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ON THE CALCULATION OF THE COEFFICIENTS
OF CYCLOTOMIC POLYNOMIALS

CHAPTER 1. INTRODUCTION

§l. Purpose of This Paper

The aim of this work is to derive a general procedure for
finding recursively the coefficients of any cyclotomic polynomial.

Much has been done on the properties of the coefficients of the
cyclotomic polynomial but there has been little interest in obtaining
general formulas to get coefficients of any cyclotomic polynomial.
The methods suggested are very theoretical and complicated in actual
calculations.

The author tried to find a simple formula using results of
previous works, especially Holder's formula simplifying Ramanujan
sum and Newton's identities. Rather than formula this paper pre-
sents a well-defined algorithm.

Chapter 1 gives the results of previous works. General ideas
and some important theorems on the coefficients of the cyclotomic
polynomial are developed in Chapter 2 through 4. In Chapter 5 the
author explains in detail a procedure for obtaining the coefficients
and its application for the cases n =105 and n = 595.

Throughout this paper the author uses symbol Qn(x) for the

cyclotomic polynomial.



§2. The Results of Previous Works

There have been published many important and interesting
results of investigations on the coefficients of the cyclotomic poly-
nomial since the latter half of the 19th century., Here we shall
review some of them in chronological order.

A, Migotti in 1883 showed that the coefficients of Qn(x) are
all 21 or0 for n, a productof two primes but noted that the

coefficient of X in Q ) is -2, This result is quoted from

105%
[12].

A, S. Bang in 1895 [1] proved that no coefficients of Qn(x) for
n = pqr, (p< g< r; odd primes) exceeds p-1 and also proved that
the coefficients of Qn(x) are X1 and 0 for a product of the first
powers of two distinct primes.

I. Schur in 1931 proved that there exist cyclotomic polynomials
with coefficients arbitrarily large in absolute value. This again is
quoted from reference [12].

Bungers in 1934 proved the same theorem as Schur's under
the assumption that there exist infinitely many prime pairs for n
a product of three primes, This also is quoted from [12].

E. Lehmer in 1936 [12] modified Bungers' proof so as to

eliminate his unproved assumption of the existence of infinitely

many prime pairs,



O, Hélder in 1936 [9] showed that if C (k) denotes the

(Ramanujan) sum of the kth powers of the primitive nth roots of

unity then

where d is the greatest common divisor (n, k) of n and k.

J. E. Eaton in 1939 [5] gave formulas for calculation of the
coefficients of the cyclotomic polynomial by means of combinatorial
methods. Special properties of the coefficients such as magnitude
and increase, which in later times have been considered, Eaton
couldn't obtain by his method.

P. Erd8s in 19;16 [6] proved that if An denotes the largest
coefficient (in absolute value) of the nth cyclotomic polynomial, then
for infinitely many n

4
An > exp {cl(log n) /3} .

He also conjectured that a much stronger statement may be true,

namely that
(c13/1og log n)
(A) An > exp {n }

holds for some 3 and infinitely many n, but pointed out that
this would be a best result since

(c14/1og log n)
(B) An< exp {n }

for some c14 and all n,
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P.T. Bateman in 1949 [2] gave the short proof of (b) of Erd&s!
paper just quoted.

E. Gagliardo in 1953 [7] proved the formula

n

(n,

n
(n,, k)

(n) =p ( k))d)(n) 1o ( )

S
k
which is due to Holder. H&lder's earlier work is not mentioned
and his methods are not the same.

G.S. Kajandzidis in 1963 [11] obtained a general formula for

the coefficients of the cyclotomic polynomial

du(d M
oix) = 0 (L-x )H( ) ta xtecday x e
dé6=N
Utilizing the results of E. Gagliardo, he proved that
S,a S, a S._a
11 2, 2 N, N
L ; (- 77 (- =) N S
M > a la_t-eva !
Zia,=M 1 2 N
i
where N = P, ** p with Py < 00 < P, and the summation is
14

taken over all non-negative integral solutions of the Diophantine
equation 1(11 + 2(12 +ooee + NaN =M, and SN stands for the sum
th
of the n powers of the roots of d)N(x).
He also found a second general formula and reobtained

Migotti's result for N =pq (p < q, primes).

Sister Marion Beiter in 1964 [3] proved that if



o ¢lpa)
F (x) = > c X
P4 L4 n=0 n
then
6
(-1) if n has the form explained below,
c =
n 0 otherwise

The special form of n is that n=aq + Bp + & where
a, 8 are non-negative integers and 6 1is 0 or 1 and this repre-

sentation is unique, She also determined the middle coefficient c,

where n = ¢(pqg)/2.

L. Carlitz in 1966 [4] determined the number of nonzero terms

in qu(x), p and q distinct primes.



CHAPTER 2. GENERAL THEORY

§1. Roots of Unity-l—/

We are concerned with the equation
x =1

and the polynomial Qn(x) of degree ¢(n), Euler's ¢-function of
. s th . .
n, which has as roots the primitive n  roots of unity, in case of a

field of characteristic prime to n or of characteristic 0.

th
Definition 2.1. By an root of unity we shall mean a root of the

polynomial

f(x) = xn-l

in any commutative extension field.

Proposition 2. 2. The nth roots of unity in a field form an Abelian

group under multiplication.

Proof. If an=1 and ﬁn=1, then (%)n=l, from which the

group property follows, It is obvious that the group is an Abelian
group.
The order k of a group element a 1is a divisor of n,

since we must have a =1 and if n=gk+tr for k< n.

1/ This is a summary of the pertinent materials in [8] and [16].



k+ k k
R4 r=((1 )q )q=l we must have r=0. Thus

a .ar=l, but (a

k divides n.
iy . . . th
The splitting field K of f(x) 1is called the field of the n
roots of unity over the prime field II, The polynomial f(x) factors

into linear factors which are all different from each other; for the

derivative

f'(x) = nx

vanishes only when x=0, since n 1is not divisible by the charac-
teristic and therefore has no root in common with f(x). Thus there

th
are exactly n n  roots of unity in K.

Definition 2. 3. If the order of a root of unity is exactly n, it will

th
be called a primitive n~ root of unity.

th
Proposition 2.4, The group of the n roots of unity is cyclic and

. ey th
is generated by every primitive n" root of unity §.
To prove this, we shall use the following lemmas and a

theorem,

Lemma 2.5. Let G be a finite Abelian group enjoying the property

that the relation x'ze is satisfied by at most n elements of G,

for every integer n. Then G is a cyclic group.

Proof. If the order of G is a power of some prime number q

then the result is true. For, suppose that aeG is an element



whose order is as large as possible; since its order must divide

the order of G, itis qr for some integer r. We do not yet

r 2
know that ¢ is the order of G, but the elements e,a,a ,---,

r r
- r
ad 1 give us ¢ distinct solutions of the equation %3 =e.
Now suppose beG and its order is qs where s< r,
r § r-s
hence bq =(bq )q e, i.e., b is a solution to the equation
r

x1 ze, Since the only solutions in G of this equation are the

powers of a, b isa power of a, G is of order qr and G
is cyclic.
The general finite Abelian group G can be realized as

G=Ss S ..:8 where the ¢q. are the distinct prime divisors
q, 4 q 1
1 *2 k
of O(G) the order of G, and where the Sq are the Sylow sub-
i
groups of G. Moreover, every element geG can be written in

a unique way as g=SlS2 s Sk where 5, € S . Any solution of
i
x “e in S is one of x'=e in G so that each S inherits
44 44
the hypothesis we have imposed on G. By the remarks of the first

paragraph of the proof each Sq is a cyclic group; let 2, be a
i

generator of S . We claim that c=ala2' ey is a cyclic genera-

i
tor of G. To verify this all we must do is to prove that O(G)

m
divides m, the order of c. Since ¢ =e, we have that

m m m . .
a a, -3 e By the uniqueness of representation of an element

of G as a product of elements inthe S , we conclude that each
m i

a, =e. Thus O(Sq )|m for every 1i. Thus
i



O(G):(Sq)O(S )...O(S )|m. However, m|O(G) and so

This proves that G 1is cyclic. l

Lemma 2.5 has as an important consequence Lemma 2. 6.

Lemma 2.6, Let K be a field and let G be a finite subgroup of

the multiplicative group of nonzero elements of K. Then G 1is

a cyclic group.

Proof. Since K is a field, any polynomial of degree n in K[x]
has at most n roots in K. Thus in particular, for any integer
n, the polynomial xn-l has at most n roots in K, and all
the more so, at most n roots in G. The hypothesis of Lemma
2.5 is satisfied, so G is cyclic.

Even though the situation of a finite field is merely a special
case of Lemma 2.6, it is of such wide-spread interest that we single

it out as Theorem 2, 7.

Theorem 2.7. The multiplicative group of nonzero elements of a

finite field is cyclic,

Proof. Let F be a finite field. By merely applying Lemma 2. 6

with F=K and G= the group of nonzero elements of F, the

result drops out. |



10

th
Returning to Proposition 2.4, since the n = roots of unity form
a finite subgroup under multiplication, so by Theorem 2.7 this group
is cyclic. Also any cyclic generator of the group must then be a

th
primitive n~ root of unity. This proves Proposition 2.4. }

. th
We shall nowprove that the number of primitive n  roots of
unity is ¢(n),§/ the number of elements of order n in a cyclic
group of order n.
. . . . t t
First, if n is a power of a prime number, n=p, all p

-1
powers of £ , excepting the pt powers of ép are elements of

order n. Hence we have

1

(2.1.1) 4>(pt)=pt-pt"1= pt'l(p-l) = pt(l- p) .

