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ON CONVERGENCE OF INFINITE SERIES OF IMAGES

I. INTRODUCTION

l. Preliminary Remarks

A familiar topic in many courses in electricity and magnetism
is the solution of electrostatics problems by the method of electrical
images. Certain of these problems require the insertion of appropri-
ate charges at an appropriate infinite sequence of points. The result-
ing infinite series, representing the total charge inserted, have a
particularly fascinating character. See (2], [3], [4], [6]. The ques -
tion of convergence of these series is sure to be raised by the more
mathematically inclined student. No proofs of conver genclé are given
in the references cited, or in any readily available sources known to
the author. In this thesis two problems are considered and a variety

of convergence proofs are given.

2. The Concept of the Method of Images

We first recall that for a single point charge q in empty space

>
the electric field E at a point P 1is the force on a unit positive

charge at P. It has the direction of the radius vector drawn from q
to P and magnitude q/rz. The potential V at P is gq/r

and represents the work necessary to bring a unit positive charge from



infinity to P. In a dielectric medium these quantities are reduced

and become

q and 9
2 Kr

where K is called the dielectric constant or permittivity of the

medium. More generally, in the case of a continuous distribution of

electricity consisting of p units of charge per unit volume occupy-

ing a region T, the electric potential is
Vv = S‘ P——fT
(7)

-
and the electric field is the negative gradient of V, 1i.e., E = -VV.
It is also to be recalled that the capacitance C of a conductor with

charge (Q at potential V is given by

Q
I
<0

We turn now to the method of images and consider the electric
field due to two point charges. Let an equipotential surface enclosing
one of the charges be replaced by a conducting surface. Then if the
charge inside is transferred to this surface, the field between the
other charge and the surface remains unaltered, while that between

the first charge and the surface is annhilated [4, pg. 94]. In its



simplest form the method of electrical images consists of placing two

point charges in such positions that one of the equipotential surfaces
of the resulting field coincides with the surface of a conductor which
one desires to place in the field. Then the charge on one side of the
conducting surface is transferred to the surface and the field on the
other side remains unaltered. Thus the field produced by a point
charge and a conducting surface can be determined by the relatively
simple investigation of the field of two point charges. The point
charge which is transferred to the conducting surface is called the
image of the other charge.

The simplest electrostatic problem solved by the method of
images is that of finding the field of a point charge gq and a conduct-
ing plane. Suppose q is at distance d to the right of the plane.
Drop a perpendicular from q to the plane and place a charge -q
on this perpendicular at distance d to the left of the plane. It is
immediate that the plane surface is an equipotential surface, of zero
potential, of the field due to the two point charges q and -q.- If
this plane surface is a conductor and the charge -q is transferred
to it,the field to the right of the plane is unaltered and can be computed
at any point by simply computing the field of the two point charges.

Suppose one wishes to find the field of a conducting spherical
surface S and a point charge q at distance d from the center

of S. See Fig. 1. Then one is required to find the magnitude and



position of a point charge -q' such that the spherical surface S

is an equipotential of the field of the charges q and -q'. One

readily finds [4, pg. 97] that

(1.1) q'

oo
e

and that -q' must be placed at distance OQ' from O where

a
I = —

That is, q' 1is placed at the point Q' which is the inverse of Q
with respect to the sphere S.
In the following chapters we extend the method to problems

involving two conductors, neither of which constitutes a point charge.

Fig. 1. Sphere, charge and image.



II. THE SPHERE-PLANE PROBLEM

1. Introduction

In finding the capacitance of a charged spherical conductor
relative to an earthed conducting plane, one inserts an infinite
sequence of charges within the sphere so as to make both the spherical
surface and the plane equipotentials. The solution will contain the
infinite series of charges, the convergence of which we will demon -
strate in two different ways. We first present a cursory introduction
of the sphere-plane problem, and the derivation of the series of
charges, essentially as it is dealt with in the references. See [4],[6].

The first proof of convergence will involve employing a recur -
sion relation to express the series in a form which lends itself to
analysis by the ratio test.

The second, less direct method, involves showing that succes-
sive images in the sphere satisfy a difference equation which may be
solved in terms of hyperbolic functions. See [1, p. 363]. The ratio
test is then again invoked.

Finally, we verify the recursion relations which play an

important role in both solutions.




b A

O~ .
-q3 -qz -ql

Fig. 2. Sphere, plane and images.

2. The Series and a Proof of Convergence

Using the method of images, we proceed as follows, computing
the capacitance of a charged spherical conductor S of radius a at
a distance d/2 from an infinite earthed conducting plane P. We
require d > 2a. See Fig. 2.

Place q, at the center of S. Then S is equipotential but
P is not. Add the image -q, of q, in the plane. Then P s
equipotential but S is not. Now add the image q, of -q, in the
sphere. It will be a charge q, = %ql at a distance S, = a2 /d

from O [(1.1),1.-2)]. Now S 1is equipotential and P is not.

Next we add the image of q, in the plane, followed by the image q3



of -q,

from O where s

1

So we have

at distance

from O. Next insert

have

in the sphere.

2
Thus gz = si q, atadistance a /s1
1
is the distance of -4, from O, i.e.,
aL2 2
a
=d - = =d(1- =) [(1.1),(1.2)].
1 d 2
d
2
a_
2
__d
93 24
1- =—
2
d
2
a_
_ d
Sy = d - az
1- =—
2
d
Ay’ the image of -9, in the sphere. We
a
- d
e 2 U
a_
2
1- d
2
)
d

Proceeding in this way, we insert an infinite sequence of charges in

which makes both S

and P equipotential. In S the total charge

S




is

Since q, is the image of -q in the sphere, the potential

o0
2 3
q. = q 1+x+ X + X
\ P T 9 .2 5 2
‘ i=1 * (1-x )(1- = )
2
| l-x
X
+ 3 > > + . ,
x X
(1-x )G— 2) 1- >
- 1-x X
1- 2
1-x ]
where ng'-

|

of S due to this pair is zero. The same is true of the pairs a3
and "Gy Gy and ~d3» etc. Therefore the potential of the
sphere is

41

v =—

a
(taking the permittivity of the medium to be unity). Clearly the
potential of the plane is zero. Therefore the capacitance of the

sphere relative to the earthed plane is

where (Q here is the net charge in S.




We investigate the convergence of the series

2
1+x+x2+... f0r0<x<1/2.
1-x
00
Note first that we may write the series as Z c if we define
n=0
r ntl
— X —
Cn+1 ~ a s n 051525
n
a = a
ntl n ntl
(2. 1) <
x2
bn+1 =1 -E—
n
= = =1
20 P = %
U

The validity of this recursion relation for all n will be proved later.

