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ESTIMABILITY CONSIDERATIONS FOR N-WAY CLASSIFICATION
EXPERIMENTAL ARRANGEMENTS WITH MISSING

OBSERVATIONS

I. INTRODUCTION

This dissertation is concerned with the problem of determining

estimability of linear parametric functions in classification models.

The two estimability problems at which it specifically aims are: the

problem of determining whether the design matrix is of maximal rank

(i.e., all cell expectations are estimable); and in the event that the

design matrix is not of maximal rank, the problem of finding a basis

for the subspace of estimable parametric functions involving any one

particular effect. The contributions of this dissertation to the solution

of these problems are several procedures or algorithms for conven-

iently obtaining spanning sets for certain subspaces of estimable

parametric functions. Tools such as generalized inverses (Rao,

1962) and column-reduction (Bradley, 1968) are already available for

attacking such problems, but their implementation is tedious when

done by hand and is subject to round-off error when done by computer.

It is hoped that the algorithms which are presented here prove to be

more efficient and more accurate.

For some classification models with incomplete incidence

patterns, the statistician knows beforehand that the design matrix is

of maximal rank. Fractionally replicated experimental designs,
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Latin squares and Graeco-Latin squares are examples of such cases.

However, it may happen that missing observations occur by accident,

so that the statistician is unsure whether the design matrix is of

maximal rank or not. The design matrix being of less than maximal

rank means not all the usual parametric functions will be estimable.

It is important then to find out which ones are estimable. Ignoring

such considerations will lead to incorrect degrees of freedom, incor-

rect hypothesis tests, and attempts to invert singular matrices.

The estimability problem described briefly above has been of

concern to statisticians for many years.

Bose (1949) seems to have been the first writer to rigorously

attack the problem. For an additive two-way classification model

(block by treatment, with arbitrary incidence) Bose introduced the

notion of connectedness, and via this concept answered the question

of whether every treatment contrast is estimable. In Bose's termi-

nology

the treatment is contained in the block R, i . e. , there is at least one
J

observation in the (i, j) subclass. Two treatments, two blocks, or

a treatment and a block are said to be connected if it is possible to

pass from one to the other by means of a chain consisting alternately

of blocks and treatments such that any two adjacent members of the

chain are associated. And a design is said to be a connected design if

every block and treatment of the design is connected to each other.
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Bose (1949) then proved that the additive two-way model is connected

if and only if every treatment contrast is estimable.

Weeks and Williams (1964) treated the additive N-way classifica-

tion model. They defined the design points of such a model to be

connected if all simple contrasts (i. e. , differences of two levels of the

same factor) are estimable, and defined two design points to be nearly

identical if the N-tuples corresponding to them are equal in all except

one component. Using the idea of nearly identical design points,

Weeks and Williams described a procedure for determining connected-

ness. However, as Weeks and Williams (1965) pointed out in their

errata, their condition for data to be connected is sufficient but not

necessary. This is easily seen by considering an additive three-way

model

E(Yi.ik)
+ a. +13. + y

k
,

J

where i = 1,2, j = 1, 2, and k = 1,2 and with data occurring in

cells (1,1,2), (2,1,1), (2,2,2), and (1,2,1). This is a 1/2 replica-

tion of a 23 factorial. No pair of these observations are nearly

identical, but a - 0, ,
1 2

instance, we can write

132' Y1 Y2

Y1 -Y2 as:

are estimable. For

(- 2)[(p.+0,
1

+13
1
+y2) (11+a

1 -FP 2+V1)

+(11+°-2'(32+Y2) (11+°- 13 +yin
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Therefore the data in the above model is connected, but have no

property of being nearly identical, so that Weeks and Williams' proce-

dure fails to provide any information.

Srivastava and Anderson (1970) also discussed the concept of

connectedness in additive N-way classification models. Their defini-

tion of connectedness is equivalent to that of Weeks and Williams

(1964) but stated in a slightly different form as: "the design is said to

be completely connected if and only if all the linear contrasts within

each factor are estimable. " They defined a chain connecting two

levels of a factor to be a sequence of occupied cells such that the

alternating sum of the corresponding cell expectations is a nonzero

multiple of the difference of the two levels. Then they established a

theorem that a simple contrast is estimable if and only if there is a

chain connecting the two levels involved in the contrast. They gave no

algorithm for finding such chains and it seems that in any such

algorithm there would be no upper bound on the number of sequences

of occupied cells that must be looked at in order to find a chain.

A graphical presentation of classification data of arbitrary inci-

dence is contained in an unpublished paper by Mexas (1972). The

possibility of extending Bose's theorem to more than two factors has

been considered. By a counterexample Mexas showed that pairwise

connectedness is not sufficient for maximality of rank in an additive

three-way classification model.
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Searle (1971) mentions that "the general problem of finding

necessary conditions for main effect differences to be estimable [for

an additive model having more than two factors] remains as yet

unsolved. "

Recently, Birkes, Dodge, Hartmann, and Seely (1972) presented

general and complete results for estimability considerations in an

additive two-way classification model which are easily programmed

for electronic computers. They introduced an algorithm, the

R-process, which determines what cell expectations are estimable.

Furthermore they gave a method for determining a basis for the esti-

mable functions involving only one effect; for determining ranks of

matrices pertinent to considerations for degrees of freedom; and for

determining which portions of the design are connected.

Birkes, Dodge and Seely (1972) provided results on estimability

for an additive three-way classification model with arbitrary incidence.

They introduced the R3-process which provides a sufficient condition

for a cell expectation to be estimable. They also gave an algorithm

for obtaining a spanning set for the estimable contrasts involving only

a single effect. The main part of the algorithm is called the

Q-process, and because of the usefulness of this process in this dis-

sertation it is described in the Appendix.

The approach to estimability of linear parametric functions in

this dissertation follows the general framework established in the last
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two papers mentioned above.

In Chapter VI a general classification model will be considered.

However, to be more specific we will investigate in detail the additive

four-way model in Chapter II. In Chapter III two algorithms for find-

ing a spanning set for combined y and 5-contrasts will be intro-

duced where y and 5 denote the third and fourth effects in an

additive four -way model. This is followed by Chapter IV in which

some useful miscellaneous results are given. In Chapter V an attempt

is made to separate y's and S's. Chapter VII is devoted to exam-

ples and comments related to the general model.



II. ESTIMABILITY CONSIDERATIONS FOR THE
FOUR-WAY MODEL

The Model

Let {Y..
13kte}

be a collection of n independently distributed

random variables each having a common unknown variance cr
2

and

each having an expectation of the form:

E(Y.. ) + a. + p. +Y+ 5 ,
13kte 1 3 k t

where i, j, k, t range from 1 to a, b, c, d respectively and for a

given i, j, k, t the index e ranges from 1 to . As usual,niikt

= 0 means that no random variables with the first four sub-
1113kt

scripts i, j, k, t occur in the collection. If no random variable

occurs with first subscript i = 1, then of course there can be no

estimable linear parametric function involving al. Since this thesis

is concerned solely with estimability, a
1

might as well be dropped

from the model. For this reason it is assumed that

and

n
1
. Zjktnij for i = 1, , a... kt

n. j.. = Eiktnijkt # 0 for j = 1, ,b

n .k. = Eijtnijkt V 0 for k = 1, , c

n... t Eijknijkt 0 for t = 1, , d.

7
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Thus, we are assuming a fixed effects four-way classification model

without interaction and with no restrictions on the unknown parameters

occurring in the above expectations.

Definitions

A linear combination of the parameters which occur in the

expectations of the Yiikt's is called a linear parametric function.

Such a function is said to be estimable if it can be written as a linear

combination of the cell expectations p. + a. + + yk + 5
t

for which

n.. > 1. A linear parametric function is said to be a contrast if the
ijkt

sum of the coefficients of the parameters is zero. A 6-contrast is a

contrast involving only the parameters 51, , 5d. An a , p and

y-contrast are defined similarly. As there are no restrictions

assumed on the parameters, a fact which should be noted is that an

estimable linear parametric function not involving p. must neces-

sarily be a sum of four contrasts; these contrasts being a p ,

and 5-contrasts respectively. To see this let f be an estimable

linear parametric function not involving p.. Then we can write

f = iZ.Z c.kt (p.+G.i+P+y
k

+6
t

) .jktijj
Using the usual dot notation to denote summation over the suppressed

subscripts we can write



f = c p. + sic. a. + Zc
P.

z cII... 3 .
. .. k ..k.yk +

t c ...t t

Since f does not involve p, it follows that c = 0. Then

Z.a c. a. is an a-contrast because Z.
a

c. = c = 0.
1=1 1. . . 1=1 i...

Similarly the other terms of f are seen to be pi, y, and

5-contrasts respectively.

Estimability

In this section we develop a procedure for obtaining a spanning

set for the vector space of estimable parametric functions involving

only one of the four classification effects. For convenience we con-

centrate on finding a spanning set for the vector space of all

estimable 5-contrasts. Once such a spanning set is obtained a basis

Nfor can then be extracted by standard methods.

In order to obtain a spanning set for

steps:

we do the following

9

1. Direct 5-differences. First apply the R-process described

below to a special two-dimensional matrix. By doing this we gener-

ally find more estimable cell expectations. That is, even though a

particular nikt may be zero, it is possible that the cell expectation
j

+ a. + p. + + 5 is estimable. After applying the R-process,ijk t



some 5-contrasts may be "directly" seen to be estimable. For

example if
+ + P2 + \I3 + 51 and p. + al + I3z + + 53 are

10

both estimable, then their difference 51 - 53 is estimable. We

collect all the "direct 5-differences" that can be obtained in this way.

These direct 5-differences form a set D.

2. Direct co-differences. We form a new two-dimensional

matrix and apply the R-process again in order to find more estimable

cell expectations. This time we find some estimable contrasts,

called "direct w-differences," involving y and 6-effects. The rea-

son that we bring y-effects into consideration is that our procedure

makes use of the Q-process of Birkes, Dodge and Seely (1972), which

eliminates only p., a and f3-effects. We collect all "direct

w-differences" that can be obtained in this way. These direct

w-differences form a set E.

3. Contrasts from the Q-process. At this step we form a

special matrix M. By applying the Q-process we obtain more

estimable co-contrasts. These contrasts form the set F.

4. Separation of 5-contrasts. Since the set E and F

found at steps 2 and 3 contain contrasts involving y-effects as well as

6-effects, we must take linear combinations of these co-contrasts to

obtain 8-contrasts.
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Remark 2. 1. Since the maximum dimension of the vector space

is d- 1 , if at any point we find d-1 linearly independent

estimable functions involving 5-effects we stop the procedure.

Let us describe the R-process.

The R-process is a procedure applied to any two-dimensional

matrix, say W, to obtain a final matrix Z. The R-process is

defined as follows:

1) For each pair i, j, if w.. = 0 set z.. = 1, otherwise,

set z.. = 0.
13

2) For each pair i,j, if there exist k,h such that

zih zkh zkj
then set z.. = 1. (Pictorially, we add

the fourth corner whenever three corners of a rectangle

appear in the matrix. )

3) Continue step (2), using the new nonzero z..'s as corners
iJ

of new rectangles, until no more entries can be changed.