Secondly, if n is decomposed into two relatively prime fac-
tors n=rs, every element of order n is uniquely representable
as the product of an element of order r by an element of order s
and, conversely, every such product is an element of order n. The

th .
elements of the r  order belong to the cyclic group of order r
generated by és; their number is ¢(r). Similarly, the number

of the elements of order s 1is ¢(s); thus, for the number of the

2/

- é(n) is also the number of the natural numbers < n relatively
prime to n. ¢(n) is called Euler's phi-function.
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products we have

d(n) = d(r)d(s).

t
m i
If n=1 p.1 is the decomposition of n into relatively
i=1

prime powers of prime numbers, the above formula yields by repeated

application.
t. t t t t
1 2 m) .

2
<ll>(n)=d>(pllp2 -~-pmm) =¢(p ")d(p, ) blp

hence by (2.1.1)

tl-1 tz-l tm-l
=n(1 - (- -
p1 pZ m

Thus we have Proposition 2. 8.

s h N
Proposition 2. 8. The number of the primitive n roots of unity is

1
l- — ).
(-5

We shall close this section with one additional remark.

c s h .
The primitive nlc roots of unity are of absolute value 1 and

being pairwise complex conjugates of modulus 1, the product of all

the primitive n  roots of unity is 1.

§2. Definition of the Cyclotomic Polynomial

The cyclotomic polynomial is defined as
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(2.2.1) Qx)= @m (x-e )

in which the index { ranges over the natural numbers prime to n

21014
and less than n and all e n where (£,n)=1 are primitive
n roots of unity, then
(2.2.2) Q(x) =0

n

th
represents the equation of degree ¢(n) which the primitive n

roots of unity satisfy.

If n > 2, the roots fall into complex conjugate pairs, and
hence the polynomial Qn(x) is always positive for real x.

Since x -1 can be expressed as a product of linear factors,

actually as

2k i

x -1 = 1m(x-e n ) wherek =0,1,2,-+-,n-1.

2104 2(n-1) i

(x-1)}(x-e Ty (x-e " ),

the definition of the primitive root shows that these factors can be
grouped into distinct sets, each set being Qd(x) for some integer

d dividing n, and 1< d< n. Thus we have
(2.2.3) x-1= 1 Q (x)
dln d

Taking logarithms yields the equation



log(xncl) = log 1I Qd(x) = Z log Qd(x)
dln dln

o . 3
whence by the Mobius inversion formula-—/ of elementary number

theory follows
n

(2.2.4) log Q () = >|3 p (d)log (xdfl)
din )

- 4
where p(d) is the Mobius function—/ so that we have another

expression of the cyclotomic polynomial

(2.2.5) Q(x) =IT(x -1)

§3. The Properties of the Cyclotomic Polynomial

t
In the preceding sections, we have discussed about the n

13

roots

of unity and defined the cyclotomic polynomial, but we need to know

further information about its properties to develop this work. Now

we shall observe a couple of the elementary properties of it through

—3-/ Mbbius inversion formula; If F(n) = Zf(d) for every positive

dln
integer n, then f(n) = Z n(d)F(n/d).
dln
4/ ... . . .
—' Mobius function p(n) is defined by
1 if n=1
p(n) = 0 if pzln for some prime p

t
(-1) if n = P,P,"" P, is a product of distinct primes.
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theorems and their proofs.

Theorem 2,9, The cyclotomic polynomial Qn(x) of order n is

a monic polynomial of degree ¢(n) with integer coefficients.

Proof, We employ induction, The theorem is true for n=1, 2.

Assume it to be true for all Qk(x), k < n. Now
(2.3.1) x-1=Q (x) T Q(x)=Q (x)+ G_(x).
n d n n
dln
d<n

But here, since d <n, G (x) is a product of monic poly-
n
nomials with integer coefficients, hence it is also monic with integer

coefficients. Then

Long division produces only integer coefficients here because
the divisor has highest coefficient 1,

Now as to the degree of Qn(x), if we assume the degree
$(d) for Q. (x), d< n, we have from (2.3.1), if v is the

d
degree of Q (x):
n

n=v+ T &(d =v-d(n) + = ¢(d).
d[n dln
d<n

Thus v = ¢(n), in view of one of the theorems of elementary
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5/
number theory—"(13, p. 36).'
Next we shall observe the irreducibility of Qn(x) in the
rational field Ro' Before preceding with the argument we shall
treat a useful lemma attributed Gauss concerned with primitive

polynomials.

Definition 2.10. A nonconstant polynomial

flx)=a +tax+'"" tax,
0 1 n

where all a., 1 =0,1,2,--+,n are integers is said to be primitive
1

if the greatest common divisor of all a, is 1.

6
Lemma 2.11. (Gauss) If Ro is a U.F, D.—/ then a product

of two primitive polynomials of Ro [x] is again primitive.

Proof, Let

and

b.+tb. x+t++° +b x
0 1 m

AN
%
f

be primitive in Ro[x] and suppose that

= + +e00 +
f(X)g(X) C C1X C X

is not primitive,

5
—/Theorem; For n>1, we have Z &¢(d) = n

6/ d'n

—'U,F.D., unique factorization domain.
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Then there exists a prime p such that plci for all i.
Since f{(x) is primitive, p | is not a factor of all a, and we
suppose that a_, is the last a, not divisible by p. Similarly
let bm' be the last bi not divisible by p.

We now consider the coefficient

= + +- . + +
“m' +n' a’obm' ' a’lbm"i*n'-l %ni- lbm'+l a’n'bm’
+ toen +
2nt +lbm'-l a’n"l'rn'bo ’
Since all the bi before the term an'bm' are divisible by

p and since all the a, after this term are divisible by p and
since ¢ is divisible by p, pla b . But p isnota

m' +n!' n' m!'

divisor of a_, orof b_ and this is a contradiction. |
n m

Theorem 2.12, Qn(x) is irreducible in the rational field Ro'

Proof. (10, p. 112-113) . Suppose that Qn(x) = h(x)k(x) where
h(x) is irreducible in R0 [x] and deg h(x) >1. By Gauss' lemma
we may assume that h(x) and k(x) have integer coefficients and
leading coefficients 1.

Let p be a prime integer such that pf n andlet £ be
a root of h(x). We shall show that §p is a root of h(x). Since

P . e th . . P .

(p,n)=1, §& is a primitive n~ root of unity and, if § is not a

root of h(x) §p is a root of k(x); consequently £ 1is a root
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of k(xp). Since h(x) 1is irreducible in Ro[x] and has £ as a
root, h(x) lk(xp). It follows (as above) that k(xp) = h(x)f(x), where
£(x) has integer coefficients and leading coefficient 1. Also we have
x -1 = Q (x)p(x) = h(x)k(x)p(x) and all of these polynomials have in-
teger coefficients and leading coefficients 1.
We now pass to congruences modulo p or, what is the same

thing, to relations in the polynomial ring Ip[x]. Then we obtain

n — — -—

(2.3.2) x -1 = h(x)k(x)p(x)
where in general, if f(x) = aoxn+alx _1+. .. +ane I[x], then
>y — n— ntl] - -
= + teee + =a + i . Similarly,
flx) =a x alx an, ai ai (p) in Ip Similarly, we
have k(x") = h(x) 1 (x)
On the other hand, using 2P =% for every integer a, we

see that

o n n
= a L +a =_(xp)
o n
for any polynomial f£(x). Hence _l;(x)p :E(xp) =-i'_1(x)_£-(x) which

implies that (h(x), k(x)) # 1. Then (2.3.2) shows that x -1 has
multiple roots in its splitting field over Ip. Since p fn this is
impossible and so we have proved that Ep is a root of h(x) for

every prime p satisfying p f'n. A repetition of this process
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r
shows that § is a root of h(x) for every integer r prime to
. e th . r
n. Since any primitive n~ root of unity has the form §, (r,n)=1
el th e s
we see that every primitive n root of unity is a root of h(x).

Hence h(x) =Q (x) and Q (x) is irreducible in R [x] l
n n o

Finally we shall observe one more interesting theorem and

close this chapter.

Theorem 2.13. The coefficients of the cyclotomic polynomial

Q (x) for n>] are symmetric to the midterm.,

then [Q (-}—1{)]x¢(n) must be Qn(x) over again, forif & is a
e s . 1
primitive root, so is E .

But

Thus
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CHAPTER 3. SOME IDENTITIES AND THEIR APPLICATIONS

§1. Some Identities and Their Proofs

From the definition of the cyclotomic polynomial

(3.1.1) Q (x) = II (x -1)

we can derive a few useful and important identities. Here we shall

make a list of these identities and give proofs of them.

