
AN ABSTRACT OF THE THESIS OF 

Delwin Pow Kong Ching for the M.S. in Civil Engineering 
(Name) (Degree) (Major) 

Date thesis is presented v/n ~ /7 , f '{ C:;S 

Title ELASTICALLY SUPPORTED BEAM COLUMNS 
--------~~~~~~~~~~~~~~~~~~~~~=------

Abstract approved 

A numerical method in structural analysis commonly referred 

to as Newmark's method is extended to determine the critical load 

for columns with constant moment of inertia that are supported on 

three supports, the center support being an elastic support. The 

method can readily be applied to members with variable moment of 

inertia. The numerical method essentially is to estimate a trial 

deflected configuration and calculate trial bending moments. The 

deflections are computed from these bending moments and compared 

with the trial deflections. The critical load is calculated from the 

ratio of the calculated deflections to the trial deflections. The nu­

merical method is explained in detail and example calculations are 

included. 

In order to investigate a variety of assumed shapes examples 

are worked out on a digital computer. Various trial deflected con­

figurations are used to see how the successive approximations of 

; 

the deflections converge and how the trial deflections affect the 



critical loads. The critical loads are determined for various values 

of the stiffness of this one elastic support. 

The results of the critical load determined by extending New­

mark's numerical method are compared with the critical loads deter­

mined by a previously developed method. The comparison showed 

that the critical loads obtained by extending Newmark's method are 

nearly identical to those previously determined. 

Recommendations are made with regard to the different shapes 

of assumed initial deflection curves used when computing the lowest 

possible critical load. The appropriate choice of initial deflection 

increases the speed in convergence to the correct shape. 
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ELASTICALLY SUPPORTED BEAM COLUMNS 

I. INTRODUCTION 

The determination of the critical compressive axial loads for 

elastically supported columns can be tedious and difficult when 

solved by exact methods. In some cases numerical methods can be 

employed. 

The purpose of this thesis is to show that a numerical method 

commonly :referred to as Newmark's method (5) can be extended to 

determine the critical axial load for elastically supported columns. 

In 1946 Newmark described a general numerical method to 

determine the critical loads for columns with simple and fixed end 

supports. This method eliminates the mathematics of either the 

exact differential equation approach or the finite difference approxi­

mations. But this work does not include the determination of criti­

cal loads for elastically supported columns. 

Briefly, Newmark's method is to estimate a reasonable de­

flected configuration and calculate the corre spending bending mo­

ments due to the axial load. The deflections corre spending to these 

bending moments are then computed and compared with the initially 

estimated deflections. The process is repeated until the computed 

deflections are equal to the assumed deflections, A typical calcula­

tion using Newmark's numerical method is illustrated in Appendix A . 
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Formulas for the approximate critical load for elastically 

supported columns were derived by G . G. Green, G. Winter and 

T . R. Cuykendall (3) by use of the energy method and representing 

the deflected shape of" the column b y' a Fourier series of the type 

00 00 

a sin(nrrx/ L) and y = \ a sin(nrrx/ L),
n o /._; n 

n = 1 n = 1 

where y represents possible initial crookedness. The columns were 
0 

loaded with concentrated axial loads and were supported elastically 

at various points along the column. 

The approximate critical load derived by Green, Winter and 
2 

3 

1Cuykendall is given as P cr = rr;I+ ~L when the column is sup­

ported elastically at the mid-height and the spring constant of the 
2

16 rr EI 
support is equal or less than . . However, when the spring

3
216 rr EI L 

constant is greater than , the column buckles into two half 
3

L 2 
waves and the critical load is given as P = 4 

rr ~I· 
cr L 

The method of Green, Winter, and Cuykendall is impractical 

when the moment of inertia of the column is variable along the col­

umn length. For such cases Newmark's numerical method can be 

used to determine the critical load. 

In this thesis Newmark's method will be extended to the parti­

ular problem of determining the critical loads for columns with one 

elastic support at mid-height (Figure 1). The critical load will be 

calculated for various values of stiffness of this one elastic support. 
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The procedure developed for this case can then be applied to columns 

with more than one elastic support. 

lF _ ~ 4a = L j 
p lZ_ - 2 p 

cr cr' ' ~--3-----+4~-----13-~ 
Commonm 7i 

Factors 
Assumed F = ky 

Deflection 
w 0 3 4 3 0 

a 

Moment Due 
to Lateral 
Load 0 2 4 2 0 ka 

Concentrated 2
ka

Angle Changes 2 12 20 12 2 6EI 
Average 2

ka
Slope -22 -10 10 22 

6EI 

Simple Beam 
Deflection 3

ka 
w 0 -22 -32 -22 0 

s 6EI 

Figure 1. Calculation of deflections due to lateral load. 

The critical loads thus obtained from the extension of New­

mark's procedure will be compared with the critical loads given by 

the formulas derived by Green, Winter and Cuykendall. 

Since Newmark's procedure involves the estimation of a trial 

deflected configuration of the column, the writer will try various 

trial deflected configurations to see how the successive approxima­

tions of the deflections converge and how the trial deflections affect 

the buckling loads obtained. 
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II. DESCRIPTION OF METHOD OF ANALYSIS 

Using the basic ideas as used in the procedure available for 

computing the critical load for simply supported columns and fixed­

end supported columns (5); ·- a proce~ure will be set up to determine 

the critical load for elastically supported columns by successive 

approximations. 

This section will explain how the physical model of the column 

will be transformed into a mathematical model. 

The object of analysis here is to determine the critical load of 

an axially loaded column in terms of the physical characteristics of 

the column and elastic supports. This is done by assuming an ini­

tially deflected configuration of the column, the initial configuration 

being described at a finite number of points along the column. From 

the initial deflections the procedure is developed to solve for the 

critical load of the column. 

Because of the various investigations performed in this thesis, 

calculations are performed on an electronic digital computer. 

Outline of Method 

The following is an outline of the method of analysis to be used 

in the work. 

1. The column is divided into a number of equal segments or 
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panels. 

2. An initial trial deflection is assumed at the panel points . 

3. The elastic reaction corresponding to the value of deflec­

tion at the elastic lateral support is computed. 

4 . The deflections due only to the lateral loads which are 

equal to the elastic reactions are computed. 

5 . The moments due to the axial loads on the column, corre­

sponding to the initial trial deflections are computed. 

6. The deflections of the column for the moments computed 

in step five are determined. 

7. The deflections caused by the axial load are added to the 

deflections caused by the lateral loads . 

8. The calculated deflections and the initial trial deflections 

are compared. 

