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Chapter 1 – Introduction

Extracting relevant information from 3D datasets is an essential goal in scientific

visualization. Another important aspect is creating tunable parameters and the

ability to manipulate them in a user-friendly environment.

This project describes the creation of a novel data-flow volume filtering work-

bench that provides a user-friendly, yet sophisticated, interface and feature set.

Filters themselves are pluggable modules and are developed independently of the

main application. We also have been experimenting with moving volume filtering

operations from the CPU to the faster GPU to enhance user interaction.

1.1 The Problem

Volume datasets, such as MRI and CAT scan datasets, have problems which are

inherent to the nature of data acquisition.

1.1.1 Noise

The finite sampling rate of even the most sophisticated devices causes undesired

artifacts in the gathered datasets. Thus a verbatim representation of the object

in question is impossible, however the noise in the final dataset can be reduced by
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post-processing to reveal a structure which is closer to the continuous object in

question. In the context of digital image processing, the term noise usually refers

to high frequency random perturbations of sample values close to one pixel. There

are other artifacts of similar appearance which are referred to with different terms

to underline their origin. Some of the most commonly occurring types of noise are

described below.

White Noise White noise a is completely random signal containing random com-

bination of all possible frequencies.

Gaussian Noise Gaussian noise is essentially white noise with probability distri-

bution equivalent to that of Gaussian distribution.

Impulse or Shot Noise This is essentially random and has potentially large

variation between adjacent values.

Periodic Noise Periodic noise is similar to white noise however it has some rep-

etitions in it and is perhaps the easiest to counter. [29].

1.1.2 Visualization

Visualization of 3D datasets poses a challenge because of the amount of information

which needs to be conveyed to the viewer. The idea of a volume is somewhat

different from the real world scenario where we only notice the silhouettes of a 3D

object. To convey information which is embedded within the 3D data, techniques
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involving transparency and transfer functions are used. These are dealt with in

more detail in a later chapter.

1.1.3 Feature Enhancements

An important subset of visualization is to identify relevant features. Features in a

volume are domain specific, enhancing them may include making boundary lines

more prominent or focussing on a subset of the dataset. By domain specific, we

mean the origin of the dataset, e.g medical or scientific domain.

Techniques include manipulating transfer functions and extensions of noise re-

moval techniques.

1.1.4 Performance

3D datasets are inherently large and getting bigger with improvements in scan-

ning devices and compute engines, hence, any kind of processing needs a lot of

computing power. This thesis also delves into techniques into transforming the

Graphics Processing Unit into a general purpose computing device to speed up the

processing.
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Chapter 2 – Volume filtering

Filtering essentially encompasses suppressing high frequency or low frequency com-

ponents in the data set. High frequency components include noise e.g. white noise.

Suppressing such components makes the image smooth. Suppressing low frequency

components enhances edges or boundaries in the image.

2.1 Averaging or Mean Filter

Averaging filter is one the most simplest filters. The basic idea is to reduce the

intensity variation across the data set, This is achieved by replacing the voxel with

average value of the surrounding voxels.

2.2 Gaussian Filtering

Gaussian filtering is similar to mean filtering - functioning as a low pass filter.

However, it uses a different kernel based on the Gaussian distribution.

3D convolution for Gaussian filtering is also separable into x, y and z com-

ponents. Thus the 3-D convolution can be performed by first convolving with a

2-D Gaussian in the x-z direction and finally convolving in the z direction. 1-D

Gaussian can be represented by the following distribution, where σ and µ control

the width of the Gaussian distribution. However for purposes of this thesis, a 3D
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Figure 2.1: Left: Original, Right: After mean filtering

kernel was directly used.

G(x) =
1√
2Πσ

e
−(x−µ)2

2σ2

2.3 Median filter

The Median filter is a nonlinear filter which works similarly to the averaging filter

however, instead of replacing the voxel value with the mean of the surrounding

values, it replaces the voxel value with the median of the surrounding voxel values.

There are multiple advantages of the median filter, elucidated in the Hypermedia
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Figure 2.2: This figure shows different gaussian distributions

Figure 2.3: Left, Original, Right: After gaussian filtering
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Figure 2.4: Left: original, Right: After median filtering

Image Processing Reference[12] are as follows,

1. Median is a better statistic than mean or average as it’s not skewed by

extreme values.

2. Median is part of the dataset whereas mean is not necessarily present in

the dataset, hence median preserves the sanity of a dataset in some respects.

This includes preserving sharp edges or sudden changes in values of a dataset.

