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ON CONVERGENCE OF INFINITE SERIES OF IMAGES

I. INTRODUCTION

1. Preliminary Remarks

A familiar topic in many courses in electricity and magnetism

is the solution of electrostatics problems by the method of electrical

images. Certain of these problems require the insertion of appropri-

ate charges at an appropriate infinite sequence of points. The result-

ing infinite series, representing the total charge inserted, have a

particularly fascinating character. See [2], [3], [4], [6] The ques-

tion of convergence of these series is sure to be raised by the more

mathematically inclined student. No proofs of convergence are given

in the references cited, or in any readily available sources known to

the author. In this thesis two problems are considered and a variety

of convergence proofs are given.

2. The Concept of the Method of Images

We first recall that for a single point charge q in empty space

the electric field E at a point P is the force on a unit positive

charge at P. It has the direction of the radius vector drawn from q

to P and magnitude q/r2. The potential V at P is q/r

and represents the work necessary to bring a unit positive charge from
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infinity to P. In a dielectric medium these quantities are reduced

and become

and

Kr2
1
Kr

where K is called the dielectric constant or permittivity of the

medium. More generally, in the case of a continuous distribution of

electricity consisting of p units of charge per unit volume occupy-

ing a region T, the electric potential is

V = .51 pdT

(T) r

and the electric field is the negative gradient of V, i. e. , E = -vV.

It is also to be recalled that the capacitance C of a conductor with

charge Q at potential V is given by

C=

We turn now to the method of images and consider the electric

field due to two point charges. Let an equipotential surface enclosing

one of the charges be replaced by a conducting surface. Then if the

charge inside is transferred to this surface, the field between the

other charge and the surface remains unaltered, while that between

the first charge and the surface is annhilated [4, pg. 94]. In its
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simplest form the method of electrical images consists of placing two

point charges in such positions that one of the equipotential surfaces

of the resulting field coincides with the surface of a conductor which

one desires to place in the field. Then the charge on one side of the

conducting surface is transferred to the surface and the field on the

other side remains unaltered. Thus the field produced by a point

charge and a conducting surface can be determined by the relatively

simple investigation of the field of two point charges. The point

charge which is transferred to the conducting surface is called the

image of the other charge.

The simplest electrostatic problem solved by the method of

images is that of finding the field of a point charge q and a conduct-

ing plane. Suppose q is at distance d to the right of the plane.

Drop a perpendicular from q to the plane and place a charge -q

on this perpendicular at distance d to the left of the plane. It is

immediate that the plane surface is an equipotential surface, of zero

potential, of the field due to the two point charges q and -q. If

this plane surface is a conductor and the charge -q is transferred

to it,the field to the right of the plane is unaltered and can be computed

at any point by simply computing the field of the two point charges.

Suppose one wishes to find the field of a conducting spherical

surface S and a point charge q at distance d from the center

of S. See Fig. 1. Then one is required to find the magnitude and
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position of a point charge such that the spherical surface S

is an equipotential of the field of the charges q and -qr. One

readily finds [4, pg. 97] that

(1. 1) =

and that -qr must be placed at distance OQ' from 0 where

Za
( 1 . 2) OQI = 7.

That is, q' is placed at the point Q' which is the inverse of Q

with respect to the sphere S.

In the following chapters we extend the method to problems

involving two conductors, neither of which constitutes a point charge.

Fig. 1. Sphere, charge and image.



II. THE SPHERE-PLANE PROBLEM

1. Introduction

5

In finding the capacitance of a charged spherical conductor

relative to an earthed conducting plane, one inserts an infinite

sequence of charges within the sphere so as to make both the spherical

surface and the plane equipotentials. The solution will contain the

infinite series of charges, the convergence of which we will demon-

strate in two different ways. We first present a cursory introduction

of the sphere-plane problem, and the derivation of the series of

charges, essentially as it is dealt with in the references. See [4], [6].

The first proof of convergence will involve employing a recur

sion relation to express the series in a form which lends itself to

analysis by the ratio test.

The second, less direct method, involves showing that succes-

sive images in the sphere satisfy a difference equation which may be

solved in terms of hyperbolic functions. See [1, p. 363]. The ratio

test is then again invoked.

Finally, we verify the recursion relations which play an

important role in both solutions.
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Fig. 2. Sphere, plane and images.

2. The Series and a Proof of Convergence

Using the method of images, we proceed as follows, computing

the capacitance of a charged spherical conductor S of radius a at

a distance d/2 from an infinite earthed conducting plane P. We

require d > 2a. See Fig. 2.

Place q1 at the center of S. Then S is equipotential but

P is not. Add the image -q1 of q1 in the plane. Then P is

equipotential but S is not Now add the image q
2

of -ql in the

asphere. It will be a charge q
2

=
d

q
1

at a distance s
2

= a
2/d

from 0 [(1. 1), 1. 2)]. Now S is equipotential and P is not.

Next we add the image of. q2 in the plane, followed by the image q3



of in the sphere. Thus q3
a q2 at a distance a

2
-q2 /s

12 3 s
1

from 0 where s
1

is the distance of -q2 from 0, i. e. ,

So we have

at distance

2 2

s
1

= d a a
2

= d(1- ) [(1. 1), (1. 2)].
d

a2

d2
q3

=
2 q

1

1 -a2
d

s
3

= d -
2

1 -a2
2

a 2

d

d

from 0. Next insert q4, the image of -q3 in the sphere. We

have

a

q4 2 q3a

1-
2

1- a2

d2

7

Proceeding in this way, we insert an infinite sequence of charges in S

which makes both S and P equipotential. In S the total charge



is

00

qi
i=1

awhere x d .

q1

x2 3

1+x+
1-x2

(1 -x

x

)(

4

x2-
1 -x

2
x ) x2(1-x2)(-

2
1 -x

1-
x2

Since q2
is the image of -q1 in the sphere, the potential

of S due to this pair is zero. The same is true of the pairs

and -qz,

sphere is

q4 and -q3 etc. Therefore the potential of the

ql
V =

a

(taking the permittivity of the medium to be unity). Clearly the

potential of the plane is zero. Therefore the capacitance of the

sphere relative to the earthed plane is

00
aZ. q 2

Q 1=1 i
C = a( 1+x+

x+
. . . ) ,

V q1
1 -x2

where Q here is the net charge in S.

q3

8



We investigate the convergence of the series

2

1 + x +
2

+... for 0 < x < 1/2.
1-x

00

Note first that we may write the series as cn if we define

(2. 1)

xn+1
cn+1 = an

an+1 = an bn+1

bn+1 = 1
x2
bn

n=0

n = 0, 1, 2, .

a
0

= b
0

= c0= 1 .

9

The validity of this recursion relation for all n will be proved later.