Observe that the final matrix Z is a matrix of the same

dimensions as the matrix W. Also, note that if we denote the col-

umns of the matrix Z by C1, ... ,Cv,
then for any two columns

C. and Ch either C. = Ch' i.e. , they have ones in precisely the

same rows, or else CIC -= 0.
3 h

We are now in a position to describe in detail the first step in

14obtaining a spanning set for . We transform the four-dimensional

a x b x c x d matrix I\T = (ni .. ) into a special two-dimensional
3kt
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abc x d matrix as shown in the diagram below, where the rows are

identified by triples.

(2, 1, 1)

aPy (i,j,k)

(a, b, c)

1 2

5

d
"Mk

nijkt

Apply the R-process to the above two-dimensional matrix to

obtain a final matrix Z. Now we transform this two-dimensional

matrix Z into a four-dimensional matrix M with entries

. (Note that the rows of matrix Z are identified
mijkt (i, j, k), t

by triples.) The matrix M is related to cell expectation as can be

seen by the following proposition.

Proposition 2.1. If m .. then the parametric function
3kt

p, + a. + 3. + y + 5 is estimable.
J' k t

Proof. Consider the R-process as described above. At step

(1), 1 means nijkt 0 so that + a. + p. + k
+ 5 t is

3

obviously estimable. We see that whenever one sets miikt -= 1 in

some iteration of step (2) it is because there exists (u, v, w) and h



such that mijkh muvwh
= muvwt

= 1. Applying an induction argu-

ment on the number of iterations of step 2, we can conclude

+ a.
I

+ pj + y
k

+ 5 = (p.+ai+(3j+y k+5 ) - (i.i+au+p v+y w+ 5h)

(11-Fau+13v"w+5t)

is estimable.

13

Remark 2.2. Although the above proposition provides a suffi-

cient condition for a cell expectation to be estimable, it does not in

general provide a necessary and sufficient condition. The matrix M

can, however, for estimability considerations be viewed as the inci-

dence matrix for the original pattern. This is easily seen from the

above proposition and from the fact that ni'kt 0 in the original

incidence matrix N implies that miikt ) in the matrix M.

We continue now with step 1 essentially treating M as the incidence

matrix for the data pattern.

For t = 1, , d let Mt denote the a x b x c matrix

having entries miikt ; we call these matrices the 5-levels of M.

Define an equivalence relation on {1, 2, , d} by t h if

Mt = Mh. Suppose there are s equivalence classes; by relabeling,

we can assume {1, 2, ..., s} is a complete set of representatives for

these equivalence classes. If t h, then 5
t

- 5h is seen to be

estimable. We refer to these estimable contrasts as direct

5-differences.



Let D = {6t - bh: 1 < t < s, s+1 < h < d, t h }, and let

be the vector space spanned by D. Once we have D we reduce

estimability problems to a model with fewer 6-effects by keeping 5

14

t

for only one t in each equivalence class in {1, 2, d}. To see

intuitively why this can be done recall that a linear parametric

function is estimable provided it can be expressed as a linear combi-

nation of cell expectations for which miikt > 1. Thus if we drop bh

from the model while keeping bt where t h, and if miikh ? 1,

then we do not lose the corresponding cell expectation, because

mi.ikt = 1 and 5t h- 5 is in D, so that we have

+ a. + p.
3

+ y
k

+ 5
h

= (1.1.+a.-143.3+ k+6 ) (6t -5h) (2. 1)1.t
To formally prove why we can drop bh, suppose LP is a nonzero

estimable linear parametric function, By definition, we can write

a b Ec Ed
= Z. Z

j
Z c. (µ +a +(3.+y +6 )

1=1 =1 k =1 tz-- 1
. i 3 k t

where c.. = 0 if m .. = 0. For each h, s+1 < h < d, find
ulct

th, 1 < th < s, such that h th. Then we can write

= E ZEZs c (p.+a,i+P.+y +5 )
t= 1 ijkt j k t

+ZEE h,s +1 c ijkh (11+a
i

+13
j

+N
k

+5h)
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Substituting 2.1 we have:

or

= E E E Es c (11+a +13.+y +5 )t=1 ijkt i 3 k

+ZEE [(1.1.+a.P.+-y 1]
Eh=s+1

+
k

+5 th
)-(6 th -5h

= E E Z Es c. (1.1+a.+13.+N +.5 )t=lijkt 13kt
+ZEE d

c
i

.(p.+a+(3.+y +5 )Ed jkh 3 k th

-EZE d c (5 )Zh=s+1 iikh th -6h

where 1 < t
h

< s.

Thus, we can write

a b c d
+ E. E E1=1 3=1 k=1 h=s+lcijkh(ath

-6h)

a c s
= E1 . Eb. E E c (11+a.+P.+Y +6 )

=1 3=1 k=1 t=1 Ljkt 1 k t

Note that ciikt = 0 if miikt = 0. Therefore in order to find more

estimable 6-contrasts we need to consider only the estimable contrasts

of the form

c sEa. Eb. E E c! (1141.+P.+Y +6 )
1=1 3=1 k=1 t=1 ijkt 3 k t

(2. 2)
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Remark 2.3. Similar considerations could also be made with

regard to a , p and y-effects. For instance, by applying the

R-process to a special two-dimensional matrix having the columns

identified by the levels of y-effects, we may find a set, say K,

which consists of direct y-differences. In this case, if it happens that

we find c-z direct y-differences then we only need to consider con-

trasts involving z of the y-effects.

Remark 2.4. It is not actually necessary to do step (1) for our

algorithm to work. That is, one could start immediately with step (2)

described below by simply setting the matrix M' equal to N.

But in many cases doing step (1) and finding the set D will facilitate

the search for a spanning set for The second algorithm of

Chapter III bypasses the set D.

We now start the second step toward finding a spanning set for

1:71 by working with the a x b x c x s submatrix of M consisting

of the first s levels M1 , Ms ; denote this matrix by M'.

Define w to be the column vector whose transpose is

(y1,..., Nc, 61, , 6s). The reason that we bring y-effects into con-

sideration is that we want to make use of the Q-process which

eliminates only a , and (3- effects.

We now form the two-dimensional ab x cs matrix, as shown

in the diagram below, where rows and columns are identified by pairs:



1/6
(1, 1) (k,t) (c, s)

ijkt

Apply the R-process to the above two-dimensional matrix to

obtain a final matrix G. Now we transform this two-dimensional

matrix into the four-dimensional a x b x c x s matrix M" with

entries m
(note that the rows and columns of G

ijkt g(i, j), (k, t)

are identified by pairs).

For each pair of indices (k, t) where 1 < k < c and

1 < t < s let m (k, t)
denote the a x b matrix with entries

mijkt and let w(k,t) Nk + 5t.
Because the R -process has been

applied, either M(g, h)
=

v)
or else, there are no i, j such

that m.. = 1 and m.. = 1. If M(g
, h)

= M(u, v)' and
ijuv

mqrgh 0 for some q, r,

17

then w(g,h) - (u, v)
is directly seen to

be estimable, and moreover if m.. = 1, thenijuv

+ ai + R. + Y + 5 = (.1.+a.+13.+N +5 ) + (y+5 -Nu-5v)
gjgh ijuv

is estimable. Define an equivalence relation on C = {(1,1), , (c,s )1

by (g, h) (u, v) if M(g, h)
M(u,

v)
and miigh V 0 for some i, j.



Let S be a complete set of representatives for these

equivalence classes. For each i, j, there is at most one pair

(k, t), (k, t) E S, such that 0. Let
mi3kt

E = {w(g, h) w(k, t)
(g, h) E S, (g, h) (k, t)}. Let

space spanned by E. Then from an argument similar to the one

given for Expression (2. 2) it follows that in order to find more

estimable 5-contrasts we need to consider only the co-contrasts of the

form

18

be the vector

Ea b
E d (µ +a. +(3 +Y +S) (2. 3)

1=1 j=1 (k, t) ES ijkt 3 k t

where = 0 if m = 0.
13kt i3kt

Now we start the third step toward finding a spanning set for

by letting X.10.1 be an estimable contrast which has the form of the

Expression (2. 3). Set .. Either D,
Di E(k, t) ES dikt = 0 or

3 j 13

D.. = d.. where u,v is the unique pair of indices such that
13 1.31.1V

M.. 0. We see that E.D.. = 0 for all j and E.D.. = 0 for
13UV 1 1.3 3 13

all i. For some (ii, j1), Di 0. Since E.D. . = 0, there is
1131 3 113

some j2, j2 i j1, with D.
1

. 1 0. Since E.D. = 0, there is
132

'32

some i2, i2 i
1,

with Di 1 0. In this way we get a sequence
1232

(i1, j1)(i1, j2)(i2'j2)(i2,j3)(i3'i3)
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where ip ip+i, jp p+ for all p and D. 0
ij

for each

(i,j) in the sequence.

Let p,q be the first two indices such that jp = jq with

p < q. In this case the sequence

(i , )(i ) (i-q-1,jq-1)(i ,j )q- 1qp p) jp p+1 p-f-1 jp+1

yields a loop.

We define a loop to be a sequence of an even number u(u > 0)

of pairs

(i1, i1)(i2'i2) (juju)

such that

i) the pairs are distinct,

ii) it 4+1 for t odd (t = 1, 2, . u-1),

iii) -t -t+1
for t even (t = , u -2),

iv) j ju

For example, (3,3)(3,1)(5,1)(5,2)(1,2)(1,4)(2,4)(2,3) is a loop. If

we connect the corresponding entries of a two-dimensional matrix we

obtain a picture of a rectilinear loop:

1 2 3 4

1

2

3

4

5
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Above we said the sequence

(i ,J )(i ) - (iq-2, q-1)(iq-1,jq)

yields a loop. It is itself a loop if iq-1 i . If iq-1 = ip, then
P

(i , j q- 1 )(i , j p+1
1 (iq-2, jq-1) is a loop. For convenience let us

q- 1 p

assume (i
P

,j
P

)(i
P

,j
P+1

)...(iq-1,jq) is a loop. For each (i
u

,j
v

) in

this sequence, let k t be the unique index such that
uv uv

di k t
y 0. Then mi k t

0, so
u

jv uv uv u
jv uv uv

Pp.+ ai + + yk + 6
t

u Jv uv uv
is estimable. Now

1

+P. +y
k

+6
t

) -
l

+P. +y
3

P P pp pp p p+1 kp,p+1+5tp,p+1

+ - (p.+a. +P. +y
k

+8
lq - 1 3q q 1 , q tq- 1 , q

- 5 + -
Ykq-1,q - tq-1,q= rkpp 8tpp kp, p+1 tp, p+1

is an estimable to-contrast; call it p'w. The estimable w-contrast

X w p w can be expressed as a sum of estimable cell
di j k t

P P PP PP
expectations with strictly fewer nonzero coefficients than the expres-

sion for X'w.