Identity 3.1. If p 1is a prime

- -2
Q(x)=xpl+xp +e0. +1.

p
Proof. By (3.1.1)
o (0= 1 P/t
d|p
- (Xp_l)p(l)(x_l)p(p)
= (xP-1) (x-1)"
el el ey 2
—'—(m—— x . bd x +1 l

Identity 3.2. If p 1is a prime and for an integer r > 1




Proof. By (3.1.1)

r
Q (=1 /L

r

p dlp”

r
SELRIL PR A T

On the other hand

r-1 r-1
Q(xX ) = m (P )p/d-l)p(d)
P dlp
r-1 r-1
- (@ P (P
r-1 r-1
= (P oo -1
r
_ (xp -1)
B r-1
(x -1
r-1
Thus Q (x) = Q((xF ) |
r P

20
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r r
Identity 3.3, For n=pll .pss
ry.1 r -1
Pll ees P a
Qn(x) = Qp s (x ... S )
1 Ps
Proof. By (3.1.1)
n/p.p.
Q ... (=  (x-nnox *li---
r r
1 r's n/p, n/p.p.pk
Py """ P nx  -Dmx ) o1 ..

where 1i,j,... rangefrom 1,--+,s8 and inthe denominator the
products extend over the combinations 1,3,5,-.. at a time of
PPy P in the numerator, 2,4,6, <+ at a time.

s

On the other hand

r-l1 r-l r-1 r-l
rl—l r -1 pl ps pl ps m/pp
) , P.
vee 1 m 1

Q e B CRNN ® O mix S

P,P,... P r-l r-l r-1 r-1

172 s 1 8 1 s

P Py M BB m/pR
m((x y - =Dmx ) -D...
n/p.p.
o x-)mx tan ...
- n/p. n/p.p.p
Mx  -)mx ) Kq)...
where m =p.P, P
r-1 r -1
)
pl ...ps
Thus Qr R (x) =Q (x ) l
1 2 s PPy« Py
pl pz N ps



22

Identity 3. 4. If n is odd, then

Proof, Let n=p 'p ...p ® where n is odd. Then by (3.1.1)

2n/2p, 2n/p.p.
)(H(x Lymx Y on)e--
2n/p, 2n/2p.p. 2n/p.p.p
xZn/%l)H(x 1-1))(H(X 1 J-l)H(X 1] k_

1))+

n/p, 2n/p.p.
-DETH)(Mx ot
.Zn/pi n/pipj Zn/pip_p

(P-DTx 1)(T(x 1) I(x Pk ..

_l)...

n/p. 2n/p.p.
CH) (xS mx )
Zn/pi n/pipj xZn/pipjpk

l)...

n n/pi n/pip. n/p.p,
(x +)px  -1)I((x I Pl
n/p, “n/p, n/pipj n/p.p.P n/pipjkarl

ik

M((x -1)(x +1)) I(x -1) II((x -1)(x ))eee

n/p,p. n/p.p.p, P
M )T b K by s
n/p. n/p.p.p n/p.p.p, P,p
i < 13k+l)H(x 1Jktu+l)_.

On the other hand



23

Cap PP s n/pipjpkptﬂ). ..

C n/p. <, n/pp C n/p.p.p PP
(-1)° " I(x L’ 3o pk II(x 1kt

C C C n/p.p. n/pp.p P
DD e )’ ST P Hymx b

. /pppk
Mx  ‘+1)T(x 3R I(x Y1)

SC1 SC2 sC SC1+SC2+-.. +SC
s
but (-1) (-1) eee(-1) S=(-1) and

C + C. 4.+ C_ =221 sothat (-1) =-1. Therefore
s 1 s 2 s 3

n/p.p. n/p.p.P, P
(xn+1)II(x i _]+1)H(X it k't

n n/p. n/p.p.p n/p p p
O(x 1+1)H(x ] k+1)I1(x k t w +1)° -

+1) ¢ .-

Thus Q(x) = Q(-x |

Identity 3.5. If p 1is a prime, not dividing n,

Proof. Let n = .e.p ° where p [ n then by (3.1.1)
Proof. Py P, ++*P y



pn/p p. pn/p.p, pn/p p.p.
R tn(Mx P h)mx ”p“-nn(x
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QX! = pn/p pn/pp.p pn/p.p.p
i iP; %k

pn ;
(PPymx L))mx 1) I(x ) e

n/p. pn/p.p. n/p.p.p
PRomx hl)T(x S n)T(x b9 Kop)e--
pn/p. n/p.p. pn/p.p.p
GRIx LM P nTx ot K

_x

)ooo

On the other hand

Thus Q (%) = ——— |

§2. On the Coefficients in Case of n=pq

y

By definition of the cyclotomic polynomial Qn(x) for n=pq

(p< q, primes) is given by
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Pq
(3.2.1) Q (x) = (x -1)(3—1)
Pa (xP-1)(x9-1)

A. Migotti in 1883 and A, S. Bang in 1895 have proved that the
coefficients of Q q(x) are 1 1 or 0. Ina recent paper Sister
Marion Beiter in 1964 has given another proof of it, She also has
determined the middle coefficient of qu(x). In 1966 L., Carlitz
has determined the number of non-zero terms in Q (x).

Pq

In this section we shall review these theorems one by one.

Theorem 3.6. (General Coefficients)

Let Q (x) = th(pq)c xm. In Q (x)
P4

m=0 m P

&
(-1) if m =aq + Bp + 6 in exactly one way,

(3.2.2) ¢
m

0 otherwise

where &¢(pgq) is Euler's ¢-function and a, are nonnegative

integers and & =0, 1.

Proof. From (3.2.1) it follows that



26

Q (x) = (xPLi)(x-1)/(xP-1DxL)

Pq
-1 2
= (o1 (PTG PP
p-1 o0 p-1 00
+1
- }‘ %4 zxﬁp_}‘xaq Zxﬁp
a =0 pg=0 a=0 pg=0
) +Bptd
- z (-1)°x*aTPP ,
a, B, o
where a runs through the integers from zero to p-1, p is any
nonnegative integer, and 6=0,1. Then ¢ in Q (x) 1is the sum

m - Pq
of the coefficients of all terms on the right with exponent
aqtPpt6=m. Where no such partition exists, S is zero, If
there is exactly one partition, Cm equals (—1)?,

Assume that m can be partitioned in two ways,

= + + 6

m = e, aTBP T
= + +6
aatBp o,

with 61=6 . Then q(a -a2)=p(62-61). This implies that p

2 1
divides a 1~ %2 But since a< p, Ia 1" 2' < p. Therefore
o, -a ZZBZ— pl=0, and the two partitions are identical. Hence,

when two distinct partitions of m in the form (3. 2. 2) exist, in one

of them ©6 =1, in the other 6 =0, 1In this case Cm is
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(- 1)1+(- 1)0 =0, and the theorem is proved. '

Theorem 3. 7. (Midterm Coefficient)

k-1

In Q (x), when m=d(pq)/2, ¢ =(-1) , where k is
Pq m
the least positive solution of the congruence px = 1 (mod q).
Proof. Set m =d(pqg)/2 in(3.2.2). Then
(p-1)(g-1)/2 = aq +Bp + 6
p(2f +1) = 1 - 26 (mod q),
px = X (modgq) where x =28 +1

Let k be the solution of px =1 (modgq), 1< k< g-1. Then
g-k 1is a solution of px 5 -1 (mod g).

Consider pk =1 (mod q). Then

pk =1 +qgh h = (pk -1)/q,

(k-1)/2 a=(p-1)/2- h/2.

P

In the case k 1is odd, these values of a and f are
integral, 6 =0, and the midterm coefficient is 1.
If k is even, g-k is odd, 6=1, and the midterm coeffi-

cient is -1. Thus the theorem is proved. I

Remarks. In the special case q = sptl, k 1is odd and the mid-

term coefficient is +1. Similarly, for q =sp-1, k is even

and the midterm coefficient is -1.
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In any case, the roles of p and q in the congruences may
be reversed, without affecting the oddness or evenness of k.
The following table gives the value of the midterm coefficient
c of Q (x) when p is 3,5, or 7. All values of n=pq and

m P4

less than 143 reduce to one of these special cases.

p a c
m
3
5 11,2 | according as q=1 a (mod p).
7 1,3, 5

Theorem 3.8. (The Number of Nonzero Terms)

Let GO(pq) denote the number of terms with positive coeffi-
cients in qu(x). Take q >p and define u by means of
qu = -1 (mod p) (0 < u< p). Then we have

eo(pq) = (p-w(uqt1)/p.

Proof. Let Go(pq) denote the number of terms with positive

coefficients, Gl(pq) the number of terms with negative coefficients

and 8(pq) = 60(pq) + 61(pq) , the total number of nonzero terms.
Since qu(l) =1 it follows at once that Go(pq)=1+61(pq),

so that
(3.2, 3) 8(pq) = ZGO(pq)- 1.

We may assume ¢q > p and define u by means of
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(3.2.4) qu = -1 (mod p) (0< u< p)

Then by (3. 2.1) we have

p-1 p-1 p-1
Q (x) SR z 9= 1 9 _ xlq-*-1
Pq l-xp l-xp '
j: J:O i=0

with each term xJ9  of the first sum on the extreme right, associ-
ate the term x1q+1 of the second sum for which iq+1zjq (mod p).