First we note that all terms in the series are positive. Clearly

all c, are positive if all a. > 0. All a. > 0 if all b. > 0.

This follows simply from a
0

= 1, an+1 = an bn+1 and an induction.

Now we may prove by induction that 1/2 < b. < 1

( i = 0 , 1, 2,... ), and therefore conclude that all c. are positive:

We have b
0

= 1. Suppose 1/2 < b
n

< 1. Then since 0 < x < 1/2

we have



or

i. e.

where

x2

n
0 < <

b

x21

b
< 1- < 1

2

2
< b

n+1
< 1.

00

Now we may apply the ratio test to

n=0

lirn
cn +l

< 1
cn

n--*00

10

cn. We must show that

cn+1 xn+1 an-1 an-1
x

cn an a bn x n n

We next show that {b
n

} is a monotone decreasing sequence.

Clearly b0 -b1 > 0. Suppose that bn-bn+1 > 0. Consider

2 2 2 2 2
bn+1 - bn+2 = (1

b )
- (1- x ) (b

n
-b

n+1
).

n n+1 bxn+1 n b bn n+1

This is positive according to the induction hypothesis.

Since we have shown the {b
n

} are bounded below and monotone

decreasing, we can conclude lim bn exists, and is positive. (In
n 00

fact lira b> 1/2). Also, 1/2 < b < 1 => 1/2 < lim b < 1.n n nn-00 00



This, together with cn+i/cn = x/bn and 0 < x < 1/2 implies

0 < lim
cn+1

< 1
cn-'00 n

thereby showing the convergence of

00

cn .

n=0

11

After showing the {b
n

} are monotone decreasing and bounded,

we could follow an interesting alternate route.

Let

Then

Thus

Then

cn+1 cn+2
r = lim lim

n-'00 cn cn+1

r= lim = lim
2

ta-'00ccn+2n+1
bn+1

x

lim (1- 2b
n-- co

cn+1 1 -xr1 -x lim ( -2-c.)b 1 -x .lira ( 7---)
n --- co n

n -1- co n

xr = x or r 2x r + x = O.

1±J1 -4x 2

r = 2x

If the plus sign were correct then since 0 < x < 1/2 we clearly
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would have r > 1 (for indeed, 1/2x > 1). But if r > 1, then

there are bn such that

n+1
> 1 (with 0< x< 1/2).cn bn

Also we have 1/2 < b < 1 so 1 < 1/b < 2. This, withn n

0 < x < 1/2 gives x/bn < 1 which is a contradiction. So r > 1

is impossible and we reject the plus sign.

We conclude

1-N11-4x2r= 2x

Now showing r < 1 when 0 < x < 1/2 is easy using elementary

calculus: We have

1_,,11-4.2)-
1.lim

+
(1

-\11-4x2)
0 and lirn (

2xxP- 0 2x 1/2-

Also, the derivative is seen to be positive for 0 < x < 1/2 so the

function is monotone increasing on 0 < x < 1/2. Therefore we con-

clude 0 < r < 1.

Finally we note that all the charges stay in the sphere S. The

sequence of distances from 0 of q1,q2,.. is
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or

ax ax ax

1-x x
2' 2 '

x2
1- 1-

1-x2 x2
1-

2
1 -x

ax ax ax
b

1
b

2
b

3

But 1/2 < lim b < 1 so 1 < lirn l/b < 2, or
n n

00 n'00

a2/d < lirn ax/bn
< 2a2/d . Now

n

SO

2a
2

a < 1 =>a2 <
a =>

d 2 d 2

axlirn < a.
n oo n

< a

3. The Series in Terms of Hyperbolic Functions

In this proof we demonstrate that successive charges in the

sphere satisfy a linear finite difference equation which we shall solve

in terms of hyperbolic functions. The ratio test will then be applied

to the series of charges in this new form to prove convergence.

Recall we have the series

00

n=0

cn. Using (2. 1) we find



(2, 2)

(2.3)

(2. 4)

n+1
=

x
cn+1 an

x
n+2

cn+2
2

an(1- bn

cn+3
xn+3

2 2and - )(-
2

1- x
bn

We now eliminate an, bn from the above equations: From (2. 2) we

have

xn+1a
n cn+1

Then (2.3) gives

xn+2
xc

n+1
cn+2 n+1 2x)

1
bxn b

x
2

1-
cn+1

or
cn+1

x2
1 = xbn cn+2

Now (2.4) gives

14



xn+3
c

n+3 n+1
x
cn+1

Then

or

xcn+1

cn+2

1 -x
1

cn+1

cn+3 xc n+2

xcn+2

(1-x cril
c

n+1
cn+1

cn+2

c
n+2

1 1 1

cn+3 xcn+2 cn+1

and we have the following finite difference equation with constant

coefficients, which is linear in 1/c n:

(2. 5)
1 1 1

cn+3 cn+1 xcn+2

We now proceed to solve the difference equation (2. 5) letting

1/cn = un. Then

n+3 n+1 1 n+2
u + u = ; u

or

u2+ 1 =u

or
u

2
- u + 1 = 0

SO

15
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Now since

u

1 j 1± -4
x

x2 1

2 2x 1412x

1

2x
1 d 1

(2) = 1 ,

2

1

a 2 a 2

d

we can let 1/2x = cosh a. Then

-1.

u = cosh a ± I cosh2a -1 = cosh a f sinh a.

2n 2 n nTherefore u = (u ) = (cosh a + sinh a) is a solution to (2. 5)

as is (cosh a - sinh a )n. Then the linear combination

C 1(cosh a + sinh a) n + C2(cosh a - sinh a)n is also a solution. Simpli-

fied, this is C
1
ena + C2e

-na which is equivalent to the linear combi-

nation A cosh(na) + B sinh(na) . We now have a solution of (2. 5),
1 = A cosh(na) + B sinh(na), where the constants A, B will nowcn

be evaluated by knowing the values of the first two terms c0, c1 of

the sequence. Since c0 = 1 we find A = 1. Since
0 c1 = x/a

0
= x,

we have

SO

1x = cosh a +B sinh a

B
1

(

1
- cosh a) 1

sinh a x sinh a (2 cosh a - cosh a).

cosh aTherefore B = . Thereforesinh a
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cosh a71
= cosh(na) sinh a sinh(na)

n

sinh a cosh(na) + cosh a sinh(na)
sinh a

sinh(n+l)a
sinh a

The total charge on the sphere is

oo co

qn ql cn
n=1 n=0

= q1 sinh a

To show Ecn

00

n=0

oo

sinh(n +l)a] 1 = q1 sinh a csch(na).

n=1

converges, we again use the ratio test:

cn+1 sinh(na) sinh(na)
cn sinh(n+l)a sinh(na) cosh a + cosh(na) sinh a

1

cosha + coth(na) sinh a

If a > 0 we have

Clearly

lim coth(na) = 1 and lim
cn+1

1

cn cosh a + sinh a
n--" 00

1
< 1 since cosh a> 1 and a>cosh a + sinh a

implies sinh > 0.
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If a < 0 we have lim coth(na) = -1. Then
00

cn+1
1lim < 1

cn cosh a sinh an-00

since cosh a > 1 and a < 0 implies sinh a < 0.

