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Part I

Thesis

1 Introduction

This thesis is on the existence and uniqueness of weak solutions to the Navier-Stokes

equations in R3. The 3-dimensional Navier-Stokes equations, which govern the velocity

of incompressible fluid with viscocity ν and initial velocity u0, are given in their strong

form by

∂u
∂ t

+u ·∇u = ν∆u−∇p+g

∇ ·u = 0 (1)

u0(x) = u(x,0)

where u : R3× [0,∞)→ R3 is the velocity field of the fluid, p : R3× [0,∞)→ R3is the

pressure and g : R3× [0,∞)→ R3 is the external force.

When one considers u,g,~∇g∈ (C∞
0 ((0,∞),R3)′)3, and when one considers the deriva-

tives in (1) in the distributional sense, then it is possible to eliminate the presure in (1)

by employing the Leray projector P , which is essentially a projection onto the space

of divergence free distributional vector fields. When one incorporates this operator into

the Navier-Stokes equations, one obtains the following equivalent formulation:

u = eνt∆u0−
ˆ t

0
eν(t−s)∆P∇ · (u⊗u)(s)ds+

ˆ t

0
eν(t−s)∆Pg(s)ds (2)

∇ ·u = 0.
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Much has been written on these equations over the past decades since Leray demon-

strated existence of weak solutions to the Navier-Stokes equations in 1934 Leray[5].

The background developed since then is nicely presented in Temam[7] and Lemarié-

Rieusset[3].

Despite the progress made on these equations, there are still open problems associ-

ated with it. Of these, the question which is pertinent to this document is whether there

exists a unique solution with arbitrarily large initial data for some time period. In mat-

ters of existence and uniqueness of the Navier-Stokes equations, the usual statements

in the literature assert either: 1) the existence for all time of solutions with bounded

data, or 2) the existence for some finite time of solutions with unbounded data. This

document gives a statement of the second variety by extending the method used in

Ossiander[1] to prove a statement of the first variety. The construction of the solution

to the Navier-Stokes problem in this paper involves an expectation of a markov process

indexed by a binary branching tree. The applicability of similar stochastic models to

non-linear PDE’s was discussed in Blömker et al.[2], and an application of this method

for the Fourier-transformed Navier-Stokes equation was given in a paper by Le Jan and

Sznitman[4]. In this thesis, I shall demonstrate the existence and uniqueness of weak

solutions to the Navier-Stokes equations for short time periods. It is assumed that the

initial data and forcing terms are dominated by respective members of a majorizing ker-

nel pair (which will be introduced in Section 3). This is accomplished by representing

the solution as the expectation of a functional on a binary branching tree. The length of

time for which the solution exists depends on the ’size’ of the initial data and forcing in

a particular family of function spaces.

In the following sections I shall: 1) define some useful operators and derive some of

their key properties, 2) define and describe properties of majorizing kernels, 3) describe

the Markov processes on binary trees that will form the measure of our probability space,
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4) precisely state the problem on which I am writing, 5) demonstrate the problem’s

solution using probabilistic methods, 6) give a calculation of some interest in a special

case, and 7) conclude with some remarks on further lines of inquiry.

2 Useful Operators

In this paper, an explicit formulation of (2) will be used. It will be obtained by the use

of bilinear operators which are introduced in this section.

Definition 2.1 for z ∈R3\0, let Pz : R3→R3 be the projection onto the space perpen-

dicular to z given by the matrix equation

(Pz)i, j = δ
j

i − (ez)i(ez) j

where ez =
z
|z| . z

Definition 2.2 For any y ∈ R3\0, and for u,v ∈ R3 define the bilinear forms b1 and b2

: (R3\0)× (R3)2→ R3 via

b1(z;u,v) = (v · ez)Pzu+(u · ez)Pzv

b2(z;u,v) = b1(z;u,v)+u · (I−3ezet
z)vez. z

Lemma 2.1: For any y ∈ R3\0 and u,v ∈ R3,

|b1(y;u,v)| ≤ |u||v|,

|b2(y;u,v)| ≤ 2|u||v|,
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|(I−3eyet
y)u| ≤ 2|u| (3)

Proof: Letting eu · ey = α, ev · ey = β , ev · eu = γ , it turns out that

|b1(y;u,v)|= |u||v||(β (eu−αey)+α(ev−βey))| (4)

≤ |u||v|(β |1−α
2|1/2 +α|1−β

2|1/2 ≤ |u||v|

To show (4) first observe that the two terms in the definition of b2 given above are

perpendicular to each other. It follows, then, that

|b2(y;u,v)|2 = |b1(y;u,v)|2 +(u · (I−3eyet
y)v)

2

= |u|2|v|2(α2 +β
2 +α

2
β

2 +(γ−2αβ )2)

Now, |γ−2αβ |= |eu ·(ev−2βey)|= |eu ·Pyev| ≤ |Pyeu||Pyev|= (1−α2)1/2(1−β 2)1/2,

so the above can be bounded by

|b2(y;u,v)|2 ≤ |u|2|v|2(α2 +β
2 +α

2
β

2 +((1−α
2)1/2(1−β

2)1/2 + |αβ |)2)

= |u|2|v|2(α2 +β
2 +α

2
β

2 +(1−α
2)(1−β

2)

+|αβ |2 +2|αβ |(1−α
2)1/2(1−β

2)1/2)

= |u|2|v|2(1+α
2
β

2 +2|αβ |((1−α
2)1/2(1−β

2)1/2 + |αβ |))

≤ |u|2|v|2(1+ |αβ |)2 ≤ (2|u||v|)2.

To show (3), we calculate

|(I−3eyet
y)u|2 = (u ·u+9et

yuet
yu−6et

yuet
yu) = u · (I+3eyet

y)u = |u|2(1+3α
2)≤ 4|u|2.

QED.
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These binary operators will be used to construct a solution to the Navier-Stokes

equations. The use of bilinear operators coincides with the quadratic term of the NSE:

(u ·∇)u.

3 Majorizing Kernels

Majorizing kernel pairs will play a central role in the framework of the problem and

its solution. They provide the weight which defines the space in which the solution

will exist, and they will be used to define the probability measure which will be used to

construct weak solutions to the Navier-Stokes equations. These employments will reveal

themselves in the following sections. For now I shall define these kernels, describe some

of their properties and conclude with some examples. The kernels will be indexed by a

scaler parameter γ ∈ [3/2,2). This parameter is associated with the spatial decay rate of

the magnitude of initial data, force term and solutions.

Definition 3.1 For γ ∈ [3/2,2), a majorizing kernel pair with parameter γ is a pair of

functions, (hγ , h̃γ ), hγ : R3 → (0,∞), h̃γ : R3 → [0,∞) both of which are lower semi-

continuous, locally square-integrable, and hγ has the property that

sup
x∈R3

´
R3 h2

γ(x− y)|y|(1−2γ)dy
hγ(x)

≤ λ < ∞. (5)

whilst h̃γ has the property

sup
x∈R3

´
R3 h̃γ(x− y)|y|2(1−γ)dy

hγ(x)
≤ λ̃ < ∞. (6)

The pair (λ , λ̃ ) is called the constant pair associated with the majorizing kernel pair

(hγ , h̃γ). Note that if a function hγ satisfies (5) above, then it can be augmented with the
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function 0 to complete a majorizing kernel pair. Also, if both elements of the constant

pair associated with a majorizing kernel pair are equal to 1, then the kernel pair is said

to be standard. z

Definition 3.2 For γ ∈ [3/2,2), let Hγ be the set of majorizing kernel pairs when using

the equations (5) and (6) to define their associated constants.z

Definition 3.3 Let (hγ , h̃γ) be a majorizing kernel pair. The pair (u0,g) = (u0,{g(·, t) :

t ≥ 0}), with u0 : R3→ R3 and g : R3× [0,∞)→ R3, is said to be (hγ , h̃γ)-admissible if

sup
x∈R3

|u0(x)|
hγ(x)

< ∞ and sup
x∈R3, t≥0

|g(x, t)|
h̃γ(x)

< ∞ (7)

z

Notice that admissibility does not depend on γ .

Proposition 3.1 For γ ∈ [3/2,2) and (hγ , h̃γ) ∈Hγ a standard majorizing kernel pair,

the following hold:

(a) The following are also standard majorizing kernel pairs:

(hγ(·−µ), h̃γ(·−µ)), µ ∈ R3.

(σ4−2γhγ(σ ·),σ9−4γ h̃γ(σ ·)) σ > 0.

(hγ(A·), h̃γ(A·)) whereA is a 3 by 3 matrix with AtA = I.

(b) Let F denote a probability distribution function on R3. Then

(ˆ
R3

hγ(·− y)dF(y),
ˆ
R3

h̃γ(·− y)dF(y)
)
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is also a majorizing kernel pair with parameter pair (λ , λ̃ ) ∈ (0,1]× (0,1].