By (3. 2.4) it follows that 1 =z j+u (mod p). Then

p-1 p-1

' i+u)qt j tu-p)q+
(3. 2. 5) Q (X) - ___];_z(x.] q—X(J u)q 1)+__1__ z(x.]q_x(.] P)q ].)
Pd l-xp_ l-x" |
j=0 j=0
jtu<p jtu>p
L uatt Pl o (peug-l
L S Zqu _l-x Z ia
l-xp l-xp

j=0 i=0

The first sum in (3. 2. 5) consists of the terms of qu(x) with
positive coefficients; there are evidently (p-u)(uqtl)/p such
terms. The second sum in (3. 2, 5) accounts for the negative terms

of qu(x); there are u(pg-uqg-1)/p

(p-u)(ug+t1) } u(pg-uqg-1) =
P P ’

as we should expect,

This proves the theorem. '
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Examples and Remarks

1. If p=3 and q =3k+l and 3kt+2, then u=2 and

u=1, respectively, so that

90(3(3k+1)) 2k +1]

90(3(3k+2)) 2k+2
2, If p=5 and q =5k+l, 5k+2, 5k+3 and 5k+4, then
u =4, 2,3 and 1 respectively, so that
90(5(5k+1)) = 4k+l
90(5(5k+2)) = 6k+3

90( 5(5k+3)) = 6k+4

90( 5(5k+4)) = 4kt+4

We remark that if we assume only that p and q are
relatively prime but otherwise arbitrary integers greater than one,
the above theorem continues to hold.

The notation is somewhat ambiguous; to avoid confusion we
may write Q (x) inplaceof Q (x) and 6 _(p,q) in place of

Y P, q Pq 0

Go(pq). Then we have, for example

0.(4, 4k+1)

0( 3k+l,

90(4, 4k+3) = 3k+3,

3. Also for arbitrary p we have
eo(p, kp+l) = k(p-1) +1

Go(p, kptp-1) = k(p-1) +p-1
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For p odd, on the other hand, we get

1., 2 1
p, kpt2) ==k(p -1) +=(p+
0,(ps kpt2) =2 k(p -1) +5(ptl),

(k+1)p2-1)- 3 (p-1)

W=

eo(p, kp tp-2) =

The last four formulas indicate how strongly the value of

eo(p, q) depends on the residue of q(mod p).

§3. The Coefficients of Qn(x) for n < 105

One of the most striking properties of the cyclotomic poly-
nomial Qn(x) is the smallness of its coefficients.

We have seen in §2 of this chapter that the coefficients of the
cyclotomic polynomial Qn(x) for n=pq, where p,q are distinct
primes, are all *1oro0.

Also we have verified a few identities about the cyclotomic
polynomial in §1 of this chapter.

Using these identities and the theorems we can easily verify
that in fact the coefficients of all cyclotomic polynomials Qn(x)

for n< 105 are ilorO.

From definition of the cyclotomic polynomial we have

Ql(x) = x-1., Now we shall quote the theorem and identities in §1

and §2 and demonstrate this fact in Table I.



Table I. On the coefficients of Qn(x) for n< 105,

Theorem Theorem Theorem
Factorization and Concerned Factorization and Concerned Factorization and Concerned

Q (x) of Identities Q (x) | Q@ (x) of Identities Q (x) Q (x) of Identities Q (x)

o n Applied o o n Applied i " n Applied i
Q, n=1 Def. S n=2".5 (3) o s n=3:; 13 (6)
Q, Prime (1) Q4 n=3-7 (6) 0 n=2.5 (3) S
Q3 Pr:i.me2 1) sz n=2-11 (6) Q41 Prime (1)
Q, n=2 2) Q, | 9 Prime3 (1) Qp | »=2-37 4) Q,,
Qg Prime (1) ., n= 22- 3 3) % Qs Primez (1)
Q6 n=2+3 (6) st n=>5 (2) QS Q44 n‘=22' 11 (3) sz
Q7 Prime3 ¢1) Q26 n= 2:; 13 (6) Q45 n=3 -5 (3) le
Q. | n= 22 ) Q |9, | == 32 2) Q, Qp | =223 (4) Qs
Q n=3 (2) Q3 Qg | n=27 (3) Q4 Qur Prime4 (1)
Q10 n=2-5 (6) Q29 Prime (1) Q48 n=22- 3 (3) Q6
Q,, Prime2 (1) Qp | n=2"35 (4) Qs Qp | »=7 . ) Q,
Q, | n=2"3 (3) Q | 9 Pﬂm; (1) Q, | n=2-5 (3) 20
Q13 Prime 1) Q32 n=2 (2) Qz Q51 n=32- 17 6)
Q14 n=2.-7 (6) Q33 n=3-11 (6) B QSZ n=2 .13 (3) Q26
le n=3‘;5 (6) Q34 n=2+17 (6) Q53 Prime ; (1)
Q16 n=2 (2) Q2 Q35 n=52-72 (6) Q54 n=2-3 (3) Q6
Q17 Prime ) 1) Q36 n=2 -3 (3) Q6 QSS n=5:; 11 (6)
le n=2-3 3) Q6 : Q37 Prime (1) Q56 n=2 -7 (3) Q14
Q0 Prime (1) Qg n=2-19 (6) Qg n=3-19 (6)

Z¢




Table I (continued)

Theorem Theorem Theorem
Factorization and Concemed Factorization and Concerned Factorization and Concerned

Q (x) of Identities | Q (x) Q (x) of Identities Q (x) |Q ) of Identities Q (x)
i n Applied " i n Applied i " n Applied ?

Qcq n=2-29 6) ., n=7-11 (6) Qs n=2.3 3) %

Qe Primez 1) Qg n=2.3.13 (4) S Qy, Prime , 1)

0 n=2"+3-5| (3) Q0 S Prime; 1) Qg n-—22'7 3) Q4

o Prime 1) g0 n= 24- 5 3) Q0 Qg9 n= 32- 11 (3) 23

Qo2 n=22- 31 (6) Qs n=3 ) Q, Qoo | 2=2-5 3) Q0

Q63 n=3.7 (3) Q4 gz n=2-41 (6) Quoy | Prime 1)

Q4 n =2 (2) Q, Qg3 Prirrne2 (1) RQiop | B=2-3-17 (4) Qg

s n=5.13 (6) Qg4 n=2"+3:7 3) Qo Q03 Prime2 1)

Qg6 n=2-3-11 4) Qs Qqs n=5-17 (6) Qupq | B=2-13 (3) 26

o Primez 1) Qs n=2-43 (6)

Qs n=2".17 3) %, Qg n=3?: 29 6)

o n=3-23 (6) Qgs n=2-11 3) 2,

SR n=2.57 (4) st ng Prime 1)

Q, Prime; . (1) 0 n=2.5.9 (4) Qs

Qs n=2-3 3) Q% Qy; n=72- 13 ©6)

Qs Prime 1) Qup n=2"-23 3) Qs

Q74 n=2'3; (6) Qg3 n=3-31 (6)

Qs n=32'5 3) Qs S n=2-47 (6)

Qs n=2 -19 (3) Q38 Qgs n=35-19 (6)

€¢



If

If

For

1f

If

For

is

is

is

is

aprime, Q (X) :Xp-l“f-xp—z-f—--.

P
a prime, and for an integer r >l
r-1
- P
Q (x) =Q (x )
r P
P
r1 r
s
P P e (x) =Q
1 s r1 rs pl-
P) Py
odd, then Q, (x) =Q (-x)
2n n
a prime, not dividing n,
Q_(x")
n
pg, the coefficients of qu(x)

+1

are il or O,

34
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CHAPTER 4. THE ANALYSIS AND CORRECTIONS
TO E. LEHMER'S PAPER

§1. Schur's and Bungers' Theorem

In this section, before going to discuss E. Lehmer's paper we

shall state Schur's theorem and Bungers' theorem.

Theorem 4.1. (Schur's Theorem)

There exist cyclotomic polynomials with coefficients arbitrarily

large in absolute value.

7
Proofr-/(IZ). Let n =p P, Py where t is odd and

pl < P, < ees < P, are odd primes such that pl+p2>pt. To prove
P
t
the theorem it is sufficient to show that the coefficient of x in
p,+1

Q (x) is 1-t. This can be done by taking Qn(x) modulo x

t .
Q (x) = O(l-x ")/(1-x%)
" i=1 p-1 P P p,-1
t 1 2 t

= (1+x+ +x J(l-x ")(l-x ) --(l-x )
p,~1 p, P p,-1 p, 1
= (1-¥-x+-~-+xlc J(1-x 1-X 2---~-=-x t ) (mod x )

p

. . t . . .
Collecting the coefficients of x in this last expression we see

that it is precisely -(t-1) sothatas t increases we can exhibit

7
—/ This proof is credited to Schur.
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arbitrarily large negative coefficients of the cyclotomic polynomials

which proves the theorem., l

The question now remains as to the boundedness of the coeffi-
cients of Qn(x) for a fixed t. We have already seen that for
t=1 and 2 these coefficients are actually 1, -1 or 0, The case

t=3 was discussed by Bungers' whoproved the following theorem,

Theorem 4. 2. (Bungers' Theorem)—s-/

As n runs over all products of three distinct primes, the
cyclotomic polynomials Qn(x) contain arbitrarily large coefficients,
provided there exist infinitely many prime pairs.