Finally, we now show that the charges actually satisfy the

recursion relations(2. 1). To do this, we evidently must perform an

induction on the distances as well as the charges.

Note that the cn+1 in (2. 1) is actually qn+2/q1. Again let

sn be the distance from 0 to qn. Then clearly d - sn is the

distance from 0 to -q
n

. See Fig. 2.

where

Now by induction we prove that for n = 0, 1, 2,... we have

qn+2 Kn+1
ax

ql an and sn+2
bn

an+1 = an bn+1

x2bn+1 = 1
n

a
0

=b0 = 1

Proof: If n = 0 we have

(n = 0, 1, 2, . . ) .

q2/q1 'c/a° or q2 qlx

which is true and also s2 = ax /b0 = ax = a2/d which is true. Now
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suppose qk+2/q1 = xic+1/a and s
k+2

= ax /bk . We have [4]

Thus

a a
q2k+3 distance from 0 to -qk+.2 qk+2 d-s

k+2
qk+2

k+1 k+1
a x a

d- bax
a

k
q1 ax ak 1

bk

k+1 k+2 k+2
x x x

2 a
k

ql b
k+1

a
k

ql a
k+1

q
x

l
1-

b
k

k+2/
qk+3 "11 k+1

Furthermore, [4]

a2

which was to be shown.

s
k+3 distance from 0 to -qk+2

2
a

d-sk+2

2 2
aa ax ax

d- ax ax

(1

1

bk

x2 bk+1
bk

which was also to be shown.



III. THE TWO-SPHERES PROBLEM

1. Introduction

20

In this problem, the method of images is employed to compute

the capacitance between two spherical conductors. Infinite sequences

of charges are inserted within each sphere, so as to put one sphere at

unit potential and the other at zero potential. The solution will

involve the infinite series of charges, and we will again confine our

attention mainly to proving convergence of the series of charges.

However, we will begin by presenting a brief introduction of the two

spheres problem and the derivation of the series of charges. We will

again refer the reader to the references for more complete details of

this aspect of the problem.

The first proof of convergence will involve employing a

recursion relation to express the series in a form which lends itself

to analysis by the ratio test.

Another, but less direct, method involves showing that succes-

sive images in either sphere satisfy a difference equation which may

be solved in terms of hyperbolic functions. The ratio test is then

again invoked to prove the series of charges converges. This is

similar to the difference equation approach employed earlier in the

sphere-plane problem. See [1, p. 363].
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A considerably more unwieldy approach is suggested in [2].

There may be found an outline of a novel procedure for expressing the

series arising in the two spheres problem in terms of definite

improper integrals. Then the proof of convergence of the series may

be replaced by the task of establishing convergence of the improper

integrals. We lastly make a detailed examination of this approach.

(2)

Fig. 3. Two spheres and images.

2. The Series and a Proof of Convergence

We begin by deriving the series of charges utilized in computing

the self- and mutual capacitances for two charged conducting spheres,
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via the method of images. Except for some differences in notation,

this is essentially the derivation found in [6, p. 118].

We denote the distance between the centers of the spheres by

c, i. e. , c and assume c > a + b where a and b

are the radii of (1) and (2) respectively. It will prove convenient to

let m = a/c and n = b/c, noting that 0 < m, n < 1. See Fig. 3.

Put (1) at unit potential by putting a charge q0 = thr a at 0',

where thrE is the permittivity of the medium. Then put (2) at zero

potential by placing an image q
1

= (-4TrEa)c = -41TE an at a distance

d
1

= b
2 /c = nb to the left of 0. Next restore (1) to unit potential

a awith a charge q2
(12 -(11( c-dl ) -1( cnb ).

q2 must be placed to
2 2

athe right of 0' a distance d
2 =cad -

l
c -a

m
nb 2

. Next,
1 -n

restore (2) to zero potential with an image q3 where

_
q3

n
c -d = 2 ma

2 c-

q3 must be placed at a distance from 0

Next,

1-n

b
2

b2 nb
d

3 c-d2
b2

ma 2
m2c-

1-n2
1

21-n 1 -n

q4 returns (1) to unit potential where
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a a
q3 c -d3 q3 nbc-

2

q4 lies to the right of 0' a distance

2

d
4 ca-d3 c-

2
a

1- m
2

1 -n

a2 ma
nb

2 c 1

1- m
2

1 -n

2 2n n
12 2

1- .1121-- 1-
1 -n 1-n2

q
5

restores (2) to zero potential and is a charge

c15 -c14 c-d4 -c14
b

c- ma

n2
2m

q5 is located to the left of 0 a distance

b
2

nbd -
5 c -d4 m21-

n21-
2m1-
2

1 -n

Continuing this procedure, we have



a a
q6 -(15 c-d5 -(15 nbc-

2
m

n2
2m

1-n2

and q6 lies to the right of 0' a distance

a2 a
2

d
6 c -d5 c- nb

2m

ma

n2
2m

2
n

2m
2

n
2

1- m
1 -n2

The above process continues indefinitely, generating an
ooinfinite sequence of charges {qi}j=0 and a corresponding infinite

sequence of distances {d.1}1=0 . The subsequence of charges
oo

{q2i}i=0 lies in (1); c121 . lying a distance d 2i to the right of 0'

for each
oo

i. Similarly, the subsequence of charges {q2i+1}i=0

in (2); q2i+1

24

lie s

lying a distance d2i+1 to the left of 0 for each i.

oo
After the entire sequence of charges {q.}

i=
has been inserted in the

0
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spheres as prescribed, both are equipotentials, (1) being at unit poten-

tial and (2) at zero potential. Therefore the capacitance of (1) rela-

tive to the earthed sphere (2) is

C = -Q = Q =

00

i=-0

00

We investigate the convergence of
i=0

In summary, letting K = 41rE a, the charges on (1) are

q = K

m
q2 -q1 2

1-n

q4 = "q3

1-

a =
'6 '5

The charges on (2) are

m
n2

2

1- m
1-n2

m
2

n
2m

1

2
n

m2



(3. 1)

q1 = -Kn

n
=

3 2

q5
=

4

1-
2

m

1-n

n

q=

7 -q6
1-

2
m

2
n

2m1-
2

1-n

n

2m
2

n
2m

2
n

m2

oo

The total charge on (1) is q
2k

where

q2k

r2k-2

s2k-3

q2 k -1k-

k=0

(k = 1,2, ...)-q2k-1 rzk_2

n2 (k = 2,3, )1
s 2k-3

2m (k = 2,3, ... )1

r2k-4

n (k = 1, 2, ... )
q 2k-2 s 2k-3

26
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and r
0

= 1-n2, s
-1

= 1 and q
0

= K. The recursion relations can

be verified in a manner similar to the proof by induction given for the

recursion relations (2. 1) of the sphere-plane problem.