First we note that all terms in the series are positive. Clearly

all ¢, are positive ifall a, > 0. All a >0 ifall b, > 0.
i i i i

H 1 = 1’ = i i .
This follows simply from a, a 1 anbn+1 and an induction

Now we may prove by induction that 1/2 < b,1 <1

(i=0,1,2,...), and therefore conclude that all c¢. are positive:
i

We have bO = 1. Suppose 1/2 < bn < 1. Then since 0 < x < 1/2




2
Lo.2 o
2 b

n
1. €.,
L< b <1
| 2 ntl )
Y o
|
| Now we may apply the ratio test to Z . We must show that
n=0
c
+1
lim —— < 1
n—" o Cn
where
+1
“ntl _ x" a'n-l N an-l X
= = x = — .
c a n a b
n n x n n

We next show that {b } is a monotone decreasing sequence.
n

- > 0. - > 0. i
Clearly bo b1 0. Suppose that bn bn+l 0. Consider

2 2 2 2 2

X X X
b -b 5= (1-7) - (1- - X
n+l = “n+2 b by P4y bbb o,

|
|
|
} This is positive according to the induction hypothesis.

Since we have shown the {bn} are bounded below and monotone

decreasing, we can conclude Ilim bn exists, and is positive. (In
n—"o
fact lim b_> 1/2). Also, 1/2< b <1=> 1/2 < lim b <1

n—"o n—" o
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This, together with Cn+1/cn = x/bn and 0 < x < 1/2 implies

thereby showing the convergence of Z c -
n=0

After showing the {bn} are monotone decreasing and bounded,

we could follow an interesting alternate route.

Let
+
r = lim 4 = lim nt2
n—"oo n n“’°°cn+l
Then
Cn+2 ) X X
r = lim = lim = >
n—’°°cn+l n—® n+l ) X
lim (l1-7/—)
b
n—" n
- X B X 1
X c l-xr
1- i - +1
x lm (55) | m (2HL
n > n C
n—"®o n
Thus
2
r - Xr = Xx or r x -r +x=0.
Then
_ l:i:’\’l—‘lx2
T —Zx .

If the plus sign were correct then since 0 < x < 1/2 we clearly




12
would have 1 > 1 (for indeed, l/Zx >1). Butif r> 1, then

there are bn such that

Chtl

C

=bi >1 (with 0 < x < 1/2).

n n
Also we have 1/2 < b <1 so 1g 1/10n < 2. This, with
0<x<1/2 gives x/bn < 1 which is a contradiction. So r > 1
is impossible and we reject the plus sign.

We conclude

r—.

1—«}1—4x2

2x

Now showing r < 1 when 0< x< 1/2 is easy using elementary
calculus: We have

(1-'\‘1-4x2

lim 3 )= 0 and lim ~
x— 0 x x—1/2

(1-'\]1-4x2

Also, the derivative is seen to be positive for 0 < x < 1/2 so the
function is monotone increasing on 0 < x < 1/2. Therefore we con-
clude 0< r < 1.

Finally we note that all the charges stay in the sphere S. The

sequence of distances from O of qQy°9p - - is
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or

But 1/2<_1'1mb <1l so 1< lim 1/b < 2, or
n—"oo n n—"oo n

2
aZ/d<_ lim a.x/bn <2a/d. Now

n~—"®
. 2 2
a a a a
- == — L =m=>— <
a°> 2 a -2 d 2

S0

3. The Series in Terms of Hyperbolic Functions

In this proof we demonstrate that successive charges in the

sphere satisfy a linear finite difference equation which we shall solve

in terms of hyperbolic functions. The ratio test will then be applied

to the series of charges in this new form to prove convergence.

o0

Recall we have the series Z cn. Using (2. 1) we find
n=0




(2.3)

(2. 4)

We now eliminate

have

Then (2. 3) gives

or

Now (2.4) gives

a

n

ntl

nt2

14

nt+l
X
a
n
nt+2
X
2
X
1- ——
an( b )
n
nt+3
X
2 2
X X
- — 1-
an(l b 2
n 1- %
b
n

from the above equations: From (2. 2) we
ntl
_X
a P
nooco iy
Xn+2 i XC 11
n+1( 2y 2
X X
1- — 1- —
C o+l bn) bn
xZ _ “n+l
— =x .
bn C 42
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nt3 Xc

B X B nt2
c = =
+ +1 ' 2
nt3 xn (xcn+l) < cn+2
{1-— l-x —
Cat1\ Sn+2 “ntl Chtl
g 22
Cn+2
Then
c
+2
1-x 2
1 “nt1
Cn+3 xcn+2
or
1 _ 1 1
Cn+3 XCn+2 Cn+l

and we have the following finite difference equation with constant

coefficients, which is linear in l/cn:

1 1 1
(2.5) + =
c

nt3  Sn+1 *n+2

We now proceed to solve the difference equation (2.5) letting

e = a". Then
nt2

or

or

SO




Now since

we can let l/Zx = cosh a. Then

/ 2
u =cosh a £N cosh @ -1 = cosh @ £ sinh «.

2 2
Therefore u * = (u )n = (cosh a *+ sinh af)n is a solution to (2. 5)

n ) . .
as is (cosh @ - sinh a). Then the linear combination

Cl(cosh a t sinh af)n + Cz(cosh a - sinh af)n is also a solution. Simpli-

fied, this is Clena t CZe-na which is equivalent to the linear combi-
nation A cosh(na) + B sinh(na) . We now have a solution of (2. 5),
1
— = A cosh(na) + B sinh(na), where the constants A, B will now
“n
be evaluated by knowing the values of the first two terms o’ € of
the sequence. Since S =1 wefind A =1. Since ¢, = x/aO = x,
we have
1 .
;: cosh a + B sinh «
S0
1 1
B = — (— - cosh a) = — (2 cosh @ - cosh a).
sinh o x sinh o
_ cosh a
Therefore B = ————— . Therefore

sinh «a
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L cosh(na) + —CQSh —
sinh «

"

sinh(na)

0

sinh a cosh{(na)+cosh a sinh(na)
sinh a

sinh(ntl)a

sinh a

The total charge on the sphere is

) )
an -9 Z “n
n=1 n=0
) )
-1
= smh a Z [sinh(n+1) ] =q sinh afz cschina).
n=0 n=1

To show Z)cn converges, we again use the ratio test:

Cn+l _ sinh(na) _ sinh(na)

. sinh(n+1)a sinh(na) cosh @ + cosh(na) sinh «

1
" cosha + coth(na) sinh a °

If >0 wehave

Cn+l 1
lim coth(na) =1 and Ilim = -
c cosh @ + sinh «
n~—"© n—"® n
1 .
Clearly < 1 since cosha >1 and a>0

cosh @ + sinh «

implies sinh @ > 0.
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If a< 0 we have lim coth(na) = -1. Then
n—"v
c
ntl 1
i = < 1
lim c cosh a - sinh «
n—" o n

since cosha>1 and « < 0 implies sinh a < 0.
Finally, we now show that the charges actually satisfy the

recursion relations(2.1). To do this, we evidently must perform an

induction on the distances as well as the charges.