Proof: Part (a) follows from appropriate change of variables. To prove part (b) Ob-

serve that

λ = sup
x∈R3

´
R3

(´
R3 hγ(x− y− z)dF(z)

)2
|y|1−2γdy´

R3 hγ(x− y)dF(y)

≤ sup
x∈R3

´
R3

´
R3 h2

γ(x− y− z)|y|1−2γdydF(z)´
R3 hγ(x− y)dF(y)

≤ sup
x∈R3

´
R3 hγ(x− z)dF(z)´
R3 hγ(x− y)dF(y)

= 1

The first inequality is due to an application of the Cauchy-Schwartz inequality in the

space L2(R3,dF); note that the uniform local square integrability of hγ guarantees that

hγ ∈ L2(R3,dF) almost everywhere with respect to Lebesgue measure. The order of

integration is reversed according to Tonelli’s theorem. The last inequality follows from

the fact that hγ has a normalization parameter of 1. One can likewise show the same

result for h̃γ . QED

Proposition 3.2 For fixed γ ∈ [3/2,2), let {(h j, h̃ j) : j ≥ 1} ⊂Hγ be a sequence of

majorizing kernel pairs with corresponding normalization parameters {(λ j, λ̃ j) : j≥ 1}.

(a) Then (h1 ∧ h2) is a majorizing kernel pair with normalization parameter pair

(λ , λ̃ ) ∈ (0,λ1∧λ2]× [0, λ̃1∧ λ̃2].

(b) For any p ∈ (0,1), (hp
1h1−p

2 , h̃p
1 h̃1−p

2 ) is a majorizing kernel pair with normaliza-

tion parameter pair (λ , λ̃ ) ∈ (0,λ p
1 λ

1−p
2 ]× [0, λ̃ p

1 λ̃
1−p
2 ].

(c) For {p j : j ≥ 1, p j ≥ 0} with ∑ j p j = 1 ,

(
∑

j
p jh j,∑

j
p jh̃ j

)
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is a majorizing kernel pair with normalization parameter pair (λ , λ̃ )∈ (0,∑ j p jλ j]×

[0,∑ j p jλ̃ j].

Proof:

(a) is obvious.

(b) follows from an application of Hölder’s inequality:

ˆ
R3

h2p
γ,1(x− y)h2(1−p)

γ,2 (x− z)|y|1−2γdy =

ˆ
R3

(
h2

γ,1(x− y)|y|(1−2γ)
)p

(
h2

γ,2(x− z)|y|(1−2γ)
)(1−p)dy

≤ hp
γ,1(x)h

(1−p)
γ,2 λ

p
1 λ

(1−p)
2 ,

from which the result follows. The same method can be applied to demonstrate that

λ̃ ≤ λ̃
p
γ,1λ̃

1−p
γ,2 .

(c) can be demonstrated using the same method as in the proof of part (b) of propo-

sition 3.1. QED

Proposition 3.3 Let 3/2≤ γ1 ≤ γ2 < 2, (hγ1, h̃γ1)∈Hγ1 , (hγ2, h̃γ2)∈Hγ2 , γ ∈ (γ1,γ2),

and let β ∈ (0,1) such that

1−2γ = β (1−2γ1)+(1−β )(1−2γ2).

Then,

(hβ

γ1h1−β

γ2 , h̃β

γ1 h̃1−β

γ2 ) ∈Hγ ,

with constant pair (λ ′, λ̃ ′)∈ (0,λ β

1 λ
1−β

2 ]× [0, λ̃ β

1 λ̃
1−β

2 ], where (λ1, λ̃1), (λ2, λ̃2) are the

constant pairs associated with the kernel pairs (hγ1, h̃γ1) and (hγ2, h̃γ2) respectively.
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Proof: This result follows by the application of Hölder’s inequality on the definition

of the constants associated with (hβ

γ1h1−β

γ2 , h̃β̃

γ1 h̃1−b̃
γ2

) ∈Hγ .

ˆ
R3
(hβ

γ1(x− y)h1−β

γ2 (x− y))2|y|1−2γdy =

ˆ
R3

(
h2

γ1
(x− y)|y|1−2γ1

)β

(
h2

γ2
(x− y)|y|1−2γ2

)1−β dy

≤
(ˆ

R3
h2

γ1
(x− y)|y|1−2γ1dy

)β(ˆ
R3

h2
γ2
(x− y)|y|1−2γ2dy

)1−β

≤ (λ1hγ1(x))
β (λ2hγ2(x))

1−β .

Upon division by quantity hβ

γ1(x)h
1−β

γ2 (x) one obtains

sup
x∈R3

´
R3(h

β

γ1(x− y)h1−β

γ2 (x− y))2|y|1−2γdy

hβ

γ1(x)h
1−β

γ2 (x)
= λ

′ ≤ λ
β

1 λ
1−β

2 .

The same argument applies to the second element of the new majorizing kernel pair

due to the fact that

2(1− γ) = β2(1− γ1)+(1−β )2(1− γ2).

QED

Scholium: The following series of propositions demonstrate some specific families

of functions which are majorizing kernels. The propositions mainly involve functions

which obey some form of power growth/decay, and hopefully the reader will obtain a

fair intuition for what kinds of growth/decay properties majorizing kernels should have.

Specifically, the propositions below will show that if h(x) = |x|p, there is only one

choice of p for a given γ for which h is a majorizing kernel. However, if attention
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is restricted to the subset of Hγ which has a bounded power behavior equivalent to

(1+ |x|)p, let this subset of Hγ be denoted by H̄γ , then one sees that H̄γ1 ⊂ H̄γ2 for

γ1 < γ2.

Throughout the propositions: 3.4, 3.5, 3.6 and 3.7 the parameter γ ∈ [3/2,2) is fixed.

Proposition 3.4 The pair of functions

Hγ(x) = |x|2γ−4, H̃γ(x) = |x|4γ−9

form a majorizing kernel pair in Hγ .

Proof: Clearly Hγ and H̃γ are uniformly locally square integrable and lower-semi-

continuous. To show that they have finite constant pairs, one can simply use the defini-

tion of these quantities to show, using the substitution w = y/|x|, to obtain

λ = sup
x∈R3

´
R3 |x− y|2(2γ−4)|y|1−2γdy

|x|2γ−4 =

ˆ
R3
|ez−w|2(2γ−4)|w|1−2γdw < ∞

and that

λ̃ = sup
x∈R3

´
R3 |x− y|(4γ−9)|y|2−2γdy

|x|2γ−4 =

ˆ
R3
|ez−w|(4γ−9)|w|2−2γdw < ∞.

QED

Note: These kernels shall be called the canonical kernels for a given γ .

Proposition 3.5 Let f (y) = |2πy|−1(1+ |y|)−3 , which is a probability distribution on

R3. Then ( f ∗Hγ)(x) decays at least on the order of |x|2γ−5+ 3
p for p ∈ ( 3

(5−2γ) ,3). By

this I mean that for large |x|, there is a constant C such that ( f ∗Hγ)(x)≤C|x|2γ−5+ 3
p .
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Proof: Proposition 3.1 can be used to obtain a bounded kernel pair by convolving

the canonical kernel pair (Hγ , H̃γ) with the probability density f . First observe that

g(x) ≡ ( f ∗Hγ)(x) is a decreasing function in |x| (See Appendix: A.2) and that ( f ?

Hγ)(0) = K < ∞. For the asymptotics of this kernel, apply Hölder’s using the hermitian

conjugates, 1
p +

1
q = 1. Only one of the hermitian conjugate values need to be restricted

in order for the following inequalities to apply:

f ?Hγ(x) =
ˆ
R3
|2πy|−1(1+ |y|)−3|x− y|2γ−4dy≤Cq

(ˆ
|x− y|p(2γ−4)|2πy|−pdy

)1/p

=Cq|x|(2γ−5)+3/p(ˆ |ez−w|p(2γ−4)|2πw|−pdw
)1/p

, (8)

where Cq =
´
R3(1+ |y|)−3qdy < ∞, w = y/|x|, and p ∈ ( 3

5−2γ
,3). The lower bound

for p ensures that the integrand in (8) decays sufficiently rapidly for the integral to be

bounded:

ˆ
[B(0,0,1)(2)]c

|ez−w|p(2γ−4)|2πw|−pdw ≤ Kp

ˆ
[B(0,0,1)(2)]c

|w|p(2γ−5)dw

< ∞ f or p >
3

5−2γ
,

whilst the upper bound for p ensures that the same integrand is locally integrable:

ˆ
[B(0,0,1)(2)]

|ez−w|p(2γ−4)|2πw|−pdw≤ K̃
ˆ
[B(0,0,1)(2)]

|w|−pdw < ∞ f or p > 3.

These observations allow for the conclusion that the majorizing kernel f ∗Hγ ∈ O(1+

|x|)2γ−5+ 3
p for p ∈ ( 3

(5−2γ) ,3). QED

Proposition 3.6 For p ∈ [1−2γ,2γ−4], the function (1+ |x|)p is a majorizing kernel.

Also, if p ∈ [2−2γ,2γ−4], then ((1+ |x|)p,(1+ |x|)q) ∈Hγ , for q≤ p+2γ−5.
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Remark: Remember that if hγ(x) = (1+ |x|)p is a majorizing kernel for a certain γ

value, then (hγ ,0) ∈Hγ . The above states that a sufficient condition for there to be a

non-zero associate of h is that p ≥ 2(1− γ). In the next proposition, it will be shown

that this is a necessary condition as well.

Proof: This can be shown by bounding the integrals which define the constants asso-

ciated with the majorizing kernel.

