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ON THE CALCULATION OF THE COEFFICIENTS
OF CYCLOTOMIC POLYNOMIALS

CHAPTER 1. INTRODUCTION

§1. Purpose of This Paper

The aim of this work is to derive a general procedure for

finding recursively the coefficients of any cyclotomic polynomial.

Much has been done on the properties of the coefficients of the

cyclotomic polynomial but there has been little interest in obtaining

general formulas to get coefficients of any cyclotomic polynomial.

The methods suggested are very theoretical and complicated in actual

calculations.

The author tried to find a simple formula using results of

previous works, especially Ho-lder's formula simplifying Ramanujan

sum and Newton's identities. Rather than formula this paper pre-

sents a well-defined algorithm.

Chapter 1 gives the results of previous works. General ideas

and some important theorems on the coefficients of the cyclotomic

polynomial are developed in Chapter 2 through 4. In Chapter 5 the

author explains in detail a procedure for obtaining the coefficients

and its application for the cases n = 105 and n = 595.

Throughout this paper the author uses symbol Qn(x) for the

cyclotomic polynomial.
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§2. The Results of Previous Works

There have been published many important and interesting

results of investigations on the coefficients of the cyclotomic poly-

nomial since the latter half of the 19th century. Here we shall

review some of them in chronological order.

A. Migotti in 1883 showed that the coefficients of Qn(x) are

all ± 1 or 0 for n, a product of two primes but noted that the

coefficient of X7 in Q 105(x) is -2. This result is quoted from

[12].

A. S. Bang in 1895 [1] proved that no coefficients of Qn(x) for

n = pqr, (p< q< r; odd primes) exceeds p-1 and also proved that

the coefficients of Qn(x) are ±1 and 0 for a product of the first

powers of two distinct primes.

I. Schur in 1931 proved that there exist cyclotomic polynomials

with coefficients arbitrarily large in absolute value. This again is

quoted from reference [12].

Bungers in 1934 proved the same theorem as Schur's under

the assumption that there exist infinitely many prime pairs for

a product of three primes. This also is quoted from [12].

E. Lehmer in 1936 [12] modified Bungers' proof so as to

eliminate his unproved assumption of the existence of infinitely

many prime pairs.



0. HOlder in 1936 [9] showed that if Cn(k) denotes the

(Ramanujan) sum of the kth powers of the primitive nth roots of

unity then

C 1-1(n/d)
n (n /d)

3

where d is the greatest common divisor (n, k) of n and k.

J. E. Eaton in 1939 [5] gave formulas for calculation of the

coefficients of the cyclotomic polynomial by means of combinatorial

methods. Special properties of the coefficients such as magnitude

and increase, which in later times have been considered, Eaton

couldn't obtain by his method.

P. Erd8s in 1946 [6] proved that if An denotes the largest

coefficient (in absolute value) of the nth cyclotomic polynomial, then

for infinitely many n

An > exp {c
1
(log n)4/3}

He also conjectured that a much stronger statement may be true,

namely that
(c13/log log n)

(A) An > exp

holds for some c13 and infinitely many n, but pointed out that

this would be a best result since
(c14/log log n)

(B) An < exp {n

for some c
14

and all n.
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P. T. Bateman in 1949 [2] gave the short proof of (b) of Erdgs'

paper just quoted.

E. Gagliardo in 1953 [7] proved the formula

Sk(n) = (( 4)(n) /(1)(nn, ) (n k) )

which is due to Holder. Holder's earlier work is not mentioned

and his methods are not the same.

G. S. Kajandzidis in 1963 [11] obtained a general formula for

the coefficients of the cyclotomic polynomial

(i)N(x) = n (1-x d
)
p.(5) =1 +a

1
x+- +a xM+

d8=N

Utilizing the results of E. Gagliardo, he proved that

T.
S1

)

al S2

)

a
2 N

S a
N

aM al! a2! aN!
E ia. =M

where N = p1 pv with p1 < < pv and the summation is

taken over all non-negative integral solutions of the Diophantine

equation 1 a1 + 2a2 + + NaN = M, and SN stands for the sum

of the nth powers of the roots of 4)N(x)

He also found a second general formula and reobtained

Migotti's result for N = pq (p < q, primes).

Sister Marion Beiter in 1964 [3] proved that if



then

a, (3

en

OPc1)
F (x) = > cnxn

pq J n=0

6 /(-1) / if n has the form explained below,

0 otherwise

The special form of n is that n = aq + 13p + 6 where

are non-negative integers and 6 is 0 or 1 and this repre-

5

sentation is unique. She also determined the middle coefficient cn

where n = (1)(pc0/2.

L. Carlitz in 1966 [4] determined the number of nonzero terms

in Q (x), p and q distinct primes.
Pq
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CHAPTER 2. GENERAL THEORY

§1. Roots of Unity-II

We are concerned with the equation

xn = 1

and the polynomial Qn(x) of degree 4(n), Euler's (I)-function of

n, which has as roots the primitive nth roots of unity, in case of a

field of characteristic prime to n or of characteristic 0.

Definition 2.1. By a nth root of unity we shall mean a root of the

polynomial

f(x) = xn- 1

in any commutative extension field.

Proposition 2. 2. The nth roots of unity in a field form an Abelian

group under multiplication.

Proof. If an = 1 and Pn=1, then (1:L )n = 1, from which the

group property follows. It is obvious that the group is an Abelian

group.

The order k of a group element a is a divisor of n,

since we must have a
n=1 and if n=qk+r for k < n.

1/ This is a summary of the pertinent materials in [8] and [16].
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n qk+ra =a = (ak)q a
r=1, but (ak)q=1 we must have r=0. Thus

k divides n.

The splitting field K of f(x) is called the field of the nth

roots of unity over the prime field II. The polynomial f(x) factors

into linear factors which are all different from each other; for the

derivative

fl (x) = nxn- 1

vanishes only when x=0, since n is not divisible by the charac-

teristic and therefore has no root in common with f(x). Thus there

are exactly n nth roots of unity in K.

Definition 2. 3. If the order of a root of unity is exactly n, it will

be called a primitive nth root of unity.

Proposition 2. 4. The group of the nth roots of unity is cyclic and

is generated by every primitive nth root of unity.

To prove this, we shall use the following lemmas and a

theorem.

Lemma 2. 5. Let G be a finite Abelian group enjoying the property

xn =ethat the relation x is satisfied by at most n elements of G,

for every integer n. Then G is a cyclic group.

Proof. If the order of G is a power of some prime number

then the result is true. For, suppose that aE G is an element

q
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whose order is as large as possible; since its order must divide

the order of G, it is qr for some integer r. We do not yet

r 2
know that q is the order of G, but the elements e, a, a , ,

aqr-1 give us r distinct solutions of the equation xq

Now suppose b EG and its order is qs where s< r,
s - s

hence qr r
=(bq )q =e, i.e., b is a solution to the equation

r
xq=e. Since the only solutions in G of this equation are the

powers of a, b is a power of a, G is of order qr and G

is cyclic.

The general finite Abelian group G can be realized as

G=S S S where the q. are the distinct prime divisors
q

1
q2 qk 1

of 0(G) the order of G, and where the S are the Sylow sub-
cli

groups of G. Moreover, every element gE G can be written in

a unique way as g--zS
1S2

Sk where si E S . Any solution of
qi

xn=e xn=ein S is one of in G so that each S inherits
qi qi

the hypothesis we have imposed on G. By the remarks of the first

paragraph of the proof each S is a cyclic group; let a. be a
qi

i

generator of S We claim that c =al a2 ak
is a cyclic genera-

qi
for of G. To verify this all we must do is to prove that 0(G)

divides- m, the order of c. Since c we have that

m mal a
2

ak =e. By the uniqueness of representation of an element

of G as a product of elements in the S we conclude that each
qi

.a Thus 0(S ) I m for every i. This
1 qi
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0(G)= (S )O(S ) O(S )1m. However, m1 0(G) and so
ql q2 qk

0(G) =m.

This proves that G is cyclic. I

Lemma 2. 5 has as an important consequence Lemma 2.6.

Lemma 2. 6. Let K be a field and let G be a finite subgroup of

the multiplicative group of nonzero elements of K. Then G is

a cyclic group.

Proof. Since K is a field, any polynomial of degree n in K[x]

has at most n roots in K. Thus in particular, for any integer

n, the polynomial xn-1 has at most n roots in K, and all

the more so, at most n roots in G. The hypothesis of Lemma

2. 5 is satisfied, so G is cyclic.

Even though the situation of a finite field is merely a special

case of Lemma 2. 6, it is of such wide- spread interest that we single

it out as Theorem 2. 7.

Theorem 2. 7. The multiplicative group of nonzero elements of a

finite field is cyclic.

Proof. Let F be a finite field. By merely applying Lemma 2. 6

with F=K and G= the group of nonzero elements of F, the

result drops out.



10

Returning to Proposition 2.4, since the nth roots of unity form

a finite subgroup under multiplication, so by Theorem 2.7 this group

is cyclic. Also any cyclic generator of the group must then be a

primitive nth root of unity. This proves Proposition 2.4. 11

We shall now prove that the number of primitive nth roots of

unity is (1)(n),-2
/ the number of elements of order n in a cyclic

group of order n.