Note that the c 41 P (2.1) is actually qn+2/ql. Again let

s be the distance from O to q,- Then clearly d—sn is the

distance from O to -q_- See Fig. 2.

Now by induction we prove that for n=0,1,2,... we have

+1
U +2 _ x| d _ ax
= an s = =
+2
q a n bn
where
a'n+l - a'n ntl
2
- X —
b =1-¢ > (n=0,1,2,...)
n
= =1
29 = Py
-’

Proof: If n=0 we have qz/ql = x/a0 or q2 = qlx ;

2
which is true and also 5, = ax/b0 = ax T a /d which is true. Now



suppose qk_'_z/q1 = x a, and 5142 = ax/bk . We have [4]
-_— a -_—
q : q = q
+ - +2 7 4- +
2k+3 distance from O to 9 +2 k d S\ +2 k+2
k+1 k+1
__a X - a X
ax a 9 ax a 4
d- b k ? k
k d I—T
k
k+1 k+2 k+2
- X X q = X q - X q
: ?i a, 1 bk+lak 1 a4 1
b
k
_ k*2 .
Thus qk_'_?’/q1 X /ak+1 »  which was to be shown.

Furthermore, [4]

2 2
+ i - -
k+3 distance from O to 9Y 42 d S\ 42
2 2
__a - a _ _ax __ax
L4 -
k d b bk

which was also to be shown.
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III. THE TWO-SPHERES PROBLEM

1. Introduction

In this problem, the method of images is employed to compute
the capacitance between two spherical conductors. Infinite sequences
of charges are inserted within each sphere, so as to put one sphere at
unit potential and the other at zero potential. The solution will
involve the infinite series of charges, and we will again confine our
attention mainly to proving convergence of the series of charges.
However, we will begin by presenting a brief introduction of the two
spheres problem and the derivation of the series of charges. We will
again refer the reader to the references for more complete details of
this aspect of the problem.

The first proof of convergence will involve employing a
recursion relation to express the series in a form which lends itself
to analysis by the ratio test.

Another, but less direct, method involves showing that succes-
sive images in either sphere satisfy a difference equation which may
be solved in terms of hyperbolic functions. The ratio test is then
again invoked to prove the series of charges converges. This is
similar to the difference equation approach employed earlier in the

sphere -plane problem. See [l, p. 363].




A considerably more unwieldy approach is suggested in [2].
There may be found an outline of a novel procedure for expressing the
series arising in the two spheres problem in terms of definite
improper integrals. Then the proof of convergence of the series may
be replaced by the task of establishing convergence of the improper

integrals. We lastly make a detailed examination of this approach.

Fig. 3. Two spheres and images.

2. The Series and a Proof of Convergence

We begin by deriving the series of charges utilized in computing

the self- and mutual capacitances for two charged conducting spheres,
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via the method of images. Except for some differences in notation,

this is essentially the derivation found in [6, p. 118].

We denote the distance between the centers of the spheres by

¢, i.e., c=]0'0O|, andassume

are the radii of (1) and (2) respectively.

c>atb where a

and b

It will prove convenient to

let m=al/c and n =b/c, notingthat 0 < m, n < 1. See Fig. 3.
Put (1) at unit potential by putting a charge 9 = 4mea at O,
where 4me is the permittivity of the medium. Then put (2) at zero

potential by placing an image q,

= (—4Trea)b‘:

-4mean at a distance

2
d, =b /c = nb to the left of O. Next restore (1) to unit potential

1
) _ - a
with a charge q, = ql( - ) ql( b ). q, must be placed to
1
aZ 2
the right of O' a distance d, = =2 = B2 Next,
2 c-d c-nb 2
1 1-n
restore (2) to zero potential with an image a3 where
] b __ _b
B "% c4q EY) ma
2 c- T 5
1-n
3 must be placed at a distance from O
2 2 2
d = b _ b _ b _ _nb
3 c-d ma 2 2
2 c- > . ] n
1-n° € 2 2
1-n l1-n

Next, Ay

returns (1) to unit potential where
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) a a
9~ "93 g 93 nb
3 c-
2
- = >
1-n
qy lies to the rightof O' a distance
2 2 2
g4 =-2 - a - a _ ma
4 c-d nb 2 2
3 c- n n
2 cll- 1-
1 0 m2 m2
2 1- 1-
1- 2 2
n 1-n 1-n

q5 restores (2) to zero potential and is a charge

= - b - - b
95 = "94 <-q g ma :
4 c- — 22
2
n
1- 2
1- mz
l1-n

qg is located to the left of O a distance

2
b nb
d = =
5 c-d 2
4 1- m
2
n
1- 2
m
1- 2
1-n

Continuing this procedure, we have




lies to the right of O' a distance

and

9

az 2
a
d = =
6 c —d5 nb
c- 2
m.
1- 2
n
1- 2
1- “‘2
l-n
. ma
2
n
1- 2
m
1- 2
n
1- 2
m.
1 -
1 —n2

The above process continues indefinitely, generating an
o0
infinite sequence of charges {qi}iZO and a corresponding infinite

sequence of distances {d,l}c.>o The subsequence of charges

i=0"

(¢ o]
. . . . . . 1
{qu}iIO lies in (1); q,, lying a distance dZi to the right of O

lies

for each i. Similarly, the subsequence of charges {q2'1+1}2020

in (2); lying a distance d to the left of O for each i.

92i+1 2i+1

(¢ o]
After the entire sequence of charges {qi}i:O has been inserted in the
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spheres as prescribed, both are equipotentials, (1) being at unit poten-
tial and (2) at zero potential. Therefore the capacitance of (1) rela-

tive to the earthed sphere (2) is

0

Q
I
<o

= Q = q21 .
i=0

0
We investigate the convergence of Zqu.

i=0
In summary, letting K = 4mea, the charges on (1) are

9, = K
= . m
Q%" 9 2
l-n
- . m
QY - % 2
].— n
2
1-m2
l1-n
- . m
9 = "9 2
1- n
2
m
1- 2
n
1- 2
1-m2
1-n

The charges on (2) are




q, ~ -Kn
_ n
437 "9 2
m
L- 2
l1-n
- n
95 = "9 2
1- m
2
n
1- mz
L- 2
l1-n
- n
97 = 9 2
- m
2
n
L- 2
m
1- >
n
L- 2
m
L- 2
l1-n
0
The total charge on (1) is Z 9 where
k=0
f (k = 1,2
q = -q _ = s s
2k 2k -1 er-Z
2
n
r =1 - (k =
< Zk-z SZk_3
2
SR (ke =
T2k -4
n
qy, . “qy, (k =
2k-1 2k-2 52k-3

2,3, ...