Using induction we can argue that every estimable w-contrast of

a bthe form Z. . Z
3 (k, t) ESdijkt(11+cti+(3jlYk+6t)

can be expressed as a

linear combination of estimable co-contrasts which can be derived from



the loops in the above manner.

Let be the vector space of estimable w-contrasts of the

form E E(k,
t) ES dijkt(pjai+(3j+Yk+6t)

We have just proved the

following:

Lemma 2.1. The vector space
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of estimable w-contrasts

of the form E E E(k,t)
E Sdijkt(H-cti+(3j-Hik+5t)

contrasts (Yk +6t ) (Yk +6 ) (Yk +ot )
1 1 2 2 u u

is spanned by the

where

( i
1 j 1) (iu ,ju

) is a loop, and (k ,t r ) is the unique pair in S

such that . V 0.
m1 k trr r r

Define the matrix M such that

(k, t) if mijkt = 1, (k,t) E S

0 otherwise

A loop (ii, ji)... (i
u

,j
u

) will be called a loop in M if rn . 0

PAPP
for p = 1, ,u. Let is a loop in R.p={pip=
and let 10:= {P IP is a loop in M derived by the Q- process }. For

the sequence P E p such that P (i1'j1)..(ju'iu)' define

w(P) = Z
= 1

(-1)1.+1(yk -F6t ),
r r r

S such that m k t V 0.1rjrrr
spanned by {w(P) I P }. Define F = {w(P) P E' }. Let y(P)

be the part of w(P) involving only y's.

where (k r ,tr ) is the unique pair in

In Lemma 2.1 we proved that W is
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Lemma 2.2. The vector space of estimable w-contrasts

is spanned by F.

The proof of this lemma is a direct analogy to the lemma on

page 12 of Birkes, Dodge and Seely (1972).

Theorem 2.1. The vector space

w-contrasts may be written as

of estimable

where ® denotes direct sum.

The direct sum in Theorem 2. 1 follows from the fact that after

finding a direct 5-difference 5t - 5h for the set D, we can

eliminate 5h, s+1 < h < d, and only keep 5t, 1 < t < s, in the

model for the remainder of the process. Therefore no linear combi-

nations of the elements in will occur in

let

9(Th { = {,$}

As the fourth and final step for finding a spanning set for 1/,
be the set of sequences P such that P E 72 or P is

the sequence of two pairs (k1,t1)(k2,t2) such that m.. 0

and m . 0 for some i,j. Let
ijk2t2

= -talc-0(Pd+. . .+anw(Pn) I P1, . . , Pn e), al y(P j.)-f-. . .4-any(Pn) =- 0}
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is the vector space of all estimable 5-contrasts

we get the following theorem.

Theorem 2. 2. 14,p. g , where p is the vector

space spanned by the set D of direct 5-differences and is the

The proof of this theorem follows from the fact that") (---C'.
vector space defined as above, i.e ,

It should be noted that the 6-differences found directly after

applying the R-process at the first step yield a linearly independent

set D of d-s differences. The problem then becomes to extract

a basis for estimable 5-contrasts from the sets E and F.

Fortunately, for small experiments such a basis is often easily

obtained by hand.
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III. TWO ALGORITHMS FOR FINDING A SPANNING SET FOR

In this chapter we give two algorithms for finding a spanning set

for c,)-contrasts. We assume the same model, assumptions and nota-

tions as introduced in Chapter II.

The first algorithm follows approximately the proof of Theorem

2.1. The second algorithm is different from the first one in that the

R-process is only implicitly used and Remark 2.4 is taken into account.

It will be seen that each of these two algorithms has some advantages

over the other depending upon the structure of the incidence matrix.

We will demonstrate both these algorithms via some examples.

Algorithm 3. 1

This algorithm consists of the following procedure:

Step (1). Transform the four-dimensional a x b x c x d

matrix N = (niikt) into a two-dimensional abc x d matrix whose

columns are correspondent to 6-effects. (See Chapter II for the exact

transformation.)

Step (2). Apply the R-process to this two-dimensional matrix

to obtain a final matrix.

Step (3). Compare the columns of the final matrix. If two col-

umns, say t and h, have nonzero entries in the same row, then

is estimable. Keep one column and eliminate the other one.St - 6h
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Collect all the direct 6-differences that can be obtained in this way.

These direct 6- differences form the set D.

Step (4). Suppose we are left with s of these columns.

Transform this abc x d matrix into an a x b x c x s matrix M'.

(Note that this is a submatrix of the matrix M of Chapter II. )

Step (5). Form a two-dimensional ab x cs

columns corresponded to pair (Nk' 6t)

matrix whose

Step (6). Apply the R-process to this two-dimensional matrix to

obtain a final matrix.

Step (7). Transform this final matrix into a four-dimensional

matrix M".

= Mt,
)' and

m.". # 0, for some i,j then (Ng+8h) - +6v) is estimable.
u

Keep either M" or
h)

or and ignore the other one. Collect
(u, v)

all direct u-differences that can be obtained at this step. These

direct w-differences form the set E.

Step (9). Form a matrix M as described in Chapter II.

Step (10). Apply the Q-process to this matrix. Collect the

w-contrasts that we can obtain by this step into our spanning set for

and stop.



26

Example 3.1. For an a x b x c x d incidence matrix N let

N
1

P ,Nd
denote the 5-levels, i.e. , Nt is an axbxc matrix

with entries n .. . Consider the following 4 x 3 x 2 x 5 incidence
ijkt

matrix N:

N
1

=

N2

al

a3

a4

a
1

a2

a
3

a
4

5
1

Y1

132 P3

3

2

5
2

al

a3

a
4

Y2

133

1

Y
1

P2 133

1

a
1

a
2

a
3

a4

Yz

131
P2 133
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53

=

..

a
1

a2

a
3

a
4

a
1

a2

a3

a4

a
1

a
2

a3

a4

yi N 2

P
1

P2 P3 P P2 @

1 '3
a1

a
2

a3

a4

54

4 2

Y1

a
1

a
2

a
3

a4

55

N 2

131
P2 P

3
Pi P2

13
3

1

6

r
1

N
1

a
1

a2

a3

a4

N2

Pi P2 P3 131 P2 P3

1

1



Steps (1)-(2). Transform the four-dimensional 4 x 3 x 2 x 5

matrix N = (n . ) into a two-dimensional 24 x 5 matrix. The
ijkt

final matrix Z obtained from N by the R-process is

51 52 53 54 55

a P.y

=

(1, 1, 1) 1 0 x 0 1

(2, 1, 1) 0 0 0 1 0

(3, 1, 1) 0 0 0 0 0

(4, 1, 1) 0 1 0 0 0

(1, 2, 1) 0 0 0 0 0

(2, 2, 1) 0 0 0 0 0

(3,2,1) 0 0 0 0 0

(4, 2, 1) x 0 1 0

(1, 3, 1) 0 0 0 0 0

(2,3,1) 1 0 x 0

(3,3,1) 0 0 0 0 0

(4, 3, 1) 0 0 0 1 0

(1, 1, 2) 0 0 0 0 0

(2, 1, 2) 0 0 0 0 0

(3, 1, 2) x 0 x 0 1

(4, 1, 2) 0 0 0 0 0

(1, 2, 2) 1 0 1 0

(2, 2, 2) 0 0 0 0 0

(3, 2,2) 0 0 0 1 0

(4, 2, 2) x 0 1 0

(1,3,2) 0 0 0 0 0

(2,3,2) 0 0 0 0 0

(3,3,2) 0 0 0 0 0

(4, 3, 2) 0 1 0 0 0

28
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where x indicates a cell that has been filled by applying the

R-process.

Step (3). We see that columns 1, 3 and 5 have nonzero entries

in the first row. Thus 51 - 53 and 51 - 55 are estimable, and

they form the set D. Keep columns 1, 2 and 4 and eliminate columns

3 and 5. Thus we are left with a 24 x 3 matrix.

Step (4). Transform the 24 x 3 matrix into the four-

dimensional 4 x 3 x 2 x 3 matrix M' with entries

mijkt z . Thus we have:
(i, j, k), t

MI =
2

4

1 0 0

0 1

0 0 0

0 1 0

0 0 0

0 0 0

0 0 0

1 0 0

0 0 0

1 0 0

0 0 0

0 0 1

0 1 0

0 0 0

0 0

0 1 0

0 0 0

0 0 0

0 0 0

0 0 1

0 0 0

0 0 0

0 1 0
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Steps (5)-(6). Form a two-dimensional 12 x 6 matrix with

rows and columns identified by pairs, and apply the R-process to this

two-dimensional matrix to obtain a final matrix G. After applying

the R-process we have the following matrix where, as before, x

indicates a cell filled in by the R -process.

G =

(2, 1)

(3, 1)

(4, 1)

(1,2)

(2, 2)

(3, 2)

(4,2)

(1,3)

(2, 3)

(3, 3)

(4, 3)

1

(Y, 5)

(2,1) (1,2) (2,2) (1,4) (2,4)

x 0 0 0 0

0 0 0 x 1 0

x 1 0 0 0 0

0 0 1 0 0 0

x 1 0 0 0 0

o 0 0 0 0 0

o 0 0 0 0 1

1 1 0 0 0 0

o 0 0 0 0 0

1 x 0 0 0 0

0 0 0 0 0 0

0 0 0 1 1 0

Step (7). Transform this two-dimensional matrix into the four-

dimensional 4 x 3 x 2 x 3 matrix M" with entries



rn.. = g . . we have!
Ijkt (1,3), (k, t)

=
(1,2)

M('1

1 1 0

0 0 1

1 0 0

0 1 0

0 0 0

0 0 0

0 0 0

1 0 0

0 0 0

1 0 0

0 0 0

0 0

Step (8). We see that

r

(2,1)

=
(2,2)

=
(2,4)

= Mn
(1,1) (2,1) and

1 1 0

0 0 1

1 0 0

0 1 0

0 0 0

1 0 0

0 0 0

0 0 1

0 0 0

0 0 0

0 1 0

0 0 0

(2,2

which implies (y1+51) - (y2+51) and (y2+52) - (y1+54) are

estimable.

set

Keep M("1,1)' M(
i\A

"1,2)' (2,2)

E -'Yl."2+82-84}

Step (9). Form a matrix M:

M"

31

1,4)

and M("2,4). Thus the



M

(1, 1) (1, 1) -

(2,2) - (1,1)

(1,1) (2,4) -

(1,2)
s

(1,1) (2,2)

Step (10). Apply the Q-process:

i)

ii)

(1, 1) (1,1) -

(2:21) (1, 1)

(1, 1) (2,4)

(1,2) (1,1) (2,2)

(ei+.51) (Y1+51) + (Y2+°4) (y1+51)

:::>< (1, 1) -

(2,2) - (1
g

1)

( 1 , 1) (2,4)

Jo--
(1,21 (1, 1) (2 2)

32



(iv)

(1,1) -

- (1, 1)

(2,4)

(2,2)(1,1)

(Y1+61) (2+64) (i1+61) (li+62)

(1,2)

(2,4)

(2,2)

33

At this point there are no further loops which can be obtained and

hence the Q-process and step (10) are concluded. From this step the

Q-process has given us the following three estimable contrasts:

Yl

-1 1 -1 0

-2 2 -1 1

1 -1 2 -1

64

0

-1

Set F

Note: There are many different ways we could have done the

Q-process above and each way would give a different set of three

estimable contrasts. But they would always span the same vector

space W.
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Thus from step (4) we found the set D = {61-63, 61-55} and

from step (8) we found the set E = {y1-y2, -1/1 -1-y2+62-64} and from

step (10) we found F = {-.y1+y2-81+64, -41+2y2-61+62,y1-y2+261-62 64}.