´
R3(1+ |x− y|)2p|y|1−2γdy

(1+ |x|)p =
|x|2p+4−2γ

´
R3(

1
|x| + |ez−w|)2p|w|1−2γdw

(1+ |x|)p . (9)

Notice that the integral on the LHS of (9) is bounded for any particular choice of x,

provided that 2p+1−2γ <−3 (which is always the case if p ∈ [1−2γ,2γ−4]), Also,

the integral on the right is bounded as a function of x provided that p > −3/2. When

this is the case, the ratio is bounded for p+ 4− 2γ ≤ 0 which gives the condition that

p≤ 2γ−4. In the case where p≤−3/2, the integral on the RHS of 9 is unbounded as

|x| → ∞. This growth is entirely due to the singularity at the point (0,0,1). The growth

of this integral can be bounded by investigating

ˆ
B1/2(0,0,1)

(
1
|x|

+ |ez−w|)2p|w|1−2γdw≤ (1/2)1−2γ

ˆ
B1/2(0,0,1)

(
1
|x|

+ |ez−w|)2pdw

= (1/2)1−2γ4π

ˆ 1/2

0
(

1
|x|

+ r)2pr2dr ≤ (1/2)1−2γ4π

ˆ 1/2

0
(

1
|x|

+ r)2p+2dr

≤


K ln(1+ |x|) i f p =−3/2

K̃|x|−3−2p i f p <−3/2
, (10)

where K and K̃ are finite constants. Note that the integration of this function outside
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B1/2(0,0,1) (I will call this Bc) is bounded for all x:

ˆ
Bc
(

1
|x|

+ |ez−w|)2p|w|1−2γdw≤
ˆ

Bc
|ez−w|2p|w|1−2γdw < ∞

By replacing the integral on the RHS of (9) with the order of growth on in (10), it

becomes apparent that the ratio in (9) is bounded provided that −p+1−2γ ≤ 0 which,

along with the other bound which was derived, yields the requirement that 1−2γ ≤ p≤

2γ−4. If this is the case, then (1+ |x|)p is a majorizing kernel.

Now, given that (1+ |x|)p, where 1−2γ ≤ p≤ 2γ−4, is a majorizing kernel, I shall

now determine suitable conditions for there to be a q ∈ R3 such that ((1+ |x|)p,(1+

|x|)q) ∈Hγ . One can use the same method as before: start with the definition for the

constant associated with the function (1+ |x|)q, where (1+ |x|)p is being used as the

majorizing kernel

´
R3(1+ |x− y|)q|y|2(1−γ)dy

(1+ |x|)p =
|x|q+5−2γ

´
R3(

1
|x| + |ez−w|)q|w|2(1−γ)dw

(1+ |x|)p . (11)

Notice that for any particular value of x, the ratio on the LHS of (11) is bounded the

integral is bounded provided that q+ 2(1− γ) < −3, while the ratio on the RHS of

(11) is a bounded function of |x| provided that: q+ 2(1− γ) < −3, q > −3, and that

q+5−2γ− p≤ 0. This gives the requirement that q≤ p+2γ−5. (Note: since p< 0 for

all γ ∈ (3/2,2), the condition q+2(1− γ)<−3 is, in fact, superfluous.) Suppose now

that the integral in the RHS of (11) is not a bounded function of x, i.e. if q≤−3. Then

one can employ the same reasoning that led to the conclusions given in (10). Therefore,

if q = −3 then the integral on the RHS of (11) grows as Kln(1+ |x|), so the inequality

2(1− γ)− p < 0⇒ p > 2(1− γ) must be satisfied in order for the ratio to be bounded a

bounded function in |x|. Also, in the case where q <−3 the integral on the right grows



14

as K̃|x|−3−q. In that case, therefore, the condition 2− 2γ − p ≤ 0⇒ 2(1− γ) ≤ p is

necessary and sufficient for (1+ |x|)q to be a valid associate of (1+ |x|)p. Note that

if p < 2(1− γ), then q already has to satisfy q ≤ −3, so p ≥ 2(1− γ) is a necessary

condition for a suitable q to exist. QED

A reasonable question to ask is: Can there be a non-zero associate of (1+ |x|)p for

p < 2(1− γ)? The answer is a resounding no.

Proposition 3.7: Let hγ(x) = (1+ |x|)p, where p < 2(1−γ). Then (hγ ,g) ∈Hγ if and

only if g≡ 0.

Proof: The if is trivial. The only if statement can be shown by contradiction. Suppose

the reverse is true, let ((1+ |x|)p,g) ∈Hγ , for g 6= 0. Then due to the lower semi-

continuity of g, there is a ball in R3 of radius δ such that 2z > δ > 0, with center z ∈R3

, call it B, for which g >C > 0. So for |x|> 10z,

´
R3 g(y)|x− y|2(1−γ)dy

(1+ |x|)p ≥
´

B g(y)|x− y|2(1−γ)dy
(1+ |x|)p (12)

≥ C|B|(|x− z|+δ )2(1−γ)

(1+ |x|)p ≥ C|B|(|x|+ |z|+δ )2(1−γ)

(1+ |x|)p ≥ C̃|B|(|x|+1)2(1−γ)−p,

where |B| is the measure of the ball B. Since the hypothesis is that 2(1− γ) > p, it

appears that the RHS of (12) is unbounded, which means that g cannot be non-zero if

((1+ |x|)p,g) ∈Hγ . Thus the hypothesis g 6= 0 yields a contradiction. QED

As mentioned before, the second element in a majorizing kernel pair is to be used as

a bound on the forcing term in the Navier-Stokes problem. The above gives a condition

for which, given a fixed γ , the force can and cannot be non-zero when the initial velocity

is bounded by a function equivalent to a function of the form (1+ |x|)p.
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4 Probabilistic Setting

In this section I shall describe the probability space which will be used to construct a

solution to the Navier-Stokes equations. First I will introduce the notation for binary

trees to be used for the rest of the paper, then I will introduce the Markov process which

will yield the probability distribution to be used in the construction of a solution.

Definition 4.1: Binary Trees The full binary tree with root φ = {0,1}0is the set of

all terminating binary sequences, which I shall represent as V :=
⋃

∞
n=0{0,1}n. The

boundary of V is given by∂V = {0,1}N. If v ∈ {0,1}n then |v|= n, v|0 = φ , and v|m =

(v1, ..,vm) for m≤ n. For n < |v|, w = v|n is called an ancestor of v, and v is a descendant

of w. The immediate ancestor of v is denoted by v̄. i.e. if |v|= n then v̄ = v|(n−1). In

anticipation of definitions in the next section, let me also define φ̄ to be the ancestor of

φ . Also, Let ? denote the appending operation: v ? k = (v1,v2, ..,v|v|,k) f or k ∈ {0,1}.

W ⊆ V is a rooted binary sub-tree if: φ ∈W ; for any v ∈W , if v? j ∈W then v? (1−

j) ∈W for j ∈ {0,1}; and v|k ∈W , ∀k < |v|. ∂W is defined to be those elements of W

which have no descendants, i.e. ∂W = {v ∈W : v?0 /∈W }, and the interior of W , is

W ◦ = W \∂W .

Finally, let (B,B) be a measurable space, and let X = {Xv : v ∈ V } be a V indexed

collection of B-valued random variables defined on a common probability space. Let

Fv = σ(Xv), F̄v = σ({Xv|n : n ≤ |v|}) be the sigma fields generated by the random

variables indexed by v and its ancestors, and let F̃v = σ({Xw : w
∣∣|v|= v}) be the sigma

field generated by the random variables indexed by v and its descendants. Finally let

Fφ̄ denote the trivial σ -field.

The weak solution to Navier Stokes equations will use measures induced by a V -
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indexed Markov process. In the following definitions, I will describe this underlying

structure.

Definition 4.2: V -indexed Markov Process As above, let X = {Xv : v ∈ V } be a

collection of B-valued random variables. X is a V -indexed Markov process if for any

v ∈ V , with |v|< ∞, F̃v?0 and F̃v?1are conditionally independent given Fv. i.e.

P(A0
⋂

A1|Fv) = P(A0|Fv)P(A1|Fv) a.sP f or Ak ∈ F̃v?k, k ∈ {0,1}

and for any v,w ∈ V and any F̃w-measurable random variable Y with E|Y |< ∞,

E(Y |F̄v) = E(Y |Fv∧w) a.sP. (13)

The distribution of a V -indexed Markov process is completely specified by the condi-

tional distributions of the Xv given Fv̄ for v ∈ V . z

For a given majorizing kernel pair (hγ , h̃γ), I can define a V -indexed Markov process

which will be very useful in what is to follow. The Markov process will be defined by

its conditional transition probabilities. The spatial transition densities are given by

f (y,z|x) =
(5−2γ)|z|−4|y|2(1−γ)h2

γ(x− z)1[|y| ≤ |z|]
4π
´
R3 h2

γ(x− z)|z|1−2γdz
, (14)

f̃ (y,z|x) =
(5−2γ)|z|−3|y|2(1−γ)h̃γ(x− z)1[|y| ≤ |z|]

4π
´
R3 h̃γ(x− z)|z|2(1−γ)dz

, (15)

and the temporal transition densities are

f0(s|z) =C0|z|2γs
1
2−γK(z,2νs), (16)

f1(s|z) =C1|z|2(γ−1)s
3
2−γK(z,2νs), (17)
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where C0 and C1 are the normalizing constants which make f0 and f1 probability densi-

ties. Also required are some branching probability weights:

p1 + p2 + p3 = p ∈ (0,1/2)

p4 + p5 = 1− p

p3 = p2
3

5−2γ

p2 = p1
2

γ−1

p4 = p5
2

5−2γ
.