His proof depends on choosing three primes, two of which
differ by 2, and in exhibiting a coefficient of Q (x) equal to

par
(p +1)/2.

§2, Corrections to E. Lehmer's Paper

E. Lehmer in 1936 modified Bungers' proof using Dirichlet's
Theorem so as to eliminate the unproved assumption of the existence
of infinitely many prime pairs, but she made a careless mistake in

the process of proof, We shall now analyze her proof in detail and

-8-/G'6ttingen Dissertation, 1934, The author has not seen the paper,
which is quoted by Lehmer (12).
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point out the part of the mistake and give a complete correct proof.

Let n=pqr, where q=kpt+2, and r=(mpq-l)/2. For a
given p such primes q and r can always be found by
Dirichlet's Theorem.—g-

We proceed to show that the coefficient of xh, where
h = (p-3)(qrt+1)/2 1is (p-1)/2 and hence can be made arbitrarily
large with p.

From definition of the cyclotomic polynomial with n = pqr, .

we have
(4.2.1) Q (x) = T (xPar/d_;r(d)
o d|pqr
= PI) T T R ) 6 6B (1T
- (qur- 1)(xp- l)xq_ 1)(xr_ 1)
(x- D=L (P -1 )
pgr
= (14x4x2+--- -*Xp-l)(l—xq—xrb(q+r)r (l-x" 7 )
(1= (1-85 137
But

9/ Dirichlet's Theorem: If a 1is positiveand a and b are
relatively primes, then there exist infinitely many primes of the
form an tb,
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(1-x"9)

= (1-qur)(1+qu+x2pq+x3pq+ ene)( 14374, 2T, 39,
p : qr
1-xPH-LH(1-x)

2pr

(L APT APT P

= (1+qu+X2pq+X3pq+m )(1+er_*X2qr+X3qr+. o)
2pr 3 »
) (1'*Xpr'*x pr'*x pr+000)_qur(l+qu+x pq_l_...)

2pr

'(1‘*xqr‘*x2qr+---)(l+xpr-ix toee)
= (1P L2 P (10342 ) (145 PT P LI
(mod xPI7)
= mx’Pd S MAT o HPT
5 vPatharfupr
(4,2.1)' i.e, qur(x) =(1 +x+x2+... +Xp—l)(l_xq_xr+xq+r) .
py'PAHRarupr (mod xP%7)

Since we are interested in the coefficient of xh, the summa-
tion indices v, A,p satisfy the following inequalities:
(4. 2. 2) vqr < h, Apr <h, npq <h,
We now consider the diophantine equation
(4.2.3) wvqr *Apr tppq + wteq tnr = (p-3)(qrtl)/2 =h
where w<p, and €=0o0orl, n=0or]l,

h
The coefficient of = x is now given by the number of solutions
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of (4. 2,3) with ¢ =1 minus the number of solutions of (4. 2. 3)
with ¢ # 7.
In the second parenthesis of the right side of (4.2.1)' if
¢ =n the signs of x are + andif ¢ #n the signs of x are -.
Taking (4. 2.3) modulo p,q, and r we have, since

gr = (kpt2)+ (mpg-1)/2 2 -1 (mod p)

vgr twteq tnr 0 (mod p),

!

Aprtw +nr (p-3)/2 (mod q),

t

(p-3)/2  (mod r).

ppgtwteq

Multiplying the last two congruences by k and m respec-

tively, we then get

kApr tkwtknr = k(p-3)/2 (mod q)

kpypg tmwtmeq = m(p-3)/2 (mod r)

but kpr = kp(mpg-1)/2 = (g-2)(mpg-1)/2 = 1. (mod q)
mpq = 2r t1 =1 (mod r)
and also gz2 (modp), re-1/2 (modpq).

Thus we get

(4. 2.4) w v-2¢ tn/2 (mod p)

(1]

>~
t

(4. 2. 5) = k((p-3)/2 - wt+n/2) (mod q)

(4.2, 6) = m((p-3)/2 - wteq) (mod r)

-
I

We shall now show that if ¢ =n=0. (4.2.3) has (p-1)/2
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solutions, while in the other three cases (4. 2. 3) has no solutions.

(I) If ¢ =n=0 (4.2.4) implies wzv (modp) but w<p and

v< p, (4.2.4) becomes w=v for, from (4. 2. 2)

vqr ihﬁvqrf_ipz—w (qr +1)

:_—_:>v§—.(_2%3_)

Equations (4. 2. 5) and (4. 2, 6) become in this case

N =k((p-3)/2- v) (mod g)

p =m((p-3)/2-v) (mod r)

but also from (4. 2. 2)
Apr < h = )\prf_—(-E2‘—3l(qr+1)
= \ < -l)——( -3)

=> N < q and k(p-3)/2< q since q=kp+t2.

ppg < h ppq <

=> p < r and m(p-3)/2< r sincer=(mpq-1)/2,

Therefore these congruences are actually equalities, and since
v< (p-3)/2, we can take 0 through (p-3)/2 as values of v
and we have determined for each of the (p-1)/2 values of v,

corresponding values of X and 4, which are such that
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N < k(p-3)/2, so that
Apr < kpr(p-3)/2< qr(p-3)/2< h,
and p < m(p-3)/2 so that

10 :
upq < mpq(p-3)/2 107 (2r +1)(p-3)/2< h,
so that all the variables are determined within the range (4.2. 2)

and hence in the case ¢ =n=0 (4.2.3) has (p-1)/2 solutions.

(II) For ¢ =1, n=0 (4.2.4) givesus w =v-2(modp), where
0< w<p and 0 < v < (p-3)/2., But w< p, and v-2< p.

We then get w=y-2,
Also w =v-2 (mod p) implies w =tptv-2 for some integer t.

If p=0 wehave w =tp-2 and w< p. Thus t=1 and

w=p-2.

If v=1 wehave w =tp-1 and w< p. Thus t also must

be 1 and we get w =p-1.

If v>2 wehave w =tp +2-2> p for any integer { > 2

and t>1, so thatthis contradicts the condition w< p.

Hence we have either w =v-2, or w =p-1, or w =p-2,

In the last two cases we can use (4.2.5) to get

-lg/ln Lehmer's paper, mpq(p-3)/2 < (2r+1)(p-3)/2, and this is

obviously a mistake since r = (mpq-1)/2.
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A= k((p-3)/2 - w) = -k(p £2)/2 (mod q).

That is,
A =qg-kipt1)/2>q-k(p-1)/2,
so that
Apr > pqr-kpr(p-1)/2 > pgr-qr(p-1)/2 =qr(ptl)/2> h,

for, q =kpt2 implies q > kp and

qr(p+1)/2-h = qr(p+1)/2-(p-3)(qr+1)/2

= (4qr+3-p)/2> 0.

Hence for w=p-1 or w=p-2, (4.2,2)is violated for Apr,

and there are no solutions,

If w=v-2< (p-7)/2, we use (4.2.6) and obtain
p = m((p-3)/2 - w=:q) (mod r),
or
p=r+tm((p-3)/2- w-q)>r + m(2-q).
Hence
upq > pqr tpgm (2-9)
= pqr +(2r +1)(2-q)
= (qr +1)(p-2) +(4r-p-qt4)
> (qr+1)(p-2) > h

so that (4. 2. 2) is again violated and there are no solutions of

(4.2.3) for € =1, n=0.
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(III) In the next case ¢ =0, n=1, we getfrom (4.2.4)

[

w v+-% (mod p) —' and v < (p-3)/2. But since w<p

1
vt —; < p, wehave w=v*t > Putting this value for w in

(4. 2. 6), we have

m((p-3)/2-v-7)  (mod 1),

T
or
_ 1
w=r+tm((p-4)/2-v)>r - 5 m.
Hence
1
upq > pqr - T?. pam
_ 1
= pqr - -E(Zr-l-l)

= (qr+1)(p-2) +(2qr + —z-r—p)
> (qr+1)(p-2) > h.

Thus this case also does not yield any further solutions.

nlw

(IV) In the last case € = N= l—l-g/we get from (4.2.4) w=

v
—?2’ and

(mod p), but by the same reason as (IlI) we have w=v-

with the same procedure as above we get

m((p=3)/2 - v+%-q) (mod r) ,

=
H

or

3
M r+m(p/2-v-q)2r+m(-z-q).

l}-/E. Lehmer made a careless mistake in this part. She got from
(4. 2.4) w=v(pt1)/2, but this is obviously wrong, so that her
proof of this part must be corrected.

2/
1e In Lehmer's paper, the proof of this case is abbreviated.
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Hence

3
Mpq > pqr T pgm ( > -q)

pgqr *(2r+1)( 5 -q)

vlw

(qr+1)(p-2) +(3r +—;_ q-p)

> (qr+1)(p-2) >h .

Thus this case does not contribute any solutions.
. h | .
Therefore the coefficient of x increases with p, so that

we have proved the following theorem.