By Theorem 2.1 the vector space of estimable

co-contrasts is spanned by D, E, and F. After taking linear

combinations, we see that is spanned by

{yi -yz, 61 -62, 61-63, 61-64, 61-55}. Thus dim

Let us point out the difference between Algorithm 3.1 above and

Algorithm 3.2 which is presented below. Steps (1)-(4) of the first

algorithm are bypassed. Steps (5)-(8) are replaced by another method

of finding direct ciJ-differences. Steps (9)-(10) of the first algorithm

are the same as steps (5)-(6) of the second algorithm.

Algorithm 3.2

This algorithm consists of the following procedure:

Step (1). Begin to form the matrix M by changing every

nonzero entry of N to 1.

Step (2). For (k,t) # (u,v), if
andrilfgkt 1 mfguv

1

for some f, g then co(k, t)
w(u,

v)
is estimable (recall

and should be put into the set E' of direct
w(k, t) Yk 5t )

co-differences.

Step (3). For (k,t) and (u,v) as in step (2), redefine the

submatrix M(k, t) and M(u, of M by



1 if mijkt = 1 or m.. = 1
ijuv

=mijkt
0 otherwise .

Eliminate the submatrix M(u, v)

Step (4). Repeat steps (2 ) and (3) until no more changes can

be made in the matrix M.

Step (5). Form the matrix M as defined in Chapter II.

Step (6). Apply the Q-process to the matrix M. Add the

(4-contrasts that we can obtain by this step to those found by step (2),

and stop. We now have a spanning set for

35

Remark 3. 1. A method similar to steps (1)-(4) of Algorithm

3.2 can be used for finding direct w-differences. This is usually

preferable to the method in steps (1)-(4) of Algorithm 3. 1 when calcu-

lations are being done by hand. See Chapter IV for a complete

description.

Example 3.2. Consider a 4 x 4 x 3 x 3 factorial experiment

with the following incidence matrix:

N

al

a2
1 a3

04

5
1

13 P2 R3 P4
1

3

1

1



N

N

2

3

6
2

4

1

3

63

36

2

5

2

3

Step (1). Change every nonzero entry of N to 1. We can

assume such a change without drawing the above pattern again.

Steps (2)-(4). a. m2221 V 0 and m2213 V 0. Thus

W(2, 1) - W(1, 3)
is estimable. Keep m2221

and zero out m2213.

Similarly, from m2221 and m2233, we find that W(2,
1)

-0.)(3,

is estimable. Again we keep one of the cells and zero out the other

one. We keep m2221.
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V 0 and m3432 0, which implies w(1,2) - coo,
b. m3412

is estimable. Keep m3412
and zero out m3432.

c. Finally, because m5231 V 0 and m5223 V 0,

w(3,1) w(2,3)

that

is estimable. Keep m5231 and zero out

Note that (a-c) are steps (2)-(4) of the algorithm.

Step (5). Form the matrix M.

(1,1) - - -

- (2, 1) (2,2) -

- - (1,1) (1,2)

- (3, 1) - (2,2)

m5223

Step (6). By applying the Q-process to the matrix 1\71, we find

w(2,1) w(2,2) + w(1,1) w(1,2) w(2,2) w(3,1)

is estimable. Thus we get sets

{w(2,1)-w 1,3 'w(2,1)-w(3,3)'w(1,2)-w(3,2)'w(3,1)-w(2,3)}

from steps (2)-(4) and

F {w(2,1)+w(1,1)-w(1,2)-w(3,1)}

from step (6).
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2jis spanned by E' and F. This is true by Theorem 2.1 and the

fact that all direct 6-differences in D will occur in the set E' if

Algorithm 3.2 is used.

contrasts:

Thus we have the following 5 estimable

V1 Y2 Y3 81 82 83

-1 1 0 1 0 -1

0 1 -I 1 0 -1

1 0 -1 0 0 0

0 -1 1 1 0 -1

0 1 -1 1 -1 0

If we row-reduce the above 5 x 6 matrix we see that dim



39

IV. SOME USEFUL PROCEDURES

In this chapter we assume the same model, assumptions, and

notation as introduced in Chapter II. The purposes of this chapter

are: to describe the method for finding direct 6-differences which

was referred to in Remark 3. 1; to show how estimability problems

can be reduced to models with fewer effects and sometimes even fewer

factors; and to illustrate some miscellaneous shortcuts.

Notation. In the following examples we will use X to denote

the design matrix. We can write X = (1, A, B, C, D), where

1,A, B, C,D are the submatrices corresponding respectively to

a, p, y and 5-effects. The notation r(X) denotes the rank of X.

Definition. The degrees of freedom (d.f.) for any effect is

defined to be the dimension of the subspace of estimable linear

parametric functions involving that effect.

An Alternative Method for Finding Direct 6-Differences

Suppose we have an additive four-way classification model with

incidence matrix N. For t = 1, ...,d, let Nt be the

a x b x c matrix having entries niikt. To find direct 5-differences

we do the following steps:

Step (1). Begin to form the matrix M' (the same M' as in
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step (4) of Algorithm 3. 1) by changing every nonzero entry of N to 1.

Step (2). For t h, if m'efgt = 1 and m'efgh = 1 for

s ome e,f,g, then 6
t

6h is estimable and should be put into

the set D of direct 6-differences.

Step (3). For t and h as in step (2), redefine the sub-

matrix M't of M' by

ijkt

if mi'
kt

= 1 or mijkh = 1
j

otherwise .

Eliminate the submatrix

Step (4). Repeat steps (2) and (3) until no more changes can be

made in the matrix M'.

Example 4.1. Consider again Example 3.1. After step (1) we

have the following pattern:

M' =

a1

a2

a
3

a
4

6
1

1
132 P3

1

1

Y2

1
132

1



MI =
5

52

1

5
3

1

1

54

1

1*

1

1

85

1

1

1

m4 223

41



We see that m'1221
= 1 and mr1223

= 1; thus 51 - 53 is

estimable. We now eliminate the submatrix MI
3

and replace l's

in the appropriate cells in M' . Therefore we have the following

pattern:

MI =
2

MI =4

1

1

1

1

1

1

1

1

1

42
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We see that m1111 m1115= 1 and
1;

thus 51 - 55 is

estimable. By the same procedure as above we eliminate MI
5

and

keep M. This leads to the following pattern:

M' =
2

M' =
4

1

1

1

1

1

1

1

1

1

1

1

We see that no more changes can be made in the matrix M', and

the set D is {51-53, 51-55} .
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Reduced Model

In order to show how a problem can be reduced to a smaller one

let us consider the 4 x 4 x 3 x 3 factorial experiment of Example

3.2. Using Algorithm 3.2, we found that dim = 4, which

implies that we have full degrees of freedom for .y and 5-effects;

in other words, all the linear contrasts of y-effects and of 6-effects

are estimable. In particular we know that 51 - 52 is estimable.

Consider any occupied cell in N2, such as cell (2,3,2,2).

Recalling Equation (2. 1), we see that

+ (12 + 133 + Y2 "1 (11+a2+1334-Y2"2) (51-52)

is estimable; we can indicate this by placing a 1 in cell (2, 3,2,1).

Now we can place a 0 in cell (2, 3, 2, 2) without losing any

information about estimability, because

+ a2 + 13
3

+ y2 + 62 = (p.+a
2

+0
3

+y2+61) - (61-62)

In general, knowing that 61 - 62 is estimable, we can change the

entries in all occupied cells of N2 to 0 if we place a 1 in the

corresponding cells in N 1.
Thus we can eliminate N2 and reduce

the problem to a new model with only two 5-effects. The new inci-

dence matrix N(1), obtained from N as just described, is shown

below.



(1)
=N1 a3

al

a
2

N(1) =
3

a4

8
1

45

Y
1

P PZ
1

133 P4

1

1 1

Y2

1 1

1

52

1/3

1

1

1

1

1

We also know 51 - 53 is estimable. By the same procedure

as above we can eliminate NW after placing l's in the appropri-

ate cells in N1
1)

. Now the problem is reduced to a model with

incidence matrix N(2) with only one 5-level:



al

(2) a2
N1 =

a3

a4

1

P2 R3 P4

1

1

1 1

N2 Y3

1

1

1

46

But of course this is just the incidence matrix of a 4 x 4 x 3

factorial design. Thus, knowing that all 5-contrasts are estimable,

we have been able to reduce the problem from a four-way model to a

three -way model.

Because all the \i-contrasts are estimable, by the same proce-

dure the problem reduces from a three-way to a two-way model with

the following incidence matrix:

al

a
2

a
3

a
4

131 P2 R3 134

1

1 1

1 1

1 1

As we see, it turns out that this incidence matrix has the same

problem as the matrix M , i.e. , they both have nonzero entries in

the same positions. The reason for this is that by applying the
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R-process at (any) step (2) and step (6) of Algorithm 3.1 no cell

(i, j, h, t) will be filled unless there is already some cell (i, j, u, v)

which is filled.

In order to find the degrees of freedom for a and 13-effects

we use the method developed in Birkes, Dodge and Seely (1972).

Apply the R-process to the above incidence matrix. We get the follow-

ing final matrix

al

a
2

a
3

a
4

R3

1

1 1 1

1 1 1

1 1 1

From the final matrix we see that a2 a3
- and a

2
- a

4
form a

basis for the space of estimable a-contrasts so the degrees of free-

dom for a-effects is 2. (See Remark (4. 1). ) We can find

r(A,B) = b + (d.f. for a) = 4 + 2 = 6, and the degrees of freedom

for (3-effects is r(A, B) - 2 = 6 - 4 = 2.

Remark 4.1. The above procedure for finding the degrees of

freedom for a and P-effects using a two-way model is valid only

because we know there are full degrees of freedom for y and

6-effects. In case there are not full degrees of freedom for -y and

6-effects, we can switch the roles of a and P with the roles of y
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and 5 in order to find the degrees of freedom for a. and P-effects.

However, the above procedure is always valid for finding r(A, B).

