

NOAA FISHERIES

Risk Taking and Fishing Safety: Evaluation Efforts by the National Marine Fisheries Service

Lisa Pfeiffer Economics and Social Science Research Program Northwest Fisheries Science Center Seattle, WA

IIFET Seattle, July 2018

Fatality rate by occupation

(Deaths per million hours worked, U.S.)

SOURCE: U.S. Department of Labor, Bureau of Labor Statistics, Census of Fatal Occupational Injuries, 2007

- Incident, injury, and fatality *rates*
 - Must be matched to fishery (NMFS data necessary)
 - The denominator (crew hours at sea, ideally) is hard to calculate
 - "Guidance on Fishing Vessel Risk Assessments and Accounting for Safety at Sea in Fishery Management Design" 2015 NOAA Tech Memo.

- Some fundamental problems with incident data:
 - neglecting to report incidents to avoid Coast Guard actions
 - doesn't capture "near misses"
 - difficult to statistically estimate probability of very rare events
 - doesn't necessarily get at the behavioral cause of incidents

Indicators of risk exposure

- Indicators of risk exposure
 - Days fished in bad weather, trips exceeding weight or stability limit, number of dangerous bar crossings, expenses on safety equipment
 - We can measure the effects of management changes on these indicators
 - We expect to see a more dramatic response

- We use fishing in poor weather as a proxy for risk taking behavior, and estimate the effect of catch shares on the propensity to fish in poor weather
- Fishermen make many choices that affect their exposure to risk
- Fishing in poor weather has been shown to contribute to safety incidents, vessel losses, and deaths
- 7 case studies

Example 1: Catch shares

- Fisheries management can create a misalignment of economic incentives that escalate risks
- Biologically-based regulation (catch limits) have often resulted in "derby" or "race for fish" type fisheries
 - Fishermen respond to limited entry and catch limits by accumulating excess capital
 - Unprofitable fishery in which the season lasts a very short time
 - Dangerous fishing conditions

Fisheries management also has the tools to fix it:

- Individual fishing quotas (IFQs) or Catch Shares
 - Allocate a specific portion of the total allowable catch to individual entities
 - Eliminates the incentive to catch the fish before anyone else does
 - Fishermen no longer have the incentive to work without rest, delay vessel repairs, fish in dangerous weather, or over-load their vessels

West Coast Sablefish Fixed Gear fishery

Methods

- Matched wind speed data (reanalysis) to NMFS data: the days when vessels took fishing trips
- Difference-in-differences, using "Daily" and Open Access sablefish fishery for comparison (+ vessel fixed effects)

Avg. ann. fishing rate | High wind $_{ift} = \alpha_i + \beta PostIFQ_{it} + \gamma Primary_{if} + \theta PostIFQ_{it} * Primary_{if} + \epsilon_{ift}$

 Fixed effects logit model at the level of a vessel, day Begin trip=f(management regime, expected revenue in each management regime, high wind indicator in each management regime)

Effects of a catch share (ITQ) program on trips taken in bad weather

Effects of a catch share (ITQ) program on trips taken in bad weather

Effects of a catch share (ITQ) program on trips taken in bad weather

		Effect of \$1,000 increase in expected revenue		Effect of a high wind day		
Period	Mean probability of taking a trip	Change in probability	Estimated coefficient	Change in probability	Estimated coefficient	Marginal rate of substitution
Pre-ITQ	23.8%	_	-0.002	-31.3%	-0.376***	_
Post-ITQ Percentage change	-85.3%	4.3%	0.042***	-82.0%	-1.38/***	33.0

Conclusions: Case study 1

- The incentive to race for fish matters, a lot
- Fishermen are always making a trade-off between perceived risk and potential profit
- Removing the race-to-fish incentive allows for rational decision-making

West Coast Groundfish Trawl Catch Share Program

Conclusions: Case study 2

- Pre-IFQ incentives matter too!
- Under trip limits, harvesters already had the flexibility to make rational safety-related decisions

• These studies show how incentives matter in the decision-making processes that directly affects the safety of fishermen