Now, for fixed x ∈ R3, let

f (y,z,s,k|x) =



p1 f (y,z|x) f0(s|z) i f k = 1

p2 f (y,z|x) f1(s|z) i f k = 2

p3 f (y,z|x) f1(s|y) i f k = 3

p4 f̃ (y,z|x) f1(s|z) i f k = 4

p5 f̃ (y,z|x) f1(s|y) i f k = 5

(18)

be the joint conditional density of the quadruple (Y,Z,τ,κ)∈R3×R3×(0,∞)×{1,2,3...

...,4,5}. Now that the conditional transition densities are defined, one can use them to

construct a suitable V -indexed Markov process.

Definition: 4.3 Let X = {Xv,Yv,Zv,τv,κv : v ∈ V } be a V -indexed Markov process

with the following transitions probabilities. Given that Xv̄ = x let the quadruple (Yv,Zv, ...

...,τv,κv) have the density given by (18). Then let Xv = Xv̄−Zv. Assume that the distri-
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bution of (Xv,Yv,Zv,τv,κv) is independent of Xv̄.

Given that the ensemble (Xv,Yv,Zv,τv,κv) only depends on the prior ensemble (Xv̄, ...

...,Yv̄,Zv̄,τv̄,κv̄), via the random variable Xv̄, the distribution of X depends only on the

initial value Xφ̄ . For the rest of this thesis, denote the probability measure corresponding

to Xφ̄ = x by Px, and the expectation with respect to this measure Ex. z

5 Statement of the Problem

Having defined the underlying probability space on which the solution of the problem

depends, let me now state the central question. There is one last thing to do, however.

I must define the space in which the weak problem lies. Due to the particular form the

Navier-Stokes equation will take in this paper, the problem will actually be stated on

a subspace of (C∞′
0 ((0,∞),R3))3, namely, the tempered distributions, or the dual of the

Schwartz space on R3× (0,∞). After setting the scene adequately, I will then express

the solution to the resulting integral equation in the next section.

Definition 5.1: The Schwartz Space on R3 is given by:

S (R3) = { f ∈ C ∞(R3) : sup
x∈R3
|xβ Dα f (x)|< ∞∀multi-indices, α, and β}. (19)

The dual of this space is denoted by S ′(R3)

z

Definition 5.2: A weak solution of the Navier-Stokes equations with initial velocity

u(x,0) = u0(x) ∈ S′(R3)3, and with forcing g(x, t) ∈S ′(R3× (0,∞))3 is a vector field

u(x, t) ∈S ′(R3× (0,∞))3 satisfying the following:

(a) u is locally square integrable on R3× (0,∞),
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(b) ∇ ·u = 0, and

(c) there exists a p ∈S ′(R3× (0,∞)) with ∂u
∂ t +u ·∇u = ν∆u−∇p+g.

The Problem I can now state the problem on which this thesis is based: Given the data

(u0,g), determine whether there exists a unique weak solution (in the sense of Definition

5.2) to the Navier-Stokes Equations, and if so, determine the interval [0,T ) in the time

variable on which it is defined.

Upon application of the Leray projector, P , onto the Navier-Stokes equations, (1),

one can eliminate the pressure and obtain, by way of Duhamel’s principle, the integral

formulation of the Navier-Stokes equations:

u = eνt∆u0−
ˆ t

0
eν(t−s)∆P∇ · (u⊗u)(s)ds+

ˆ t

0
eν(t−s)∆Pg(s)ds (20)

∇ ·u = 0

where Pv = v−∇∆−1(∇ · v).

By use of the Fourier transform, and appealing to some brief lemmas, the above

equation can be written explicitly as follows:

Proposition 5.1 If u : R3× (0,∞)→ R3 is locally square-integrable and satisfies

u(x, t) =
ˆ
R3

u0(x− y)K(y,2νt)dy+
ˆ t

0

ˆ
R3

{ |z|
4νs

K(z,2νs) (21)

×b1(z;u(x− z, t− s),u(x− z, t− s))+
( 1
|z|

K(z,2νs)

− 3
4π|z|4

ˆ
{y:|y|≤|z|}

K(y,2νs)dy
)
×b2(z;u(x− z, t− s),u(x− z, t− s))

+
(

K(z,2νs)Pz−
1

4π|z|3
(I−3ezet

z)

ˆ
{|y|≤|z|}

K(y,2νs)dy
)

×g(x− z, t− s)
}

dzds
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then u is a weak solution as in Definition 5.2.

Proof: See Ossiander[6].

6 Solution to the problem of Existence and Uniqueness

Before demonstrating a solution to (21), I shall define a V -indexed random variable. It

will be the expectation of this function which will yield the desired solutions.

More Definitions: The following functions will be part of a V -indexed random vari-

able which will be used in constructing a weak solution to the NSE. Fix γ ∈ [3/2,2) and

take (hγ , h̃γ) ∈Hγ . Let the following functions be defined:

ϕ(x, t) =
g(x, t)
h̃γ(x)

(22)

m(s,x) =Csγ− 3
2

´
R3 |y|1−2γh2

γ(x− y)dy
hγ(x)

(23)

m̃(s,x) = C̃sγ− 3
2

´
R3 |y|2(1−γ)h̃γ(x− y)dy

hγ(x)
(24)

m0(x, t) =

´
R3 u0(x− y)K(y,2νs)dy

hγ(x)
(25)

In the above equations, C = 1
4νC0 p1

, where C0 comes from (16), C̃ = 1
C1 p4

, where

C1 = 4ν(γ−1)C0.

One can now express the integral equation in (21) in terms of the functions which

have been introduced above, along with the probability weights defined in section 4.
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Proposition 6.1: Suppose the majorizing kernel pair (hγ , h̃γ) is used to define f , f̃ ,

f0, f1, ϕ, m, m̃and m0 given in (14) to (17) and (22) to (25) respectively. If h(x)χ(x, t)

is locally square integrable and χ satisfies

χ(x, t) = m0(x, t)+ˆ t

0

ˆ
y∈R3

ˆ
z∈R3

{
m(x, t− s)

(
p1 f0(s|z) f (y,z|x)×

b1(z; χ(x− z, t− s),χ(x− z, t− s))+
(
2p2 f1(s|z) f (y,z|x)−

3p3 f1(s|y) f (y,z|x)
)
×b2(z; χ(x− z, t− s),χ(x− z, t− s))

)
+m̃(x, t− s)

(
p4 f1(s|z) f̃ (y,z|x)Pzϕ(x− z, t− s)

−p5 f1(s|y) f̃ (y,z|x)(I−3ezet
z)ϕ(x− z, t− s)

)}
dzdyzs, (26)

then u(x, t) = hγ(x)χ(x, t) is a weak solution of the Navier-Stokes equations in the sense

of Definition 5.2.

Proof: Suppose that χ(x, t) satisfies (26) above and define u(x, t)= hγ(x)χ(x, t). Keep-

ing in mind that ˆ
y∈R3

f (y,z|x)dy =
|z|1−2γh2

γ(x− z)´
z∈R3 |z|1−2γh2

γ(x− z)dz
,

and that ˆ
y∈R3

f̃ (y,z|x)dy =
|z|2−2γ h̃γ(x− z)´

z∈R3 |z|2−2γ h̃γ(x− z)dz
,
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one can simply evaluate the integral in (26) along with a multiplication of a factor of

hγ(x) to demonstrate that

hγ(x)χ(x, t) =
ˆ
R3

u0(x− y)K(y,2νs)dy+
ˆ t

0

ˆ
z∈R3

{ hγ(x)m(x,s)
(
´

z∈R3 |z|1−2γh2
γ(x− z)dz)

(
p1 f0(s|z)|z|1−2γ ×

b1(z;u(x− z, t− s),u(x− z, t− s))+
( p2

2
f1(s|z)|z|1−2γ −

p3

2

[ˆ
|y|≤|z|

f1(s|y)(5−2γ)|y|2(1−γ)

4π|z|4
dy
])

×b2(z;u(x− z, t− s),u(x− z, t− s))
)

+
m̃(x,s)hγ(x)

(
´

z∈R3 |z|2−2γ h̃γ(x− z)dz)

(
p4 f1(s|z)|z|2−2γPzg(x− z, t− s)−

p5

2

[ˆ
|y|≤|z|

(5−2γ)|y|2(1−γ) f1(s|y)
|z|34π

dy
]
×

(I−3ezet
z)g(x− z, t− s)

)}
dzds

=

ˆ
R3

u0(x− y)K(y,2νs)dy+
ˆ t

0

ˆ
z∈R3

{(
(4νs)−1K(z,2νs)|z|×

b1(z;u(x− z, t− s),u(x− z, t− s))+
(
|z|−1K(z,2νs)−[ˆ

|y|≤|z|

3K(y,2νs)
4π|z|4

dy
])
×

b2(z;u(x− z, t− s),u(x− z, t− s))
)

+
(

K(z,2νs)Pzg(x− z, t− s)−
[ˆ
|y|≤|z|

K(y,2νs)
|z|34π

dy
]
×

(I−3ezet
z)g(x− z, t− s)

)}
dzds.

