . Hence, let
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S-{k“, ,kZZ} so that D*={yl-y2+62-61} and let 6 = (uv)
uv
so that
_ (1, )] (2,2)
M:
2, )| (1,1)

Apply the Q-process to the above matrix M. We find that

F = {2y1-2y2+61-62}. Here the set D* is the set E of Chapter

II. By Theorem 2.1 /j,= g +Wo and by Theorem 6.1
ﬂ: (ﬂ* +W; in other words, by Theorem 2.1 ﬂ is spanned

by E and F and by Theorem 6. l.j is spanned by D* u F.

After reduction we see thatﬂ is spanned by {Yl YZ’

Since Y " Y, and - are estimable, then dim
and r(X) =r(A,B) tdim 5, which implies X is of

maximal rank. This means that the table of degrees of freedom is as

follows:
Source d.f.
Mean 1
a 1
¢] 1
Y 1
6 1
Residual 7
Total 12
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Example 7.2. Consider the following 4 x 4 Graeco-Latin

square with three missing observations:

1 2 3 4
r, - BB Cy D6
r, By A6 - Ccp
r, Cé6 Dy AB Ba
r, Dp - B& Ay

This design could be viewed as a 44 factorial design with a
4x4x%x4x4 incidence matrix. This incidence matrix would be
presented as sixteen 4 x4 submatrices, one corresponding to each
pair of levels (e.g, (B,Yy)) of the third and fourth factors. There
would be no direct w-differences because of the way in which a

Graeco-Latin square is designed. Thus ﬂ :W Now apply the

Q-process.

1) - Bp Cy D6
By rAé - Cp

By - As + Dy - C&
of Dy AP Ba




; Bef [ Cv " D6

A6£ - cB

(of Dy AB Ba

Dp - Bb Ay

- Cy Db

Aég N cp

(of Dyi AB Ba

DB - Bb Ay

i Cy D&

- Cﬁ

(of Dy AP Ba

DB - B&’ Ay

- Cy Db

- ofc)

Cb Dy ‘?Aﬁ Ba
Dp - é‘Ba

80

BB- D6+ CP- Ad

A& - CP + Ba - Dy

Ay - Ba + AB - B6

AP - C5+ DB - BS



81

6)
- Cy Db
r
|
-] e
; Cy-D6&+Ba-Cé+DP- BS
Co Dy ! Ba
J
Dp - " B6

We are left with no more loops:

Cbé Dy Ba

Dp - B6

The Q-process above has given us the following 6 estimable contrasts:

1) -1 1 -1 1 0 0 -2
2) -1 1 1 -1 0 2 0o -2
3) 1 1 -1 -1 1 -1 -1 1
4) 2 -2 0 0 -1 1 1 -1
5) 1 -1 -1 1 0 2 0 -2
6) 0 0 0 0 1 1 1 -3

NOTE: There are many different ways we could have done the
Q-process above and each way might give a different set of 6 esti-

mable contrasts. But they would always span the same vector space
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W.o If we row-reduce the above 6 x 8 matrix we see that

dme 6. Smceﬂ Wlt follows that

r(A, B) + dim W 7+ 6 =13, sothe design has maximal rank.
We could see that _1;(X) = 13 by row-reducing the 13 x 17
matrix X. But clearly the 6 x 8 matrix is easier to row-reduce.

Now we get the following table of degrees of freedom:

Source d.f.

Mean 1
Rows
Columns
Greek

Latin

O W W W W

Residual

Total 13

Example 7.3. Consider another 4 x4 Graeco-Latin square,

this time with two missing observations.

- Bp Cy D6
By IN: Da cp
Cé - AP Ba

Dp Ca B Ay

From the Q-process we get 7 estimable contrasts involving A, B,

C, D, a, B, y, 6. By row-reducing the corresponding 7 x 8 matrix
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we see dimﬂ= 5. In fact, we get

Greek letter contrasts: P -6, a-pP+y-56
Latin letter contrasts: B-C,A-B-C+D

Inseparable contrasts: (D-A) + (a-vy)

r(X)=r(A,B) + dimﬂ: 7+ 5 =12, which is not maximal rank.
We see that there are 2 degrees of freedom for Greek letter effects
and 2 degrees of freedom for Latin letter effects.