We are now in a position to write the table of degrees of free-

dom. Note that r(X) = r(A, B) + dim 6 + 4 = 10 which implies

the design matrix is not of maximal rank (i.e. , is not 11).

S.V. d. f.

Mean 1

a

2

2

5 2

Confounded 1

Res idual n - r(X) = 11 - 10= 1

Total 11

We now introduce via examples some shortcuts that are very

useful.

Some Miscellaneous Shortcuts

It may happen that the incidence matrix is such that we can

obtain all estimable contrasts by direct differences. In such a case

one can use the method developed by Weeks and Williams (1964).

Example 4.2. Consider the following 3 x 3 x 2 x 2 incidence

matrix:



N

N

al

1 a2

a
3

2

5
1

Yl

R1 P2 P3

1

1

1

62

"Y2

1

yr-

1

1

1 1

49

Notice that cells (3, 3, 1, 1) and (3, 3, 2, 1) lead to the estimability

of Yl )(2'
and cells (3, 3, 1, 1) and (3, 3, 1, 2) lead to the

estimability of 61 52. Now the problem is to find estimable con-

trasts for a and p effects.

Because
Y2

and 61 - 62 are estimable, we can form a

two-way table as follows:

al

a2

a

131

1

1 1 1

1
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From cells (1, 1) and (2, 1) we find al - a2 to be

estimable, and from cells (2, 3), (3, 3), a2 - a3 is estimable, simi-

larly from (2, 1), (2, 2) and (2, 2), (2, 3) we find that p
1

- p
2

and

(32 13
3

are estimable. Note that all estimable functions have been

found simply by direct differences. The design matrix for the above

problem is of maximal rank, i.e. , r(X) = 7, and table of degrees

of freedom is as follows:

S. V. d. f.

Mean 1

a 2

P 2

Y 1

6 1

Residual 2

Total 7

It is important to notice that each Nt can be considered as the

design matrix of a three-way classification model, so it is sometimes

wise and efficient to see if we can find all y-contrasts via applying the

method described in Birkes, Dodge and Seely (1972). If it happens

that we can obtain all y-contrasts by this method, the problem can be

considered as a three-way model by dropping the y-effects.

Example 4.3. Consider a 24 design with incidence matrix as

follows:



Consider the

51

1
Y2

131 P2 131 P2

al 1 1

a
2

1 1

52

Y1 Y2

1 131
P2

1

51

N1 matrix corresponding to the first level of 6.

N1 is a 2 x 2 x 2 matrix and applying the Q-process, it follows

immediately that yi - N2 is estimable. We see this by forming the

matrix N1 Ik=1kN1

Nl =
1 2

2 1

Now applying the Q-process to the matrix N1 we get

to be estimable. Therefore we can now work with the2N
1

- 2N
2

following pattern by noting that N-levels have been dropped from the

model.



and

6
1

131 P2

al 1 1

N'
1

=

a
2

1 1

N' =
2

al

a
2

52

131
P2

1

52

Again this problem can be considered as a three-way additive model,

from which it immediately follows that all estimable differences of

a's, P's, and 6's exist.

In a four-way model with incidence matrix N, if one two-

dimensional submatrix N(k,t) has all its cell expectations esti-

mable (which is equivalent to the condition that all its cells can be

filled by applying the R-process), then the problem can be considered

as a two-way classification model.

Example 4.4. Consider a 4 x 3 x 2 x 2 factorial design with

the following pattern:



N

al

a
2

,
1 a

3

a
4

N2 =

51

Y
1

R1 132 R3

1 1

1 1

1

1

sz

Y2

1

1

1

After applying the R-process to the two-dimensional matrix N(1,1)

all cells will be filled. This means that we have full degrees of

freedom for a and n-effects. The problem of finding degrees of

freedom for .y and 5-effects reduces to considering a two-way

model with the following incidence matrix:

Y
1

61 52

1 1

1

53
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We see that N1 and 51 - 52 are estimable. The design

matrix is of maximal rank, and the table of degrees of freedom is as

follows:

S. V. d. f.

Mean 1

a 3

2

1

5 1

Residual 2

Total 10

A Comparison

In this section we try to compare the effectiveness of the

R-process with the method developed by Weeks and Williams (1964).

Consider a 3 x 2 x 3 x 2 factorial having the following pattern:

al

a
2

a
3

Y1

R1 R2

1

Y3

131

1

1



al

a
2

a
3

62

V
1

1

1

112

Pi P2

1

V3

Pi P2

1

55

By applying the method introduced by Weeks and Williams (1964)

(see Chapter I), we see that no pair of these observations is nearly

identical. However, the design matrix is of maximal rank as we will

see below.

Let us investigate the effect of the R -process on the same

problem. Form a two-dimensional matrix, as shown in the diagram

below, where the rows and the columns are identified by pairs

(V, 6)

(1, 1) (2, 1) (3, 1) (2, 1) (2,2) (3,2)
e

( 1 , 1 ) 0 0 0 0 0 0

(2,1) 0 0 1 1 0 0

(3,1) 0 0 0 0 0 1

(1,2) 0 1 0 1 0 0

(2,2) 0 0 0 0 0 0

(3,2) 0 0 1 0 1 0.



Applying the R -process to the above matrix, we get

("Y, 8)

(1, 1) (2, 1) (3, 1) (2, 1) (2, 2) (3, 2)

(1, 1) 0 0

(2, 1) 0 II

(3, 1) 0 0

(1, 2) 0 1

(2, 2) 0 0

(3, 2) 0 0

0 0

1 1

0 0

0 1

0 0

1 1

0 0

13 0

0 1

0 0

0 0

II 0
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where E is in cells filled after applying the R-process. Now form

another two-dimensional matrix with columns corresponding to

6-effects and apply the R-process again. We get the two-dimensional

matrix shown on the left of the following page, where 0 is in cells

filled after applying the R -process. Now form a two-dimensional

matrix, with columns corresponding to a-effects and apply the

R-process again. We get the two-dimensional matrix shown on the

right of the following page, where is in cells filled after applying

the R-process.
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1 2

.
(1, 1, 1) 0 0

(2, 1, 1) 0 1

(3, 1, 1) 0 0

(1, 2, 1) 0 1

(2, 2, 1) 0 0

(3, 2, 1) 0 El
(1, 1, 2) 0 0

(2, 1, 2) CI 0
(3, 1, 2) 0 0

(1,2,2) 1 1].

(2, 2, 2) 0 0

(3, 2, 2) 0 1

(1, 1, 3) 0 0

(2, 1, 3) 1 0
(3, 1, 3) a 1

(1,2,3) Ci 0
(2, 2, 3) 0 0

(3, 2, 3) 1 0

P 'y 6

57
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Now transform this matrix back to a four-dimensional matrix.

We have

51

112

Ri P2

al 1 1 1 1

a
2

1 1 1 1

a3 1 1 1 1

5
2

1/3

Y3

1 1 1 1

1 1 1 1

1 1 1 1

We see that all cells are filled, i.e. , all cell expectations are

estimable, and so the design matrix is of maximal rank. Hence, in

general, the R-process is more effective than the method developed

by Weeks and Williams (1964).
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V. A TECHNIQUE FOR SEPARATING y- CONTRASTS
FROM 5-CONTRASTS

In this chapter we assume the same model, assumptions, and

notation as introduced in Chapter II. The basic purpose of the present

chapter is to present an algorithm, which is essentially a row-

reduction algorithm for obtaining a spanning set for the vector

space of estimable 5-contrasts. Recall from Chapters II and III that

several means are available for obtaining a spanning set for

the vector space of estimable w-contrasts, and that the algorithms in

Chapter III conveniently provide a decomposition of

Since

A =09® W)
C it it then follows that

of the form

And thus we need only concentrate on finding a spanning set for a
which is the vector space of all estimable 5-contrasts in e f let

Definition. For a loop P (il'il) (juju) in Q (see step

(7) below), define v(P) =
+ Y

and
k

1 2 u

5(P) = 5t 5
t

+ 5 where k , t for r = 1, u are
1 2

tu r r

unique indices such that
n

.
i 3 k trr rr = 1. Furthermore, for a sequence

of pairs P = (kr ti)(k2, t2) where (ki,t1) and (kz,t2) are such



that . = 1 and nij . = 1 let
nijk

1
t

1
k

2
t
2

6(P) = 5t 5t for some i, j.
1 2

Y(P) \ik Yk and
1 2

60

We assume that the set ID of direct 5-differences has already

been found. Thus we are left with the matrix M' which is the inci-

dence matrix of a four-way model which has no direct 5-differences.

Therefore, for the purposes of this chapter we can assume that we

have an a x b x c x s incidence matrix N with all entries either

0 or 1 and with no direct 5-differences.

Our technique involves finding a spanning set for y-contrasts

which should be estimable if 5-effects were not in the model. We

refer to such a y-contrast as a y-path.

The technique consists of the following steps:

s
Step (1). Form the matrix N = Et=1 tN t

, where Nt is an

a x b x c matrix with entries ..nijkt .

Step (2). Form the matrix Q with entries

qijk
0 otherwise

1 if n.. )ijk

Let Qk be the a x b matrix with entries q
"I.*

Step (3). If qijk = 1 and qijh = 1 for some i, j, then we

have y(P1) = yk Yh where P1 = (k,tk)(h,th) (we do not care

what tk and th are until step (5) ). We emphasize again that this



Yh

either

is not necessarily estimable in the four-way model. Set

qijk or qijh

61

equal to zero and keep the other. Continue in

this way until there are no nonzero cells in common between Qk's

for 'ork = 1, , c. Collect all y(R) s that can be obtained by this

step, step,and also keep track of the P.'

Step (4). In the collection of y-paths, find, if possible,

l(P1), , y(P ) such that a1y(P) + ...+ amy(Pm) = 0 for some

numbers al, ... , am which are not all zero. If this is not possible

go to step (7).

Step (5). Search for 6(P
1
), , 6(P m) in N . Form

a15(P
1)

+ ...+ am 6(Pm ) and keep it as an estimable 5-contrast.

Step (6). Take one a., a. # 0, and eliminate y(Pi) from the

collection of y-paths. (The reason we can do this is shown in Lemma

5.1 below.) (Go to step (4) . )

c
Step (7). Form the matrix Q = E kQ

k=1 k

Step (8). Apply the Q-process to the matrix Q. Add all y(P)

(where P is a loop in Q) that can be obtained by this step to the

collection of y-paths.

Step (9). Repeat steps (4)-(6) with "go to step (7)" replaced by

"go to step (10)" .

Step (10). Stop. The 6-contrasts found in step (5) form a

aspanning set for .
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If at any step we find d-1 linearly independent estimable

contrasts we stop.

Remark 5.1. At step (3) sometimes it is efficient whenever we

find a y-path to search in the matrix N to see whether a corres-

ponding 5-contrast is equal to zero. If it is, then depending on the

degrees of freedom for y-effects, the problem could possibly be

reduced to a three way model.