9. If the error between the calculated deflections and initial 

trial deflections is large, steps two to eight are repeated 

using for assumed deflections the deflections re suiting 

from the previous cycle. 

10. When the error of step nine becomes small the critical load 

of the column is evaluated. 

Illustration of Method 

To illustrate the extension of Newmark's numerical procedure 
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to the case of elastically supported columns an example of the pro­

cedure will be worked out. 

In Newmark's method it is necessary to assume an initial de­

flection, go through the procedure of finding the critical load, and 

calculate a second set of deflections. Then the second set of deflec­

tions is compared with the first set of deflections to see if the second 

set is equal to the first set. When these deflections are found to be 

equal then the first set of deflections is the correct shape of the 

deflected curve. 

In the example shown in Figure l, the column is divided into 

four segments or panels. The initial trial deflections are based upon 

the assumption that the deflected panel points fall on a parabolic 

curve. 

The reaction at the elastic support is equal to the deflection o! 

the support times the spring constant. The reactions at the ends of 

the columns are calculated and moments due to the lateral load are 

calculated. 

The approach using the conjugate beam method is to load the 

conjugate beam with theM/ EI diagram. The step-by-step proce­

dure next involves the reduction of the variable M/ EI loading on the 

conjugate beam into a series of equivalent concentrated loads. 

To simplify the numerical work, only the coefficients of the 

common factors are shown in Figure l. The common factors to the 
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right of the diagrams contain the quantities of force, length, EI, and 

relevant arithmetical coefficients. The intervals along the column 

are equal and all have the value of "a" in this example. 

The systematic calculations follow and start by tabulating the 

moment due to lateral loads followed by one line of concentrated 

angle changes. The next line of the figure represents the average 

slope of each segment of the elastic curve, and from the conjugate 

beam analogy these are the equivalent of conjugate beam shear. 

Since the deflection is equal to the moment in the conjugate 

beam and the area under the shear diagram between two sections is 

equal to the change in moment, the coefficients of deflection are ob­

tained by starting at the left end and accumulating successive areas 
3

k a
between intervals as coefficients of EI. It should be noted that

6 

as a result of the conventions followed, the downward deflection is 

positive. 

After the deflections due to the lateral load have been calcu­

lated, the deflections due to the axial load are calculated. The cal­

culations are shown in Figure 2. 

Using the same initial deflection w as in Figure 1, the bend­
a 

ing moments due to the axial load are computed at each panel point. 

It should be noted that the deflected configuration being con­

sidered is curved, hence, the moment diagram is assumed to be 

curved between panel points. Corrections entailed by considering 
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curved moment diagrams were developed by Newmark (5) and are 

included in Appendix A. 

Common 
Factors 

Assumed 
Deflection 

w 0 3 4 3 0 1 
a 

Distributed p
Angle Changes 0 -3 -4 -3 0 

EI 

Concentrated 
Pa

Angle Changes -14 -68 -92 -68 -14 --­
24EI 

Pa 
Average Slope 114 46 -46 -114 

24:E:I 

Column 
Deflection 2

Pa
w' 0 114 160 114 0 

a 24EI 

Figure 2. Calculation of deflections due to axial load. 

The standard solution for the computed deflections is given in 

Figure 2 and needs no explanation since the procedure is essentially 

the same as in Figure 1. The computed deflections due to the axial 

loads are de signated as w' . 
a 

The critical load may be calculated by different ways from the 

assumed deflections and calculated deflections. 
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The value of the critical load may be taken from the ratio of 

the assumed deflection to the calculated deflection at a particular 

point on the curve . 

When the initial deflections from which the computations start 

are suitably chosen, the sequence of approximations of the deflec­

tions very rapidly approach the true buckled shape . However, after 

a limited number of cycles, the two sets of deflections, the trial 

deflections and the computed deflections, are not yet completely 

similar, and the value of P will depend on the particular point on 

the curve at which the ordinates, y and y d' are read.
assumed compute 

This difficulty can be overcome by adding all the deflections and 

using the ratio of the sums of deflections in the criterion 

~ yassumed =1 . 
~ ycomputed 

In cases where the lowest c .riticalload corresponds to a de­

flection curve that has both positive and negative deflections, use of 

the ratio of the sums of the deflections will give incorrect re suits 

because the effect of the negative deflections will cancel the effect 

of the positive deflections. To correct for this possibility the 

method of least squares will be used to calculate the critical load. 

Although Newmark recommends using the ratio of the sums of de­

flections to calculate the criti cal load for the usual case, he also 

states that the method of least squares gives the best estimation of 
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the critical load from the buckled shape. The derivation of the for­

mula for finding the value for P by the least squares method is 

shown in Appendix B. 

The computations for evaluatin15 the critical load from the 

assumed deflections and calculated deflections for the example prob­

lem are as follows. 

The assumed deflections denoted by w are from Figure 1. 
a 

The calculated deflections are the combination of the simple beam 

deflection denoted by w in Figure 1 and the column deflection due 
s 

to the axial load denoted by w' in Figure Z. The deflections for the 
a 

five panel points are listed with the common factor. 

Common 
Factors 

w 0 3 4 3 0 1 
a 

Paz 
w' 

a 
0 114 160 114 0 

Z4EI 

w 
s 

0 -ZZ -3Z -ZZ 0 
ka

3 

6EI 

These deflections are then placed in the formula 

~w w 1 

a a =1.
~w' w 1 + w w' 

a a s a 

The terms of the numerator are 

Paz 
~wa w'a = ((3)(114) + (4)(160) + (3)(114)) Z EI

4 
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The terms of the denominator are 

2 2 

8 { ::~r}E w'a w'a + w w', o ((114)(114) + (160)(160) + (114)(114)) 

k3 2 
+ ((-22)(114)+(-32)(1'60) + (-22)(114)) - a ~ 

6EI 24E I 

From this it is found that 

EI
P :::: 0 . 6 2 3 + 0 . 7 84 ka

2 
a 

In terms of L, where L:::: 4a, 

P :::: 9. 9 8 zEI 
+ 0. 1 9 6 kL. 

L 

The calculated deflections are compared with the initial or 

assumed deflections to see how closely the calculated deflected shape 

is converging to the assumed deflected shape . The difference or 

error between the computed and assumed deflections is squared and 

weighted. The derivation of the formula for calculating the error is 

shown in Appendix C . 

If the square root of the sum of the squares of the errors be­

tween the assumed deflections and the calculated deflections exceed a 

spec i fied am.ount , a new approximation of the deflection curve will be 

made . The new deflections are a combination of the deflections caused 

by the axial load and the deflections caused by the lateral load. To the 

calculated defle ction at the elastic support caused by the axial load, 

a deflection component caused by the lateral load will be added such 
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that the total deflection at the location of the lateral support yields a 

force that corresponds with the lateral load. 