Since the last equality above is the same as (21) from proposition 5.1, u(x, t) =

h(x)χ(x) is a weak solution to the Navier-Stokes equations. QED
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Now, let the following V -indexed random variable be defined by

ϒv(t) = m0(Xv̄, t)+m(τv,Xv̄)Bv(ϒv?0(t− τv),ϒv?1(t− τv))1[κv = 1,2,3]
⋂
[τv ≤ t]

+m̃(τv,Xv̄)Cvϕ(Xv, t− τv)1[κv = 4,5]
⋂
[τv ≤ t], (27)

where,

Bv(·, ·) =


b1(Zv; ·, ·) i f κv = 1

(−1)κb2(Zv; ·, ·)/2 i f κv = 2,3

and

Cv =


PZv i f κv = 4

−(I−3evet
v)/2 i f κv = 5

.

The solution to the NSE will be given as an expectation of this random variable.

Proposition 6.2: Let (hγ , h̃γ) be a majorizing kernel pair. If Ex|ϒφ (t)| < ∞ for all

t ≤ T ∈ (0,∞), and for all x ∈ R3 where ϒφ is defined as in (27) then

u(x, t) = h(x)Exϒφ (t).

is a weak solution to the Navier-Stokes equations for t ≤ T, and x ∈ R3.

Proof: Since X , as in definition 5, is a V -indexed Markov process, and since ϒv is

measurable Fv, then ϒ0(t− τφ ) andϒ1(t− τφ ) are conditionally independent given Fφ
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(See A.1 in Appendix 1), which yields:

Ex(ϒφ (t)|Fφ ) = m0(x, t)

+
(

m(τφ ,x)
{

b1(Zφ ;Ex(ϒ0(t− τφ )|Fφ ),Ex(ϒ1(t− τφ )|Fφ )))

×1[κφ = 1]

+
1
2
(
1[κφ = 2]−1[κφ = 3]

)
×b2(Zφ ;Ex(ϒ0(t− τφ )|Fφ ),Ex(ϒ1(t− τφ )|Fφ )))

}
+m̃(τφ ,x)

×
{

1[κφ = 4]PZφ
−1[κφ = 5]

1
2
(I−3eZφ

et
Zφ
)
}

ϕ(x−Zφ , t− τφ )
)

×1[τφ ≤ t]

After noting that Ex(ϒ0(t − τφ )|Fφ )1[Zφ = z, τφ = s] = Ex−z(ϒφ (t − s)), and that

Ex(ϒφ (t)) = Ex(Ex(ϒφ (t)|Fφ )) it becomes apparent that

Ex(ϒφ (t)) = Ex(Ex(ϒφ (t)|Fφ )) = m0(x, t)+ˆ t

s=0

ˆ
y∈R3

ˆ
z∈R3

(
m(s,x)

{
p1 f0(s|z) f (y,z|x)

×b1(z;Ex(ϒ0(t− s)|Fφ ),Ex(ϒ1(t− s)|Fφ )))

+
1
2
(

p2 f1(s|z) f (y,z|x)− p3 f1(s|y) f (y,z|x)
)

×b2(z;Ex(ϒ0(t− s)|Fφ ),Ex(ϒ1(t− s)|Fφ )))
}

+m̃(τφ ,x)
{

p4 f1(s|z) f̃ (y,z|x)PZφ

−p5 f1(s|y) f̃ (y,z|x)1
2
(I−3ezet

z)
}

ϕ(x− z, t− s)
)

dzdyds.

Assuming, then, that Ex|ϒφ (t)| ≤M < ∞ for all x and t<T, it is clear that u(x,t) is uni-

formly square integrable since |u(x, t)|= h(x)|Exϒφ (t)| ≤Mh(h). From proposition 6.1

it now follows that u is a weak solution to the N-S equations. QED.
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Theorem 6.1: Let (hγ , h̃γ) be a majorizing kernel pair with constants (λ , λ̃ ) in the

normalization family γ ∈ (3/2,2). If (u0,g) is (hγ , h̃γ)-admissible with

sup
x∈R3, t≤T

|m0(x, t)| = sup
x∈R3,t≤T

|
´
R3 u0(x− y)K(y,2νs)dy|

h(x)
≤M and

sup
x∈R3,t≥0

|g(x, t)|
h̃γ(x)

≤ M̃

for some M, M̃ ∈ (0,∞), then there exists a T ∈ (0,∞] such that u(x, t) = h(x)Ex(ϒφ (t))

is a weak solution to the NSE with

sup
x∈R3,0≤t≤T

|u(x, t)|
hγ(x)

≤CM,M̃.

This is also unique in the class {v ∈ (S′(R3× (0,∞)))3 : supx∈R3,0≤t≤T
|v(x,t)|
hγ (x)

≤CM ˜,M}.

The proof of the first part of this theorem will employ a lemma which I shall give

presently.

Lemma 6.1: Let W ⊂ V be a finite binary sub-tree. Suppose that {bv : R3×R3 →

R3|v ∈W } has the property that

sup
v∈W
|bv(x,y)| ≤ |x||y| f or all x,y ∈ R3,

{(yv,zv,ηv,σv) ∈ R3×R3× [0,∞)×{0,1} : v ∈W } satisfies

sup
v∈W

ηv ≤ η < ∞
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and if

sup
v∈W
|yv| ≤ αε and sup

v∈∂W
|zv| ≤ βε f or some α ∈ [0,1)

f or ε, β ∈ (0,(1−α)/η ].

Then, xv defined iteratively on W via

xv =


yv +σvηvzv i f v ∈ ∂W

yv +ηvbv(xv?0,xv?1) i f v ∈W ◦

satisfies

sup
v∈W
|xv| ≤ ε.

Proof: If v ∈ ∂W , then

|xv| ≤ |yv|+ηv|zv| ≤ αε +ηβε ≤ ε.

If v ∈W ◦and |xv?k| ≤ ε for k ∈ {0,1}, then

|xv| ≤ |yv|+ηv|bv(xv?0,xv?1)| ≤ αε +ηε
2 ≤ ε.

where the last inequality is due to the face that α +ηε ≤ 1. QED

Proof of Theorem: First I shall prove the existence of a solution with such a bound,

then I will demonstrate uniqueness.

1) (Existence) Let

W = {v ∈ V : κvw = 1,2,3 f or all w < |v|}. (28)
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Then W is a random binary sub-tree corresponding to a Galton-Watson tree with each

individual having either 0(with probability greater than 1/2) or 2 (with probability less

than 1/2) children. As a result of these weights, W is, a.e-P, a finite tree; (see Athreya

and Ney[1]). Let Xφ̄ = x ∈ R3 and Sφ = 0. For v ∈W with |v| > 0 let Sv = ∑
|v|−1
k=0 τv|k.

For fixed t < ∞, ϒφ (t) is a function of the random ensembles indexed by the nodes of

the tree W (t)⊂W defined by

W (t) = {v ∈W : Sv ≤ t}. (29)

Observe that if v ∈ ∂W (t), then

ϒv(t−Sv) = m0(Xv̄, t−Sv)

+m̃(τv−Sv,Xv̄)Cvϕ(Xv, t−Sv− τv)1[κv = 4,5]
⋂
[τv ≤ t−Sv]

and that if v ∈W ◦(t), then

ϒv(t−Sv) = m0(Xv̄, t−Sv)+

m(τv−Sv,Xv̄)Bv(ϒv?0(t−Sv− τv),ϒv?1(t−Sv− τv))

×1[κv = 1,2,3]
⋂
[τv ≤ t−Sv]

In this setting we can use Lemma 6.1 by identifying (in the notation of Lemma 6.1)

yv = m0(Xv̄, t−Sv), bv = Bv, zv =Cvϕ(Xv, t−Sv− τv),

ηv =


m(τv−Sv,Xv̄) i f v ∈W ◦(t)

m̃(τv−Sv,Xv̄) i f v ∈ ∂W (t)
,
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and σv = 1[κv = 4,5]. Observe that m(s,x)≤ λ

4νC0 p1
sγ−3/2 and that m̃(s,x)≤ λ̃

C1 p4
sγ−3/2,

where C1 and C0 are given in (16). Also note that due to the assumptions in the theo-

rem, |yv| ≤ M, and |zv| ≤ M̃. By considering a small enough T and restricting t ≤ T ,

the constants ε , and β which appear in lemma 6.1 can be made arbitrarily large by let-

ting η ≥ ηv be arbitrarily small for all t<T (remember that ε ,β ∈ (0, 1−α

η
]). This will

allow the reader to conclude that for all x ∈ R3, |ϒφ (t)| ≤ ε a.s Px, and, by virtue of

Proposition 6.2, existence of a solution such that |u(x, t)| ≤ h(x)ε for t<T will have been

demonstrated.