First, if n is a power of a prime number, n=pt, all pt

powers of , excepting the pt -1 powers of 03 are elements of

order n. Hence we have

(2.1.1) (I)(Pt)=Pt-Pt-l= Pt-1 (P-1) = Pt (1-p)

Secondly, if n is decomposed into two relatively prime fac-

tors n=rs, every element of order n is uniquely representable

as the product of an element of order r by an element of order s

and, conversely, every such product is an element of order n. The

elements of the rth order belong to the cyclic group of order

generated by s; their number is 43.(r). Similarly, the number

of the elements of order s is 4(s); thus, for the number of the

2/ 4(n) is also the number of the natural numbers < n relatively
prime to n. 4 n) is called Euler's phi-function.



products we have

If
m ti

=

i=1
prime powers of prime numbers, the above formula yields by repeated

cl)(n) =1)(r)(1)(s)

is the decomposition of n into relatively

11

application.

1 2
t t t

cl)(n)=cHP
1

p 2
Pmm

) =4 (p 11 )cI)(p 22) (I)(Pmm);

hence by (2. 1. 1)

t -1 t -1 t -1
(0( =P

1

1
(13

1
-1)P 2

2 (p2 -1) .. P (p -1)

1

= n(1 - 1) (1- ) (1- 1

P2
1

Pm

Thus we have Proposition 2.8.

Proposition 2.8. The number of the primitive nth roots of unity is

cl)(n) =n 711 (1- P) .

We shall close this section with one additional remark.

The primitive nth roots of unity are of absolute value 1 and

being pairwise complex conjugates of modulus 1, the product of all

the primitive nth roots of unity is 1.

§ 2. Definition of the Cyclotomic Polynomial

The cyclotomic polynomial is defined as



(2. 2. 1)

21111

Q(x) = II (x- e
n (f, n) =1

12

in which the index f ranges over the natural numbers prime to n
2 ni f

and less than n and all e where (i , n)=1 are primitive

nth roots of unity, then

(2. 2. 2) Qn(x) = 0

represents the equation of degree On) which the primitive nth

roots of unity satisfy.

If n > 2, the roots fall into complex conjugate pairs, and

hence the polynomial Qn(x) is always positive for real x.

Since xn-1 can be expressed as a product of linear factors,

actually as
2k1li

xn- 1 = n-(x- e ) where k = 0, 1, 2, , n-1.

211i 2(n- 1) fli

(x-1)(x-e ) (x- e ),
n

the definition of the primitive root shows that these factors can be

grouped into distinct sets, each set being Qd(x) for some integer

d dividing n, and 1 < d < n. Thus we have

(2. 2. 3) xn-1 =

I
Q (x)

din d

Taking logarithms yields the equation



log(xn- 1) = log II Qd(x) = E log Qd(x)
din din

whence by the MObius inversion formula--3/ of elementary number

theory follows

(2. 2. 4) log Qn(x) = (d)log (x71.- 1)

din

where µ(d)(d) is the MObius function-4/ so that we have another

expression of the cyclotomic polynomial

(2. 2. 5) Q (x) = II (x d-n
din

§3. The Properties of the Cyclotomic Polynomial

13

In the preceding sections, we have discussed about the nth roots

of unity and defined the cyclotomic polynomial, but we need to know

further information about its properties to develop this work. Now

we shall observe a couple of the elementary properties of it through

3 / Mbbius inversion formula; If F(n) = Ef(d) for every positive
din

integer n, then f(n) = E µ(d)F(n /d).
din

MObius function On) is defined by4/

N(n)

1 if n = 1
0 if p2in for some prime p

t(-1) if n = pi pz pt is a product of distinct primes.
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theorems and their proofs.

Theorem 2.9. The cyclotomic polynomial Qn(x) of order n is

a monic polynomial of degree ci)(n) with integer coefficients.

Proof. We employ induction. The theorem is true for 2.

Assume it to be true for all Q (x), k < n. Now

(2.3.1) xn-1 = Q (x) n Q (x) = Q (x) G (x) .
n clIn

d< n

But here, since d < n, G
n
(x) is a product of monic poly-

nomials with integer coefficients, hence it is also monic with integer

coefficients. Then

n
Q (x) =

x -1
n Gn(x)

Long division produces only integer coefficients here because

the divisor has highest coefficient 1.

Now as to the degree of Qn(x), if we assume the degree

(13(d) for Qd(x)' d < n, we have from (2. 3. 1), if v is the

degree of Qn(x):

n = v + cl)(d) = v- ci)(n) + ci)(d)

dFn din
d< n

Thus v = ci)(n), in view of one of the theorems of elementary
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number theory5/(13, p. 36). I

Next we shall observe the irreducibility of Qn(x) in the

rational field R. Before preceding with the argument we shall

treat a useful lemma attributed Gauss concerned with primitive

polynomials.

Definition 2.10. A nonconstant polynomial

f(x)=a
0

+a
1
x+ +a xn,

where all a., i = 0, 1, 2, , n are integers is said to be primitive

if the greatest common divisor of all a. is 1.

6/Lemma 2.11. (Gauss) If Ro is a U. F. D. then a product

of two primitive polynomials of Ro [x] is again primitive.

Proof. Let

and

f(x) = a
0

+a
1
x + +a xn

g(x) = b
0

+b
1
x +... +b xm

be primitive in R
o

[x] and suppose that

f(x)g(x) = co + clx + +cn+nixn+rn

is not primitive.

/Theorem; For n > 1, we have E (1)(d) = n

6
d I n/

U. F. D. , unique factorization domain.



Then there exists a prime p such that p I c. for all i.

16

Since f(x) is primitive, p is not a factor of all a. and we

suppose that an, is the last a. not divisible by p. Similarly

let brill be the last b. not divisible by
1

We now consider the coefficient

p.

cm' +n'
= aobm'

+n'
+a

1
bm'

+/V- 1+
+an' - 1 m' +1 +an' bm'

+ani +lbm1-1+ +an'+mlbo .

Since all the b. before the term a b
1 n' m' are divisible by

p and since all the a. after this term are divisible by p and

since cm'
+ni

is divisible by p, p I an' bm' . But p is not a

divisor of an' or of bm' and this is a contradiction. I

Theorem 2.12. Qn(x) is irreducible in the rational field Ro.

Proof. (10, p. 112-113) . Suppose that Qn(x) = h(x)k(x) where

h(x) is irreducible in Ro [x] and deg h(x) > 1. By Gauss' lemma

we may assume that h(x) and k(x) have integer coefficients and

leading coefficients 1.

Let p be a prime integer such that p4'n and let be

a root of h(x). We shall show that is a root of h(x). Since

(p, n)=1 , is a primitive nth root of unity and, if

root of h(x)

is not a

is a root of k(x); consequently is a root



17

of k(xP). Since h(x) is irreducible in R o[x] and has as a

root, h(x) k(xP). It follows (as above) that k(xP) = h(x)1(x), where

Q(x) has integer coefficients and leading coefficient 1. Also we have

xn-1 = Qn(x)p(x) = h(x)k(x)p(x) and all of these polynomials have in-

teger coefficients and leading coefficients 1.

We now pass to congruences modulo p or, what is the same

thing, to relations in the polynomial ring I [x]. Then we obtain

(2.3.2) = 71(x)1(x)73(x)

where in general, if f(x) = aoxn+a
1
xn-1+. +anEI[x], then

f(x) =.oxn+a
1
xn+1+ +ln' a.

1 1
= a. +(p) in I . Similarly, we

have k(xP) = h(x)7 (x).

On the other hand, using aP = a for every integer a, we

see that

p n
=
P Pnf(x) = (a x + +a )p a x + +aP

o n o n

=
a xpn

for any polynomial f(x). Hence ic(x)P = ic(xP) = 111(x)7 (x) which

implies that (h(x), k(x)) 1. Then (2. 3. 2) shows that xn-1 has

multiple roots in its splitting field over I . Since p t n this is

impossible and so we have proved that is a root of h(x) for

every prime p satisfying p 'n. A repetition of this process
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shows that r is a root of h(x) for every integer r prime to

n. Since any primitive nth root of unity has the form e., (r, n) =1

we see that every primitive nth root of unity is a root of h(x).

Hence h(x) = Qn(x) and Qn(x) is irreducible in Ro[x]. I

Finally we shall observe one more interesting theorem and

close this chapter.

Theorem 2.13. The coefficients of the cyclotomic polynomial

Qn( x) for n >1 are symmetric to the midterm.

Proof. Let

then

Qn( x) = x°11) + a
1

x°I1)- 1 +... + 1.

[Qn x()]x(I)(n) must be Qn(x) over again, for if is a

primitive root, so is

But

Thus

1

n
( ) x

On) = xc(n)
1)x

)(n)- 1
+ +1

a
4(n)-i

= a
i

i = 1, 2, ,(1)(n). I



CHAPTER 3. SOME IDENTITIES AND THEIR APPLICATIONS

§1. Some Identities and Their Proofs

From the definition of the cyclotomic polynomial

(3. 1.1) Q (x) = II (xn/d -1) ti(d)
n din

19

we can derive a few useful and important identities. Here we shall

make a list of these identities and give proofs of them.

Identity 3.1. If p is a prime

Q (x) = x13-1 + xp- 2 + +1.

Proof. By (3. 1. 1)

Q (x) = II (xPRI_ op.(d)

dip

P-
1)

P-(1) (x- 1)
OP)

= (xP- 1) (x-1) 1-

(xP- 1) - 2= x- 1p +xP + +x2 +x +1
(x- 1)

Identity 3. 2. If p is a prime and for an integer r > 1

r- 1
Q r(x) = Q (xP



Thus

Q r(x) 17 (xP .01,4(c1)

P P

20

r

(xP-/)((xP-/)A(1).3(13

P
r-1

r

-1)P(P)(xPr-2 P(P)... x -1)
r-

(x- 1f(Pr)

r- i

(x
I-qP

-1

r
r- 1

(xP
r_

1)

Oo the other hand

r
Q

P
(xP ) ((xP )P/d_-((d)

diP

ip

r- 1
((XP )P11(1). ((xP

r-I

r- 1

)...1)4(1))

((xP )P
r- 1

-1)((xP )1)- 1

r
(x P

zz -1)
r-1

(xP -1)

Q r(x) Q (x131.-1).
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Identity 3. 3. For n = p1 1
P.