However these advantages also mean that this filter is very slow because of the

sorting of surrounding values at every step. Fast implementation using the GPU

is discussed later.
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Figure 2.5: Left: Original, Right: After edge detection with using sobel filter,
visualization is done using OSU’s Volume Explorer to do a more accurate rendering
of the fine boundaries created by sobel filtering

2.4 Sobel Filtering

Sobel Filtering allows us to provide an approximation of the gradient of the image.

This is especially useful for accentuating different features in the datasets.This

gradient, which is a 3D vector, is given by derivatives in all three directions. These

derivatives are then approximated by finite differences. Each component represents

the rate of change of values in each direction.

This implies that the result of Sobel filtering will accentuate sudden changes

in sample values in any direction and suppress regions of constant values. We use

a 3x3x3 kernel for our purposes.
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2.5 Frequency filtering

2.5.1 Fourier Transform

Fourier transform is used to transform time or spatial domain continuous func-

tion to frequency domain. This process breaks down a function into the sum

of sinusoidal functions each representing a particular frequency. Discrete Fourier

transform(DFT), is user for discrete functions, eg a 3D image or digitized audio.

DFT works on sampled values and hence cannot fully reproduce all the data

however it is sufficient to analyse and filter out frequencies present in the dataset.

For a cube image of size NxNxN, the 3-dimensional DFT is given
by:

F (x, y, z) =
1

N3

∑ ∑ ∑
f(i, j, k)e−i2π(xi

N
+ yj

N
+ zk

N
)

In a similar way. The inverse Fourier transform is given by [12]:

F (x, y, z) =
1

N3

∑ ∑ ∑
f(i, j, k)ei2π(xi

N
+ yj

N
+ zk

N
)

2.5.2 Filtering

Convolution in the spatial domain is same as multiplication in frequency domain,

and hence in theory all frequency filters can be implemented in spatial domain.

However, as we only consider a finite convolution kernel, this filtering can only

be approximated by spatial domain filter. One thing to note is that, it would

be efficient to implement small convolution kernels in the spatial domain, rather
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than implementing them a frequency filter for bigger convolution kernel it would

be more efficient to use frequency space filtering( O(n2) Vs O(n lg n)) Even in

frequency space filtering there is approximation as we use finite sampling.

Frequency filters can essentially be divided into three category, low pass, high

pass and band pass - each satisfying some criteria. As we have already defined

noise as high frequency components, a low pass filter will attenuate noise and

a high pass filter will accentuate sharp edges or features in a dataset. A band

pass filter will more selectively highlight certain frequencies (which may represent

certain sections in a dataset).

Another type, band reject, is useful for eliminating artificial frequencies which

might contaminate a dataset, e.g. 60Hz from line voltage and/or interference

other electronic sources. Filters may also be of higher orders - which can help to

manipulate the slope of curve near the cut-off frequencies and can prevent effects

like ringing in the final result[12].

2.6 Combining filters to achieve better results

All the above filters have one particular advantage and can be used in conjunction

to achieve a particular visual output. This is specially useful when outputs of

various filters can be linearly combined. Results found by mixing the filters have

been arguably better and are discussed in the Results chapter.
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Figure 2.6: Left: Original, Right: After a High pass filtering
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Chapter 3 – Volume Visualization

Volume visualization is the process of creating images from multidimensional scalar

or vector data grids. This process generally involves projection of 3D datasets onto

a 2D image plane to gain understanding of the structure contained within the data.

Most techniques are applicable to a uniformly sampled 3D such as obtained MRI

and ultrasound.

3.1 Techinques

Volume visualization techiniques can be divided in two types.

• Surface Fitting Algorithms

• Direct Volume Rendering.

Surface Fitting Algorithms include isosurface generation using marching cubes

[7] and contour tracking, Direct Volume Rendering includes methods like splatting

[17] and Ray Tracing. As part of this thesis, two methods were explored for

visualization: Terarecon’s realtime ray tracing system and a 3D texture based,

view aligned plane method[5]. Both these systems allow realtime visualization.

OSU’s Volume Explorer based on Terarecon’s system [31] extensively used as an

application to analyze volumes.
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3.2 3D Texture Based Volume Visualization

Many 3D graphics systems use texture mapping to apply images, or textures,

to geometric objects. Commodity PC graphics cards are fast at texturing and

can efficiently render slices of a 3D volume, with realtime interaction capabilities.

There are two types of 3D texture based volume visualizations, view aligned and

object aligned. In view aligned each slice is drawn perpendicular to the view vector

and in object aligned the slices are constant with respect to objects orientation.