If we switch the role of the Greek and Latin letter effects with
the role of the row and column effects, we can apply the Q-process
again to get the corresponding results for row and column effects.

The table of degrees of freedom is as follows:

Source d.f.

Mean 1
Rows
Columns
Greek
Latin

Confounded

N W NNV

Residual

Total 14

Note that in the above example we had two missing cells and we found
that the design matrix is not of maximal rank, while in Example 7.2

we had three missing cells and we found that the design matrix is of
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maximal rank. This very well may be due to the kind of cells that are
missing. Notice that in Example 7.2 all missing cells had a-effects
in common, but in Example 7.3 the two missing cells had no Greek or

Latin letter effects in common.

Example 7.4. Consider a 4 x4 hyper-Graeco-Latin square

with four missing observations according to the following pattern:

i 1 2 3 4
r) o Bpb Cyc Dé&d
r, Dvyb Cboa Bad -
rs Cpd Dac - Bya
r, Bbc - Dpa Cab

In order to illustrate how the results of Chapter VI can be applied to
the above additive five-way classification model, let Tll’ T24, T33,
and T42 be empty and for each occupied (i, j) cell let Tij = {t}
where t consists of the letter combination capital Latin, Greek, and
small Latin in that cell; 7' = (A,B,C,D,q,8,v,6, a,b,c,d), the set

K consists of twelve distinct 12 x 1 vectors which are collection
of k..'s, where, for example, kth =(010001000100)"
Thus, there are twelve N(k) matrices. Note that hyper-Graeco-

3
Latin square are fractional factorial designs, i.e., they are (1/p")

fraction of p5 design. Therefore, for each k = kijt ¢ K, N(k) has
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a 1 incell (i,j) and zero elsewhere. Thus, as we saw in
Example 7.2 there are no direct differences, so that S = K,

M(k) = N(k) for all k € K and the vector space of estimable

N-contrasts ﬂ is equal to W We now form the matrix M.

For the symbol Gs we use t where s = kijt' Thus M is the
original hyper-Graeco-Latin square having triples symbols (e.g.,
(Bac) ) in cell (i,]j). Applying the Q-process to the above incidence
matrix leads to the following 5 estimable contrasts:

1) Dyb - Céa + Dac - CBd

2) Cyc - BPfb + Cba - Bad

3) Cyc - Bfb + Cba - Dyb + B6c - Dfa

4) D&6d - BPb + Dac - Bya

5) D6d - Bfb + Cba

Dyb + B6c - Cab

The above five estimable contrasts are all linearly independent
and thus dimﬂ= 5, r(X)=r(A, B)+ dimﬂ =5+ 7=12, so the
design matrix is not of maximal rank. Moreover, after row reduction
on the 5 x 12 matrix which is obtained from the above five estimable
contrasts, we find out that there is only 1 degree of freedom for
capital letters, 1 degree of freedom for Greek letters and 3 degrees
of freedom are confounded. This fact is rather strange in the sense
that in all four missing observations the letter A is common and

thus one might expect some degree of freedom for the small letters.
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The above example and the previous examples related to Graeco-
Latin squares bring up an open problem: Is there a relation between
the degrees of freedom and the pattern of the design? One may well
construct tables of degrees of freedom for given patterns of Graeco

or hyper-Graeco-Latin squares.