Q(x) = Q (xn P
Ps

Proof. By (3. 1. 1)

where if jf

r _
P

I

rs- I

(x) (x -1) IT(x 3-1)
r1 rs n/pi nip p.p

P1 Ps n(x - I) II(x
i k-

1)

range from 1, , s and in the denominator the

products extend over the combinations 1, 3, 5, at a time of

P1,13 2' , ps
; in the numerator, 2, 4, 6, at a time.

On the other hand

r -1 r -1 r -1 r -1
sr -1 r -1 1 1

1 s P1 Ps P Ps miPiL P.PI Ps 1((x )111-1)JI((x ) 3-1)...Q (x ) =
P1P2 Ps r -1 r..-1 r -1 r

s
-1

1 s 1

n((xp
13 rr1/13.s 1 P1 Ps mjP.PPIK13

) -1)n((x

where M PIP2 Ps

Thus Q r r
1 2

P
1

p
g

n /p.P.
(x

n
-1) II(x 1 3- 1)

nip. n/p.p.p
II(x 1-1) II(x 1 3 k-1)

rs (30 = (2
P1P2. Ps(x

r
1
-1 rs -I

P Psp1
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Identity 3.4. If n is odd, then

Q2n(x) = Q (-x) .

r
l

r
2

rs
n = p

1
p ... psProof. Let where n is odd. Then by (3. 1. 1)

Q
2n

(x)=

2n/2p. 2n/p.p.
2n(x -1)(H(x 1-1) II(x 1 3-1)

2n/2 2n/pi 2n/2p.p. 2n/P.1 P.P3 k
((x -1)1-1(x -1))(H(x 1 3-1)11(x -1))

n/pi 2n/p.p.
(x

n-1)(xn
+1)(11(x -1)1I(x

1 .3-1)
2n /p, n/p.p. 2n/p.p.p

((xn-1)11(x 1-1))(II(x 1 3-1)11(x 1 3 k-1)

nip. 2n/p.p.

2n/p n/p.p. 2n/p.p1 3-1) Ii(x.p1 k- 1)
n/p. n/p.p. n/p.p.

(x 1 3+1)4(x -1)17((x -1)(x 1 3+1))
n/p. nip. n /p.P.Pk

11((x 1-1)(x 1+1))II(x /PiP3-1)11((xn/PiP
JPk --1)(xn 1 3 +1))

n/p. n/P.P.P P
(xn+1)II(x 1 3+1)II(x

1 3 k t
+1)

n/pi n/p.p.pk n/P.P.P P P
+1)1-1(x 1 3 +1)17(x 1 3 k t u+i)

On the other hand



n/p.p,
((-x)n-l)n((-x) 1 3-1)

Qn(-x) = n/p. n/p.p.p
n((-x) 1- 1)17((-x) 1 3 k-1)

n/p.p.
-(xn

+1) IT((-x) 1 3-1)
n/pi n/p.1 p.p

k
II((-x) -1)II((-x) 1))

sC2
n/pip. C n/p.p.p p

(-1)(x +1)(-1) 11(x 41)(-1)8 411(x
1 3 k
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sC, nip. C .pp.pt C 11/P.P.A_P P3 K t u+1)(-1) III(x 1+1)(-1)s, 3 ri(x
1 j

1C+1)( -1)s
5

IT(x

sC1 s
C2 n/P.P. 11/P P PkP

(-1)(-1) (-1) ..(-1)s s(xn+1)II(x 1 J+1)II(x 1 t+1)-
n/p, n/p.p.p n/P.P.P P P1+0,1(x 1 k+o 1 3 k t u

sCi+sC2+. +
s s 2 s s s

C
s

but (-1) (-1) (-1) = (-1) and

2s
s

-1
C

1
+

s
C

2
+ +

s
C3 = 2s-1 so that (-1) = -1. Therefore

Thus

n
n/p.p.

11/P'P'PkPt(x+1)II(x 1 3+1)17(x 1 3 +1)
Qn(-x) = n/pi n/P1 .PJP k 1P.P+011(xn/P.3kPtuP

I-1(x +1)11(x

Qn(x) = Qn(-x)

Identity 3. 5. If p is a prime, not dividing n,

Q (xP)
Q (x) = n

pn Qn(x)

r
2

rs
Proof. Let n = p1 1p2 ... ps where p n then by (3.1. 1)
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pn/p 13. pn/pp. /MI 13 P P. Pk Pnict13.1210t
Q (x)=(xPn-1)(11(k 1-1)(n(x 1 3-1)1I(x 13 -1)I1(x 13

-1)

pn pn/p. P/1/13 P.P. P/1/13.P.P
((xP11/13-1)11(x 1-1))(11(x

1 3
-1).11(x

1 3 k-1)

n/p.
1

pn/p.p. n/p.p.p
pn 1 3 k

(x -1)11(x -1)11(x -1)11(x -1)
pn/pi n/p.p. Pn/P.P.P

1 3 k
(x -1)11(x -1)1I(x 1 3-1)I1(x -1)

On the other hand

n/p.p.
((xP) n- 1)11((xP) "- 1)

Qn(xP)
1

k
nip. n/p.p.p

11((xP) 1-1)11((xP) 1)*

O (x) n /p.p.n (xn-1)11(x 3-1)
n/p. n/pi.p.pic

11(x 1-1)11(x -1)

Thus

pn
nip. pn/p.p. n/p.p.p

1 1 3 k(x-1)11(x -1)11(x -1) 11(x -1)
pn/p. n/p.p. pn/p.p.pk

(x -1)11(x -1)I1(x 1 3-1)11(x -1)

Qn(xP)
Qpn(x) = Q(x)

n

§2. On the Coefficients in Case of n=pq

By definition of the cyclotomic polynomial Qn(x), for n=pq

(p< q, primes), is given by
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(3. 2. 1) Q (x)
Pq (xP- 1)(xcl- 1)

(x Pq- 1)(x- 1)

A. Migotti in 1883 and A. S. Bang in 1895 have proved that the

coefficients of Q
Pq

(x) are ± 1 or 0. In a recent paper Sister

Marion Beiter in 1964 has given another proof of it. She also has

determined the middle coefficient of Q (x). In 1966 L. Carlitz
Pq

has determined the number of non-zero terms in Q (x).
Pq

In this section we shall review these theorems one by one.

Theorem 3.6. (General Coefficients)

Let Q
Pq

(x) =

(3. 2. 2) cm

cl)(Pc1) m
c x . In Q (x)

Psiq

- 1)6 if m = a q + f3p + 8 in exactly one way,

otherwise

where cl)(pq) is Euler Is 4- function and a, f3 are nonnegative

integers and S = 0, 1.

Proof. From (3. 2. 1) it follows that
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Q (x) (xPc1-1)(x-1)/(xP-1)(0-1)
pq

= ( 1- x)( 1 +xcl+ +)((13- 1)q)( 1 +xP +x2P +

CO p- 1 oo

- xaq+1
pp

a =0

(-1)5xa q+
13p+

5

a, R 5

where a runs through the integers from zero to p- 1, p is any

nonnegative integer, and 5=0, 1. Then c in Q (x) is the summ pq

of the coefficients of all terms on the right with exponent

q+ pp+ 5=m. Where no such partition exists, c is zero. Ifm
5there is exactly one partition, c equals (-1).

m

Assume that m can be partitioned in two ways,

with S=S
1 2'

m a1c1 + 131P + 61

= a, q + 132p + 62

Then q( a
1-

a 2) =p( (3 Thisp 1) . This implies that p

divides a -Q. But since a< p, ja1 -a.21< p. Therefore

a
1- a 2=13 2-

p
1=0,

and the two partitions are identical. Hence,

when two distinct partitions of m in the form (3. 2. 2) exist, in one

of them 6 = 1, in the other 6 = 0. In this case c is
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(-1)1+(-1)0 = 0, and the theorem is proved. II

Theorem 3.7. (Midterm Coefficient)

In Q (x), when m=cp( pq) /2, c =(- 1)k-
1, where k is

pq tn

the least positive solution of the congruence px 1 (mod q).

Proof. Set m = cl)(pq) /2 in (3. 2. 2). Then

(p-1)(q-1)/2 = aq PP + 6

p(2(3 + 1) a 1 - 25 (mod q),

px = ± (mod q) where x = 2f3 + 1

Let k be the solution of px = 1 (mod q), 1 < k < q-1. Then

q-k is a solution of px -1 (mod q).

Consider pk 1 (mod q). Then

pk = 1 + qh h = (pk -1)/q,

= (k -1)/2 a = (p -1)/2 - h/2.

In the case k is odd, these values of a and 3 are

integral, 8 = 0, and the midterm coefficient is 1.

If k is even, q-k is odd, 5=1, and the midterm coeffi-

cient is -1. Thus the theorem is proved.

Remarks. In the special case q = sp+1, k is odd and the mid-

term coefficient is +1. Similarly, for q = sp- 1, k is even

and the midterm coefficient is -1.
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In any case, the roles of p and q in the congruences may

be reversed, without affecting the oddness or evenness of k.