One major advantage of using 3D texture support of current graphics cards is

the hardware interpolation of data points in the 3D dataset (trilinear interpola-

tion), without any extra code. A disadvantage of such a system is that shading

cannot be done on the fly, the input dataset need to be preprocessed, This removes

the possibility of realtime changes in lighting conditions.

Hardware support for 3D textures allows the use of view-aligned slices. The

slices are always drawn parallel to the viewing plane, eliminating the popping when

moving from different axes as seen in the object/volume aligned texturing. This

done by drawing quadrilaterals ( known as proxy geometry ) aligned with the user’s

view and using texture matrix operations to rotate the volume texture. A view

aligned approach was used in this implementation.

3.3 Implementation

In this project, the implementation was done using OpenGL [3] and C++. OpenGL

capabilities for texture coordinate generation and clipping planes were used exten-
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sively to provide realtime cropping of volume datasets. The Terarecon VOX data

format was used as input data format. To provide cross-platform and easy access

to OpenGL extensions, GLEW [22] an abstraction layer over OpenGL Extensions

was also used.

The rendering of the texture-plane based process is.

1. Setup the clip planes transform matrices.

2. Setup the texgen planes transform matrices.

3. Setup the texture coordinate generation using glTexGeni. - in eye Linear

mode.

4. Configure the clip planes using glClipPlane.

5. Enable them using glEnable.

6. Enable the alpha blending/testing using glEnable(GL ALPHA TEST) and

glAlphaFunc.

7. Setup the blending function using glBlendFunc.

8. Setup the texture matrix.

9. Set the ModelView matrix to identity.

10. Set the texture coordinate generation using glTexGenfv.

11. Draw the slices.
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12. Disable the clip planes.

13. Draw the slice plane across the volume to get a better image.

14. Draw the box framing everything.

3.4 Image processing

3.4.1 Transfer functions

Transfer functions form an integral part of any volume rendering. These functions

transform scalar data values into (RGBA) optical properties. Volume Explorer

allowed us to examine the volume dataset with different standard and handcrafted

transfer functions.

3.4.2 Image processing Filters

One the framework for rendering volumes is ready, various image processing filters

can be applied. These include:

• Colour Adjustment.

• Brightness control.

• Saturation control.

• Hue control.



16

• Cropping.

• Equalization.

3.4.3 Experiments with Non-Photorealistic rendering

NPR is sometimes of great help in visualizing the overall structure of 3D datasets.

Experiments were done by clamping scalar voxel values to specific values and re-

sults obtained were arguably pleasing. Figure 7.4 shows one of the images obtained.
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Chapter 4 – CPU Based Approach

This chapter presents one of the most important aspects of this project, a plugin-

based architecture for analyzing and processing 3D datasets. During the initial

phases, requirements for this toolkit were laid out - a user friendly interface, cross

platform and efficient processsing. Taking cues from previous efforts like OpenDX

and Vtk [11][21], a data flow paradigm was decided upon.

To provide a consistent user interface and cross platform functionality, the Qt

library was chosen. Various other cross platform GUI toolkits like FLTK and TK

were also investigated, but were not taken into consideration because of various

reasons - complexity and lack of documentation being the most important. Qt pro-

vided a host of other APIs for multithreading and dynamic library loading which

were integral to this application. The availability of Qt under Gnu Public License

was also an important factor in using the library.

This application provides a framework for processing element (plugins). These

plugins are developed independently of the application and are loaded into mem-

ory on startup. The design is such that everything from loading to display is

handled by plugins.
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4.1 User Interface

The user is presented with an empty screen with floating widgets, each represent-

ing plugins or processing elements. These widgets can then be arranged in the

desired order with drag and drop operations. The data flow is then indicated by

drawing flow-lines. Individual parameters for each plugin (represented by widgets)

can be then set using right click operations. Default parameters can also be set

separately as XML files.

Once the data dependency and hence the execution order is provided to the ap-

plication using the flowlines, presence for loops is tested to avoid any circular

dependenies using depth first search.

Once the appropriate flow-graph has been constructed, it can be saved as an XML

file. Such an XML file can also be loaded into the application.

4.2 Plugins

Leveraging Object Oriented concepts, each plugin derives the same Base class

which is visible to the application. The child class implements functions which

provide inputs to the plugin and actual execution and output after processing.

The application then handles the flow of data from one plug-in to another. These

separate pieces of code are compiled as libraries and are linked dynamically with

the main application during startup. Each plug-in maintains its own copy of data
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or state,which can grabbed at any stage during execution. The following plug-ins

were implemented and loaded by default.