2,3,...

1,2,...

26
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and Ty © l-n, s . =1 and 9y ~ K. The recursion relations can

be verified in a manner similar to the proof by induction given for the
recursion relations (2. 1) of the sphere-plane problem.
In this problem, clearly n >0, m >0 and n+m < 1.

Therefore 1-(mtn) = ¢ where € >0. Define M=m+§ and

N=n+ To employ the ratio test on EqZk, we will need the

&
3

following inequalities which we proceed to prove by induction:

. < < < < .
(3.2) M er-Z <1 and N sZk—3 <1 forall k

+ 2m-n

1 1
Note first M =m + ; (l1-m-n) = ; 3 and we verify

M < 1:

m+tn <1 =>m < 1l-n =>2m < 2-2n =>2m < 2+n

2m-n 2 1 2m-n
=>2m-n <2 =>—— <= =>M-=—+
m-n 3 3 M =3 3

< 1.

Similarly, N < 1.

2
For k=1, we first show M<ro<_l, i,e., M <1l-n <1I:

2 2
Clearly, since n <1, wehave n <n or 1l-n<1l-n This is

l+2§l- ) - 2 . 1+2m - 2
3n 2 < l1-n . Since m < l-n, we have _3rn_n < 1l-n

2
i,e., M < 1l-n (<1). Also note that N<s_l<_l since s l=l.

Now assume that for some p >1, we have M < er-Z <1

< < 1. i < < 1: ,
and N szp_3 < We show first that N sZp-l < 1: Clearly

2
M+N=(m+;—)+(n+§)=m+n+T€<m+n+€ = 1. Therefore




2 2
M < 1-N, or MZ/M<1-N, and since m < M , we can

2
conclude m /M < 1-N. Applying the induction hypothesis to the

latter inequality, we obtain

2
0< < 1-N,
T2p-2
or
2
N-1< -—— <0
T2p-2
or
2
N<1-—2— <1
T2p-2
1. €.,
N<s, ;<1
| We next verify M < rz(erl)_2 <1, ie., MK er < 1. We know

2 2 2
N<I1-M or N /N <1-M. Since n < N , it follows that

nz/N < 1-M. This, together with the induction hypothesis szp_3 >N
implies szp_1 > N. We have
2 2
0< <1-M, or M-1<-———< 0,
®2p-1 2p-1
or
2
M<1 - <1, i.e., M < r < 1
] - 2p —
2p-1

We next demonstrate by induction that the are positive.

1
QK °

Note 9y ~ K > 0. Suppose qu > 0. Then
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-q n )m
2
PSap-1 T2p

q - q
+ 2pt
2pt2 ptl er

= -

which is positive since n, m and qu are positive.
We next prove by induction that

QK +2
(3.3) k¥e _ __mn (k=0,1,2,...),

QK Sak-172k

omitting the easy verification for k = 0. Suppose

9i+2  mn

Qi S2i-172i
for a positive i. From (3.1) we have

Di+a  Di+s T2i %it2 %2i-1 20

Gi+z  92i+1 T2i+2 Q;  S2i+1 T2i+2

Now the induction hypothesis gives

9Qi+4 mn S2i-1 T2i mn

QBi+z  S2i-172i S2i+1 T2i+2  S2i+1T2i+2

which establishes (3.3).
We may finally apply the ratio test to show the convergence of

EqZk' We show by induction that {s } and {er} are

2k -1
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nonincreasing sequences.

2 2, 1
r -1 = (l-n") - (1-2=)=n"(=— -1) >0
0 2 s s -
1 1
since N < 5, < 1. Also note s_178, % l-sl > 0. Now suppose
- > - >
ok r2k+2_0 and S k-1 sZk+l—0' We have then
2 2
m m
Sy i1 " Sapgq = (15 2=) - (1- )
+ +
2k+1 2kt3 ok T ok+2
2
2 1 1 m
= - = - >
m ) ok a2 2 0

Tak+z T2k Tak+2T2k

Furthermore,
n2 n2
r2k+2 — r2k+4 - sZk+l ) sZk+3 !
_ nZ( - 1 - - 1 )
2k+3 2k+1
nZ
) m (52141 "S2pc43) 2 O

Since {SZk—l} and {er} are non-increasing and bounded below,

. , < <1, < <
they are convergent. Also M Tk <1, N S k-1 <1 for

< < i < .
<1 and N < lim S ok -1 <1

k=1,2,... implies M < lim T
k =~ k =™

Thus
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S B 1 <L

lim r - M an lim s - N’
2k 2k-1
k = k —
S0
1 1

1i r lim s < MN
Tk 2k -1
k—™ o k — o

Since m <M and n < N, we have

mn mn < MN =1
lim r lim s < MN MN .
K — o 2k K — 2k-1
This is
o Yt mn
lim q - lim r, s < L
k—o 2k K — 0 2k 2k-1

which completes this proof of convergence of ZqZk.

A similar approach could surely be used to show the convergence

of Zdp41

3. The Series in Terms of Hyperbolic Functions

(> ¢]
Another proof of convergence of the series of charges Z 9
k=0

given by (2. 1) can be accomplished by expressing the series in
a different form which lends itself to analysis by the ratio test. This
is done by solving a linear finite difference equation which the

sequence of charges {qZk} is shown to satisfy.
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Also, this new form of the series, involving hyperbolic functions,
is more useful for purposes of numerical computation than the original
form [6, pg. 119].