Ordinarily, convergence of several different sequences of com­

putations involving different shapes of assumed deflection curves to 

the same final shape would be sufficient indication that the configura­

tion corresponding to the lowest critical load had been reached. In 

some cases, however, the convergence of a sequence of computa­

tions may be very slow; this will be so when the next higher critical 

load differs only slightly from the lowest critical load. Methods of 

handling such problems can be derived (5, p. 1167). 
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III. DEMONSTRATION OF THE METHOD 

A method for determining the critical load of elastically sup­

ported columns has been presented and will be applied to various 

examples using a digital computer to perform the calculations. The 

values for the critical load derived from the method described will 

be compared with the values of the critical load obtained by another 

method. 

Examples will be worked out for columns with constant mo­

ment of inertia and supported elastically at the mid-height. Since 

the column may buckle in a symmetrical or an antisymmetrical 

mode, the critical load for the two modes will be investigated. One 

shape of the deflected curve will be taken as a symmetric parabola. 

Another will be taken as a combination of components of a symmet­

rical shape and an antisymmetrical shape. 

In the first three examples considered the initial deflected 

shape consists of components of a symmetrical shape and an anti­

symmetrical shape. The relative magnitudes of the components for 

each shape are varied for each example as illustrated in Figure 3. 

In Example 4 the initial deflected shape is a symmetrical parabolic 

shape. In each example the initial deflections are computed for 13 

equidistant points along the length of the column. The values used 

for the initial deflections are listed in Figure 4. 
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Symmetrical Component 

Antisymmetrical Component 1.0 

EXAMPLE 1 

Symmetrical Component 0.01 

Antisymmetricc:tl Component 1.0 

EXAMPLE 2 

Symmetrical Component 1.0 

~--~ 

Antisymmetrical Component 

EXAMPLE 3 

Symmetrical Component 1.0 
~---~ 

Anti symmetrical Component (none) 

EXAMPLE 4 

~'The numbers denote the maximum amplitude for each curve. 

Figure 3. Relative maximum magnitudes of the anti symmetrical and 
symmetrical components of the initial deflected curve. 
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Example Deflections 
No. 

1 .000 .586 .944 1.075 .978 .653 .100 -.459 -.800 -.925 -.834 -.526 .000 

2 .000 .559 .895 1.007 .898 .566 .010 -.546 -.880 - .992 -.883 -.553 .000 

3 .,000 .360 .645 .850 . 978 1.027 1.00 .917 .800 .650 .467 .250 .000 

4 .000 .305 .556 .750 .889 .972 1.00 .972 .889 .750 .556 .305 .000 

Figure 4 .. Initial trial deflections. 

For each example the critical load is calculated for different 

3 
spring constants of the elastic support ranging from k = 10 EI/ L 

3 3 
to k = 1010 EI/ L in increments of 200 EI/ L . 

The computations to verify the method described in this thesis 

were run on an IBM 1620 digital computer. The computer program 

and printout of the results for Case 1 are shown in Appendix D. The 

printout of the results shows the initial deflections used, spring 

constant of the lateral support, permitted error, derived deflections 

after each cycle, final deflections, and critical load. 
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IV. RESULTS AND DISCUSSION 

The critical loads obtained for each example are tabulated for 

the various spring constants in Table 1. The number of cycles that 

the computer goes through in approximating the deflected shape is 

also tabulated in Table 1. 

It should be noted that in some instances the trial and computed 

deflected shapes do not converge within the specified limit of error 

in ten cycles. The specified limit used in the calculations is 0. 01. 

When the trial and computed deflected shapes do not converge in ten 

cycles, the words (NO CONVERGENCE WITIDN SPECIFIED LIMIT 

IN 10 CYCLES) are printed on the output record of the computer. 

The value of the critical load P is then printed out after the ten 

cycles even though the deflections have not converged within the spec­

ified limit. 

In Example 1 the maximum magnitude of the antisymmetrical 

component of the initial deflection is 1. 0 while the maximum magni­

tude of the symmetrical component is 0. 1. It is shown that the 

deflection shape converged to either one half wave or two half waves 

within ten cycles depending on the spring constant, except for the 

3
spring constant of 210 EI/ L , where the deflections did not converge 

within ten cycles. An asterisk is printed in place of the number of 

cycles that it takes for the deflections to converge and the value of 
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Table 1. Tabulation of critical load, spring constant and number of cycles before 
convergence. 

Example 1 Example 2 

No. of Cycles No. of Cycles 
Spring Before Critical Spring Before Critical 

Constant Convergence Load Constant Convergence Load 

3 2 210 EI/L 7 11. 889 EI/L 10 EI/L
3 9 11. 889 EI/L 

210 * 39.505 210 2 39.476 

410 7 39.469 410 3 39.470 

610 6 39.468 610 3 39.468 

810 5 39.469 810 3 39.467 

1010 5 39,468 1010 3 39.467 

Example 3 Example 4 

No. of Cycles No. of Cycles 
Spring Before Critical Spring Before Critical 

Constant Convergence Load Constant Convergence Load 

3 2 3 2
10 EI/L 3 11.888 EI/L 10 EI/L 2 11.880 EI/L 

210 * 47.466 210 3 48.323 

410 * 40.626 410 7 61.999 

610 * 39.581 610 7 74.825 

810 * 39.506 810 7 76.928 

1010 * 39.488 1010 7 77.814 

*No convergence within specified limit of 0. 01 in ten cycles, computer prints out the critical 
load after the tenth cycle. 
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the critical load is printed. Note that the critical load when the de­

flections did not converge in ten cycles within the specified limit of 

2
0. 01 is 39. 505 EI/ L while the critical load when the deflections 

2 2 
converge within ten cycles is 39.468 EI/ L to 39.469 EI/ L . 

In Example 2 the maximum magnitude of the antisymmetrical 

component is the same as in Example 1, but the maximum magnitude 

of the symmetrical component is decreased to 0. 01 . It is shown 

that the deflections conve rged to either one half or two half waves 

within ten cycles depending on the spring constant. 

In the first two examples the maximum magnitude of the anti-

symmetrical component is greater than the maximum magnitude of 

the symmetrical component . For the third example the maximum 

magnitude of the antisymmetrical component is smaller than the 

maximum magnitude of the symmetrical component. 