Given a particular value for M, M̃, λ , and λ̃ , I shall determine a sufficiently small T

to guarantee existence. To do this, I shall work backwards. Let such a T be determined.

Then let

η = max(
λ

4νC0 p1
T γ−3/2,

λ̃

C1 p4
T γ−3/2)≥ ηv. (30)

By looking at the bounds for suitable ε and β values in Lemma 6.1, one sees that T is

suitably small if M ≤ α
1−α

η
, and M̃ ≤ ( (1−α)

η
)2 where α ∈ (0,1). This is the case if

M ≤ α(1−α)
4νC0 p1

λ
T 3/2−γ ,

and if

M̃ ≤ (1−α)2(4νC0 p1

λ

)2T 3−2γ .

Therefore, if ( Mλ

4νC0 p1

)γ−3/2 ≥ T,

and if ( M̃λ

4νC0 p1

)2γ−3 ≥ T

then, by lemma 6.1, |ϒφ (t)| ≤ ε for all t < T .
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As a result then, for any M,M̃ ∈ (0,∞), if

sup
x∈R3,s≤T

|
´
R3 u0(x− y)K(y,2νs)dy|

hγ(x)
< M and sup

x∈R3,T≥t≥0

|g(x, t)|
h̃γ(x)

≤ M̃

then there is a solution, u, to the Navier Stokes Equations for which

sup
x∈R3,0≤t≤T

|u(x, t)|
hγ(x)

<CM,M̃ f or t < T,

where CM,M̃ ≤ 1−α

η
, and η is obtained from (30).

2) (Uniqueness) Suppose v is a solution to (2) with

sup
x∈R3,T≥t≥0

|v(x, t)|
hγ(x)

≤CM,M̃.

Let ρ(x, t) = v(x, t)/hγ(x). Take Xφ̄ = x ∈ R3and let 0 < t ≤ T be fixed. Let

W (n)(t) = {v ∈W (t) : |v| ≤ n}

Where W (t) is as defined in (29). For n≥ 0 and v ∈W (t), define the random functions

Ψ
(n)
v via

Ψ
(0)
v (t) = m0(Xv̄, t)

+m(τv,Xv̄)Bv(ρ(Xv, t− τv),ρ(Xv, t− τv))1[κv = 1,2,3]
⋂
[τv ≤ t]

+m̃(τv,Xv̄)Cvϕ(Xv, t− τv)1[κv = 4,5]
⋂
[τv ≤ t]
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and, for n≥ 1,

Ψ
(n)
v (t) = m0(Xv̄, t)

+m(τv,Xv̄)Bv(Ψ
(n−1)
v (t− τv),Ψ

(n−1)
v (t− τv))1[κv = 1,2,3]

⋂
[τv ≤ t]

+m̃(τv,Xv̄)Cvϕ(Xv, t− τv)1[κv = 4,5]
⋂
[τv ≤ t].

Observe that for each n, Ψ
(n)
φ

depends only on the ensembles in X for which v ∈

W (n)(t), also observe that if W (n)(t) = W (t), then Ψ
(n)
φ
(t) = ϒφ (t). Since v(x, t) is a

solution to (2),

v(x, t) = h(x)ρ(x, t) = h(x)ExΨ
(0)
φ
(t),

and for all v,

Ex(Ψ
(0)
v (t−Sv)|F̄v̄)1[t−Sv ≥ 0]

= Ex(Ψ
(0)
v (t−Sv)|Fv̄)1[t−Sv ≥ 0]

= ρ(Xv̄, t−Sv)1[t−Sv ≥ 0],

Where the first equality follows from (13). Now, if for some n ≥ 1 and for all v ∈ V ,
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Ex(Ψ
(n−1)
v (t−Sv)|F̄v̄) = ρ(Xv̄, t−Sv) on the set [t−Sv ≥ 0], then

Ex(Ψ
(n)
v (t−Sv)|F̄v)1[t−Sv ≥ 0]

= m0(Xv̄, t−Sv)

+
{

m(τv,Xv̄)Bv(Ex(Ψ
(n−1)
v?0 (t−Sv− τv)|F̄v),Ψ

(n−1)
v?1 (t−Sv− τv)|Gv))

×1[κv = 1,2,3]

+m̃(τv,Xv̄)Cvϕ(Xv, t−Sv− τv)1[κv = 4,5]
}

1[τv ≤ t−Sv]

= m0(Xv̄, t−Sv)+
{

m(τv,Xv̄)Bv(ρ(Xv, t− τv−Sv),ρ(Xv, t− τv−Sv))

×1[κv = 1,2,3]

+m̃(τv,Xv̄)Cvϕ(Xv, t−Sv− τv)1[κv = 4,5]
}

1[τv ≤ t−Sv].

So, on the set [τv ≤ t−Sv],

Ex(Ψ
(n)
v (t−Sv)|F̄v̄)

= Ex(Ex(Ψ
(n)
v (t−Sv)|F̄v)|F̄v̄)

= m0(Xv̄, t)

+

ˆ t

s=0

ˆ
z∈R3

ˆ
y∈R3

{
m(s,Xv̄)

(
p1 f0(s|z) f (y,z|Xv̄)

×b1(z;ρ(Xv̄− z, t−Sv− s),ρ(Xv̄− z, t−Sv− s))

+
(

p2 f1(s|z) f (y,z|Xv̄)− p3 f1(s|y) f (y,z|Xv̄)
)

b2(z;ρ(Xv̄− z, t−Sv− s),ρ(Xv̄− z, t−Sv− s))
)

+m̃(s,Xv̄)
(

p4 f1(s|z) f̃ (y,z|Xv̄)Pz

−p5 f1(s|y) f̃ (y,z|Xv̄)(I−3ezet
z)
)

ϕ(Xv̄− z, t−Sv− s)
}

dzdyds = ρ(Xv̄, t−Sv).
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Now by induction it follows that Ex(Ψ
(n)
v (t−Sv)|F̄v̄) = ρ(Xv̄, t−Sv) on the set [t−

Sv ≥ 0], for all n, v. It follows that Ex(Ψ
(n)
φ
(t)) = ρ(x, t), since F̄φ̄ is the trivial σ -

field. Since W (t) is finite a.s-Px, then with probability 1, there exists and N>0 such that

W (n)(t) =W (t) and that ϒφ (t) = Ψ
(n)
φ
(t) for all n>N. Since both functions are bounded

in magnitude by CMM̃, it is clear that

|χ(x, t)−ρ(x, t)| = |Ex(ϒφ (t)−Ψ
(n)
φ
(t))|

≤ 2CMM̃Px(W (t) 6= W (n)(t))→ 0 asn→ ∞.

Therefore, ρ = χ =⇒ u(x, t) = v(x, t) QED.

Scholium So much for the existence and uniqueness in the case where γ > 3/2. In

this case, the treatment of the Navier Stokes Equations is just a generalization to that

which was given by Ossiander[6]. In her paper, conditions for existence and uniqueness

were given for the case in which γ = 3/2. Notice that in this case, the proof above

does not work because the functions m and m̃ cannot be made arbitrarily small for some

non-zero window of time by making T sufficiently small. Rather, in her paper, she

gave a condition on the data to ensure existence and uniqueness of a solution for all

time– basically, it involved making the data small enough for the contraction principle in

lemma 6.1 to work. What follows now is a line of inquiry on how one can demonstrate

existence and uniqueness for a short time, given arbitrarily large data and given that

γ = 3/2.
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7 The case of γ = 3/2

In finding a suitable existence and uniqueness result for the case where γ = 3/2, the use

of a contraction argument as given in Theorem 6.1 will not work if one is to be given

arbitrarily large data. So, I shall start with a lemma that attempts to estimate |ϒφ | given

that a certain number of branching events happen on the V -indexed random variable X .

Lemma 7.1: Using the notation from Lemma 6.1, let ηN ≥ 2, and let b < ∞ be the

number of births in a given tree. Let |m0(x,t)|
h , |g|

h̃
≤ N. Then |ϒφ | ≤ 1

η
((1+η)ηN)1+2b.

Proof:

In the case where b=1, one sees that |ϒφ | ≤ N +η(N +ηN)2 = 1
η
(ηN)+ 1

η
((1+

η)(ηN))2 ≤ 1
η
((1+η)(ηN))3. Suppose now that the theorem holds for b=p, and then

consider the case where b=p+1. Then |ϒφ | ≤N+η |ϒ0||ϒ1|. Now the combined number

of births on the trees starting at v = 0,1 is equal to p, so our inductive hypothesis can

be applied to |ϒ0| and |ϒ1|. Therefore, |ϒφ | ≤ N +η( 1
η
)2((1+η)ηN)2(p+1) ≤ 1

η
((1+

η)ηN)1+2(p+1). Therefore, by induction of this result, our lemma is proven. QED

Now that we have established some sort of bounding behavior of |ϒφ | with respect

to a particular tree, I shall now describe the particular case where h lacks what I shall

call “traps”. This will hold for all bounded h.

7.1 The Case where no traps exist.

Here I shall write about the case where there are no traps,

Definition 7.1.1 The majorizing kernel, h, which generates the conditional probability

distribution for the Markov process introduced in section 4, is said to have no traps if
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∀ε > 0, ∃δ > 0s.t Px[|Zφ |< δ |κφ = 1,2, or 3]≤ ε, (31)

and Px[|Yφ |< δ |κφ = 1,2, or 3]≤ ε ∀x.