Lemma 5.1. Consider steps (6)-(8) above. Suppose we find

aiy(P1) + ...+ arny(Pm) = 0, al 0, in step (6) and we eliminate

y(P1) from the collection of y-paths in step (8). If

b
1
y(P

1)
+ ...+ b y(P ) = 0, then we will be able to tell thatm m

b15(P1) + ...+ bm 5(Pm ) is estimable.

Proof. From the algorithm in step (6) we find

aly(P1) + ...+ amy(Prn) = 0. Then we know a15(P1) +...+ amS(Pm)

is estimable. Suppose al 0 and at step (8) we eliminate y(P1).

Thus we cannot find the zero combination b
1
y(P1)+...+ bmy(Pm ) = 0

directly from the algorithm because y(P1) has been eliminated.

From step (6) we can write:

1
y(P 1) = ( )[ -a2 y(P

2
) - . -amy(Pm)], a

1
0 .

1

By substitution we can write:



or

b
1
{(a1 )L-a

2
y(P2)- ... -amy(Pm)11 + b

2
y(P 2) +...+ bmy(Pm ) = 0,

1

b b

(b2- a
2

)y(P
2
)+...+ (bm a

1
- am )y(Pm ) = 0 .

1 1

It is possible to get (5. 1) directly from the remaining y-paths

y(P
2
),... , y(Pm) Moreover we see that

bl
b1y(P1)+. . .+bmy(Pm) = ( )La -y(P 1)+. .+arny(Prn)]

Z

b
1+ [(b_- a...)/(132)

al z

bl
+...+ (b - a )y(P )Jma

1
m m

Thus eliminating y(P1) in step (8) would not lead to losing

63

(5. 1)

b
1
y(P

1
)+...+bmy(Pm ) = 0. Corresponding to the zero combination of

y-paths in (5.1), we know

(b a )6(P ) + + (b a )6(P )
2 a1 2 2 m ab

1

l
m m

1

is estimable. Thus we can write
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bl
b

1
5(P

1
)+. . .+bm 5(P m) = ( a7-

1

)[a
1
5(P

1
)+. . .+am 5(Pm )1

+ [(b,.. -- a_)5(P2)+...+(b al a )5(P )]
G al 4 m al m m

Since the right hand side is estimable, the left hand side is also

estimable.

Example 5.1. Consider the following 3 x 3 x 2 x 2 incidence

matrix N:

a1

N1 = a2

N
2

=

51

1'
1

P 13 21 P33

1

1

1

b2

1

1

1

1
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Step (1). Form N = N1 + 2N2

N =

Step (2).

Q=

Step (3).

1

1 2

2 1

2 1

1

2

Form the matrix Q as follows:

1 1 1

1 1 1

1 1 1

From Q it is seen that we can estimate yi - y2

(ignoring 8-effects), because q 331 = 1 and q332 = 1. Save the

y-path y(P1) = y2 and P1 = (1, 1)(2, 2) set q331 = 0. This

is the only y-path we get from step (3). Thus steps (4)-(6) will be

eliminated.

Step (7). Form the matrix Q

1 2 2

= Q1 + 2Q2 = 2 1 1

1 2

Step (8). Applying the Q-process to the matrix Q, we see

that P2 = (1, 1)(1, 2)(2, 2)(2, 1) forms a loop in Q, which leads to

the y-path y(P2) = 2y1 - 42.
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Step (9). From step (3) we have y(P1) = -y2 and from step

(8) we have y(P2)
2)/1 zNz.

We see that 2y(P1) y(P2) = 0.

Step (10). Corresponding to these y(P)'s in N are

5(P 1) = 51 - 52 and 5(P2) = 51 - 52 + 51 - 51 = 51 52. Therefore,

25(P1) - 5(P 2) = 51 52 is estimable.

We can stop because there can only be one degree of freedom

for 6-effects.

Example 5.2. Consider the following 4 x 5 x 2 x 4 incidence

matrix N:

N

N

1

2

a
1

a
2

a3

a4

R1 P2

Y1

133 P4 P
5

1

Y2

1

1



N3 =

N4 =

53

1

1

54

1

1

1

1

Step (1). Form N = N1 + 2N
2

+ 3N
3

+ 4N4:

N =

Step (2).

2 1

1 4 3

3 2

4 2
..

Form the matrix Q:

67
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1

1 1

1

1

1

1

1 1

Step (3). No y-path can be found by this step. Therefore

step (4)-(6) will be eliminated.

Step (7). Form the matrix Q = Q1 + 2Q2

2 1

1 2 1

1 2 2

1 2 1

Step (8). Apply the Q-process to the matrix E. We see that

P
1

= (1, 1)(1, 2)(2, 2)(2, 1) and P
2

= (3, 3)(3, 2)(1, 2)(1, 1)(4, 1)(4, 3)

and P3 = (3, 4)(3, 2)(1, 2)(1, 1)(2, 1)(2, 4) are loops in Q. The first

and the second loops lead to y(P1) = -2y1 + 2y2 and

y(P2) = yl - y2 and we have y(P1) + 2y(P2) = 0. Corresponding to

+ 63 - 61 = -52 + 63 and

-51 - 63 + 254. Therefore

. The third loop leads to

these y(P)Is are 6(P 1) = 51 - 62

6(P2) = 64 - 53 + 52 - 51 + 64 - 52 =

6(P1) + 6(P2) = -261 - 62 - 63 + 464
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Y(' 3 )
=

Y Y1 +Yi Yz +Yi O and corresponding to this

y-path is 6(P 3) = 62 - 63 + 52 51 + 61 64 = 252 - 63 - 64

Therefore {-251-82-53+454' 252-53-54} is a basis for
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VI. ESTIMABILITY CONSIDERATIONS FOR THE
GENERAL MODEL

In this chapter we extract the essential features of Chapter II

which are applicable to very general classification models. It is the

purpose of this chapter to present a complete and more general solu-

tion to the problem of estimability in classification models. In

Chapter II we provided a spanning set for estimable functions involv-

ing y and 5-effects. In Chapter IV we introduced an algorithm to

separate y from 5-effects within this spanning set. The general

model which will be presented here is faced with the same difficulties.

That is, it only provides a spanning set for estimable functions not

involving p., a and 13-effects. However, as will be seen via

(several) examples, sometimes the structure of the incidence matrix is

such that the separation of effects does not require too much effort.

The Model

Let {Y be a collection of .n independently distributed
ijk}

random variables each having a common unknown variance cr-

2 and

each having an expectation of the form:

E(Y.. ) = µ + a. + R. + k.. -1-1

I. tjt

where ri is a column vector of parameters not including p.,
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al' 'a and ail, , p and k.. is a vector of real numbers,
a 13t

so that the dot product k.. is a linear combination of parameters
3t

in Ti. The indices i and j range from 1 to a and b

respectively, and for each i, j the index t ranges in a set T..
tJ

where T.. is a finite (possible empty) index set.
13

Definition

A linear parametric function is estimable if it can be expressed

as a linear combination of the expectations p. + a. + p. + k.. Ti for
1 3 lit

i = 1, , a, j = 1, ...,b, and t E Tii An Ti- contrast is defined to

be any linear parametric function involving only parameters in

Notation and Purpose

Let

Ti.

denote the vector space of all estimable 1-contrasts.

Then it is the purpose of this chapter to obtain a spanning set for the

vector space

E stimability

of estimable Ti- contrasts.

t
(LetK = {k.. j, t) E where I denotes the index set

13

(i, j, t) such that i, j range from 1 to a, b respectively and

t E T... Note since K is written in set form that K consists of

the set of distinct vectors . Now for each k E K define anlit

a x b matrix N(k) = (nij(k)) such that:
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n. .(k) =
if k = k..t for some t E Ti.

1.3

otherwise .

Lemma 6. 1. An extimable r1- contrast can be written in the

form Ek
E Kck(k where the ck are real numbers.

The proof of this lemma follows directly from the definition of

estimability and the fact that the coefficients of µ and a, and R.

are zero.

Direct r1- Differences

Suppose there are two indices u, v such that T has more
uv

than one element, and let t
1

and t2 be two elements of T .uv

We see that if we set kl kuvt and k2 kuvt, it follows that:
l

(k1-k 2) rl = (p.+au+13, v+k
1

- (y..-Fa.u+13v+k
2

TO

is estimable. This is equivalent to saying that if N(ki) and N(k2)

have a non-zero entry in common, i.e. , for some u,v both

nuv(k
1)

V 0 and nuv(k
2)

V 0, then (kl-k
2)

r is directly seen to

be estimable. We refer to these direct differences as direct

r1- differences. Moreover if (k
1
-k

2)
ri is estimable, and

n..(k ) 0 for some i, j then
13 1

+ a. + R. + k2 = (p.+a.+13 +k 11) - (k
1 -k 2) 11

3 2 3 1
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is estimable.

Define a two-dimensional matrix Z = (Z(i, j),k) with rows

identified by the pairs (i, j) where i, j range from 1 to a, b

respectively, with columns identified by the vectors k E K and with

entries defined by Z = n..(k). That is, the matrix N(k) is
(i, j), k 13

transformed to column k of Z. Now apply the R-process to the

matrix Z to obtain a final matrix W with entries w(i, j), k

For each k E K define an a x b matrix M(k) = (m..(k)) by
iJ

m..(k) = w,. kij j), K
e. , take column k and put it back into an, i.

a x b matrix.

Proposition 6.1. If m..(k) = 1, then p. + + P. + k r is
13 3

estimable. The proof of the proposition follows exactly from Proposi-

tion 2. 1.

If M(k 1) = M(k2), then (k
1 -k 2) ri is directly seen to be

estimable.

Now define an equivalence relation on K, by k1 k2 if

M(k 1) = M(k2). Let S be a complete set of representatives of

these equivalence classes in K. For each pair (i, j) there is at

most one s E S such that m..(s) = 1. Let J be the set of
iJ

triples (i, j, s) such that m..(s) = 1, i = 1, , a, j = 1, , b,
13

S E S.

Let D* = {(k-s) -11k E K and s E S, k s} and recall from



cpabove that the elements of D* are estimable. Now let * be

the vector space spanned by D*. Let be the vector space of

estimable 1-contrasts of the form Z, c.. (1.1.+a.-1-13.+s II).
ki,j,$)E J ijs j

Then similar to Theorem 2.1 we get:

Lemma 6.2.

For each s E S select a symbol as which is not the

numeral 0. Define a matrix M such that

m..
13

Os if m..(s) = 1 for some s E S
13

0 if m..(s) = 0 for all s E S
13

w

The symbol Os is a device which can help us remember which

vector S is associated with which pair (i, j)

As in Chapter II, let y= {p P = (ii, ji)...(iu, ju) is a loop

74

in I\71} and let 'a= fp 117) is a loop in M derived by the Q- process }.

For P Ey, P = (/ j
1
) (1u, ju), define

ri(P) = s n - s2 n + - su n = (s1-s2+... -su) ri ,

where sr is a unique element of S such that m.
1

(sr ) = 1
r r

for each r = 1, 2, ... , u.