In Example 3 the maximum magnitude of the symmetrical com­

ponent is 1. 0 while the maximum magnitude of the antisymmetrical 

component is 0. 10. The deflections for a spring constant of 

3 
10 EI/ L converged in three cycles and the calculated critical load 

2 
is 11 . 888 EI/ L . For the other spring constants used in the ex­

ample the deflections did not converge in ten cycles within the speci­

fied limits of 0. 01 . However, though the deflections are not con­

verged, a value of the critical load is calculated using the assumed 
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deflections and calculated deflections at the tenth cycle to observe 

what value of critical load has been obtained. 

In Example 4 the initial deflection shape is taken to be a parab­

ola, symmetrical about the mid-height of the column. When the 

spring constant is small, the column buckles into one half wave . 

However, when the spring constant is increased, the buckled shape 

tends toward three half waves (see Figure 5). The deflections for a 

3
spring constant of 10 Ell L converged in two cycles and the critical 

2
load is 11. 880 Ell L . But the critical load obtained when the spring 

3 
constant is 210 Ell L is greater than the critical load obtained when 

the initial deflection contained antisymmetrical components as shown 

in the previous examples . The critical load comparison is 48.3 

2 2 
EI I L to 3 9. 5 EI I L . 

~----~----~ 
1 

Small Spring Constant 

Large Spring Constant 

Figure 5. Converged shape of the deflected column beginning with 
parabolic symmetrical shape. 
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Since the primary concern is usually the lowest critical load, 

using only one possible mode of buckling may lead to unsafe results 

when other modes of buckling that will lead to a lower critical load 

are possible. 

For small spring constants where the column will buckle into 

one half wave, the convergence is more rapid when the antisymet­

rical component of the initial deflection is relatively small compared 

3 
to the symmetrical component. For a spring constant of 10 EL/ L 

the convergence took seven cycles in Example 1 while in Example 2 

the convergence took nine cycles and in Example 3 the convergence 

took three cycles. When the antisymmetrical component is non­

existent as in Example 4 the convergence took only two cycles. 

For large spring constants, where the column will buckle into 

two half waves, the convergence is more rapid to the lowest critical 

load when the antisymmetrical component of the initial deflection is 

relatively large compared to the symmetrical component. For a 

3
spring constant of 210 EI/ L in Example 1 the convergence does not 

take place within ten cycles, while in Example 2 the convergence 

takes two cycles and in Example 3 the convergence does not take 

place within ten cycles. When the antisymmetrical component is 

non-existent as in Example 4, the convergence takes three cycles 

but not to the lowest critical load. 

As shown in the previous examples where antisymmetrical 
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components are included in the initial trial deflections, the deflected 

shape will converge into a single half wave when the spring constant 

3 
is 10 EI/ L and into two half waves when the spring constant is 

3 
210 El/ L or greater. 

The buckling load when the spring constant of the supports 

3 2 
equals l 0 EI/ L is approximated by the formula P = 9. 86 El/ L + 

0. 20 kL, where k is the spring constant. When the column buckles 

into two half waves, the coefficient of the kL term approaches zero 

2
and the coefficient of the EI/ L term approaches a value of 39. 46. 

When the value of P is calculated, the contribution from the kL term 

is negligible. 

The values of the critical loads obtained by extending New­

mark's procedure to columns with one elastic support at mid-height 

2 3
and a spring constant less than 161T EI/ L compare favorably with 

the results obtained in the work by Green, Winter and Cuykendall (3). 

By extension of Newmark's procedure 

2 
P = 9. 87 EI/ L + 0. 20 kL 

By Green, Winter and Cuykendall 

2 
P = 9. 869 El/ L + 0.1875 kL 

. 2 3
When the sprmg constant exceeds 161T EI/ L , the lowest 

buckling load obtained by using the procedure described in this 

2 2 2
the sis is P = 39. 46 El/ L . This is comparable to P = 41T El/ L 
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for the mode when the column buckles into two half waves. 

The critical buckling loads determined by the method described 

in this thesis are plotted with the curve for the critical buckling load 

from Green, Winter and Cuykendall 1 s work (3, p. 17) in Figure 6. 

The curve illustrates the variation of the critical load with the rigid­

ity of the intermediate support. For this curve the ratios 

2 2
P : 1T EI/ L = P : P are taken as ordinates and the ratios 

cr cr e 
2 2 

kL: 1T EI/ L = kL/ P as abscissas. 
e 
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0 

0 

0 

0 

3 

p 
cr 

p 
e 

1 

0~------~------~~------~----------------~-----------o 4 8 12 16 20 24 

kL 
p 

e 

Legend 

-----Green, Winter and Cuykendall 

o Method described in this thesis 

Figure 6. Comparison of the critical buckling load. 
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V. CONCLUSIONS 

The critical load for columns with one elastic support can be 

determined by extending Newmark's numerical procedure as dem­

onstrated in this thesis. 

For small spring constants, the initial deflections will con­

verge more rapidly to the final deflected shape when the symmet­

rical component of the initial deflections is large compared to the 

antisymmetrical component of the initial deflections than when the 

symmetrical component of the initial deflections is small compared 

to the antisymmetrical component of the initial deflections. 

For large spring constants, the initial deflections will con­

verge more rapidly to the final deflected shape when the antisym­

metrical component of the initial deflections is large compared to 

the symmetrical component of the initial deflections than when the 

antisymmetrical component of the initial deflections is small com­

pared to the symmetrical component of the initial deflections. 

A computation involving one shape of an assumed deflection 

curve may lead to a final shape that does not correspond to the 

lowest critical load. 
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VI. RECOMMENDATIONS 

It is recommended that in using the method described herein 

different shapes of assumed deflection curves be used as the initial 

assumed deflected shape when computing the critical load of an elas­

tically supported column. Each shape of the assumed deflection 

shape should correspond to a pas sible mode of buckling of the column. 

For columns with one elastic support at mid-height one shape 

should correspond to the first mode of buckling and be a shape sym­

metrical about the mid-height of the column. To increase the speed 

in convergence to the symmetrical shape the relative magnitude of 

the symmetrical component of the assumed deflection curve should 

be large compared to the antisyrnmetrical component. The other 

shape should correspond to the mode df buckling when the column 

buckles into two half waves and be a shape that is essentially anti­

symmetrical about the mid-height of the column. To increase the 

speed in convergence to the antisymmetrical shape, the relative 

magnitude of the antisymmetrical component of the assumed deflec­

tion curve should be large compared to the symmetrical component. 

It is recommended that the method described herein be devel­

oped further to determine the critical buckling loads for columns 

with more than one elastic support. It is seen that the method devel­

oped can readily be applied to members with variable moment of 

inertia. 
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APPENDIX A 

ILLUSTRATIVE PROBLEM OF NEWMARK'S NUMERICAL METHOD 

A typical calculation of Newmark's numerical method is illus­

trated in this section. 