From the recursion relations (3. 1) we have

q - -q -
+2  TR2k+l
2k k er
or
q = q n m
+
2kt2 2k sZk—l Tk
and also
2
n
T =1 -
2k Sok-1
We eliminate L from the above equations, obtaining
Qr+2 mn
EYIR s ] n2
2k -1 Sk -1
or
T2k+2 mn
(3.4) . = >
2k So-1 R
Replacing k by ktl yields
q
2k mn
(3.5) 1 = >
2k -2 -
k ®2k-37"




We also have
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2 2
(3. 6) Sy L o ., 2 >
T2k-2 . _n
®2k-3
Next, we eliminate sZk-l and sZk—3 between (3.4), (3.5), (3.6).
From (3.4) and (3.6) we get
q2k+2 - mn
q 2
2k : sZk_3m 2
> - n
®2k-37"
and from (3. 5)
2 MB% 2
s -n =
2k -3 qZk

From these equations we obtain

Lr+2 ) mn
U 2(2 mnq?.k-z)
m [n +
LKk 2
1- - n
rnnq2k_2
ok
mn




so that

2 9ok
l-m -n -mn
2k 92k -2
p+2 mn
_1-m®-n" Y2k
mna k-2 ’
whence

1 _ l-m -n 1 1

Qox+2 mn Qr k-2

We have thus obtained a second order homogeneous linear difference

equation for 1 /qZk :

2 2
1 1 1- - 1
(3.7) + - == .
Ytz 2k-2 ma g
. - -2k N
To solve (3.7), we presume a solution 9y = U . Substituting

this into (3. 7) we obtain

2k+2 2k-~2 l-m2 —n2 2k
u + u = —u .
mn

O
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If u:r/O;

whence u satisfies the quadratic in u

2 2
4 l-m -n 2
—u

u - +1=0
mn
Therefore
2 2 2 2
l-m -n l-m -n_ 2
2 mn ( mn ) -4

(3. 8) u =

2

1 2 1
Now let cosh @ = ———2— This is possible since cosh "y
2mn
l-mz-n2
exists for all y >1, and —=—— > 1 which we easily verify:
- 2mn
1. 2 +b
2 2 2 2 2 .2
l-m -n _ c _c -(a +tb )
Zmn ab 2ab
2 —
2
c

2 2
Now, a,b,c >0 and c¢ >atb imply c¢ >(atb) , so

2
l-m -n ¢ -(avl-b)2 . 2ab
2mn 2ab 2ab

2 2
c_-(athb)
b +1 > 1.
a



Substituting cosh @ in (3. 8) gives

’ 2
u.Z = cosh @ £ N cosh a -1

cosh @ * sinh «.

il

2
Therefore u ={(u ) = (cosh at sinh oz)k is a solution, as is

(cosh @ - sinh oz)k. Then the linear combination

. k . k _ ka -ka
Dl(cosh a+sinha) + Dz(cosh a- sinha) = Dle + Dze

is also a solution. But this is equivalent to the linear combination
A cosh (ka) + B sinh (ka).
Therefore a solution of the difference equation (3.7) is

L A cosh (ka) + B sinh (ka)

Wk

in which A and B are to be determined from the first two q's.

For k =0, we have

1
l:A or A== L R
qo K 4rwea
Then
1 1 .
— = =cosh a + B sinh «
, K

or



whence

Since

we have

SO

or

With B

1
QK

"

- = =cosh a + B sinh «

mq, K
l'nz-l h @ + B sinh
—— gcosh @ sinh .
2 2
_l-m -n
cosh ¢ = ———
2mn
) 2 2 1 2
Zcosha+m=—mi+&: —n,
n mn n mn
L2 cosha +2) =L cosha + B sinh
K cos " K cos sinh «a

1
= (cosh a +Q) = B sinh «.
K n

so determined, we have

m
cosh a + —

1 n
— + —————————————— !
cosh(ka) Ksinh a sinh(ka)

sinh @ cosh(ka) + cosh a sinh(ka) + ? sinh(ka)

K sinh a

sinh(k+1)e + = sinh(ke)
n

Ksinh a

b sinh(k+l)a + a sinh(ka)
bK "sinh « ’
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From the above, we have

qZk = 4meab sinh o|b sinh(k+1l)a+a sinh(koz)]-1
and our series of charges on (1) is
00 00
-1
Z S = 4nweab sinh az [b sinh(k+1l)a + a sinh(ka)]
k=0 k=0
o0

"

4meab sinha Z [b sinh(ka) + a sinh(k-l)af]-1 .
k=1

We are now in a position to prove convergence of the series in

this form:

1
b sinh(ka) + a sinh(k-1)a
1

NSgE:

)
Z U = 4meab sinh @
k=

"

4meab sinh « c where a >0, b >0.

ANYIE:
~

Also, let a >0. The case a < 0 will be clarified later.

We employ the ratio test.
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°k+1 b sinh(ke) + a sinh(k-1)e
c b sinh(k+1l)a + a sinh(ka)

b sinh(ke) + a sinh ko cosh @ - a cosh{ka) sinh «
b sinh(ka) cosh @ + b cosh(ka) sinh o + a sinh(ka)

_bt+acosha-acoth(ke) sinh o
b cosh @ + b coth(ka) sinh o + a

Since lim coth(ka) =1 for a >0, we have
k—

Ck+1 :b+acoshaf—asinhaf

i
kil;noo e a +bcosha+t+b sinh

We now proceed to show that this limit is less than one. The problem
is divided into three cases.

Case 1: If a =Db, thenclearly

1l + cosh @ - sinh @a <1 + cosh o + sinh a

and

k+1

lim <1,

k—oo “k

since a > 0 implies sinh o > 0.
Case 2: Suppose b >a. Then b-a < (b-a)cosh @ since

a >0 implies cosh a >1. Therefore,

b +acosha<a+bcosha

and since sinh @ >0, we can conclude




b+ acosha -asinha <a+bcosha+b sinh a

and the result

k+1

lim
k—™o "k
obtains.

Case 3: Suppose a >b. Since a >0, 1-e* < 0 and

l-e >0, so l—ea/l—e_a < 0, Therefore a/b > l—ea/l—e-a
-a

=> a(l-e ) >b(l—ea)

"N+ pe®-1) >0

=> a(l-e
=>  (a-b) + (be¥-ae %) >0
=> (a-b) + ‘;' [bea+be_a-aea-ae —a+aea—ae-a+bea—be—a] >0

=> (a-b) + (b-a) cosh @ + (a+b) sinh ¢ >0

=> b+ acosha -a sinha<a+bcosha+b sinh a

and therefore

Ck+1

lim
k—~o Sk

Finally, we clarify our earlier assumption specifying a > 0.

Recall that we first introduced «a by letting

l-m -n

cosh a =
2mn

40
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Of course @ cannot be zero, for then cosha =1. But mtn < 1,

2 2 2 2
so m +t2mntn <1, or 2mn < l-m -n . Therefore
1 2 2
=m0 5

‘ 2mn

But @ can be taken to be either the positive (principal)

\ _ 1- 2_ 2
! =8 ) or the negative branch. If we select

branch of cosh (
2mn
the negative branch, the proof holds equally well, as we shall now
demonstrate.
Suppose a < 0. Then since lim coth(ka) = -1, we have

k—x

Ck+1 :b+acosha+asinha
at+bcosha-bsinh

lim
k—~ow “k
Again we consider three possibilities in demonstrating that this limit

is less than one.