In this problem, clearly n > 0, m > 0 and n +m < 1.

Therefore 1-(m+n) = E where E > 0. Define M = m + 3 and

N = n + 3 . To employ the ratio test on
I` 12k'

we will need the

following inequalities which we proceed to prove by induction:

(3. 2) M < r2k -2 < and N < s 2k-3 < for all k.

1 1 2m-nNote first M = m + (1 -m -n) +
3 3 3

M < 1:

and we verify

m+n < 1 => m < 1-n => 2m < 2-2n => 2m < 2+n
2m-n 1=> 2m-n < 2 => < 2 -> M

3
+

2m-n
3 3

Similarly, N < 1.

< 1.

For k = 1, we first show M < r
0

< 1, i.e. M < 1-n2 < 1:

Clearly, since n < 1, we have n2 < n or 1-n < 1-n 2 This is
1+2(1

3

-n)-n < 1 -n2. Since m < 1 -n, we have 1+2m-n 2< 1-n ,
3

i.e. , M < 1-n2 (< 1). Also note that N < s -1 < 1 since s
-1

= 1.

Now assume that for some p > 1, we have M < r < 1
2p -2

and N < s < 1. We show first that N < s < 1: Clear ly,2p-3 2p -1
2EM + N = (m+ E ) + (n+-

3
) = m + n + 3 < m + n + E = 1. Therefore

3



M < 1 -N, or M < 1-N, and since m2 < M2, we can

conclude m 2 /M < 1-N. Applying the induction hypothesis to the

latter inequality, we obtain

or

or

2

0 < m < 1-N,
r2p-2

2

N-1 < m < 0r 2p-2

2

N < 1- m <1
r2p-2

N < s < 1.2p-1

28

We next verify M < r2(p+1)-2 < 1, i.e. , M < r < 1. We know2p

N < 1-M or N2 /1\1 < 1-M. Since n2 < N2, it follows that

n
2/N < 1-M. This, together with the induction hypothesis

implies s2p-1 > N. We have

Or

n2
2

0 < < 1-M, or M-1 < < 0,
s 2p -1 s2p-1

2

M < 1 < 1, i.e. ,
s 2p 1 M < r <

1.
2p

We next demonstrate by induction that the q
2k

's

Note q0 = K > 0. Suppose q2p > 0. Then

s > N2p-3

are positive.



m n m
cl2p+2 cl2p+1 r

2p
-(-

cl2p r2p

which is positive since n, m and q

(3. 3)

We next prove by induction that

q2k+2 mn
cl2k

s
2k -1r 2k

2p
are positive.

(k = 0, 1, 2, .. . ),

omitting the easy verification for k = 0. Suppose

q2i+2 mn
q21 ..s

1
r .

2-1 21

for a positive i. From (3. 1) we have

q2i+4 q2i+3 r2i q2i+2 s2i-1 r2i

q2i+2 q2i+1
r2i+2

cl2i
s2i+1

r2i+2

Now the induction hypothesis gives

q2i+4 mn s2i-1 r2i mn

q2i+2 s2i-lr2i s2i+1 r2i+2 s2i+1r2i+2

which establishes (3.3).

We may finally apply the ratio test to show the convergence of

We show by induction that {s2k..1} and {rZk} are
1'42k

29
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nonincreasing sequences.

r0
0

r_
z

= (1-n2) n
2

- (1- ) = n
s

1

2
(

1 >0-1)
s

1

since N < s
1

< 1. Also note s -1-s1 = 1-s
1

0. Now suppose

r2k-r2k+2 > 0 and s2k_i
s 2k+1

> 0. We have then

,, m2
2

s2k+1 52k+3 = 1- ) (1- m

2k r2k+2
)

= m2(
1

_

r2k+2

Furthermore,

1 m2
) (r2k-r ) > 0

r2k 1.2k+2r2k 2k+2
0.

n2 n2
= (1- ) (1- )r2k+2 r2k+4 s

2k+3s 2k+1

Since {s2k_i} and

= n2(
1 1

)s2k+3 s
2k+1

nz
(s2k+l-s2k+3) ?- 0.s2k+3s2k+1

{r2k} are non-increasing and bounded below,

they are convergent. Also, M < r
2k

< 1, N < s2k-1 < for

k = 1, 2, ... implies M <
k"
lim r

2k
< 1 and N <

k
lim s2k-1 1.

co '00
Thus



SO

1 1 1 1

lirn r 2k M
and l

<irn s 2k-1 N
k -"00 k -4" 00

1 1

lirn r 2k lirn s 2k-1 MN
k 00 k co

Since m < M and n < N, we have

This is

mn

k co k
r2k lirn s2k_i

-"co

mn MN
= 1.

< MN < MN

nlim q2k+1
< 1,

lirn 2k
s

2k -1q2k
k co

31

which completes this proof of convergence of Eq
2k.

A similar approach could surely be used to show the convergence

of Zq2k+1.

3. The Series in Terms of Hyperbolic Functions
00

Another proof of convergence of the series of charges q2k
k=0

given by (2. 1) can be accomplished by expressing the series in

a different form which lends itself to analysis by the ratio test. This

is done by solving a linear finite difference equation which the

sequence of charges {q
2k

} is shown to satisfy.



32

Also, this new form of the series, involving hyperbolic functions,

is more useful for purposes of numerical computation than the original

form [6, pg. 119].

From the recursion relations (3. 1) we have

or

and also

m
=q2k+2 q2k+1 r

2k

n m
q2k+2 cl2k 52k-1 r

2k

n2
r2k 1 52k-1

We eliminate r
2k

from the above equations, obtaining

Or

(3. 4)

q2k+2

q2k

q2k+2

cl2k

Replacing k by k+1 yields

(3. 5)

mn

52k-1(1- 5

mn

n2

2k-1

2

52k-l-n

cl2k mn

cl2k -2 s
2k -3

-n2



We also have

2 2
m m

(3. 6) s 2k-1 = 1 1r 2k-2 n21-
s 2k-3

Next, we eliminate 52k-1 and s2k-3

From (3. 4) and (3.6) we get

and from (3. 5)

2k+2 mn

33

between (3.4), (3.5), (3.6).