In this case, I shall show that given any bounds on the data:u0
h ,

g
h̃
≤ N, a weak solution

will exist for some time T>0. The constraints in (31) will allow one to make the prob-

ability that any node will produce sterile children as close to 1 as one wishes. I will

then show that such a property allows for the demonstration of a non-zero window of

existence.

Note: By “sterile children” of the node v ∈ V , I mean that the the value of ϒφ (t),

for a given element ω in the underlying probability space, does not depend on the value

of the Xv?k? j for k, j ∈ {0,1}. This happens when either κv = 4,5 (death), or τv > t

(expiration).

Proposition 7.1.1: For t>0, z,y ∈ (0,∞)

Px[τφ ≤ t| |Zφ | ≥ z, κφ = 2]≤
ˆ t/(|z|2)

0
Ce−1/4νwdw,

Px[τφ ≤ t| |Yφ | ≥ y, κφ = 3]≤
ˆ t/(|y|2)

0
Ce−1/4νwdw, (32)

Px[τφ ≤ t| |Zφ | ≥ z, κφ = 1]≤
ˆ t/(|z|2)

0
Ke−1/4νwdw,

where C and K above are constants.

Proof: This follows from the change of variable s = |z|2w in the case where κφ = 1,2

or s = |y|2w in the case where κφ = 3 on the conditional waiting times (16) for κ = 1
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and (17) for κφ = 2,3. QED

Scholium: All three of these probabilities can be made arbitrarily small by making t

small. Furthermore, when h has no traps, we can strengthen the above proposition as

follows.

Corollary 7.1.1: For ε > 0 there exists a t > 0 such that Px[τφ ≤ t|κφ = 1,2,3]≤ ε .

Proof: let δ be such that Px[|Zφ |< δ |κφ = 1,2]≤ ε/2, and Px[|Yφ |< δ |κφ = 3]≤ ε/2.

Let t be such that Px[τφ ≤ t|κφ = 1,2 , |Zφ | ≥ δ ] ≤ ε/2, and Px[τφ ≤ t|κφ = 3 , |Yφ | ≥

δ ] ≤ ε/2. The corollary now follows, since (for W ( j) = Z for j = 1,2, W ( j) = Y for

j = 3)

Px[τφ ≤ t|κφ = 1,2,3] =
3

∑
j=1

p jPx[τφ ≤ t|kφ = j]

≤
3

∑
j=1

p j(Px[τφ ≤ t||W j
φ
| ≥ δ ,κφ = j]

+
ε

2
×Px[τφ ≤ t||W j

φ
|< δ ,κφ = j])

≤
j=3

∑
j=1

p j(
ε

2
+

ε

2
)≤ ε.

QED.

Scholium: Observe that in (27), |ϒv(t)| does not depend on the successors of nodes

on the binary tree that are past the time t. In other words, if a node at the point v ∈ V

is such that τv > t, then the children of that node will be sterile. By the corollary above,

one has a way of making the probability of sterile children being born arbitrarily close

to 1. This sterility rate will suppress the probability weight that long trees will exist,

resulting in a finite expectation: Ex|ϒφ |.
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Theorem 7.1.1: If h has no traps as in Definition 7.1.1, and if u0
h ,

g
h̃
≤ N, then there is

a T>0, s.t Ex|ϒφ (t)|< ∞ for all t<T, and for all x ∈ R3.

Proof: Without loss of generality, the number of birthing events on a particular tree

can be assumed finite. This is because the Markov process in question is a sub-critical

branching process, therefore the trees are of finite length a.s.–(see Athreya and Ney[1]).

Observe that, from lemma 7.1, on a given tree, |ϒφ (t)| ≤ (KN)1+2b where b is the num-

ber of birthing events, or child-bearing nodes. For any given b, the number of parent

nodes, v, such that [τv ≤ t]
⋂
[κv ∈ {1,2,3}] is at least:

p = min{bb−1
2
c,0}.

This is due to the fact that any parent can only produce two children, and the -1 term is

due to the fact that the first node has no ancestor.

Let Ab = {ω : number o f births = b}, and let ε > 0 be the uniform (in x) lower

bound for the probability that τφ ≤ T . Then Px[Ab]≤ ε p. This last estimate is due to the

fact that there must be p births for which the time elapse is less than T; also, these events

are independent. Now observe that

Ex|ϒφ (t)| ≤
∞

∑
b=0

(KN)1+2bPx[Ab]≤
∞

∑
b=0

(KN)1+2b
ε

p ≤ (33)

9

∑
b=0

(KN)1+2b +KN
∞

∑
b=10

(K2N2
ε

1
4 )b. (34)

By choosing an ε which is small enough, then, (33) implies that Ex|ϒφ (t)| < ∞ for

all t<T.QED

If h is a bounded majorizing kernel, then h does not have traps. However, this is not

the case for all unbounded kernels. The Appendix B will cover one such case.
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Part II

Appendix A: Some Useful Lemmas.

A.1: Let Y (x, t) be a measurable function on Rm+n, where m,n ∈ N, and let X

and T be Rm- and Rn-valued random variables respectively on some probability space

(Ω,O ,P). then Y(X,T) is a random variable. Suppose G is a sub−σ − f ield on the

probability space for which the random variable T is measurable– σ(T ) ⊂ G . Then

E[Y (X ,T )|G ]ω = E[Y (X ,T (ω))|G ]ω .

Proof: First, suppose Y (x, t) = 1B×C, where B and C are Borel sets in Rn and Rm re-

spectively. Then, certainly E[Y (X ,T )|G ]ω = E[1[(X ,T )∈B×C]|G ]ω =

E[1[X∈B]1[Y∈C](ω)|G ]ω . I shall now demonstrate that the sets B ∈ Q⊂Bm+n for which

E[1(X ,T )∈B|G ]ω = E[1(X ,T (ω))∈B|G ]ω form a lambda system. First, since R2 is a mea-

surable rectangle, it is in Q, as is the empty set. It is also obvious that complements are

in Q. Finally, if {Bi} is a disjoint sequence of sets in Q, then

1(X ,T )∈
⋃

Bi = ∑
i

1Bi =⇒ E[1(X ,T )∈
⋃

Bi|G ]ω = ∑
i

E[1(X ,T (ω))∈Bi|G ]ω

= E[∑
i

1(X ,T (ω))∈Bi|G ]ω

P- almost surely.

Therefore, the collection of all sets B for which E[1(X ,T )∈B|G ]ω =E[1(X ,T (ω))∈B|G ]ω

holds forms a λ system which contains the π-system of the measurable rectangles of B2.

Therefore, due to Dynkin’s π−λ theorem, for any Borel set B ∈B2, the property that

E[1(X ,T )∈B|G ]ω = E[1(X ,T (ω))∈B|G ]ω holds true. Consequently, for simple functions

ϕ, E[ϕ(X ,T )|G ]ω = E[ϕ(X ,T (ω))|G ]ω , and the same goes for measurable functions
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Y(x,t). QED

A.2: Let h(x), g(x) : Rn → [0,∞) be spherically symmetric functions which are de-

creasing functions of |x|. Then (h∗g)(x) decreases with |x|.

Proof: Let πi : Rn → R be the cartesian projection map. Spherical symmetry of the

functions ensures that (h ∗ g)(x) = (h ∗ g)(e1|x|), where e1 is the unit vector such that

π1(e1) = 1. Let |x1|< |x2| then

(h∗g)(e1|x1|)− (h∗g)(e1|x2|) =
ˆ
R3
(g(e1|x1|− y)−g(e1|x2|− y))h(y)dy.

Now on the hyperplane π1(x) = (|x2|− |x1|)/2, the function (g(e1|x1|− y)−g(e1|x2|−

y)) is 0, and it is anti-symmetric with respect to reflections about this hyperplane.

However, when reflecting about this same hyperplane (call the reflection R), one sees

that h(y) ≥ h(Ry) for y ∈ [π1(x) < (|x2| − |x1|)/2]. Thinking of hdy as a measure

on Rn, it is clear that for any interval (a,b), a,b > 0, the hdy measure of the set

[y : (g(e1|x2| − y)− g(e1|x1| − y)) ∈ (a,b)] is less than or equal to the hdy measure

of the set [(g(e1|x2|− y)−g(e1|x1|− y)) ∈ (−b,−a)]. One can therefore conclude that

(h∗g)(e1|x2|)− (h∗g)(e1|x1|)≤ 0. QED

Part III

Appendix B: The Case where γ = 3/2 and traps exist

Let γ = 3/2. The majorizing kernel h(x) = |x|−1 does have a trap at x=0, as is shown

in proposition B.2. This makes a situation where we cannot employ Theorem 7.1.1 to
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demonstrate existence for a solution in the case where the initial conditions are domi-

nated by such an h. In this appendix-I attempt (but fail) to demonstrate a counterexample–

an initial condition for which the solution does not exist for any time after 0. However,

the following propositions will suggest certain properties of the bilinear operators b1 and

b2 which will be necessary in order for a solution to exist for some finite time. I start by

trying to demonstrate that, in the case where h = |x|−1, there is some lower bound for

the initial data:
m0(x, t)

h
≤ N,

g
h̃
≤ Ñ

such that there is no non-zero time T for which a solution is guaranteed to exist. I

shall do this by underestimation of Ex[ϒφ (t)] for |x| ≤ |x0| ∈ (0,∞). My first step is to

demonstrate, given T>0, a lower bound on the probability that a particular lineage along

the binary tree survives and stays below time T which is exponential and uniform in the

starting points |x| ≤ |x0|. I shall do this in the next two propositions.