The formulas for equivalent concentrated loads are listed for 

parabolic loading curves (5, p. 1167). 

Parabolic Curves 

-----·---­
a b 

R al:)t--­ ··- -----=s----~-f-,______-::s___ _ ___ j 
Rba 

s s 
Rab = (?a+ 6b - c) Rba = (3a+ lOb-c)24 24 

c lb ICJ 
I! 

s Rab~~ Rbc s
1-- y ...j 

f 
Rb 

s
=-(a+ 1 Ob + c)Rb = Rba + Rbc 12 
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Figure 7 illustrates a loaded column and a set of assumed-de­

.flections. Figure 8 illustrates the corresponding moment diagram. 

Figure 9 is the M/ EI diagram. The deflection curve for this ex­

ample is assumed to be a parabolic curve and is denoted by w in 
a 

Figure 10. 

p 
I ~ 

L =lOa 

---i p 

·~ I ~ 
0 36 64 84 96 100 96 84 64 36 0 

Figure 7. Loaded real column with deflections shown at panel points. 

Common Factor 

p0 -36 -64 -84 -96 -100 -96 -84 -64 -36 0 

Figure 8. Moment diagram of the moment due to axial load. 

Common 'Factor 

P/ EI0 -36 -64 -84 -96 -100 -96 -84 -64 -36 0 

Figure 9. M/ EI diagram. 
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p ----A" f 
I. 

Common 

Sa= L/2 Factors 

Assumed Deflections, w a 0 36 64 84 96 100 

Distributed Angle Changes 0 -36 -64 -84 -96 -100 P/EI 

Concentrated Angle 
Changes -6.33 -35.33 -63.33 -83.33 -95.33 -99. 33 Pa/EI 

Average Slope 327 291.67 228.33 145 49.67 

Resultant Deflections, w' 0 327 618.7 847 992 1041.7 
a 

0. 0998 EI 9. 98 EI 
Ratio of sums of deflections per=--­

~w' 2 a Pa 

0. 987 EI 9. 87 EI 
Best ratio by least squares p =--­

~wa w'a 

cr 
~w'a w'a 

Figure 10. Critical buckling load for column of constant cross section, starting with assumed 
parabolic deflection curve. 

The moment diagram loads or angle change loads are trans­

mitted directly to the beam in the form of concentrated loads. Figure 

11 illustrates the concentrated loads . Since the loads are derived 

from the M/ EI loading, they physically represent concentrated angle 

changes, or abrupt changes in the slope of the elastic curve. 

Common Factor 

Pa/ EI 

-6.33 -35.33 -63.33 -83.33 -95.33 -99.33 -95.33 -83.33 -63.33 -35.33 -6.33 

l l l J l J!! I I 
Figure 11. Equivalent concentrated angle changes. 
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APPENDIX B 

METHOD OF LEAST SQUARES 

The method of least squares (6, p. 512-513) asserts that the 

cur:ve of best fit is that one for which the sum of squares of the de­

viations is a minimum. 

The method of least squares will be derived here to find a 

value for the parameter P of the computed deflections so that the 

deviations of the computed deflections from the trial deflections is 

a minimum. 

Let the given set of trial deflections be represented by w . , 
01 

i = 1' ... ' 13 and the set of calculated deflections be represented 

by w . p + w . ' i = 1 ' . ' 13.a1 s1 

Let d = w - (w . P + w . ) be the residuals or deviations of
i oi a1 s 1 

the trial deflections from the calculated deflections. 

1 3 

\ 2 
Since f = /.__; d. (2, p. 308) is a function of the unknown P, 

1 

i = 1 

it follows that the problem is to find a value of P where the sum of 

the squares of the deviations is a minimum. 

To do this, the equation 

8f 
0 must be solved.

8P 
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13 
2 2 

(w . - w . ) + (w . P) - 2 (w . P) (w . - w . ) f = ~~> 01 s1 a1 a1 01 s1 

i = 1 

13 
a f 2 

(0 + 2 p w . 2 w . (w . w .)) = 0ap a1 a1 01 S1 

i = 1 

13 13 

2 Pw . w = 2 (w . w . - w . w .)
a1 ai a1 01 a1 s1I I 

I 
1 = 1 i = 1 

13 

Divide both sides by w. w .. This division is permis­
a1 a1 

i = 1 

sible because the sum of squares of the deflections is non-zero, or 

must be positive. 

The value of P will then be 

13 13 
w . w w . w

a1 oi a1 siI I 
i = 1 i = 1

P= 
13 1 3 

w w .w
a1

. w 
ai a1 aiI I 

i = 1 i = 1 
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APPENDIX C 

DERIVATION OF CONVERGENCE CRITERIA 

In order that the criteria for convergence of the calculated 

deflections to the assumed deflection be made uniform for the dif­

ferent cases that will be studied, a method will be derived to sum 

the error between the calculated and assumed deflections of the 

column. 

The amount of error between the assumed and calculated de­

flections will be based on the root mean square method. 

Let 

d. = difference between the calculated and trial 
1 

deflections 

y. =deflection of column 
1 

X. = d./ y . error 
1 1 1 

2
f. = y. weight function 

1 1 

n 

I f. X. 
1 1 

i = 1 
x= arithmetic mean of the error 

n 

2: f. 
1 

i = 1 

The root mean square is obtained by squaring the error and 

taking a positive square root. 
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E 
rms = 

i 

n 

I f. X. 
2 

1 1 

= 1 
n 

I f. 
1 

i = 1 

(2, p. 306) 

= 
i 

n 

I 
= 

2 
y.

1 

1 
n 

I 
i = 1 

2
(d./ y.)

1 1 

2 
y . 

1 

= 

n 

I 
i = 1 

n 

~ 
i = 1 

d.2 
1 

2 
y.

1 
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APPENDIX D 

COMPUTER PROGRAM AND PRINTOUT OF RESULTS 

The computer program for the computations is in the Fortran 

II language (4). The initial deflections and the permitted error are 

read into the computer. The computer will calculate the critical 

load for various spring constants in fixed increments. The magni­

tude of the first spring constant, the magnitude of the increment of 

the spring constant, and the magnitude of the maximum spring con­

stant that the computer will execute are also read into the computer. 

The input terms are: 

WO(I) the array name that represents the deflection 

for 13 equidistant points along the length of 

the column. The units are length. 

ER the permitted error. 

ISCl the first value of spring constant of the elastic 

support that the computer will use. 