The following table gives the value of the midterm coefficient

cm of Q
Pq

(x) when p is 3, 5, or 7. All values of n=pq and

less than 143 reduce to one of these special cases.

3

5

7

a c
m

1, 2

1, 3, 5

-±1 according as q = ± a (mod p).

Theorem 3.8. (The Number of Nonzero Terms)

Let 0
0

(pq) denote the number of terms with positive coeffi-

cients in Q
Pq

(x). Take q > p and define u by means of

qu a -1 (mod p) (0 < u < p). Then we have

0 o(pq) p-u)(uq+ 1) /p.

Proof. Let 0
0
(pq) denote the number of terms with positive

coefficients, 01(pq) the number of terms with negative coefficients

and the total number of nonzero terms.
et(Pc1)

00(pq) +

Since Q (1) = 1 it follows at once that 0 0(pq)=1+01 (pq),
Pq

so that

(3. 2. 3) 0(pq) = 2e0(pq)-1.

We may assume q > p and define u by means of



(3. 2.4) qu E -1 (mod p) (0 < u < p)

Then by (3. 2. 1) we have

p- 1 p -1 P-1
Q (x) =

pq
1-x xj q 1 xjq

1-x1) LL.. 1-x
=0 i=0
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with each term xicl of the first sum on the extreme right, associ-

ate the term 44+1 of the second sum for which iq+ lzjq (mod p).

By (3. 2.4) it follows that i = j +u (mod p). Then

p- 1
1

(
j qx(j+u)q+1)+(3. 2. 5) Q (x) =

Pq 1-xP
j =0

j +u< p

1

1-xP
j =0

j+u> p

p- 1
jq x(i+u-og+')

ur,+1 p- 1-u (n_04._ u- 1

xiq + 1xjq 1-x' r1-x

1-xP 1-xP Li
j=0 i=0

The first sum in (3. 2. 5) consists of the terms of Q (x) with
pq

positive coefficients; there are evidently (p-u)(uq+1)/p such

terms. The second sum in (3. 2. 5) accounts for the negative terms

of Q (x); there are u(pq-uq-1)/p
pq

(p-Ouq-1-1) u(pq-uq-1) = 1,
p p

as we should expect.

This proves the theorem. II



Examples and Remarks

1. If p = 3 and q = 3k+1 and 3k+2, then u =2 and

u =1, respectively, so that

00(3(3k +1)) = 2k+1

00(3(3k +2)) = 2k+2

2. If = 5
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and q = 5k+1, 5k+2, 5k+3 and 5k+4, then

u = 4, 2, 3 and 1 respectively, so that

00(5(5k +1)) = 4k+1

00(5(5k +2)) = 6k+3

00(5(5k +3)) = 6k+4

00(5(5k +4)) = 4k+4

We remark that if we assume only that p and q are

relatively prime but otherwise arbitrary integers greater than one,

the above theorem continues to hold.

The notation is somewhat ambiguous; to avoid confusion we

may write Q (x) in place of Q (x) and 00(p, q) in place of
P, q Pq 0

Then we have, for example

00(4, 4k+1) = 3k+1,

00(4, 4k+3) = 3k+3.

00(pq).

3. Also for arbitrary p we have

00(p, kp+1) = k(p-1) +1

00(p, kp+p-1) = k(p-1) +p-1
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For p odd, on the other hand, we get
1 1

00(p, kp +2) =lic(P
2
-1) +-2-(P+1),

1 1
0

0 4
(p,kp+p-2) = -(k +1)p2-1)- .1.(p-1)

The last four formulas indicate how strongly the value of

00(p, q) depends on the residue of q(mod p).

§3. The Coefficients of Q (x) for n < 105

One of the most striking properties of the cyclotomic poly-

nomial Qn(x) is the smallness of its coefficients.

We have seen in §2 of this chapter that the coefficients of the

cyclotomic polynomial Qn(x) for n=pq, where p, q are distinct

primes, are all ±1 or 0.

Also we have verified a few identities about the cyclotomic

polynomial in §1 of this chapter.

Using these identities and the theorems we can easily verify

that in fact the coefficients of all cyclotomic polynomials Qn(x)

for n < 105 are ±1 or 0.

From definition of the cyclotomic polynomial we have

Q1(x) = x- 1. Now we shall quote the theorem and identities in §1

and §2 and demonstrate this fact in Table I.



Table I. On the coefficients of Qn(x) for n4 105.

Qn(x)
Factorization

of
n

Theorem
and

Identities
Applied

Concerned
Qn (x) Q(x)

Factorization
of
n

Theorem
and

Identities
Applied

Concerned
Qn (x) Q(x)

Factorization
of
n

Theorem
and

Identities
Applied

Concerned
Qn(x)

2
Q1 n = 1 Def. Q20 n =2 5 (3) n

'10 939 n = 3 13 (6)

92 Prime (1) Q21 n = 3 7 (6) Q40 n = 23.5 (3) 910
Q3 Prime (1) Q22 n=2 11 (6) Q41 Prime (1)

Q4 n =22 (2) Q2 Q23 Prime (1) Q42 n = 2.3.7 (4) Q21

Q5 Prime (1) Q24 n = 23 3 (3) Q6 Q
43

Prime
2

(1)

Q6 n =2 . 3 (6) 425 n = 52 (2) 45 944
n =2 11 (3) Q2222

Q7 Prime (1) Q26 n = 2 13 (6) Q45 n =32.5 (3) Q15

Q8 n =23 (2) Q2 Q27 n =33 (2)
93 946

n = 2 23 (4) Q23

Q9 n =32 (2) 93 Q28 n = 22 7 (3) Q14 Q47 Prime (1)

Q10 n = 2 5 (6) Q29 Prime (1) Q48 n =24. 3 (3) Q6

Q11 Prime
2

(1) Q30 n = 2 3 5 (4) Q15 Q49 n = 72 (2) Q7

Q12 n = 2 3 (3) Q6 Q31 Prime (1) 450 n =2. 52 (3) 910
Q13 Prime (1) Q32 n =25 (2) 92 951

n = 3 17 (6)

414 n = 2 7 (6)
933

n = 3 11 (6)
_

Q52 n = 22 13 (3) Q26

Q15 n = 3 5 (6) Q34 n =2 17 (6) Q53 Prime (1)

416 n =24 (2) Q2 Q35 n = 5. 7 (6) Q54 n = 2 33 (3) Q6

Q17 Prime (1) 436 n = 22 32 (3) Q6 Q55 n = 5. 11 (6)

418 n = 2 32 (3) Q6 937 Prime (1) Q56 n = 23 7 (3) Q14

Q19 Prime (1) Q38 n = 2 19 (6) 957 n = 3 19 (6)



Table I (continued)

Qn(x)
Factorization

of
n

Theorem
and

Identities
Applied

Concerned
9

n
(x) Qn (x)

Factorization
of
n

Theorem
and

Identities
Applied

Concerned

9(x)n 9n(x)

Factorization
of
n

Theorem
and

Identities
Applied

Concerned
Qn(x)

5

458
n = 2 29 (6) Q77 n = 7. 11 (6) Q96 n = z 53 (3) Q6

959 Prime
2

(1) Q
78

n = 2 3 13 (4) Q39 Q97 Prime
2

(1)

Q60 n = 2 3 5 (3) Q30 Q79 Prime
4

(1) Q98 n = 2 7 (3) Q14

961 Prime (1) 480 n = 2 5 (3) 410 499
n = 32 11 (3) 933

462
n = 2 31 (6)

481
n = 34 (2)

43
Q100 n = 22 52 (3) Q10

463 n = 32 7 (3) Q21 Q82 n = 2 41 (6) Q101 Prime (1)
6

Q64 n = 2 (2) Q2
483

Prime ( 1 ) Q102 n = 2 3. 17 (4) Q
S1

2
965 n = 5 13 (6) Q84 n =2 3 7 (3) 442 4103

Prime (1)

Q66 n = 2 3 11 (4) Q33 Q85 n = 5 17 (6) 9104 n = 22. 13 (3) 926

967 Prime
2

(1) Q86 n = 2. 43 (6)

968 n = 2 17 (3) Q34 Q87 n = 3 29
3

(6)

Q69 n = 3 23 (6) Q88 n = 2 11 (3) 422
Q70 n=2 5' 7 (4)

435 989
Prime (1)

Q71 Prime
3 2

(1) Q90 n=2 5 9 (4) Q45

972 n = 2 3 (3) Q6 Q91 n = 7. 13 (6)

473 Prime (1) Q92 n = 22 23 (3) Q46

Q74 n = 2 37
2

(6) Q93 n =3 31 (6)

475 n = 3 5 (3) Q15
494

n = 2 47 (6)

476
n = 22 19 (3) 438 495 n = 5. 19 (6)
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(1) If p is a prime, Q (x) = x13-1 +x13 2 + +1
p

(2) If p is a prime, and for an integer r >1

r- 1
Q r(x) = Q (xP )

r -1 r -1
1 sr r P P

n P1
1

Ps
s(3) For ... Q r r (x) =Q (x 1 s

'
1 s 1

Ps
P

1
Ps

(4) If n is odd, then Q2n(x) = Qn(-x)

(5) If p is a prime, not dividing n,

Q (xP)
Q (x) npn Qn(x)

(6) For n = pq, the coefficients of Q (x) are ±1 or 0.
pq
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CHAPTER 4. THE ANALYSIS AND CORRECTIONS
TO E. LEHMER'S PAPER

§ 1. Schur's and Bungers' Theorem

In this section, before going to discuss E. Lehmer's paper we

shall state Schur's theorem and Bungers' theorem.