Proposition B1: If one considers the case where κ1 = 2, then for any T>0:

Px[τ1 ≤ T/2|Z1 ≤ y]≤
ˆ T/(2|y|2)

0
Ce−1/4νwdw where C is a constant.

Proof: This result follows from the definition of the conditional waiting time given

in (17) (this is the f1(s|z) term) and the use of the substitution s = |y|w. QED

Corollary B1: Given a time T>0, a sufficient bound on |Zv| such that,

Px[τv ≤
T − τv̄

2
|κv = 2, |Zv| ≤ β ∈ (0,∞)]≥ Ktime > 0, where Ktime is a constant
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is the following:

|Zv| ≤
√

T − τv̄

2α
, for some α > 0

Scholium Please notice that if we make |Zv| smaller, then the probability of the event

above only grows.

Now that we know know that for sufficiently small displacements (remember how

Zv is related to Xv. See section 4) the time elapsed from one generation to the next can

be made arbitrarily small. The next proposition will also give us a non-zero probability

of the displacements decaying exponentially.

Proposition B2: Given that h = |x|−1,

Px[|Xφ | ≤ |x|/2, τφ ≤ T/2|κφ = 2]≥ KspaceK(x)
time p2 > 0

where Kspace, K(x)
time > 0 are constants, Kspacebeing independent of x, and K(x̃)

time ≥ K(x)
time

∀|x̃| ≤ |x|.

Proof: Fix x ∈ R3. I begin with a calculation involving the conditional transition

density given in (14). Namely,

f (y,z|x) = |y|
−1|z|−4|x− z|−21[|z|> |y|]
2π
´
R3 |z|−2|x− z|−2dz

.
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Letting U be the region in R3 such that {x−U} = B0(|x|/2) (note that Xv = Xv̄−Zv).

We see that

ˆ
U

ˆ
R3

f (y,z|x)dydz =

´
U |z|

−2|x− z|−2dz
π3|x|−1

≥
|x|−1 ´

R={(3|x|/4)≤|z|≤4|x|/5}
⋂

U |z|
−2dz

2π3 ≥ Kspace > 0.

Now all that remains is to use the probability density for the quadruple (Yv,Zv,τv,κv)

in the case where κv = 2, given in (5) to demonstrate the desired result:

Px[|Xφ | ≤ |x|/2, τφ ≤ T/2|κφ = 2] =
ˆ

U

ˆ
R3

ˆ T/2

0
p2 f1(s|z) f (y,z|x)dsdydz

≥
ˆ

U

ˆ
R3

f (y,z|x)
(ˆ T/2

0
p2 f1(s| |x|)ds

)
dydz (35)

≥ K(x)
time p2

ˆ
U

ˆ
R3

f (y,z|x)dydz

≥ K(x)
timeKspace p2 > 0.

Finally, K(x̃)
time ≥ K(x)

time ∀|x̃| ≤ |x|, follows from the fact that
´ T/2

0 f1(s| |x|)ds is mono-

tonically decreasing in |x|.QED

Scholium The last two propositions demonstrate that the probability of a single lin-

eage on the binary branching tree to take on an exponential decay in the step size for

both time and space has an exponential lower bound, independent of the starting point

|x| ≤ |x0|. A consequence of this result is that the probability that the nthnode of a

strand lying in the set An = {(x, t) : |x| ≤ |x0|2−n, t ≤ T(1− 2−2)} is bounded below

by (K(x0)
timeKspace p2)

n. Suppose now that all other branches have children and that the

entire nth generation of a tree lies in the set An. Then, as there are 2nof these nodes, the

probability of this occurring is bounded below by (K(x)
timeKspace p2)

2n
.
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Let me now return to my description of the growth of |ϒφ |. In the case where

|u0|
h
≤ Ñ,

g
h̃
≤ Ñ,

one can conclude that |ϒφ (t)| ≤ ((1+η)Ñ)2|∂V |−1, where ∂V is the boundary of the

particular instance of the binary tree for which |ϒφ | is being approximated(cf. lemma

7.1)(note that |∂V | = 1+b). If one can also find a set of non-zero probability, measur-

able F̃φ such that, for some ˜̃N > 0, ˜̃N|∂V | ≤ |ϒφ (t)| with probability p|∂V |
d for all starting

points |Xφ̄ | ≤ |x0| and all times t>0, then one can then use the remarks above to conclude

that Ex|ϒφ (t)| ≥ (K(x)
timeKspace pd p2

˜̃N)2n → ∞ as n→ ∞ if K(x)
timeKspace p2 pd

˜̃N > 1. Deter-

mining such a condition, and such a ˜̃N will require a more detailed look at the definition

of ϒv and the geometry governing it.

Recall from (27), that

ϒ(t) = χ0
(
Vv(t)

)
+

11m(Xv̄)

ρ
Bv(ϒv?0(t− τv),ϒv?1(t− τv))1[κv = 1,2,3]

⋂
[τv ≤ t]

+
4m̃(Xv̄)

1− p
Cvϕ(Xv, t− τv)1[κv = 4,5]

⋂
[τv ≤ t] .

Now Bv is of the form:

Bv(·, ·) =


b1(Zv; ·, ·) i f κv = 1

(−1)κb2(Zv; ·, ·)/2 i f κv = 2,3
(36)



43

where

b1(y;u,v) = (u · ey)Pyv+(v · ey)Pyu

b2(y;u,v) = b1(y;u,v)+u · (I−3eyet
y)vey. (37)

Pyv = v− (v · ey)ey ⊥ y

Since I am dealing, for the sake of simplicity, with the process in which κv = 2 for all

v ∈ V , I shall be focused on showing some key features of the operator b2. First notice

that it is broken into two terms, the first of which lies perpendicular to the parameter

vector, the second lies parallel to the same. For now let us consider the second term:

|b2(y;u,v)| ≤ |u||v||cosθuv−3cosθyv cosθyu|.

|b2(y;u,v)|2 ≤ |u|2|v|2((cosθuv−3cosθyv cosθyu)
2 (38)

+(cosθuy sinθvy + cosθvy sinθuy)
2)

|u|2|v|2((cosθuv−3cosθyv cosθyu)
2 +(sin(θuy +θvy))

2)

Proposition B.3 For any δ > 0, and for any given pair of vectors u and v, there ex-

ists a K(δ ) > 0 such that, for ey on the unit sphere, given by the spherical coordinates

(θ ,φ), |b2(y;u,v)| ≥ |cosθuv− 3cosθyv cosθyu| > K(δ ) whenever (θ ,φ) ∈ Aδ
uv where

d(A(δ )
uv ,γuv)> δ and γuv is some curve on the (θ ,φ)-plane determined by eu and ev.

Proof:

Fix u and v. the points on the θ ,φ -plane which describe ey such that |cosθuv−

3cosθyv cosθyu| = 0 forms a curve on the θ ,φ -plane which shall be called γuv. Fixing

some δ > 0, for ey described by any point on the θ ,φ -plane whose distance from γuv is
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greater than δ , |cosθuv−3cosθyv cosθyu|> K(δ )
uv > 0. Since the unit sphere is compact,

and K(δ )
uv can be constructed to be continuous in eu and ev there exists some K(δ ) for

which |cosθuv−3cosθyv cosθyu| > K(δ ) > 0 for all (θ ,φ) outside some band of width

2δ . QED

Remark: This result is made stronger by the better bound on |b2|given in (38). Here,

one observes that |b2|= 0 only on a single point of the unit sphere. The result is still the

same, make |b2(y,u,v)| ≥ K(δ )|u||v| by excluding ey from some small (in some sense)

subset of the unit sphere.

As a result of this proposition above, in order to bound b2(Zv;ϒv?0,ϒv?1)≥K(δ )|ϒv?0||ϒv?1|, Zv
|Zv|must

be outside of some neighborhood of the unit sphere, where the particular neighborhood

depends on ϒv?0 and ϒv?1 which in general is not independent of Zv. This is not the only

difficulty in determining a condition such that |ϒφ | ≥ ˜̃N∂V , for there are also the terms

χ0(Vv(t− τv)) showing up in each node on the tree. These difficulties have convinced

me to abandon my search for a counter-example demonstrating the non-existence of a

time T > 0 such that a weak solution in the space of interest exists in the case where

h = |x|−1. Suffice it to say that due to proposition B.2 and the remark following, bound-

ing |ϒφ | by means applying the triangle inequality to the terms on the nodes (such as

arguments like lemma 7.1) without reference to the geometry of the problem will not

be enough to demonstrate existence of a solution for any non-zero time. Conversely, if

one demonstrates that a solution does exist for some non-zero time, we can infer some

interesting results about the nature in which the geometry of the problem retards the

growth of |ϒφ | for small time in large trees.
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