Example 7.5. Consider a 32 X 23 factorial design with the

following incidence pattern:

!
61 62
Y, Y, Yy Y,
B, B, B, B B, B, B, B, B, B B, P,
a \1 a
N1= a, 1 a, 1
a, a3 1
"2
61 62
Y, Yo Y, Yo
B, B, By B B, B, B, B, B, B B, B,
al al 1
N2: a, a, 1
a3 1 1 a,
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We see that
By 46 4T ) - (pta Pty . +6 T ) =y, -y, tT. -
(pta, #Bsty, +6, 47 ) = (pta, tPoty #6,47,) = v, -y +7, - 7,

is estimable. This is the set D* of Chapter VI. Now we form the

matrix M:

(1,1,1) - (2,2,2)

(2,1,1)} (2,2,1)

2|

(2,1,2)} (1,2,1)] (1,1,2)

Applying the Q-process to the above matrix leads to:

(1,1, 1) - \(2:2,2)

- ’ H] E ’ - + - + - +
2,1, 1) | 2,2, 1) 2y, + 2y, - 8 + 6, -T T

P

(2,1,2)'1(1,2,1) ] (1,1,2)

- (2,2,2)

- H H H H = + =
(2,1 l)r_'(Z 2,1) 261 +262 T T

1”72
(2,1,2) (1,2,1%”%

1,1,2)

= {2y +2v_ -6 +86_ -1 +T1_, -26 426 _+1_-T_}, it i
Thus F {2\(1 ZYZ 61 621' T, 261 262 Ty TZ} and it is

1
clear that we are left with no loops.

From the Q-process and direct m-differences we found the fol-

lowing 3 estimable contrasts:
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YioYy &) 8 T T,

-1 1 0 0 1 -1} From the set D%*
-2 2 -1 1 -1 1

From the set F
0 0 -2 2 1 -1

If we row reduce the above 3 x 6 matrix we see that
Y] - Yy 61 - 62, T, - T, are estimable and thus dim ﬂ = 3.
Thus, r(X)=r(A,B)+t dimj = 8, so the design has maximal
rank.

At this point we would again like to compare this method with
doing row reduction on the original design matrix. We could see that
r(X) = 8 by row-reducing the 8 x 13 matrix X. But clearly the

3x 6 matrix is easier to row reduce. Now we get the following

table:
Source d.f.
Mean 1
a 2
B 2
Y 1
& 1
T 1
Residual 0
Total 8
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Let us at this point use the obvious generalization of the tech-
nique developed in Chapter IV for finding a basis for each individual
effect. This example is for illustration purposes only. We do the

following steps:

1) N=N, + 2N

1 2
1 2
- 1 2 1
2 2 1
2) Let
Ql Qz
. P
'd N\ I'd N
1 1
1 1 1
1 1 1
= .
3) Let Q Ql ZQZ
1 2
Q= 2 1 |2
2 11 1
4) Let
1 1
Q.= 1 111
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We see that 1 and q£32 =1, therefore

9231 "
y(Pl) =YY, is estimable ignoring & and T-effects. We call

3k sk sk
this a y-path. Set either 4537 ©°F 953, to zero, say 9535 ° 0,
and form a matrix Q_, as below:
1 1
Q>,'<>:< = 1 1 0 T q232
1 1 1

1 2
2 1
2 1 1

Now we look for y-paths using the Q-process.

1 2
2—T*1
2 1 1

leads to y(PZ) = —3(y1—y2)., Another path is of the form:
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2
2 1
i
2 1 1

which leads to y(P Y, + Yy Now combination of these y-paths

3) =

lead to 5vy(P.) + 2y(P,) - y(P3) = 0.

1 2

6) We should see whether this zero combination of y-paths leads

to a zero combination of 6-paths (refer to Q). We get

- + - - - - - - = .
5(62 62) 2(62 61+61 62+61 62) (61 62+61 62) 0

7) Now look in N for T-contrasts corresponding to the above

zero combination of 6-paths. We get

5(T2-T1) + Z(TZ-T1+T2-T1+T1-T1) - (‘rz-‘r 1+T2-‘r2)
= 8(T2—T1)

to be estimable. From this point on the problem should be considered

as a four -way classification,

Example 7.6. In a 2" factorial experiment with n factors

each at two levels we need n+l cells filled for the design matrix to
be of maximal rank given that these filled cells have some certain
positions. We consider a 26 factorial experiment with 57 missing

cells in order to demonstrate the following facts, keeping in mind that
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we are only concerned about the main effects. These facts are as
follows:

1) The effect of changing the position of a missing cell on the
rank of the design matrix, and consequently the estimability of the

main effects, may be dramatic.