Load loads a .vox format volume dataset

Save Saves the input to this plugins on the disk as .vox formate volume dataset

Sobel Performs Sobel Filtering on the data set.

Median Performs Median filtering on the data set

Mean Perform mean filtering on the data set

Gaussian Performs gaussing filtering on the data set.

FFT Performs a band pass filtering on the data set.

Mixer Outputs a linear combination of the 2 inputs provided.

4.3 Execution Management

4.3.1 Background

Static scheduling of a program represented by a directed task graph on a multipro-

cessor system to minimize the program completion time is a well-known problem

in parallel processing[34]. Finding an optimal schedule is an NP complete problem

[33].Many Heuristic algorithms have been provided that provided satisfactory re-

sults. What is presented below is a greedy approach, which tries to minimize the
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the completion time and solves the problem sufficiently at hand. The complexity

of the algorithm is

O(α2n)

where n is the number of nodes and α is the branching factor.

4.3.2 Description

To provide efficient plugin execution a multithreaded approach is used. Whenever

it’s possible to execute two or more plugins in parallel i.e., they are not dependent

on each other, appropriate actions are taken such that they are executed indepen-

dently. This is achieved by maintaining two separate Directed Acyclic Graphs,

dependency and child graphs. These two could have been merged together in a

single graph, however, to maintain algorithmic and implementation clarity two

separate instances were used. Moreover using two separate graphs did not affect

the runtime complexity.

At first, plugins which have no dependencies are executed as threads. On com-

pletion of execution, each thread generates an event. This event is then caught

and each of its children (using the child graph) are checked for possible execution.

These children may have other parents which might not yet have been executed or

are still running. For a particular node, if all of its dependencies are satisfied, the

corresponding thread is allowed to run. This process continues until all nodes have
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completed their execution. As a visual cue, the corresponding widget changes its

color signifying its current state - execution complete, currently executing or yet

to be executed.

The above procedure guarantees that execution order of each plugin is optimal in

terms of parallelism. After execution, changes in the flowgraph can be accommo-

dated if needed. As with any multithreaded system, problems of synchronization

come up. Each plugin maintains its own copy of data which is then fed as input to

its children. This effectively eliminates any contentions between multiple writers

as children can only read the data and not write into it.

4.4 Implementation

Each of the nodes inherit from the QtThread class and has a data member which

identifies the dynamically loaded library associated with the given node. Once the

node has been identified as runnable, an object of the processing filter is created

by a factory method in the DLL and passed on to the main application. The appli-

cation then passes in a pointer, which is pointing to the output data from previous

computation, to this object. Internally the library object uses dynamic cast to

check whether the data pointer which is being passed into has the right type. The

data is then processed and a new output copy is created. Once this processing fin-
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ishes, an event is generated which is caught by the main application. The output

pointer is then grabbed from the object for further processing.

4.5 Typical Usage

At startup, the application loads all the plugins available in the plugin directory.

The user is presented with an empty drawing area. The user then right click

and selects the appropriate plugin from the list. Generally the first node is the

Load plugin. To configure this Load plugin, the user right clicks on the Load node

(which is now available on the drawing area. An editable dialog box pops up with

configuration file of the Load plugin. This is then edited to provide the name of

the file to be loaded.

Next, a desired plugin eg sobel plugin is selected like above. The user can now

connect the Load plugin and sobel plugin, via flow lines. For connecting the flow

lines the user middle clicks the source node and then the target node. A dialog

asks to which input the flow line needs to be connected. The user inputs the input

number and accordingly updates the configuration file. This is necessary as these

plugins can take any-number of inputs and have only one output. Finally the last

node, which is generally the Save node is added in a similar fashion. Different

Options are shown in figures 4.1 to 4.4.
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Figure 4.1: This drop down menu appears when the user right clicks in the empty
drawing area
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Figure 4.2: The configuration dialog appears when the user right clicks on an
existing node
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Figure 4.3: This dialog appears when the user connects two nodes
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Figure 4.4: The final connected flow diagram
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Figure 4.5: various software components in the application
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4.6 Software Engineering Aspects

The choice of GUI toolkit Qt and Programming language C++ dictated the choice

of object oriented paradigm while constructing this application. The design de-

cision of the ability to do development of plug-ins independent of the application

was achieved using a set of classes related to each other in the inheritance tree

while the application just had the knowledge of the root class.

Application The main application is composed of two parts, The main container

and the nodes.

container The class contains the application logic and acts as a container

for all the nodes in the application. The graph data structure resides

in this class. Input from the GUI is handled in this class. The model-

view-controller methodology separates the logic and GUI handling. This

class understands the data type and provides nodes with access to it.