Theorem 4.3 (Lehmer's Theorem)

As n runs over all product of three distinct primes the

cyclotomic polynomial Qn(X) contain arbitrarily large coefficients.
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CHAPTER 5. A GENERAL FORMULA AND ITS APPLICATIONS

§1. Holder's Formula and Newton's Identities

In 1936 O, H&lder gave a simple formula for the "Ramanujan
sum' and in 1953 E. Gagliardo obtained it in another way, We shall

condense the argument of Holder in the following.
h

t
By a "Ramanujan sum'' we mean most often the sum of the k

. th .
powers of the primitive n~ roots of unity

2mil

(5.1.1) c (k) = Z e 7
n
(£,n)=1

k

Ramanujan has given the value of this sum as

(5.1.2) c (k) = Z w=) d
n d
d| (n,k)

in which the dummy variable d ranges over all common divisors

of n and k,

This value can be represented in a simpler form, We shall
next deduce this, that (5.1.2) for k =1, i,e..for the sum of the

e th
primitive n = roots of unity

(5.1.3) C (1) = u(n)
n

If we cancel the greatest common divisprs of n and k

in the terms of (5,1, 1) there results



2milk!
1
(5. 1. 4) C (k) = Z e ”
n
(£9n):1
in which
(5.1.5) n= Tn'
k=Tk'
with (n', k") =1

Since { runs through the numbers less than n and

relatively prime to n and hence to n', (k' isalso relatively

prime to n' and the sum (5.1.4) consists of &(n) terms, all

. i e th . s
being primitive n' "~ roots of unity but not all are distinct.

We can set, when {' runs through the numbers < n' and

relatively prime to n',

2wil!
— o
(5.1.6) c () = Z a, e
n £
(£',n') 1
2mi Iz
nl
= Z a.£ '(e ) s
(£' n")=1
in which a,, are positive integers whose sum is equal to $d(n).

The polynomial Qn(x) is an irreducible factor of x -1

with integer coefficients and leading coefficient 1.

46
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t
The sum of the k h powers of the roots of equation Qn(x) =0
is therefore an integer, positve, negative or equal to zero,

On account of the irreducibility of Q (x) =0, we canh put into
2mri n LTL
(5.1.6) in place of the root e " any other root e of the

equation, h' being relatively prime to n',
Thereby results the relation

2mi

" £2'h'
C (k) = z a,,e
n £

(£',n")=1

In this we now let h' range over the totality ¢(n') of

numbers <n' and relatively prime to n' and sum once again,

On the right appears each a,, multiplied by the sum of all &(n')
primitive n'th roots of unity, which, by (5.1.3) is equal to u(n')

and we get

—

p(n)- C (0 =( ) a, duin)

by (5.1.1) (£yn")=1
. 2mwil! '
Cn,(h') = Z e n'
(£, n")=1

and if h' =1, then by (5.1.3)
2wif!

c_(1) = Z e 7 = un)

is equal to ¢ (n), we get

However, since the sum of the a,
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V(n) '
Cn(k) = (0" (n')
that is, the Ramanujan sum
_ $(n) n
(5.1.7) Cn(k) == 1 ('T)

B
o0 ]
in which T is the greatest common divisor of n and k.

Thus we call (5.1, 7) Holder's formula,

In order to use (5.1, 7) we shall need Newton's identities on the
sums of power of roots of equations, We give a discussion below

which is based on the text of Oskar Perron (14, p. 150-151).

Let
f(x)=xn+a xn'1+a xn"2+...+a < +a .
1 2 n-1 n
The sums
(5.1.8) S =xT x4 +x 0 (m=0,1,2,---)
m 1 2 n

where xi, i=1,2,--+,n are roots of f(x) are obviously
(5-1-9) S.=n, S =.-a

We can write f(x) as

(5.1.10) f(x)

1
W
(
%
—
03
1
ol
Nv
W
t
%
bv

1
¥
+
o
¥
+
+
o
¥
+
)



Then the derived polynomial of f£(x) is

- -2
(5.1.11) f'(X):an 1+(n-1)a_ xn +eeeta

On the other hand

49

f! 2
1
(5.1.12) ) -
f(x) /[, X=X,
i=1 1
It follows that, by (5. 1. 10) obviously f(xi) =0, Thus
n n
f(x) - f(x,)
t= ) A - ) —
ya) -aA, L4 -a,
i=l1 og=l t
but
f(x)-£(x.)
L - xn“1 -i-x,xr'l + .- +xn-.1
X-X, 1 i
i
+a (Xn-2+x.xn-3+” +Xn—2) bedt 4 g
1 i i n-1
=xn-1+(x,+a ) H(x.+ta.x ta )xn-3
i 1 i 2
foee t (M e k™ %4 ta )
1 11 n-1
We sum this on i and get
o fo-fx) n-2 n-3
5.1.13) f'(x) = ———=nx + B + + =
(5.1.13) 00 = ) ———b= " s rna " s a8 na
. i
i=1
Feoot + ceet +
(Sn-l a’lsn-Z a’n-ZSl na -1)
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Since the right sides of formulas (5.1.11) and (5.1.13) repre-

sent the same polynomial f'(x), their coefficients must be identical,

therefore, after rearranging the resulting equations, we have

+ =0
S a,1
S +a.S +2 =0
217 T %2
(5.1.14)
+ +.eee+ +{(n- =0
Sn-l a'lsn-Z. a'n-Z.Sl (n 1)an—l

We call (5. 1. 14) Newton's identities.

§2. General Formula

As mentioned in Chapter 2 we can define the cyclotomic poly-

nomial as

(5.2.1) Qn(X) = (x - &1)(X~-§2)---(X-§¢(n))
¢(n)
= nm(x-§ i)
i=1

where ¢(n) 1is Euler's-function and &i's are the primitive n

roots of unity.

th
Since the product of all primitive n roots of unity is 1 we

can write (5.2.1) as

_ $(n) n
{5.2.2) Qn(x) =x + alx .o b(n)- 1x +1



Now we want to find the coefficient ay of x ,
k=1,2,+++, d(n)-1,
Since all roots of the cyclotomic polynomial Qn(x) are
th
primitive n”" roots of unity and the Ramanujan sum is the sum of
th o e th )
the k ~ powers of the primitive n  roots of unity, we can apply

Holder's formula to Newton's identities and get the following recur-

sive formula,

C(k)+a1C(k-1)+a2C(k-Z)+"°+a C(l)+ka =0

k-1 k
That is
C(k) ta C(k-1)+a,C(k-2)+- +ta,_ Cl1)
(5.2, 3) a = - _
i (=) &(n)

where Cll) =C (1) and C (K = (2,

b ((——)

n, k)

§3. Applications of General Formula

Now we would like to show, using Holder's formula all coeffi-
cients of the cyclotomic polynomials Qn(x) for n=105, and
n =595,

We will see in QIOS(X) for the first time the coefficients

that are other than+t 1 or 0, and in Q595(x) the coefficient of
h

X where h = (p-3)(qr+l )/2 coincides with that of E, Lehmer's

theorem,
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(I) Since n=105=3. 5. 7 the Euler function

) = 48

N

- -y 2
$(105) =105+ (1~ 3)(1- 5)(1-

so that the degree of QIOS(X) is 48,

(x) = x48+a x47+a x46+--- +a xtl

Q 1 2 47

105

At first we want to get all values of C105(k) in which k

ranges over the integers’from 1 through 47.

We can rewrite Holder's formula as

$(n) n
( n ) s ((n, k))
"o

C (k) =

where (n,k) is greatest common divisor of n and k.

Since we can factorize n = 105 the product of three primes
3,5, and 7, for all values of k we consider the following 7
classes:

(1) the multiples of 3; 3,6,12,18, 24,27, - -

(2) the multiples of 5; 5, 10, 20, 25,40.

(3) the multiples of 7; 7, 14, 28.

(4) the multiples of 15; 15, 30, 45.

(5) the multiples of 21; 21, 42.

(6) the multiples of 35; 35.

(7) others; 1,2,4,8,11,13,16,++-,

For the numbers that are multiples of two primes, we put
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these numbers in the class of the product of these two primes.

For example, 30 is a multiple of 3 and 5 and also a multiple of

the product of 3 and 5, namely 15; we put 30 in the class of

the multiples of 15,

For each of the above classes we want to find, using Holder's

h th
formula, the sum of klc powers of the primitive 105 roots of unity.