2) After finding some estimable contrasts, the problem of
estimability may be reduced to considering a design with fewer

factors.
3) The determination of r(X) in 2" factorial experiment is
relatively simple compared to other factorial designs that have been

discussed before. The model is of the form

—p+a +P. Fty +6 +1 +tE .
Vitave) ~F PG TR T O T, S

See Pattern 7.1.



Pattern 7. 1.

Yy Y2 Y] Y2
B, 5,
1
1
T2
Y, Y, Y, Y,
‘—_—
0 22221
T
Yy Y2 Y] Y2
1 1% M11212
T2
Y] Y Yy Y2




94

Since #0 and 0, £ -¢ is directl
17 %2 y

8111111 811112

5
estimable. Now the problem collapses to a 2~ factorial having the

following pattern:

61 62
Y1 Y2 Y1 |
B1 B2
a 1 1
a, 1 1
T2
61 62
vy Y, Yy Y,
1 1
Since n,, 4 # 0 and N,5112 70, Ty T, s directly seen

to be estimable. Now the problem collapses to a 24 factorial

having the following pattern:
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1 2
Y1 W 3! Y2
1 1
1 1 1
We see that N1 # 0 and D2 7 0 which implies that
61 - 62 is directly estimable and therefore the problem can be con-

3
sidered as a 2 factorial having the following pattern:

Y] Yo

We are left with no more direct differences. Now we form the

matrix M.

g

Applying the Q-process to the above matrix M, we see that there is
no loop, which implies there is no estimable y-contrast.
In order to find degrees of freedom for a we switch the role

of y with a. Indoing this we have the following pattern:
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Because there is no direct difference we form the matrix M.

<1

Applying the Q-process to the above matrix M , we see that there is
no loop, which implies there is no estimable a-contrast. By the same
procedure, we find that no B-contrast. Therefore the

r(X)=r(A,B) + dimﬂ =3+ 3=6, which is not of maximal rank

and the table of degrees of freedom is as follows:

S.V. d.f.
Mean 1
a 0
P 0
Y 0
6 1
T 1
£ 1
Confounded 2
Residual 1
Total 7



Pattern 7. 2.
B
Y, Y, Y] Y2
By P
Cl,1 1
QZ 1
T2
1
1
Yy Yo Yy AP
1 0
1
T2
Y, Y, Y, Y,

97
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Now let us change the position of the cell (1,1,1,2,1,2) to
(1,2,2,2,2,1). By this we mean having no observation in the position

(1,1,1,2,1,2) and one or more observations in the position

(1,2,2,2,2,1). Therefore D212 =0 and D059 # 0. See
Pattern 7. 2.
Because D111 # 0 and D112 # 0, then gl - gz is

directly estimable and the problem collapses to a 25 factorial

having the following pattern:
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#0 and

Since 70, T - T, is directly

52111 52112 1

4
estimable and the problem collapses to a 2 factorial having the

following pattern:

7 0, and therefore & - &

70 and 1 5

We see that

o211 N2212

is seen to be directly estimable. Now the problem collapses to a 2

factorial with the following patterns:

Y Yo

We are left with no direct differences. We now form the matrix M.