Nodes This class acts as a building block. In this, objects of the plug-in

class are instantiated using a class factory provided in the Filter class.

This class also invokes configuration mechanism of the filter class when

directed by the user through the UI.

Plugins This component inherits from the filter class and implements the actual

image processing algorithms. It understands custom data types inherited

from Data and operated on them. e.g Custom data types including arrays

of 3D floats or array of 3D complex numbers. This component is separately
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build as dynamically loaded library and the required functions are exported

so that they are visible from the Application.

3rd Party Components Various freely available components were used.

fftw,fftw+.h[18] fftw or fastest fourier transform in the west is an highly

optimized library for doing FFT transforms. During early stages of this

thesis, a FFT implementation was handcoded but fftw was significantly

faster. fftw++.h provides an easy C++ abstraction over this C++

library.

Qt[19] is a cross platform GUI library which also provides features like

multi- threading in a platform independent manner. All functions in-

cluding dynamic library loading has been done using Qt.
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Chapter 5 – General Purpose Computation on The GPU

Graphics Processing Units have now evolved into extremely fast processors with a

slightly different architecture paradigm than that of general CPUs. They are now

programmable and have parallel processing units. This particular advantage of

parallelism is extremely useful for programs that can be cast as stream processing

problems[9]

Figure 5.1 shows the growth of sheer speed of GPU’s as compared to CPUs.

As we can see the GPU growth follows growth pattern higher than the Moore’s

law prediction for CPUs.

5.1 Graphics Pipepline

Owen et. al in their Survey of General Purpose Computation on Graphics Hard-

ware describe graphics pipeline and its hardware implementation:

All of today’s commodity GPUs structure their graphics computa-
tion in a similar organization called the graphics pipeline. This pipeline
is designed to allow hardware implementations to maintain high com-
putation rates through parallel execution. The pipeline is divided into
several stages. All geometric primitives pass through every stage. In
hardware, each stage is implemented as a separate piece of hardware
on the GPU in what is termed a task-parallel machine organization[1].
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Figure 5.1: GPU speed Vs CPU speed [1]

Figure 5.2: Graphics Pipeline



32

Vertex Buffer and Vertex Processor The programmable vertex processor re-

places the following functionalities of the fixed OpenGL Pipeline.

• Vertex transformation

• Normal transformation and Normalization

• Texture coordinate generation and transformation.

• Per-vertex lighting.

Rasterization This stage determines the screen position covered by each trian-

gle and interpolated per-vertex parameters. Each of these color values (frag-

ments) are then passed to the fragment processor for per-fragment operation.

Fragment processing In this stage, color for each fragment is computed. This

computation can also use values from global texture memory to compute

color values.

The programmable fragment processor replaces the following functionality of

the fixed OpengGL pipleline.

• Color computation

• Fog

• Texture Application

• Normal/Lighting computation for per-pixel lighting.
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5.2 Mapping of programmable graphics pipline to General purpose

computation.

5.2.1 Programmable hardware

The programmable part of the GPU are the two processors, fragment and vertex,

each capable of replacing some functionality of the fixed function pipeline. Over

time, with more sophisticated technology, the functionality and generality of these

processors has increased. Currently, these GPU’s support SIMD (Single Instruc-

tion Multiple Data) instructions, ever increasing amounts of inputs, outputs and

the number of processors working in parallel. This parallelism is, in fact, more im-

portant with respect to GPGPU than raw computational speed. The availability

of high level languages for programming these GPU’s is the single most important

facilitator for general purpose computing on GPU.

However, there are other issues which limit the usage of GPU as general purpose

computation device. Most importantly is that they require an entirely different

programming model. Much research is going into mapping problems onto the GPU

while optimally using the speed. Some promising areas which have come up include

numerical computation ( PDE solving, matrix operations ), physical simulation,

ray tracing ( traditionally a CPU intensive task ), image processing etc. As part

of this thesis we have tried to assess the feasibility of using the GPU for processing

3D data sets in a much faster way than is possible with CPU.
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5.2.2 General GPU Programming Model

A typical GPGPU program uses the fragment processor as its main computational

engine. This is because a typical graphics scene has more fragments than vertices

hence they need to be more and faster fragment processors than vertex proces-

sors. However, highly efficient implementations try to balance the load on both

vertex processor and fragment processor. The programming model derives from

the streaming computation model, where programs are considered as kernels and

data on which they operate are termed as streams The structure of a GPGPU

program is [1][10],

• The Application is segmented in independent parallel tasks called kernels.

input data is transformed into textures that can be considered as streams.