2
q2k 2k-3m 2

2
1- -n

s 2k -3
-n

2 mnq2k -2
s 2k-3 n q2k

From these equations we obtain

cl2k+2

cl2k

mn

m La2( 2
+

mncl2k-2)

cl2k1- - nmnq2k_2

cl2k

mn

1 -m2 (n q2k
+1 - n2

m cl2k -2

2



so that

whence

q2k

q2k-1-2

mn

34

1 -(mn
q2k

+ m2)-n 2

mn

cl2k
1 -m2 -n2 -mn

q2k -2

cl2k
1 -m2 -n2 -mn

q2k -2
mn

1 -m2 -n2
mn

q2k

q2k-2

1 1 -m2 -n2 1 1

cl2k+2 mn q2k q2k-2

We have thus obtained a second order homogeneous linear difference

equation for 1 /q2k :

(3. 7) 1 1 1 -m2 -n2 1

q2k+2 q2k-2 mn

To solve (3. 7), we presume a solution

this into (3. 7) we obtain

q2k

2k
u

-2k
. Substituting'

2k+2 2k-2 1 -m2 -n2 2k
u + u = umn



If u 0,

35

2 -2 1 -m
2

-n
2

+ u mn

whence u satisfies the quadratic in

Therefore

(3. 8)

2

2 2

u4
1 -m -n

u2 + 1 = 0 .mn

1 -m2 -n2 1-m2-n2
(

2

2 mn mn ) _4

u
2

-m2 -21

mn
nNow let cosh a . This is possible since cosh-1 y

2

1-m2 -n2exists for all y > 1, and 2mn > 1 which we easily verify:

a
2+b 2

1

1-m2 2 2 2 -(a2
b

2)

2mn ab 2ab
2

2
c

Now, a, b, c > 0 and c > a+b imply c
2

> (a +b)2, so

1-m2 -n2 c2 -(a+b) 2 2ab
2mn 2ab 2ab

2c -(a+b)2

+ 1 > 1.
2ab



Substituting cosh a in (3. 8) gives

u2u = cosh a ± J cosh2 a -1

.7- cosh a t sinh a.

Therefore u2k = (u
2

)
k = (cosh a+ sinh a )k is a solution, as is

(cosh a sinh a)k. Then the linear combination

Di (cosh a + sinh a) + D2(cosh a sinh a)k = Die
ka

+ D2e
-ka

is also a solution. But this is equivalent to the linear combination

A cosh (ka) + B sinh (ka ).

Therefore a solution of the difference equation (3. 7) is

1 = A cosh (ka) + B sinh (ka)
cl2k

in which A and B are to be determined from the first two

For k = 0, we have

1 1
A or A=

q0
K thre a

Then

q2
1 cosh a + B sinh a

or

36



whence

Since

we have

so

or

21-n 1
= cosh a+ B sinh a

mql K

2
1-n 1

.mn.K 'K
cosh a + B s inh a .

2 21 -m -ncosh a = 2mn

2 2 2

+
m 1 -m -n m 1-n2 cosh a -1- = + ,
n mn n mn

K(2(2 cosh a + ) = 1cosh a + B sinh a

1

K
(cosh a + n ) = B sinh a .

With B so determined, we have

1 1
cosh a +

= cosh(ka) +
q2k K-sinh a sinh(ka)

sinh mcosh(ka) + cosh a sinh(ka) + n stnh(ka)
K sinh a

sinh(k +1)a + sinh(ka)

Ks inh

b sinh(k+1)a + a sinh(ka)
bK inh a

37
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From the above, we have

q
2k

= thrEab sinh a[b sinh(k+l)a +a sinh(ka)]-1

and our series of charges on (1) is

00

q
2k

= 4Tre ab

k=0

oo

sinh a [b sinh(k+l)a + a sinh(ka)]

k=0

= thrEab sinha

00

k=1

b sinh(ka) + a sinh(k-1)ar1 .

We are now in a position to prove convergence of the series in

this form:

oo 00

1
q = LITrE ab sinha

2k b sinh(ka) + a sinh(k-1)a
k=--0 k=1

CO

= 411" E ab sinh a /
ck

where a > 0, b > 0.
k=1

Also, let a > 0. The case a < 0 will be clarified later.

We employ the ratio test.
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c
k+1 b sinh(ka) + a sinh(k-1)a
ck b sinh(k+l)a + a sinh(ka)

b sinh(ka) + a sinh ka cosh a a cosh(ka) sinh a
b sinh(ka) cosh a + b cosh(ka) sinh a + a sinh(ka)

b + a cosh a a coth(ka) sinh a
b cosh a+ b coth(ka) sinh a+ a

Since lira coth(ka) = 1 for a > 0, we have
k co

ck+i b + a cosh a - a sinh a
1 im

ckco
a+ b cosh a+ b sinh a

We now proceed to show that this limit is less than one. The problem

is divided into three cases.

Case 1: If a = b, then clearly

and

1+ cosh a- sinh a< 1+ cosh a+ sinh

c k+1lim < 1,
k~.00 ck

since a > 0 implies sinh a > 0.

Case 2: Suppose b > a. Then b-a < (b-a)cosh a since

a > 0 implies cosh a > 1. Therefore,

b + a cosh a < a + b cosh a

and since sinh a > 0, we can conclude



b+ a cosh a- a sinh a< a+ b cosh a+ b sinh a

and the result

lim
c k+1

< 1

k'00 ck
obtains.

Case 3: Suppose a > b. Since a > 0, 1-ea < 0 and

-a a -a1-e > 0, so 1-e /1-e < 0. Therefore a/b > 1-e a/1-e -a

all -e -a) > b(1 -ea)

a( 1 -e -a) + b(ea -1) > 0

(a-b) + (bea-ae a) > 0

(a-b) + 1 [be a+be-a-aea-ae -a-ae -ae -a-ae -be -a] > 0

(a-b) + (b-a) cosh a + (a+b) sinh a > 0

b+ a cosh a- a sinh a< a+ b cosh a+ b sinh a

and therefore
ck+1

lim < 1.
k 00 ck

Finally, we clarify our earlier assumption specifying a > 0.

Recall that we first introduced a by letting

2

cosh a - 1-m2
-n

2mn

40
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Of course a cannot be zero, for then cosh a = 1. But m+n < 1,

so m 2
+2mn+n

2 < 1, or 2mn < 1 -m2 -n2. Therefore

1 -m2 -n2 > 1.2mn

But a can be taken to be either the positive (principal)

branch of cosh -1(
1-m2-n2

2mn ) or the negative branch. If we select

the negative branch, the proof holds equally well, as we shall now

demonstrate.

Suppose a < 0. Then since lira coth(ka) = - 1 , we have

ck +l b + a cosh a + a sinh alirn
ck

a + b cosh a - b sinh a

Again we consider three possibilities in demonstrating that this limit

is less than one.