ISC2 the maximum value of the spring constant 

that the computer will use. 

ISC3 the value that the spring constant is increased 

by for each succeeding spring constant used . 

The printout of the results consists of the initial deflections, 
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spring constant, permitted error , sequence of calculated deflections, 

final deflections, the formula for the critical load, and the critical 

load. 

When the deflections do not converge within the specified lim­

its, the words (NO CONVERGENCE WITHIN SPECIFIED LIMIT IN 

10 CYCLES) are printed out. 
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C WO(N)=ASSUMED DEFLECTIONS 
C W A(N)=DERIVED DEFLECTIONS DUE TO AXIAL LOAD 
C WS(N)::::DEFLECTIONS DUE TO LATERAL SUPPORT 
C WT(N)=TOTAL DEFLECTIONS SC=SPRING CONSTANT 

C EI=FLEXURAL RIGIDITY 
DIMENSION WO(l3), WA(l3), WS(l3), WAS(l3), ZMOM(l3), CAC(l3), AVSLP(l3) 
DIMENSION WOCL(l3),DACHG(l3), WT(l3), WA1(13), TRWA(l3),EI(l3) 

20 FORMAT (23HWO= INITIAL DEFLECTIONSI2X 7E11. 4113X 6E11. 4) 
40 FORMAT (3HSC=,F9.1, lOH EII(L**3)) 
50 FORMAT (3HP= FlO.S, 10HEII(L**2)+, F8. S,SH SC*L, lOX 2H= FlO. S, lOHEII 

l(L**2) I/) 
70 FORMAT (2X 7Ell. 4ll3X 6E11. 4) 
80 FORMAT (3HWT=, 18H FINAL DEFLECTIONSI2X 7Ell. 4113X 6Ell. 4) 

100 FORMAT (3X, F6. 4) 
110 FORMAT (3HER=,F6. 4) 
120 FORMAT (53H NO CONVERGENCE WITHIN SPECIFIED LIMIT IN 10 CYCLES) 
200 FORMAT (3X, 3IS) 

1 READ 70,(WO(N),N=l,l3) 
READ lOO,ER 
READ 200, ISCl, ISC2, ISC3 

2 PUNCH 20,(WO(N),N=l,l3) 
3 DO 52 ISC=ISCl, ISC2, ISC3 

SC=ISC 

C SCA=SC*EII(L**3)=SC*EII(l728*LAMBDA**3) L=l2*LAMBDA 
SCA='=SCI(l728.) 

4 PUNCH 40, SC 
PUNCH llO,ER 
.DO 5 N=l, 7 
Z=N 

5 ZMOM(N)=-W0(7)*SCAI(2. )*(Z-1.) 
DO 6 N=8,13 
Nl=l4-N 

6 ZMOM(N)=ZMOM(Nl) 

CAC(l )=-(2. *ZMOM(l )+ZMOM(2))16. 
DO 7 N=2, 7 

7 CAC(N)=-(ZMOM(N -1 )+4. *ZMOM(N)+ZMOM(N+l ))16. 
DO 8 N=8, 13 
Nl=l4-N 

8 CAC(N)=CAC(Nl) 
AVSLP(7)=CAC( 7) I 2. 
DO 9 N=l,6 
Nl=7-N 

9 AVSLP(Nl )=A VSLP(Nl + 1) -CAC(Nl+ 1) 
DO 11 N=8, 13 

11 AVSLP(N)=AVSLP(N -1 )+CAC(N) 
WS(l)=O. 
DO 12 N=2, 13 

12 WS(N)=(WS(N-l)+AVSLP(N-1)) 
DO 14 N=l,l3 

14 WOCL(N)=WO(N) 
DO 29 NC=l, 10 

15 DO 16 N=l,l3 



37 

c 

16 DACHG(N)=-WOCL(N) 

CAC(1)=(7 . *DACHG(1)+6 . *DACHG(2)-DACHG(3))/24. 
DO 17 N=2,12 

17 CAC(N)=(DACHG(N-1)+10. *DACHG(N)+DACHG(N+1))/12. 

CAC(13)=(7 . *DACHG(13)+6. *DACHG(12)-DACHG(11))/24. 
A VSLP( 1 )=0. 
DO 18 N=2,13 

18 AVSLP(N)=AVSLP(N -1 )+CAC(N) 
TRWA(1)=0. 

DO 19 N=2,13 
19 TRWA(N)=TRWA(N -1 )+AVSLP(N -1) 

TRWA=TRIAL DEFLECTIONS 
WA(1)=0. 
DO 21 N=2, 13 
Z:=N 

21 WA(N)=TRWA(N)-TRWA(13)*((Z-1. )/12. ) 
SWOWA=O. 
SWSWA=O. 

SWAWA=O. 
DO 22 N=1, 13 

SWOWA=SWOWA+ WOCL(N)*WA(N) 

SWSWA=SWSWA+ WS(N)*WA(N) 
22 SWAWA=SWAWA+WA(N)*WA(N) 

P1=SWOWA/SWAWA 

P2=-(SWSWA/SWAWA)*(WOCL (7)/W0(7)) 
P=P1+P2 

DO 23 N=1, 13 
23 WA1(N)=WA(N)*P 

DO 24 N=1,13 
24 WT(N)=WA1(N)+ WS(N)*WOCL(7)/W0(7) 

SWOCL=O . 
SDIFF=O. 
DO 28 N=2,12 

SDIFF=SDIFF+(WT(N)-WOCL(N))*(WT(N)-WOCL(N)) 
28 SWOCL=SWOCL+WOCL(N)*WOCL(N) 

ERROR=SQRTF(SDIFF/SWOCL) 
IF(ERROR-ER)32, 32 , 27 

27 C1=WA1(7)/(W0(7)-WS(7)) 
DO 273 N=1, 13 

273 WOCL(N)=(WA1(N)+WS(N)*C1) 
311 PUNCH 70, (WT(N), N=1, 13) 

29 CONTINUE 
PUNCH 120 

32 P3=P1*144. 
P4=P2/(SCA*12.) 

PC=P1*144. +P2*144. 
321 PUNCH 80, (WT(N), N=1, 13) 
49 PUNCH SO, P3, P4, PC 
52 CONTINUE 

GO TO 1 
END 
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CASE 1 

WO= INITIAL DEFLECTIONS 
O.OOOOE-99 5.8600E-01 9.4400E-01 1.0750E-OO 9.7800E-01 6.5300E-01 1.0000E-01 

-4.5900E-01-8.0000E-01-9. 2SOOE-01-8.3400E-01-5. 2600E-01 O.OOOOE-99 
SC = 10. 0 EI/(L**3) 
ER= . 0100 

0. OOOOE-99 5. 6266E-01 9. 8516E-01 1.1790E-OO 1.1122E-OO 8. 0901E-01 3. 5017E-01 
-1.3167E-01-5.0287E-01-6.7919E-01-6.2996E-01-3.7802E-01-4.0000E-10 