Lemma 6.3. 7,17) is spanned by { n(P)IpEp }

The proof of this lemma is directly analogous to the proof of

Lemma 2.1.

by F.

Lemma 6.4. Let F = 1 n(P) I P E ft } , then

75

is spanned

The proof is directly analogous to the proof of the lemma on

page 12 of Birkes, Dodge and Seely (1972).

Lemma 6.5. The vector space

is spanned by D* ..) F .

of estimable n-contrasts
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VII. APPLICATIONS

In Chapters III, IV, and V we presented several examples to

demonstrate techniques for finding spanning sets for vector spaces of

certain estimable parametric functions. We now provide some more

examples which illustrate these techniques as well as the general

theory of Chapter VI. With regard to the notation used in the following

examples, several comments seem appropriate. In all of the exam-

ples we will use the notation introduced in Chapter VI with ri con-

sisting of all parameters in the model except al, as and

RI , , Rb Thus,40 ,p* and will denote, respectively,

the vector space of estimable 11-contrasts, the vector space spanned by

D*, and the vector space spanned by F, where D* is the set

of direct n-difference and F is the set of estimable contrasts

obtained from the Q-process. For the examples in which we have an

additive four-way model we use the notation to denote the

vector space spanned by estimable direct 5-differences and a to

denote the vector space spanned by estimable w-differences found after

obtaining 0V. It should be noted that the notation 00 and W°
of the general model is consistent with the notation .04 and W
as used in an additive four-way model; (also, our usage of 19 and

Sin four-way models is consistent with the definitions in Chapter

II). Also note that when the additive four-way model is viewed in the
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general setting, the vector TI is the vector 6.). We begin with a 24

factorial design to illustrate how the results of Chapter VI can be

compared with those of Chapter II.

Example 7.1. Consider a collection of random variables

Y.. such thatijuve

) 11. + a1 + P. + v + ,

ijuve u v

where i, j, u and v range from 1 to 2, respectively, and

e = 1, , n.. . Let n., 's be arranged in incidence matrices
ijuv ijuv

N11, N21, N12 and N22 with entries (i, j) of Nuv
being

n.. . Suppose that we have the following pattern:
ijuv

N11

N12
=

3

2

2

N21 =

N22 =

1

4

Let Ti' (Y1, N2,51,52). The set K consists of the vectors

k = k for u = 1,2 and v = 1,2 where k ri = y . The
uv uv U V

matrix N(k ) is obtained from N by changing all nonzero
uv uv

entries to l's. We see that k21 k12 . Hence, let
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S = {k 11' k21, k 22} so that D* = {yr./2+52-51} and let 8k = (u,v )
uv

so that

M =

(1, 1) (2, 2)

(2, 1) (1, 1)

Apply the Q-process to the above matrix We find that

F = {2y1-2y2+51-52}. Here the set D* is the set E of Chapter

II. By Theorem 2.1 2= ehr) and by Theorem 6. 1

in other words, by Theorem 2.1 ,0 is spanned

by E and F and by Theorem 6.1.

After reduction we see that

is spanned by D* v F.

is spanned by {yi-yz, 61 -52 }.

Since y
1

- y2 and 51 - 62 are estimable, then dim

and r(X) = r(A, B) + dim = 3 + 2 = 5, which implies X is of

maximal rank. This means that the table of degrees of freedom is as

follows:

Source d. f.

Mean 1

a 1
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Example 7.2. Consider the following 4 x 4 Graeco-Latin

square with three missing observations:

r

r

r

1

2

3

r
4

cl
2

c4

BP Cy D5

By AS C/3

CO Dy AP Ba

DP - 135 Ay

This design could be viewed as a 44 factorial design with a

4 x 4 x 4 x 4 incidence matrix. This incidence matrix would be

presented as sixteen 4 x 4 submatrices, one corresponding to each

pair of levels (e. g, (B, y)) of the third and fourth factors. There

would be no direct u)-differences because of the way in which a

Graeco-Latin square is designed. Thus

Q-process.

1) BP Cy D5

ByDA5CP

C5 ay AP Ba

DP B5 Ay

. Now apply the

By - A6 + ay - CO



2)

3)

4)

5)

Bpr Cy
4t
D5

ik
CPAS -

CS Dy AP Ba

Dp - B6 Ay

- Cy Do

4A51 C P

CS
;

Dy AP Ba

DP - BS Ay

Cy D5

IV CI3

CS Dy AR's Ba

DP - 13514-1k Ay

- Cy Do

CP

BaCOI Dy I AP
I
l XDP - B5

BP - DS + CP AS

AS - CP + Ba - Dy

Ay - Ba + AP - B5

AP CO + D(3 BS

80



6)

10"
Cy atp84/41111116..

1 cp

C8 1 Dy 1

Dp Bb

We are left with no more loops:
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Cy - D5 + Ba C8 + DP - 138

_ D8

Ak Alli CP

C8 ay pry Ba

DP B8

The Q-process above has given us the following 6 estimable contrasts:

A B C D a B 5

1) -1 1 -1 1 0 0 2 -2

2) -1 1 1 -1 0 2 0 -2

3) 1 1 -1 -1 1 -1 -1 1

4) 2 -2 0 0 -1 1 1 -1

5) 1 -1 -1 1 0 2 0 -2

6) 0 0 0 0 1 1 1 -3

NOTE: There are many different ways we could have done the

Q-process above and each way might give a different set of 6 esti-

mable contrasts. But they would always span the same vector space



VIf we row-reduce the above 6 x 8 matrix we see that

dim 6. Since A,
r(X) = r(A, B) + dim

it follows that
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= 7 + 6 = 13, so the design has maximal rank.

We could see that r(X) = 13 by row-reducing the 13 x 17

matrix X. But clearly the 6 x 8 matrix is easier to row-reduce.

Now we get the following table of degrees of freedom:

Source

Mean

Rows

Columns

Greek

Latin

Residual

d. f.

Total 13

Example 7.3. Consider another 4 x 4 Graeco-Latin square,

this time with two missing observations.

- BP Cy DS

By AS Da CP

CS - AP Ba

DP Ca BS Ay

From the Q-process we get 7 estimable contrasts involving A, B,

C, D, a, p, y, S. By row-reducing the corresponding 7 x 8 matrix
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we see dim ))= 5. In fact, we get

Greek letter contrasts: 13 5, a 3 + y -

Latin letter contrasts: B C, A B - C + D

Inseparable contrasts: (D A) + (a-y)

r(X) = r(A, B) + dim= 7 + 5 = 12, which is not maximal rank.

We see that there are 2 degrees of freedom for Greek letter effects

and 2 degrees of freedom for Latin letter effects.

If we switch the role of the Greek and Latin letter effects with

the role of the row and column effects, we can apply the Q-process

again to get the corresponding results for row and column effects.

The table of degrees of freedom is as follows:

Source d. f.

Mean 1

Rows 2

Columns 2

Greek 2

Latin 2

Confounded 3

Res idual 2

Total 14

Note that in the above example we had two missing cells and we found

that the design matrix is not of maximal rank, while in Example 7.2

we had three missing cells and we found that the design matrix is of
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maximal rank. This very well may be due to the kind of cells that are

missing. Notice that in Example 7.2 all missing cells had a-effects

in common, but in Example 7.3 the two missing cells had no Greek or

Latin letter effects in common.

Example 7.4. Consider a 4 x 4 hyper-Graeco-Latin square

with four missing observations according to the following pattern:

r

r

r

1

2

3

r
4

c
1

c
2

c
3

c4

Bi3b Cyc D5d

Dyb C5a Bad -

Cr3d Dac Bya

B6c - DI3a Cab

In order to illustrate how the results of Chapter VI can be applied to

the above additive five-way classification model, let T11, T24, T33,

and T
42

be empty and for each occupied (i, j) cell let T..= {t}

where t consists of the letter combination capital Latin, Greek, and

small Latin in that cell; Ill = (A, B, C, D, a, p, -y, 5, a, b, c, d), the set

K consists of twelve distinct 12 x 1 vectors which are collection

sofk.. , where, for example, kia = (0 1 0 0 0 1 0 0 0 1 0 0)'.
ljt

Thus, there are twelve N(k) matrices. Note that hyper-Graeco-
3Latin square are fractional factorial designs, i.e., they are (lip )

fraction of 5
p design. Therefore, for each k = k.. E K, N(k) hasijt
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a 1 in cell (i, j) and zero elsewhere. Thus, as we saw in

Example 7.2 there are no direct differences, so that S = K,

M(k) = N(k) for all k E K and the vector space of estimable

fl- contrasts is equal to . We now form the matrix M.

For the symbol As we use t where s = k.. Thus M is theijt

original hyper-Graeco-Latin square having triples symbols (e.g.,

(Bac) ) in cell (i, j). Applying the Q-process to the above incidence

matrix leads to the following 5 estimable contrasts:

1) Dyb Us. + Dac - C(3d

2) Cyc BPI) + Us. - Bad

3) Cyc - B(3b + COa - Dyb + BSc DPa

4) D6d - BPb + Dac - Bya

5) DM - BPb + C8a Dyb + BSc - Cab

The above five estimable contrasts are all linearly independent

and thus dim = 5, r(X) = r(A, B) + dimZ = 5 + 7 = 12, so the

design matrix is not of maximal rank. Moreover, after row reduction

on the 5 x 12 matrix which is obtained from the above five estimable

contrasts, we find out that there is only 1 degree of freedom for

capital letters, 1 degree of freedom for Greek letters and 3 degrees

of freedom are confounded. This fact is rather strange in the sense

that in all four missing observations the letter A is common and

thus one might expect some degree of freedom for the small letters.
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The above example and the previous examples related to Graeco-

Latin squares bring up an open problem: Is there a relation between

the degrees of freedom and the pattern of the design? One may well

construct tables of degrees of freedom for given patterns of Graeco

or hyper-Graeco-Latin squares.

Example 7.5. Consider a 32 x 23 factorial design with the

following incidence pattern:

a
1

N1= a2

a
3

al

N2 =
a2

a
3

T
1

6
1

131
132 133 Pi

N 2

P2 133

1

al

a2

a3

T
2

P1

Y1

P2 133

1

Y2

P1 P2 133

1

51

Y
1

R1 P2 13 3

1

Y2

13 P2
1

13
3

1

al

a2

a3

52

),1

P1 132 R3

I

112

P 132 133
1

1
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We see that

(11+a2+133+Y2+62+T1)
(l1+a2+133"1+52-FT2) Y1 + T1 T2

is estimable. This is the set D* of Chapter VI. Now we form the

matrix 1.4 :

(1,1,1) - (2,2,2)

- (2,1,1) (2,2,1)

(2,1,2) (1,2,1) (1,1,2)

Applying the Q-process to the above matrix leads to:

(1,1,1) - x(2,2,2)

- (2,1,1) (2,2,1)

(2,1,2) (1,2,1) (1,1,2)

>.< - (2,2,2)

- (2,1,1)1_01(2,2,1)

4-4(2,1,2) (1,2,1) (1,1,2)

+ 2y2 - 51 + 52 - T1 + T2

-251 + 252 + T1 - T
2

Thus F = {-2y1+2y2-51+52-T1 +T2, -25 1+252'1-T1-T2}, and it is

clear that we are left with no loops.