Case l: If a=b we must have

1+ cosh a+ sinh a <1+ cosh a - sinh «a

Case 2. Suppose b >a. Since a#0, cosha>1, and
b-a < (b-a)cosh @, or b+ acosha<a+bcosha. Now, since

|

|

|

which is true since sinh a < 0.
sinh a < 0,




b+ acosha+asinha<a+bcosha-D>bsinha

and therefore

c
+1
im k <1 o
k—o Sk
Case 3: Suppose a <b. Since a <0, 1-e ¥ <0 and
a
l-e >0. Therefore
-a
% > 1-e
l-ea
=>  (a-b) + (be ¥-ae%) >0
1 - - - -
=> (a-b) + E[bea+be % ae¥-ae % aetae ¥ -be+be a] >0
=> (a-b) + (b-a)cosh @ - (atb)sinh @ >0
=> b+ acosha+asinha< a+bcosha-Dbsinha
and therefore
c
lim 1.
k=% Tk

4. The Definite Integrals Approach

The convergence of ZqZk will now be proved by a consider -
ably more involved procedure whereby the series is expressed in

terms of definite improper integrals.

42
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00
We now write the series Z EP in a somewhat different
k:

2k

0
form. Recall the solution u = Dleka + “ka

Dze of the difference
. -a ) -a
equation (3.7). Let y=e . Supposing a >0, let y=e

Yy is clearly the smallest root of the quadratic equation

Since the product of the roots is unity and they are unequal (otherwise

@ = 0) wehave Yy < 1l. Therefore our solution of (3. 7) can be

written
D
_l__ - .._l_ + D Yk ,
q k 2
2k Y
so
L. D +D D +D. = 1
q 172 % 1T 2 K
0
and 2
D D +D
1 ] 1 A
_— = — 4 DZY or _ =
q, Y a, Y
Therefore
_ 4™ _ Kmn _ Y
%2 1 2 1 2 D.+D 2
n -n ) 5 Y
We now have
1
D +D =-—-
2 K




But we have

2 2
2 ) l-m -n +1=0
Y mn Y
or
2 l-mz-n2 1
Y mn Y
or
2
2 1-n l-m -n
1- = -
KDl( Y ) Y mn mn
or
2 m
(3.9) KDl(l-y )=;-y+l.

It will be useful to note that the value of

preceding equation is

Dl given by the
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(3. 10) D, = —1

b oka-g%

where £ = m t+ ny. We now verify this by starting with the following

algebraic identity:

X n n3 3 m 3
2Ry s LRty By -y - -
mn m Y o Yt oYyt oy Y - mny Y
n3 XY m n
+ +— v+ Sy - —
mnY Y mn nY mY
Then
3 3
X _,n  _,._2_ 2 n . m . omg,_ 2 2 2
2 2 1- -
-i(]-m -n )Y+n + m -n -1
mn
or
n'a 2 2 n3 m3
n
-=y-1= -n Ty -yt Tyt - +
mn m Y m n Y mY n yrm y ny Y
or
2 2 3
l-m -n m m 2 2 2 2
. —_— vy -]l ==y +— v+ + - - +
(3.11) on y-1 LY L ytmy Y n vy mny t m

Now, since




2 2 2 2
§2=(m+ny) =m +Z2mny+tn vy

2 2 l-mz—n2 2
=m t+Z2mny+n (— —)y-n
mn
- mZ + 2mny + 2 n’ 2
=m mny + "~y -mny -_~Y-n
- .2 s n’ ol
m mny mY mY
(3.11) is equivalent to
2 m m 2 2
= -yt +
Y L YT YE tE
or
2 m m .2 2
- = — + - - -
L-y =T y+1-""vE -¢
or
] 2
__Y_=EY+1
2 n
1-§
or
2 m 2
1 -y =(=yt])(1-§")
n
or
2
MszH
2 n ’
K(1-£7)

which verifies (3. 10).

Now, this equation, together with (3.9) proves that D

1
K(1-£%)

1




2

1 1 1 -¢
D. =— - D =— [1-—] = -
2 1 2
K K g K. ¢
SO
2 2 2
1 =;§Yk + 1 = 1-€ y k
Lk K(l-gz) K(l-*éz)\(k K(l-éz)vk
or
2. k
_K(1-£7)y
9k ~ 2 2k
1-§7y

Thus the series Z P becomes
k=0

K(1-£%) Z .
1. ngZk

We next evaluate the following definite integral, which will

play a prominent role in the analysis of ZqZk :

w .
(3. 12) g S‘T’T‘”’:—x—dx (p £ 0).
-1

Note first that the integral is not actually improper at the lower limit

since

lim sin px _ lim. pP_cos px _'Q_
2rx 27X 2m

xV0 e -1 x¢0 2me
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At the outset, we easily verify the convergence of (3. 12) by demon-

strating that

S sin px dx
ZTrx

converges: Using the comparison test and the fact that |sin px| < 1,

we only need to show that

exists. This is

-wa
1 -2mx h
lim g = lim = In(l-e " %)|
h— o h—

which clearly exists.
The integral (3.12) will be evaluated by computing an appropri-

ate complex contour integral: Consider

eipz
(3.13) f(z) =——
2Tz
-1
which has simple poles at z = %i,+2i,... . We will integrate this

function around the indicated contour 2, illustrated in Fig. 4.
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Y

o 4

Fig. 4. The contour .

r denotes the common radius of circular arcs Cl’CZ' On the

circular portions of £, z = x + iy can be represented in polar form

as follows:
C,: z-i=re , -m/2 <8 <0

C,:z=re, 0<6<m/2

Since f(z) 1is analytic within and on the contour, we obtain

Q -1
i.e.,
R o IPX 1 elp(R+1y) r ip(x+i)
(3. 14) S‘ dx + S‘ ” idy + S‘ ” dx
2 2 + 2 +
X 0 e (R Ly)1 R e m(x 1)_1
/2 ip(i+rele) 0 T e-PY
+ g - ire do + S‘ - idy +
. i6 2wiy
0 2w(itre ) 1-r -1



The above six integrals, which we now evaluate, will be denoted by

respectively. We evaluate I2 first:

1 i +i ! - ipR
L e1p(R iy) d - § . Py IP o
2 . 2 - .
2 ,; o 1T(R+1y')_l 0 e wReZTrLy'_l

-1|
On the segment of £, z =R t+1iy, (0 <y < 1), we have e PY < |p|
Also
eZWReZWLy'_1| | 2TR ZTriy'| ] = e21'rR o1
Thus
N
Ll <=
e -1

SO IZ'—’O as R ™™ o0,

Now consider 14 and its limitas r ™ 0. We can interchange
the limit and integral operations by invoking a corollary of the follow-

ing familiar theorem.