On these streams, kernels are invoked to perform necessary computation.

• These kernels are then programmed as shader programs and invoked by pass-

ing the vertices to the vertex processor. A typical invocation might include

drawing a textured quadrilateral, equal to the size of the stream data (in the

textures) that needs to be processed.

• The rasterizer then generates millions of fragments and color values ( output

values ) which are then written to framebuffer memory.

• The framebuffer memory can be retrieved as a texture used as output, or

again as input to another pass.
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5.3 Shader Programs

In context of GPGPU, vertex programs often emulate the fixed function pipeline in

all, but the most optimally designed programs. Fragment programs are generally

the main processing units because the graphics hardware is such that there are

more fragment processors and they also work at higher speeds.

Multiple options are available for coding these programs or shaders which in-

clude GLSL or GL Shader Language with OpenGL origins with Open Standards,

Cg which is a Nvidia proprietary langauge with bindings for both DirectX and

OpenGL and HSLS - specifically for DirectX.

As the name suggests vertex shaders are used for programming the vertex

processor and fragment shaders for the fragment processor. Both these proces-

sors emulate the fixed graphics pipeline and accordingly behave in terms of input

and output. As mentioned earlier, most of the processing is done using fragment

shaders and it forms the core of any GPGPU application. These fragment shaders

expect input in the form of interpolated values from the vertex shader, infrequently

changing values from the host program and possibly per vertex information which

does not need to be interpolated. These fragment shaders also have access to tex-

tures or areas of memory through input data encoded as an image can be passed

in.
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5.3.1 Textures

Textures form an integral part of the GPGPU pipeline. Input data is encoded

as an image, which is then operated upon by the shader programs. Rather than

rendering on the screen - the output is rendered onto a off-screen buffer which

is then read back as textures and output encoded as color values is read back.

OpenGL supports multiple types of textures which provide different precisions eg

floating point and unsigned byte. For this project, we used floating point textures

exclusively because of the higher precision of floating point values.

5.4 pBuffers and Frame Buffer Objects

Output from a GPGPU application is generally an image in which the result of a

computation is encoded. This image is generally rendered to an off-screen buffer

because a windowing context is not necessary. This non-visible rendering context

provided by the OpenGL renderer is known as Pixel Buffer or pBuffer. Allocating

or deallocating such buffers or even switching between multiple buffers is an ex-

pensive operation as the OpenGL context in question could be potentially a heavy

weight entity. The original goal was to have a static area for rendering.

In GPGPU applications, there’s generally a feedback loop in which the out-

put is again used as input for further iterations ( Ping Pong )[10]. This makes

maintaining multiple buffers a necessity. To overcome the efficiency issues related

to pBuffers, they have now been superseded by FrameBuffer Objects. FBO is

currently implemented as an OpenGL extension and should be standardized soon.
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The framebuffer object (FBO) extension presents a much better and more

simplified method of doing render-to-texture. Its advantages include:

• FBO only requires a single OpenGL context and hence avoids the need for

expensive context switches in case of pBuffers.

• FBO model is similar to DirectX’s render to target model making the possi-

bility of porting code or abstracting both OpenGL and DirectX easier.

• FBO is more memory efficient as supporting buffers like depth and color can

be shared across multiple rendering targets[13]

For reasons mentioned, we have exclusively used Framebuffer Objects in this

implementation.



38

Chapter 6 – Using The GPU for Volume filtering

In this chapter we will discuss how a 3D texture is transformed by using GPU

code.

6.1 3D Textures

Texture Mapping is a method of adding detail or surface texture onto a surfaces. A

texture is essentially an ordered data set which is indexed by Texture coordinates.

These texture coordinates are then used to map this data on to a surface for adding

detail. These datasets can contain color data ,luminance , transparencies, etc and

in our case scalar values of a 3D dataset like MRI.

Other ways of storing a 3D dataset includes a tiled approach where the 2D

slices of the 3D dataset are tiled to form a big 2D dataset. This approach was

preferred when hardware support for 3D textures was not available. The biggest

advantage of using 3D texture as such is the trilinear filtering on hardware which

is not possible with the series of 2D datasets.

6.2 Computation loop

Each slice of the 3D texture is rendered on a Quadrilateral in such a way that

there’s one to one correspondence between pixels and Texels. This is necessary
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because the fragment processor needs to be invoked for every texel or datum in

the dataset. The result is then copied back to a 3D texture slice by slice and

displayed on the screen using the visualization routines described in chapter 3.