Theorem 4. 1. (Schur's Theorem)

There exist cyclotomic polynomials with coefficients arbitrarily

large in absolute value.

7/Proof:- ( 12). Let n P1P2. Pt' where t is odd and

p
1

< p
2

< . < pt are odd primes such that p 1-Fp2>
pt. To prove

Pt
the theorem it is sufficient to show that the coefficient of x in

Pt+1

Qn(x) is 1-t. This can be done by taking Qn(x) modulo x

we then get

t P.
Qn(x) II (1-x )/(1-x)

i=1
Pt-1 P1

p2
Pt- 1(1+x+ +x )(1-x )(1-x )(1-x )

Pt- 1
p1 p2 pt- 1 Pt+1

(1+x+ +x )(1-x -x - -x ) (mod x)
Pt

Collecting the coefficients of in this last expression we see

that it is precisely -(t- 1) so that as t increases we can exhibit

7 / This proof is credited to Schur.
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arbitrarily large negative coefficients of the cyclotomic polynomials

which proves the theorem.

The question now remains as to the boundedness of the coeffi-

cients of Qn(x) for a fixed t. We have already seen that for

t=1 and 2 these coefficients are actually 1, -1 or 0. The case

t=3 was discussed by Bungers' who proved the following theorem,

Theorem 4. 2. (Bungers Theorem)-8/

As n runs over all products of three distinct primes, the

cyclotomic polynomials Qn(x) contain arbitrarily large coefficients,

provided there exist infinitely many prime pairs.

His proof depends on choosing three primes, two of which

differ by 2, and in exhibiting a coefficient of Qpqr (x) equal to

(p +1)/2.

§ 2. Corrections to E. Lehmer's Paper

E. Lehmer in 1936 modified Bungers' proof using Dirichlet's

Theorem so as to eliminate the unproved assumption of the existence

of infinitely many prime pairs, but she made a careless mistake in

the process of proof. We shall now analyze her proof in detail and

8/ ..Gottingen Dissertation, 1934. The author has not seen the paper,
which is quoted by Lehmer (12).
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point out the part of the mistake and give a complete correct proof.

Let n=pqr, where q=kp+2, and r=(mpq-1)/2. For a

given p such primes q and r can always be found by

Dirichlet's Theorem. 9/

We proceed to show that the coefficient of xh, where

h = (p-3)(qr+1)/2 is (13-0/2 and hence can be made arbitrarily

large with p.

From definition of the cyclotomic polynomial with n = pqr,

we have

(4.2.1) Q (x) = r ,cpqr/d [1(d)
-1)pqr

But

dlpqr

(xpqr_1)(xqr_i (xpr_1(xpq_1-Y 1(xr
1)(xcl-1)(xp 1)(x-1) 1

(xpqr- 1 )(xp- 1 )xcl- 1)(x - 1)

(x- 1)(xPq - 1)(xPr- 1)(x
qr

1)

(1- xpqr)
= ( 1 +x +x2 A-- - +x13- 1 )( xcl- xr+xcl+r)

(1- xPc1)( 1-xPr)(1-xclr)

-9/ Dirichlet's Theorem: If a is positive and a and b are
relatively primes, then there exist infinitely many primes of the
form an +b.



(1 -xpgr)

0- xPq7(1- xPr)(1- r)

(4. 2.1)1
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= (1-xPqr)(1+xPc4x2Pq+ 3Pc1
qr 2qr 3air

x 4 f.,)( 1+x +x +x + )
_Expr 4x2pr÷x3pr

= (143q+x2Pq+x3Pq+ )(1+xqr-+x2qr+x3c1r-1- )

(i+xprix2pr4x3pr+...)-xpqr(1+xpq+x2pq+...)

qr 4x2qr pr _Fx2pr

= (1-1-xPq+x2Pq+ )(1+xqr+x2c1r+ )(1+xPr+x2Pr+...)

(mod xPqr)

= Exv
r
.Ex

p.pr

= Exvpq+X
qr+p.pr

i. e. Q (x) (1 +x+x z + +x P̀ 1 )(1-0-xr+xcl+r)
pqr

, Ex
vpq+X qr+p.pr (mod xPqr)

Since we are interested in the coefficient of x , the summa-

tion indices v, X , II satisfy the following inequalities:

(4. 2. 2) vqr < h, Xpr <h, p.pq <h.

We now consider the diophantine equation

(4,2.3) vqr + Xpr +11pq + w +E q = (p-3)(qr+1)/2 =h

where w p, and E = 0 or 1, it = 0 or 1.

The coefficient of xh is now given by the number of solutions
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of (4. 2. 3) with E = T1 minus the number of solutions of (4. 2. 3)

with E

In the second parenthesis of the right side of (4. 2. 1)' if

E =ri the signs of x are + and if E 1-1 the signs of x are -.

Taking (4. 2. 3) modulo PP q, and r we have, since

qr = (kp+ 2) (mpq- 1)/ 2 z-,- -1 (mod p)

vqr + w q + :7-, 0 (mod p),

Xpr + w + rir (p-3)/2 (mod q),

ppq+co-FEci = (p- 3)/2 (mod r).

Multiplying the last two congruences by k and m respec-

tively, we then get

kXpr + kw + r k(p-3)/2 (mod q)

kp.pq + mw+ mE q = m(p-3)/2 (mod r)

but kpr = kp(mpq- 1) = (q- 2)(mpq-1) /2 = 1. (mod q)

mpq = 2r + 1 ;7,- 1 (mod r)

and also q e 2 (mod p), r -1/2 (mod pq)

Thus we get

(4. 2. 4)

(4. 2. 5)

(4. 2. 6)

(A) = v -2E +

X k((p-3) /2 - (A) + /2)

N-
m((P-3)/2 - co+ E

(mod p)

(mod q)

(mod r)

We shall now show that if E = rl = 0. (4. 2. 3) has (p- 1) /2
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solutions, while in the other three cases (4. 2. 3) has no solutions.

(I) If E = 0 (4. 2. 4) implies w > v (mod p) but w < p and

v< p,. (4. 2.4) becomes w= v for, from (4. 2. 2)

v qr < h ===> v qr < 12-L3) (qr + 1)
2

v < (P-3)
2

Equations (4. 2. 5) and (4. 2. 6) become in this case

k((p-3)/2 - v )

m((p-3)/ 2 - v)

but also from (4. 2. 2)

(mod q)

(mod r)

(13-3) (qr+1)X pr < h X Pr 2

=.-> X< (P-3) < p < q
2

X < q and k(p- 3) / Z < q since q=kp+2.

p.pq < h p. p q < ( 23) (qr +1)

<
(P-3)

2
< r

< r and m(p- 3)/2 < r since r=(mpq- 1) /2.

Therefore these congruences are actually equalities, and since

v < (p-3)/ 2, we can take 0 through (p-3)/ 2 as values of v

and we have determined for each of the (p- 1) /2 values of v ,

corresponding values of X and which are such that



X < k(p-3)/2, so that

and

Apr < kpr(p-3)/2 < qr (p-3)/2 < h ,

< m(P-3)/2 so that

p.pq< mpq(p-3)/2 (Zr(2r +1)(p-3)/2 < h ,

41

so that all the variables are determined within the range (4.2. 2)

and hence in the case E = n = 0 (4. 2. 3) has (p- 1)/ 2 solutions.

(II) For E = 1, = 0 (4. 2.4) gives us w = v -2 (mod p), where

0 < co< p and 0 < v < (p-3)/2. But w< p, and v -2< p.

We then get w = v -2 .

Also w Ez- v -2 (mod p) implies w = tp+v -2 for some integer t.

If v = 0 we have co = tp -2 and co< p. Thus t = 1 and

co= p- 2 .

If v = 1 we have w = tp-1 and co< p. Thus t also must

be 1 and we get w = p- 1.

If v > 2 we have co = tp + /-2 > p for any integer Q > 2

and t > 1 , so that this contradicts the condition w< p .

Hence we have either w = v -2, or w = p- 1, or (A) = p- 2.

In the last tvvo cases we can use (4. 2. 5) to get

10/In Lehmer's paper, mpq(p-3)/2 < (2r+1)(p-3)/2, and this is
obviously a mistake since r = (mpq- 1) /2.
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k((p-3)/2 - -k(p ± 2)/2 (mod q).

X = q-k(p±1)/2> q-k(p-1)/2,

X pr > pqr-kpr(p- 1) /2 > pqr- qr(p- 1) /2 = qr(p+1) /2> h,

for, q = kp+ 2 implies q > kp and

qr(p+1)/2-h = qr(p+1)/2-(p-3)(qr+1)/2

That is,

so that

= (4qr+3-p) /2 > 0.

Hence for w = p- 1 or w = p- 2, (4. 2. 2) is violated for X pr,

and there are no solutions.

If w = v-2 < (p- 7) /2, we use (4. 2. 6) and obtain

m((p-3)/2 q) (mod r),

or

p. = r + m((p-3)/ 2 - w-q) > r + m(2-q).

Hence

> pqr + pqm (2-q)

pqr + (2r +1)(2-q)

= (qr +1)(p-2) +(4r-p-q+4)

> (qr+1)(p-2) > h

so that (4. 2. 2) is again violated and there are no solutions of

(4. 2.3) for E = 1, 11= 0.
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(III) In the next case E = 0, n= 1, we get from (4. 2.4)

1 11 /
( . 4 . )

2
(mod p) and v < (p-3) /2. But since w< p

1 1
v + -2 p, we have w .7.: v + -2 . Putting this value for w in

(4. 2. 6), we have

or

Hence

p. m((p-3)/2-v - -12) (mod r),

1p. = r+m((p-4)/2-v ) > r -2- m.

upq > pqr 1

pqm

pqr -1-(2r +1)
2

(qr +1)(p- 2) +(2qr + -r-p)

> (qr + 1)(p- 2) > h.