(i)

(ii)

(iii)

The numbers of the class (7) are all relatively prime to 105,
that is (105,k) = 1 so that we have C105(k) = p(105) and

since 105=3.5.7, we get p(105)=-1, therefore

For the class (1) of the multiples of 3, we have (105, k) =3

so that
( 105 )
¢ g o0105,10 *0) _u(35)00105) 1 x48_,
105 b 105 $(35) 24 y
(105, k)

For the class (2) of the multiples of 5, we have (105,k) = 5,

so that
105
c () _M{0s, 9 ¢108) L (21)'e(105) _1x48 _
105 —105_ $(21) 12 :
¢ (05, 1)

For the class (3) of the multiples of 7, we have (105,k) =7,

so that
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105, . o0s)

c - H0s, 10 L1s) e105) _1x48 ;

105 ( 105 ) $(15) 8 :
*105, 10 |

(v) For the class (4) of the multiples of 15, we have (105,k) =15,

so that
¢ o - M {705,100 k))¢(105) S(140105) _-1x48
105 105 o(7) 6 oo
¢((105 k))
(vi) For the class (5) of the multiples of 21, we have
Y e 19 ). ¢(105)
c (k) = (105, k) (5) $(105) _ _-1x48_ o
05 (105, 4(5) 4
*(705, 10
( vii) For the class (6) of the multiples of 35, we have
105
C (K = ((105 k)) ¢(105) 1(3) $(105) _ _-1X 48 _ 2
105 ( 105 ) b (3) 2 -
¢ (105, k)

Now, we can apply these results in the general formula and get

all coefficients one by one as in the following table.
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Table II, All coefficients and Ramanujan sums of Qn(x) for n =105,

105%) " €105®) " C105®) k
o1y | -1 a 1 ci17) | -1 a, | 1 C(33) 2 25, 1
c@) | -1 3, 1 c(18) 2 ag | O c4) | -t 25, 1
c3) 2 | a, 0 c19) | -1 ag | O c@s) | -24 | ay | 1
C(4) -1 a, 0 C(20) 4 20 -1 C(36) 2 6 1
c(5) 4| a | -t cel) | -12 | a, | O | cEn) | -1 ag, | ©
c(6) 2 | a | - c@) | -1 | a,, | -1 cE8) | -1 | a5, | ©
c@) 6 a, | -2 cE3) | -1 35 0 c(39) 2 | ay, | -
cs) | -1 ag | -1 c(24) 2 | a8y, | -t C(40) 4| a, |-t
c(9) 2 | a, | -1 C(25) 4| a | 0 |cey| -1 a, | -2
c(10) | 4 | a, | O | €@ | -1 | a |- c2) | <12 | 2, |-1
caly | -1 a, | © c(27) 2 | a, | 0 [ C) | -1 | a1
caz) | 2 | a, | 1 C(28) 6 | ay | -1 |Cey| -1 | a, | 0
o3y | -1 | a, | 1 C@9) | -1 | a,y | O | C4S) | -8 | a | O
cae) | 6 | a, | 1 cEo) | -8 | s, | O | CH®) | -1 | s | 1
cs) | -8 | s | 1 c31) | -1 a5, 1 cr) | -1 | a, | 1
c(16) | -1 36 1 C(32) -1 a5 1

Thus in QIOS(X) we get -2 as the coefficient of x and

41
of x

Note: In computation of C(k) and a,, actually we don't need to
compute all of them, for by one of the properties of the cyclo-
tomic polynomial the coefficients are symmetric to the mid-

term (in this case the midterm is a, % 4).
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(II) Since n =595 =5-7.17, the Euler's ¢-function

= 1 1 1,
$(595) = 595+ (1- 5)(1- 7)(1-17) 384

so that the degree of Q595(x) is 384

Q595(X) :X384+alx383+a x382+"' ta  x+l

Employing the exactly same method as in the case of n = 105
we can classify all values of k as the following 7 classes. In
this case k ranges over 1 through 383,

(1) the multiples of 5; 5, 10, 15, 20, 25, -

(2) the multiples of 7; 7, 14, 21, 28, 42, ---

(3) the multiples of 17; 17, 34, 51, 68, 102, ---

(4) the multiples of 35; 35, 70, 105, 140, 175, -+~

(5) the multiples of 85; 85, 170, 255, 340.

(6) the multiples of 119; 238, 357.

(7) others; 1, 2, 3, 4, 6, 8, 9, 11, 12, 13, **-

For each of above classes, the sums of kth powers of the

primitive 595th roots of unity are as follows:

(i) The numbers of the class (7) are all relatively prime to 595,
that is (595,k) =1 so that we have C595(k) = u(595) and

since 595 =5+ 7+17 we get pn(595) =-1, therefore

C595(k) =-1
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(ii) For the class (1) of the multiples of 5, we have (595,k) =5,

so that
222).4(595 :
C g B $(595)  [(119)9(595)_ 1x 384 _ ,
595 NECER $(119) 96 '
5

(iii) For the class (2) of the multiples of 7, we have (595, k) =7,

so that
595 )
C (k) = 1 7 )-<1>(595) =u(85). ¢(595) _ 1><384= 6
°9% ¢(—§2—5-) ¢(85) 64 -
7

(iv) For the class (3) of the multiples of 17, we have

595
C_ (k) = M—l—).d)(s%) =u'(35):<1>(595) _1x384 _
595 595 b (35) 24 .
*(57) :
(v) For the class (4) of the multiples of 35, we have
595
e - 55 00595)  (17). 4(595) _ -1X384_
595 225, $(17) 16 .
¢ 35
(vi) TFor the class (5) of the multiples of 85, we have
595
c (09 = |J'(85 )49(595) JL('7)(1>(5(95) } -1X384 _ ”
595 595 o(7) 6 -04,
lwryey

(vii) For the class (6) of the multiples of 119, we have
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595
g #095)  u(s)- (38 _-1x 384 | oo
k) = ﬂ) T $(5) 4 .

¢ 79

c59§



Table 1II, All coefficients and Ramanujan sums of Qn(x) for n =595,

59

C5o5(*) " C595) K 505 2
C1) -1 a, 1 C(30) 4 30 0 C(59) -1 gy 1
C(2) -1 a, 1 C(31) -1 a4 0 C(60) 4 L 1
C(3) -1 a, 1 C(32) -1 Lo 0 C(61) -1 a., 1
C(4) -1 a4 1 C(33) -1 3,3 0 C(62) -1 a62 1
C(5) 4 a 0 C(34) 16 34 0 C(63) 6 A3 1
C(6) -1 2 0 C(35) -24 A 1 C(64) -1 Ay 0
C(7) 6 a7 -1 C(36) -1 a36 1 C(65) 4 a-65 0
C(8) -1 a8 -1 C(37) -1 a 1 C(66) -1 a66 0
C(9) -1 a9 -1 C(38) -1 a38 1 C(67) -1 a67 0
C(10) 4 alO -1 C(39) -1 a39 1 C(68) 16 a68 0
C(11) -1 ay -1 C(40) 4 a40 0 C(69) -1 a69 0
C(12) -1 a12 0 C(41) -1 a41 0 C(70) -24 a7o 1
c(13): -1 a13 0 C(42) 6 a42 -1 c(71) -1 a71 1
C(14) 6 a14 0 C(43) -1 a43 -1 C(72) -1 a72 1
C(15) 4 Ja | 0 |ce -1 a1 | c3) -1 s 1
C(16) -1 a16 0 C(45) 4 a‘}5 -1 C(74) -1 a74 1
C(17) 16 a, -1 C(46) -1 A6 -1 C(75) 4 e 0
C(18) -1 18 -1 C(47) -1 a,, 0 C(76) -1 2 0
C(19) -1 4 -1 C(48) -1 g 0 c(77) 6 a,. -1
C(20) 4 320 -1 C(49) 6 a49 0 C(78) -1 a78 -1
C(21) 6 a5y -1 C(50) 4 ag, 0 C(79) -1 2.9 -1
C(22) -1 a5y 0 C(51) 16 g, 0 C(80) 4 3 -1
C(23) -1 53 0 C(52) -1 A, -1 C(81) -1 agg -1
C(24) -1 Ay, 1 C(53) -1 acq -1 C(82) -1 3 0
C(25) 4 2,0 1 C(54) -1 A, -1 C(83) -1 204 0
C(26) -1 A6 1 C(55) 4 e -1 C(84) 6 N 0
C(27) -1 27 1 C(56) 6 A -1 C(85) -64 e 1
C(28) 6 a28 1 C(57) -1 as7 0 C(86) -1 a86 1
C(29) -1 29 0 C(58) -1 a58 0 C(87) -1 a87 0




Table III (continued)
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Cso5™) " Cso5k) 2 Cso5t) "
C(88) | -1 Beg 0 C(119)| -96 2410 1 C(150) 4 2 | -1
C89) | -1 3o 0 C(120) 4 3150 2 C(151) -1 31c -1
C(90) 4 250 -1 c(121)| -1 310y 2 C(152){ -1 P 0
C(91) 6 ag, | -1 c(122) | -1 30| 1 c(153)| 16 g | O
c2) | -1 ag, | -1 C(123) | -1 any| 1 C(154) 6 e, | 1
C(93) | -1 agy | -1 C(la4) 1 -1 3ng| © C(155) 4 Y
C(94) | -1 304 0 C(125) 4 25| -1 C(1s6)| -1 66 | 2
C(95) 4 305 0 C(126) 6 206 | 2 c(1s7)| -1 ey | 1
C(96) | -1 26 0 C(127y | -1 207 | -2 C(158) -1 g | O
Co7) 1 -1 2y, 1 C(128) | -1 200 | 2 Cc(159)| -1 e | O
C(98) 6 20g 1 C(129) | -1 309 | 1 C(160) 4 260 | -1
C99) | -1 250 0 C(130) 4 2301 -1 C(161) 6 261 | -2
C(100)| 4 00| © c(131)| -1 a2 O c(162)| -1 26n | -2
c(1o1) 4 201] © C(132) | 4 2| 1 C(163)| -1 2163 | -2
Cc(102)| 16 0| 1 C(133) 6 225 1 C(164)| -1 e | 1
C(103)| _q 2103 ] -1 C(134) | -1 aa4| © C(165) 4 265 | -1
C(104)| .1 2104| 1 C(135) 4 225 | © C(166)| -1 266 | ©
C(105) -24 205] © C(136) | 16 256 | "1 C(167)| -1 ey | 1
C(106); -1 2.06| © C(137)y| -1 25, -2 C(168) 6 268 | 1
C(107) -1 207| 1 C(138) | -1 200 | -2 C(169)| -1 269 | ©
c(108)| -1 20| 1 C(139) | -1 a9 | -2 C(170)| -64 250 | 1
C(109)] -1 2.00| 2 C(140) | -24 240 | 1 C171)f -1 a2 | O
C(110)| 4 210 1 C(141) | -1 34| © c@172); -1 a0, | -1
C(111)| -1 3. i C(142) { -1 L | 1 c73)| -1 a0 | -1
c(112)| 6 a5, O c(143) | -1 34| 2 c(174)| -1 3, | -1
c(113)| -1 25| © c(144)| -1 .l 3 C(175)| -24 a0 | -1
C(114)] -1 314 -1 C(145) 4 345 2 ci76)| -1 306 0
C(115)f 4 2 s -1 C(146) | -1 24| 2 c(177y| -1 a5 | O
C(116)} -1 316 -1 C(147) 6 3, 47 1 C(178)| -1 309 1
C(117) -1 a7 © C(148) | -1 248| © C(179)| -1 209 | 2
C(118)] -1 a1 0 C(149) -1 2149 -1 C(180) 4 3160 1