For every slice in the input 3D texture

1. Set up a 2D FrameBuffer Object using glFramebufferTexture2D.

2. Set up a RenderBuffer object using glRenderbufferStorage

3. Attach RenderBuffer to framebuffer using glFramebufferRenderbuffer

4. Make the framebuffer object, the current rendering context.

5. Set up Projection matrices. As mentioned earlier we want a 1:1 mapping

between pixels ( to which we want to render) and texels ( from which we

access data. The key here is to choose an orthogonal projection and a proper

viewport that will enable a one to one mapping. A typical way of achieving

that would be

glViewport(0, 0, texSize, texSize);

glMatrixMode(GL_PROJECTION);

glLoadIdentity();

gluOrtho2D(0.0, texSize, 0.0, texSize);

glMatrixMode(GL_MODELVIEW);

glLoadIdentity();
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6. Set the input texture as the active texture.

7. Enable the fragment shader code.

8. Draw a quadrilateral.

9. Disable fragment shader code.

10. Set the output texture as active texture.

11. Copy the content of framebuffer on the the output texture using glCopyTex-

SubImage3D

OpenGL 2.0 also supports directly rendering to each 2D slice of the output

3D texture, creating a 3D framebuffer. However at this point, in most cards it is

emulated by drivers and is extremely slow or, at best, equivalent to the copying

mechanism negating any possible theoretical performance gain we might have.

The filtering computations in the fragment program is which invoked for each

and every datum in the data set. Filters like Mean, Median and Gaussian were

implemented. To accentuate the boundaries, gradients were also calculated and

then used as input to the transfer function.
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Chapter 7 – Results

Two datasets, benoit.vox and smallhead.vox were analyzed and representative Im-

ages are shown.

7.1 Dataset - benoit

benoit.vox is a 3D ultrasound dataset. Because of its ultrasound origins, this

dataset is more or less binary, making analyze difficult. However various attempts

were made to analyst the structure and are shown in Figures 7.1 to 7.8.

7.2 Dataset - smallhead.vox

Smallhead.vox is an MRI based dataset. Because of its highly organic nature

analyzing internal boundaries is difficult. Problems associated with it are noise

and very fine detail, specially around the folds in the brain. Figures 7.9 to 7.15

show the various results obtained.
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Figure 7.1: Base gray scale image and color visualization after applying mean filter

Figure 7.2: Same dataset from a different view and accentuated by gradients
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Figure 7.3: Mean filtering with a larger window - white noise has been considerably
reduced however image detail has also reduced (Umbical cord thickness has been
reduced

Figure 7.4: NonPhoto realistic style visualization obtained by clamping to color
values obtained from transfer functions



44

Figure 7.5: Frequency Plot obtained from FFT of the benoit dataset, the spikes
across the x,y and z axis represent the discretization. The diagonal spike represent
the direction in which the ultra-sound was sampled. This tells us that resampling
in this direction would not lead to any more detail

Figure 7.6: Left:Unmodified dataset,Right: After a high pass FFT filter accentu-
ating internal structure
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Figure 7.7: Left: Applying Median filter to the high pass filtered dataset, bound-
aries are more pronounced. Right: Result after applying the mean filter

Figure 7.8: Clipping plane in action
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Figure 7.9: This graph shows the time taken by some filters on both 3.2 Ghz dual
core Intel CPU and Nvidia 3400 QuadroFx GPU on a 128x128x128 size dataset
(Benoit)
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Chapter 8 – Conclusion and Future work

This thesis has presented techniques to optimize processing and visualization of

3D datasets. It has also been shown the Graphics Processing Unit is a viable co-

processor to the CPU in context of processing of 3D datasets. Experiments have

suggested that the GPU provides an order more floating point operations than the

CPU. Current trends in GPU architecture suggests that this gap will continue to

widen.

However it remains imperative that we strive towards parallel processing of

datasets. This is because of the shift in CPU architecture towards multi-core

architectures and innovative methods need to be found for using the CPU’s. Our

CPU based application is a first step towards that.

Future work includes combining GPUs and CPUs in such a way the that

stream processing model is abstracted from the user. Current limitations of band-

width between CPU and GPU and an entirely different computing model are the

biggest challenges. Recent developments, specifically Nvidia’s CUDA technology

[26] seems an interesting step forward. The availability of C compiler and possibil-

ity of threads running on GPU to cooperate when solving a problem could make

GPU an extremely fast and able co-processor.
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APPENDICES
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.1 Median Filtering Shader, also representative of techniques used

in other shaders

// median filtering shader.

uniform sampler3D tex;

const int dim = 3;

const int size = dim*dim*dim;

const int sizeminusone = dim*dim*dim-1;

const float halfsize = (dim*dim*dim)/2;

float data[size];

vec3 HsvRgb(vec3 hsv) ;

void bubblesort()