Thus this case also does not yield any further solutions.

3
(IV) In the last case E = = 12/we get from (4. 2.4) w v -

2
3

(mod p), but by the same reason as (III) we have w= v - -2 and

with the same procedure as above we get

or
1-1 = m(( p 3 ) / 2 - v + 2 - q) (mod r) ,

= r+m(p/2- v -q)> r +m(i- q).

11/E. Lehmer made a careless mistake in this part. She got from
(4. 2.4) ca= v (p+1) /2, but this is obviously wrong, so that her
proof of this part must be corrected.

12 InIn Lehmer's paper, the proof of this case is abbreviated.



Hence

ri.pq > pqr + pqm ( -q)

= pqr + (2r+1)( 3 -q)
2

= (qr+1)(p-2) + (3r +12- q-

> (qr+1)(p-2) > h .

Thus this case does not contribute any solutions.

Therefore the coefficient of xh increases with p, so that

44

we have proved the following theorem.

Theorem 4. 3 (Lehmer Ts Theorem)

As n runs over all product of three distinct primes the

cyclotomic polynomial Qn(x) contain arbitrarily large coefficients.
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CHAPTER 5. A GENERAL FORMULA AND ITS APPLICATIONS

§ 1. Holder's Formula and Newton's Identities

In 1936 0. Finder gave a simple formula for the "Ramanujan

sum" and in 1953 E. Gagliardo obtained it in another way. We shall

condense the argument of HOlder in the following.

By a "Ramanujan sum" we mean most often the sum of the kth

powers of the primitive nth roots of unity

(5. 1. 1) Cn(k) =

(i,n)=1

2 Trif
n

k

Ramanujan has given the value of this sum as

(5. I. 2) C (k) = 0-1-1) d

(n,k)

in which the dummy variable d ranges over all common divisors

of n and k.

This value can be represented in a simpler form. We shall

next deduce this, that (5. 1. 2) for k = 1, i. e.,, for the sum of the

primitive nth roots of unity

(5. 1. 3) Cn(1) = On)

If we cancel the greatest common divisors of n and k

in the terms of (5. 1. 1) there results
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(5. 1.4)

(5. 1. 5)

Cn(k) =

(Q, n) =1

in which

n = T

k = kr

with (n', k') = 1

27rilk'
n'

Since f runs through the numbers less than n and

relatively prime to n and hence to n', Ilk' is also relatively

prime to n' and the sum (5.1.4) consists of 4)(n) terms, all

being primitive n'th roots of unity but not all are distinct.

We can set, when / ' runs through the numbers < n' and

relatively prime to

(5. 1.6)

in which of
'

C (k)

27 if I
n'a e

(i n') 1

(i nI)=1

are positive integers whose sum is equal to cl)(n).

27ri
'

al 1(e
n'

The polynomial Qn(x) is an irreducible factor of xn-1

with integer coefficients and leading coefficient 1.
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The sum of the kth powers of the roots of equation Qn(x) = 0

is therefore an integer, positve, negative or equal to zero.

On account of the irreducibility of Q(x) .7-- 0 we con put into
21T i 211i h'

(5. 1. 6) in place of the root e n any other root e of the

equation, h' being relatively prime to nl.

Thereby results the relation

2Tri 'h'
Cn(k) = 'e

n'

(il,n1)=1

In this we now let h' range over the totality 4(n') of

numbers <n' and relatively prime to n' and sum once again.

On the right appears each of multiplied by the sum of all 4(n')

primitive nith roots of unity, which, by (5. 1. 3) is equal to 1.1.(n')

and we get

by (5. 1. 1)

4)( Cn(k) = ( a 12')p.(n')

(.12',n')=1
27r if 1 h'n'

Cn,(h') = e

(/',n1)=1

and if h' = 1, then by (5. 1. 3)

2Tr '

Cn,(1) = e = p.(nr)

However, since the sum of the af ' is equal to 4 (n), we get



C (k) = u (11')
n 4)(n') '

that is, the Ramanujan sum

(5. 1. 7)
)

Cn(k) =
4)(n

(-7)

4i(!_-30
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in which T is the greatest common divisor of n and- k.

Thus we call (5. 1. 7) Holder's formula.

In order to use (5. 1, 7) we shall need Newton's- identities on the

sums of power of roots of equations, We give a discussion below

which is based on the text of Oskar Perron (14, p. 1 50-1 51).

Let

f(x) = xn +alxn-1 +a 2xn-2 +... +an-lx +an.

The sums

(5. 1.8) Sri1 = xl + x2 + + xn 0, 1, 2, )

where x., i = 1, 2, ,n are roots of f(x) are obviously

(5. 1.9) S
0

= n,

We can write f(x) as

-a
1

(5. 1. 10) f(x) = (x-x1)(x-x2) (x-xn)

= xn +a xn-1 +... +an-lx +an
1



Then the derived polynomial of f(x) is

(5.1.11) ft(x) nxn-1+ (n- 1)a
1
xn-

2 + + an-1

On the other hand

(5. 1. 12)

but

f '(x) 1

f(x) -1 x - x,
1i=1

It follows that, by (5. 1. 10) obviously f(xi) = 0. Thus

f'(x) =

n n f(x) - f(x.)\s f(x) 1

/ x - x,
xi.

i =1 i =1 i

f(x)-f(x.) n-1 n- 2 n-1
= x + x.x + +x.

x-x. 1 1
1

n- 2
+ a 1(x

2 + x.x
n-3+

+ xn. 2) + + an-1
1 1

n- 2 2
= xn-1 +(x.1 +a

1
)x +(x. +a

1
x +a

2
)xn-3

+ n-1 n-+(x.
1

+a
1
x +... +an-1).

We sum this on i and get

(5. 1. 13) f'(x) =

i. =1

49

f(x)-f(x.) -
nxn- 1 +(S +na )xn 2

+(S +a S +na,..)x
n-3

x-x. 1 1 2 1 1 G
1

+ +(Sn-l+alSn-2+... + an-
2

+nan-
1)
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Since the right sides of formulas (5. 1. 11) and (5.1.13) repre-

sent the same polynomial f'(x), their coefficients must be identical,

therefore, after rearranging the resulting equations, we have

S1 + al = 0

(5.1.14)

S
2

+ a
1

S
1

+ 2a
2

= 0

S+aS++a S +
n-1 l n-2 n-2 1 -1)a =0

-1

We call (5. 1. 14) Newton's identities.

§2. General Formula

As mentioned in Chapter 2 we can define the cyclotomic poly-

nomial as

(5.2.1) Qn(x) = (x -
1
)(x--

2
) (x -

(1)(n))

(1:(n)
=-- (x - .)

i=1 1

where (1)(n) is Euler's-function and are the primitive nth

roots of unity.

Since the product of all primitive nth roots of unity is 1 we

can write (5. 2. 1) as

(5. 2. 2) On(x) = xci") +
cHn)- 1

alx act,(n)-lx + 1



Now we want to find the coefficient ak

k 1, 2, , c(n)-1.
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xci)(n)-k, where

Since all roots of the cyclotomic polynomial Qn(x) are

primitive nth roots of unity and the Ramanujan sum is the sum of

the kth powers of the primitive nth roots of unity, we can apply

HOlder's formula to Newton's identities and get the following recur-

sive formula.

C(k) +a
1
C(k-1) +a 2C(k-2) +- +ak- 1C(1) +kak = 0

That is

(5. 2. 3)

where

ak

C(k) +a1C(k-1)+a2C(k-2)+. +ak-1C(1)

I-1 ( (n, k)) cl)(n)

C(k) = Cn(k) and Cn(k)

4j (n, k

§3. Applications of General Formula

Now we would like to show, using HOlder's formula all coeffi-

cients of the cyclotomic polynomials Qn(x)
for n=105, and

n = 595.

We will see in Q
105

(x) for the first time the coefficients

that are other than -± 1 or 0, and in Q 595(x) the coefficient of

xh where h = (p-3)(qr+1)/2 coincides with that of E. Lehmer's

theorem.
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(I) Since n = 105 = 3 5 7 the Euler function

0105) = 105 (1- 3)(1- 5)(1- 47) = 48

so that the degree of Q105(x) is 48.

, 48x +aix47 +a2x46+ -Fa47x+1
Q105(x)

At first we want to get all values of C105(k) in which k

ranges over the integers from 1 through 47.

We can rewrite HOlder's formula as

Cn(k) = 0(n)
n

(1)(
)

(n, k)
(a, k)

where (n, k) is greatest common divisor of n and k.

Since we can factorize n = 105 the product of three primes

3, 5, and 7, for all values of k we consider the following 7

classes:

(1) the multiples of 3; 3, 6, 12, 18, 24, 27,

(2) the multiples of 5; 5, 10, 20, 25, 40

(3) the multiples of 7; 7,14, 28.

(4) the multiples of 15; 15, 30, 45.

(5) the multiples of 21; 21,42.

(6) the multiples of 35; 35.

(7) others; 1, 2, 4, 8, 11, 13, 16, ,

For the numbers that are multiples of two primes, we put
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these numbers in the class of the product of these two primes.

For example,30 is a multiple of 3 and 5 and also a multiple of

the product of 3 and 5, namely 15p we put 30 in the class of

the multiples of 15.

For each of the above classes we want to find, using Finder's

formula, the sum of kth powers of the primitive 105th roots of unity.