Table III (continued)
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Cso5') K Cso5() : Cso5M) K
c(181)f -1 201 1 C(212) -1 4512 -1 C(243) -1 2543 0
Cc(182)] 6 P 1 C(213)| -1 3,13 0 C(244)| -1 44 -1
c(183); -1 2103 0 C(214) -1 %14 1 C(245) | -24 545 -2
C(184)] -1 304 -1 C(215) 4 515 0 C(246) -1 46 -2
C(185)] 4 265 -1 C(216) -1 216 1 C(247) -1 447 -2
C(186)] -1 386 -1 C(217) 6 517 1 C(248) -1 2,48 -1
C(187)| 16 3147 -1 C(218) -1 %18 0 C(249) -1 2549 0]
C(188)] -1 3108 -1 C(219) -1 19 -1 C(250) 4 2550 0
c(189)| 6 2,00 | 0 | C(220) 4 | ay| -1 |c@sy| -t By | 1
C(190); 4 390 1 C(221) 16 3501 -2 C(252) 6 300 1
C(191)] -1 3191 1 C(222) -1 3502 -2 C(253) -1 3553 0
c(192)| -1 290 | 1 Cce23) | -1 Ans| 2 c@s4) | -1 254 -1
C(193); -1 3193 1 C(224) 6 404 -1 C(255) | -64 2555 -1
C(194)| -1 3104 1 C(225) 4 05 0 C(256) -1 3,56 -2
cos)| 4 | a0 | 0 |c@e)| -] aug| 0 fc@s7)| -l| 8y -2
C(196) 6 2196 -1 C(227) -1 507 1 C(258) -1 2 cq -2
c(197)| -1 397 -1 C(228) -1 508 2 C(259) 6 2559 -1
c(198)| -1 a -1 c29) | -1 a 2 C(260) 4 a 0

198 229 260
C(199)| -1 a9 |1 | C(230) 4| ay,| 1 |ceet)| -1 Speq | 1
CR00)| 4 | a, -1 |C@1) | 6 | ay,| 0 |CE62)| -1 | 2| 1
C(201)| -1 a201 0 C(232) -1 3232 0 C(263) -1 3263 2
Cc(202)| -1 a202 1 C(233) -1 a233 -1 C(264) -1 a264 2
C(203) 6 3503 1 C(234) -1 3534 -1 C(265) 4 2265 1
C(204)| 16 304 1 C(235) 4 3,35 -1 C(266) 6 466 0
C(205) 4 a205 2 C(236) -1 3236 0 C(267) -1 3267 0
C(206)| -1 2506 1 C(237) -1 v 1 C(268) -1 68 -1
C(207)| -1 3507 0 C(238) | -96 3,18 2 C(269) -1 2569 -1
C08)l -1 | ay. | O |C@9) | -1 | 4] 2 [CE70)| 4| 3| -l
C(209)| -1 2509 -1 C(240) 4 240 3 C(271) -1 a1 0]
C(210)| 24 2,510 -1 C(241) -1 %41 2 C(272) 16 4y 0
C(211)) -1 4514 -1 C(242) -1 3540 1 C(273) 6 3573 1




Table III (continued)

Cs95k) %Kk Cso5) %Kk Cs95) ®k

c(274)| -1 ay0g | 1 c(305)| 4 205 | -1 c(336)| 6 23| ©
Cc(275)| 4 ay,s | 2 Cc(306)| 16 2206 | -1 c(337)| -1 az,] O
c(276)| -1 2506 | 1 c@o7)| -1 207 | 1 Cc(338)} -1 B5g| 1
C(277)f -1 I I C(308) 6 2308 | © c(339) -1 2201 -1
c(278)| -1 2,00 | O c(309)| -1 2309 | © C(340)| -64 40| -t
c(279)] -1 209 | O C(310) 4 4001 1 Cc(341)} -1 Ay -1
C(280)|-24 Bygo | -1 ci31y| -1 a0y | 1 Cc(342)| -1 | -1
C(281)] -1 3281 -1 C(312) -1 a312 1 C(343) 6 a343 0
c(282)| -1 By | 1 c(313)| -1 a5 | 1 Cc(344)| -1 44| ©
C(283)| -1 ayes | © c(314)| -1 204 | 1 C(345) 4 2] 1
c(284)| -1 Bhq | O C(315)| -24 25| © Cc(346)| -1 ta6| 1
Cc(285)| 4 Bygs | O c(316)| -1 26| © c(347)| -1 S
C(286)| -1 386 1 C(3;7) -1 3.7 0 C(348)| -1 2248 1
C(287)| 6 2507 1 c(318)| -1 318 0 Cc(349)| -1 3240 1
c(288)| -1 2eg | © C(319)| -1 29| © C(350)| -24 25| ©
C(289)| 16 259 | © C(320) 4 2350 | © c@351)| -1 | ©
C(290)| 4 2500 | © c(321)| -1 agy | 1 c@3s2) -1 2350| ©
C(291)] -1 501 -1 C(322) 6 2205 1 Cc(353)| -1 3aca 0
c(292)| -1 2500 | -1 c(323)| 16 2305 | 1 c3s54)| -1 aye| O
C(293)| -1 2593 -1 Cc(324) -1 N 1 C(355) 4 e 0
C(294) 6 2504 |1 C(325) 4 2o | 1 c(356)| -1t Tasg| 1
C(295)| 4 295 | © c(326)| -1 Bas | © C(357)| -96 T
Cc(296)| -1 2506 | © c(327)| -1 8300 | O c(358)| -1 ayegl 1
c(297)| -1 2597 | © c(328)| -1 ay0g | -1 c(359)| -1 a3e0] 1
Cc(298)| -1 2508 | 1 C(329) 6 2559 | 71 C(360) 4 N
C(299)| -1 2,00 | 1 C(330) 47| ag,, | -1 c(361)| -1 a36q] O
c(300)| 4 200 | © cE3y | -t 2y | -1 Cc(362)| -1 en| O
Cc(301)| 6 3504 0 c(332)| -1 800 | - 1 Cc(363)| -1 Ba65| 1
c(302)| -1 3502 | © C(333)| -1 8305 | © C(364) 6 2y64] -1
C(303)] -1 3y03 | 1 C(334) -1 . 0 C(365) 4 Ba65 -1
C(304)| -1 3504 | -1 C(335) 4 855 | O Cc(366)| -1 Sa6| L




Table III (continued)
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Cs95™) " Cso5) " Cs95) 2k
- - - - C(37 -
C(367)| -1 a6, | -1 C(373) 1 23731 -1 (379) 1 379
- C - 380
C(368) 1 3368 0 (374) 16 3374 1 C( ) 4 380
C(36 - 375 - C(381 -

(69| -1 | ageo) 0 COT 4 ) agg) - @sh - -1 381
cE70)| 4 | ay | O c376)| -1 36| -1 c(382)| -1 282
ci37)| 6 ag | © c@377)| -1 a | -1 c383)| -1 340a
c(372)| -1 a,,| O | €GB8 6 | a .l 0

. . h
E. Lehmer says that the coefficient of x  where
h = (p-3)(qr +1)/2 is (p-1)/2. In this case h =120 so that the
. . 120 . L. .
coefficient of x is 2 and this coincides with the result

obtained directly from the calculation method, that is, the coeffi-

120
cient of x is a =2,

Since the coefficients are symmetric to the midterm the

coefficient of XZ()4 is also equal to 2.

We can also see that there exist other ''large'' coefficients
and 'larger'' coefficients (in absolute value) in addition to the coeffi-

cient a in Lehmer's case.

h
We observe that adjacent coefficients in Tables II and III do
not differ by more than 1 in absolute value. It would be of interest

to prove this in general or find a counterexample but this is beyond

the scope of the paper.
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