Case 1: If a = b we must have

1 + cosh a + sinh < 1 + cosh a - sinha

which is true since sinh a < 0.

Case 2: Suppose b > a. Since a / 0, cosh a > 1, and

b-a < (b-a)cosh a , or b + a cosh a < a + b cosh a. Now, since

sinh a < 0,
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and therefore

b + a cosh a + a sinh a < a + b cosh a -b sinh a

ck+1
lim < 1 .

k --." co ck

Case 3: Suppose a < b. Since a < 0, 1-e-a < 0 and

1-ea > 0. Therefore

1-e-a1 >
b 1-ea

(a-b) + (be -a-aea) > 0

1(a-b) + [be
a

+be
-a -ae a -ae -a -aea

+ae
-a

-be
a+be-a

2
] > 0

(a-b) + (b-a)cosh a - (a+b)sinh a > 0

b + a cosh a + a sinh a < a + b cosh a b sinh a

and therefore

lirn
ck+1

< 1.
k 00 ck

4. The Definite Integrals Approach

The convergence of Eq2k will now be proved by a consider-

ably more involved procedure whereby the series is expressed in

terms of definite improper integrals.
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oo

We now write the series
(312k

in a somewhat different

k=0

form. Recall the solution u
2k

= D
1
eka + D

2
e

-ka of the difference

equation (3. 7). Let y = e -a
. Supposing a > 0, let y = e-a .

-y is clearly the smallest root of the quadratic equation

2 2

u
4 1-m -n

u2 + 1 = 0.mn

Since the product of the roots is unity and they are unequal (otherwise

a = 0) we have y < 1. Therefore our solution of (3. 7) can be

written

SO

and

Therefore

We now have

1 D1- + D
q

2k yk
2

1= D1 +D2 or D
1

+ D
2 K

= 1
q0

DI+D2-y2
1= + D2y or 1

q2 q2

-q lm Kmn
q2

1-n2
2 2

1 -n D 1+D2y

D1 +D
2

=
1

K



or

or

or

or

But we have

or

or

or

(3. 9)

D
1

+D y2 1-n2

_2
2

1 2 Y Kmn.

(-1 -D )y2 + D = /L:11
K 1 1 Krnn

D (1-y2) =

2

1 Krnn K

Y
2 1 rn-2 -n2

mn

Y2 ' 1 -m2 -n2
rnn.

+ 1 = 0

Y -1

1-n2 1-m -n2
2 2

KD 1(1-y ) -
11111

KD 1(1-y
2 ) =

m + I.
n

rnn

It will be useful to note that the value of D

preceding equation is

given by the

44



(3. 10)
1

D
1

=

K(1- 2)

45

where = m + ny. We now verify this by starting with the following

algebraic identity:

Then

or

or

n n3 m3 m m
mn 2m Y -Y+Y+n

3

mny - m

3

+ mn.y + n + _m n
m mn 7 Y Y

n3 m3
y 1 =m2 -n2 -m y + y + -r11-(1-m2-112)-y m2

mn m

1-m -n22
- (1-m2-n2)y + n

2
+ Y 1mn

n
mn m - 1 = m2 n2 + n3 3 ,+m22 _n2 2 2

n T
Y +

1-m2-n2 m m 3

(3.11) y - 1 = - y + y + m2 y2 +Y
2 - n2

y2 - mny +
mn

3n n 2
mn nm m

Now, since
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e = (m+ny)2 = m2 + 2mny + n2y2

2 2

= m
2

+ 2mny + n2( 1 -m -n )y n2mn

n3
= m2 + 2mny + y - mny - y - n2

3
= m2 + mny + n y - n

y -n2 .

(3. 11) is equivalent to

Or

or

or

or

2 m rn 2

7 Y + Vt +

1 - 2 m
= 1 t2

1-y2 m
y + 1

1-t

1 y
2 m= ( y+1)(1- 2)

K(1-y2
) m

K(1 -2) n Y + 1

which verifies (3. 10).

1Now, this equation, together with (3. 9) proves that DI
2

K(1 )*



Now,

so

or

-e2

D = 1 = K2 K D
1 K 1-g 1-g2

2 k 2 2k
1 Y 1 1-g y

cl2k K(1 -g
2)

K( 1 -g
2

)yk K( 1
2

)Y
k

K(1-g2 )yk

cl2k 1-g2y2k

oo

Thus the series q
2k

become s

k=0

K(1
-g2

00

We next evaluate the following definite integral, which will

play a prominent role in the analysis of Zq
2k

(3. 12)
°°sL.n22c

dx (p 0)2Trx ,e -1

47

Note first that the integral is not actually improper at the lower limit

since

sin px
11

Cm lim p os px p_

x4,0 e - 1 xy 0 2Tre2Trx
2Tr



At the outset, we easily verify the convergence of (3. 12) by demon-

strating that

oo
sin px dx

1 e2Trx-1

48

converges.. Using the comparison test and the fact that I sin px1 < 1,

we only need to show that

exists. This is

ao
dx

1 e2Trx-1

h -2Trx
lim 1 -27rx ihe x lim. ln(1-e ) 1 12d- Trx 2n.

h 00 1 1 -e h 00

which clearly exists.

The integral (3. 12) will be evaluated by computing an appropri-

ate complex contour integral-. Consider

(3. 13) eiPzf(z)
e2Trz -1

which has simple poles at z = ±i,±2i, . . We will integrate this

function around the indicated contour 0, illustrated in Fig. 4.



Fig. 4. The contour Q

49

r denotes the common radius of circular arcs C
1

, C
2

On the

circular portions of S-2, z = x + iy can be represented in polar form

as follows:

ie
-TrC

1:
z - i = re , /2 < 0 < 0

i0C : z = re, 0 < 0 < 7r/2.

Since f(z) is analytic within and on the contour, we obtain

S
eipz dz = 0 ,

S-2 e21Tz -1
e. ,

S
R 1

eip(R+iy)eiPx
(3. 14)

v."---"---ZTr(x+i)
ddx+ S i y + S -iP(x+i) dx

r e27rx -1 0 e27(11.+iY)-1 R e -1

-Tr /2 ip(i+rei0) r
e -PYe ire i0d0

+ idy
0

+

2Tr(i+rei0)--1 1-r eliriy-1S
e
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S°
Tr /2

i0ipre
e r ie i0dO = 0.
2Trrei0

-1

The above six integrals, which we now evaluate, will be denoted by

... ,I6 respectively. We evaluate 12 first:

1 eip(R+iy) 1 e-pyeipR
12 = dy

0 e
2Tr(R+iy)

-1
idy i

0 e2TrR e
271-iy

-1

1
e-PY

1'21
j0 e2TrRe211.1.y_ii

dy

On the segment of 0, z = R + iy, (0 < y < 1), we have e PY < eIPI.