O.OOOOE-99 4. 2084E-01 7.6046E-01 9.5821E-01 9.8724E-01 8.5938E-01 6.2126E-01 
3.4176E-01 9.1577E-02-7 . 5560E-02-1.3520E-01-9.6775E-02-1.2281E-09 

O.OOOOE-99 2.5538E-01 4. 7557E-01 6. 3258E-01 7.1111E-01 7.1085E-01 6.4537E-01 
5. 3734E-01 4. 1061E-01 2. 8561E-01 1.7507E-01 8.1875E-02-2.2683E-09 

O.OOOOE-99 1.9381E-01 3. 6866E-01 5. 0845E-01 6.0226E-01 6.4554E-01 6.4017E-01 
5. 9271E-01 5. 1076E-01 4.0280E-01 2. 7716E-01 1. 4098E-01-2. 5275E-09 

O.OOOOE-99 1.7520E-01 3. 3639E-01 4. 7111E-01 5. 6975E-01 6.2646E-01 6.3950E-01 
6. 1053E-01 5. 4216E-01 4. 3925E-01 3. 0880E-01 1. 5927E-01-2. 5549E-09 

O.OOOOE-99 1.6962E-01 3. 2672E-01 4. 5993E-01 5.6006E-01 6.2083E-01 6.3944E-01 
6. 1603E-01 5. 5174E-01 4. 5034E-01 3.1841E-01 1.6482E-01-2.5575E-09 

WT= FINAL DEFLECTIONS 
0. OOOOE-99 1. 6794E-01 3. 2381E-01 4. 5658E-01 5. 5715E-01 6. 1915E-01 6. 3944E.-01 

6.1770E-01 5.5464E-01 4.5368E-01 3.2131E-01 1.6649E-01-2.5577E-09 
P= 9. 86952EI/(L**2) + . 20194 SC*L = 11. 88898EI/(L**2) 

SC= 210. 0 EI/(L**3) 
ER= . 0100 

O.OOOOE-99 5.4554E-01 9.3540E-01 1.0735E-OO 9. 2860E-01 5. 3442E-01-1.0249E-02 
-5.4887E-01-9.3135E-01-1.0664E-00-9.2455E-01-5.3775E-01 O.OOOOE-99 

O.OOOOE-99 5.5671E-01 9.6274E-01 1.1100E-OO 9.6027E-01 5.5401E-01 1.5750E-03 
-5.4575E-01-9.4272E-01-1.0863E-00-9.4025E-01-5.4305E-01 O.OOOOE-99 

O.OOOOE-99 5.6425E-01 9.7683E-01 1.1271E-OO 9.7559E-01 5.6383E-01 4.3491E-03 
-5. 5083E.-01-9. 5486E-01-1. 1017E-00-9. 5362E-01-5. 5041E-01 0. OOOOE-99 

O.OOOOE-99 5.6879E-01 9.8486E-01 1.1366E-OO 9.8404E-01 5. 6895E-01 4.5441E-03 
-5. 5624E-01-9. 6483E-01-1.1136E-00-9. 6401E-01-5. 5640E-01 0. OOOOE-99 

O.OOOOE-99 5.7152E-01 9.8964E-01 1.1423E-OO 9.8899E-01 5.7175E-01 4.0020E-03 
-5.6070E-01-9.7248E-01-1.1226E-00-9.7182E-01-5.6093E-01 O. OOOOE-99 

O,OOOOE-99 5.7316E-01 9.9253E-01 1.1457E-OO 9.9196E-01 5.7333E-01 3.3272E-03 
-5.6413E-01-9.7817E-01-1.1292E-00-9.7761E-01-5.6429E-01 O.OOOOE-99 

O.OOOOE~99 5.7414E-01 9.9425E-01 1.1477E-OO 9.9375E-01 5.7423E-01 2.7122E-03 
-5.6668E-01-9.8236E-01-1.1340E-00-9.8186E-01-5.6677E-01 O.OOOOE-99 

O.OOOOE-99 5.7469E-01 9. 9524E-01 1.1489E-00 9.9480E-01 5.7473E-01 2.1999E-03 
-5.6856E-01-9.8543E-01-1.1376E-00-9.8499E-01-5.6859E-01 O.OOOOE-99 

O. OOOOE-99 5.7499E-01 9. 9577E-01 1.1495E-OO 9.9539E-01 5.7498E-01 1. 7861E-03 
-5.6994E-01-9.8768E-01-1.1402E-00-9.8730E-01-5.6994E-01 O.OOOOE-99 

· O. OOOOE-99 5. 7511E-01 9.9602E-01 1.1499E-OO 9.9569E-01 5. 7509E-01 1.4557E-03 
-5.7096E-01-9.8933E-01-1.1422E-00-9.8901E-01-5 . 7094E-01 O.OOOOE-99 

NO CONVERGENCE WITHIN SPECIFIED LIMIT IN 10 CYCLES 
WT= FINAL DEFLECTIONS 

O.OOOOE-99 5.7511E-01 9.9602E-01 1.1499E-OO 9.9569E-01 5.7509E-01 1.4557E-03 
-5.7096E-01-9.8933E-01-1.1422E-00-9.8901E-01 -5.7094E-01 O.OOOOE-99 
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P= 390 32491EI / (L**2) + o 00085 SC*L 390 50484EI/(L**2) 

SC= 4100 0 EI/(L**3) 
ER= o 0100 

OoOOOOE-99 So2841E-01 8o8564E-01 9o6796E-01 7o4496E-01 2o5982E-01-3o7067E-01 
-90 6606E-01-1. 3598E-00-1. 4536E-00-1. 2191E-00-6 o 9747E-01-4o OOOOE-08 

OoOOOOE-99 So8981E-01 1o0097E-OO 1o1387E-OO 9 o3554E-01 4o4899E-01-1o9248E-01 
-8 o l437E-01-1o2505E-00-1o3844E-00 -1o1763E-00~6 o 7355E-01-2 o 0268E-08 

OoOOOOE-99 6ol862E-01 1o0661E-OO lo2182E-OO 1o0307E-OO-S o5203E-01-8o9884E-02 
-7o2189E-01-1 o1754E-00-1 o3292E-00-1ol401E-00-6 o5531E-01-1 o0074E-08 