<1
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By applying the Q-process we find that Zyl - ZyZ is estimable and

2
thus the problem collapses to a 2 factorial with the following

pattern:
B, B,
a4 1 1
a, 1 1

We see that a, - a and [31 -B are directly estimable. The

1 2 2

design matrix X is of maximal rank 7 and the table of degrees of

freedom is as follows:

S.V. d.f.
Mean 1
a 1
B 1
Y 1
& 1
T 1
£ 1
Residual 0
Total 7

Again note how the position of a filled cell changes the esti-
mability of each effect and consequently the rank of the design matrix.
Moreover, only with 7 filled cells and 57 missing cells, all factors
are estimable, and this is the minimum number of filled cells needed

for the maximality of r(X).
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APPENDIX

It is the purpose of this appendix to describe the Q-process
which is used for finding loops in the matrix M. This description is
for the four-way model. The generalization of the Q-process follows
immediately. For the proof of the validity of the Q-process see
Birkes, Dodge and Seely (1972).

For convenience we isolate a part of the Q-process and call it
the X-process. The X-process applied to a two-dimensional matrix
W consists of the following procedure:

1) Findevery entry of W which is the only nonzero entry in its
row or column and change it to 0.

2) Continue this until each row and column either is all 0's
or has at least two nonzero entries.

We now describe the Q-process. At the first stage put the sub-
matrix of M consisting of the first two columns into a temporary
working area W. Apply the X-process to W. If the entire second
columnof W is 0 (and hence W =0), then proceed to the
second stage. Suppose there is a nonzero entry (gl,hl) in position
(i.,2). Since the X-process has been applied, there must be a nonzero

1

entry (gZ’hZ) in position (il, 1). Similarly, there must be a non-

zero entr (g.,h,) in position (i,,1), i, #7i,, and also a non-
y 83773 2 2™ h

zero entry (g4,h4) in position (iz, 2), These entries form a loop
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in M, so w( w( is estimable.

-w + w -
gl’hl) (gz,hz) (g3,h3) g4.h4)

We include it to our spanning set.

Now change miz' 5 = (g4,h4) to 0 bothin W and
permanently in M. If there was another loop in M which involved
('12, 2), the corresponding w-contrast will not be lost.

Again apply the X-process to W. If there are any nonzero
entries left, find a loop and derive an w-contrast as was done above.
Then change the last entry in the loopto 0 in both W and M.
Apply the X-process again and continue as above. Eventually a point
is reached where W = 0. This finishes the first stage.

To begin the second stage put the submatrix of M consisting
of the first three columns into a working area W.

Let us suppose that we have proceeded through the first p-1
stages of the Q-process and have thus obtained a spanning set for all
w-contrasts which can be derived from loops in the first p columns
of M. If p = b, the Q-process has been completed. If p < b,
begin the pth stage by putting the first p+l columns of M into
a temporary area W. Apply the X-process to W. If the entire

(p+1)th column of W is 0, then W =0, Dbecause every loop in

W must involve column p+l since there are no loops in the first

p columns of M. In this case proceed to the next stage. Suppose

there is a nonzero entry (glo,hlo) in position (il,p+1). Since the

X-process has been applied, there must be another nonzero entry
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(gll’hll) inrow i, sayin position (11,31). Similarly, there
must be another nonzero entry (gZI’hZI) in column jl’ say in
position (iZ’jl)' Alternately look along rows and columns for the
next nonzero entry until one is found in column p+l, say in position

Liy, s = - oot D) (s e (i L o+l) i
(1u Ju) iy ptl. Then (11 P 1)(12 Jl) (lu'Ju-l)(lu ptl) 1is a loop

- ... tw

-w +w
ey by (e by LI SL

and W
(8197 P10

is estimable. We include it in our spanning set. Now

-w
,h
(guu uu)

change miu:p+1 = (guu’huu) to 0 bothin W and permanently
in M.

Apply the X-process to the current matrix in W. If any non-
zero entries remain, find a loop and derive a w-contrast to include
in our spanning set. Change the last entry in the loopto 0 in both
W and M. Apply the X-process to W again. This completes

the (p+1)th stage. After b-1 stages the Q-process has been

completed.