Theorem: If f(x,t) 1is continuous for a <t <b, and

A <x <B, then
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b
F(x) = S f(x,t)dt

a

is a continuous function of x on A <x < B. We apply the follow-

ing corollary of the above theorem to I4.

Corollary: Under the conditions of the above theorem we have

b b b
lim S\ f(x,t)dt = S\ lim f(x,t)dt = S\ f(xo,t)dt

0 a X XO a

X

if A< < B.
if SE IS

Therefore,

) -w /2 reipreleieie
lim I, = lim e pS‘ 5 ae
r—0 r—0 0 2rre
e -1
i6
) -m /2 6 I_eiprel
e pS‘ ie  lim — 5 de
0 r—~0\ 2mre"
e -1
. 0
) - /2 0 i eie iprele+ ipre1
- e pg ie'” lim |TBE—S ,ee dae
0 r—0 i 2mre'
2re e
(using L'Hopital's Rule)
-w /2 -p. .
:e-pS iele 1, ae == 1(-1l)=-1—e-p.
10 2w 2 4
0 2me

I lends itself to similar analysis:

6



io

0 . ipre ‘
lim I, = g ie'® lim —reT de
r—0 w/2 r—0 2rre
e -1
i i0
0 e ]
e ripeleelpre +e1pre
= ie lim 0 de
w/2 r—=0 i6 27mre
2me e
(using L'Hopital's Rule)
0
6 1
= S 1e1 0 doe = - Z
m/2 2me’
Note that the sum of I1 and 15 is
R ipx R ipx R ipx
g e——dx-epg S dx = (l-e p)S‘ = dx .
2mx 2Tx 2Tx
r e -1 r e -1 r e -1

Finally, taking limits as r = 0, R = o, in (3.14) yields

-p % e PX i -p i
(l-e )S - dx—4—e -—+ 1lim I_ =0.
0 e -1 r—0

Taking the imaginary part in the above equation we obtain

(e P+1) + Im( 1lim I e

—p)‘g‘ sin px dx
r—0

1
Z1Tx T4

or

)
- in p 1
(1-e p)S‘ Szl:x £ dx = Z(e p+1) - lim (ImI )
-1 r—™0



lim (ImlI.)

5
S‘ SlnEX _ lep*i-l r—~0
x -_— -
2 -
TX 4 P 1.7 P
T ie PY
Also, 15 18 S‘ cos 2my - 1 + i sin 27y dy, and we readily find

1-r

that its imaginary part is

Sr e_py(cos 2uy-1)

2 2
l-r (cos 2my-1) + sin 27y

) S\r e'py(cos ZH-Dd o1 S»r Py,
1-2 cos 2rytl y 2 y

L [ Pr_oPUT]

2p
Therefore lim (ImIS) = z— (l—e_p), and we finally have
r—0 p
* i 1 eP+1 1
(3. 15) de:_e o
ZTTx_1 4 ep_1 2p

We now return to the series

) 0 K
2 Y -
1-€y
k=0
: 2 L
Ignoring the factor K(1-§ ), we proceed to express the series in

2 2
terms of definite integrals. In (3.15) set p = log(§ v k) and obtain




&y 2 2k 2 2k
S sin[(log £"y )t] dt = 1E£ vy +1 1
2 2 2 )
0 “mt ey RL 2 10g(8%y
or
2 2k 0 2 2
lgy 1o 1 Zg sinf(log £y kldt
2 2k 2 2k, 2 '
1-£%y log(£°y™) Y0 e Mt
Now multiply each term by \/k and also note that
ngyzk 2-(1- §2Y2k ) 1 1 .
2 2k, 2 2k, B 2 2k 2
2(1-¢y ) 2(1-Ey 1-€ v
We get
k k k 0 k| 2 2k
_}_:L__Y___Zg Y sin[(log £7y" )t]
2 2k 2 2 2k 2mt '
1-§y log(§ v ) 0 e -1
o0}
Sum on k and note that since 0 < y <1 we have Z \/k = 1
Then k=0
o0 o0
(3. 16) Z 2 2K - 2(1 Z _Y_—
“Y) log(£®
k=0 k=0 °8 v
> © k 2 2k
Y sinf[(log &7y )t]
-2 dt .
0 eZ'n't_1
k=0

_ L
_Y'
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Consider the last term in the above equation. Ignore for the

present the justification for the interchange of summation and integra-

tion. Interchanging, we have

2k
Y sm[ilog § v )t]
5 Z 2t dt -

-1
. 1 . . .
Factoring Tomt outside the summation, we re-express the series
e -1
as follows:
. 2 2k ) 2 2k
i(log € v )t_ e-L(log§ vy )t

0
k 2k
Z v sin[ log§ v Ot] -
21
k:

0

1
ANYIE:
<
-
]

2 2k, it 2 2k -it]

0
xS
= zg 2i[(é y ) -(E vy )
k=0
or
Z't 0 Z't [e0]
1 -4l
+ Y
(3.17) E:Yl 2it)k gz' v“ &ﬂk'
L 1
k=0 k=0

Therefore the series becomes

2it -2it
3 1 3
2i 1+2it 21
1-y
l -2it
_ 1 § )-€
21 l+2'1t




2it —21t+ §—21t 21it
21 21t —21t 2
1-vy(y )ty

| g2t g2t

eZit log §_e—Zit log §_Y[(_§_)2it_(_§_)—2it]

1
S 2i 2it, -2it,, 2
l-y(y +y )ty
2i -2i 21 -2i
e it In §_e it In §_Y[e it log(g/y)_e it log(g/y)]
2i eZLt log y+e—21t log v 2
1-2vy > +y

£

sin(2t log £)-vy sin(2t log v

2
1-2y cos(2t log y)ty

We now proceed to justify the interchange of integration and

summation
(3.18)
(e ]
2k
z S' Y sm[(log § y t S' Z y sin| logg v t] dt
0 Z‘ITt_l Znt
k=0 ©

performed earlier. We first rewrite the integral over [0,0) asa

sum of integrals over the intervals [0,1] and [1,%), denoting
1 0

these latter integrals simply by S‘ and S respectively. After

0 1 1
showing we can interchange limits in the case of »  we will

0

invoke the Lebesgue Dominated Convergence Theorem to justify the
o0
interchange in the case of S‘
1
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1
Interchange of limits in the case of g ,  i-e.,
0
00 00
> 552
k=0 0 0 k=0
is justified since
N 2 2k
Y sin[(log & v ")t}
(3.19) >
nt_l
k=0 ©
is a uniformly convergent series on 0 <t <1, as we will now

show with the aid of the following lemma.

Lemma: On 0 <t <1, suppose
(1) F(t) and G(t) are continuous.
(2) |[Fit)] <1, 0<|G®)] <M.