( i) The numbers of the class (7) are all relatively prime to 105,

that is (105,k) = 1 so that we have C105(k) = p(105) and

since 105 = 3 5 7, we get p.(105) = -1, therefore

C
105(k) =-1

(ii) For the class (1) of the multiples of 3, we have (105, k) = 3

so that

105
(105,k))c0(105) _11(35)4)(105) 1 X48

C 105(k) = 2 .
105 (i)(35) 24

0(105, k))

(iii) For the class (2) of the multiples of 5, we have (105,k) = 5,

so that

105

C (k) = µ((l05, (21).4)(105) 1 X48
105 105 cl)(21) 12

(1)( (105,k))

(iv) For the class (3) of the multiples of 7, we have (105, k) = 7,

so that
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105
).43.(105)

=1""( (105,k) _ki.(15) ()(105) 1x X48
C 105(k) 8

= 6,
105

ci)( (105, k) )

(v) For the class (4) of the multiples of 15, we have (105,k) = 15,

so that

105

C (k) ( (105,k)
).4)(105) p.(7).$(105) -1X48

105 (1)(7) 6
-8.

105
4)(105, k)

i) For the class (5) of the multiples of 21, we have

105

C (k) - µ((105,k))'
(1)(105)((105,k) 4(5)(1)(105) -1X48_

105 105 ck5) 4
I)( (105, k) )

( vii) For the class (6) of the multiples of 35, we have

Now,

105
II( (105 k) )1:1)(105) 11(3)4)(105)_-1X 48

C
105(k)

= ' = -24
105 '1)(3) 2

4)( (105,k)

we can apply these results in the general formula and get

all coefficients one by one as in the following table.
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Table IL All coefficients and Ramanujan sums of Qn(x) for n = 105.

C105(k) a
k

C105(k) ak C105(k)
ak

C(1) -1 a
1

1 C(17) -1 a17 1 C(33) 2 a
33

1

C(2) -1 a2 1 C(18) 2 a18 0 C(34) -1 a34 1

C(3) 2 a3 0 C(19) -1 a
19

0 C(35) -24 a
35

1

C(4) -1 a4 0 C(20) 4 a
20

-1 C(36) 2 a
36

1

C(5) 4 a
5

-1 C(21) -12 a
21

0 C(37) -1 a
37

0

C(6) 2 a
6

-1 C(22) -1 a
22

-1 C(38) -1 a38
38

0

C(7) 6 a7 -2 C(23) -1 a23 0 C(39) 2 a
39

-1

C(8) -1 a
8

-1 C(24) 2 a
24

-1 C(40) 4 a
40

-1

C(9) 2 a
9

-1 C(25) 4 a
25

0 C(41) -1 a
41

-2

C(10) 4 a
10

0 C(26) -1 a
26

-1 C(42) -12 a
42

-1

C(11) -1 all 0 C(27) 2 a
27

0 C(43) -1 a
43

-1

C(12) 2 a12 1 C(28) 6 a
28

-1 C(44) -1 a
44

0

C(13) -1 a13 1 C(29) -1 a
29

0 C(45) -8 a
45

0

C(14) 6 a14 1 C(30) -8 a30 0 C(46) -1 a48 1

C(15) -8 a15 1 C(31) -1 a31 1 C(47) -1 a47 1

C(16) -1
a16 1

C(32) -1 a32 1

Thus in Q 105(x) we get -2 as the coefficient of x7 and

of x41

Note: In computation of C(k) and ak, actually we don't need to
compute all of them, for by one of the properties of the cyclo-
tomic polynomial the coefficients are symmetric to the mid-
term (in this case the midterm is a

24
x24).
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(II) Since n = 595 = 5. 7.17, the Euler 's cp.-function

1 1

7

1

4)(595):: 595 (1-
5
-)(1- -)(1--) = 384

17

so that the degree of Q595(x) is 384

Q595(x)
= x384+ a

1
x383+ a

2
x382+ +a

383
x+1

Employing the exactly same method as in the case of n = 105

we can classify all values of k as the following 7 classes. In

this case k ranges over 1 through 383,

(1) the multiples of 5; 5, 10, 15, 20, 25,

(2) the multiples of 7; 7, 14, 21, 28, 42,

(3) the multiples of 17; 17, 34, 51, 68, 102,

(4) the multiples of 35; 35, 70, 105, 140, 175,

(5) the multiples of 85; 85, 170, 255, 340.

(6) the multiples of 119; 238, 357.

(7) others; 1, 2, 3, 4, 6, 8, 9, 11, 12, 13,

For each of above classes, the sums of kth powers of the

primitive 595th roots of unity are as follows:

(i) The numbers of the class (7) are all relatively prime to 595,

that is (595,k) = 1 so that we have C 595(k) = 4(595) and

since 595 = 5 7 17 we get 11(595) = -1, therefore

C 595(k) = -1
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(ii) For the class (1) of the multiples of 5, we have (595, k) = 5,

so that

C (k)
µ(555)c1(595)595) 11(119)` (IS (595),- 1X 384

595 = 595 (1)(119) 96
)

(iii) For the class (2) of the multiples of 7, we have (595, k) = 7,

so that

595
14-- )(1)(595)7 _4(85) (1)(595) 1 X384_ 6C595(k) = 595 (1)(85) 64

(1)(7---)

(iv) For the class (3) of the multiples of 17, we have

,595,
ilt).(1)(595)17 =11(35).0595)_ 1X384

C
595(k)

=
= 16.

595 4)(35) 24
(1)(---17 )

(v) For the class (4) of the multiples of 35, we have

,595
Ilk 35 ).(1)(595)

C (k) _ 11(17) (1)(595) -1 X 384 -24.
595 ,k(595) cl)(17) 16

4' 35

(vi) For the class (5) of the multiples of 85, we have

595
11(-85 ).1)(595) _p.(7).4)(595) -1X 384

C
595(k)

= = -64.
595 4(7) 6

(1)(-85)

(vii) For the class (6) of the multiples of 119, we have
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595
il() (I)( 59 5)119 11( 5) 0 384) 1X 384

C
59 5(k) = 595 ci)( 5) 4

(1) ()119
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Table III. All coefficients and Ramanujan sums of Qn(x) for n = 595.

C595(k) ak C595(i) ak C
595

(k) a
k

C(1) -1 a1 1 C(30) 4 a30 0 C(59) -1 2.59 1

C(2) -1 a2 1 C(31) -1 a31 0 C(60) 4 a
60

1

C(3) -1 a3 1 C(32) -1 a32 0 C(61) -1 a(, 1

C(4) -1 a4 1 C(33) -1 a33 0 C(62) -1 a62 1

C(5) 4 a
5

0 C(34) 16 a34 0 C(63) 6 a
63

1

C(6) -1 a6 0 C(35) -24 a35 1 C(64) -1 a64 0

C(7) 6 a
7

-1 C(36) -1 a36 1 C(65) 4 a65 0

C(8) -1 a8 -1 C(37) -1 a37 1 C(66) -1 a
66

0

C(9) -1 a9 -1 C(38) -1 a38 1 C(67) -1 a
67

0

C(10)
4 a10 -1 C(39) -1 a39 1

C(68) 16 a
68

0

C(11) -1 an -1 C(40) 4 a40 0 C(69) -1 a
69

0

C(12) -1 a12 0 C(41) -1 a
41

0 C(70) -24 a70 1

C(13) -1 a13 0 C(42) 6 a
42 -1 C(71) -1 a

71
1

C(14)
6 a14 0 C(43)

-1 2.43 -1 C(72) -1 a72 1

C(15) 4 a15 0 C(44) -1 a
44 -1 C(73) -1 a73 1

C(16) -1 a16
0 C(45) 4 a

45 -1 C(74) -1 a
74

1

C(17) 16 a17 -1 C(46) -1 a46 -1 C(75) 4 a
75

0

C(18) -1 a18 -1 C(47)
-1 a

47 0 C(76) -1 a
76

0

C(19) -1 a19 -1 C(48) -1. a
48

0 C(77) 6 a
77

-1

C(20) 4 a20 -1 C(49) 6 a
49

0 C(78) -1 a
78

-1

C(21) 6 a21 -1 C(50) 4 a50 0 C(79) -1 a
79

-1

C(22) -1 a22 0 C(51) 16 a51 0 C(80) 4 a80 -1
C(23) -1 a23 0 C(52) -1 a

52 -1 C(81) -1 a
81

-1

C(24) -1 a24 1 C(53) -1 a
53 -1 C(82) -1 a

82
0

C(25) 4 a25 1 C(54) -1 a54
-1 C(83) -1 2.83 0

C(26) -1 a26 1 C(55) 4 a
55 -1 C(84) 6 a

84
0

C(27) -1 a27 1 C(56) 6 a
56 -1 C(85) -64 a85 1

C(28) 6 a
28

1 C(57) -1 a
57 0 C(86) -1 a86 1

C(29) -1 a29 0 C(58) -1 a58 0 C(87) -1 a87 0
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Table III (continued)