From the Q-process and direct 11 -differences we found the fol-

lowing 3 estimable contrasts:



Y1 Y2
51 52 T1 T2

-1 1 0 0 1 -1 } From the set D*

-2 2 -1 1 -1 1

From the set F
0 0 -2 2 1 -1

If we row reduce the above 3 x 6 matrix we see that

Y1 Y2' 51 52' T1 T2

Thus, r(X) = r(A, B) + dims = 8, so the design has maximal

.0are estimable and thus dim = 3.

rank.

At this point we would again like to compare this method with
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doing row reduction on the original design matrix. We could see that

r(X) = 8 by row-reducing the 8 x 13 matrix X. But clearly the

3 x 6 matrix is easier to row reduce. Now we get the following

table:

Source

Mean

a

Y

5

T

Residual

d.f.
1

2

2

1

1

1

0

Total 8



Let us at this point use the obvious generalization of the tech-

nique developed in Chapter IV for finding a basis for each individual

effect. This example is for illustration purposes only. We do the

following steps:

1) N = N1 + 2N2

1

2

1

2

2) Let
Q

11,"14...111.1,,,
1

1

1

1

3) Let (:) = Qi + 2Q2

Q

1

2

2 1

4) Let

Q * =

1

1

2

1 2

1

1

1 1

2

1

2

1

Q2r
1

1

1

1

89



We see that q231 = 1 and q232* = 1, therefore

Y(P1) =Y1 -Y2 is estimable ignoring 8 and T-effects. We call
*

this a y-path. Set either q
231

or

and form a matrix Q

Q*.:1/4

as below:

1

1

1 1

5) Let Q Q ZQ

cl Z32
to zero,

1

1 0

say -232 0,

1

1 2

2 1

2 1 1

Now we look for y-paths using the Q-process.

leads to y(P2) = -3(YrY2)

1 s.2

l'i.2

t
2 1 1

cl 232

Another path is of the form:

90
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2

2:1
2 1 1

which leads to y(P3) + y2. Now combination of these y-paths

lead to 5y(P1) + 2y(132) - y(P3) = 0.

6) We should see whether this zero combination of y-paths leads

to a zero combination of 5-paths (refer to Q). We get

5(52-52) + 2(52-51+51-52+51-52) - (51-52+51-52) = 0 .

7) Now look in N for T -contrasts corresponding to the above

zero combination of 5-paths. We get

5(T2-T1) + 2(T2-T1 +T2-T1 +T1 -T1) - (T2-T1 +T2-1-2)

8(Tz-Ti)

to be estimable. From this point on the problem should be considered

as a four-way classification,

Example 7.6. In a 2n factorial experiment with n factors

each at two levels we need n+1 cells filled for the design matrix to

be of maximal rank given that these filled cells have some certain

positions. We consider a 26 factorial experiment with 57 missing

cells in order to demonstrate the following facts, keeping in mind that
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we are only concerned about the main effects. These facts are as

follows:

1) The effect of changing the position of a missing cell on the

rank of the design matrix, and consequently the estimability of the

main effects, may be dramatic.

2) After finding some estimable contrasts, the problem of

estimability may be reduced to considering a design with fewer

factors.

3) The determination of r(X) in 2n factorial experiment is

relatively simple compared to other factorial designs that have been

discussed before. The model is of the form

E (Y..ijktuve)
= +

a/
+ f3

j.

Nk +
t

+T
U

+
v

See Pattern 7.1.



al

a2

1

Pattern 7.1.

Y1

P1 P2

1

Y2

T1

T
2

52

1
Yz

1

Y1

8

Yz

1

1

1

T1

52

1

0
4-

sz

Y2 Y1 Y2

1

T
2

n122221

n111212

93
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Since n111111 # 0 and n111112 V 0,
1

-
2

is directly

estimable. Now the problem collapses to a 25 factorial having the

following pattern:

a
1

a2

T
1

5
1

P1 R2

1

1

Y2

1

T
2

52

111

1

Y2

5
1

Y
1

1

2

52

Y
1

1

Y2

Since n22111 1 0 and n22112 1 0, T1 - T2 is directly seen

to be estimable. Now the problem collapses to a 24 factorial

having the following pattern:
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1

1

1

1

Y2

1

52

Y1

1

1

We see that n1111 V 0 and n1112 V 0 which implies that

is directly estimable and therefore the problem can be con-61 - 52

sidered as a 23 factorial having the following pattern:

al

a
2

1

13z

1

1

Y2

1

We are left with no more direct differences. Now we form the

matrix M .

M =

1

2 1

Applying the Q-process to the above matrix M, we see that there is

no loop, which implies there is no estimable y-contrast.

In order to find degrees of freedom for a we switch the role

of y with a. In doing this we have the following pattern:



Y
1

.112

al

Pi R2

1

a
2

1

1

Because there is no direct difference we form the matrix M.

M =
1 2

2
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Applying the Q-process to the above matrix M, we see that there is

no loop, which implies there is no estimable a-contrast. By the same

procedure, we find that no f3-contrast. Therefore the

r(X) = r(A, B) + dim, = 3 + 3 = 6, which is not of maximal rank

and the table of degrees of freedom is as follows:

S. V. d. f.

Mean 1

a 0

R 0

Y 0

5 1

T 1

1

Confounded 2

Residual 1

Total 7



al
a2

Pattern 7. 2.

Y1

P1 132

1

T1

5

T
2

2

1

5
1

Y1

T1

52

Y2

1

5
1

1

1

Y2

1

T2

Yi

0

Y2

51

1
Y2

52

1
Y2

97
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Now let us change the position of the cell (1,1,1,2,1,2) to

(1,2,2,2,2,1). By this we mean having no observation in the position

(1, 1, 1, 2, 1, 2) and one or more observations in the position

(1,2,2,2,2,1). Therefore = 0 and Vn111212 n122221 0. See

Pattern 7.2.

Because n111111 V 0 and n111112 V 0, then 2 is

directly estimable and the problem collapses to a 25 factorial

having the following pattern:

al

a2

T
1

8
1

V1

P1 P2

1

1 1

2

52

1

51 5
2



n22111 V 0 and n22112 0,
Ti - T2Since is directly

estimable and the problem collapses to a 24 factorial having the

following pattern:

5 52
1

yi 1
Y2

1 1

1 1 1

We see that n2211 V 0 and n2212 V 0, and therefore 51 - 52

is seen to be directly estimable. Now the problem collapses to a

factorial with the following pattern:

1

1

1

112

1

1

99

23

We are left with no direct differences. We now form the matrix M.

1 2

2 1
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By applying the Q-process we find that 2y1 - 2y2 is estimable and

thus the problem collapses to a 22 factorial with the following

pattern:
P P2

1

al 1 1

a
2

1 1

We see that al az and pi P2 are directly estimable. The

design matrix X is of maximal rank 7 and the table of degrees of

freedom is as follows:

S.V. d. f.

Mean 1

a 1

P 1

V 1

5 1

T 1

1

Residual 0

Total 7

Again note how the position of a filled cell changes the esti-

mability of each effect and consequently the rank of the design matrix.

Moreover, only with 7 filled cells and 57 missing cells, all factors

are estimable, and this is the minimum number of filled cells needed

for the maximality of r(X).
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APPENDIX

It is the purpose of this appendix to describe the Q-process

which is used for finding loops in the matrix M. This description is

for the four-way model. The generalization of the Q-process follows

immediately. For the proof of the validity of the Q-process see

Birkes, Dodge and Seely (1972).

For convenience we isolate a part of the Q-process and call it

the X-process. The X-process applied to a two-dimensional matrix

W consists of the following procedure:

1) Find every entry of W which is the only nonzero entry in its

row or column and change it to 0.

2) Continue this until each row and column either is all 0's

or has at least two nonzero entries.

We now describe the Q-process. At the first stage put the sub-

matrix of M consisting of the first two columns into a temporary

working area W. Apply the X-process to W. If the entire second

column of W is 0 (and hence W = 0), then proceed to the

second stage. Suppose there is a nonzero entry (g1, h1) in position

(i1, 2). Since the X-process has been applied, there must be a nonzero

entry (g2 , h2) in position (il' 1). Similarly, there must be a non-

zero entry (g3,h3) in position (i2, 1), i2 i1, and also a non-

zero entry (2 h4) in position (i 2,2). These entries form a loop



in M, so
w(grhi) w(g2'h2) w(g3'h3)

We include it to our spanning set.
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- w(g ,h )
is estimable.

4 4

Now change m. = (g ,h ) to 0 both in W and
12,2 4 4

permanently in M. If there was another loop in M which involved

(i2, 2), the corresponding co-contrast will not be lost.

Again apply the X-process to W. If there are any nonzero

entries left, find a loop and derive an co-contrast as was done above.

Then change the last entry in the loop to 0 in both W and M.

Apply the X-process again and continue as above. Eventually a point

is reached where W = 0. This finishes the first stage.

To begin the second stage put the submatrix of M consisting

of the first three columns into a working area W.

Let us suppose that we have proceeded through the first p-1

stages of the Q-process and have thus obtained a spanning set for all

w-contrasts which can be derived from loops in the first p columns

of M. If p = b, the Q-process has been completed. If p < b,

begin the pth stage by putting the first p+1 columns of M into

a temporary area W. Apply the X-process to W. If the entire

(p+1)th column of W is 0, then W = 0, because every loop in

W must involve column p+1 since there are no loops in the first

p columns of M. In this case proceed to the next stage. Suppose

there is a nonzero entry (g 10,h 10)
in position (i

1
,p+1). Since the

X-process has been applied, there must be another nonzero entry
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(g11,1111)
in row i1, say in position

must be another nonzero entry (2-21'h21)

(il,j1) Similarly, there

in column say in

position (i
2

, j 1). Alternately look along rows and columns for the

next nonzero entry until one is found in column p+1, say in position

(iu'
j
u

), j
u

= p+1. Then (ii,p+1)(iz,j1) .(i , ju-1 )(i , p+1) is a loop
u u

and w(g
, )

- w(g
, )

+0.)
(g , )

- +0)
10

h
10 11

h
11 21

h21
(guu,huu-1)

- ,h )
uu uu

is estimable. We include it in our spanning set. Now

change m. (guu'lluu ) to 0 both in W and permanently

in M.

Apply the X-process to the current matrix in W. If any non-

zero entries remain, find a loop and derive a w-contrast to include

in our spanning set. Change the last entry in the loop to 0 in both

W and M. Apply the X-process to W again. This completes

the (p+1)th stage. After b-1 stages the Q-process has been

completed.