{

// bubble sort values.

float minor, major;

for( int i=0; i<size; ++i) {

for( int j=0; j<sizeminusone; ++j) {

minor = min( data[j], data[j+1] );

major = max( data[j], data[j+1]);

data[j] = minor;

data[j+1] = major;

}

}

}

void main(void)

{
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const float offset = 1.0/256.0 ;

vec3 grad ;

vec4 C = texture3D ( tex, vec3( gl_TexCoord[0].stp )) ;

// compute average.

int a = 0 ;

for ( float i = -1 ; i < 2 ; i++ ){

for ( float j = -1 ; j < 2 ; j++ ){

for ( float k = -1 ; k < 2 ; k++ ){

vec4 gxc1 = texture3D ( tex, vec3 ( gl_TexCoord[0].stp )

+vec3 ( offset*i , offset*j , offset*k ));

data[a] = gxc1.a ;

a++;

}

}

}

bubblesort();

// pick the median.

vec3 hsv = vec3( 200*data[d3],1.0,1.0 ) ;

// compute gradients.

vec4 gxc1 = texture3D ( tex, vec3 ( gl_TexCoord[0].stp )

+ vec3 ( offset , 0 , 0 )) ;

vec4 gxc2 = texture3D ( tex, vec3 ( gl_TexCoord[0].stp )

+vec3 ( -offset , 0 , 0 )) ;

grad.x = ( gxc1.a + gxc2.a )/2 ;

vec4 c2 = texture3D ( tex, vec3 ( gl_TexCoord[0].stp )

+vec3 ( -offset , 0 , 0 )) ;

vec4 gyc1 = texture3D ( tex, vec3 ( gl_TexCoord[0].stp )
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+ vec3 ( 0 , offset , 0 )) ;

vec4 gyc2 = texture3D ( tex, vec3 ( gl_TexCoord[0].stp )

+ vec3 ( 0 , -offset , 0 )) ;

grad.y = ( gyc1.a + gyc2.a )/2.0 ;

vec4 gzc1 = texture3D ( tex, vec3 ( gl_TexCoord[0].stp )

+vec3 ( 0 , 0, offset )) ;

vec4 gzc2 = texture3D ( tex, vec3 ( gl_TexCoord[0].stp )

‘ +vec3 ( 0 , 0, -offset )) ;

grad.z = ( gzc1.a + gzc2.a )/2.0 ;

float intensity = sqrt ( grad.x*grad.x + grad.y*grad.y + grad.z*grad.z );

// clamp values.

vec4 color ;

if (intensity < 0.26)

color = vec4(1.0,0.5,0.5,1.0);

else if (intensity < 0.36)

color = vec4(0,0,01,1.0);

else if (intensity < 0.9)

color = vec4(0.4,0.2,0.2,1.0);

else

color = vec4(0.2,0.1,0.1,1.0);

// final setting of gl_FragColor.

gl_FragColor = color + vec4 ( HsvRgb(hsv) , intensity ) ;

gl_FragColor.a =C.a + 2.0*intensity ;

}

vec3 HsvRgb( vec3 hsv )

{
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// HSV to RGB routine.

vec3 rgb ;

float h, s, v; // hue, sat, value

float r, g, b; // red, green, blue

float i, f, p, q, t; // interim values

// guarantee valid input:

h = hsv.x / 60.;

while( h >= 6. ) h -= 6.;

while( h < 0. ) h += 6.;

s = hsv.y;

if( s < 0. )

s = 0.;

if( s > 1. )

s = 1.;

v = hsv.z;

if( v < 0. )

v = 0.;

if( v > 1. )

v = 1.;

// if sat==0, then is a gray:

if( s == 0.0 ){

rgb.x = rgb.y = rgb.z = v;

}

else {

// get an rgb from the hue itself:

i = floor( h );

f = h - i;

p = v * ( 1. - s );
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q = v * ( 1. - s*f );

t = v * ( 1. - ( s * (1.-f) ) );

if (i == 0.0 ){

r = v; g = t; b = p;

}

if (i == 1.0 ){

r = q; g = v; b = p;

}

if (i == 2.0 ){

r = p; g = v; b = t;

}

if (i == 3.0 ){

r = p; g = q; b = v;

}

if(i == 4.0 ){

r = t; g = p; b = v;

}

if(i == 5.0 ){

r = v; g = p; b = q;

}

rgb.x = r;

rgb.y = g;

rgb.z = b;

}

return rgb ;

}