C 595(k) a
k

C595 k) a
k

C595(k) ak

C(88) -1 a
88

0 C(119) -96 a
119

1 C(150) 4 a150 -1

C(89) -1 0 C(120) 4 2 C(151) -1 a151 -1

C(90) 4 a
90

-1 C(121) -1 a
121

2 C(152) -1 a
152

0

C(91) 6 a
91

-1 C(122) -1 a122 1 C(153) 16 a
153

0

C(92) _1 -1 C(123) -1 1 C(154)
6

a154
1

C(93) _1 _1 C(124)
-1 a124 0

C(155) 4 a155 2

C(94) _1 a
94

0 C(125) 4
a125 -1 C(156) -1 a

156
2

C(95) 4 a
95

0 C(126) 6
a126

-2 C(157) -1
a157

1

C(96) -1 a
96

0 C(127) -1 a127 _2 C(158) -1 a158 0

C(97) -1 a97
1 C(128) -1 a128

2 C(159) -1 a
159

0

C(98) 6 a
98

1 C(129) -1 a129 -1
C(160) 4

a160 -1

C(99) -1 a
99

0 C(130) 4 a
130 -1

C(161) 6 a161 -2

C(100) 4 0 C(131) -1 a 0 C(162) -1 -2a
100 131 162

C(101) _1 a101 0 C(132) -1 a
132

1 C(163) -1 a163 -2

C(102) 16 a
102

-1 C(133) 6 a133 1 C(164) -1 a
164

-1

C(103) _1
103 -1

C(134) -1 a134 0 C(165) 4 a165 -1

C(104) -1 a104 -1 C(135) 4 a
135

0 C(166) -1 a166 0

C(105) _24 a105 0 C(136) 16 a
136

-1 C(167) -1 a
167

1

C(106) -1 a106 0 C(137) -1 a137 -2
C(168) 6

a168
1

C(107) -1 a107 1 C(138) -1 a138 -2 C(169) -1 a169 0

C(108) -1 a
108

1 C(139) -1 a
139 -2 C(170) -64 a170 1

C(109) _1 a 2 C(140) -24 a -1 C(171) -1 a 0
109 140 171

C(110) 4 a
110

1 C(141) -1 a141 0 C(172) _1 a
172

-1

C(111) -1 alai
1 C(142) _1 a142

1 C(173) -1 a173 -1

C(112) 6 a112 0 C(143) -1 a143 2 C(174) -1 a174 -1

C(113) -1 a113 0 C(144) -1 a144 3 C(175) -24 a
175

-1

C(114) _1 a -1 C(145) 4 a 2 C(176) -1 a 0
114 145 176

C(115) 4 a
115

-1 C(146) -1 a
146

2 C(177) -1 a
177

0

C(116) -1 a 1 C(147) 6 a 1 C(178) -1 a 1

116 147 178

C(117) -1 a117 0 C(148) -1 a148 0 C(179) -1 a179 2

C(118) -1 a118 0 C(149) -1 a149 -1 C(180) 4
a180 1



Table III (continued)

Cr (k)
95

C(181) -1

C(182) 6

(4183) -1

C(184) -1

C(185) 4

C(186) -1

C(187) 16

C(188) -1

C(189) 6

C(190) 4

C(191) -1

C(192) -1

C(193) -1

C(194) -1

C(195) 4

C(196) 6

C(197) -1

C(198) -1

a
k

a181

a182

a183

a
184

C(199) -1

C(200) 4

C(201) -1

C(202) -1

C(203) 6

C(204) 16

C(205) 4

C(206) -1

C(207) -1

C(208) -1

C(209) -1

C(210) 24

C(211) -1

a185

a
186

a
187

a
188

a
189

a
190

a
191

a
192

a
193

a194

a195

a
196

a
197

a

198

a199

a200

a201

a202

a
203

a
204

a205

a
206

a207

a208

a209

a
210

a211

1

1

1

1

1

0

-1

-1

-1

-1

-1

C
595(k)

C(212)

C(213)

C(214)

C(215)

C(216)

C(217)

C(218)

C(219)

C(220)

C(221)

C(222)

C(223)

C(224)

C(225)

C(226)

C(227)

C(228)

C(229)

0

1

1

1

2

1

0

0

-1

-1

-1

C(230)

C(231)

C(232)

C(233)

C(234)

C(235)

C(236)

C(237)

C(238)

C(239)

C(240)

C(241)

C(242)

-1

-1

-1

4

-1

6

a212 -1

a213 0

a214 1

0
a215

a216 1

a217 1

0
a218

a219 -1

-1

-1

6

4

-1

-1

- 1

- 1

4

6

-1

-1

-1

4

4

- 1

- 1

a220

-2
a221

a222 -2

a223 -2

a224 -1

0
a225

a226 0

a227 1

a228 2

a 2

229

a230 1

a231 0

0
a232

a233 -1

a234 -1

-1
a235

a236 0

a237

2
a238

C 595(k)

C(243)

C(244)

C(245)

C(246)

C(247)

C(248)

C(249)

C(250)

C(251)

C(252)

C(253)

C(254)

C(255)

C(256)

C(257)

C(258)

C(259)

C(260)

a
239

a
240

a
241

a
242

2

3

2

1

C(261)

C(262)

C(263)

C(264)

C(265)

C(266)

C(267)

C(268)

C(269)

C(270)

C(271)

C(272)

C(273)

-1

6

4

4

6

a
243

a244

a
245

a
246

a247

a248

a
249

a
250

a
251

a
252

a
253

a
254

a
255

a256

a257

a258

a
259

a

260

a261

a
262

a
263

a
264

a
265

a
266

a267

a
268

a
269

a
270

a271

a
272

a273

-1

16

6

0

-1

-2

61

-2

-2

-1

0

0

1

1

0

-1

-2

-2

-2

-1

0

1

1

2

2

1

0

0

-1

-1

-1

0

0

1
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Table III (continued)

C 595(k) ak C595(k) ak C595(k) a
k

C(274) -1 a274 1 C(305) 4 a305 -1 C(336) 6 a336 0

C(275) 4 a275 2 C(306) 16 a306 -1 C(337) -1 a337 0

C(276) -1 a276 1 C(307) -1 a307 -1 C(338) -1 a338 -1

C(277) -1 a277 1 C(308) 6 a308 0 C(339) -1 a
339

-1

C(278) -1 a278 0 C(309) -1 a309 0 C(340) -64 a
340

-1

C(279) -1 a
279

0 C(310) 4 a
310

1 C(341) -1 a
341

-1

C(280) -24 a280 -1 C(311) -1 a311 1 C(342) -1 a342 -1

C(281) _1
a281

-1 C(312) -1 a312
1 C(343) 6 a

343
0

C(282) _1 a282 -1 C(313) -1 a
313

1 C(344) -1 a344 0

C(283) -1 0 C(314) -1 a314 1 C(345) 4 a
345

1

C(284) - 1 a284 0
C(315) -24 a315 0 C(346) -1

a346 1

C(285) 4 a285 0 C(316) -1 a316 0 C(347) -1 a 1
347

C(286) -1 a286 1 C(317) -1 a
317

0 C(348) -1 a
348

1

C(287) 6 a
287

1 C(318) -1 a318 0 C(349) -1 a
349

1

C(288) -1 a288 0 C(319) -1 a
319

0 C(350) -24 a
350

0

C(289) 16 a289 0 C(320) 4 a320 0 C(351) -1 a351 0

C(290) 4 a290 0 C(321) -1 a321 1 C(352) -1 a352 0

C(291) -1 a291 -1 C(322) 6 a322 1 C(353) -1 a353 0

C(292) -1
a292 -1

C(323) 16 a323 1 C(354) -1 a354 0

C(293) -1 a
293

-1 C(324) -1 a
324

1 C(355) 4 a355 0

C(294) 6 a294 -1 C(325) 4 a325 1 C(356) -1 a356 1

C(295) 4 a295 0 C(326) -1 a326 0 C(357) -96 a357 1

C(296) -1 a296 0 C(327) -1 a327 0 C(358) -1 a358 1

C(297) -1 a297 0 C(328) -1 a328 -1 C(359) -1 a359 1

C(298) -1
a298 1 C(329)

6 a329 -1 C(360)
4 a360 1

C(299) -1 a299 1 C(330) 4 a330 -1 C(361) -1 a361 0

C(300) 4 a300 0 C(331) -1 a
331

-1 C(362) -1 a
362

0

C(301)
6 a301

0 C(332) -1 a332 -1 C(363) -1 a
363

-1

C(302) _1
a302 0 C(333) -1

a333 0 C(364) 6 a364 -1

C(303) -1 a303 -1 C(334) -1 a334 0 C(365) 4 a
365

-1

C(304) -1
a304 -1

C(335) 4 a335 0 C(366) -1 a366 -1
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Table III (continued)

C595(k) a
k

C
595

(k) a
k

C
595

(k) ak

C(367) -1 a367 -1 C(373) -1 a373 I -1 C(379) -1 a379 0

C(368) -1
a368

0 C(374) 16 a374 -1 C(380) 4 a380 1

C(369) -1 a369 0 C(375) 4 a375 -1 C(381) -1 a381 1

C(370) 4 a370 0 C(376) -1 a376 -1 C(382) -1 a352 1

C(371) 6 a371 0 C(377) -1 a377 -1 C(383) -1 a
383

1

C(372) -1 a372 0 C(378) 6 a378 0

E. Lehmer says that the coefficient of xh where

h = (p-3)(qr +1)/2 is (p-1) /2. In this case h = 120 so that the

coefficient of x 21 0 is 2 and this coincides with the result

obtained directly from the calculation method, that is, the coeffi-

cient of x120 is a264

Since the coefficients are symmetric to the midterm the

coefficient of x264 is also equal to 2.

We can also see that there exist other "large" coefficients

and "larger" coefficients (in absolute value) in addition to the coeffi-

cient ah
in Lehmer's case.

We observe that adjacent coefficients in Tables II and III do

not differ by more than 1 in absolute value. It would be of interest

to prove this in general or find a counterexample but this is beyond

the scope of the paper.
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