Also

Thus

e2ITRe2Tr.iy_1, 1 1

e
2TrR

e
2Triy2ITR

1 l

- 1.

elPI
I1 2I2 2TrR

e -1

so 12 0 as R co

Now consider 14 and its limit as r 0 . We can interchange

the limit and integral operations by invoking a corollary of the follow-

ing familiar theorem.

Theorem: If f(x,t) is continuous for a < t < b, and

A < x < B, then
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F(x) =
J

f(x,t)dt
a

is a continuous function of x on A < x < B. We apply the follow-

ing corollary of the above theorem to 14 .

Corollary: Under the conditions of the above theorem we have

lm f(x,t)dt = J lim f(x,t)dt = J f(xo,t)dt
x0 a a x xo a

if A < x
0

< B.

Therefore,
-Tr /2 reipreieieie

lirn 14 = lim ePS
r~- 0 r 0 0

e2Trre
ie

-1

e

de

reiprei0-Tr /2 ie
e

.

0 e2Trre
de

J
t

0 -1

=e S0 r-- 0 2Treiee2n-re
(using L'Hopital's Rule)

-7/2
= e -P s ieie 1

de = e Pi
( ) = 4i e

-p

0 27re
ie 2.7

Tr /2. ie ripeieeipreie+eiprei°lim deie

16 lends itself to similar analysis;



reie
lim 16 = J ieje lim re

Tr /2 r 0 27re

ip

i0
-1

dO

r 0

ipre i0 iprei0
i0 lim +e

= dO
i0 2Trrei0Tr /2 r

2Tre e

(using L'Hopital's Rule)

0 iei0 1
dO =

TT /2 2Tre 10
4

Note that the sum of I
1

and I
5

is

eipx R ipx R ipx
-P.c e dx (1 -e -P) e dx .

2Trx
dx - e Znx r e2Trx-1r e -1 r e -1

Finally, taking limits as r 0, R 00, in (3. 14) yields

eip
2Trx

x
i

(1 -e -13) dx -4 e-p 4 + I
5

0.
0 e -1 r-' 0

Taking the imaginary part in the above equation we obtain

or

00
p) s

2

p
4

x 1 -pdx - (e +1) + Im( lim I5) = 0
Trx

0 e -1 r'0

co

(1 -e p) sin px dx
e2Trx-1

1 -p
4

(e +1) - lim (ImI
5)r'0

52



Or

Also,

lim (ImI
5

)
co

.51 sinpx 1 eP+1 0
dx

4
0 e2Trx -1 e

p
-1 1-e-P

15 is
1-r

P Y

cos 2Try - 1 + i sin 2Try dy,

that its imaginary part is

r

1-r

r

1-r

e PY(cos 2Try-1)
2

dy
(cos 2Try-1) + sin 2

2Try

e Y(cos 2Try-1),1 1

1-2 cos 2Try+1 `.4Y 2

[e
1 -pr

-e
-p(1-r)]

2p

1-r

53

and we readily find

ePY dy

1 PTherefore lira (ImI 5) = 2p (1-e ), and we finally have
r"' 0

(3. 15)
oo

1 e P+1
1S sin px

dx -2-p .
4 p

0 e2Trx-1 e -1

We now return to the series

CO

q
2k

= K(1- 2

k=0

00
k

2-y2k
k=0

= m+n-y).

Ignoring the factor K(1
2), we proceed to express the series in

terms of definite integrals. In (3. 15) set p = log(
2

y
2k) and obtain



or

oo
s in[(log

2
y2 dt =

k)t]
1 2y k+1 1

0 e2Irt -1
4 2k-1 2 logk2 2k)

GO

1
2

y
2k+1

1 sinklog 2k)fl
dt .- 2

e2Trt -1
2

1-
2

y2k log(2y2k) 0

Now multiply each term by y
k

We get

and also note that

1+2 y 2k 2-(1-2y 2k)
1 1

2(1.-
2 y2k) 2(1-2y2k) 1-2y2k 2

00 k
j sin[(log 2.N/ 2k)tJ

dt .2 2k
log( ) 0 e1-22k 2 2Trt

y -1

Sum on k and note that since 0 < -y < 1 we have

Then

oo cc

(3.16)
k k

1-

1
_

V2 2k 2(1-y)
y 2

y2k)
k=0 k=0

log(

oo

- 2

k=0

cc

k=0

k r 2 2k ,
y sinL(log y

J
0 e2Trt -1

dt .
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Consider the last term in the above equation. Ignore for the

present the justification for the interchange of summation and integra-

tion. Interchanging, we have

k=0

k r 2 2k ,
sinl(log )tJ

.

e2Trt-1
dt

1
Factor ing

2Tr
outside the summation, we re-express the series

e
t

-1

as follows:

or

oo

L yk sin[(log eN2k)t]

k=0 k=0

00

(3. 17)
2 it

2i

00

k=0

k ei(log
2. 2k)t-

e-i(log
2.\/ 2k)t

2i

00

[(2Y2k )
it

'Y
2k

)
-it]

2i
k=0

00

(1 +2it)k
2i

Therefore the series becomes

k=0

,2it t-2it
1 1

2i 1-y1+2it 2i 1-y1-2it

1 (1-y1-2it )--
-2it 1+2it,

2i (1-y1+2it)(1-y1-2it)

(1-2it)k



1
Zit -Zit Zit

Y
-2it -2it

Y
Zit

2i 2it -Zit 2
l-Y(Y +Y )+Y

1

Zit log -e -tit log [(i)2it..(L_)-2iti

2i
1--

2it
-E

-2it 2
Y(Y y )+Y

1 e2it ln ln log(Vy)-e-Zit log( /y)]

2i Zit log y-2it log y
1-2y(

2

sin(2t log sin(2t log 1)

1-2y cos(2t log y)+y 2

We now proceed to justify the interchange of integration and

summation

(3. 18)

co

y
k sinklog 2k)t]00

2Trt-1
0k=0 0 e

performed earlier.

k=0

Yksin[(log2Y2k)t] dt
21-rt

e -1

We first rewrite the integral over [0,00) as a
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sum of integrals over the intervals [0, 1] and [1,00), denoting
1 00

these latter integrals simply by S and respectively. After
0 1 1

showing we can interchange limits in the case of
'51

we will
0

invoke the Lebesgue Dominated Convergence Theorem to justify the
00

interchange in the case of



Interchange of limits in the case of

is justified since

(3. 19)

oo oo
1

Sb

k=0
0 0 k=0

00
k 2 2k ,

s inL (log )ti

e2Trt -1
k=0

0

is a uniformly convergent series on 0 < t < 1, as we will now

show with the aid of the following lemma.