OoOOOOE-99 6o3010E-01 1.0887E-OO 1o2507E-00 lo0711E-OO So9722E-01-4o3857E-02 
-6o7976E-01-1 o1406E-00-1o3031E-00-1o1230E-00-6.4688E-01-5.2509E-09 

OoOOOOE-99 6 o3483E-01 l o0981E-OO 1.2646E-OO 1.0889E-OO 6o1763E-01-2o2734E-02 
-6o6028E-01-1 . 1245E -00-1o2911E-00-1o1152E-00-6. 4308E-01-2.8620E-09 

OoOOOOE-99 6 o3695E-01 1o1024E-OO 1o2711E-OO 1 o0973E-OO 6o2754E-01-l o2363E-02 
-6 , 5068E-01-1.1165E-00-1. 2852E -00-1.1114E-00-6o 4126E-01 -1. 6090E-09 

WT= FINAL DEFLECTIONS 
OoOOOOE-99 6o3797E-01 1ol045E-OO 1. 2743E-OO 1. 1016E-OO 6o3267E -01-6o9409E-03 

-6o4564E-01-1o 11 24E-00-1.2822E -00-1o1095E-00-6o4034E-01-9 o2216E-10 
P = 39o 46279EI/(L**2) + o 00001 SC*L 39. 46896EI/(L**2) 

SC= 6100 0 EI/(L**3) 
ER= o 0100 

O.OOOOE-99 So1128E-01 8o3588E-01 8o6240E-01 So6131E-01-1o4777E-02-7. 3110E-01 
-1.3832E-00-1 . 7883E -00-1 o8409E-00-1.5137E-00-8o5720E-01-2oOOOOE-08 

Oo OOOOE-99 6o 3423E-01 1. 0807E-OO 1. 2060E-OO 9. 6550E-01 4o 1456E-01-3o 0300E-01 
-9 o9244E-Ol-lo4691E-OO-lo6039E-00-1.3538E -00-7o7277E-01-7o8744E-09 

OoOOOOE-99 6o8471E-01 l o1800E-OO 1o3482E-OO 1. 1405E-OO 6o1005E-01-1.0152E-01 
-8 0 0273E-01-1. 3062E-00-1. 4768E-00-1. 2667E-00-7o 2808E-01-2 o 8793E-09 

OoOOOOE-99 6o9950E-01 1. 2092E-00 1o3908E-OO 1.1941E-OO 6.7113E-01-3.7950E-02 
-70 4276E-01 -1. 2548E-00-1. 4369E-00-1. 2396E-00-7o 1440E-01-1. 1881E-09 

OoOOOOE-99 7o0413E-01 10 2185E-OO 1.4046E-OO lo2119E-OO 6o9185E-01-1o6207E-02 
-7 0 2230E-01-1. 2374E-00-1. 4236E-00-1. 2308E-00-7 o 1002E-01-So 4782E-10 

WT= FINAL DEFLECTIONS 
O.OOOOE-99 7o0580E-01 1. 2219E-OO 1.4098E-OO 1.2188E-OO 6. 9994E-01-7.6517E-03 

-7o1428E-01-1o2306E-00-1.4185E-00-1o2275E-00-7.0842E-01-2.7139E-10 
P = 39o 46442EI/(L**2) + 0. 00000 SC*L = 39o 46780EI/(L**2) 

SC= 810. 0 EI/(L**3) 
ER= o 0100 

O. OOOOE-99 4.9416E-01 7.8613E-01 7o5685E-01 3.7767E-01-2o8937E-01-1.0915E-OO 
-1. 8004E -00-2. 2167E-00-20 2281E-00-1. 8083E-00-1. 0169E-OO 0. OOOOE-99 

OoOOOOE-99 6o8440E-01 1o1630E-OO l o2899E-OO 1.0166E-OO 4o0488E-Q1-3 . 8672E-01 
-1.1435E-00-1o6627E-00-1o8025E-00-1o5163E-00-8 o6407E-01 O. OOOOE-99 

OoOOOOE-99 7.5404E-01 1. 3000E-00 1o4867E-OO 1o2602E-00 6. 7885E-01-1o0230E-01 
-8 o7319E-01-1o4276E-00-1o6168E-00-1.3878E-00-7o9800E-01 OoOOOOE -99 

OoOOOOE-99 7o7002E-01 l o3317E-OO 1o5329E-OO lo3185E-OO 7o4554E -01-3o2617E-02 
-8 . 0706E-01-1o3705E-00-1.5722E-00-1o3574E-00-7o8258E-01 OoOOOOE-99 

WT= FINAL DEFLECTIONS 
OoOOOOE -99 7o7413E -01 1. 3400E-OO 1.5453E-OO lo3346E-OO 7o6432E-01-1.2835E-02 

-7o8839E-Ol-1 o3546E-00-lo5600E-00 -1.3493E-00-7 o7859E-01 O. OOOOE-99 



40 

P= 39. 46352El/(L**2) + 0. 00000 SC*L 39. 46941El/(L**2) 

SC= 1010. 0 El/(L**3) 
ER= . 0100 

O.OOOOE-99 4. 7703E-01 7.3637E-01 6.5130E-01 1.9402E-01-5.6397E-01-1.4519E-OO 
-2.2176E-00-2.6452E-00-2.6154E-00-2.1029E-00-1;1766E-00-3.0000E-08 

O. OOOOE-99 7.3755E-01 1. 2511E-OO 1.3821E-OO 1.0779E-OO 4. 0651E-01-4. 5868E-01 
-1.2833E-00-1.8461E-00-1.9928E-00-1.6729E-00-9.5232E-01-8.8769E-09 

O.OOOOE-99 8. 2440E-01 1.4219E-OO 1.6275E-OO 1.3824E-OO 7.4984E-01-1.0136E-01 
-9.4239E-01-1.5482E-00-1.7563E-00-1.5087E-00-8.6783E-01-2.2313E-09 

O. OOOOE-99 8.4081E-01 1.4545E-OO 1.6751E-OO 1.4426E-OO 8.1874E-01-2.9247E-02 
-8.7382E-01-1 . 4889E-00-1.7099E-00-1.4770E-00-8.5175E-01-7.5043E-10 

WT= FINAL DEFLECTIONS 
O.OOOOE-99 ·8.4446E-01 1.4619E-OO 1.6863E-OO 1. 4572E-00 8.3585E-01-1.1194E-02 

-8.5679E-01-1.4745E-00-1.6989E-00-1 . 4698E-00-8.4818E-01-3.1831E-10 
P = 39. 46446El/(L**2) + 0. 00000 SC*L 39. 46808El/(L**2) 