(3) G(t) is monotone and G(0) = 0.

(4) 1im Z® - g

¢4o G
Thenon 0 <t <1, g% is bounded, i.e., |’E—E:—;|<_M2<oo
(defining gj(—g')l = L).
Proof: Since lim = exists, = 1is bounded on some interval
I i G G
t¥0
<t <_’c1 where 0 < ’c1 < 1. Then on the interval ’c1 <t<l1,

0
E
G

is a quotient of continuous functions with G nonvanishing, and so
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is a continuous function on this closed interval, and is hence bounded

on this interval.

2 2k
Now returning to the series (3.19), let F(t) = sin[(log £y )t]

2
and G(t) = e Tt . Noting that

sin[(log §2y2k)tl - loj(ngZk)

27t 2
e -1

lim
tlo

we see the above lemma applies. Thus

kK 2 2k
v sm[(l;ﬁtg Y t] < YkM on O 1.

e -1

A
-+
IA

00
k
Since Z My converges, we know the series (3.19) converges
k=0
uniformly on 0 <t <1 bythe Weierstrass M-Test.
00
We now examine the interchange of limits in the case of § .
1
Recall Lebesgue's Dominated Convergence Theorem [5, pg. 246].

Let f (t) be the kth partial sum of (3.19). Returning to the

k
expression of the series in (3.17) (and restoring the factor T)
e -1
we see that
2it k(1+2it -2 it k(1l-2it)
£ (t) = —2 £ 1l-y )_é 1-y
k 2mt 2i 1+2it 2i 1-2it
e -1 l-y 1-vy

00
(Recall, the kth partial sum of the geometric series Z xk is
k=

0




1- 1+2i 1+21
lj{x .) Since |l—y lti >1 - |y 1t| =1 -vy, the triangle
inequality gives
£ 0] < L L 1+yS L1 l+yk] o1 14yS oL 141
- 2 _ - - N
k o Trt_l 2 1-vy 2 1-y eZTrt_l 1-vy eZTrt_l 1-vy
since 0 <y < 1. This shows the sequence of partial sums of (3. 19)
. . 2 1
is dominated by g(t) = —1_:-; omt Also, we have already noted
e -1
that g(t) is integrable, i.e.,
> o]
S‘ 2 dt
- 2
1 Y AT

o0
converges. (Note that we had to rewrite the original integral g
0

o0

dt

S\ S\ since S‘ omt diverges at the lower limit. )
0 e -1

Obviously we wish to exclude the extended case of the Lebesgue

Dominated Convergence Theorem, so we now demonstrate that

lim S‘ fk(t)dt
k—~oo Y0
and . . o 2 2
1
S‘f(t)dt=‘g‘ Z b sm[(zogg Yy el g
0 0 o
k=0

5)

SOO sin(2t log &£)-vy sin(2t log Y

> dt
0 1-2vy cos(2t log y)ty
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+
are both finite. Since the integrand has a finite limitas t— 0 , we

see the integral is not really improper at the lower limit. Hence it
0
suffices to consider S . Recall, for 1 <t < o, we showed thatthe

1
fk(t) were dominated by

2
g(t) = 1—-§

Thus their limit , the sum (3.19), is also dominated by g(t).
[+ o]

00
Therefore, since g g(t)dt is finite, so also is S f(t)dt.
1 1
In summary, we have justified the interchange of limits (3. 18)
and have also shown that the limits involved are all finite.
To complete the proof of the convergence of ZqZk, it only
remains to prove the convergence of
00
)~
k=g loal & Y
n (3.16). We now attend to this problem. Consider the following

integral I:

© 2t
I:S £ dt (0<€<1, 0<y<1).

2t+1
0 l-yt

Now

o0
1 i} (2t+1)k
2t+1 Y ’
Y k=0
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sO

1
OL/—)

T ]

.
log(£5y"X)

k=0
We now justify these formal procedures by showing the integral
I exists and justifying the interchange of summation and integration.
We first show that £ < 1. Recall in (3. 10) we defined £ by
1-m?-n?

£ =m t ny. Also recall vy-= e ® where cosha= ——"  Thus
2mn

£ =m + n{cosh a - sinh @)

5
"
=]
5
.
—
3
5(\)
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Hence we must show that the above expression is less than one, or

equivalently that

(1-m-n)(1+n-m) _ n\/(l_mZ_nz 2,

(3.20) 2m 2mn )

2 2
Obviously (m-1) >0 from which follows —4m3 + 8m - 4m < 0.

2 4 4 2 2.2
To both sides add 1l -2Z2m +m to obtain (m-1) +4mn < (1-m) .
4 2 2
Nextadd n -2m n - 2n and we have
2 272 2 2 2 2 4 4
[(1-m) -n ] <1-2m -2n -2m n +m +n . Thisis
2 2 2 22 2 2
(1-m-n) (l1+n-m) < (l-m -n) -4m n or
2 2
(l1-m-n)(1+tn-m) 42 2¢,1-m -n 2
[ " <o [(—— ) -1]
2m 2mn

Observe that l-m-n and l+n-m are positive and extract square
roots to obtain the desired inequality (3.20). Therefore § < 1.

Turning our attention to the convergence of

2t+1 "’

0 2t
[ = g £ dt
0 1l-vy

1

note that y isfixedand 0<y<1, so T ot is bounded, say

00 ]_-Y
2
by M, for t>0. Clearly g ME tdt converges since & < 1,
0

so by comparison, [ converges.
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To justify the interchange of summation and integration in the
computations involving I, we invoke the Lebesgue Monotone Con-

vergence Theorem [5, pg. 243]. Clearly the sequence of partial sums
00
2t+1
of Z y( ek is monotone increasing since Yy > 0. Therefore the
k=0

sequence of partial sums of

00 00
2t (2t+1)k k,,2 2k.t
€ Z \ = Z Y (€ vy )
k=0 k=0
is monotone increasing also. Since I, the integral of the infinite
00
. - k,.2 2kt )
series of positive terms y (£ vy ) converges, by comparison,
k=0

the sequence of integrals of partial sums of the above series must be
bounded. Therefore the Lebesgue Monotone Convergence Theorem

shows the interchange of summation and integration to be valid.

Ak

[eo}
In summary, we have justified writing the series Z
k=0

2
(deleting the factor K(1-§7)) in the interesting form

00 2t sin(2t log £)-vy sin(2t log 'é)

: g —g—dt-zg00 Y — gt

+
2(1- 2t+1 2 2
(1-vy) 1-y°t 0 (e“"t-1)[(1-2ycos(2tlogy)+y©]
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Since we have demonstrated the convergence of these improper

integrals, we have established again the convergence of

0
Z 9 -
k:

0
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