Lemma: On 0 < t < 1, suppose

(1) F(t) and G(t) are continuous.

(2) IF(t)i < 1, 0 < < M.

(3) G(t) is monotone and G(0) = 0.

(4) lim F(t) = L.
(G

t..10

Then on 0 < t < 1,

(defining F(0) = L).
G(0)

F(t)
G(t)

is bounded, i. e.
F(t) <1\4
G(t) I
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Proof: Since lim I exists, F
iis bounded on some interval

0'0 G G

0 < t <t1 where 0 < t
1

< 1. Then on the interval t
1

< t < 1,

F
i

G
is a quotient of continuous functions with G nonvanishing, and so
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is a continuous function on this closed interval, and is hence bounded

on this interval.

Now returning to the series (3. 19), let F(t) = sinklog y
ak

)t]

and G(t) = e21rt -1 . Noting that

sin[(log 2k)t]
log(

2 2k
)lim

t4,0 e21rt -1

we see the above lemma applies. Thus

Since

oo

m.yk

k=0

yksin[(log 2k)t]

e2Trt -1
< y M on 0 < t < 1.

converges, we know the series (3. 19) converges

uniformly on 0 < t < 1 by the Weierstrass M-Test.

We now examine the interchange of limits in the case of
1

Recall Lebesgue's Dominated Convergence Theorem [5, pg. 246].

Let fk(t) be the kth partial sum of (3. 19). Returning to the
1expression of the series in (3. 17) (and restoring the factor

2Trt
e -1

we see that

1
fk(t)

2eTrt -1

Zit
1-1/

k(1+2it) /. 1-y-2it k(1-2it)

2i 1-y1+2it 2i
1- y

1-2it

(Recall, the kth partial sum of the geometric series

oo

xk

k=0

is
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1-xk
) Since 11-Y1±2iti > 1 1Y1±2it = 1 y, the triangle1-x

inequality gives

1 1 1+yk 1 1+yk
1 l+yk 1 1+1

k 271
r

(t)1 <
2 1-y 2 1-y

e -1 e2Trt -1
1-N

e2Trt -1
1-N

since 0 < y < 1. This shows the sequence of partial sums of (3. 19)
1is dominated by g(t) ,2

1
e

2Trt -1
that g(t) is integrable, i.e. ,

oo

Also, we have already noted

C
2 dt

1 e
2Trt

-1

converges. (Note that we had to rewrite the original integral

as since
oo

dt

0 e2Trt -1
diverges at the lower limit. )

la

Obviously we wish to exclude the extended case of the Lebesgue

Dominated Convergence Theorem, so we now demonstrate that

and

Swf(t)dt=
0

oo

lim fk(t)dt
k"G° 0

yksin[(log 2 2k
)t] dt

e2Trt -1

sin(2t log sin(2t log 1)
= y dt

0 1 -2y cos(2t log y)+y2
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are both finite. Since the integrand has a finite limit as t 0+, we

see the integral is not really improper at the lower limit. Hence it
co

suffices to consider
1

fk(t) were dominated by
2 1

g(t) 1-y 2Trt

Recall, for 1 < t < co, we showed that the

Thus their limit , the sum (3. 19), is also dominated by g(t).

Therefore, since
co

g(t)dt is finite, so also is S f(t)dt
1 1

In summary, we have justified the interchange of limits (3. 18)

and have also shown that the limits involved are all finite.

To complete the proof of the convergence of Iq2k' it only

remains to prove the convergence of

co

k=0 log(2y2k)

in (3. 16). We now attend to this problem. Consider the following

integral I:

Now

etdt
+1

(0 < < 1, 0 < Y < 1).
0 1-y

1-y
k=0

00

1 (2t+l)k
2t+1 L"
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co

I = S 2t y(2t+1)kdt
0 k=0

k=0

yk(

co
oo

.yk (0.y2k)tdt

k=0
0

CO

2 Zk
)
t GO

log(2 y
2k

k=0
) 0

00
k

-1

log(
2 2k

)

k=0

We now justify these formal procedures by showing the integral

I exists and justifying the interchange of summation and integration.

We first show that < 1. Recall in (3. 10) we defined by

-a 1 n2

2m
-2

= m + ny. Also recall y = e where cosh a = . Thus

= m + n(cosh a sinh a)

= m + n 1 -mZ -n2 1 -m2 -n2 )2-1)
2mn 2mn



Hence we must show that the above expression is less than one, or

equivalently that

(3. 20)
(1 - m- n)(l +n -m)

2m
1-m 2 -n 2

)2-1 .

2mn

Obviously (m-1)2 > 0 from which follows -4m 3 + 8m
2 - 4m < 0.

To both sides add 1 2m
2

+ m4 to obtain

Next add n4 - 2m2n2 - 2n2 and we have
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4 2 22
(m-1) + 4mn < (1-m ) .

_m)2 -n212 21112 2n2 2m2n2 m4
+ n4. This is

2 2 2 2 2 2 2
(1-m-n) (1+n-m) < (1-m -n ) 4m n or

t(1-m-n)(1+n-nn) 2 2 1_ 2
II

2

na < n tc m )2-1] .

2 2mn

Observe that 1-m-n and l+n-m are positive and extract square

roots to obtain the desired inequality (3.20). Therefore < 1.

Turning our attention to the convergence of

co 2fdt

0 1-y2t+1

note that Y is fixed and 0 < -Ni < 1, so is bounded, say
oo 1 --y2t+1

by M, for t > 0. Clearly ,c 1V2tdt converges since < 1,
0

so by comparison, I converges.
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To justify the interchange of summation and integration in the

computations involving I, we invoke the Lebesgue Monotone Con-

vergence Theorem [5, pg. 243]. Clearly the sequence of partial sums
oo

(2t+ )k
of y is monotone increasing since y > 0. Therefore the

k=0

sequence of partial sums of

00 00

2t .y(2t+l)k .yk(e.y2k)t

k=0 k=0

is monotone increasing also. Since I, the integral of the infinite

series of positive terms

00

.yk(ey2k)t

k=0

converges, by comparison,

the sequence of integrals of partial sums of the above series must be

bounded. Therefore the Lebesgue Monotone Convergence Theorem

shows the interchange of summation and integration to be valid.

In summary, we have justified writing the series

(deleting the factor K(1-2) ) in the interesting form

00

q2k
k=0

sin(2t log )-.N4/ sin(2t log 1)
1

+ Soo
2t

dt 2 Sx dt.2(1 -y) 2Trt
0 1-y2t+1

0 (e -1)[(1-2,-ycos(2tlogy)+y 2]
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Since we have demonstrated the convergence of these improper

integrals, we have established again the convergence of

cc

2kq
k=0
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